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Abstract

The paper has two main goals. The first is to take a new approach to re-
arrangements on certain classes of measurable real-valued functions on Rn.
Rearrangements are maps that are monotonic (up to sets of measure zero) and
equimeasurable, i.e., they preserve the measure of super-level sets of functions.
All the principal known symmetrization processes for functions, such as Steiner
and Schwarz symmetrization, are rearrangements, and these have a multitude
of applications in diverse areas of the mathematical sciences. The second goal
is to understand which properties of rearrangements characterize polarization,
a special rearrangement that has proved particularly useful in a number of
contexts. In order to achieve this, new results are obtained on the structure of
measure-preserving maps on convex bodies and of rearrangements generally.

Keywords: Convex body, Steiner symmetrization, Schwarz symmetrization,
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1 Introduction

The idea of replacing an object by one that retains some of its features but is in
some sense more symmetrical has been extremely fruitful. The object may be a set
or a function, for example, and the process is then often called symmetrization or
rearrangement, respectively. Steiner symmetrization, introduced by Jakob Steiner
around 1836 in his attempt to prove the isoperimetric inequality, is still today a potent
tool for establishing crucial inequalities in geometry; see, for example, [24, 32, 33, 34].
The influence of such inequalities, which often have analytical versions, extends
far beyond geometry to other areas such as analysis and PDEs, and even outside
mathematics, to economics and finance. The books [20, Chapter 9], [23, Chapter 9],
[39, Chapter 10], and survey [19] should serve as gateways to the literature.

The topic received a huge boost in 1951 from the classic text of Pólya and Szegö
[36]. By this time, many other types of symmetrization had been introduced, with
similar applications. The general idea is to find a symmetrization that preserves one
physical quantity, while not increasing (or sometimes not reducing) another. As well as
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volume, surface area, and mean width, [36] considers electrostatic capacity, principal
frequency (the first eigenvalue of the Laplacian), and torsional rigidity, thereby
extending the scope to mathematical physics. In fact, much of this work was motivated
by conjectures of the mathematician-engineer de Saint-Venant (1856) and physicist
Strutt (a.k.a. Lord Rayleigh) (1877), and subsequent work of Hadamard, Poincaré,
and others. The latter included results on rearrangement of functions, already used to
great effect in the 1920s by Faber and Krahn. It turns out that rearranging a function
is a notion so fertile that applications arise in areas too diverse for a single text to cover
them all in detail: Classical analysis, calculus of variations, complex analysis, convex
geometry, geometric measure theory, Banach spaces, potential theory, PDEs, fluid
dynamics, mechanics, and meteorology, for example. Luckily, a beautiful and quite
recent survey by Talenti [43] contains a comprehensive bibliography, conveniently
divided between the main periods of development, from which [5, 10, 12, 13, 15, 18,
25, 26, 27, 28, 29, 31, 42], together with the recent book [3], illustrate the list of
areas just mentioned.

The Steiner rearrangement of a function f with respect to an (n− 1)-dimensional
subspace H in Rn, and its natural generalization, the Schwarz rearrangement of
f with respect to a k-dimensional subspace H, are defined via the corresponding
symmetrals of its super-level sets; see, for example, [23, p. 178]. For convenience, we
shall denote either rearrangement by SHf . Symmetrals of sets can be identified with
rearrangements of their characteristic functions. The related notion of polarization
is more recent but has already stimulated much interest. According to Solynin [41,
p. 123], it was first considered for planar sets by Wolontis [49] in 1952, and for
functions by Ahlfors [1, p. 34] and Baernstein and Taylor [4] in the 1970s, while
the term itself is due to Dubinin [16]. The standard polarization process, sometimes
called two-point symmetrization, with respect to an oriented (n − 1)-dimensional
(linear) subspace H, takes a function f : Rn → R and replaces it by

PHf(x) =

{
max{f(x), f(x†)}, if x ∈ H+,
min{f(x), f(x†)}, if x ∈ H−, (1)

where † denotes the reflection in H and where H+, H−, are the two closed half-spaces
bounded by H and determined by its orientation. If A ⊂ Rn, then PHA is the set
satisfying 1PHA = PH1A, where 1A denotes the characteristic function of A. The
process has several useful properties: It is equimeasurable, monotonic, Lp-contracting,
and reduces the modulus of continuity (see Section 3 for the definitions of these
terms).

The article [4] demonstrated that polarizations can be more efficient than rear-
rangements in establishing inequalities involving integrals, and was followed by a
number of papers applying polarization to inequalities in the theory of capacities.
Then, in 2000, a landmark study by Brock and Solynin [8] gave further significance
to polarization by showing that the Steiner or Schwarz rearrangements of a function
(or symmetrals of a compact set) with respect to a subspace H can be approximated
in Lp(Rn) (or in the Hausdorff metric, respectively) via successive polarizations with
respect to a sequence (Hk) of oriented subspaces. In [8], the sequence (Hk) may
depend on the function or set, but this dependence was removed by Van Schaftingen
[45, 46]. Indeed, by [46, Theorem 1 and Section 4.3], the desired approximation of
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the Steiner or Schwarz rearrangement SHf of a suitable function f may be obtained
by taking any sequence (Hk) dense in the set of oriented subspaces J such that J+

contains H in its interior and defining f1 = f and

fk+1 = (PHk
◦ PHk−1

◦ · · · ◦ PH1)fk

for k ∈ N; then fk → SHf as k → ∞. Moreover, polarization is flexible enough
to approximate other processes, such as spherical rearrangement and spherical cap
symmetrization; see [46].

In [7], an investigation was initiated into symmetrization processes defined, like
Steiner symmetrization, with respect to a subspace in Rn. Characterizations of
Steiner symmetrization and others such as Minkowski symmetrization were proved,
in terms of basic properties they possess. It is natural, then, to undertake a similar
study with a view to obtaining characterizations of polarization. Here we consider
general maps T : X → X, where X is M(Rn) (or M+(Rn)), the space of real-
valued (or nonnegative, respectively) measurable functions on Rn, the space S(Rn)
of symmetrizable functions inM(Rn), or the space V(Rn) of functions inM+(Rn)
vanishing at infinity. (See Sections 2 and 3 for definitions and terminology.) For any
T : X → X we can consider the induced map ♦T : Ln → Ln: If A ∈ Ln, we let ♦TA
be the set of all x ∈ Rn with T1A(x) = 1.

Our new results begin in Section 4 on equimeasurable maps from a subset X
of M(Rn) to itself, i.e., those that preserve the measure of super-level sets, and
rearrangements, equimeasurable maps that are also monotonic. This second and
different usage of the term rearrangement—it is now a transformation on a class of
functions—is appropriate, since Steiner, Schwarz, and other special rearrangements
all have these two properties; see, for example, [27, Section II.2]. Note, however, that
the present paper differs in that monotonic really means essentially monotonic, i.e., up
to sets of Hn-measure zero. The first main result is Lemma 4.1(iii), which states that
a rearrangement T :M(Rn)→M(Rn) essentially acts as the identity on constant
functions. Even the special case T0 = 0, essentially, of this natural result seems not
to be obvious. This is applied to prove that a rearrangement T : S(Rn) → S(Rn)
essentially satisfies the weak linearity property (18) in Lemma 4.7, which is in turn
a crucial ingredient in the second main result, Theorem 4.8. The latter provides the
explicit formula (22) for Tf , where f ∈ S(Rn), in terms of the induced map ♦T
defined above. Theorem 4.8 is also used in proving Theorem 4.9, which establishes
the fundamental formula (see (28) below) ϕ(Tf) = T (ϕ◦f), for f ∈ S(Rn) and right-
continuous increasing (i.e., non-decreasing) functions ϕ : R→ R. The formula (18),
and versions of (22) and Theorem 4.9, appear elsewhere in the literature (compare, for
example, [47, p. 138], [8, Equations (3.1) and (3.6), p. 1762], and [47, Definition 4 and
Proposition 3(d)]), so we must stress that our approach is quite different and more
logical and general. Earlier works such as [8] and [47] begin with set transformations
and use them to define special maps on classes of functions, whereas we start with
general maps T on classes of functions, define the induced set tranformation ♦T ,
and show that in the main situations of interest, ♦T determines T . In particular, [8,
Equation (3.1), p. 1762], like [47, Definition 4], is a definition, not a result, and [8,
Equation (3.6), p. 1762] and [47, Proposition 3(d)] are deduced from these definitions.
See the Appendix for a more detailed comparison of the two approaches.
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Polarization has another basic property in addition to those listed above, namely,
it is defined pointwise, as is clear from (1). General pointwise maps T : X → X
with respect to an oriented subspace H, defined by (4) below, are the focus of
Section 5. Theorem 5.1 gives an explicit formula for maps T : X → X that are
both pointwise with respect to H and equimeasurable, where X =M(Rn),M+(Rn),
S(Rn), or V(Rn). The other main result in this section, Theorem 5.8, shows that
once T : X → X has these two properties, the others listed above—monotonicity,
Lp-contracting for p ≥ 1, and modulus of continuity reducing—are all equivalent and
characterize T as being one of four maps: Id, †, PH , or P †H = † ◦ PH , where Id and †
denote the identity map and reflection in H, respectively.

The pointwise property is a strong one and for the rest of the paper it is discarded.
In Section 4 we examine general maps T : X → X. Our approach is to gain knowledge
first about the induced maps ♦T : Ln → Ln. With this aim, in Section 6, we study
general maps ♦ : E ⊂ Ln → Ln between sets in terms of various properties, defined in
Section 3, but for the most part self-explanatory. The first main result is Theorem 6.6,
which gives a formula for maps ♦ : Knn → Ln that are monotonic, measure preserving,
respect H-cylinders, and map balls to balls, where Knn is the set of convex bodies in
Rn and H is an (n− 1)-dimensional subspace. The formula (see (62)) shows that for
such maps there is a contraction ϕ♦ : R→ R such that if K ∈ Knn, almost all chords
of K orthogonal to H are moved orthogonal to H by a distance determined by ϕ♦
and the position of the chord relative to H. With this in hand, Corollary 6.7 states
that ϕ♦(t) = t, −t, |t|, or −|t|, if and only if ♦ essentially (i.e., up to sets of the
appropriate measure zero) equals Id, †, ♦PH

, or ♦†PH
= ♦P †H , respectively. The goal

then is to find additional or stronger properties that will force ϕ♦ to be one of these
four functions. A first attempt replaces the ball-preserving property by one that for
measure-preserving maps is stronger and also enjoyed by polarization, namely, that
♦ preserves perimeter on convex bodies. However, Theorem 6.10 shows that maps
♦ : Knn → Ln that are monotonic, measure preserving, respect H-cylinders, and
preserve perimeter on convex bodies, are precisely those for which the contraction
ϕ♦ satisfies the eikonal equation |ϕ′♦(t)| = 1 for almost all t ∈ R. There are clearly
solutions to the latter equation other than ϕ♦(t) = ±t or ±|t|. To achieve our goal,
we find it necessary to focus on maps ♦ : E → Ln, where E is either the class Cn of
compact sets in Rn or Ln, and replace the property that ♦ respects H-cylinders by
the stronger one of invariance on H-symmetric unions of two disjoint balls. (Note
that while this condition may seem peculiar, it is much weaker than the natural
assumption that ♦ is invariant on all H-symmetric sets.) Thus in Theorem 6.16,
we prove that if E = Cn or Ln and ♦ : E → Ln is monotonic, measure preserving,
perimeter preserving on convex bodies, and invariant on H-symmetric unions of two
disjoint balls, then ♦ essentially equals Id, †, ♦PH

, or ♦†PH
.

Since the maps ♦ : E ⊂ Ln → Ln we study in Section 6 include but are not
necessarily symmetrizations, this part of our paper may be viewed as a widening of
the scope of [7].

Armed with Theorem 6.16, we prove in Theorem 6.21 that if T : S(Rn)→ S(Rn)
or T : V(Rn) → V(Rn) is a rearrangement, and the induced map ♦T is perimeter
preserving on convex bodies and invariant on H-symmetric unions of two disjoint
balls, then T essentially equals Id, †, PH , or PH†. For maps T : X → X, where
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X = M(Rn) or M+(Rn), the same properties allow the same conclusion for the
restriction of T to S(Rn) or V(Rn), respectively, though not for the unrestricted map.
This is shown in Theorem 6.22. Both Theorems 6.21 and 6.22 depend on the main
results from Section 4.

As was mentioned earlier, polarization is Lp-contracting and reduces the modulus
of continuity, but since compositions of polarizations with respect to different oriented
subspaces retain these two properties, they do not seem so useful in classifying
polarization among rearrangements.

Throughout the paper we provide examples showing that our main results are
best possible in the sense that none of the assumed properties can be omitted or
significantly weakened.

We are grateful to David Preiss for communicating the construction in Re-
mark 6.12.

2 Preliminaries

As usual, Sn−1 denotes the unit sphere and o the origin in Euclidean n-space Rn.
Unless stated otherwise, we assume throughout that n ≥ 2. The standard orthonormal
basis for Rn is {e1, . . . , en} and the Euclidean norm is denoted by ‖ · ‖. The term ball
in Rn will always mean a closed n-dimensional ball unless otherwise stated. The unit
ball in Rn will be denoted by Bn and B(x, r) is the ball with center x and radius r.
If x, y ∈ Rn we write x · y for the inner product and [x, y] for the line segment with
endpoints x and y. If x ∈ Rn \ {o}, then x⊥ is the (n − 1)-dimensional subspace
orthogonal to x. Throughout the paper, the term subspace means a linear subspace.

If X is a set, we denote by linX, convX, clX, intX, relintX, and dimX the
linear hull, convex hull, closure, interior, relative interior, and dimension (that is,
the dimension of the affine hull) of X, respectively. If H is a subspace of Rn, then
X|H is the (orthogonal) projection of X on H and x|H is the projection of a vector
x ∈ Rn on H.

If X and Y are sets in Rn and t ≥ 0, then tX = {tx : x ∈ X} and

X + Y = {x+ y : x ∈ X, y ∈ Y }

denotes the Minkowski sum of X and Y .
When H is a fixed subspace of Rn, we use X† for the reflection of X in H, i.e.,

the image of X under the map that takes x ∈ Rn to 2(x|H)− x. If X† = X, we say
X is H-symmetric. If H = {o}, we instead write −X = (−1)X for the reflection of
X in the origin and o-symmetric for {o}-symmetric. A set X is called rotationally
symmetric with respect to H if for x ∈ H, X ∩ (H⊥ + x) = rx(B

n ∩ H⊥) + x for
some rx ≥ 0. If dimH = n− 1, then a compact convex set is rotationally symmetric
with respect to H if and only if it is H-symmetric. The term H-symmetric spherical
cylinder will always mean a set of the form

(B(x, r) ∩H) + s(Bn ∩H⊥) = (B(x, r) ∩H)× s(Bn ∩H⊥),

where r, s > 0. Of course, H-symmetric spherical cylinders are rotationally symmetric
with respect to both H and H⊥.
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The phrase translate orthogonal to H means translate by a vector in H⊥.
We write Hk for k-dimensional Hausdorff measure in Rn, where k ∈ {1, . . . , n}.

When dealing with relationships between sets in Rn or functions on Rn, the term
essentially means up to a set of Hn-measure zero.

The Grassmannian of k-dimensional subspaces in Rn is denoted by G(n, k).
We denote by Cn, Gn, Bn, Mn, and Ln the class of nonempty compact sets,

open sets, bounded Borel sets, Hn-measurable sets, and Hn-measurable sets of finite
Hn-measure, respectively, in Rn. Let Kn be the class of nonempty compact convex
subsets of Rn and let Knn be the class of convex bodies, i.e., members of Kn with
interior points. A subscript s denotes the o-symmetric sets in these classes. If K ∈ Kn,
then

hK(x) = sup{x · y : y ∈ K},
for x ∈ Rn, defines the support function hK of K. The texts by Gruber [23] and
Schneider [39] contain a wealth of useful information about convex sets and related
concepts such as the intrinsic volumes Vj , j ∈ {1, . . . , n} (see also [20, Appendix A]).
In particular, if K ∈ Kn, then V1(K) and Vn−1(K) are (up to constants independent
of K) the mean width and surface area of K, respectively. If dimK = k, then
Vk(K) = Hk(K) and in this case we prefer to write Vk(K). By κn we denote the
volume Vn(Bn) of the unit ball in Rn.

LetM(Rn) (orM+(Rn)) denote the set of real-valued (or nonnegative, respec-
tively) measurable functions on Rn and let S(Rn) denote the set of functions f
in M(Rn) such that Hn({x : f(x) > t}) < ∞ for t > ess inf f . By V(Rn), we
denote the set of functions f in M+(Rn) such that Hn({x : f(x) > t}) < ∞
for t > 0. The four classes of functions satisfy V(Rn) ⊂ S(Rn) ⊂ M(Rn) and
V(Rn) ⊂ M+(Rn) ⊂ M(Rn). Members of S(Rn) have been called symmetrizable
(see, e.g., [8]) and those of V(Rn) are often said to vanish at infinity. Note that the
constant functions are symmetrizable but do not vanish at infinity unless they are
identically zero.

If T : X → X, we shall usually write Tf instead of T (f). If T0, T1 : X → X are
maps, we say that T0 is essentially equal to T1 if for f ∈ X, T0f(x) = T1f(x) for
Hn-almost all x ∈ Rn, where the exceptional set may depend on f .

3 Properties of maps

Let i ∈ {1, . . . , n− 1}, let H ∈ G(n, i) be fixed, and recall that K† is the reflection
of K in H. We consider the following properties of a map ♦ : E ⊂ Ln → Ln, where
it is assumed (here and throughout the paper) that they hold for all K,L ∈ E , that
the class E is appropriate for the property concerned, and that sets of Hn-measure
zero are ignored.

1. (Monotonic or strictly monotonic) K ⊂ L⇒ ♦K ⊂ ♦L (or ♦K ⊂ ♦L and
K 6= L⇒ ♦K 6= ♦L, respectively).

2. (Measure preserving) Hn(♦K) = Hn(K).

3. (Invariant on H-symmetric sets) K† = K ⇒ ♦K = K.
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4. (Invariant on H-symmetric spherical cylinders) If K = (B(x, r) ∩ H) +
s(Bn ∩H⊥), where r, s > 0 and x ∈ Rn, then ♦K = K.

5. (Maps balls to balls) If K = B(x, r), then ♦K = B(x′, r′).

6. (Respects H-cylinders) If K ⊂ (B(x, r)∩H) +H⊥, then ♦K ⊂ (B(x, r)∩H)
+H⊥.

Clearly invariance on H-symmetric sets implies invariance on H-symmetric spherical
cylinders. If E ⊂ Bn and ♦ is monotonic and invariant on H-symmetric spherical
cylinders, then ♦ respects H-cylinders. The assumption E ⊂ Bn cannot be omitted
here, as the following example for n = 2 shows. Let H be a one-dimensional subspace
in R2, and let RH⊥E denote the reflection of E ∈ L2 in H⊥. Define ♦ : L2 → L2 by

♦E =

{
E, if E is essentially bounded,
E ∪RH⊥E, otherwise.

Then ♦ is invariant on all essentially bounded sets, and in particular on all spherical
cylinders. The mapping ♦ is also monotonic, but does not respect H-cylinders. In
Lemma 6.13, we show that this conclusion can be drawn if additional conditions are
imposed.

We need one further property.

7. (Perimeter preserving on convex bodies) For each K ∈ Knn, ♦K is a set of
finite perimeter such that S(♦K) = S(K), where S denotes perimeter (see, for
example, [17, p. 70]).

Let X ⊂ M(Rn). We consider the following properties of a map T : X → X,
where the properties are assumed to hold for all f, g ∈ X:

1. (Equimeasurable)

Hn({x : Tf(x) > t}) = Hn({x : f(x) > t}) (2)

for t ∈ R.
2. (Monotonic) f ≤ g, essentially, implies Tf ≤ Tg, essentially.

3. (Lp-contracting) ‖Tf − Tg‖p ≤ ‖f − g‖p.
4. (Modulus of continuity reducing) ωd(Tf) ≤ ωd(f) for d > 0, where

ωd(f) = ess sup
‖x−y‖≤d

|f(x)− f(y)| (3)

is the modulus of continuity of f ∈ X.

The map T is called a rearrangement if it is equimeasurable and monotonic.
If T : X → X maps characteristic functions of sets in Ln to characteristic

functions of sets in Ln, let ♦T : Ln → Ln be defined by 1♦T (A) = T1A for A ∈ Ln.
Two further properties of T depend on some H ∈ G(n, n− 1) which in the second

case is oriented and bounds closed half-spaces H+ and H−.
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5. (Invariant on H-symmetric spherical cylinders) If K = (B(x, r) ∩ H) +
s(Bn∩H⊥), where r, s > 0, then ♦TK is well defined and ♦TK = K, essentially.

6. (Pointwise with respect to H)

Tf(x) =

{
F+(f(x), f †(x)), if x ∈ H+,
F−(f(x), f †(x)), if x ∈ H−, (4)

where f †(x) = f(x†) is the reflection of f in H and where F+, F− : D2 → D
coincide on the diagonal {(s, s) : s ∈ D}. Here

D = {f(x) : x ∈ Rn, f ∈ X}.

Thus D = R if X = M(Rn) or S(Rn) and D = [0,∞) if X = M+(Rn) or
V(Rn), and in each case D2 is the common domain of F+ and F−.

The pointwise property is inspired by the pointwise operations defined in [21].
The functions F+ and F− are said to be associated with T . One can consider
special associated functions such as the pth means Mp(s, t) = (sp + tp)1/p for
p > 0, M∞(s, t) = max{s, t}, and M−∞(s, t) = min{s, t}. For p < 0, one can define
Mp(s, t) = (sp + tp)1/p, if st 6= 0, and Mp(s, t) = 0, otherwise. Then polarization (1)
corresponds to taking F+ = M∞ and F− = M−∞ in (4).

Again taking a cue from [21], one might consider the following more general
version of the pointwise property:

Tf(x) =

{
(f ∗+ f †)(x), if x ∈ H+,
(f ∗− f †)(x), if x ∈ H−, (5)

where ∗+ and ∗− are two operations between functions on Rn. To assure that (5) is
well defined, one would require that f ∗+ f † = f ∗− f † on H. Then (1) corresponds to
taking f ∗+ g = max{f, g} and f ∗− g = min{f, g}. However, the apparent restriction
in the definition (5) is an illusion, since f ∗+ f † and f ∗− f † may as well be replaced
by arbitrary functions of f .

Polarization, defined by (1), has all the properties 1–6. For properties 1–4, see
[11, Section 2]. Property 5 is clear and 6 was discussed above.

4 Equimeasurable maps and rearrangements

If f ∈ V(Rn), then ess inf f = 0 and it follows that if T : V(Rn) → V(Rn), then
ess inf Tf = ess inf f . We now examine the situation for the other classes of functions.

Lemma 4.1. (i) If T : S(Rn) → S(Rn) is equimeasurable, then ess inf Tf =
ess inf f for f ∈ S(Rn).

(ii) If T : M(Rn) → M(Rn) is a rearrangement, then ess inf Tf ≥ ess inf f for
f ∈M(Rn). Hence, T : S(Rn)→ S(Rn).

(iii) In either case, T : V(Rn)→ V(Rn) and T is essentially the identity on constant
functions.
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Proof. (i) Suppose that ess inf Tf 6= ess inf f for some f ∈ S(Rn). Choose t ∈ R
strictly between ess inf Tf and ess inf f and note that (2) is violated, since one side
is finite and the other infinite.

(ii) Throughout the proof, we shall ignore sets ofHn-measure zero. Let f ∈M(Rn).
Suppose that ess inf f = a > ess inf Tf . Then there is a t > 0 such that

E = {x : Tf(x) ≤ a− t}
has positive Hn-measure.

Let f0(x) = a−‖x‖ for x ∈ Rn. Then f0 ∈M(Rn) and f0 ≤ f , so the monotonicity
of T implies that Tf0 ≤ Tf . Consequently, we may choose t0 > 0 such that

Hn({x : Tf0(x) > a− t0} ∩ E) > 0. (6)

Note that t0 ≥ t by the definition of E. Define

g(x) =

{
max{f0(x), a− t/2}, if x ∈ t0Bn,
f0(x), if x /∈ t0Bn.

Clearly g ∈M(Rn), f0 ≤ g ≤ f , and

{x : f0(x) > a− t0} = {x : g(x) > a− t0} = t0B
n. (7)

We have
{x : Tf0(x) > a− t0} = {x : Tg(x) > a− t0}, (8)

because the monotonicity of T implies that the set on the right contains the set on the
left, and the two sets have the same Hn-measure, by (7) and the equimeasurability
of T .

The monotonicity of T and g ≤ f imply that Tg ≤ Tf . In particular, Tg(x) ≤ a−t
when x ∈ E, so

{x : Tg(x) > a− 3t/4} ∩ E = ∅. (9)

Since t0 ≥ t, we have {x : Tg(x) > a− 3t/4} ⊂ {x : Tg(x) > a− t0}, so (8) yields

{x : Tg(x) > a− 3t/4} ⊂ {x : Tf0(x) > a− t0}. (10)

Moreover,

Hn({x : Tg(x) > a− 3t/4}) = Hn({x : g(x) > a− 3t/4})
= Hn(t0B

n) = Hn({x : f0(x) > a− t0})
= Hn({x : Tf0(x) > a− t0}). (11)

Formulas (10) and (11) imply that

{x : Tg(x) > a− 3t/4} = {x : Tf0(x) > a− t0}.
But this contradicts (6) and (9) and proves that ess inf Tf ≥ ess inf f .

Let f ∈ S(Rn). If t > ess inf Tf , then t > ess inf f , so by (2) and the definition
of S(Rn), we have

Hn({x : Tf(x) > t}) = Hn({x : f(x) > t}) <∞.
Therefore Tf ∈ S(Rn), as required.
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(iii) If T : S(Rn)→ S(Rn) is equimeasurable and f ∈ V(Rn), then ess inf Tf =
ess inf f = 0 by (i), so Tf ∈ V(Rn). If T : M(Rn) → M(Rn) is a rearrangement
and f ∈ V(Rn), then ess inf Tf ≥ ess inf f = 0 by (ii). This and (2) imply that
Tf ∈ V(Rn). That T is essentially the identity on constant functions is immediate
in case (i). In case (ii), if f ≡ c is constant, we obtain Tc ≥ c. This and the
equimeasurability of T yield Tc = c.

Example 4.2. Lemma 4.1(ii) and (iii) do not hold in general if T :M(Rn)→M(Rn)
is only assumed to be equimeasurable. To see this, let

g1(x) =

{
−1/‖x‖, x 6= o,
0, x = o.

(12)

If A ∈ Ln, define

T01A(x) =

{
1, if x ∈ A,
g1(x), if x 6∈ A.

Then (2) holds with f = 1A and we may extend T0 arbitrarily to an equimeasurable
map fromM(Rn) to itself. Since T01A 6∈ S(Rn), it is not even true that T0 : V(Rn)→
S(Rn). For the remaining statements in Lemma 4.1(ii) and (iii), define T10 = g1 and
extend the definition of T1 arbitrarily to an equimeasurable map fromM(Rn) to
itself. Then ess inf T10 = −∞ < 0 = ess inf 0 and T10 is not a constant function.

If T :M+(Rn)→M+(Rn) is equimeasurable, then T : V(Rn)→ V(Rn) follows
immediately from (2). However, the following example shows that the other statements
in Lemma 4.1(ii) and (iii) do not hold in general if T : M+(Rn) → M+(Rn) is a
rearrangement.

Example 4.3. There is a rearrangement T : M+(Rn) → M+(Rn) such that
ess inf Tf < ess inf f for some f ∈M+(Rn). Indeed, define T by letting

Tf(x) =





f(x), if x1 < 0,
0, if 0 ≤ x1 ≤ 1,
f(x− e1), if x1 > 1,

for f ∈ M+(Rn) and x = (x1, . . . , xn) ∈ Rn. It is easy to check that T is a
rearrangement. If f ≡ c is a constant function and c > 0, then ess inf Tf = 0 < c =
ess inf f . It is also not true that T essentially maps constant functions to constant
functions.

Example 4.4. If X =M(Rn) orM+(Rn), there are rearrangements T : X → X
such that ess inf Tf > ess inf f for some f ∈ X. To see this, call f ∈ X of type I if
Hn({x : f(x) > t}) =∞ for t ≥ ess inf f and of type II otherwise, i.e., if there is a
t0 ≥ ess inf f such that Hn({x : f(x) > t}) <∞ for t > t0. Then define Tf = f + 1
if f is of type I and Tf = f if f is of type II. Clearly, T : X → X is equimeasurable.
If f ≤ g, then either f and g are of the same type, or f is of type II and g is of type I.
It follows that Tf ≤ Tg and hence that T is a rearrangement. If f0(x) = ‖x‖ for
x ∈ Rn, then f0 is of type I, so ess inf Tf0 = ess inf(f0 + 1) = 1 > 0 = ess inf f0.
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Lemma 4.5. Let X =M(Rn),M+(Rn), S(Rn), or V(Rn), and let T : X → X be
equimeasurable.

(i) The induced map ♦T : Ln → Ln given by

♦TA = {x : T1A(x) = 1} (13)

for A ∈ Ln is well defined and measure preserving.

(ii) If X = M+(Rn), S(Rn), or V(Rn), then T essentially maps characteristic
functions of sets in Ln to characteristic functions of sets in Ln, in the sense
that for each A ∈ Ln,

T1A = 1♦TA, (14)

essentially.

Proof. (i) If α > 0 and A ∈ Ln, the equimeasurability of T yields

Hn({x : T (α1A)(x) > t}) = Hn({x : (α1A)(x) > t})

=





0, t ≥ α,

Hn(A), 0 ≤ t < α,

∞, t < 0.

(15)

Hence T (α1A)(x) ∈ (−∞, 0]∪ {α} for Hn-almost all x ∈ Rn, and the measurable set

Aα = {x : T (α1A)(x) = α} (16)

satisfies Hn(Aα) = Hn(A) <∞. This shows that Aα ∈ Ln. Applying this with α = 1
and setting ♦TA = A1, we obtain (13) and the measure-preserving property of ♦T .

(ii) It follows from (13) that

T1A(x) = 1⇔ x ∈ ♦TA⇔ 1♦TA(x) = 1.

It now suffices to observe that if X = M+(Rn), S(Rn), or V(Rn), then T1A(x) ∈
{0, 1} for Hn-almost all x ∈ Rn, where for X = S(Rn) we used Lemma 4.1(i).

Example 4.6. If in Lemma 4.5(i) we have X =M(Rn) and extend the definition
(13) to a map ♦T :Mn →Mn, then it need not be measure preserving. To see this,
let g2 : Rn → R be defined by

g2(x) =

{‖x‖−1
‖x‖ , x 6= o,

0, x = o,
(17)

let A ∈Mn be such that Hn(A) =∞, and let

T1A(x) =

{
g2(x), if x ∈ A,
0, if x 6∈ A.

Note that

Hn({x : T1A(x) > t}) = Hn({x : 1A(x) > t}) =

{
0, t ≥ 1,

∞, t < 1,
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so (15) holds with α = 1. Extend the definition of T to an equimeasurable map from
M(Rn) toM(Rn) arbitrarily. Since

♦TA = {x : T1A(x) = 1} = {x ∈ A : g2(x) = 1} = ∅,

♦T is not measure preserving.

The equimeasurable map T0 from Example 4.2 shows that Lemma 4.5(ii) does
not hold when X =M(Rn).

Lemma 4.7. Let X = S(Rn) or V(Rn) and let T : X → X be a rearrangement. For
X = S(Rn), A ∈ Ln, and α, β ∈ R with α ≥ 0, we have

T (α1A + β) = αT1A + β, (18)

essentially. When X = V(Rn), (18) holds, essentially, if β = 0.

Proof. The case when α = 0 follows from Lemma 4.1(iii), so henceforth we assume
that α > 0.

We shall ignore sets of Hn-measure zero for the remainder of the proof. We
first assume that β = 0. If 0 < α′ ≤ α, then α′1A ≤ α1A, so T (α′1A) ≤ T (α1A).
Now T (α′1A)(x) = α′ if and only if x ∈ Aα′ , where Aα′ is defined by (16) with α
replaced by α′, so T (α1A)(x) ≥ α′ for x ∈ Aα′ . From the proof of Lemma 4.5(i),
we see that T (α1A)(x) = α for x ∈ Aα′ and hence Aα′ ⊂ Aα. By (15), we have
Hn(Aα′) = Hn(A) = Hn(Aα), so Aα′ = Aα. Consequently, for each α > 0 we have
Aα = A1. Now

T (α1A)(x) = α⇔ x ∈ Aα ⇔ x ∈ A1 and α1♦TA(x) = α⇔ x ∈ A1,

so, using (14), we obtain

T (α1A)(x) = α1♦TA(x) = αT1A, (19)

as required. This proves (18) when β = 0 and the second statement in the lemma.
Suppose that β 6= 0 and for convenience let h = α1A + β. Then h ∈ {β, α+ β}.

Arguing as in the proof of Lemma 4.5(i), we see that Th ∈ (−∞, β] ∪ {α + β}, and
hence, by Lemma 4.1(i), Th ∈ {β, α + β}. It follows that Th = α1B + β for some
Hn-measurable set B. For t ∈ (β, α + β),

Hn(B) = Hn{x : Th(x) > t} = Hn{x : h(x) > t} = Hn(A).

In view of (14), it will suffice to show that B = ♦TA.
Assume that β > 0. Then h ≥ (α + β)1A, so using the monotonicity of T , and

(19) with α replaced by α + β, we get

Th = α1B + β ≥ T ((α + β)1A) = (α + β)T1A = (α + β)1♦TA.

Since α1B(x) + β = α + β ⇔ x ∈ B and (α + β)1♦TA(x) = α + β ⇔ x ∈ ♦TA, we
must have B = ♦TA.
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Finally, suppose that β < 0. Let γ = max{α + β, 1}. Then

h = α1A + β ≤ (γ − β)1A + β ≤ γ1A,

so arguing as above, we find that

α1B + β = Th ≤ T ((γ − β)1A + β) ≤ (γ − β)1C + β ≤ γT1A = γ1♦TA, (20)

for some C with Hn(C) = Hn(B) = Hn(A). Since (γ − β)1C(x) + β = γ ⇔ x ∈ C
and γ1♦TA(x) = γ ⇔ x ∈ ♦TA, the right-hand inequality in (20) yields C = ♦TA.
If α + β ≥ 1, then γ = α + β and the left-hand inequality in (20) similarly yields
B = C. If α + β < 1, then γ = 1 and the left-hand inequality in (20) becomes
α1B ≤ (1− β)1C . Now α1B(x) = α > 0⇔ x ∈ B and (1− β)1C(x) = 0⇔ x 6∈ C, so
Hn(B \C) = 0. From this and Hn(B) = Hn(C), we conclude that B = C. Therefore
B = ♦TA, as required.
Theorem 4.8. Let X =M(Rn),M+(Rn), S(Rn), or V(Rn) and let T : X → X be
a rearrangement.

(i) The map ♦T : Ln → Ln defined by (13) is monotonic.

(ii) If X = S(Rn) or V(Rn) and f ∈ X, then

{x : Tf(x) ≥ t} = ♦T{x : f(x) ≥ t}, (21)

essentially, for t > ess inf f . Moreover, T is essentially determined by ♦T , since

Tf(x) = max
{

sup
{
t ∈ Q, t > ess inf f : x ∈ ♦T{z : f(z) ≥ t}

}
, ess inf f

}
,

(22)
essentially.

Proof. (i) If A ⊂ B, then 1A ≤ 1B and hence 1 = T1A(x) ≤ T1B(x) for Hn-almost
all x ∈ ♦TA = {x : T1A(x) = 1}. Since T1B(x) ∈ (−∞, 0] ∪ {1} for Hn-almost all
x ∈ Rn, it is clear that ♦TA ⊂ {x : T1B(x) = 1} = ♦TB, essentially. Therefore ♦T
is monotonic.

(ii) Since V(Rn) ⊂ S(Rn), it suffices to consider the case when X = S(Rn). Let
f ∈ S(Rn) and let t > ess inf f . If (tm) is an increasing sequence with ess inf f <
tm < t converging to t, the fact that Hn({x : f(x) > t1}) <∞ implies that

Hn({x : f(x) ≥ t}) = Hn
( ∞⋂

m=1

{x : f(x) > tm}
)

= lim
m→∞

Hn({x : f(x) > tm}).

The same statement holds when f is replaced by Tf . The equimeasurablity of T
then yields

Hn({x : f(x) ≥ t}) = Hn({x : Tf(x) ≥ t}). (23)

Assume that ess inf f > −∞. Let C = {x : f(x) ≥ t}. It is easy to check that

f ≥ (t− ess inf f)1C + ess inf f.
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By Lemma 4.7 with α = t− ess inf f and β = ess inf f , and the monotonicity of T ,
we obtain

Tf ≥ T ((t− ess inf f)1C + ess inf f) = (t− ess inf f)T1C + ess inf f,

essentially. This inequality and (13) give

♦T{x : f(x) ≥ t} = ♦TC = {x : T1C(x) = 1} ⊂ {x : Tf(x) ≥ t},

essentially. The left- and right-hand sides are of equal Hn-measure by (23) and the
measure-preserving property of ♦T , and are therefore essentially equal. Hence (21)
holds when ess inf f > −∞.

Now suppose that ess inf f = −∞. Let s < t and define fs(x) = max{f(x), s} for
x ∈ Rn. Then ess inf fs = s and

{x : f(x) ≥ t} = {x : fs(x) ≥ t}. (24)

Since f ≤ fs, the monotonicity of T implies that {x : Tfs(x) ≥ t} is essentially
contained in {x : Tf(x) ≥ t}. This, (24), and the equimeasurability of T yield
{x : Tf(x) ≥ t} = {x : Tfs(x) ≥ t}, essentially. By (21) with f replaced by fs, and
(24) again, we obtain

{x : Tf(x) ≥ t} = {x : Tfs(x) ≥ t} = ♦T{x : fs(x) ≥ t} = ♦T{x : f(x) ≥ t},

proving that (21) holds generally.
Consequently, for each t > ess inf f , the symmetric difference

Nt = {x : Tf(x) ≥ t}4♦T{x : f(x) ≥ t} (25)

satisfiesHn(Nt) = 0. According to Lemma 4.1(i), there is a setN such thatHn(N) = 0
and Tf(x) ≥ ess inf f when x 6∈ N . If g : Rn → R, then g(x) = sup{t ∈ Q : g(x) ≥ t}
for x ∈ Rn. Using this with g = Tf and taking (25) into account, we obtain (22) for
x ∈ Rn \ (∪{Nt : t ∈ Q, t > ess inf f} ∪N) and hence for Hn-almost all x ∈ Rn.

Under the assumptions in Lemma 4.8(ii), it is also true that

{x : Tf(x) > t} = ♦T{x : f(x) > t}, (26)

essentially, for t > ess inf f . Indeed, using (21), we have

{x : Tf(x) > t} =
⋃

n∈N
{x : Tf(x) ≥ t+ 1/n} =

⋃

n∈N
♦T{x : f(x) ≥ t+ 1/n}

= ♦T
⋃

n∈N
{x : f(x) ≥ t+ 1/n} = ♦T{x : f(x) > t},

essentially, for t > ess inf f , where the third equality follows easily from the fact that
♦T is measure preserving and monotonic. It follows that

Tf(x) = max {sup{t ∈ Q, t > ess inf f : x ∈ ♦T{z : f(z) > t}}, ess inf f} , (27)

essentially, an alternative formula to (22).
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We stress that the exceptional set in Theorem 4.8(ii) cannot be avoided and may
depend on f . For example, define T : V(Rn)→ V(Rn) by

Tf(x) =

{
0, if f(x) < 1 and x ∈ Qn,

f(x), otherwise.

Then T is a rearrangement, but it does not coincide with the identity, although
♦T = ♦Id. Note also that the supremum over Q in (22) cannot be replaced by the
supremum over R, and it is consistent with ZFC that it cannot be replaced by the
essential supremum over R; see the remarks after Example 7.2.

With obvious modifications, the following result also applies to rearrangements
T : V(Rn)→ V(Rn). The equality (28) also appears in [47, Proposition 3(d)], where
the notation and framework is substantially different, as we explain in the Appendix.
Note that [47, Proposition 3(d)] assumes (in our notation) that ϕ is left-continuous
and increasing, but this is not valid in our context, as we show in Example 4.10.

Theorem 4.9. Let T : S(Rn) → S(Rn) be a rearrangement and let f ∈ S(Rn). If
ϕ : R → R is right-continuous and increasing (i.e., non-decreasing), then ϕ ◦ f ∈
S(Rn) and

ϕ(Tf) = T (ϕ ◦ f), (28)

essentially. It follows that T (αf + β) = αTf + β, essentially, for α, β ∈ R with
α ≥ 0.

Proof. We do not require the right-continuity of ϕ everywhere, but only at ess inf f
when ess inf f > −∞.

We first claim that for any g ∈ S(Rn) such that ϕ is right-continuous at ess inf g
when ess inf g > −∞, we have

ess inf ϕ ◦ g =

{
ϕ(ess inf g), if ess inf g > −∞,
inf ϕ, if ess inf g = −∞. (29)

Indeed, if ess inf g = −∞, then ess inf ϕ ◦ g ≥ inf ϕ is obvious, while

Hn({x : ϕ(g(x)) ≤ ϕ(t)}) ≥ Hn({x : g(x) < t}) > 0 (30)

for t ∈ R and hence inf ϕ = limt→−∞ ϕ(t) ≥ ess inf ϕ ◦ g. If ess inf g > −∞, we have
g ≥ ess inf g, essentially, so ϕ ◦ g ≥ ϕ(ess inf g), essentially, and hence ess inf ϕ ◦ g ≥
ϕ(ess inf g). On the other hand, (30) holds for t > ess inf g, so for such t, ϕ(t) ≥
ess inf ϕ ◦ g. Then ϕ(ess inf g) ≥ ess inf ϕ ◦ g follows from the right-continuity of ϕ at
ess inf g. This proves (29).

Let f ∈ S(Rn). For t ∈ R, let st = inf{s : ϕ(s) ≥ t}. Since ϕ is increasing, we
have

{s : ϕ(s) ≥ t} =

{
[st,∞), if st ∈ R and ϕ(st) ≥ t,
(st,∞), otherwise.

(31)

As ϕ is also right-continuous at ess inf f when ess inf f > −∞, then under the latter
assumption,

t > ϕ(ess inf f) ⇒ st > ess inf f. (32)
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Suppose that ess inf f = −∞. If t > inf ϕ, let t > t′ > inf ϕ. Then st′ > −∞, so (31)
with t replaced by t′ implies that

Hn({x : ϕ(f(x)) > t}) ≤ Hn({x : ϕ(f(x)) ≥ t′})
≤ Hn({x : f(x) ≥ st′}) <∞,

(33)

since this holds trivially when st′ = ∞ and in view of f ∈ S(Rn) otherwise. Now
suppose that ess inf f > −∞. If t > ϕ(ess inf f), let t > t′ > ϕ(ess inf f). By (32)
with t replaced by t′, we conclude that st′ > ess inf f , so (33) holds again since
f ∈ S(Rn). Since ess inf ϕ ◦ f = ϕ(ess inf f), by (29) with g = f , this proves that
ϕ ◦ f ∈ S(Rn).

We claim that ess inf ϕ(Tf) = ess inf T (ϕ◦f). To this end, note that for g ∈ S(Rn),
we have ess inf Tg = ess inf g, by Lemma 4.1(i). We apply this with g = f and g = ϕ◦f
and (29) with g = Tf and g = f . If ess inf f > −∞, we get

ess inf ϕ(Tf) = ϕ(ess inf Tf) = ϕ(ess inf f)

= ess inf(ϕ ◦ f) = ess inf T (ϕ ◦ f),

while if ess inf f = −∞, then ess inf Tf = −∞ and we obtain

ess inf ϕ(Tf) = inf ϕ = ess inf ϕ ◦ f = ess inf T (ϕ ◦ f).

This proves the claim.
The next step is to prove that

{x : ϕ(Tf(x)) ≥ t} = {x : T (ϕ ◦ f)(x) ≥ t}, (34)

essentially, for t > ess inf ϕ(Tf) = ess inf T (ϕ ◦ f). In fact, the latter inequality and
(29) with g = Tf imply that st > ess inf Tf = ess inf f , where (32) was used when
s = ess inf f > −∞. If ϕ(st) ≥ t, we use (21) twice to obtain

{x : ϕ(Tf(x)) ≥ t} = {x : Tf(x) ≥ st} = ♦T{x : f(x) ≥ st}
= ♦T{x : ϕ(f(x)) ≥ t} = {x : T (ϕ ◦ f)(x) ≥ t},

essentially. A similar argument, using (26) instead of (21), yields (34) when ϕ(st) < t
or st 6∈ R.

The proof of the first statement in the corollary is concluded by noting that
if g, h ∈ S(Rn) satisfy ess inf g = ess inf h and {x : g(x) ≥ t} = {x : h(x) ≥ t},
essentially, for all t > ess inf g, then g = h, essentially. Indeed, following the proof
of [47, Lemma 1], we may otherwise assume that there is an ε > 0 such that
Hn({x : h(x) > g(x) + ε}) > 0. But

{x : h(x) > g(x) + ε} ⊂
⋃

n∈Z, nε≥ess inf g

({x : h(x) ≥ nε} \ {x : g(x) ≥ nε}),

essentially, and the right-hand side has Hn-measure zero, a contradiction.
The second statement in the corollary follows immediately from the first on

setting ϕ(t) = αt+ β.
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The proof of the previous theorem, as was mentioned at the beginning of it,
actually only requires the right-continuity of ϕ at ess inf f when ess inf f > −∞. The
following example shows that this is the weakest possible continuity condition on ϕ
for which the theorem holds.

Example 4.10. If ϕ : R → R is left-continuous and increasing, it is possible that
f ∈ S(Rn) but ϕ ◦ f 6∈ S(Rn). Indeed, taking n = 1 for simplicity, let ϕ(t) = t for
t > 0 and ϕ(t) = −1 for t ≤ 0. Let f ∈ S(R) be any function such that f(x) > 0 for
x > 0 and f(x) = 0 for x ≤ 0. Then ϕ(f(x)) ≥ 0 for x > 0 and ϕ(f(x)) = −1 for
x ≤ 0, so ϕ◦f 6∈ S(Rn). Note that ϕ is continuous everywhere except at ess inf f = 0,
where it is only left-continuous.

Equimeasurable maps satisfying (28) for all right-continuous, increasing ϕ must
actually be rearrangements, as we now show. The first part of the proof uses ideas of
Van Schaftingen [44, Proposition 2.4.1].

Lemma 4.11. Let T : S(Rn)→ S(Rn) be equimeasurable. Suppose that ϕ◦f ∈ S(Rn)
and that ϕ(Tf) = T (ϕ ◦ f), essentially, whenever f ∈ S(Rn) and ϕ : R → R is
right-continuous and increasing. Then T is monotonic and hence a rearrangement.

Proof. We shall ignore sets of Hn-measure zero in this proof. Let f ∈ S(Rn) and for
c ∈ R, define ϕc(t) = 1 if t ≥ c and ϕc(t) = 0 if t < c. Note that ϕc is right-continuous
and increasing, and for g ∈ S(Rn), we have 1{x:g(x)≥c} = ϕc ◦ g. Using this with
g = Tf and g = f and our assumption on T , we obtain

1{x:Tf(x)≥c} = ϕc(Tf) = T (ϕc ◦ f) = T1{x:f(x)≥c}.

Hence,

{x : Tf(x) ≥ c} =

{
♦T{x : f(x) ≥ c}, if c > ess inf f,

Rn, otherwise,

where (14) was used in the first case and Lemma 4.1(i) in the second case. As
Tf(x) = sup{c ∈ Q : Tf(x) ≥ c}, the map T satisfies (22).

Suppose that A ⊂ B ⊂ Rn and let h = 1A + 1B. It follows easily from (22) that
Th = 1(♦TA)∪♦TB + 1♦TA. Since T is equimeasurable, we have Hn((♦TA) ∪ ♦TB) =
Hn(♦TB), so ♦TA ⊂ ♦TB. Thus ♦T is monotonic. This implies that if f, g ∈ S(Rn)
and f ≤ g, then ♦T{z : f(z) ≥ t} ⊂ ♦T{z : g(z) ≥ t}, and then Tf ≤ Tg is a
consequence of (22).

Example 4.12. Let X =M(Rn) orM+(Rn). There is a rearrangement T : X → X
such that T 6= Id but T = Id on V(Rn). In particular, Theorem 4.8(ii) does not hold.
Indeed, for f ∈ X, let

tf = inf{t ≥ 0 : Hn({x : f(x) > t}) <∞}

and let Af = {x : f(x) ≥ tf}. Define

Tf(x) =

{
f(x), if x ∈ Af ,
min{f(x) + 1, tf}, if x 6∈ Af .
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Note that if f ∈ V(Rn), then tf = 0 and Af = Rn, so T = Id on V(Rn). Let

f(x) =

{
0, if x ∈ Bn,
‖x‖
‖x‖−1

, if x 6∈ Bn.

Then f ∈M+(Rn), tf = 1, and Af = Rn \Bn, so Tf = f + 1Bn 6= f .
We claim that T is a rearrangement. Note first that Tf ≥ f . Let f ∈ X and

suppose that t ≥ tf . If f(x) > t, then x ∈ Af , so Tf(x) = f(x) > t. Conversely,
if Tf(x) > t, then Tf(x) > tf , so x ∈ Af , implying that Tf(x) = f(x) and thus
f(x) > t. Hence

{x : Tf(x) > t} = {x : f(x) > t}.
Now suppose that t < tf . Then Hn({x : f(x) > t}) =∞ by the definition of tf . But
if f(x) > t, then Tf(x) ≥ f(x) > t, so Hn({x : Tf(x) > t}) =∞. This proves that
T is equimeasurable.

Let f, g ∈ X satisfy f ≤ g. Then tf ≤ tg. If x ∈ Af , then Tf(x) = f(x) ≤ g(x) ≤
Tg(x). If x ∈ Ag \ Af , then

Tg(x) = g(x) ≥ tg ≥ min{f(x) + 1, tg} ≥ min{f(x) + 1, tf} = Tf(x).

Finally, if x 6∈ Af ∪ Ag, then

Tg(x) = min{g(x) + 1, tg} ≥ min{f(x) + 1, tf} = Tf(x).

This proves that T is monotonic.

5 Pointwise maps between functions

Theorem 5.1. Let H ∈ G(n, n− 1) be oriented, let X =M(Rn),M+(Rn), S(Rn),
or V(Rn), and suppose that T : X → X is pointwise with respect to H. Then T is
equimeasurable if and only if its associated functions F+ and F− satisfy

{F+(r, s), F−(s, r)} = {r, s} (35)

for (r, s) ∈ D2, the common domain of F+ and F−.

Proof. We first consider the case when X = M(Rn) or S(Rn), so that D = R.
Assume that T is equimeasurable. We claim that

F+(r, r) = F−(r, r) = r (36)

for r ∈ R. To see this, let f ≡ r be constant on Rn. From (4) and the fact that F+

and F− coincide on the diagonal of R2, we see that Tf ≡ F+(r, r) = F−(r, r) is also
constant. This and (2) yield (36) (when X = S(Rn), this is also a consequence of
Lemma 4.1(iii)).

Now fix r, s ∈ R. Let A ⊂ intH+ be compact with Hn(A) > 0, let c < min{r, s},
and let

f(x) = r1A(x) + s1A†(x) + c1Rn\(A∪A†)(x).
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Note that f ∈ S(Rn). From (4) and (36), we have

Tf(x) =





F+(r, s), if x ∈ A,
F−(s, r), if x ∈ A†,
c, otherwise.

(37)

If c < t < min{r, s}, both sides of (2) equal 2Hn(A), while if t = max{r, s}, both
sides are zero. Thus

min{r, s} ≤ F+(r, s), F−(s, r) ≤ max{r, s}. (38)

If r 6= s, we can choose t in (2) with min{r, s} < t < max{r, s}. Then both sides
of (2) equal Hn(A), so F+(r, s) ≤ t and F−(s, r) > t or vice versa. As min{r, s} <
t < max{r, s} was arbitrary, F+(r, s) = min{r, s} and F−(s, r) = max{r, s} or vice
versa. This proves (35) when r 6= s, and (35) holds trivially when r = s due to (38).

Now assume that (35) holds and let f ∈ X. Define

M = {x ∈ Rn : f(x) = f †(x)},
M± = {x ∈ H± \M : F±(f(x), f †(x)) = f(x)},

and
M±
† = {x ∈ H± \M : F±(f(x), f †(x)) = f †(x)}.

By (35), these five sets form a partition of Rn. Note that if x 6∈M , then Tf(x) = f(x)
if and only if x ∈M+ ∪M− and Tf(x) = f †(x) if and only if x ∈M+

† ∪M−
† . This

and the fact that by (35) we have Tf = f on M yield

{x : Tf(x) > t} = ({x : f(x) > t} ∩ (M ∪M+ ∪M−))
⋃

({x : f †(x) > t} ∩ (M+
† ∪M−

† ))
(39)

for t ∈ R. Using the definitions of M−
† and M , together with (35), we obtain

x ∈ (M−
† )† ⇔ x† ∈M−

†

⇔ x† ∈ H− \M and F−(f(x†), f †(x†)) = f †(x†)

⇔ x ∈ H+ \M and F−(f †(x), f(x)) = f(x)

⇔ x ∈ H+ \M and F+(f(x), f †(x)) = f †(x)⇔ x ∈M+
† .

Consequently, (M−
† )† = M+

† and (M+
† )† = M−

† . Therefore

(
{x : f †(x) > t} ∩ (M+

† ∪M−
† )
)†

= {x : f(x) > t} ∩ (M−
† ∪M+

† ).

In particular,

Hn
((
{x : f †(x) > t} ∩ (M+

† ∪M−
† )
))

= Hn
(
{x : f(x) > t} ∩ (M−

† ∪M+
† )
)
.

It follows from (39) that Hn({x : Tf(x) > t}) = Hn({x : f(x) > t}), so T is
equimeasurable. This completes the proof when X =M(Rn) or S(Rn).
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Now suppose that X =M+(Rn) or V(Rn), so that D = [0,∞). The second part
of the above proof can be applied without change. If X =M+(Rn), the first part
of the above proof also still applies, but when X = V(Rn), we cannot use constant
functions other than f ≡ 0 and thus can only obtain the weaker version

F+(0, 0) = F−(0, 0) = 0 (40)

of (36). Nevertheless, we can follow the argument in the second paragraph when
min{r, s} > 0 and c = 0, and this yields (38) when r, s > 0. Setting r = s > 0 in (38)
and using (40), we retrieve (36) for r ≥ 0. With (36) in hand, we may assume that
r = 0 and s > 0. Then by using (2) with t = s and with 0 < t ≤ s, one obtains (38)
for r, s ≥ 0 and the conclusion follows easily as before.

Corollary 5.2. Let H ∈ G(n, n− 1) be oriented, let X =M(Rn),M+(Rn), S(Rn),
or V(Rn), and suppose that T : X → X is pointwise with respect to H. If T is
equimeasurable, then it maps characteristic functions of sets in Ln to characteristic
functions of sets in Ln and ♦T = Id, ♦T = †, ♦T = ♦PH

, or ♦T = ♦†PH
, where Id

is the identity map and † is reflection in H.

Proof. By Theorem 5.1, (35) holds, implying that F±(0, 0) = 0, F±(1, 1) = 1,

either F+(1, 0) = 1 and F−(0, 1) = 0, or F+(1, 0) = 0 and F−(0, 1) = 1,

and

either F+(0, 1) = 0 and F−(1, 0) = 1 or F+(0, 1) = 1 and F−(1, 0) = 0.

Therefore we can have the following four combinations: (i) F+(r, s) = F−(r, s) = r for
r, s ∈ {0, 1}, (ii) F+(r, s) = max{r, s} and F−(r, s) = min{r, s} for r, s ∈ {0, 1}, (iii)
F+(r, s) = min{r, s} and F−(r, s) = max{r, s} for r, s ∈ {0, 1}, or (iv) F+(r, s) =
F−(r, s) = s for r, s ∈ {0, 1}. These correspond to T1A = 1A, T1A = PH1A,
T1A = (PH1A)†, and TA = (1A)†, each for all A ∈ Ln, respectively. In particular, T
maps characteristic functions of sets in Ln to characteristic functions of sets in Ln,
and ♦T is Id, ♦PH

, ♦P †H , or †.

Despite the previous result, maps T that are both pointwise and equimeasurable
need not be one of the four special maps, T = Id, T = †, T = PH , or T = P †H . Indeed,
by Theorem 5.1, it is enough to define T via associated functions F+ and F− that
satisfy (35). For example, one can take

F+(r, s) =

{
r, if r ∈ Q ∩D,
s, if r ∈ D \Q and F−(s, r) =

{
s, if r ∈ Q ∩D,
r, if r ∈ D \Q.

The next few results supply further conditions that eliminate such exotic examples.

Lemma 5.3. Let H ∈ G(n, n− 1) be oriented, let X = M(Rn), M+(Rn), S(Rn),
or V(Rn), and suppose that T : X → X is pointwise with respect to H and equimea-
surable. If the functions F+ and F− associated with T are continuous on D2, then
T = Id, T = †, T = PH , or T = P †H .
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Proof. As F+ is continuous onD2, (35) implies that either F+(r, s) = r for (r, s) ∈ D2

or F+(r, s) = s for (r, s) ∈ D2. Let

E1 = {(r, s) ∈ D2 : r ≥ s} and E2 = {(r, s) ∈ D2 : r ≤ s}.

As E1 is connected, {(r, s) ∈ E1 : F+(r, s) = r} is either empty or E1. If it is empty,
then F+(r, s) = s on E1. It follows that either F+(r, s) = r = max{r, s} on E1 or
F+(r, s) = s = min{r, s} on E1. In the same way, either F+(r, s) = max{r, s} on E2

or F+(r, s) = min{r, s} on E2. Similar arguments show that the same possibilities
hold when F+ is replaced by F−. Taking (35) into account, we arrive at four
possibilities for F+ and F− on D2, corresponding to those for T in the statement of
the corollary.

Motivated by the previous lemma, we now seek conditions ensuring that the
associated functions F+ and F− are continuous on D2.

Lemma 5.4. Let H ∈ G(n, n− 1) be oriented, let X = M(Rn), M+(Rn), S(Rn),
or V(Rn), and suppose that T : X → X is pointwise with respect to H with associated
functions F+ and F−. Then

(i) T is monotonic if and only if F+ and F− are increasing in each variable, and

(ii) if T is a rearrangement, then F+ and F− are continuous on D2.

Proof. (i) It follows from the definition of a pointwise map that T is monotonic if
F+ and F− are increasing in each variable. For the other implication, suppose that
T is monotonic. Let r1, s1, r2, s2 ∈ D satisfy r1 ≤ r2 and s1 ≤ s2. For i = 1, 2, define
fi ∈ X by

fi(x) = ri1Bn∩H+(x) + si1Bn∩H−(x) + min{ri, si} (41)

for x ∈ Rn. (The last term in (41) is to ensure that fi ∈ X when X = S(Rn).) For
x ∈ Bn ∩H+ we have

Tfi(x) = F+(fi(x), f †i (x)) = F+(ri, si)

for i = 1, 2. Since f1 ≤ f2 and T is monotonic, Tf1(x) ≤ Tf2(x) for almost all
x ∈ Bn ∩H+ and hence F+(r1, s1) ≤ F+(r2, s2). A similar argument holds for F−.
It follows that F+ and F− are increasing in each variable.

(ii) Suppose that T is a rearrangement, i.e., equimeasurable and monotonic. Then
(35) holds. Let (rk, sk), k ∈ N, be a sequence in D2 converging to (r, s). We may
assume that r 6= s, as otherwise (35) implies F±(rk, sk) → F±(r, s) as k → ∞.
Without loss of generality, suppose that r > s. By considering subsequences, we may
also assume that {(rk, sk) : k ∈ N} is contained in one of the four sets

D++ = {(r′, s′) ∈ D2 : r′ ≥ r, s′ ≥ s}, D+− = {(r′, s′) ∈ D2 : r′ ≥ r, s′ ≤ s},
D−+ = {(r′, s′) ∈ D2 : r′ ≤ r, s′ ≥ s}, D−− = {(r′, s′) ∈ D2 : r′ ≤ r, s′ ≤ s}.

If {(rk, sk) : k ∈ N} ⊂ D++ and F+(r, s) = r, then (i) implies that for sufficiently
large k, we have

r = F+(r, s) ≤ F+(rk, sk) ≤ F+(rk, rk) = rk.
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Since rk → r, this shows that F+(rk, sk)→ F+(r, s), and then F−(rk, sk)→ F−(r, s)
as k → ∞ by (35). If {(rk, sk) : k ∈ N} ⊂ D++ and F+(r, s) = s, we have
F−(r, s) = r by (35), and the same arguments can be applied to F−.

Suppose that {(rk, sk) : k ∈ N} ⊂ D+−. Then (r, sk) ∈ D−− and (rk, s) ∈ D++,
so both sides of

F+(r, sk) ≤ F+(rk, sk) ≤ F+(rk, s),

converge to F+(r, s) and it follows that F+(rk, sk)→ F+(r, s) as k →∞. Equation
(35) now yields F−(rk, sk)→ F−(r, s) as k →∞. The remaining case {(rk, sk) : k ∈
N} ⊂ D−+ is treated in a similar way.

Lemma 5.5. Let H ∈ G(n, n− 1) be oriented, let X = M(Rn) (or M+(Rn),
S(Rn), or V(Rn)), and suppose that T : X → X is pointwise with respect to H,
equimeasurable, and maps linear functions (or piecewise linear continuous functions,
respectively) to continuous functions. Then the functions F+ and F− associated with
T are continuous on D2.

Proof. Assume first that X =M(Rn). Since T is equimeasurable, (35) holds, imply-
ing that F±(r, r) = r for r ∈ D. Suppose that T maps linear functions to continuous
functions. We may assume that H = e⊥n and define f(x) = x · (e1 + en) for x ∈ Rn.
Then f is linear and if x = (x1, . . . , xn), then f(x) = x1 + xn and f †(x) = x1 − xn.
Thus for x ∈ H+, we have Tf(x) = F+(f(x), f †(x)) = F+(x1 + xn, x1 − xn).
Let xrs = ((r + s)/2, 0, . . . , 0, (r − s)/2) and note that xrs ∈ H+ if and only if
(r, s) ∈ E1 = {(r, s) ∈ D2 : r ≥ s}. Consequently,

(r, s) 7→ Tf(xrs) = F+(r, s) (42)

is continuous on E1. A similar argument using the linear function f(x) = x · (e1− en)
shows that F+ is continuous on E2 = {(r, s) ∈ D2 : r ≤ s}. It follows that F+ is
continuous on D2, and we arrive at the same conclusion for F− similarly.

Suppose that X = M+(Rn), S(Rn), or X = V(Rn). We adopt the notation of
the first part of this proof. For (r0, s0) ∈ E1 we can choose a nonnegative piecewise
linear continuous function f coinciding with x 7→ |x · (e1 + en)| ≥ 0 on the ball tBn

with t > 2−1/2‖(r0, s0)‖ and vanishing outside an even larger ball. Clearly f ∈ X.
Following the arguments above, it can be seen that the restriction of (r, s) 7→ F+(r, s)
to E1 is continuous at (r0, s0). Similar arguments for (r0, s0) ∈ E2 and for F− lead
to the desired conclusion.

Let 1 ≤ p ≤ ∞. A function F : D2 → R2 is l2p-contracting if

‖F (r, s)− F (r′, s′)‖p ≤ ‖(r, s)− (r′, s′)‖p
for (r, s), (r′, s′) ∈ D2, where ‖ · ‖p is the norm in l2p.

Lemma 5.6. Let H ∈ G(n, n− 1) be oriented, let X = M(Rn), M+(Rn), S(Rn),
or V(Rn), and let 1 ≤ p ≤ ∞. Suppose that T : X → X is pointwise with respect to
H with associated functions F+ and F−. Then

(i) T is Lp-contracting if and only if

F (s, t) = (F+(s, t), F−(t, s)), (s, t) ∈ D2, (43)

is l2p-contracting, and
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(ii) if T is Lp-contracting, then F+ and F− are Lipschitz on D2 with Lipschitz
constant

√
2.

Proof. (i) We first show that if F is l2p-contracting, then T is Lp-contracting. Let
f1, f2 ∈ X. Suppose that p <∞. As T is pointwise, we have

‖Tf1 − Tf2‖pp =

∫

Rn

|Tf1(x)− Tf2(x)|p dx

=

∫

H+

∣∣F+
(
f1(x), f †1(x)

)
− F+

(
f2(x), f †2(x)

)∣∣pdx

+

∫

H−

∣∣F−
(
f1(x), f †1(x)

)
− F−

(
f2(x), f †2(x)

)∣∣p dx.

Substituting x by x† in the second integral and using the definition of F in (43), we
obtain

‖Tf1 − Tf2‖pp =

∫

H+

∥∥F
(
f1(x), f †1(x)

)
− F

(
f2(x), f †2(x)

)∥∥p
p
dx. (44)

In a similar fashion, it is easily seen that

‖f1 − f2‖pp =

∫

H+

∥∥(f1(x), f †1(x)
)
−
(
f2(x), f †2(x)

)∥∥p
p
dx. (45)

Now if F is l2p-contracting, (44) is bounded from above by (45), so T is Lp-contracting.
The case when p =∞ follows similarly from the equations

‖Tf1 − Tf2‖∞ = ess sup
x∈H+

∥∥F
(
f1(x), f †1(x)

)
− F

(
f2(x), f †2(x)

)∥∥
∞

and
‖f1 − f2‖∞ = ess sup

x∈H+

∥∥(f1(x), f †1(x)
)
−
(
f2(x), f †2(x)

)∥∥
∞.

To show the other direction, let r1, s1, r2, s2 ∈ D and define fi ∈ X, i = 1, 2, by
(41). As T is Lp-contracting, we get

κn
2
‖F (r1, s1)− F (r2, s2)‖pp ≤ ‖Tf1 − Tf2‖pp
≤ ‖f1 − f2‖pp =

κn
2
‖(r1, s1)− (r2, s2)‖pp,

so F is l2p-contracting.
(ii) Suppose that T is Lp-contracting. Then F is l2p-contracting by (i), so

|F+(r1, s1)− F+(r2, s2)| ≤ ‖F (r1, s1)− F (r2, s2)‖p
≤ ‖(r1, s1)− (r2, s2)‖p
≤
√

2‖(r1, s1)− (r2, s2)‖,

as ‖ · ‖p ≤ ‖ · ‖1 ≤
√

2‖ · ‖. Hence F+ is Lipschitz on D2 with Lipschitz constant
√

2,
and the same argument can be applied to F−.
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Lemma 5.7. Let H ∈ G(n, n− 1) be oriented, let X = M(Rn), M+(Rn), S(Rn),
or V(Rn), and suppose that T : X → X is pointwise with respect to H with as-
sociated functions F+ and F−. If T reduces the modulus of continuity, then T is
L∞-contracting.

Proof. Suppose that T reduces the modulus of continuity and let r, s, r′, s′ ∈ D.
Choose f ∈ X and x, y ∈ H+ such that f(x) = r, f(y) = r′, f(x†) = s, f(y†) = s′,
and

ωd(f) = ‖(f(x), f(x†))− (f(y), f(y†))‖∞ = ‖(r, s)− (r′, s′)‖∞,
where d = ‖x− y‖. As T reduces the modulus of continuity,

|F+(r, s)− F+(r′, s′)| = |Tf(x)− Tf(y)|
≤ ωd(Tf) ≤ ωd(f) = ‖(r, s)− (r′, s′)‖∞.

(46)

A similar relation for |Tf(x†)− Tf(y†)| yields
|F−(s, r)− F−(s′, r′)| ≤ ‖(r, s)− (r′, s′)‖∞. (47)

From (46) and (47), we conclude that F (defined by (43)) is l2∞-contracting and the
result follows from Lemma 5.6(i) with p =∞.

Summarizing, we have the following set of characterizations.

Theorem 5.8. Let H ∈ G(n, n− 1) be oriented, let X = M(Rn) (or M+(Rn),
S(Rn), or V(Rn)), and suppose that T : X → X is pointwise with respect to H and
equimeasurable. The following statements are equivalent.

(i) The associated functions F+ and F− are continuous on D2.
(ii) T is monotonic.
(iii) T is a rearrangement.
(iv) T maps linear functions (or piecewise linear continuous functions, respectively)

to continuous functions.
(v) T is Lp-contracting for some 1 ≤ p ≤ ∞.
(vi) T reduces the modulus of continuity.
(vii) T = Id, T = †, T = PH , or T = P †H .

Proof. It is easy to check that (vii) implies (i)–(vi). Lemma 5.3 gives (i)⇒(vii)
and Lemmas 5.4(ii), 5.5, and 5.6(ii) show that (iii)⇒(i), (iv)⇒(i), and (v)⇒(i),
respectively. That (ii)⇒(iii) follows from the definition of a rearrangement. Finally,
the implication (vi)⇒(v) follows from Lemma 5.7.

6 General maps between sets and between
functions

The proof of the following result is essentially the same as that of [7, Theorem 10.1(i)].
The statement is more general, since the map ♦ need not be an i-symmetrization
in the sense of [7], the sets concerned need not be compact, and invariance on H-
symmetric cylinders is replaced by the weaker condition that ♦ respects H-cylinders.
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Lemma 6.1. Let i ∈ {1, . . . , n− 1} and let H ∈ G(n, i). Suppose that ♦ : E ⊂ Ln →
Ln is monotonic, measure preserving, and respects H-cylinders. Then

Hn−i ((♦K) ∩ (H⊥ + x)
)

= Hn−i (K ∩ (H⊥ + x)
)

(48)

for K ∈ E and Hi-almost all x ∈ H.

In the following results, we always assume for convenience that Knn ⊂ E , even
though this assumption can sometimes be weakened.

Lemma 6.2. Let H = u⊥, u ∈ Sn−1, let Knn ⊂ E ⊂ Ln, and suppose that ♦ : E → Ln
is monotonic, measure preserving, respects H-cylinders, and maps balls to balls. Then
there is a contraction (i.e., a Lipschitz function with Lipschitz constant 1) ϕ♦ : R→ R
such that

♦B(x+ tu, r) = B(x+ ϕ♦(t)u, r), (49)

essentially, for r > 0 and x ∈ H.

Proof. In the proof we ignore sets of Hn-measure zero. For r > 0 and x ∈ H,
let C(x, r) be the infinite spherical cylinder of radius r and axis H⊥ + x. Let
t ∈ R. By assumption, ♦B(x + tu, r) is a ball and its radius must be r, since
Hn-measure is preserved. As ♦ respects H-cylinders, ♦B(x + tu, r) ⊂ C(x, r), so
♦B(x+ tu, r) = B(x+ t′u, r) for some t′ = t′(r, t, x) ∈ R.

Fix t ∈ R and suppose that neither of the balls B(xj+tu, rj), j = 1, 2, contains the
other. Let z ∈ H and s ∈ R be such that B(z+ tu, s) ⊃ B(x1 + tu, r1)∪B(x2 + tu, r2)
be tangent to both B(x1 + tu, r1) and B(x2 + tu, r2) at points in ∂C(z, s)∩ (H + tu).
Clearly z ∈ H, so there are t′ = t′(s, t, z) and t′j = t′(rj, t, xj), j = 1, 2, with

B(z + t′u, s) = ♦B(z + tu, s) ⊃ ♦B(x1 + tu, r1) ∪ ♦B(x2 + tu, r2)

= B(x1 + t′1u, r1) ∪B(x2 + t′2u, r2),

where we used the monotonicity of ♦. It follows that B(z + t′u, s) contains B(x1 +
t′1u, r1) and B(x2 + t′2u, r2) and is tangent to both of them at points in ∂C(z, s) ∩
(H + t′u). This forces t′1 = t′ = t′2, so

t′(r1, t, x1) = t′(r2, t, x2). (50)

If one of B(xj + tu, rj), j = 1, 2, is contained in the other, say B(x1 + tu, r1) ⊂
B(x2 + tu, r2), choose B(z + tu, s) disjoint from B(x2 + tu, r2). Then (50), applied
first to the disjoint balls B(x1 + tu, r1) and B(z + tu, s), and then to the disjoint
balls B(x2 + tu, r2) and B(z + tu, s), yields

t′(r1, t, x1) = t′(s, t, z) = t′(r2, t, x2).

This shows that (50) holds generally, so t′(r, t, x) is independent of r and x. Then
ϕ♦(t) = t′ is the required function.

Suppose that there are s, t ∈ R and ε > 0 such that

|ϕ♦(s)− ϕ♦(t)| = |s− t|+ ε.
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Let |s− t|/2 < r < (|s− t|+ ε)/2. If K = B(su, r) ∩B(tu, r), then Hn(K) > 0. On
the other hand, since K ∈ E , the monotonicity of ♦ implies that

♦K ⊂ ♦B(su, r) ∩ ♦B(tu, r) = B(ϕ♦(s)u, r) ∩B(ϕ♦(t)u, r) = ∅.

This contradicts the fact that ♦ preserves measure and shows that ϕ♦ is Lipschitz
with Lipschitz constant 1.

Lemma 6.3. Let H = u⊥, u ∈ Sn−1, let Knn ⊂ E ⊂ Ln, and suppose that ♦ : E → Ln
is monotonic, measure preserving, respects H-cylinders, and maps balls to balls. Let
ϕ♦ : R→ R be the function from Lemma 6.2. Then for each H-symmetric K ∈ Knn
and t ∈ R, we have

♦(K + tu) = K + ϕ♦(t)u, (51)

essentially.

Proof. In the proof we ignore sets of Hn-measure zero. If r > 0 and x ∈ H, let
C(x, r) be the infinite spherical cylinder of radius r and axis H⊥ + x. Suppose first
that K = (B(x, r) ∩ H) + [−su, su] is an H-symmetric spherical cylinder, where
r, s > 0 and x ∈ H. Let t ∈ R and let S =

⋃{B(z + tu, s) : z ∈ B(x, r) ∩H}. Then
K + tu = S ∩ C(x, r). By the monotonicity of ♦,

S ′ =
⋃
{♦B(z + tu, s) : z ∈ B(x, r) ∩H} ⊂ ♦S. (52)

By Lemma 6.2,

S ′ =
⋃
{B(z + ϕ♦(t)u, s) : z ∈ B(x, r) ∩H} = S + (ϕ♦(t)− t)u.

This and the measure-preserving property of ♦ yield Hn(S ′) = Hn(S) = Hn(♦S)
and therefore (52) implies that ♦S = S ′. Since ♦ respects H-cylinders, we have
♦(K + tu) ⊂ C(x, r) and hence

♦(K + tu) ⊂ ♦S ∩ C(x, r) = (S + (ϕ♦(t)− t)u) ∩ C(x, r) = K + ϕ♦(t)u.

Now let K ∈ Knn be an arbitrary H-symmetric set. Let {xm : m ∈ N} be a dense
set in K|H. Since K + tu is symmetric with respect to H + tu, it is clear that we can
find H-symmetric spherical cylinders Ck = (B(xmk

, rk) ∩H) + [−sku, sku], k ∈ N,
where rk, sk are positive rationals, such that

int(K + tu) ⊂
⋃

k

(Ck + tu) ⊂ K + tu. (53)

By the previous paragraph, ♦(Ck + tu) = Ck +ϕ♦(t)u, so (53) and the monotonicity
of ♦ yields

E =
⋃

k

♦(Ck + tu) =
⋃

k

(Ck + ϕ♦(t)u)

=
(⋃

k

Ck

)
+ ϕ♦(t)u ⊂ ♦(K + tu).

(54)
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Since E is a translate of
⋃
k Ck, (53) and the measure-preserving property of ♦ imply

that Hn(E) = Hn(K + tu) = Hn(♦(K + tu)). Hence, by (53) and (54), we have

♦(K + tu) = E =
(⋃

k

Ck

)
+ ϕ♦(t)u = K + ϕ♦(t)u,

essentially.

Since ϕ♦ is a contraction, we have

ϕ♦(0) = 0 ⇔ |ϕ♦(t)| ≤ |t|, for t ∈ R. (55)

Indeed, the right-hand side follows from the left-hand side on setting s = 0 in
|ϕ♦(s)− ϕ♦(t)| ≤ |s− t|, and the converse is trivial.

Corollary 6.4. Let H = u⊥, u ∈ Sn−1, and suppose that ♦ : Knn → Ln is monotonic,
measure preserving, respects H-cylinders, and maps balls to balls. Let ϕ♦ : R→ R
be the function from Lemma 6.2. Then ♦ is invariant on H-symmetric sets if and
only if ♦ is invariant on H-symmetric cylinders, and this occurs if and only if either
condition in (55) holds.

Proof. In the proof we ignore sets of Hn-measure zero. Suppose that ♦ is invariant
on H-symmetric cylinders. If r > 0 and t ∈ R, then

B(tu, r) ⊂ (B(tu, r)|H) + [−(|t|+ r)u, (|t|+ r)u] = C,

say, an H-symmetric cylinder. Then

B(ϕ♦(t)u, r) = ♦B(tu, r) ⊂ ♦C = C.

This yields

[ϕ♦(t)− r, ϕ♦(t) + r] = B(ϕ♦(t)u, r)|H⊥ ⊂ C|H⊥
= [−(|t|+ r)u, (|t|+ r)u].

Therefore |ϕ♦(t)| ≤ |t|. Then ϕ♦(0) = 0, so setting t = 0 in (51) implies that ♦ is
invariant on H-symmetric sets. It follows directly from the definitions that the latter
implies that ♦ is invariant on H-symmetric cylinders.

We shall find it convenient to define, for K ∈ Kn, t ∈ R, and u ∈ Sn−1,

Kt = (K − tu) ∩ (K† + tu). (56)

Note that if H = u⊥, then Kt is H-symmetric.

Lemma 6.5. Let H = u⊥, u ∈ Sn−1, and let ϕ : R→ R be an arbitrary contraction.
Then

(⋃

t∈R
(Kt + ϕ(t)u)

)
∩ (H⊥ + x) = (K ∩ (H⊥ + x)) + (ϕ(tx)− tx)u (57)

for K ∈ Knn and x ∈ H, where Kt is defined by (56) and x+ txu is the midpoint of
K ∩ (H⊥ + x).
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Proof. IfM ∈ Kn, x ∈ H, and s, t ∈ R, then x+su ∈Mt if and only if x+(t±s)u ∈M .
Applying this first with M = K and then with M = K ∩ (H⊥ + x) shows that

Kt ∩ (H⊥ + x) = (K ∩ (H⊥ + x))t. (58)

Note also that
(K ∩ (H⊥ + x))tx = (K ∩ (H⊥ + x))− txu. (59)

Let x ∈ H be such that the (possibly degenerate) line segment S = K ∩ (H⊥ + x)
is nonempty and let 2rx ≥ 0 be its length. Then Stx+t = ∅ for |t| > rx. Suppose
that |t| ≤ rx. Then Stx+t = [x − (rx − |t|)u, x + (rx − |t|)u]. As ϕ is a contraction,
|ϕ(tx + t)− ϕ(tx)| ≤ |t| and hence

Stx+t + (ϕ(tx + t)− ϕ(tx))u ⊂ Stx+t + [−|t|u, |t|u]

= [x− rxu, x+ rxu] = Stx .

Rearranging and replacing tx + t by t, we obtain

(K ∩ (H⊥ + x))t + ϕ(t)u = St + ϕ(t)u ⊂ Stx + ϕ(tx)u

= (K ∩ (H⊥ + x))tx + ϕ(tx)u
(60)

whenever the left-hand side is nonempty. Hence (60) holds for x ∈ H and t ∈ R.
Applying, in turn, (58), (60), and (59), we obtain

(⋃

t∈R
(Kt + ϕ(t)u)

)
∩ (H⊥ + x) ⊂ (K ∩ (H⊥ + x)) + (ϕ(tx)− tx)u.

The reverse inclusion is a consequence of
(⋃

t∈R
(Kt + ϕ(t)u)

)
∩ (H⊥ + x) ⊃ (Ktx ∩ (H⊥ + x)) + ϕ(tx)u

together with (58) and (59). This proves (57).

Theorem 6.6. Let H = u⊥, u ∈ Sn−1, let ♦ : Knn → Ln and let ϕ : R → R be a
contraction. The following are equivalent.

(i) ♦ is monotonic, measure preserving, respects H-cylinders, and maps balls to
balls. The mapping ϕ coincides with the function ϕ♦ from Lemma 6.2.

(ii) For each K ∈ Knn,
♦K =

⋃

t∈R
(Kt + ϕ(t)u), (61)

essentially, where Kt is defined by (56).

(iii) For each K ∈ Knn and Hn−1-almost all x ∈ H,

(♦K) ∩ (H⊥ + x) = (K ∩ (H⊥ + x)) + (ϕ(tx)− tx)u, (62)

up to a set of H1-measure zero, where x+ txu is the midpoint of K ∩ (H⊥+ x).
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Proof. (i)⇒(ii). In the proof we ignore sets of Hn-measure zero. Let K ∈ Knn and
let t ∈ R. The set Kt defined by (56) is H-symmetric, so Kt + tu ⊂ K is symmetric
with respect to H + tu. From the monotonicity of ♦ and (51), we obtain

U =
⋃

t∈R
(Kt + ϕ♦(t)u) =

⋃

t∈R
♦(Kt + tu) ⊂ ♦K.

Let V =
⋃
x∈(intK)|H(Ktx +ϕ♦(tx)u), where x+ txu is the midpoint of K ∩ (H⊥+ x).

Then
V ⊂ U ⊂ ♦K. (63)

If x ∈ (intK)|H, then (Ktx + txu) ∩ (H⊥ + x) = K ∩ (H⊥ + x), so

H1(V ∩ (H⊥ + x)) ≥ H1((Ktx + ϕ♦(tx)u) ∩ (H⊥ + x))

= H1((Ktx + txu) ∩ (H⊥ + x)) = H1(K ∩ (H⊥ + x)).

From this, an application of Fubini’s theorem and the measure-preserving property
of ♦ give Hn(V ) ≥ Hn(K) = Hn(♦K). Therefore, by (63), we have V = U = ♦K,
essentially.

(ii)⇒(iii). Let K ∈ Knn. By (ii), there are sets N0 and N1 of Hn-measure zero
such that U = (♦K \N0)∪N1. Since H1((N0∪N1)∩ (H⊥+x)) = 0 for Hn−1-almost
all x ∈ H, we obtain (iii) from Lemma 6.5.

(iii)⇒(ii). Let K ∈ Knn. By (iii) and Lemma 6.5, there are, for Hn−1-almost all
x ∈ H, sets N0(x) and N1(x) of H1-measure zero such that

(♦K ∩ (H⊥ + x)) ∪N0(x) = (U ∩ (H⊥ + x)) ∪N1(x).

Then Fubini’s theorem implies that ♦K = U , essentially.
(ii)⇒(i). Assume that (ii) holds. Clearly, ♦ is monotonic due to (61). We have

already seen that (ii) implies (iii). That ♦ is measure preserving and respects H-
cylinders follows directly from (62) and Fubini’s theorem. If z ∈ H, t ∈ R, and r > 0,
then (61) implies that

♦B(z + tu, r) ⊃ B(z + tu, r)t + ϕ(t)u = B(z + ϕ(t)u, r),

essentially. Together with the measure preserving property, this proves that ♦ maps
balls to balls.

In view of (62), a map ♦ satisfying Theorem 6.6(i) may be regarded as a “still”
in a parallel chord movement in the direction u, in the sense of convex geometry.
The concept of a parallel chord movement was, in a more general form, introduced
by Rogers and Shephard [37] (see also [39, p. 543]) and is extremely useful in
convex geometry, where, however, it is always assumed that the movement preserves
convexity. It is easy to see that ♦ preserves convexity if and only if ϕ♦ is affine;
cf. the proof of Theorem 6.20.

Corollary 6.7. Let H = u⊥, u ∈ Sn−1, be oriented with u ∈ H+ and suppose
that E = Knn or Kn. Suppose that ♦ : E → Ln is monotonic, measure preserving,
respects H-cylinders, and maps balls to balls. Let ϕ♦ : R→ R be the function from
Lemma 6.2. Then ϕ♦(t) = t, −t, |t|, or −|t|, if and only if ♦ essentially equals Id,
†, ♦PH

, or ♦†PH
, respectively.
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Proof. If ♦ is given, it is easy to check that ϕ♦ has the appropriate form, by applying
♦ to balls and using (49). The converse follows directly from (62). Indeed, we need
only consider K ∈ Knn, for otherwise Hn(K) = 0 and there is nothing to prove.
Consider, for example, the case when ϕ♦ = |t|; the other cases are similar. By (62),
for Hn−1-almost all x ∈ H, we have

(♦K) ∩ (H⊥ + x) = (K ∩ (H⊥ + x)) + (|tx| − tx)u

=

{
K ∩ (H⊥ + x), if tx ≥ 0,

K† ∩ (H⊥ + x), if tx < 0,

= (♦PH
K) ∩ (H⊥ + x),

up to a set of H1-measure zero. This shows that ♦ essentially equals ♦PH
, as

required.

Example 6.8. LetH = u⊥, u ∈ Sn−1, be oriented with u ∈ H+. Define♦′ : Ln → Ln
by ♦′E = E+ ∪ E−, where E+ = E ∩H+ and E− ⊂ H− is given by

E− ∩ (H⊥ + x) = [x, x− λu],

with λ = H1(E ∩H− ∩ (H⊥ + x)) for each x ∈ H. Thus ♦′ = Id when applied to
subsets of H+ and ♦′ corresponds to Blaschke shaking [20, Note 2.4] with respect to
H when applied to subsets of H−.

Define ♦ : Ln → Ln by ♦ = ♦′ ◦ ♦PH
. It is easy to see that ♦′ is monotonic,

measure preserving, and respects H-cylinders, and hence ♦ also has these three
properties.

We claim that ♦ = ♦PH
on Kn. To see this, let K ∈ Kn. Then

(♦PH
K) ∩H− = (K ∩K†) ∩H−.

As K ∩K† is H-symmetric and convex, we have
(
(K ∩K†) ∩H−

)
∩ (H⊥ + x) = [x, x− λu],

where λ = H1((K∩K†)∩H−∩(H⊥+x)) for x ∈ H. Thus,♦K = ♦′(♦PH
K) = ♦PH

K,
proving the claim.

As a consequence, ♦ maps balls to balls and therefore satisfies all the hypotheses
of Corollary 6.7 with ϕ♦(t) = |t|, yet it is clear that ♦ is essentially different from ♦PH

.
Indeed, Corollary 6.7 is false for maps ♦ : Knn ⊂ E → Ln if E contains anH-symmetric
union of two disjoint balls, since if E is such a union, then ♦E 6= ♦PH

E.

Lemma 6.9. Let H ∈ G(n, n− 1), let Knn ⊂ E ⊂ Ln, and suppose that ♦ : E → Ln
is measure preserving and perimeter preserving on convex bodies. Then ♦ maps balls
to balls.

Proof. Let x ∈ Rn and let r > 0. Our assumptions imply that ♦B(x, r) is a set of
finite perimeter that has the same Hn-measure and perimeter as B(x, r). It follows
from the isoperimetric inequality for sets of finite perimeter and its equality condition
(see [14] or [35, Theorem 14.1]) that ♦B(x, r) is a ball, modulo a set of Hn-measure
zero.
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Theorem 6.10. Let H = u⊥, u ∈ Sn−1, be oriented with u ∈ H+ and suppose
♦ : Knn → Ln is monotonic, measure preserving, respects H-cylinders, and perimeter
preserving on convex bodies. If ϕ♦ is the contraction defined in Lemma 6.2, then
|ϕ′♦(t)| = 1 for H1-almost all t ∈ R.

Conversely, if ϕ : R→ R is a contraction satisfying |ϕ′(t)| = 1 for H1-almost all
t ∈ R, then (62) defines a map ♦ : Kn → Ln that is monotonic, measure preserving,
respects H-cylinders, and perimeter preserving on convex bodies.

Proof. We may assume that u = en and write H⊥ = 〈en〉 for the xn-axis. If x ∈ H =
e⊥n , write x = (x1, . . . , xn−1). If t ∈ R and r > 0, let D(t, r) = B(te1, r) ∩ e⊥n .

Suppose that t > 0. For 0 < r < t, define

K(t, r) = {x+ xnen : x ∈ D(t, r), 0 ≤ xn ≤ 2x1}.

Then K(t, r) ∈ Knn and if x ∈ D(t, r), then x + x1en is the midpoint of K(t, r) ∩
(〈en〉+ x). Lemma 6.9 implies that ♦ maps balls to balls, so (62) holds for ♦. Hence

♦K(t, r) = {x+ xnen : x ∈ D(t, r), ϕ♦(x1)− x1 ≤ xn ≤ ϕ♦(x1) + x1}, (64)

essentially. Since ϕ♦ is Lipschitz by Lemma 6.2, ♦K(t, r) is a set of finite perimeter;
see [2, Proposition 3.62]. From (64) (or see (62)), we have

(♦K(t, r)) ∩ (〈en〉+ x) = (K(t, r) ∩ (〈en〉+ x)) + (ϕ♦(x1)− x1)en,

up to a set of H1-measure zero, for Hn−1-almost all x ∈ D(t, r). Also, ‖∇(2x1)‖ = 2,
‖∇0‖ = 0, and ‖∇(ϕ♦(x1) ± x1)‖ = |ϕ′♦(x1) ± 1|. As ♦ is perimeter preserving
on convex bodies, K(t, r) and ♦(K(t, r)) have equal perimeters, so we obtain (see
e.g. [17, p. 101])

∫

D(t,r)

√
1 + 22 dx+

∫

D(t,r)

√
1 + 02 dx

=

∫

D(t,r)

√
1 + (ϕ′♦(x1) + 1)2 dx+

∫

D(t,r)

√
1 + (ϕ′♦(x1)− 1)2 dx.

Dividing the previous equation by Hn−1(D(t, r)) and taking the limit as r → 0,
Lebesgue’s differentiation theorem (see e.g. [38, Theorem 8.8]) yields

√
5 + 1 =

√
1 + (ϕ′♦(t) + 1)2 +

√
1 + (ϕ′♦(t)− 1)2

for H1-almost all t ∈ (0,∞). It is easy to check that the only solutions of the previous
equation are ϕ′♦(t) = ±1 for H1-almost all t ∈ (0,∞).

The above argument can be repeated with t < 0, 0 < r < −t, and

K ′(t, r) = {x+ ten : x ∈ D(t, r), −2x1 ≤ xn ≤ 0}.

This yields that ϕ′♦(t) = ±1 for H1-almost all t ∈ (−∞, 0), so the first statement in
the theorem is proved.

Conversely, suppose that ϕ is a contraction such that |ϕ′(t)| = 1 for t ∈ R \N ,
where H1(N) = 0. Then (62) defines a map ♦ : Kn → Ln. Theorem 6.6 implies that
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♦ is monotonic, measure preserving, and respects H-cylinders on Knn, but it is clear
that these properties hold on Kn.

It remains to prove that ♦ preserves perimeter on convex bodies. Let K ∈ Knn.
We may assume without loss of generality that ♦ : Kn → Ln is defined by (62) for all
x ∈ H and without the exceptional sets of H1-measure zero. Indeed, the difference,
by Fubini’s theorem, is a set of Hn-measure zero, which does not change perimeter
(see [35, Exercise 12.16]). Let

f+(x) = max
x+ten∈K

t, f−(x) = min
x+ten∈K

t,

g+(x) = max
x+ten∈♦K

t, g−(x) = min
x+ten∈♦K

t

be the functions from K|H to R whose graphs are the top and bottom parts of ∂K
and ∂(♦K). With the already established notation from Lemma 6.5, we have

tx = (f+(x) + f−(x))/2 (65)

and
g±(x) = ϕ(tx)± (f+(x)− f−(x))/2. (66)

Put Ω = relint(K|H). For E ⊂ Rn, let

E1 = (∂E) ∩
(
((K|H) \ Ω) +H⊥

)
and E2 = (∂E) ∩

(
Ω +H⊥

)
.

Clearly ∂K (or ∂(♦K)) is the disjoint union of K1 and K2 (or (♦K)1 and (♦K)2,
respectively). We show below that

Hn−1((♦K)i) = Hn−1(Ki) (67)

for i = 1, 2. Assuming this is true, the proof is completed as follows. Since K
is a convex body, it has Lipschitz boundary. The functions ±f± are convex and
hence locally Lipschitz on Ω (see [39, Theorem 1.5.3]), so it follows from (65) and
(66) that g± are also locally Lipschitz on Ω. From this and the fact that ϕ is
Lipschitz, it follows that ♦K also has Lipschitz boundary. Note that ∂K = ∂(intK),
∂(♦K) = ∂(int(♦K)), and Hn−1(∂(♦K)) = Hn−1(∂K) <∞ by (67). Then it follows
from [2, Equation (3.63)] and [2, Proposition 3.62)], applied to intK and int(♦K),
and (67), that

S(♦K) = Hn−1(∂(♦K)) = Hn−1(∂K) = S(K),

as required.
To prove (67) for i = 1, note that because (K|H) \Ω is the boundary of a convex

body in H, each x ∈ (K|H) \ Ω has a relative neighborhood U ⊂ ((K|H) \ Ω) such
that there is a Lipschitz bijection from U +H⊥ to Rn−1, with Lipschitz inverse, that
maps vertical lines isometrically to vertical lines. Then the desired result follows
directly from the area formula [17, Theorem 1, p. 96], the fact that

H1((♦K) ∩ (H⊥ + x)) = H1(K ∩ (H⊥ + x))

for all x ∈ (K|H) \ Ω, and Fubini’s theorem in Rn−1.
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It therefore remains to prove that Hn−1((♦K)2) = Hn−1(K2). To this end, let
M = {x ∈ Ω : tx ∈ N}. Applying the coarea formula [17, p. 112] to the locally
Lipschitz function x 7→ tx gives

∫

M

|∇tx|dx =

∫

N

Hn−1({x : tx = s})ds = 0,

as H1(N) = 0. Therefore Hn−1({x ∈ M : ∇tx 6= o}) = 0. As all the functions f±
and g± are locally Lipschitz on Ω, their gradients exist for Hn−1-almost all x ∈ Ω.
Using (65) and (66), a direct calculation shows that

∇g±(x) =

{
∇f±(x), if ϕ′(tx) = 1 and ∇tx 6= o,
−∇f∓(x), if ϕ′(tx) = −1 and ∇tx 6= o.

(68)

Using the fact that ϕ is a contraction, for x ∈ Ω with ∇tx = 0 and h ∈ H with ‖h‖
sufficiently small, we have

|ϕ(tx+h)− ϕ(tx)|
‖h‖ ≤ |tx+h − tx|

‖h‖ =
|tx+h − tx − 〈∇tx, h〉|

‖h‖ → 0

as h → o, implying that ∇ϕ(tx) exists and is zero. Then, taking gradients in (65)
and (66), we obtain

∇g±(x) = ±∇f+(x) = ∓∇f−(x), if ∇tx = o, (69)

for Hn−1-almost all x ∈ Ω. Using (68), (69), and [17, p. 101], we get

Hn−1((♦K)2)

=

∫

Ω

(
(1 + ‖∇g+(x)‖2)1/2 + (1 + ‖∇g−(x)‖2)1/2

)
dx

=

∫

Ω

(
(1 + ‖∇f+(x)‖2)1/2 + (1 + ‖∇f−(x)‖2)1/2

)
dx = Hn−1(K2),

as required.

The equation |ϕ′(t)| = 1, on a given domain and usually stated with boundary
conditions, is a special case of the eikonal equation; see, for example, [6, p. 47]. In
addition to the four functions ϕ(t) = t, −t, |t|, and −|t| in Corollary 6.7, there are
infinitely many other solutions H1-almost everywhere on R, including the function
in the following example.

Example 6.11. Let H = u⊥, u ∈ Sn−1, be oriented with u ∈ H+. Define the
contraction ϕ(t) = mink∈Z |t− k| for t ∈ R and let ♦ : Kn → Ln be defined by (62).
Then |ϕ′(t)| = 1 for H1-almost all t ∈ R. By Theorem 6.10, ♦ is monotonic, measure
preserving, respects H-cylinders, and is perimeter preserving on convex bodies. By
Lemma 6.9, ♦ maps balls to balls and hence, by Corollary 6.4, it is invariant on
H-symmetric sets. However, ♦ is not essentially equal to Id, †, ♦PH

, or ♦†PH
.
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Remark 6.12. The functions appearing in Theorem 6.10, i.e., Lipschitz functions
ϕ : R→ R such that |ϕ′(t)| = ±1 almost everywhere, may be non-differentiable at an
uncountable number of points. In fact, given any set N such that H1(N) = 0, there
is a function ϕ of this type such that ϕ′ does not exist at any point in N . To see this,
first note that by [22, Theorem 1], there is a Borel set E such that at each point
in N , the upper Lebesgue density of E is 1 and the lower Lebesgue density of E is
0. (To construct E, let (Gk) be a sequence of open sets such that N ⊂ Gk+1 ⊂ Gk,
H1(G1) ≤ 1, and for each component C of Gk, H1(C ∩Gk+1) ≤ (1/k)H1(C). Then
let E =

⋃
k(G2k−1 \G2k).) Now define

ϕ(t) =

∫ t

0

(2(1E(s))− 1) ds

for t ∈ R. Then ϕ is Lipschitz with ϕ′(t) = 1 or −1 at each density point of E or
R \ E, respectively, and hence almost everywhere by Lebesgue’s density theorem,
and it follows directly from the just-mentioned properties of E that ϕ′ does not exist
at any point in N .

Lemma 6.13. Let H = u⊥, u ∈ Sn−1, and let Knn ⊂ E ⊂ Ln, where E is closed under
intersections with H-symmetric spherical cylinders. If ♦ : E → Ln is monotonic,
measure preserving, and invariant on H-symmetric spherical cylinders, then ♦
respects H-cylinders.

Proof. In the proof, we ignore sets of Hn-measure zero. If r > 0 and x ∈ H, let
C(x, r) be the infinite spherical cylinder of radius r and axis H⊥ + x. Suppose
that E ∈ E and E ⊂ C(x, r). Since E ∈ Ln, we can choose sm > 0, m ∈ N, such
that if Cm = (C|H) + sm[−u, u] and Em = E ∩ Cm, then Hn(E \ Em) ≤ 1/m. As
Em ∈ E , ♦ is monotonic, and Cm is an H-symmetric spherical cylinder, we have
♦Em ⊂ ♦Cm = Cm and hence F =

⋃
m♦Em ⊂ C(x, r). Also, ♦Em ⊂ ♦E for

m ∈ N, implying that F ⊂ ♦E. Now

Hn(F ) ≥ Hn(♦Em) = Hn(Em) ≥ Hn(E)− 1/m = Hn(♦E)− 1/m

for each m, so Hn(F ) ≥ Hn(♦E). Thus ♦E = F ⊂ C(x, r), as required.

All seven properties of maps ♦ : E ⊂ Ln → Ln listed in Section 3 are shared
by ♦PH

and the map ♦ of Example 6.11, so a further property is needed to distin-
guish ♦PH

. When E contains H-symmetric unions of two disjoint balls, we can take
inspiration from Example 6.8 and use the new property in the next result. Note that
the property is much weaker than invariance on all H-symmetric sets.

Lemma 6.14. Let H = u⊥, u ∈ Sn−1, and let Knn ⊂ E ⊂ Ln, where E is closed under
intersections with H-symmetric spherical cylinders. If ♦ : E → Ln is monotonic,
measure preserving, and defined and invariant on H-symmetric unions of two disjoint
balls, then ♦ is invariant on H-symmetric spherical cylinders and hence respects
H-cylinders.

Proof. Let C = (B(x, r) ∩ H) + s(Bn ∩ H⊥), where r, s > 0, be an H-symmetric
spherical cylinder. Let A = int(C \ H). Choose unions Um of two disjoint balls,
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m ∈ N, such that A =
⋃
m Um. By monotonicity and invariance on H-symmetric

unions of two disjoint balls,

A =
⋃

m

Um =
⋃

m

♦Um ⊂ ♦C.

Therefore, C ⊂ ♦C, essentially. The measure-preserving property of ♦ now implies
that ♦C = C, essentially. Thus ♦ is invariant on H-symmetric spherical cylinders
and hence respects H-cylinders by Lemma 6.13.

Lemma 6.15. Let H = u⊥, u ∈ Sn−1, be oriented with u ∈ H+ and let E = Cn
or Ln. Suppose that ♦ : E → Ln is monotonic, measure preserving, maps balls to
balls, and invariant on H-symmetric unions of two disjoint balls. Let ϕ♦ : R→ R
be the function from Lemma 6.2. Then ϕ♦(t) = t, −t, |t|, or −|t|, if and only if ♦
essentially equals Id, †, ♦PH

, or ♦†PH
, respectively.

Proof. By Lemma 6.14, our assumptions on ♦ imply that it also respects H-cylinders,
allowing previous results to be applied.

If ♦ is given, it is easy to check that ϕ♦ has the appropriate form, by applying
♦ to balls and using (49).

It will suffice show that if ϕ♦ = |t|, then ♦ = ♦PH
. Indeed, the case when

ϕ♦ = −|t| then follows by applying the previous case to ♦†. The cases when ϕ♦ = ±t
are even simpler, not requiring the assumption that ♦ is invariant on H-symmetric
unions of two disjoint balls, but only that ♦ respects H-cylinders.

In the rest of the proof, we shall ignore sets of Hn-measure zero.
Assume initially that E ∈ E is a countable union of balls, E =

⋃∞
j=1 Bj. Let I−

be the set of all indices j for which the center of Bj lies in H−, and put I+ = N \ I−.
By (49), ♦Bj = Bj for j ∈ I+. Since ♦ is monotonic, we obtain

⋃

j∈I+
Bj =

⋃

j∈I+
♦Bj ⊂ ♦E. (70)

For j ∈ I− we have ♦Bj = B†j by (49), so a similar argument gives
( ⋃

j∈I−
Bj

)†
⊂ ♦E. (71)

We claim that
E ∩ E† ⊂ ♦E. (72)

To see this, note that

E ∩ E† =
∞⋃

j,k=1

(Bj ∩B†k) =
∞⋃

j≤k
Ejk,

where Ejk = (Bj∩B†k)∪(Bk∩B†j ) is an H-symmetric union of (at most) two compact
convex sets. It will therefore suffice to show that intEjk ⊂ ♦E for j, k ∈ N. To this
end, let C1, C2, . . . be balls such that

int(Ejk ∩H+) =
∞⋃

i=1

Ci.
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As Ejk is H-symmetric, this implies that

Ci ∪ C†i ⊂ (intEjk) \H ⊂ E ∩ E† ⊂ E.

Hence,

intEjk ⊂
∞⋃

i=1

(Ci ∪ C†i ) =
∞⋃

i=1

♦(Ci ∪ C†i ) ⊂ ♦E,

where the equality is justified as ♦ is invariant on H-symmetric unions of two disjoint
balls, and the final containment follows by the monotonicity of ♦. This proves (72).

By (70), (71), and (72), if we can prove the first containment in

♦PH
E ⊂

( ⋃

j∈I+
Bj

)
∪
( ⋃

j∈I−
Bj

)†
∪ (E ∩ E†) ⊂ ♦E, (73)

the measure-preserving properties of ♦ and ♦PH
will show that ♦E = ♦PH

E. To
prove the inclusion in question, fix x ∈ (♦PH

E) \ H−. Then {x, x†} ∩ E 6= ∅ and
there is a j ∈ N with x ∈ Bj or x ∈ B†j . Suppose that x ∈ Bj. If j ∈ I+, the first
inclusion in (73) holds trivially, if j ∈ I− it holds as x ∈ Bj \ H− ⊂ B†j . Similar
arguments can be used if x ∈ B†j . When x ∈ (♦PH

E) ∩H−, we have {x, x†} ⊂ E, so
x ∈ E ∩E†. Concluding, ♦E = ♦PH

E whenever E ∈ E is a countable union of balls.
In particular, this is true if E ∈ E is an open set.

Let (Em) be a decreasing sequence of sets in E and let E =
⋂
mEm ∈ E . We

claim that if ♦Em = ♦PH
Em for m ∈ N, then ♦E = ♦PH

E. We first show that
⋂

m

(♦PH
Em) = ♦PH

E. (74)

To prove (74), observe that for x ∈ H− and A ∈ Ln, we have x ∈ ♦PH
A if and only

if {x, x†} ⊂ A. Hence, when x ∈ H− we have

x ∈
⋂

m

(♦PH
Em) ⇔ {x, x†} ⊂ Em, for m ∈ N

⇔ {x, x†} ⊂ E

⇔ x ∈ ♦PH
E.

For x ∈ H+, we have x ∈ ♦PH
A if and only if {x, x†} ∩ A 6= ∅. Therefore

x ∈
⋂

m

(♦PH
Em) ⇔ {x, x†} ∩ Em 6= ∅, for m ∈ N

⇔ {x, x†} ∩ E 6= ∅
⇔ x ∈ ♦PH

E,

where for the second equivalence, we used the fact that (Em) is decreasing, implying
that if one of x or x† is not in Em for some m, then the other must be in Em for all m.
This proves (74). From the monotonicity of ♦, the assumption ♦Em = ♦PH

Em and
(74), we obtain

♦E ⊂
⋂

m

♦Em =
⋂

m

♦PH
Em = ♦PH

E,

36



and the measure-preserving properties of ♦ and ♦PH
show that ♦E = ♦PH

E.
Concluding, the subclass of E where ♦ and ♦PH

essentially coincide is closed under
decreasing limits, if the intersection is contained in E .

Let E = Ln. If E ∈ E , there is a decreasing sequence (Em) of open sets whose
intersection is essentially E. By what was proved earlier, this concludes the proof for
this case.

Now let E = Cn and let E ∈ E . By compactness, there is a set E1 that contains
E in its interior and is a finite union of balls with radius 1. Using compactness again,
we can find a finite union E2 of balls with radius at most 1/2 containing C in its
interior, such that E2 ⊂ E1. Continuing this way, a decreasing sequence (Em) of
finite unions of balls is constructed with

⋂
mEm = E. The first part of the proof

shows that ♦Em = ♦PH
Em, and the second part of the proof gives ♦E = ♦PH

E.

Let Un be the family of countable unions of balls in Rn. Suppose that E ⊂ Ln is
a class of measurable sets containing all balls and such that for each E ∈ E , there is
a decreasing sequence (Em) of sets in Un whose intersection is essentially E. Then
the proof of the previous lemma shows that it holds for the class E .

Theorem 6.16. Let H = u⊥, u ∈ Sn−1, be oriented with u ∈ H+, let E = Cn or Ln,
and suppose that ♦ : E → Ln is monotonic, measure preserving, perimeter preserving
on convex bodies, and invariant on H-symmetric unions of two disjoint balls. Then
♦ essentially equals Id, †, ♦PH

, or ♦†PH
.

Proof. By Lemmas 6.9 and 6.14, our assumptions imply that ♦ respects H-cylinders
and maps balls to balls, so Theorem 6.6 implies that the restriction of ♦ to Kn is
determined by (62). Let t0 6= 0. For 0 < r < |t0|, the balls B(±t0u, r) are disjoint.
Since ♦ is monotonic and invariant on H-symmetric unions of two disjoint balls,
either ♦B(t0u, r) = B(t0u, r) or ♦B(t0u, r) = B(−t0u, r). It follows from (49) that
ϕ♦(t0) = ±t0. The continuity of ϕ♦ implies that ϕ♦(t) = t, −t, |t|, or −|t|, so the
desired conclusion is provided by Lemma 6.15.

The map ♦ : Ln → Ln in Example 6.8 can also be considered as a map ♦ :
Cn → Cn. We showed in Example 6.8 that ♦ = ♦PH

on Kn. This implies that ♦
is perimeter preserving on convex bodies. Consequently, ♦ has all the properties
assumed in the previous theorem except that it is not invariant on H-symmetric
unions of two disjoint balls, showing that the latter property cannot be replaced by
the weaker assumption of respecting H-cylinders.

The following examples deal with the other assumptions in Theorem 6.16, where
it is always assumed that H = u⊥, u ∈ Sn−1.

Example 6.17. Given E ∈ Ln with Hn(E) > 0, let

cE =
1

Hn(E)

∫

E

x dx

be the center of gravity of E and let ♦E be the reflection of E in the hyperplane
H+cE. Then ♦ : E → E for E = Cn or Ln is measure preserving, perimeter preserving
on convex bodies, and invariant on H-symmetric unions of two disjoint balls. (Indeed,
♦ is clearly invariant on all H-symmetric sets.) It is not monotonic, as can be seen
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by considering the double cone conv([−u, u] ∪ (Bn ∩H)) and its subset, the cone
conv({u} ∪ (Bn ∩H)).

Example 6.18. Let E = Cn or Ln and define ♦ : E → E by ♦E = cl(intE). Then ♦
is monotonic, perimeter preserving on convex bodies, and invariant on H-symmetric
unions of two disjoint balls, but not measure preserving.

Example 6.19. For x ∈ Rn, let

F (x) =

{
x, if d(x,H) > 1,
x†, if d(x,H) ≤ 1

and define ♦ : E → Ln for E = Cn or Ln by ♦E = F (E). Then ♦ is monotonic,
measure preserving, and invariant onH-symmetric unions of two disjoint balls (indeed,
on all H-symmetric sets), but does not preserve perimeter on convex bodies.

For maps ♦ : Kn → Ln, invariance on H-symmetric unions of two disjoint balls
is not available. We therefore resort to a different and rather strong condition; we
say that ♦ is convexity preserving away from H if ♦K is essentially convex (that
is, ♦K coincides with a convex set up to a set of Hn-measure zero) for all K ∈ Kn
with K ∩H = ∅.
Theorem 6.20. Let H = u⊥, u ∈ Sn−1, be oriented with u ∈ H+ and let ♦ : Knn →
Ln be monotonic, measure preserving, invariant on H-symmetric sets, perimeter pre-
serving on convex bodies, and convexity preserving away from H. Then ♦ essentially
equals Id, †, ♦PH

, or ♦†PH
.

Proof. We may assume that u = en. Let C = {0} × [0, 1]n−2 × {0} be the unit cube
in H ∩ e⊥1 . For r, t > 0, define

K(t, r) = {x+ xnen : x ∈ C + [o, te1], r ≤ xn ≤ r + 2x1}.

Then K(t, r) ∈ Knn is disjoint from H and if x ∈ C + [o, te1], then x+ (r + x1)en is
the midpoint of K(t, r) ∩ (〈en〉+ x). From Theorem 6.10, we know that (62) holds,
where |ϕ′♦(t)| = 1 for H1-almost all t. Then

♦K(t, r) = {x+ xnen : x ∈ C + [o, te1],

ϕ♦(r + x1)− x1 ≤ xn ≤ ϕ♦(r + x1) + x1},
(75)

essentially. Since ♦ is convexity preserving away from H, there is a convex set
L = L(t, r) essentially equal to ♦K(t, r). As the boundary of a convex set has
Hn-measure zero, we may assume that L is closed. The sets M1 = C + ϕ♦(r)en and
M2 = C + [(ϕ♦(r + t) − t)en, (ϕ♦(r + t) + t)en] + te1 are contained in L, because
any point in either set can be approximated by points in the right side of (75) that
are also points in L. As L is convex, M = conv(M1 ∪ M2) ⊂ L. The wedge M
has the same volume as K(t, r), so the measure-preserving property of ♦ yields
♦K(t, r) = L = M , up to sets of Hn-measure zero. Comparing the set in (75) with
M and using the continuity of ϕ♦, we obtain

ϕ♦(r + x1) =
(

1− x1

t

)
ϕ♦(r) +

x1

t
ϕ♦(r + t)
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for 0 ≤ x1 ≤ t. Letting r → 0+, we conclude that ϕ♦ is affine on [0, t) for t > 0. As
♦ monotonic and invariant on H-symmetric sets, it respects H-cylinders, and our
assumptions and Lemma 6.9 ensure that it also maps balls to balls. Therefore, by
Corollary 6.4, ϕ♦(0) = 0 and so ϕ♦ is linear. As |ϕ′♦| = 1 almost everywhere, this
implies that ϕ♦ = ±Id on [0,∞). Similar arguments applied to

K ′(t, r) = {x+ xnen : x ∈ C + [te1, o], r − 2x1 ≤ xn ≤ r},

where t, r < 0, show that ϕ♦ = ±Id on (−∞, 0] and hence that ϕ♦(t) = t, −t, |t|,
or −|t|. The proof is completed by Corollary 6.7.

Example 6.17 shows that the assumption that ♦ is monotonic cannot be dropped
in the previous theorem. If o 6= x0 ∈ H, the map ♦K = K +x0 has all the properties
in Theorem 6.20 except invariance on H-symmetric sets. If we define ♦ via (62),
where ϕ♦(t) = t/2, then it is easily checked that ♦ has all the properties except that
it is not perimeter preserving. Example 6.11 shows that the assumption that ♦ is
convexity preserving away from H cannot be omitted.

We do not have an example showing that the measure-preserving assumption is
necessary, and this relates to an open problem stated as a variant of [7, Problem 11.1],
namely, does there exist a map from the convex bodies in Rn to those that are
symmetric with respect to a fixed hyperplane H that is monotonic, invariant on
H-symmetric sets, and perimeter-preserving? If such a map existed, it would provide
the required example.

Theorem 6.21. Let H = u⊥, u ∈ Sn−1, be oriented with u ∈ H+. Let X = S(Rn)
or V(Rn) and suppose that T : X → X is a rearrangement. If the induced map
♦T defined by (13) is perimeter preserving on convex bodies and invariant on H-
symmetric unions of two disjoint balls, then T essentially equals Id, †, PH , or PH†.

Proof. By Lemma 4.5 and Theorem 4.8(i),♦T is well defined, monotonic, and measure
preserving. Together with our assumptions on ♦T , we can apply Theorem 6.16 with
E = Ln to conclude that ♦T essentially equals Id, †, ♦PH

, or ♦†PH
. The proof is

completed by Theorem 4.8(ii).

We now address the question of finding versions of the previous theorem for maps
T : X → X, where X =M(Rn) orM+(Rn).

Theorem 6.22. Let H = u⊥, u ∈ Sn−1, be oriented with u ∈ H+. Let X =M(Rn)
(or X = M+(Rn)) and let T : X → X be a rearrangement. If the induced map
♦T defined by (13) is perimeter preserving on convex bodies and invariant on H-
symmetric unions of two disjoint balls, then the restriction of T to S(Rn) (or V(Rn),
respectively) essentially equals Id, †, PH , or PH†.

Proof. If X = M(Rn) (or X = M+(Rn)) and T : X → X is a rearrangement,
then T : S(Rn)→ S(Rn) (or T : V(Rn)→ V(Rn), respectively). This follows from
Lemma 4.1(ii) (or the definitions of V(Rn) and equimeasurability, respectively). Since
the restricted maps satisfy the hypotheses of Theorem 6.21, the result follows.

Example 4.12 shows that the conclusion of Theorem 6.22 cannot be drawn for
the unrestricted maps T :M(Rn)→M(Rn) or T :M+(Rn)→M+(Rn).
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7 Appendix

The purpose here is to compare our approach to rearrangements on S(Rn) in Section 4
with that of [8] and [47]. Recall that we begin with a rearrangement T : S(Rn)→
S(Rn) and show in Theorem 4.8(ii) that T is essentially determined by the associated
measure-preserving and monotonic map ♦T : Ln → Ln, defined by (13), via the
formula

Tf(x) = max {sup{t ∈ Q, t > ess inf f : x ∈ ♦T{z : f(z) ≥ t}}, ess inf f} , (76)

which holds for Hn-almost all x ∈ Rn, or alternatively via (27).
Brock and Solynin [8, Section 3] and Van Shaftingen and Willem [47] reverse the

procedure, starting with a set transformation ♦ and defining function transformations.
The latter paper, particularly, allows other possibilities, but we may focus on the case
when ♦ : Ln → Ln is measure preserving and pointwise monotonic (meaning that
if K ⊂ L, the containment ♦K ⊂ ♦L must hold everywhere and not just almost
everywhere). Consider defining a function T on S(Rn) by

Tf(x) = max{sup{t > inf f : x ∈ ♦{z : f(z) > t}}, inf f}, (77)

for x ∈ Rn. The formula (77) is equivalent to [8, Equation (3.1), p. 1762], where f is
assumed continuous and it is shown that Tf ∈ S(Rn). For general f ∈ S(Rn), Brock
and Solynin suggest replacing the supremum in (77) by the essential supremum and
then claim that T : S(Rn) → S(Rn) is a rearrangement. In [47], the authors work
with admissible functions, which in our context is equivalent to demanding that
inf f = ess inf f . In [47, Definition 4], the map T defined by (77) is considered for
admissible f and denoted by S̆, as well as a map S where in (77), {z : f(z) > t} is
replaced by {z : f(z) ≥ t}. Among other results, it is stated in [47, Propositions 1–3]
that under the above assumptions on ♦, T = S = S̆ and the formula

Tf(x) = max{sup{t > ess inf f : x ∈ ♦{z : f(z) ≥ t}}, ess inf f}, (78)

for x ∈ Rn, defines a rearrangement T : S(Rn)→ S(Rn).
Since the definition (78) appears to be a thoroughly measure-theoretic one, it is

natural to ask whether the pointwise monotonicity of ♦ is really required, or whether
it could be replaced by monotonicity in our sense. The following example shows that
this is not the case.

Example 7.1. Let n = 1 and for A ∈ L1, define

♦A =

{
A ∪ {ess supA+ 1}, if ess supA <∞,
A, otherwise.

Then ♦ is essentially the identity on L1 and thus measure preserving and monotonic,
but it is not pointwise monotonic. For the function f(x) = −|x| in S(Rn) and t ≤ 0,

♦{f ≥ t} = ♦[t,−t] = [t,−t] ∪ {1− t},
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so by (78), we have

Tf(x) = sup{t ≤ 0 : x ∈ [t,−t] ∪ {1− t}}
= sup{t ≤ 0 : t ≤ −|x| or t = 1− x} =

{
1− x if x ≥ 1,
−|x|, otherwise.

Hence, T is not equimeasurable and therefore not a rearrangement.

One may wonder whether an alternative definition, namely,

Tf(x) = max{ess sup{t > ess inf f : x ∈ ♦{z : f(z) ≥ t}}, ess inf f}, (79)

for x ∈ Rn, would allow the pointwise monotonicity assumption on ♦ to be weakened,
but the following example shows that it is consistent with ZFC that this is also not
true.

Example 7.2. Let n = 1. Assuming the continuum hypothesis CH, Sierpiński
[40] constructed a set S ⊂ [0, 1]2 such that for t ∈ [0, 1], the horizontal section
St = {x ∈ [0, 1] : (x, t) ∈ S} is countable and for x ∈ [0, 1], the vertical section
Sx = {t ∈ [0, 1] : (x, t) ∈ S} is such that [0, 1] \ Sx is countable. For A ∈ L1, define

♦A =

{
A ∪ St, if A = [−t, 0] for some t ∈ [0, 1],
A, otherwise.

Then ♦ is essentially the identity on L1 and thus measure preserving and monotonic,
but it is not pointwise monotonic. Put

f(x) =

{
1 + x, if x ≤ 0,
−x, otherwise.

Then f ∈ S(Rn) and direct calculation using (79) shows that

Tf(x) =

{
1, if x ∈ [0, 1],
f(x), otherwise,

so T is not equimeasurable and hence not a rearrangement.

It would suffice in the previous example if the sections of S satisfy H1(St) = 0
for all t ∈ [0, 1] and H1(Sx) = 1 for all x ∈ [0, 1]. The existence of such an S can be
proved using Martin’s Axiom MA and is therefore consistent with the negation of
CH, while it is also consistent with ZFC that no such set exists. See [30, p. 673] for
these and other related remarks.

The supremum over Q in (76) cannot be replaced by the supremum over R, i.e.,
the formula in Theorem 4.8(ii) cannot be replaced by (78). Indeed, let n = 1 and for
f ∈ S(R), define

Tf =

{
1A∪{ess supA+1}, if f = 1A, where A ∈ L1 and ess supA <∞,
f, otherwise.
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Then T is essentially the identity and therefore a rearrangement on S(R), so by
Theorem 4.8(ii), (76) holds. From its definition (13), we see that ♦T is the map ♦
from Example 7.1, so it follows from that example that if T satisfied (78), it could
not be equimeasurable, a contradiction. In a similar way, using Example 7.2 instead
of Example 7.1, we see that it is consistent with ZFC that the supremum over Q in
(76) cannot be replaced by the essential supremum over R.

To the best of our knowledge, our result in Section 4 that every rearrangement
T : S(Rn)→ S(Rn) arises from the map ♦T : Ln → Ln defined by (13) has not been
proved before. The question of when a function transformation arises from a set
transformation is addressed in [47, Proposition 4]. This result appears to be based on
[44, Proposition 2.4.1], where we find the statement and proof clearer. Restricting to
our setting, it states that if an otherwise arbitrary T : S(Rn)→ S(Rn) is such that

ϕ ◦ f ∈ S(Rn) and ϕ(Tf) = T (ϕ ◦ f) (80)

for f ∈ S(Rn), whenever ϕ : R→ R is right-continuous and increasing, then there is a
♦ : Ln → Ln such that T arises from♦ via the formula (78). Note that T need not be a
rearrangement for (80) to hold. For example, let T : S(Rn)→ S(Rn) be the pointwise
map defined by (4) with F (s, t) = max{s, t}, i.e., Tf(x) = max{f(x), f(x†)} for
x ∈ Rn. Then T is monotonic but not equimeasurable, while it is easy to check
that it satisfies (80). (However, Lemma 4.11 implies that an equimeasurable map
satisfying (80) must be monotonic and hence a rearrangement.) On the other hand,
[44, Proposition 2.4.1] and [47, Proposition 4] say nothing about rearrangements
T : S(Rn)→ S(Rn) until it is known that (80) is true. This is just what we show holds,
essentially, in Theorem 4.9, with a proof allowing the weakest possible continuity
assumption on ϕ.
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