
Torus symmetry and nearly Kähler metrics

Giovanni Russo

A dissertation submitted in fulfilment of the
requirements for the degree of

Doctor of Philosophy

Department of Mathematics and
Centre for Quantum Geometry of Moduli Spaces

Aarhus University
October 2019





To my grandmother Francesca,
who left me when all of this began





Contents

Copyright and originality statements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v
Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix
Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii
Dansk résumé . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv
Notations and conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvii

1 The structure of nearly Kähler six-manifolds 1
1.1 A historical overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Symmetries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Curvature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.4 The Einstein condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.5 Formulation in terms of PDEs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2 Homogeneous nearly Kähler structures 29
2.1 On G2 geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.2 The six-sphere . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.3 The flag manifold of C3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.4 The complex projective space CP3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.5 The product of three-spheres S3 × S3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3 Multi-moment maps 39
3.1 The general set-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.2 On the six-sphere . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.3 On the flag manifold . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.4 On the complex projective space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.5 On the product of three-spheres . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4 Torus symmetry 61
4.1 The infinitesimal generators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.2 The multi-moment map and its properties. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.3 Reduction to three-manifolds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.4 Inverse construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.5 Invariant structures on the Heisenberg group. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5 Critical sets and graphs 75
5.1 The six-sphere . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
5.2 The flag manifold . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
5.3 The complex projective space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

iii



iv Contents

5.4 The product of three-spheres . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
5.5 A general result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

6 Topological aspects 85
6.1 Further symmetries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
6.2 The Hessian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
6.3 The multi-moment map as Morse function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
6.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
6.5 Further developments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

Bibliography 97



Copyright and originality statements

I hereby grant Aarhus University (AU) the right to archive and to make available this PhD
thesis in whole or part in the University libraries in all forms of media. The present work
may be uploaded to AU webpages and sent to others on request, but not for commercial
purposes. It may be read—but not lent—by others on request on a computer at one of the
GSST secretariat’s offices.

I retain the right to use this PhD thesis in future works (such as articles or books),
and more generally for a range of scholarly, non-commercial purposes. I declare that this
submission is my own work and to the best of my knowledge it contains no material
previously published or written by another person, or substantial proportions of material
which have been accepted for the award of any other degree or diploma at Aarhus
University or any other educational institution, except where due acknowledgement is
made in the thesis. Any contribution made to the research by others, with whom I have
worked at Aarhus University or elsewhere, is explicitly acknowledged in the thesis. I also
declare that the intellectual content of this thesis is the product of my own work, except to
the extent that assistance from others in the project’s design and conception or in style,
presentation and linguistic expression is acknowledged.

Part of the material contained in this thesis (in particular Chapter 4) is based on a
joint work of my supervisor Andrew Swann and myself. I acknowledge Elsevier for
making it publicly available. The final published version may be found on ScienceDirect
at https://www.sciencedirect.com/science/article/pii/S0393044018306107.

Date: 31 October 2019

v

https://www.sciencedirect.com/science/article/pii/S0393044018306107




Acknowledgements

The last three years have definitely been my best academic experience. I feel greatly
honored to have had the huge opportunity of working on this project with my supervisor
Andrew Swann. I will always be indebted to him for being a constant source of inspiration
and for the great talent and patience which he has always guided me with. His fairness,
his care for details, and his fantastic ability to carry research on are models for me.

I would like to thank Anna Fino and Susanna Terracini, who encouraged me to take
this path and strongly helped me make it possible. I am also very grateful to my other
mentors along the way: Andrei Moroianu, for his warm hospitality in Orsay, many
discussions and coffees; and Lorenzo Foscolo, with whom I spent two amazing months in
the windy Edinburgh. In both occasions I got new points of view on my work and was
exposed to different ways of doing mathematics. It was extremely instructive.

I wish to thank all the other professors who made a significant contribution to my
mathematical life, directly or not: among those I would like to mention Jørgen Ellegaard
Andersen, for making the QGM a diverse and excellent working environment; Cristiano
Spotti, for countless chats since day one; Bent Ørsted for his kindness and willingness
to help in every situation; Thomas Bruun Madsen for several mathematical discussions;
Jason Lotay, for useful comments and hints on my research; Uwe Semmelmann, for his
niceness and for the opportunity he gave me to visit Stuttgart and talk about several
exciting topics; and Ilka Agricola, who invited me to Marburg and has expanded my
mathematical horizons.

I acknowledge the Danish Frie Forskningsfond and the Danish National Research
Foundation for supporting this project.

I am grateful to Lars Madsen for his always efficient help with LATEX and for proofread-
ing the final version of this document.

A special thanks to the secretaries Lene Bongaarts, Jane Rasmussen Jamshidi and
Christine Dilling, for their constant presence. The QGM and the whole department would
not be the same without their friendly and lighthearted personality.

Further, I want to thank all the other people I came in contact with during this ad-
venture, each of them gave a contribution to the person I am now. First of all thanks to
all my PhD fellows, old and new, those I met in Aarhus and those I met elsewhere. In
particular, I want to mention my office mates, Erica Minuz and William Elbæk Mistegård,
for having constantly put up with me; a special thanks to Alessandro Malusà, for sharing
his passion for mathematics through countless discussions and for making the first stages
of my life in Aarhus easier and better. Thanks to Yuki Koyanagi, for his kindness and
help in several situations; to my Danish fellows Andreas Bruun Skovbakke and Lukas
Bjarke Engberg for many discussions, coffees and beers; and to the Italians Roberta Iseppi,
Gabriele Rembaudo, Andrea Di Lorenzo, Salvatore Tambasco and Simone Siclari, for
many hilarious moments and for making me feel at home.

vii



viii Acknowledgements

I wish to reserve a few lines for Mauro Mantegazza, an exceptional friend. We met for
the first time at a conference in Leuven and then again in Aarhus, where we shared the
office for five months. I learnt a lot from him, both mathematically and humanly. I want
to thank him for his loyalty. I admire his outstandingly open-minded character and his
will to talk to and learn from everybody. I strongly hope this will be only the beginning of
a long mathematical journey together.

I am deeply thankful to all my students. In particular I want to mention the crew of
physicists Anton Rindom Kristensen, Alberte Mørk, Frederik Kofoed Marqversen, Mads
Andresen, and Simon Guldager, for sharing enthusiastically their interest in the links
between geometry and physics.

This PhD has also been an incredible life experience, I wish to thank all my friends
who never left me alone. Special thanks go to my companion Andrea Orizzonte, for
being a constant, energetic presence in my life. Our passion for mathematics is simply
extraordinary, I will always have to learn something new from him. A fond thanks
to Leonardo Larizza, for many postcards and for demonstrating closeness in various
circumstances. A strong hug to my friend Valeria Tacchi, for having shared easy and
deep moments in Paris; to Francesca Santi, for being always present despite the distance.
Thanks to my crazy friend Sofia Spampinato, for sharing joys and sorrows of life in Aarhus.
And finally my warmest thanks go to Oliviero Carbone, my everlasting friend, the only
one who was brave enough to visit me in Aarhus, Paris, and Edinburgh along these three
years.

A last thought to my family, especially my parents. A simple thanks would never
reward their support and what they have always done for me. I would rather say I am
sorry, because I believe leaving home for such an experience requires a certain amount of
ingenuousness. Thanks mum, thanks dad, for helping me make everything possible.



Introduction

Let (M, g, J) be an almost Hermitian 2n-dimensional manifold with Riemannian metric g
and almost complex structure J compatible with g. Lowering the upper index of J yields
a two-form σ := g(J · , · ). When the almost complex structure is integrable (i.e. the
Nijenhuis tensor of J vanishes) and σ is a closed form, the triple (M, g, J) is called Kähler
manifold. This condition is well known to be equivalent to saying that J is parallel with
respect to the Levi-Civita connection on M, namely ∇J = 0. By the General Holonomy
Principle this implies that the holonomy group of ∇ reduces to a subgroup of U(n). The
class of Kähler manifolds is widely studied and the literature contains plenty of examples.

This is a rather special set-up, but one may consider other geometries weakening the
conditions on the structure, e.g. assuming that J satisfies some symmetries without being
parallel, or only that σ is closed. When no particular assumptions are given, a number
of interesting classes of almost Hermitian geometries arise and one can see the general
picture. A classification may be carried out at the linear algebra level: the idea is that one
considers the vector space of the type (3, 0)-tensors satisfying the same symmetries as∇σ.
This space, which we callW , splits under the action of the unitary group U(n) into the
orthogonal direct sum of four irreducible submodules:

W =W1 �W2 �W3 �W4.

Each combination of theWis gives rise to a specific geometry, and we clearly have a total
of sixteen classes. The class of Kähler manifolds corresponds to the trivial module {0}. An
explicit description of these geometries was given by Gray and Hervella and published in
1980 [GH80].

In the present work we concentrate onW1, the class of nearly Kähler manifolds. They
are characterised by the skew-symmetry of∇J, which is assumed not to vanish identically.
The first author who attempted an abstract, general analysis of their structure is Gray,
[Gra69], [Gra70], [Gra76]. What is more, we focus on dimension six, where the first
examples of nearly Kähler manifolds that are not Kähler arise: in fact it turns out that
the whole theory of W1 relies on this case [Nag02], which is also particularly relevant
for its connections with spin [FG85] and G2-geometry [Bry87]. These links make nearly
Kähler six-manifolds attractive in superstring theory and M-theory as well (see e.g. [Str86],
[Agr06], [Agr08]).

One of the main problems we address is the lack of concrete examples. For the sake of
completeness we quickly present the known ones here, for more details the reader may
skip this paragraph and read Section 1.1 directly. The first explicit homogeneous nearly
Kähler structure was found on the six-sphere in the 1950’s, but a complete classification
of the homogeneous, compact examples was achieved only in 2005 by Butruille [But05].
The list contains four spaces: the six-sphere S6, the flag manifold of C3, the complex
projective space CP3, and the product of three-spheres S3 × S3. Finally, in 2017, Foscolo

ix



x Introduction

and Haskins [FH17] proved the existence of the first two complete and non-homogeneous
nearly Kähler structures on S6 and S3 × S3. In a time interval of almost seventy years this
is the complete set of compact examples found. The problem of constructing new ones
reduces to solving a system of partial differential equations in terms of an SU(3)-structure
on the manifold: we shall show how the condition ∇J skew-symmetric be equivalent to
the existence of a complex (3, 0)-form ψC = ψ+ + iψ− such that

dσ = 3ψ+, dψ− = −2σ ∧ σ,

where σ = g(J · , · ). The obvious critical point is that solving these equations in complete
generality is a highly non-trivial problem, so one may assume to have some kind of
symmetry to simplify the analysis. This is why we will consider and look for nearly Kähler
six-manifolds admitting a two-torus symmetry, which is a mild and natural assumption
satisfied by all examples mentioned above.

In practice we assume a two-torus T2 act on (M, σ, ψC) effectively preserving the
SU(3)-structure (σ, ψC). In this set-up one can construct a special T2-invariant real-valued
function on the manifold which is called multi-moment map [MS12], a generalisation of
moment maps in symplectic geometry. This is the essential tool we use, and here is how.
The T2-symmetry yields a multi-moment map νM, concretely defined by νM := σ(U, V),
where U, V are the infinitesimal generators of the T2-action. Regular values s of νM give
rise to five-dimensional invariant submanifolds ν−1

M (s) ↪→ M, and it turns out that the
action of T2 on them is free. Therefore, the three-dimensional quotients ν−1

M (s)/T2 have
the structure of smooth manifolds. We will study the geometry of these spaces in detail.
This structural reduction is called T2-reduction. Now the goal is to reverse this construction
hoping to be able to generate nearly Kähler six-manifolds from some three-dimensional
manifold Q. We will then work out the conditions under which it is possible to construct
a principal T2-bundle over Q and then see how to evolve the structure of the total space
of this bundle to get a nearly Kähler one. A new example of nearly Kähler six-manifold
is obtained in this way starting with the three-dimensional Heisenberg group as base
manifold, and potentially more new examples may be obtained.

The T2-action is free on the level sets of the multi-moment map corresponding to
regular values, but as it turns out it is not free on the whole manifold in general. A crucial
point is then to analyse non-trivial stabilisers and study singular aspects corresponding to
lack of smoothness. We will see how the set of fixed-points and one-dimensional orbits of
the action define a trivalent graph. This encodes the geometric structure of points where
the infinitesimal generators of the action are linearly dependent over the reals. As we will
see, at these points the multi-moment maps and their differential vanish. We will explain
the link between these two aspects in detail.

Non-degeneracy of the Hessian of the multi-moment map helps recover the topologi-
cal structure of the whole six-manifold: in this context the multi-moment map should be
thought of as a Morse function. This further motivates why we need to understand the
structure of critical sets. We perform explicit, algebraic calculations on the homogeneous
examples, the graphs will integrate this information geometrically.

The thesis is organised as follows. Chapter 1 starts off with basic definitions and a
detailed motivation supporting our work. An overview on the story of nearly Kähler
geometry enhances and completes this introduction, and some notable results in dimen-
sion six are recalled. In the subsequent sections we go through a series of lemmas to
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show equivalent characterisations of nearly Kähler six-manifolds and prove that these
spaces are Einstein. Technicalities are taken steadily. The reader should find precise
explanations of the basic ones, so as to be able to reproduce them autonomously. As we
go along we then provide fewer details, trying to be as clear as possible anyway. The
material covered in this first chapter is now classical, but we claim to have solved some
issues found in various references. In particular, Sections 1.3 and 1.4 are devoted to these
delicate results. In Chapter 2 we recall the structure of the homogeneous, compact nearly
Kähler six-manifolds, whereas in Chapter 3 we start introducing multi-moment maps.
We recall their general definition and construct explicit examples on the spaces studied
in Chapter 2. Afterwards, in Chapter 4, we explain the T2-reduction and the inverse
process mentioned above, constructing a new example of nearly Kähler six-manifold
with a two-torus symmetry. This material is part of a joint paper with Andrew Swann
published in Journal of Geometry and Physics [RS19]. A link to it may be found in the
Copyright statement. Chapter 5 deals with the analysis of the trivalent graphs correspond-
ing to the critical loci where the multi-moment maps vanish. The final chapter includes
properties of the Hessian and remarks on the topology of nearly Kähler six-manifolds
with a two-torus symmetry. To come to the end, we sum up our conclusions and explain
further developments in the last two sections. In particular, the reader may want to have
a look at Section 6.4 for an overview of our results.





Abstract

This is a thesis in differential geometry studying a certain class of Einstein six-dimensional
manifolds. Nearly Kähler manifolds were introduced by Gray in the 1960’s, but until
recently only a few examples were known. Our main focus is to use multi-moment maps
to study nearly Kähler six-manifolds that admit an action of a two-dimensional torus.

We begin by reviewing the geometry of nearly Kähler six-manifolds. A detailed proof
of Gray’s result that they are Einstein manifolds of positive scalar curvature is given.
We also provide details of how Gray’s definition is related to the modern definition of
nearly Kähler manifolds as SU(3)-structures satisfying a certain pair of partial differential
equations.

Following the classification result of Butruille, we know there are only four compact,
homogeneous nearly Kähler manifolds in dimension six. All of them admit a two-torus
symmetry generating multi-moment maps. Their expressions and critical sets are com-
puted explicitly in each example.

We then switch to the general framework of nearly Kähler six-manifolds with effective
two-torus symmetry. The multi-moment map for the torus action becomes an eigenfunc-
tion of the Laplace operator. At regular values, we prove the action is necessarily free on
the level sets and determines the geometry of three-dimensional quotients. An inverse con-
struction is given locally producing nearly Kähler six-manifolds from three-dimensional
data. This is illustrated for structures on the Heisenberg group.

On the homogeneous cases we study the sets of points admitting non-trivial stabilisers
and show how their structure may be encoded in trivalent graphs. Based on these
examples, we prove a result on the configuration of such sets in the general case of an
SU(3)-structure with an effective torus symmetry. Viewing the multi-moment map as a
Morse function, we work out the models of non-degenerate level sets close to orbits of
local maximum and minimum.
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Dansk résumé

I denne afhandling indenfor differentialgeometri studeres en særlig klasse af seks-dimen-
sionale Einstein mangfoldigheder. Næsten-Kähler mangfoldigheder blev introduceret af
Gray i 1960’erne, men indtil for nyligt var der kun få kendte eksempler. Vores primære
fokus er at bruge multi-moment afbildninger til at studere næsten-Kähler seks-mang-
foldigheder, der tillader en virkning af en todimensional torus.

Vi begynder med en gennemgang af geometrien på næsten-Kähler seks-mang-
foldigheder. Vi giver et detaljeret bevis for Grays resultat: næsten-Kähler seks-mang-
foldigheder er altid Einstein med positiv skalarkrumning. Derudover viser vi, hvordan
Grays oprindelige definition er relateret til en moderne definition af næsten-Kähler
mangfoldigheder, som SU(3)-strukturer der opfylder et par partielle differentialligninger.

Fra et klassifikationsresultat af Butruille ved vi, at der kun er fire kompakte, homogene
næsten-Kähler mangfoldigheder af dimension seks. De tillader alle to-torus symmetri,
hvilket giver anledning til en multi-momentafbildning. Vi beregner eksplicitte udtryk for
multi-momentafbildningen og mængden af kritiske punkter i alle eksempler.

Dernæst skifter vi til den generelle teori for næsten-Kähler seksmangfoldigheder
med effektiv to-torus symmetri. Multi-momentafbildningen for torusvirkningen er en
egenfunktion for Laplace operatoren og vi viser, at virkningen på urbilleder af regulære
værdier nødvendigvis er fri og bestemmer en geometrisk struktur på de tredimensionelle
kvotienter. Vi giver også en invers konstruktion, der lokalt producerer næsten-Kähler seks-
mangfoldigheder fra en tredimensional mangfoldighed med den nødvendige geometriske
struktur. Konstruktionen illustreres med strukturer på Heisenberggruppen.

I de homogene tilfælde studerer vi punkterne med ikke trivielle isotropigruppe og
viser, hvordan deres struktur kan indkodes i en trivalent graf. Fra disse eksempler viser
vi et mere generelt resultat om mulige konfigurationer af sådanne mængder for SU(3)-
strukturer med en effektiv to-torus symmetri. Idet vi fortolker multi-momentafbildningen
som en Morse funktion, finder vi modeller for ikke degenererede niveaumængder tæt på
lokale maksima og minima.
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Notations and conventions

1. We write bases of vector spaces with upper case letters and lower indices, e.g.
E1, E2, . . ., dual bases with lower case letters and upper indices, e.g. e1, e2, . . .. Cor-
respondingly, coordinates of vectors have upper indices, coordinates of covectors
have lower indices. We usually use the letters E and e for real bases and the letters F
and f for complex bases.

2. We use standard notations for classical Lie groups O(n), SO(n), U(n), SU(n), Sp(n),
etc. We denote n-dimensional tori by Tn. The standard Fraktur alphabet is used for
Lie algebras, e.g. so(n), su(n), sp(n), etc.

3. If α is a tensor, we denote α � . . . � α (n-times) by α�n and not by αn. The latter
notation may be used instead for wedging n times.

4. We adopt the convention that p-covariant tensors have type (p, 0), q-contravariant
tensors have type (0, q). Thus vectors are (0, 1) tensors, one-forms are (1, 0) tensors,
and so on.

5. We use the symbol SX,Y,...,Z to denote cyclic sums over X, Y, . . . , Z. When the sum
is over Ei, Ej, . . . , Ek we may writeSi,j,...,k instead ofSEi ,Ej,...,Ek

.

6. We sometimes use the standard symbol X(M) for the Lie algebra of vector fields
on M.

7. In the formula for the differential of a k-form α we drop the numerical factor k + 1.
E.g. if α is a one-form we have dα(X, Y) = X(α(Y))−Y(α(X))− α([X, Y]), instead
of 2dα(X, Y) = X(α(Y))−Y(α(X))− α([X, Y]).

8. If A is a (p, q)-tensor then we write ∇A(X, Y1, . . . , Yp) or simply ∇X A(Y1, . . . , Yp)
for (∇X A)(Y1, . . . , Yp). Analogously, ∇2A(W, X, Y1, . . . , Yp) or ∇2

W,X A(Y1, . . . , Yp)

for (∇2
W,X A)(Y1, . . . , Yp). If A is any (1, q)-tensor, we write ∇X AY for any covariant

derivative of AY with respect to X. We write instead (∇X A)Y when the operator
∇X A is applied to Y. We use brackets in potentially ambiguous expressions.

9. To denote group actions we usually use a dot or nothing at all: if an element g of a
group acts on an object x in some space, then we write the action of g on x as g · x or
as gx.

10. We denote the Lie derivative with respect to a vector field X by LX, and contractions
by the symbol y .

xvii





Chapter 1

The structure of nearly Kähler
six-manifolds

Let us start our mathematical journey with an overview of general facts on nearly Kähler
manifolds in dimension six. We first give some motivation behind this project and then
let the mathematics talk. We explain the essential tools and arguments one needs to
get into the geometry we will be concerned with, supplying all the necessary details in
favour of a fluent reading. In particular, since the first chapter contains several technical
results, we try to be as clear as possible in the structure of the exposition and show all
the relevant steps. In our special six-dimensional set-up each problem is solved with
adapted techniques. We need the right language rather than the general theory. However,
the material supporting the whole manuscript is classical and can be safely found in
the literature. The general references we used most are [KN96], [Sal89], [Hat02], [FH04],
[Mor07], [Bes08], and [Sil08]. Further and more specific ones are provided along the way.

1.1 A historical overview

As disclosed in the introduction, nearly Kähler geometry places itself in the wider frame-
work of almost Hermitian geometry. To our knowledge, the first author giving a formal
definition of nearly Kähler manifolds was Gray (see e.g. [Gra65] or [Gra70]), although
traces of their appearance can be found in previous works: for example, Tachibana [Tac59]
and Kotō [Kot60] call them “K-spaces”. We shall stick for a while to the following defini-
tion by Gray. Later on we will see equivalent characterisations.

Definition 1.1.1. Let (M, g, J) be an almost Hermitian manifold with Riemannian metric g,
almost complex structure J compatible with g (i.e. J is g-orthogonal), and let ∇ be the
Levi-Civita connection. Then M is called nearly Kähler if (∇X J)X = 0 for all vector fields
X on M.

Recall that the presence of the almost complex structure J forces the dimension of M
to be even. We say that M is strict nearly Kähler if ∇J does not vanish identically—when
it does, M is Kähler. From now on when we say nearly Kähler we actually mean strict
nearly Kähler. In a note of 1969 [Gra69], Gray uses the terminology of the definition above
to generalise the skew-symmetry of ∇J found in a specific six-dimensional case, that of
the six-sphere S6. From the chronological point of view this is the first example of strict
nearly Kähler manifold noticed: an almost complex structure J on S6 was defined by

1
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Frölicher [Frö55] making use of the algebra of octonions, and subsequently Fukami and
Ishihara [FI55] proved that ∇J is skew-symmetric. We will discuss this example in more
detail in Section 2.2.

In fact it turns out that the six-dimensional case is in a sense the first significant one:
Gray [Gra69] gave a short and explicit argument proving that nearly Kähler manifolds
in dimension four are automatically Kähler, namely ∇J = 0 (see Section 1.2, Proposi-
tion 1.2.2). This result can be easily adapted to the two-dimensional case, thus strict nearly
Kähler manifolds may occur only in dimension greater than four.

It is then clear that the example of S6 mentioned above already makes dimension
six appealing. For the moment we just recall that the Lie group G of automorphisms of
the algebra of octonions acts transitively on S6 and any isotropy group is conjugate to
the special unitary group SU(3), meaning that S6 = G/SU(3). Therefore, the six-sphere
has a homogeneous nearly Kähler structure. This observation can be found for instance
in [FI55]. A remarkable piece of information here is that G is isomorphic to the exceptional
Lie group G2. We shall dedicate Section 2.1 to the G2 geometry we will be interested in.

The six-sphere does not come along alone. Gray and Wolf [GW68] found other com-
plete and simply connected homogeneous examples in dimension six: the flag manifold
F1,2(C

3) = SU(3)/T2, the complex projective space CP3 = Sp(2)/Sp(1)U(1), and the
product of three-spheres S3 × S3 = SU(2)3/SU(2)∆—here SU(2)∆ denotes the diagonal
subgroup in SU(2)3, namely that subgroup whose elements are triples (g, g, g), with g
in SU(2). Much later, in 2005, Butruille [But05] proved that these four examples give a
complete classification of the homogeneous, compact nearly Kähler six-manifolds. Re-
cently, in 2017, Foscolo and Haskins [FH17] proved the existence of the first complete
inhomogeneous examples by showing there is at least one co-homogeneity one nearly
Kähler structure on S6 and one on S3 × S3. In these two cases the Lie group acting is
SU(2) × SU(2). For the time being, the spaces listed so far are the only compact, six-
dimensional nearly Kähler manifolds known.

The outstanding difficulty in finding more examples partly motivates our work. A first
observation is that the symmetry groups of the four homogeneous spaces above and the
two co-homogeneity one cases studied by Foscolo and Haskins have rank at least two
(the case SU(2)3 has in fact rank three). This is why we will work with nearly Kähler
six-manifolds admitting a two-torus symmetry. The theory will be developed in Chapter 4
and represents the core of the manuscript. The aim is to lay down the foundations of a
path to find new examples with weaker symmetry.

In order to emphasise why we focus on dimension six we shall give more geometric
insights. In 2002, Nagy [Nag02] provided a structure theory for general complete nearly
Kähler manifolds, showing they are built from homogeneous examples (classified in
[DC12]), twistor spaces of positive quaternionic Kähler manifolds, and six-dimensional
strict nearly Kähler manifolds. Thus, in principle dimension six is essential for a better
understanding of the whole theory of nearly Kähler spaces.

There is also a link with spin geometry: Friedrich and Grunewald [FG85] showed that
a six-dimensional Riemannian manifold admits a Riemannian Killing spinor if and only if
it is nearly Kähler.

Moreover, in dimension six nearly Kähler manifolds are Einstein: Gray made a massive
use of curvature identities to give a proof of this fact [Gra76, Theorem 5.2]. There are
however more recent arguments based on connections with G2 geometry [Bry87] and
representation theory [CS04] with a more geometric and less analytic flavour. In the
former work, Bryant mentions that a common feature of the Riemannian manifolds
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with holonomy G2 (and Spin(7)) he found is that they are cones on lower dimensional
manifolds, whence one can see the link with nearly Kähler geometry: if we consider
the Riemannian cone over a six-dimensional nearly Kähler manifold M, i.e. C(M) =
(R+ ×M, gC = dt�2 + t2g), and assume the holonomy of the cone be in G2, then C(M)
is Ricci-flat and the manifold (M, g) is Einstein, with Ricg = 5g (up to renormalising the
metric). It follows that the scalar curvature of M is positive. Bryant describes how to
construct a metric with holonomy G2 on the cone over the flag manifold SU(3)/T2: he
showed that there exist a two-form σ and a complex three-form ψC satisfying

dσ = 3ReψC, dψC = −2iσ ∧ σ, (1.1)

and that on the cone we can construct a parallel G2-structure defined by

ϕ := t2dt ∧ σ + t3ReψC, ψ := 1
2 t4σ ∧ σ− t3dt ∧ ImψC.

By a direct calculation one proves that ψ is ∗ϕ, where ∗ denotes the Hodge star operator
acting on differential forms defined on the seven-dimensional cone. Fernández and
Gray [FG82] proved that the condition ϕ be parallel, namely that the holonomy of gC
reduces to G2, is equivalent to the closedness of ϕ and ∗ϕ, hence ϕ is harmonic. We
then say that the G2-structure is torsion-free. It is readily checked that dϕ = 0 = d∗ϕ
give equations (1.1). But as we will see in Section 1.5, an SU(3)-structure (σ, ψC) on M is
nearly Kähler exactly when equations (1.1) hold, so M is nearly Kähler if and only if the
Riemannian cone over it has holonomy in G2.

Indeed, a special feature of dimension six is an equivalence between Definition 1.1.1
and a pair of partial differential equations as in (1.1), which appears for example in
[Car93, Theorem 4.9], and will be discussed in Section 1.5: the main statement is that a
six-dimensional almost Hermitian manifold (M, g, J) is nearly Kähler if and only if there
exists a complex three-form ψC = ψ+ + iψ− of type (3, 0) such that

dσ = 3ψ+, dψ− = −2σ ∧ σ, (1.2)

where σ is the fundamental two-form g(J · , · ), and the identities hold up to homothety.
Hence, a nearly Kähler six-manifold will be a Riemannian manifold with an SU(3)-
structure (σ, ψC) satisfying equations (1.2). A digression on how these equations encode
information about the torsion of a connection adapted to the SU(3)-structure in question
will follow at the end of Section 1.5. The advantage of this formulation of the original
definition is that it is often easier to check, we will see some examples in Chapter 2.

As regards the topology, here are some useful properties. Myers’ theorem implies that
a complete, connected nearly Kähler six-manifold is compact with finite fundamental
group. Its universal cover is also a complete nearly Kähler manifold. This is why we
focus on the connected, simply connected case. The importance of these facts will be
particularly evident in Section 6.3, when we discuss topological aspects.

We shall now start investigating first, simple consequences of the skew-symmetry of
∇J on an almost Hermitian manifold, heading quickly to the six dimensional case.

1.2 Symmetries

Let us consider an almost complex manifold (M, J), namely J is an endomorphism of each
tangent space such that J2 = − Id at each point. If M admits a Riemannian metric g and J
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is an orthogonal transformation with respect to g, then (M, g, J) is called almost Hermitian
manifold. From these data one can construct a two-form σ := g(J · , · ), commonly called
fundamental two-form, which results from lowering the upper index of J. Denote by ∇ the
Levi-Civita connection on (M, g, J). We assume M to be nearly Kähler as in Definition 1.1.1
throughout.

Lemma 1.2.1. For each triple U, V, Z of vector fields on M we have

∇σ(U, V, Z) = g((∇U J)V, Z). (1.3)

Further, we can move J across all the entries of ∇σ:

∇σ(JU, V, Z) = ∇σ(U, JV, Z) = ∇σ(U, V, JZ). (1.4)

Proof. Recall that J is g-orthogonal and the connection is metric, namely∇g = 0. For each
triple U, V, Z of vector fields one has

∇σ(U, V, Z) = U(g(JV, Z))− g(J∇UV, Z)− g(JV,∇UZ)
= g(∇U JV, Z)− g(J∇UV, Z)
= g((∇U J)V, Z).

The second statement is then readily checked: since 0 = (∇J2) = (∇J)J + J(∇J), J and
∇J anti-commute, so (∇JX J)Y = −(∇Y J)JX = J(∇Y J)X = −J(∇X J)Y. Therefore

∇σ(JX, Y, Z) = g((∇JX J)Y, Z) = −g(J(∇X J)Y, Z).

But J is orthogonal, thus the latter equals ∇σ(X, Y, JZ). On the other hand J and ∇J
anti-commute, so −g(J(∇X J)Y, Z) coincides with ∇σ(X, JY, Z) as well.

Equation (1.3) tells us that ∇σ is skew-symmetric and that ∇U J is skew-adjoint. We
now prove a well-known fact recalled in the previous section to motivate our interest in
dimension six.

Proposition 1.2.2 ([Gra69]). Nearly Kähler manifolds in dimension two and four are Kähler.

Proof. If M is nearly Kähler and has dimension four, on each open subset of M we can
consider an orthonormal frame {X, JX, Y, JY}. Our claim is that ∇J = 0. Since ∇σ is
skew-symmetric

g((∇X J)Y, X) = g((∇X J)Y, Y) = 0.

Moreover, ∇J anti-commutes with J. Projecting (∇X J)Y onto JX, JY we obtain

g((∇X J)Y, JX) = −g((∇X J)JX, Y) = g(J(∇X J)X, Y) = 0,
g((∇X J)Y, JY) = g(J(∇X J)Y, Y) = −g((∇X J)Y, JY) = 0.

This proves (∇X J)Y = 0 for all X, Y, which means ∇J = 0, and M is Kähler.
In the two-dimensional case, our orthonormal local frame is given by {X, JX}. But

then (∇X J)JX = −J(∇X J)X = 0, which proves the claim.

Remark 1.2.3. We have thus seen that ∇σ is a three-form and that (∇X J)Y is orthogonal
to X, Y, JX, JY. Conversely, if we assume ∇σ to be skew-symmetric, then ∇σ(X, X, Y) =
g((∇X J)X, Y) = 0 for every Y, and by non-degeneracy of the metric M is nearly Kähler.
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Remark 1.2.4. When M is six-dimensional, the Hodge star operator ∗ gives an automor-
phism of Λ3T∗M and yields a three-form ∗∇σ. Then ∇σ + i∗∇σ is a complex three-form
on M. We will come back to this point in the end of Section 1.5 (cf. Remark 1.5.6).

Remark 1.2.5. From a more abstract point of view, equation (1.3) tells us ∇σ measures the
failure of M to be Kähler in every dimension. More precisely, the symmetries of ∇σ on
any almost Hermitian manifold determine sixteen classes of almost Hermitian geometries,
as was shown by Gray and Hervella [GH80, Theorem 2.1].

For the rest of this section we assume M has dimension six. Let us introduce some ideas
and notations from [Sal89]. The main intention here is to provide a unifying language to
describe the symmetries of useful tensors, in view of Remark 1.2.5.

Recall the identity of Lie groups

U(n) = SO(2n) ∩GL(n, C). (1.5)

In real dimension six this tells us U(3) is the stabiliser in GL(6, R) of an inner product g0
and an (almost) complex structure J0 on a copy of R6. At the level of Lie algebras, this
identity implies in particular that elements of u(3) commute with J0. We shall always
think of U(3) as a subgroup of SO(6).

At each point of M there is a representation of U(3) on the tangent space inducing the
structure of U(3)-module on the complexified vector space of k-forms, which we denote
simply by Λk � C. Note that every orthogonal matrix coincides with the transpose of its
inverse, so the representations ΛkT∗p M and ΛkTp M of U(3) ⊂ SO(6) are equivalent and
one loses no information in identifying k-forms and k-vectors. This explains our choice of
the symbol Λk for the space of real k-forms and will allow us to identify U(3)-modules
and their duals in other circumstances. There is an isomorphism of vector spaces

Λk � C =
⊕

p+q=k

Λp(Λ1,0)� Λq(Λ0,1),

and by definition Λp,q := Λp(Λ1,0)� Λq(Λ0,1) is the space of complex differential forms
of type (p, q). Each Λp,q is a U(3)-invariant complex module because unitary matrices
commute with the almost complex structure J.

For p 6= q we denote by [[Λp,q]] the real vector space underlying Λp,q, whose complex-
ification is [[Λp,q]]� C = Λp,q � Λp,q = Λp,q � Λq,p. For p = q, [Λp,p] is the space of type
(p, p)-forms α such that α = α, hence [Λp,p]� C = Λp,p. Therefore, we have isomorphisms
of U(3)-modules such as

Λ1 = [[Λ1,0]], Λ2 = [[Λ2,0]]� [Λ1,1], Λ3 = [[Λ3,0]]� [[Λ2,1]], etc.

Each real form of type (p, q) + (q, p) satisfies a specific relation with J. To show this,
we specialise for a moment to the case k = 2, taking the opportunity to describe a well-
known decomposition of Λ2. The same idea is exploited in the case k = 3 for a better
understanding of the symmetries of ∇σ.

At every point of M, the metric g yields a canonical isomorphism so(6) = Λ2, which
is obtained by mapping each A in so(6) to the two-form g(A · , · ). Viewing so(6) as
the adjoint representation of SO(6) ⊃ U(3), we have actually got an isomorphism of
U(3)-modules: for A ∈ so(6) and B ∈ U(3), the action of B on two-forms gives

Bg(A · , · ) = g(AB−1 · , B−1 · ) = g(BAB−1 · , · ),
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so the map A 7→ g(A · , · ) is U(3)-equivariant and our claim follows.
The correspondence just found conceals interesting relations with J. Consider the

splitting so(6) = u(3) � u(3)⊥, where u(3)⊥ is the orthogonal complement of u(3) as a
subspace of so(6). Bearing in mind the isomorphisms so(6) = Λ2 = [[Λ2,0]]� [Λ1,1], any
endomorphism A in u(3) corresponds to a two-form α such that α(JX, JY) = α(X, Y): in
fact, since A commutes with J and J is g-orthogonal

α(JX, JY) = g(AJX, JY) = g(JAX, JY) = g(AX, Y) = α(X, Y). (1.6)

On the other hand, a two-form β in [Λ1,1] is defined so as to vanish on pairs of complex
vectors of the same type, namely β(X − i JX, Y − i JY) = 0. Thus β(JX, JY) = β(X, Y),
and by counting dimensions the following splittings are equivalent:

so(6) = u(3)� u(3)⊥, Λ2 = [Λ1,1]� [[Λ2,0]]. (1.7)

We have already encountered a two-form enjoying the property of elements in [Λ1,1], that
is the fundamental two-form σ. Identity (1.6) is readily checked:

σ(JX, JY) = −g(X, JY) = g(JX, Y) = σ(X, Y).

Since σ is U(3)-invariant by definition, there is a decomposition [Λ1,1] = [Λ1,1
0 ]� R, where

[Λ1,1
0 ] is defined as the orthogonal complement of the image of ∧ σ : R→ [Λ1,1] mapping a

real number r to r∧ σ = rσ. We thus have a first decomposition of Λ2 in U(3)-submodules

Λ2 = [[Λ2,0]]� [Λ1,1
0 ]� R,

and [Λ1,1
0 ] cannot be decomposed further (cf. [FFS94]).

In this way elements of [Λ1,1] can be seen as eigenvectors of J with eigenvalue +1.
Likewise, elements of [[Λ2,0]] are eigenvectors of J with eigenvalue −1: β in [[Λ2,0]] satisfies
β(X− i JX, Y + i JY) = 0, which gives β(X, Y) + β(JX, JY) = 0.

Identity (1.4) implies

∇σ(U, JV, JZ) = ∇σ(U, V, J2Z) = −∇σ(U, V, Z). (1.8)

which we may then rephrase by saying ∇σ sits inside Λ1 � [[Λ2,0]]. Furthermore, since
M is nearly Kähler, ∇σ actually takes values in [[Λ3,0]]: recall that ∇σ is skew-symmetric,
so (1.8) implies

∇σ(U, V, Z) = ∇σ(JU, JV, Z)−∇σ(U, JV, JZ)−∇σ(JU, V, JZ).

On the other hand this is the property characterising elements of [[Λ3,0]]: if β ∈ [[Λ3,0]] then
β(X− i JX, Y− i JY, Z + i JZ) = 0, that is

β(X, Y, Z) = β(JX, JY, Z)− β(X, JY, JZ)− β(JX, Y, JZ).

Hence ∇σ ∈ [[Λ3,0]].
A last observation is motivated by Remark 1.2.3. Since ∇σ is a three-form, it is then

natural to ask whether there is a relation between dσ and ∇σ. This is readily worked out,
as dσ = A∇σ, where (A∇σ)(X, Y, Z) = SX,Y,Z∇σ(X, Y, Z), and ∇σ skew-symmetric
implies dσ = 3∇σ. Conversely, if dσ = 3∇σ, then 0 = dσ(X, X, Y) = 3∇σ(X, X, Y) =
3g((∇X J)X, Y), so M is nearly Kähler by non-degeneracy of g. We summarise the obser-
vations done so far in



1.3. Curvature 7

Proposition 1.2.6. Assume (M, g, J) is an almost Hermitian six-manifold and let σ = g(J · , · )
be the fundamental two-form. Then the following are equivalent:

1. M is nearly Kähler.

2. ∇σ ∈ [[Λ3,0]].

3. dσ = 3∇σ.

1.3 Curvature

As recalled in Remark 1.2.3, (∇X J)Y is orthogonal to X, JX, Y, JY. On the other hand, ∇J
does not vanish identically, otherwise M would be Kähler. At each point the tangent space
then splits as the orthogonal direct sum of three J-invariant planes

〈X, JX〉� 〈Y, JY〉� 〈(∇X J)Y, J(∇X J)Y〉,

where angular brackets denote the real vector space spanned by a pair of vectors and Y is
orthogonal to the span of X and JX. We now prove a formula giving an explicit way to
calculate the norm of (∇X J)Y.

Lemma 1.3.1. There exists a non-negative function µ on M such that

‖(∇X J)Y‖2 = µ2(‖X‖2‖Y‖2 − g(X, Y)2 − σ(X, Y)2) (1.9)

for every pair of vector fields X, Y on M.

Proof. We define µ in terms of a local frame, then we extend it to a global function declaring
it has to satisfy (1.9).

Given X and Y in a neighbourhood of a point there exists an orthonormal frame
{Ei, JEi}, i = 1, 2, 3, such that X = aE1 and Y = bE1 + cJE1 + dE2 for local functions
a, b, c, d. We assume d 6= 0 in order to avoid the trivial case (∇X J)Y = 0.

Define µ so that (∇E1 J)E2 =: µE3. We may assume µ non-negative up to chang-
ing the orientation of the basis. Then (∇X J)Y = a(∇E1 J)dE2 = adµE3, which implies
‖(∇X J)Y‖2 = a2d2µ2. On the other hand, ‖X‖2‖Y‖2 = a2(b2 + c2 + d2), g(X, Y)2 = a2b2,
and σ(X, Y)2 = a2c2. So µ2(‖X‖2‖Y‖2 − g(X, Y)2 − σ(X, Y)2) = a2d2µ2, and the formula
is proved locally.

We can finally extend µ to a global function imposing that (1.9) be satisfied for all pairs
of vector fields X, Y on M.

The function µ cannot vanish identically because M is nearly Kähler. We shall now
study how µ is related to the Riemannian and the Ricci curvature tensors on M, and
finally prove that µ is locally constant—hence constant because M is connected. A first
step in this direction is to consider second order covariant derivatives of σ and study
their symmetries. We follow [Gra76] and [Mor14] for this part, working in general even
dimension 2n when there is no need to restrict to the six-dimensional case.

Lemma 1.3.2. Let R ∈ Λ2 � so(2n) be the type (3, 1) Riemannian curvature tensor of the Levi-
Civita connection on M, given by R(X, Y)Z := ∇X∇YZ−∇Y∇XZ−∇[X,Y]Z. The following
identities hold for every quadruple of vector fields W, X, Y, Z in X(M):
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1. ∇2σ(W, X, Y, Z)−∇2σ(X, W, Y, Z) = σ(R(X, W)Y, Z) + σ(Y, R(X, W)Z).

2. ∇2σ(X, X, JY, Y) = ‖(∇X J)Y‖2.

Proof. To prove the first formula we start by expanding the first term:

∇2σ(W, X, Y, Z) = W(∇σ(X, Y, Z))−∇σ(∇W X, Y, Z)
−∇σ(X,∇WY, Z)−∇σ(X, Y,∇W Z)

= g(∇W((∇X J)Y), Z) + g((∇X J)Y,∇W Z)− g((∇∇W X J)Y, Z)
− g((∇X J)∇WY, Z)− g((∇X J)Y,∇W Z)

= g((∇W(∇X J))Y, Z)− g((∇∇W X J)Y, Z).

As an element of so(2n), R(W, X) is a skew-adjoint derivation. We can then rewrite the
difference ∇2σ(W, X, Y, Z)−∇2σ(X, W, Y, Z) as

g(([∇W ,∇X]J −∇[W,X] J)Y, Z) = g((R(W, X)J)Y, Z)

= g(R(W, X)JY, Z)− g(JR(W, X)Y, Z)
= −g(JY, R(W, X)Z)− g(JR(W, X)Y, Z)
= σ(Y, R(X, W)Z) + σ(R(X, W)Y, Z).

In order to prove the second formula we make use of (1.4):

∇2σ(X, X, JY, Y) = X(∇σ(X, JY, Y))−∇σ(∇XX, JY, Y)
−∇σ(X,∇X JY, Y)−∇σ(X, JY,∇XY)

= X(∇σ(JX, Y, Y))−∇σ(J∇XX, Y, Y)
− g((∇X J)∇X JY, Y)− g((∇X J)JY,∇XY)

= g(∇X JY, (∇X J)Y)− g((∇X J)JY,∇XY)
= g((∇X J)Y, (∇X J)Y) + g(J∇XY, (∇X J)Y)− g((∇X J)JY,∇XY)

= ‖(∇X J)Y‖2,

and the statement is proved.

Remark 1.3.3. In the next corollary we denote the Riemannian curvature tensors of type
(3, 1) and (4, 0) by the same letter. We shall keep doing that in the rest of this work, the
type will be clear from the context.

Corollary 1.3.4. Let R ∈ Sym2(Λ2) be the type (4, 0) Riemannian curvature tensor obtained by
contraction with the metric: R(W, X, Y, Z) := g(R(W, X)Y, Z). Then

‖(∇X J)Y‖2 = R(X, Y, JX, JY)− R(X, Y, X, Y), X, Y ∈ X(M). (1.10)

Proof. Since ∇σ is a three-form, ∇2σ(A, B, B, C) = 0. We can then combine the results
found in Lemma 1.3.2 to get

‖(∇X J)Y‖2 = ‖(∇X J)JY‖2 = −∇2σ(X, X, Y, JY)

= ∇2σ(X, Y, X, JY)−∇2σ(Y, X, X, JY)
= σ(R(Y, X)X, JY) + σ(X, R(Y, X)JY)
= g(R(Y, X)X, Y)− g(R(Y, X)JX, JY)
= R(X, Y, JX, JY)− R(X, Y, X, Y),

which was our claim.
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Formula (1.10) gives a way to calculate the norm of (∇X J)Y—hence the function µ
in (1.9)—in terms of the curvature tensor. A consequence of it is that R is invariant under
the action of J. To see this, define the tensor S(W, X, Y, Z) := R(JW, JX, JY, JZ). Of course
S inherites the properties of algebraic curvature tensors, namely S ∈ Λ2 � Λ2 and satisfies
the first Bianchi identity

S(W, X, Y, Z) + S(X, Y, W, Z) + S(Y, W, X, Z) = 0.

To show R = S we can check R(X, Y, Y, X) = S(X, Y, Y, X). A straightforward calculation
proves the claim:

R(JX, JY, JY, JX)− R(X, Y, Y, X) = R(JX, JY, JY, JX)− R(X, Y, JY, JX)

+ R(X, Y, JY, JX)− R(X, Y, Y, X)

= ‖(∇JX J)JY‖2 − ‖(∇X J)Y‖2 = 0.

The identity just obtained allows us to carry out a polarisation process giving a way to
measure inner products of vectors of the form (∇X J)Y in terms of the curvature.

Lemma 1.3.5. For every quadruple of vector fields W, X, Y, Z we have the formula

g((∇W J)X, (∇Y J)Z) = R(W, X, JY, JZ)− R(W, X, Y, Z). (1.11)

Proof. Mapping X 7→ A + B in formula (1.10) one has

‖(∇A+B J)Y‖2 = R(A + B, Y, JA + JB, JY)− R(A + B, Y, A + B, Y)
= R(A, Y, JA, JY)− R(A, Y, A, Y)

+ R(B, Y, JB, JY)− R(B, Y, B, Y)
+ R(A, Y, JB, JY)− R(A, Y, B, Y)
+ R(B, Y, JA, JY)− R(B, Y, A, Y).

The left hand side is

‖(∇A+B J)Y‖2 = ‖(∇A J)Y‖2 + ‖(∇B J)Y‖2 + 2g((∇A J)Y, (∇B J)Y),

so applying once again (1.10) we find

2g((∇A J)Y, (∇B J)Y) = R(A, Y, JB, JY)− R(A, Y, B, Y)
+ R(B, Y, JA, JY)− R(B, Y, A, Y).

Putting now Y 7→ C + D, we expand 2g((∇A J)(C + D), (∇B J)(C + D)) and obtain the
expression

R(A, C, JB, JC)− R(A, C, B, C) + R(A, C, JB, JD)− R(A, C, B, D)

+ R(A, D, JB, JC)− R(A, D, B, C) + R(A, D, JB, JD)− R(A, D, B, D)

+ R(B, C, JA, JC)− R(B, C, A, C) + R(B, C, JA, JD)− R(B, C, A, D)

+ R(B, D, JA, JC)− R(B, D, A, C) + R(B, D, JA, JD)− R(B, D, A, D).

Linearity in the various arguments implies

2g((∇A J)(C + D), (∇B J)(C + D))

= 2
(

g((∇A J)C, (∇B J)C) + g((∇A J)C, (∇B J)D)

+ g((∇A J)D, (∇B J)C) + g((∇A J)D, (∇B J)D)
)
.
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Simplifying we are left with

g((∇A J)C, (∇B J)D) + g((∇A J)D, (∇B J)C)
= R(A, C, JB, JD)− R(A, C, B, D)

+ R(A, D, JB, JC)− R(A, D, B, C). (1.12)

Set L(A, B, C, D) := R(A, B, C, D) + R(A, D, C, B). The first Bianchi identity, together
with (1.12), gives

0 = R(A, B, C, D) + R(B, C, A, D) + R(C, A, B, D)

= R(A, B, C, D)− R(C, B, A, D) +
(

L(C, A, B, D)− R(C, D, B, A)
)

= R(A, B, C, D) +
(

L(C, A, B, D) + R(A, B, C, D)
)

−
(

L(C, B, A, D)− R(C, D, A, B)
)

= 3R(A, B, C, D) + L(C, A, B, D)− L(C, B, A, D)

= 3R(A, B, C, D) +
(

R(C, A, B, D) + R(C, D, B, A)
)

−
(

R(C, B, A, D) + R(C, D, A, B)
)

= 3R(A, B, C, D)− 2R(C, D, JA, JB)
+ R(C, A, JB, JD)− R(C, B, JA, JD)

+ 2g((∇C J)D, (∇A J)B)− g((∇C J)A, (∇B J)D) + g((∇C J)B, (∇A J)D). (1.13)

Now we set C 7→ JC, D 7→ JD:

0 = 3R(A, B, JC, JD)− 2R(JC, JD, JA, JB)− R(JC, A, JB, D) + R(JC, B, JA, D)

+ 2g((∇JC J)JD, (∇A J)B)− g((∇JC J)A, (∇B J)JD) + g((∇JC J)B, (∇A J)JD).

Using that R is J-invariant, the difference between the latter and (1.13) becomes

0 = 3R(A, B, JC, JD)− 2R(JC, JD, JA, JB)− R(JC, A, JB, D) + R(JC, B, JA, D)

+ 2g((∇JC J)JD, (∇A J)B)− g((∇JC J)A, (∇B J)JD) + g((∇JC J)B, (∇A J)JD)

− 3R(A, B, C, D) + 2R(C, D, JA, JB)− R(C, A, JB, JD) + R(C, B, JA, JD)

− 2g((∇C J)D, (∇A J)B) + g((∇C J)A, (∇B J)D)− g((∇C J)B, (∇A J)D)

= 5R(A, B, JC, JD)− 5R(A, B, C, D)− R(A, C, JD, JB)− R(A, JC, D, JB)
− R(A, D, JB, JC)− R(A, JD, JB, C)− 4g((∇A J)B, (∇C J)D).

Applying the first Bianchi identity once again we have

4g((∇A J)B, (∇C J)D) = 5R(A, B, JC, JD)− 5R(A, B, C, D)

+ R(A, JB, C, JD) + R(A, JB, JC, D). (1.14)

Now map B 7→ JB, C 7→ JC and add a fifth of the result to (1.14):
24
5 g((∇A J)JB, (∇JC J)D) = −R(A, JB, C, JD)− R(A, JB, JC, D)

− 1
5 R(A, B, JC, JD) + 1

5 R(A, B, C, D)

+ 5R(A, B, JC, JD)− 5R(A, B, C, D)

+ R(A, JB, C, JD) + R(A, JB, JC, D)

= 24
5 R(A, B, JC, JD)− 24

5 R(A, B, C, D).

Since g((∇A J)JB, (∇JC J)D) = g((∇A J)B, (∇C J)D) we are done.
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Lemma 1.3.6. Let W, X, Y, Z ∈ X(M). The following formula holds:

2∇2σ(W, X, Y, Z) = − S
X,Y,Z

g((∇W J)X, (∇Y J)JZ). (1.15)

Proof. Combine the first formula in Lemma 1.3.2 and identity (1.11):

∇2σ(W, X, Y, Z)−∇2σ(X, W, Y, Z) = g(JR(X, W)Y, Z) + g(JY, R(X, W)Z)
= g(JR(X, W)Y, Z)− g(R(X, W)JY, Z)

= g((R(X, W)J)Y, J2Z)

= R(X, W, JY, J2Z)− R(X, W, Y, JZ)
= g((∇X J)W, (∇Y J)JZ). (1.16)

On the other hand

∇2σ(W, W, Y, Z) = −∇2σ(W, Y, W, Z)

= ∇2σ(Y, W, W, Z)−∇2σ(W, Y, W, Z)
= g((∇W J)Y, (∇W J)JZ).

Polarising the latter, one obtains

∇2σ(W + X, W + X, Y, Z) = ∇2σ(W, W, Y, Z) +∇2σ(W, X, Y, Z)

+∇2σ(X, W, Y, Z) +∇2σ(X, X, Y, Z)
= g((∇W J)Y, (∇W J)JZ) + g((∇X J)Y, (∇X J)JZ)

+∇2σ(W, X, Y, Z) +∇2σ(X, W, Y, Z),

whence

∇2σ(W, X, Y, Z) +∇2σ(X, W, Y, Z)
= −g((∇W J)Y, (∇W J)JZ)− g((∇X J)Y, (∇X J)JZ)

+ g((∇W+X J)Y, (∇W+X J)JZ)
= g((∇W J)Y, (∇X J)JZ) + g((∇X J)Y, (∇W J)JZ). (1.17)

Adding (1.16) to (1.17) and using usual symmetries of ∇J the claim follows.

The results got so far are technical, but rather explicit. Our need to be so concrete
and maybe pedantic partly stems from a lack of details in the literature. For instance,
the proof of Lemma 1.3.5 by Gray (cf. [Gra70, Proposition 2.1]) glosses over a number
of intermediate steps, making partial results not completely clear at a first reading. A
second issue, which we claim to solve here, is proving explicitly that µ is constant: this
was done in the first place by Gray, showing that nearly Kähler six-manifolds are Einstein
[Gra76, Theorem 5.2]. However, proving directly the constancy of µ is perhaps easier,
so we pursue this point of view here. In this last part we follow and fill in the results of
Morris [Mor14, Section 4.2]. What is more, a note on the fact that µ is constant is given by
Carrión in a remark right after Lemma 4.8 [Car93], but there seems to be no direct proof.
One of the purposes of these first sections is in effect to provide a comprehensive and
detailed summary of well-known results appearing in the literature.

It is high time now to define the Ricci and the Ricci-∗ endomorphisms. Hereafter
we still assume the dimension of M be even, not necessarily six. We go back to the
six-dimensional case in Proposition 1.3.9, where we prove that µ is constant on M.
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Definition 1.3.7. Given any local, orthonormal frame E1, . . . , E2n we define the Ricci and
the Ricci-∗ endomorphisms Ric, Ric∗ ∈ TM � TM by

g(RicX, Y) :=
2n

∑
i=1

R(X, Ei, Ei, Y), g(Ric∗X, Y) :=
2n

∑
i=1

R(X, Ei, JEi, JY).

Because of (1.11) we can write their difference as

g((Ric− Ric∗)X, Y) =
2n

∑
i=1

g((∇X J)Ei, (∇Y J)Ei). (1.18)

Obviously Ric− Ric∗ is self-adjoint, and so is its covariant derivative: for any self-adjoint
operator A we have in fact

g((∇Z A)X, Y) = g(∇Z AX, Y)− g(A∇ZX, Y)
= Z(g(AX, Y))− g(∇ZX, AY)− g(AX,∇ZY)
= Z(g(X, AY))− g(∇ZX, AY)− g(X, A∇ZY)
= g(X,∇Z AY)− g(X, A∇ZY) = g(X, (∇Z A)Y).

Moreover, Ric− Ric∗ and J commute: put now A := Ric− Ric∗, so that

g(JAX, Y) = −g(AX, JY) = −∑
i

g((∇X J)Ei, (∇JY J)Ei)

= −∑
i

g(J(∇X J)Ei, (∇Y J)Ei) = ∑
i

g((∇JX J)Ei, (∇Y J)Ei) = g(AJX, Y).

We can then prove a last useful result.

Lemma 1.3.8. For X, Y, Z ∈ X(M) we have the following formula:

2g((∇Z(Ric− Ric∗))X, Y) = g((Ric− Ric∗)JX, (∇Z J)Y)
+ g((Ric− Ric∗)JY, (∇Z J)X). (1.19)

Proof. Start differentiating (1.18) with X = Y, still with A := Ric− Ric∗:

g((∇Z A)X, X) + 2g(AX,∇ZX) = Z(g(AX, X))

= 2
2n

∑
i=1

g(∇Z((∇X J)Ei), (∇X J)Ei).

Rearranging the terms

g((∇Z A)X, X) = 2
2n

∑
i=1

g(∇Z((∇X J)Ei), (∇X J)Ei)− g((∇X J)Ei, (∇∇ZX J)Ei). (1.20)

Note that ∑2n
i=1 g((∇X J)∇ZEi, (∇X J)Ei) = 0: setting ∇ZEi = ∑2n

j=1 Bj
i Ej we have 0 =

Z(g(Ei, Ej)) = g(∇ZEi, Ej) + g(Ei,∇ZEj) = ∑k Bk
i δkj + ∑r Br

j δir = Bj
i + Bi

j. Thus

2n

∑
i=1

g((∇X J)∇ZEi, (∇X J)Ei) =
2n

∑
i,j=1

g((∇X J)Bj
i Ej, (∇X J)Ei)

= −
2n

∑
i,j=1

g((∇X J)Ej, (∇X J)Bi
jEi)

= −
2n

∑
j=1

g((∇X J)Ej, (∇X J)∇ZEj) = 0.
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This last term appears in the expansion of ∇2σ(Z, X, (∇X J)Ei, Ei) as well. Simplifying we
get

∇2σ(Z, X, (∇X J)Ei, Ei) = −Z(g((∇X J)Ei, (∇X J)Ei))− g((∇∇ZX J)(∇X J)Ei, Ei)

− g((∇X J)∇Z((∇X J)Ei), Ei)− g((∇X J)(∇X J)Ei,∇ZEi)

= −2g(∇Z((∇X J)Ei), (∇X J)Ei) + g((∇X J)Ei, (∇∇ZX J)Ei)

+ g(∇Z((∇X J)Ei), (∇X J)Ei)− g((∇X J)(∇X J)Ei,∇ZEi)

= g((∇X J)Ei, (∇∇ZX J)Ei)− g((∇Z(∇X J))Ei, (∇X J)Ei)

+ g((∇X J)Ei, (∇X J)∇ZEi).

Therefore, by formula (1.15), identity (1.20) becomes

g((∇Z(Ric− Ric∗))X, X)

= 2
2n

∑
i=1

g(∇Z((∇X J)Ei), (∇X J)Ei)− g((∇X J)Ei, (∇∇ZX J)Ei)

= −2
2n

∑
i=1
∇2σ(Z, X, (∇X J)Ei, Ei)

=
2n

∑
i=1

g((∇Z J)X, (∇(∇X J)Ei
J)JEi) + g((∇Z J)(∇X J)Ei, (∇Ei J)JX)

+ g((∇Z J)Ei, (∇X J)J(∇X J)Ei)

=
2n

∑
i=1

g((∇Ei J)(∇Z J)X, J(∇X J)Ei) + g((∇Z J)(∇X J)Ei, J(∇X J)Ei)

+ g((∇X J)(∇Z J)Ei, (∇X J)JEi).

The second term in the latter sum is readily seen to vanish, because of (1.4). The sum
∑i g((∇X J)(∇Z J)Ei, (∇X J)JEi) vanishes as well. To see this, we set A := J(∇Z J). In the
first place A lies in so(2n), because

g(J(∇Z J)Ei, Ej) = g((∇Z J)JEj, Ei) = −g(J(∇Z J)Ej, Ei).

Consequently, the following chain of identities leads to our claim:

2n

∑
i=1

g((∇X J)(∇Z J)Ei, (∇X J)JEi)

= −
2n

∑
i=1

g((∇X J)J(∇Z J)Ei, (∇X J)Ei)

= −
2n

∑
i,j=1

g((∇X J)Aj
i Ej, (∇X J)Ei)

=
2n

∑
i,j=1

g((∇X J)Ej, (∇X J)Ai
jEi) =

2n

∑
j=1

g((∇X J)J(∇Z J)Ej, (∇X J)Ej) = 0.
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We then go back to our first expansion recalling that Ric− Ric∗ commutes with J:

−2
2n

∑
i=1
∇2σ(Z, X, (∇X J)Ei, Ei) =

2n

∑
i=1

g((∇Ei J)(∇Z J)X, J(∇X J)Ei)

= −
2n

∑
i=1

g((∇J(∇Z J)X J)Ei, (∇X J)Ei)

= −g((Ric− Ric∗)J(∇Z J)X, X)

= g((Ric− Ric∗)JX, (∇Z J)X).

Thus g((∇Z(Ric− Ric∗))X, X) = g((Ric− Ric∗)JX, (∇Z J)X). By polarisation and the
symmetry of ∇Z(Ric− Ric∗) the result follows.

Let us restrict ourselves to the six-dimensional case now, so n = 3. Recall that in
Lemma 1.3.1 we proved the existence of a special function µ on M satisfying (1.9).

Proposition 1.3.9. If M is a connected nearly Kähler six-manifold, the function µ is constant.

Proof. We only prove µ is locally constant, then the claim follows from the connectedness
of M. Mapping X into A + B in (1.9) one has

g((∇A+B J)Y, (∇A+B J)Y) = µ2(‖A + B‖2‖Y‖2 − g(A + B, Y)2 − σ(A + B, Y)2),
which can be simplified as

g((∇A J)Y, (∇B J)Y) = µ2(g(A, B)‖Y‖2 − g(A, Y)g(B, Y)− g(JA, Y)g(JB, Y)
)
.

On the other hand

g((Ric− Ric∗)A, B) =
3

∑
i=1

g((∇A J)Ei, (∇B J)Ei) + g((∇A J)JEi, (∇B J)JEi)

= µ2(6g(A, B)− g(A, B)− g(JA, JB)
)
= 4µ2g(A, B).

Thus Ric− Ric∗ = 4µ2 Id, but now formula (1.19) implies

2g((∇Z(Ric− Ric∗))X, Y) = g((Ric− Ric∗)JX, (∇Z J)Y) + g((Ric− Ric∗)JY, (∇Z J)X)

= 4µ2(g(JX, (∇Z J)Y) + g(JY, (∇Z J)X)
)
= 0.

This proves ∇Z(Ric− Ric∗) = 0 = 4Z(µ2) Id for every Z, hence µ is non-zero and locally
constant.

We have thus proved that on a connected nearly Kähler six-manifold there exists a
constant µ such that

‖(∇X J)Y‖2 = µ2(‖X‖2‖Y‖2 − g(X, Y)2 − σ(X, Y)2), X, Y ∈ X(M).

Using the terminology introduced by Gray [Gra70, Proposition 3.5] we say that connected
nearly Kähler six-manifolds have global constant type.
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1.4 The Einstein condition

The aim of this section is to push our calculations further in order to prove that nearly
Kähler six-manifolds are Einstein. We follow [Gra76] to do this. We first introduce a
connection adapted to the U(3)-structure (g, J). A quick computation of the torsion of J
will help us go smoothly towards it. We then work out some relevant symmetries satisfied
by the curvature tensor of the new connection. We conclude proving that Ricg = 5µ2g,
where Ricg is the Ricci curvature (2, 0)-tensor of the Levi-Civita connection and µ is
the function defined in (1.9). Since connected nearly Kähler six-manifolds have global
constant type, the Einstein condition will follow.

Let us now compute the Nijenhuis tensor of J, i.e. the type (2, 1)-tensor field N on M
defined by

4N(X, Y) := [X, Y]− [JX, JY] + J[JX, Y] + J[X, JY], X, Y ∈ X(M).

Proposition 1.4.1. If M is nearly Kähler then N(X, Y) = J(∇X J)Y, where X, Y ∈ X(M).

Proof. The key property we use here is that the Levi-Civita connection ∇ is torsion-free.
Since ∇J is skew-symmetric and anti-commutes with J, the following formulas for the
commutators hold:

[X, Y] = ∇XY−∇YX, [JX, JY] = −2J(∇X J)Y + J∇JXY− J∇JYX,
J[JX, Y] = J(∇JXY−∇Y JX), J[X, JY] = J(∇X JY−∇JYX).

A straightforward calculation gives

4N(X, Y) = ∇XY−∇YX + 2J(∇X J)Y + J∇X JY− J∇Y JX
= 2J(∇X J)Y + J(∇X J)Y− J(∇Y J)X
= 4J(∇X J)Y,

and we are done.

Note that Proposition 1.4.1 is valid for every 2n-dimensional nearly Kähler manifold.
We can then use it to construct a Hermitian connection, i.e. a connection preserving the
Riemannian metric and the almost complex structure: the difference ∇− 1

2 N defines a
covariant derivative ∇̂:

∇̂XY := ∇XY− 1
2 J(∇X J)Y, X, Y ∈ X(M).

Identity (1.5) implies that ∇̂ is a U(n)-connection—i.e. a connection on a subbundle of the
canonical frame bundle having structure group U(n)—if and only if g and J are parallel
with respect to it, namely ∇̂g = 0 and ∇̂J = 0. In fact, we have the following

Proposition 1.4.2. ∇̂ is a U(n)-connection.

Remark 1.4.3. In Proposition 1.5.7 below we prove that on nearly Kähler six-manifolds
∇̂ is actually an SU(3)-connection, first exhibiting a complex volume form ψC on M and
then proving it is ∇̂-parallel.
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Proof. We show ∇̂g = 0 and ∇̂σ = 0. These two identities imply ∇̂J = 0 because for
every X, Y ∈ X(M) one has

0 = ∇̂σ(X, Y, · ) = g((∇̂X J)Y, · ),

which gives the claim. Since ∇g = 0, ∇J anti-commutes with J and is skew-adjoint

∇̂g(X, Y, Z) = X(g(Y, Z))− g(∇̂XY, Z)− g(Y, ∇̂XZ)
= X(g(Y, Z))− g(∇XY, Z)− g(Y,∇XZ)

+ 1
2

(
g(J(∇X J)Y, Z) + g(Y, J(∇X J)Z)

)
= 1

2

(
g(Y, (∇X J)JZ))− g(Y, (∇X J)JZ)

)
= 0.

Finally we check ∇̂σ = 0:

∇̂σ(X, Y, Z) = X(σ(Y, Z))− σ(∇̂XY, Z)− σ(Y, ∇̂XZ)
= X(σ(Y, Z))− σ(∇XY, Z)− σ(Y,∇XZ)

+ 1
2

(
σ(J(∇X J)Y, Z) + σ(Y, J(∇X J)Z)

)
= ∇σ(X, Y, Z)− 1

2

(
g((∇X J)Y, Z)− g(Y, (∇X J)Z)

)
= ∇σ(X, Y, Z)− 1

2

(
∇σ(X, Y, Z) +∇σ(X, Y, Z)

)
= 0,

so the result follows.

Let us call R̂ the curvature tensor of ∇̂: R̂(W, X)Y := ∇̂W∇̂XY− ∇̂X∇̂WY− ∇̂[W,X]Y.
More explicitly:

∇̂W∇̂XY = ∇W
(
∇XY− 1

2 J(∇X J)Y
)
− 1

2 J(∇W J)
(
∇XY− 1

2 J(∇X J)Y
)

= ∇W∇XY− 1
2 (∇W J)(∇X J)Y− 1

2 J(∇W(∇X J))Y

− 1
2 J(∇X J)∇WY− 1

2 J(∇W J)∇XY + 1
4 (∇W J)(∇X J)Y

= ∇W∇XY− 1
4 (∇W J)(∇X J)Y− 1

2 J(∇W(∇X J))Y

− 1
2 J(∇X J)∇WY− 1

2 J(∇W J)∇XY.

Switching the roles of W and X one obviously has

∇̂X∇̂WY = ∇X∇WY− 1
4 (∇X J)(∇W J)Y− 1

2 J(∇X(∇W J))Y

− 1
2 J(∇W J)∇XY− 1

2 J(∇X J)∇WY,

and then the whole curvature tensor is

R̂(W, X)Y = ∇W∇XY− 1
4 (∇W J)(∇X J)Y− 1

2 J(∇W(∇X J))Y

− 1
2 J(∇X J)∇WY− 1

2 J(∇W J)∇XY

−∇X∇WY + 1
4 (∇X J)(∇W J)Y + 1

2 J(∇X(∇W J))Y

+ 1
2 J(∇W J)∇XY + 1

2 J(∇X J)∇WY

−∇[W,X]Y + 1
2 J(∇[W,X] J)Y

= R(W, X)Y + 1
4

(
(∇X J)(∇W J)Y− (∇W J)(∇X J)Y

)
− 1

2 J(R(W, X)JY− JR(W, X)Y).
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A contraction with the metric and identity (1.11) applied to the last term yield a type
(4, 0)-tensor field, which we still denote by R̂. Its expression is

R̂(W, X, Y, Z) = R(W, X, Y, Z) + 1
2 g((∇W J)X, (∇Y J)Z)

+ 1
4

(
g((∇X J)Y, (∇W J)Z)− g((∇W J)Y, (∇X J)Z)

)
. (1.21)

We can go a bit further rewriting every summand in terms of the curvature tensor R: by
formula (1.11) and the first Bianchi identity, equation (1.21) becomes

R̂(W, X, Y, Z) = R(W, X, Y, Z) + 1
2

(
R(W, X, JY, JZ)− R(W, X, Y, Z)

)
+ 1

4

(
R(X, Y, JW, JZ)− R(X, Y, W, Z)

)
− R(W, Y, JX, JZ) + R(W, Y, X, Z)

)
= 1

4

(
3R(W, X, Y, Z) + 2R(W, X, JY, JZ)

+ R(X, Y, JW, JZ)− R(W, Y, JX, JZ)
)
.

Recalling that R is J-invariant and lies in Sym2(Λ2) we obtain the final expression

R̂(W, X, Y, Z) = 1
4

(
3R(W, X, Y, Z) + 2R(W, X, JY, JZ)

+ R(W, Z, JX, JY) + R(W, Y, JZ, JX)
)
. (1.22)

One may use the latter equation to check whether R̂ satisfies the usual symmetries of
algebraic curvature tensors, but it turns out that the first Bianchi identity does not hold:
since R is J-invariant we calculate

R̂(W, X, Y, Z) + R̂(X, Y, W, Z) + R̂(Y, W, X, Z)

= 1
4

(
3R(W, X, Y, Z) + 3R(X, Y, W, Z) + 3R(Y, W, X, Z)

+ 2R(W, X, JY, JZ) + 2R(X, Y, JW, JZ) + 2R(Y, W, JX, JZ)
+ R(W, Z, JX, JY) + R(X, Z, JY, JW) + R(Y, Z, JW, JX)

+ R(W, Y, JZ, JX) + R(X, W, JZ, JY) + R(Y, X, JZ, JW)
)

= 1
4

(
3R(W, X, JY, JZ) + 3R(X, Y, JW, JZ) + 3R(Y, W, JX, JZ)

+ R(W, X, JY, JZ) + R(X, Y, JW, JZ) + R(Y, W, JX, JZ)
)

= S
W,X,Y

R(W, X, Y, Z) + g((∇W J)X, (∇Y J)Z) = S
W,X,Y

g((∇W J)X, (∇Y J)Z).

Nevertheless the remaining properties still hold true.

Lemma 1.4.4. The tensor R̂ lies in Λ2 � [Λ1,1].

Proof. Skew-symmetry in the first two arguments is straightforward by definition of R̂.
That R̂(W, X) ∈ [Λ1,1] is a consequence of Proposition 1.4.2:

R̂(W, X, JY, JZ) = g(∇̂W∇̂X JY, JZ)− g(∇̂X∇̂W JY, JZ)− g(∇̂[W,X] JY, JZ)

= g(J∇̂W∇̂XY, JZ)− g(J∇̂X∇̂WY, JZ)− g(J∇̂[W,X]Y, JZ)

= R̂(W, X, Y, Z).

In particular R̂ ∈ Λ2 � Λ2.
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Lemma 1.4.5. The tensor R̂ sits inside Sym2(Λ2), and thus ∇R̂ lies in Λ1 � Sym2(Λ2).

Proof. Lemma 1.4.4 implies that we only need to check R̂(W, X, Y, Z) = R̂(Y, Z, W, X).
We do this using (1.22) and applying J-invariance of R:

R̂(W, X, Y, Z) = 1
4

(
3R(W, X, Y, Z) + 2R(W, X, JY, JZ)

+ R(W, Z, JX, JY) + R(W, Y, JZ, JX)
)

= 1
4

(
3R(Y, Z, W, X) + 2R(Y, Z, JW, JX)

+ R(Y, X, JZ, JW) + R(Y, W, JX, JZ)
)
= R̂(Y, Z, W, X).

A straightforward calculation then yields

∇V R̂(W, X, Y, Z) = V(R̂(W, X, Y, Z))− R̂(∇VW, X, Y, Z)

− R̂(W,∇V X, Y, Z)− R̂(W, X,∇VY, Z)− R̂(W, X, Y,∇V Z)

= V(R̂(Y, Z, W, X))− R̂(∇VY, Z, W, X)

− R̂(Y,∇V Z, W, X)− R̂(Y, Z,∇VW, X)− R̂(Y, Z, W,∇V X)

= ∇V R̂(Y, Z, W, X),

which is the second part of the claim.

We now want more information about the exact expression of ∇R̂. Since the next
formulas will be rather cumbersome we sometimes avoid to write simple intermediate
steps. Also, we keep working on a nearly Kähler manifold of generic dimension 2n,
focussing on the six-dimensional case only at the end, after proving Proposition 1.4.7.
Incidentally, in the course of the proof of that result we will need an explicit formula for
the cyclic sum ∇V R̂(W, X, Y, Z) +∇W R̂(X, V, Y, Z) +∇X R̂(V, W, Y, Z), specifically the
case where V, W, X are elements of some local unitary frame. The goal now is to work out
this expression.

Let us start computing ∇V R̂(W, X, Y, Z). Differentiating (1.21) one gets

V(R̂(W, X, Y, Z)) = V(R(W, X, Y, Z)) + 1
4 g(∇V((∇X J)Y), (∇W J)Z)

+ 1
4 g((∇X J)Y,∇V((∇W J)Z))− 1

4 g(∇V((∇W J)Y), (∇X J)Z)

− 1
4 g((∇W J)Y,∇V((∇X J)Z)) + 1

2 g(∇V((∇W J)X), (∇Y J)Z)

+ 1
2 g((∇W J)X,∇V((∇Y J)Z)).

Expanding both sides and isolating ∇V R̂(W, X, Y, Z) on the left we have

∇V R̂(W, X, Y, Z)

= −R̂(∇VW, X, Y, Z)−R̂(W,∇V X, Y, Z)−R̂(W, X,∇VY, Z)−R̂(W, X, Y,∇V Z)
+ R(∇VW, X, Y, Z)+R(W,∇V X, Y, Z)+R(W, X,∇VY, Z)+R(W, X, Y,∇V Z)

+ 1
4

(
g((∇V(∇X J))Y + (∇X J)∇VY, (∇W J)Z)

+ g((∇X J)Y, (∇V(∇W J))Z + (∇W J)∇V Z)
)

− 1
4

(
g((∇V(∇W J))Y + (∇W J)∇VY, (∇X J)Z)

+ g((∇W J)Y, (∇V(∇X J))Z + (∇X J)∇V Z)
)

+ 1
2

(
g((∇V(∇W J))X + (∇W J)∇V X, (∇Y J)Z)

+ g((∇W J)X, (∇V(∇Y J))Z + (∇Y J)∇V Z)
)
+∇V R(W, X, Y, Z).
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One can expand the first four summands on the right hand side making use of (1.21).
Recall that (∇2

A,B J)C = (∇A(∇B J))C− (∇∇AB J)C, then simplifying we are left with

∇V R̂(W, X, Y, Z)
= ∇V R(W, X, Y, Z)

+ 1
2

(
g((∇2

V,W J)X, (∇Y J)Z) + g((∇2
V,Y J)Z, (∇W J)X)

)
+ 1

4

(
g((∇2

V,W J)Z, (∇X J)Y) + g((∇2
V,X J)Y, (∇W J)Z)

)
− 1

4

(
g((∇2

V,W J)Y, (∇X J)Z) + g((∇2
V,X J)Z, (∇W J)Y)

)
.

Therefore, the second Bianchi identity implies

∇V R̂(W, X, Y, Z) +∇W R̂(X, V, Y, Z) +∇X R̂(V, W, Y, Z)

= S
V,W,X

(
1
2 g((∇2

V,Y J)Z, (∇W J)X) + 1
2 g((∇2

V,W J)X, (∇Y J)Z)

+ 1
4 g((∇2

V,W J)Z− (∇2
W,V J)Z, (∇X J)Y)

+ 1
4 g((∇2

V,X J)Y− (∇2
X,V J)Y, (∇W J)Z)

)
. (1.23)

Besides formula (1.23), in the proof of Proposition 1.4.7 we will need a last technical result.
Consider an orthonormal frame E1, . . . , E2n around each point, where JEi = En+i, for
i = 1, . . . , n.

Lemma 1.4.6. Let Y be a vector field on M and {Ei, JEi}, i = 1, . . . , n, be a local orthonormal
frame. Then the following formula holds:

2n

∑
j=1

(∇2
Ej,Ej

J)Y = −(Ric− Ric∗)JY. (1.24)

Proof. This is a consequence of formula (1.15):

g((∇2
Ej,Ej

J)Y, X) = ∇2σ(Ej, Ej, Y, X)

= − 1
2

(
g((∇Ej J)Y, (∇X J)JEj) + g((∇Ej J)X, (∇Ej J)JY)

)
= 1

2

(
g((∇Ej J)Y, J(∇X J)Ej)− g(J(∇Ej J)X, (∇Ej J)Y)

)
= 1

2

(
g((∇Ej J)Y, J(∇X J)Ej) + g(J(∇X J)Ej, (∇Ej J)Y)

)
= g((∇Ej J)Y, (∇Ej J)JX).

Then summing over j and identity (1.18) give

2n

∑
j=1

g
(
(∇2

Ej,Ej
J)Y, X

)
=

2n

∑
j=1

g((∇Ej J)Y, (∇Ej J)JX)

= g((Ric− Ric∗)Y, JX) = −g((Ric− Ric∗)JY, X),

because Ric− Ric∗ commutes with J.

We are thus ready to prove our final result.
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Proposition 1.4.7. Let W, X be two vector fields on M and {Ei, JEi}, i = 1, . . . , n, be a local
orthonormal frame. Then

2n

∑
i,j=1

g((Ric− Ric∗)Ei, Ej)
(

R(W, Ei, Ej, X)− 5R(W, Ei, JEj, JX)
)
= 0. (1.25)

Proof. Since R̂ ∈ Λ2 � [Λ1,1] by Lemma 1.4.4 and JEi = En+i for i = 1, . . . , n, we have

2n

∑
i=1

R̂(W, X, Ei, (∇V J)Ei) =
1
2

2n

∑
i=1

R̂(W, X, Ei, (∇V J)Ei) + R̂(W, X, JEi, J(∇V J)Ei)

= 1
2

2n

∑
i=1

R̂(W, X, Ei, (∇V J)Ei)− R̂(W, X, JEi, (∇V J)JEi)

= 1
2

n

∑
i=1

R̂(W, X, Ei, (∇V J)Ei)− R̂(W, X, JEi, (∇V J)JEi)

+ 1
2

n

∑
i=1

R̂(W, X, JEi, (∇V J)JEi)− R̂(W, X, Ei, (∇V J)Ei) = 0.

We can thus differentiate the identity obtained with respect to a vector field U viewing
each summand on the left hand side as a function p ∈ M 7→ R̂p( · , · , · , (∇V J)p · ):

2n

∑
i=1
∇U R̂(W, X, Ei, (∇V J)Ei) + R̂(W, X, Ei, (∇2

U,V J)Ei) = 0. (1.26)

Set U = V = Ej and sum over j. The second term in the latter sum becomes

2n

∑
i,j=1

R̂(W, X, Ei, (∇2
Ej,Ej

J)Ei). (1.27)

By (1.24), the sum (1.27) becomes

2n

∑
i,j=1

R̂(W, X, Ei, (∇2
Ej,Ej

J)Ei) = −
2n

∑
i=1

R̂(W, X, Ei, (Ric− Ric∗)JEi)

= −
2n

∑
i,j=1

R̂(W, X, Ei, g((Ric− Ric∗)JEi, JEj)JEj)

= −
2n

∑
i,j=1

g((Ric− Ric∗)Ei, Ej)R̂(W, X, Ei, JEj).

Set X = JW. Then J-invariance of R and the first Bianchi identity give

R̂(W, JW, Ei, JEj) =
1
4

(
3R(W, JW, Ei, JEj)− 2R(W, JW, JEi, Ej)

− R(JW, Ei, JW, Ej)− R(W, Ei, W, Ej))
)

= 1
4

(
5R(W, JW, Ei, JEj)− R(W, Ei, W, Ej)− R(W, JEi, W, JEj)

)
= 1

4

(
5R(W, Ei, JW, JEj)− 5R(W, JEj, JW, Ei)

− R(W, Ei, W, Ej)− R(W, JEi, W, JEj)
)
.
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Using (1.24) and (1.22) we have

2n

∑
i,j=1

R̂(W, JW, Ei, (∇2
Ej,Ej

J)Ei)

= −
2n

∑
i,j=1

g((Ric− Ric∗)Ei, Ej)R̂(W, JW, Ei, JEj)

= 1
4

2n

∑
i,j=1

g((Ric− Ric∗)Ei, Ej)
(
−5R(W, Ei, JW, JEj) + 5R(W, JEj, JW, Ei)

+ R(W, Ei, W, Ej) + R(W, JEi, W, JEj)
)
.

We now split this expression in four different sums where the indices i, j always run from
1 to n, just to make them easier to handle. Set A := Ric− Ric∗ and

L(Ei, Ej) := −5R(W, Ei, JW, JEj) + 5R(W, JEj, JW, Ei)

H(Ei, Ej) := R(W, Ei, W, Ej) + R(W, JEi, W, JEj),

so as to write ∑2n
i,j=1 R̂(W, JW, Ei, (∇2

Ej,Ej
J)Ei) as

1
4

n

∑
i,j=1

(
g(AEi, Ej)(L + H)(Ei, Ej) + g(AEi, JEj)(L + H)(Ei, JEj)

+ g(AJEi, Ej)(L + H)(JEi, Ej) + g(AJEi, JEj)(L + H)(JEi, JEj)
)
.

The symmetries of R, its J-invariance and the identity AJ = JA yield

2n

∑
i,j=1

R̂(W, JW, Ei, (∇2
Ej,Ej

J)Ei)

= 1
2

n

∑
i,j=1

(
g(AEi, Ej)

(
L(Ej, Ei) + H(Ei, Ej)

)
+ g(AEi, JEj)

(
L(Ei, JEj) + H(Ei, JEj)

))
.

Going back to our usual notation we find

2n

∑
i,j=1

R̂(W, JW, Ei, (∇2
Ej,Ej

J)Ei)

= 1
2

2n

∑
i,j=1

g(AEi, Ej)
(

R(W, Ei, W, Ej)− 5R(W, Ei, JW, JEj)
)

+ 1
2

n

∑
i,j=1

g(AEi, JEj)
(

R(W, Ei, W, JEj) + 5R(W, Ei, JW, Ej)
)

+ 1
2

n

∑
i,j=1

g(AJEi, Ej)
(

R(W, JEi, W, Ej)− 5R(W, JEi, JW, JEj)
)

+ 1
2

n

∑
i,j=1

g(AJEi, JEj)
(

R(W, JEi, W, JEj) + 5R(W, JEi, JW, Ej)
)

= 1
2

2n

∑
i,j=1

g(AEi, Ej)
(

R(W, Ei, W, Ej)− 5R(W, Ei, JW, JEj)
)
.
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Let us go back to (1.26) and focus on the first term now. Setting again U = V = Ej, X = JW,
applying Lemma 1.4.5, and summing over j we have:

2n

∑
i,j=1
∇Ej R̂(W, JW, Ei, (∇Ej J)Ei) =

2n

∑
i,j,k=1

∇Ej R̂(W, JW, Ei, g((∇Ej J)Ei, Ek)Ek)

=
2n

∑
i,j,k=1

∇σ(Ej, Ei, Ek)∇Ej R̂(Ei, Ek, W, JW)

= 1
2 ∑

i<j<k
∇σ(Ei, Ej, Ek)S

i,j,k
∇Ei R̂(Ej, Ek, W, JW).

The sum Si,j,k∇Ei R̂(Ej, Ek, W, JW) is actually zero: by formula (1.23)

∇Ei R̂(Ej, Ek, W, JW) +∇Ej R̂(Ek, Ei, W, JW) +∇Ek R̂(Ei, Ej, W, JW)

= 1
2 S

i,j,k

(
g((∇2

Ek ,W J)JW, (∇Ei J)Ej) + g((∇2
Ei ,Ej

J)Ek, (∇W J)JW)
)

+ 1
4 S

i,j,k
g((∇2

Ei ,Ej
J)JW − (∇2

Ej,Ei
J)JW, (∇Ek J)W)

+ 1
4 S

i,j,k
g((∇2

Ej,Ei
J)W − (∇2

Ei ,Ej
J)W, (∇Ek J)JW).

Recall that ∇2σ(W, X, Y, Z) = g((∇2
W,X J)Y, Z). Applying (1.15) and simplifying we have

∇Ei R̂(Ej, Ek, W, JW) +∇Ej R̂(Ek, Ei, W, JW) +∇Ek R̂(Ei, Ej, W, JW)

= 1
2 S

i,j,k
∇2σ(Ek, W, JW, (∇Ei J)Ej)

+ 1
4 S

i,j,k

(
∇2σ(Ei, Ej, JW, (∇Ek J)W)− 1

4∇
2σ(Ej, Ei, JW, (∇Ek J)W)

)
− 1

4 S
i,j,k

(
∇2σ(Ei, Ej, W, (∇Ek J)JW) + 1

4∇
2σ(Ej, Ei, W, (∇Ek J)JW)

)
= 1

2 g((∇W J)(∇Ei J)Ej, (∇Ek J)W) + 1
2 g((∇Ek J)Ei, (∇W J)(∇Ej J)W)

+ 1
2 g((∇W J)(∇Ej J)Ek, (∇Ei J)W) + 1

2 g((∇Ei J)Ej, (∇W J)(∇Ek J)W)

+ 1
2 g((∇Ej J)Ek, (∇W J)(∇Ei J)W) + 1

2 g((∇W J)(∇Ek J)Ei, (∇Ej J)W) = 0.

Then ∑2n
i,j=1∇Ej R̂(W, JW, Ei, (∇Ei J)Ej) = 0. Polarisation of (1.26) with X = JW concludes

the proof.

Let now Ricg be the Ricci curvature (2, 0) tensor field of g. We conclude this section
with a final, fundamental result.

Theorem 1.4.8. Nearly Kähler six-manifolds are Einstein with positive scalar curvature.

Proof. Consider the six-dimensional case in Proposition 1.4.7, i.e. n = 3. In the course
of the proof of Proposition 1.3.9 we got Ric− Ric∗ = 4µ2 Id, with µ a non-zero constant.
Thus, since g(Ei, Ej) = δij, formula (1.25) reduces to

6

∑
i=1

R(W, Ei, Ei, X)− 5R(W, Ei, JEi, JX) = 0,

which is equivalent to saying Ric = 5Ric∗. Therefore, Ric− Ric∗ = Ric− 1
5 Ric = 4µ2 Id,

namely Ricg = 5µ2g, and M is Einstein with positive scalar curvature.
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1.5 Formulation in terms of PDEs

In the introduction we explained roughly how Definition 1.1.1 is linked to a system of
partial differential equations specifying the properties of an SU(3)-structure on M. We go
through the details of the whole story in this section, thus concluding the presentation of
the equivalent characterisations of nearly Kähler six-manifolds. We follow [Car93, Section
4.3] for this last part.

It will be convenient to work on the complexified tangent bundle T � C of M. We
use the standard notations T1,0 and T0,1 for the eigenspaces of J corresponding to the
eigenvalues i and −i respectively, so that T � C = T1,0 � T0,1. All linear operations are
extended by C-linearity. Certainly the nearly Kähler condition translates onto the complex
field: let X = X1 + X2, where JX1 = iX1 and JX2 = −iX2, and assume M is nearly Kähler.
Then

(∇X J)X = (∇X1+X2 J)(X1 + X2)

= (∇X1 J)X1 + (∇X2 J)X2 + (∇X1 J)X2 + (∇X2 J)X1 = 0.

A first step in the direction we want to take was Proposition 1.2.6, where we proved that
having a nearly Kähler structure on (M, g, J) is equivalent to saying ∇σ is a type (3, 0) +
(0, 3) form or that dσ = 3∇σ, for σ = g(J · , · ). We now give further characterisations.

Lemma 1.5.1. The following assertions hold:

1. M is nearly Kähler if and only if ∇XY +∇YX ∈ T1,0 for X, Y ∈ T1,0.

2. If M is nearly Kähler then ∇XY ∈ T1,0, for X, Y ∈ T1,0.

Proof. For X, Y ∈ T1,0 we have

J(∇XY +∇YX) = ∇X JY +∇Y JX− (∇X J)Y− (∇Y J)X
= i(∇XY +∇YX)− (∇X J)Y− (∇Y J)X,

from which our first claim follows. The second is a plain check that (∇X J)Y = 0, for
J∇XY = ∇X JY− (∇X J)Y = i∇XY− (∇X J)Y.

Lemma 1.5.2. Let us consider {Fi}i=1,2,3, a local orthonormal basis of T1,0 on M. Denote by
{ f i}i=1,2,3 its dual in Λ1,0. The following facts are equivalent:

1. ∇XY +∇YX ∈ T1,0 for X, Y ∈ T1,0.

2. There exists a constant, complex-valued function λ such that [Fi, Fj]
0,1 = −λFk, where

(i, j, k) is a cyclic permutation of (1, 2, 3).

3. There exists a constant, complex-valued function λ such that (d f i)0,2 = λ f j ∧ f k, where
(i, j, k) is a cyclic permutation of (1, 2, 3).

Proof. Let us prove that 2 and 3 are equivalent first. Suppose (d f i)0,2 = λ f j ∧ f k for some
constant λ ∈ C. Since type (0, 1) forms vanish on (1, 0) vectors and (d f k)2,0 = (d f k)0,2 =
λ f i ∧ f j, we get

[Fi, Fj]
0,1 =

3

∑
k=1

f k([Fi, Fj])Fk =
3

∑
k=1

(Fi( f k(Fj))− Fj( f k(Fi))− d f k(Fi, Fj))Fk

= −
3

∑
k=1

(d f k)2,0(Fi, Fj)Fk = −λFk.
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Conversely, assume [Fi, Fj]
0,1 = −λFk holds for some complex constant λ. If we set

X = ∑3
`=1 a`F`, Y = ∑3

`=1 b`F`, using that [Fj, Fk]
1,0 = [Fj, Fk]0,1 = −λFi we have

λ f j ∧ f k(X, Y) = λ(ajbk − bjak) = − f i
(
S
i,j,k

(ajbk − bjak)(−λFi)
)

= − f i
(
∑
j<k

(ajbk − bjak)([Fj, Fk]
1,0)
)
= − f i([X, Y]1,0)

= −X( f i(Y)) + Y( f i(X)) + d f i(X, Y)

= d f i(X, Y).

This yields our first equivalence.
Let us assume now that [Fi, Fj]

0,1 = −λFk for λ ∈ C. We use that g(∇Fj Fk, Fk) = 0 to
compute g(∇F1 F2 +∇F2 F1, Fi) for all i = 1, 2, 3. We have

g(∇F1 F2 +∇F2 F1, F1) = g(∇F1 F2 −∇F2 F1, F1)

= g([F1, F2], F1) = −λg(F3, F1) = 0.
g(∇F1 F2 +∇F2 F1, F2) = g(−∇F1 F2 +∇F2 F1, F2)

= g([F2, F1], F2) = λg(F3, F2) = 0.
g(∇F1 F2 +∇F2 F1, F3) = g(∇F1 F2, F3) + g(∇F2 F1, F3)

= −g(F2,∇F1 F3)− g(F1,∇F2 F3).

Now note that g(∇F2 F3 −∇F3 F2, F1) = g(∇F3 F1 −∇F1 F3, F2) = −λ. This yields

−g(F2,∇F1 F3)− g(F1,∇F2 F3) = −g(F2,∇F1 F3) + λ− g(F1,∇F3 F2)

= g(F2,∇F3 F1 −∇F1 F3) + λ

= −λ + λ = 0.

The other cases are analogous and 1 follows.
Finally, we prove that 1 implies 2. Assuming ∇XY +∇YX ∈ T1,0 with X, Y ∈ T1,0, we

have

g([Fi, Fj]
0,1, Fk) = g([Fi, Fj], Fk) = g(∇Fi Fj, Fk)− g(∇Fj Fi, Fk) = 2g(∇Fi Fj, Fk),

as the metric is of type (1, 1) and ∇Fi Fj = −∇Fj Fi + W, W ∈ T1,0 by assumption. The
basis has type (1, 0), so

g(∇Fi Fj, Fk) = g(J∇Fi Fj, JFk)

= g(∇Fi JFj − (∇Fi J)Fj, JFk)

= −g(∇Fi Fj, Fk)− g((∇Fi J)Fj, iFk),

which implies 2g(∇Fi Fj, Fk) = −i∇σ(Fi, Fj, Fk). By Lemma 1.5.1, M is nearly Kähler, hence
2g(∇Fi Fj, Fk) is totally skew-symmetric in i, j, k. So we can write it as

2g(∇Fi Fj, Fk) = −ε ijkλ

for some complex valued function λ on M, where ε ijk is the sign of the permutation (i, j, k)
and takes value 0 when any two indices coincide. Note that λ is a global function because
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its definition does not depend on the coordinate system, in the same fashion as for µ in
Section 1.3. There remains to prove that λ is constant. To this aim, take any real, local
orthonormal set {E1, JE1, E2, JE2}. We put (∇E1 J)E2 := µE3, where E3 is a unit vector
and µ a non-negative real function satisfying (1.9). Then set Fk := (1/

√
2)(Ek − i JEk) in

T1,0, k = 1, 2, 3, and recall that g(X, Y) = g(X, Y) and∇XY = ∇XY for every X, Y ∈ T � C.
Hence −λ = 2g(∇F1

F2, F3). Here below we find the relationship between λ and µ:

−λ = 2g(∇F1
F2, F3)

= g(∇E1 E2 −∇JE1 JE2 + i(∇E1 JE2 +∇JE1 E2), F3)

= g(∇E1 E2 + i J∇E1 E2, F3) + ig(∇JE1 E2 + i J∇JE1 E2, F3)

+ g(J(∇E1 J)E2 + i(∇E1 J)E2, F3).

Observe that ∇E1 E2 + i J∇E1 E2 and ∇JE1 E2 + i J∇JE1 E2 are of type (0, 1), so the first two
terms vanish, and expanding the last term we find

g(J(∇E1 J)E2 + i(∇E1 J)E2, F3) = iµg(E3 − i JE3, F3) = i
√

2µ.

In Proposition 1.3.9 we proved that µ is constant, so λ is constant as well, and this
completes the proof.

Theorem 1.5.3. Let (M, g, J) be an almost Hermitian six-manifold. Then M is nearly Kähler if
and only if there exist a complex three-form ψC = ψ+ + iψ− and a constant µ such that

dσ = 3µψ+, dψ− = −2µσ ∧ σ. (1.28)

Proof. Assume M is nearly Kähler. Using the local orthonormal basis as in Lemma 1.5.2,
we can write locally σ = i ∑3

k=1 f k ∧ f k, where f k = (1/
√

2)(e1 + i Je1). Let us define

ψC = ψ+ + iψ− := 2
√

2 f 1 ∧ f 2 ∧ f 3.

We know by Proposition 1.2.6 that M nearly Kähler implies dσ ∈ [[Λ3,0]]. We thus calculate
its (3, 0) + (0, 3) part.

(idσ)3,0 = −
( 3

∑
k=1

d f k ∧ f k − f k ∧ d f k
)3,0

=
3

∑
k=1

( f k ∧ d f k)3,0 =
3

∑
k=1

f k ∧ (d f k)2,0.

Lemma 1.5.2 implies

(idσ)3,0 =
3

∑
k=1

f k ∧ (d f k)2,0 = λ S
1,2,3

f 1 ∧ f 2 ∧ f 3 = 3
2
√

2
λψC.

Similarly, (idσ)0,3 = − 3
2
√

2
λψC. We found λ = −i

√
2µ, so

idσ = (idσ)3,0 + (idσ)0,3 = 3iµψ+.

This implies 0 = dψ+, hence dψC = −dψC. Differentiating ψC we find

dψC = 2
√

2
(
d f 1 ∧ f 2 ∧ f 3 − f 1 ∧ d f 2 ∧ f 3 + f 1 ∧ f 2 ∧ d f 3)

= 2
√

2
(
(d f 1)1,1 ∧ f 2 ∧ f 3 + (d f 1)0,2 ∧ f 2 ∧ f 3

− f 1 ∧ (d f 2)1,1 ∧ f 3 − f 1 ∧ (d f 2)0,2 ∧ f 3

+ f 1 ∧ f 2 ∧ (d f 3)1,1 + f 1 ∧ f 2 ∧ (d f 3)0,2) ∈ Λ3,1 + Λ2,2.
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With similar computations one can see that dψC ∈ Λ1,3 + Λ2,2. We proved that dψC =
−dψC, so the (1, 3) part of dψC vanishes. We then have

idψ− = 2
√

2λ ∑
j<k

f j ∧ f k ∧ f j ∧ f k = −2iµσ ∧ σ

and the first implication is done.
Conversely, given dσ = 3µψ+ and dψ− = −2µσ ∧ σ, it is enough to prove that

(d f i)0,2 = λ f j ∧ f k for (i, j, k) cyclic permutation of (1, 2, 3) and some constant λ ∈ C. To
get it, we first see that

ψC ∧ (d f i)0,2 = ψC ∧ d f i = dψC ∧ f i = idψ− ∧ f i = ψC ∧ λ( f j ∧ f k).

Now observe that the map Λ0,2 → Λ3,2 given by the wedge product with ψC is injective.
This implies (d f i)0,2 = λ f j ∧ f k.

Remark 1.5.4. We can rescale our basis so that σ 7→ σ̃ := µ2σ and ψ± 7→ ψ̃± := µ3ψ±. Then

dσ̃ = 3ψ̃+, dψ̃− = −2σ̃ ∧ σ̃.

Thus Theorem 1.5.3 provides us with a characterisation of nearly Kähler six-manifolds
in terms of an SU(3)-structure. We can then give a final definition we will use throughout
the rest of this work.

Definition 1.5.5. Let (M, g, J) be an almost Hermitian six-dimensional manifold with an
SU(3)-structure (σ = g(J · , · ), ψC = ψ+ + iψ−). We say that M is nearly Kähler if and only
if

dσ = 3ψ+, dψ− = −2σ ∧ σ. (1.29)

Observe that locally σ and ψC were expressed in terms of type (1, 0) vectors f i as
σ = i ∑3

k=1 f k ∧ f k and ψC = 2
√

2 f 1 ∧ f 2 ∧ f 3, thus giving the real models

σ = e1 ∧ Je1 + e2 ∧ Je2 + e3 ∧ Je3, (1.30)

ψ+ = e1 ∧ e2 ∧ e3 − Je1 ∧ Je2 ∧ e3 − e1 ∧ Je2 ∧ Je3 − Je1 ∧ e2 ∧ Je3, (1.31)

ψ− = e1 ∧ e2 ∧ Je3 − Je1 ∧ Je2 ∧ Je3 + e1 ∧ Je2 ∧ e3 + Je1 ∧ e2 ∧ e3, (1.32)

which are obtained by the definition f k := (1/
√

2)(ek + i Jek), k = 1, 2, 3. By Jei = −ei ◦ J,
expressions (1.31) and (1.32), the relation ψ− = −ψ+( · , · , J · ) readily follows. On the
other hand by equations (1.28) and Proposition 1.2.6 we have dσ = 3µψ+ = 3∇σ, so
µψ+ = ∇σ, but since ∇σ ∈ Λ1 � [[Λ2,0]] we find

ψ−(X, Y, Z) = −ψ+(X, Y, JZ) = −µ−1∇σ(X, Y, JZ) = −µ−1∇σ(JZ, X, Y)

= µ−1∇σ(JZ, JX, JY) = µ−1∇σ(JX, JY, JZ) = −Jψ+(X, Y, Z).

Therefore ψ− = −Jψ+.

Remark 1.5.6. Let us set vol := e1 ∧ Je1 ∧ e2 ∧ Je2 ∧ e3 ∧ Je3. A straightforward calculation
of ψ+ ∧ ψ− and σ ∧ ψ± gives

ψ+ ∧ ψ− = 4vol = 2
3 σ3, (1.33)

σ ∧ ψ± = 0. (1.34)
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Since g(ψ+, ψ+) = 4 the first equation tells us that ψ+ ∧ ψ− = 4vol = g(ψ+, ψ+)vol =
ψ+ ∧ ∗ψ+, so by uniqueness of ∗ψ+ we deduce ∗ψ+ = ψ−. This final digression completes
the argument we touched upon in Remark 1.2.4. Using the terminology in [CS02, Defini-
tion 4.1] we say that nearly Kähler six-manifolds are half-flat, because dψ+ = 1

3 d2σ = 0
and (1.34) implies σ ∧ dσ = 0.

Recall that ∇̂ := ∇− 1
2 J(∇J) is a U(3)-connection by Proposition 1.4.2. Now we can

make this statement more precise.

Proposition 1.5.7. ∇̂ is an SU(3)-connection.

Proof. We calculate ∇̂(∇σ). By Lemma 1.15 we have

∇̂(∇σ)(W, X, Y, Z) = W(∇σ(X, Y, Z))−∇σ(∇̂W X, Y, Z)

−∇σ(X, ∇̂WY, Z)−∇σ(X, Y, ∇̂W Z)

= ∇2σ(W, X, Y, Z) + 1
2 S

X,Y,Z
g((∇W J)X, (∇Y J)JZ) = 0,

which proves ∇̂(∇σ) = 0 = ∇̂ψ+, thus ψ+ is parallel. Further, by ψ− = −Jψ+ we have at
once ∇̂ψ− = 0, namely ∇̂ψC = 0, which proves ∇̂ is actually an SU(3)-connection.

The difference∇−∇̂ takes then values in Λ1 � su(3)⊥ (where su(3)⊥ is the orthogonal
complement of su(3) in so(6)) and is called intrinsic torsion of the SU(3)-structure. It
measures the failure of the holonomy group of the Levi-Civita connection to reduce
to SU(3).

Remark 1.5.8. We mentioned already in Proposition 1.2.6 that ∇σ lies in [[Λ3,0]], so obvi-
ously it is only the (3, 0) + (0, 3) part of ∇σ that measures the failure of M to be Kähler.
This clarifies Remark 1.2.5. Therefore, we can say that it is exactly the type of ∇σ that
determines the class of nearly Kähler manifolds in the classification completed by Gray
and Hervella. On the other hand, equation (1.3) tells us ∇σ may be identified with ∇J,
which may in turn be identified with the Nijenhuis tensor N of J by Proposition 1.4.1. The
latter is the intrinsic torsion of the SU(3)-structure (σ, ψ±) by Proposition 1.5.7. A detailed
study of this object for SU(3)- and G2-structures was pursued by Chiossi and Salamon
(see [CS02], in particular Theorem 1.1 for what regards our set-up).





Chapter 2

Homogeneous nearly Kähler
structures

In the introduction we mentioned in dimension six there are only four compact, homo-
geneous spaces with a nearly Kähler structure: the six-sphere S6 = G2/SU(3), the flag
manifold F1,2(C

3) = SU(3)/T2, the complex projective space CP3 = Sp(2)/Sp(1)U(1),
and the product of three spheres S3 × S3 = SU(2)3/SU(2)∆. We now recall their nearly
Kähler structures, which will be essential for constructing multi-moment maps and com-
puting their critical sets in the next chapter. In doing this in the case of the six-sphere, we
will use a few basic concepts of G2 geometry, which we shall dedicate the first section to.
For the spaces F1,2(C

3) and CP3 we follow Gray [Gra72], whereas the material on S3 × S3

may be found in different references, e.g. [But05], [Bol+15], [Dix18].

2.1 On G2 geometry

Definition (1.5.5) gives an alternative way of checking that an almost Hermitian six-
manifold is nearly Kähler, provided that it is equipped with an SU(3)-structure (σ, ψ±)
subject to the constraints (1.33) and (1.34). What we shall do in Section 2.2 is to define an
explicit SU(3)-structure (σ, ψ±) on the six-sphere S6 and check it satisfies equations (1.29).
Here below we collect elementary facts about G2 geometry that will help us go towards
this construction. To do this we need to introduce the algebra of octonions first.

Let us consider R8 with basis (E0, E1, . . . , E7) and V ∼= R7 the subspace spanned
by E1, . . . , E7. We denote by 1 the vector E0 and by {e1, . . . , e7} the dual basis of V.
We can define a multiplication on R8 using the following rules: 1 is the identity, and
Ei · Ej := −δij1 + ε ijkEk, where ε ijk is a totally skew-symmetric symbol with value +1
when (ijk) = (123), (145), (167), (246), (275), (374), (365), and 0 otherwise. This gives R8

the structure of a (non-commutative and non-associative) algebra whose elements are
called octonions. The space V contains the imaginary octonions.

We now introduce a three-form on V encoding the multiplication table for the basis
elements of V. We use the notation eijk as a shorthand for ei ∧ ej ∧ ek, and similarly for
differential forms of higher or lower degree. Consider the three-form

ϕ0 := e123 + e145 + e167 + e246 − e257 − e347 − e356. (2.1)

One can check that G2 is a subgroup of SO(7), so ϕ0 yields an inner product g0 and an

29
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orientation: in fact ϕ0 induces the map b : V ×V → Λ7V∗ given by

b(X, Y) = 1
6 (X y ϕ0) ∧ (Y y ϕ0) ∧ ϕ0,

which turns out to be b(X, Y) = g0(X, Y)e1234567, where g0(X, Y) = ∑6
k=1 XkYk. The

basis E1, . . . , E7 is orthonormal with respect to g0. All of this is part of the proof of the
proposition below. The Hodge star operator ∗ then yields a four-form

∗ϕ0 = e4567 + e2367 + e2345 + e1357 − e1346 − e1256 − e1247.

Define the group
G2 := {A ∈ GL(V) : Aϕ0 = ϕ0},

namely the stabilizer of ϕ0 in GL(V).

Proposition 2.1.1. The group G2 ⊆ GL(V) is compact, connected, simple, simply connected and
of dimension 14. Moreover, G2 acts irreducibly on V and transitively on the space of lines in V and
two-planes in V. Finally, G2 is isomorphic to the group of algebra automorphisms of the octonions.

A detailed proof may be found in [Bry87, Section 2], so we omit it. We can raise one
index of ϕ0 defining the so-called G2-cross product, a G2-equivariant map P0 : V ×V → V
given by

g0(P0(X, Y), Z) = ϕ0(X, Y, Z). (2.2)

This new map allows one to rephrase the multiplication of imaginary octonions, for

X ·Y = −g0(X, Y)1 + P0(X, Y), X, Y ∈ V.

Also, P0 is certainly skew-symmetric, P0(X, Y) is orthogonal to X and Y, and

‖P0(X, Y)‖2 = ‖X‖2‖Y‖2 − g0(X, Y)2, (2.3)

as can be checked by a direct calculation in terms of the basis. More material on the
construction of generic two-fold vector cross products may be found in [FG82]. By the
non-degeneracy of g0, ϕ0 is a fully non-degenerate form, namely ϕ0(X, Y, · ) is non-zero if
X, Y are linearly independent (cf. [MS13], in particular Definition 2.1 and Theorem 2.1).
Finally, ϕ0 is stable in the sense of Hitchin: its orbit under the standard action by pullback
of the general linear group GL(V) is open in Λ3V∗. For more details on this point we refer
to [Hit01].

The choice of a unit vector N in V yields what we claim to be a complex structure J0 on
〈N〉⊥ ∼= R6 ⊂ V, obtained by the contraction N y P0. It is readily seen that J0 maps 〈N〉⊥
into itself, because g0(J0X, N) = g0(P0(N, X), N) = ϕ0(N, X, N) = 0. Now we observe
that the condition J2

0 = − Id is equivalent to the compatibility between g0 and J0: a simple
calculation shows

g0(J2
0Y, Z) = g0(P0(N, J0Y), Z)

= g0(P0(N, P0(N, Y)), Z)
= ϕ0(N, P0(N, Y), Z)
= −ϕ0(N, Z, P0(N, Y))
= −g0(P0(N, Y), P0(N, Z)) = −g0(J0Y, J0Z).
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On the other hand, mapping Y 7→ Y + Z in (2.3), we find

g0(P0(X, Y + Z), P0(X, Y + Z)) = ‖X‖2g0(Y + Z, Y + Z)− g0(X, Y + Z)2

= ‖X‖2‖Y‖2 + ‖X‖2‖Z‖2 + 2‖X‖2g0(Y, Z)

− g0(X, Y)2 − g0(X, Z)2 − 2g0(X, Y)g0(X, Z).

The left hand side is ‖P0(X, Y)‖2 + ‖P0(X, Z)‖2 + 2g0(P0(X, Y), P0(X, Z)), so (2.3) implies

g0(P0(X, Y), P0(X, Z)) = ‖X‖2g0(Y, Z)− g0(X, Y)g0(X, Z).

Therefore, when Y, Z are orthogonal to N we have

g0(J0Y, J0Z) = g0(P0(N, Y), P0(N, Z))

= ‖N‖2g0(Y, Z)− g0(N, Y)g0(N, Z) = g0(Y, Z),

so J0 does define a complex structure.

2.2 The six-sphere

Consider S6 ⊂ R7. Let xk, k = 1, . . . , 7, be global coordinates on R7, ∂k the associated
coordinate vector fields, and dxk, k = 1, . . . , 7, their duals. In analogy with (2.1), we define
the three-form

ϕ = dx123 + dx145 + dx167 + dx246 − dx257 − dx347 − dx356, (2.4)

which induces an inner product g0 and an orientation on R7. A metric on the six-sphere is
defined by the pullback g = i∗g0, where i : S6 ↪→ R7 is the natural immersion. As in (2.2),
we construct a G2-cross product P : R7 ×R7 → R7 such that g(P(X, Y), Z) = ϕ(X, Y, Z).
Recall that the Hodge star operator yields a four-form

∗ϕ = dx4567 + dx2367 + dx2345 + dx1357 − dx1346 − dx1256 − dx1247.

We write N for the unit normal vector field to the six-sphere. Its expression is given by the
sum ∑7

k=1 xk∂k, where of course ∑7
k=1(xk)2 = 1. The contraction

Jp := Np y Pp : TpS6 → TpS6

defines an almost complex structure on S6 as shown in the previous section.
We may define an SU(3)-structure (σ, ψ+ + iψ−) by setting

σ := g(J · , · ), ψ+ := i∗ϕ, ψ− := −i∗(N y ∗ϕ).

To show that this structure is nearly Kähler we perform the computations on R7 and then
restrict to S6. Firstly, by the definition of the G2-cross product above we find

σ = x3dx12 − x2dx13 + x5dx14 − x4dx15 + x7dx16 − x6dx17

+ x1dx23 + x6dx24 − x7dx25 − x4dx26 + x5dx27

− x7dx34 − x6dx35 + x5dx36 + x4dx37

+ x1dx45 + x2dx46 − x3dx47

− x3dx56 − x2dx57

+ x1dx67. (2.5)
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The differential is then

dσ = dx123 + dx123 + dx145 + dx145 + dx167 + dx167

+ dx123 + dx246 − dx257 + dx246 − dx257

− dx347 − dx356 − dx356 − dx347

+ dx145 + dx246 − dx347

− dx356 − dx257

+ dx167

= 3(dx123 + dx145 + dx167 + dx246 − dx257 − dx347 − dx356) = 3ϕ,

so their restrictions on S6 coincide. Secondly, dψ− = −i∗d(Ny ∗ϕ). We have

∗ϕ = dx4567 + dx2367 + dx2345 + dx1357 − dx1346 − dx1256 − dx1247.

so d(N y ∗ϕ) = 4∗ϕ and again the restrictions on S6 are equal. Thus the claim is 4i∗∗ϕ =
2σ ∧ σ, but this can be checked at every point p. Up to a rotation in G2 mapping p to
E7, and so N to ∂7—such a rotation exists by Proposition 2.1.1—we have σ = N y ϕ =
∂7 y ϕ = dx16 − dx25 − dx34, so σ ∧ σ = −2(dx1256 + dx1346 − dx2345) and i∗∗ϕ = dx2345 −
dx1346 − dx1256 is unchanged. Hence dψ− = −2σ ∧ σ. We have just checked that (σ, ψ±)
satisfy (1.29), therefore S6 with the above structure is a nearly Kähler manifold.

2.3 The flag manifold of C3

Let us now switch to F1,2(C
3), the set of pairs (L, U) of subspaces in C3, where L is a com-

plex line contained in the complex plane U. We first show that F1,2(C
3) is homogeneous

for the group SU(3) and that the isotropy group of a particular point is isomorphic to the
two-torus T2. This proves that F1,2(C

3) is a smooth manifold diffeomorphic to SU(3)/T2,
which is called flag manifold of C3.

Given the standard basis {F1, F2, F3} of C3 and the point (〈F1〉, 〈F1, F2〉) in F1,2(C
3), an

element B in SU(3) maps (〈F1〉, 〈F1, F2〉) into (〈BF1〉, 〈BF1, BF2〉). This map is seen to be
surjective, thus defines a transitive action of SU(3) on F1,2(C

3). Now A ∈ SU(3) fixes
the point (〈F1〉, 〈F1, F2〉) when F1 is an eigenvector of A and AF2 is in the span of F1, F2.
Hence there are constants λ, µ, ρ ∈ C such that AF1 = λF1 and AF2 = µF1 + ρF2. But A
preserves the Hermitian product, thus λ = eiα, µ = 0 and ρ = eiβ. Since A is unitary with
determinant 1, it must be of the form diag(eiα, eiβ, e−i(α+β)). Therefore, the stabiliser of the
point chosen is a maximal torus T2 in SU(3), and F1,2(C

3) is then diffeomorphic to the
quotient SU(3)/T2.

We now equip SU(3)/T2 with a Riemannian metric and an almost complex struc-
ture. A matrix p ∈ SU(3) acts on SU(3) by left translation and induces a pullback map
(p−1

Id )∗ : su∗(3)�2 → T∗p SU(3)�2. We can thus define an inner product gp at the point
p ∈ SU(3) as

gp := Re((p−1
Id )∗g0), (2.6)

where g0 denotes the Killing form on su(3) and is normalised as follows:

g0(X, Y) := 1
2 Tr(tXY), X, Y ∈ su(3).

The metric g is bi-invariant because g0 is. In particular g is invariant under the action of the
maximal torus in SU(3) above, so it descends to a metric on the flag, which we still denote
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by g. To construct an almost complex structure J we follow the process described by
Gray [Gra72, Section 3]. Let us take the matrix A := diag(e2πi/3, e4πi/3, 1) and define the
conjugation map ϑ̃ : SU(3)→ SU(3) so that ϑ̃(B) = ABA−1. It is clear by this definition
that ϑ̃ ◦ ϑ̃ ◦ ϑ̃ = Id and that ϑ̃ fixes the maximal torus T2 in SU(3) above. So ϑ̃ induces
a map on the quotient ϑ : SU(3)/T2 → SU(3)/T2 that fixes the coset T2 and satisfies
ϑ ◦ ϑ ◦ ϑ = Id. From now on we write ϑ3 instead of ϑ ◦ ϑ ◦ ϑ. We define J0 at the identity
as follows: for X ∈ su(3)/t2 write dϑ(X) = AXA−1 =: −(1/2)X + (

√
3/2)J0X, so that

J0X = 2√
3

(
AXA−1 + 1

2 X
)
. (2.7)

The map J0 : su(3)/t2 → su(3)/t2 is well defined as A commutes with diagonal matrices.
We now check that J2

0 = − Id. Firstly, observe that dϑ− Id is injective: if AXA−1 − X = 0,
then AX = XA, and since X is diagonalisable then X is diagonal. Thus X = 0 in
su(3)/t2 and Id−dϑ is left-invertible. We denote the left inverse by (Id−dϑ)−1. This
amounts to say that 0 = (Id−dϑ)−1(Id−dϑ3) = Id+dϑ + dϑ2, or more explicitly that
X + AXA−1 + A2XA−2 = 0. Therefore

J2
0 X = J0(J0X) = 2√

3
(AJ0XA−1 + 1

2 J0X)

= 4
3 (A(AXA−1 + 1

2 X)A−1 + 1
2 (AXA−1 + 1

2 X))

= 4
3 (A2XA−2 + AXA−1 + X− 3

4 X) = 4
3 (−

3
4 X) = −X,

as we wanted. We can move the operator J0 to every point p ∈ SU(3) so that for each
Y ∈ Tp(SU(3)/T2) one has

Jp(Y) = pJ0(p−1Y).

Further, J0 is an isometry:

g0(J0X, J0Y) = − 1
2 Tr(J0X · J0Y)

= − 2
3

(
5
4 Tr(XY) + 1

2 (Tr((dϑ(X))Y) + Tr((dϑ2(X))Y))
)

= − 2
3

(
3
4 Tr(XY) + 1

2

(
Tr(XY) + Tr((dϑ(X))Y) + Tr((dϑ2(X))Y)

))
= − 1

2 Tr(XY) = g0(X, Y).

From the invariance of g and J it follows that (g, J) is an almost Hermitian structure on
the flag manifold.

Now the goal is to go further and show that g and J may be used to construct a
nearly Kähler structure. To do this we work at the identity of SU(3) and define an explicit
SU(3)-structure satisfying equations (1.29). We finally extend this structure to the whole
manifold as we did for J0.

Matrices p in su(3) satisfy t p + p = 0 and are traceless, so the following vectors are a
basis of su(3) :

E1 =

0 i 0
i 0 0
0 0 0

 , E2 =

 0 1 0
−1 0 0
0 0 0

 , E3 =

 0 0 1
0 0 0
−1 0 0

 , E4 =

0 0 i
0 0 0
i 0 0

 ,

E5 =

0 0 0
0 0 i
0 i 0

 , E6 =

0 0 0
0 0 1
0 −1 0

 , E7 =

 i 0 0
0 0 0
0 0 −i

 , E8 =

0 0 0
0 i 0
0 0 −i

 .
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Clearly su(3)/t2 is generated by E1, . . . , E6. Denote by ek the dual of Ek. Using (2.6) and
(2.7) one can check that

g0 = e1 � e1 + . . . + e6 � e6,

J0 = E2 � e1 − E1 � e2 + E4 � e3 − E3 � e4 + E6 � e5 − E5 � e6.

Recall eij stands for ei ∧ ej, and similarly for higher degree forms. By a direct computation
it follows that [E7, E8] = 0 and

[E1, E7] = E2, [E4, E7] = 2E3, [E1, E8] = −E2, [E4, E8] = E3,
[E2, E7] = −E1, [E5, E7] = E6, [E2, E8] = E1, [E5, E8] = 2E6,
[E3, E7] = −2E4, [E6, E7] = −E5, [E3, E8] = −E4, [E6, E8] = −2E5.

The differentials of e1, . . . , e6 follow on from the expressions of the commutators:

de1 = e46 − e35 + e27 − e28, de2 = e36 + e45 − e17 + e18,

de3 = e15 − e26 − 2e47 − e48, de4 = e52 + e61 + 2e37 + e38,

de5 = e24 − e13 + e67 + 2e68, de6 = e23 + e14 − e57 − 2e58.

Moreover LE7 g0 = LE8 g0 = 0 and LE7 J = LE8 J = 0, so g0 and J0 descend to the quotient
su(3)/t2. Define now the following differential forms on su(3):

σ0 := g0(J0 · , · ) = e12 + e34 + e56,

ϕ0 := −e136 + e246 − e235 − e145,

ψ0 := e135 − e245 − e146 − e236.

They descend to the quotient as well becauseLEk σ0 = 0 = LEk ϕ0 = LEk ψ0, for k = 7, 8, and
their contractions with E7, E8 vanish. We want to check that (σ0, ϕ0, ψ0) satisfy the nearly
Kähler structure equations. The results for the differentials dek, k = 1, . . . , 6, obtained
above yield

dσ0 = e462 − e352 − e136 − e145 + e154 − e264

− e352 − e361 + e246 − e136 − e523 − e514 = 3ϕ0,

and

dψ0 = e4635 + e2735 − e2835 + e1265 + 2e1475 + e1485 + e1324 + e1367 + 2e1368

− e3645 + e1745 − e1845 + e2615 + 2e2375 + e2385 + e2413 − e2467 − 2e2468

+ e3546 − e2746 + e2846 + e1526 + 2e1376 + e1386 − e1423 + e1457 + 2e1458

− e4536 + e1736 − e1836 + e2156 − 2e2476 − e2486 − e2314 + e2357 + 2e2358

= −4(e1234 − e1256 − e3456) = −2σ0 ∧ σ0.

Note that the expressions of dσ0 and dψ0 are T2-invariant because ϕ0 and σ0 ∧ σ0 are, so
these equations still hold on su(3)/t2. Finally, we extend the differential forms σ0, ϕ0, ψ0
to the whole space: using the notations as in Section 1.5 we define

σp(Xp, Yp) := gp(JpXp, Yp),

ψ+|p(Xp, Yp, Zp) := ϕ0(p−1Xp, p−1Yp, p−1Zp),

ψ−|p(Xp, Yp, Zp) := ψ0(p−1Xp, p−1Yp, p−1Zp).

The equations dσ = 3ψ+ and dψ− = −2σ ∧ σ follow automatically and we then get an
explicit nearly Kähler structure (σ, ψ±).
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2.4 The complex projective space CP3

We proceed in a similar fashion as in the previous section, thus skip some technicalities.
The compact symplectic group Sp(2) acts by isometries on C4 ∼= H2 and transitively on S7,
so transitively on the projective space CP3 := (C4 \ {0})/C∗ as well. An element in Sp(2)
is p = ( x y

z w ) such that t pp = Id. Consequently x, w ∈ S3 ∼= Sp(1) and xy + zw = 0, where
conjugation denotes quaternionic conjugation. The matrix p fixes [1 : 0 : 0 : 0] ∈ CP3 if
and only if x is a combination of 1, i and the quaternions z and y vanish. Since x has unit
length it must lie in a circle U(1). The isotropy group of [1 : 0 : 0 : 0] is then isomorphic
to Sp(1)U(1), therefore CP3 is diffeomorphic to Sp(2)/Sp(1)U(1). Write H := Sp(1)U(1)
and G := Sp(2). We then identify H with a subgroup of G containing elements of the
form diag(eiϑ, α), where α is a unit quaternion and ϑ an angle. In the following we denote
by g and h the Lie algebras of G and H respectively.

On the Lie algebra g we define the Killing form as g0(X, Y) := Tr(tXY) = −Tr(XY).
This can be translated to any point p yielding an inner product

gp := Re((p−1
Id )∗g0)

on every tangent space TpG, and descends to the quotient modulo H because it is bi-
invariant. We then get a Riemannian metric on CP3.

The construction of the almost complex structure J follows from the existence of a
diffeomorphism of order three as in the case of the flag: consider A := diag(e2πi/3, 1) in G
and define ϑ̃(B) = ABA−1. Since A3 = Id one has ϑ̃3 = Id and ϑ̃ fixes H, thus ϑ̃ descends
to ϑ : CP3 → CP3, which is a cubic diffeomorphism fixing the coset H. The Lie algebra g
splits as the direct sum h�m. We then define an almost complex structure J0 : m→ m as

J0X := 2√
3
(AXA−1 + 1

2 X).

In order to construct an explicit nearly Kähler structure we fix a basis of g and go
through the same steps of the previous section again. The Lie algebra g contains 2× 2
quaternionic matrices p such that t p + p = 0. This forces p to be spanned by the following
elements:

E0 =

(
k 0
0 0

)
, E1 =

(
j 0
0 0

)
, E2 = 1√

2

(
0 1
−1 0

)
, E3 = 1√

2

(
0 i
i 0

)
E4 = 1√

2

(
0 j
j 0

)
, E5 = 1√

2

(
0 k
k 0

)
, E6 =

(
i 0
0 0

)
, E7 =

(
0 0
0 i

)
E8 =

(
0 0
0 j

)
, E9 =

(
0 0
0 k

)
.

Note that the indices range from 0 to 9, and not from 1 to 10. This will help keep
the notation shorter in the calculations later. The quotient g/h is obviously spanned
by E0, . . . , E5. One can check E0, . . . , E5 are orthonormal, so the metric and the almost
complex structure have the familiar form

g0 = e0 � e0 + . . . + e5 � e5,

J0 = E1 � e0 − E0 � e1 + E3 � e2 − E2 � e3 + E5 � e4 − E4 � e5.
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Now define

σ0 := g0(J0 · , · ) = e01 + e23 + e45,

ϕ0 := e024 − e134 − e035 − e125,

ψ0 := e025 − e135 + e034 + e124.

To check that this structure is nearly Kähler we may observe that it is identical to the one
defined in (1.30), (1.31), (1.32). For completeness we check it explicitly in our special case.
We first need to compute the differentials of ek, k = 0, . . . , 5. The results are

de0 = 2e16 − e25 − e34, de1 = −2e06 − e24 + e35,

de2 = e05 + e14 − e36 + e37 + e48 + e59, de3 = e04 − e15 + e26 − e27 − e49 + e58,

de4 = −e03 − e12 − e28 + e39 − e56 − e57, de5 = −e02 + e13 − e38 + e46 + e47 − e29.

The nearly Kähler structure equations follow by simplifying a routine computation:

dσ = −e251 − e341 + e024 − e035 + e053 + e143 + e483 + e593

− e204 + e215 + e249 − e258 − e035 − e125 − e285 + e395

+ e402 − e413 + e438 + e429 = 3(e024 − e035 − e125 − e134) = 3ϕ0,

dψ0 = 2e1625 − e3425 − e0145 + e0365 − e0375 − e0485 + e0213 − e0238

+ e0246 + e0247 + 2e0635 + e2435 + e1045 + e1265 − e1275 − e1495

+ e1302 − e1346 − e1347 + e1329 + 2e1634 − e2534 + e0154 − e0264

+ e0274 − e0584 − e0312 − e0328 − e0356 − e0357 − 2e0624 + e3524

− e1054 + e1364 − e1374 − e1594 − e1203 + e1239 − e1256 − e1257

= −4(e0123 + e0145 + e2345) = −2σ0 ∧ σ0.

Note these equations and the structure used to check them descend to the quotient g/h.
By left-translation of (σ0, ϕ0, ψ0) we get an SU(3)-structure (σ, ψ±) all over CP3 that is
nearly Kähler.

2.5 The product of three-spheres S3× S3

It is convenient to view S3 × S3 as Sp(1)× Sp(1) ⊂H×H. Recall that Sp(1) is the group
of unit quaternions and is isomorphic to SU(2). A triple (h, k, l) ∈ SU(2)3 acts on S3 × S3

as
((h, k, l), (p, q)) 7→ (hpl−1, kql−1).

This action is obviously transitive and the stabiliser of the point (1, 1) is given by the
triples (h, h, h) ∈ SU(2)3. We denote this isotropy group by SU(2)∆. Therefore S3 × S3 has
the structure of smooth manifold and is diffeomorphic to SU(2)3/SU(2)∆.

We define an almost complex structure at the identity (1, 1) ∈ S3 × S3 as follows:

J0(X, Y) := 1√
3
(X− 2Y, 2X−Y), (X, Y) ∈ sp(1)� sp(1).
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It is trivial to check that J2 = − Id. Now we translate J0 to any pair (p, q) by quaternionic
multiplication: if (X, Y) ∈ TpS3 � TqS3 then (p−1X, q−1Y) ∈ sp(1)� sp(1), so

J0(p−1X, q−1Y) = 1√
3
(p−1X− 2q−1Y, 2p−1X− q−1Y).

Translating the result back to the point (p, q) we then find the vector

1√
3
(X− 2pq−1Y, 2qp−1X−Y).

Therefore, we define an almost complex structure J on S3 × S3 as

J(p,q)(X, Y) := 1√
3
(X− 2pq−1Y, 2qp−1X−Y). (2.8)

The standard product metric 〈 · , · 〉 on S3 × S3 is not invariant under J, so we define a
metric g as the average of 〈 · , · 〉 and 〈J · , J · 〉, and normalise it by a factor 1/3. At the
point (p, q) its expression is

g(X, Y) := 1
6 (〈X, Y〉+ 〈JX, JY〉), X, Y ∈ T(p,q)(S

3 × S3). (2.9)

Trivially, J is g-orthogonal and (g, J) is then an almost Hermitian structure.
Since S3 × S3 is homogeneous for SU(2)3 we can work again at the identity (1, 1) ∈

S3 × S3 to construct a nearly Kähler structure. A matrix p ∈ su(2) is traceless and such
that p + p = 0, so may be identified with an imaginary quaternion in sp(1) ∼= R3. A basis
for su(2)2 is then given by the vectors

E1 = (i, 0), E2 = (j, 0), E3 = (−k, 0),
E4 = (0, i), E5 = (0, j), E6 = (0,−k).

Hence, a basis of each tangent space T(p,q)(S
3 × S3) is obtained by quaternionic multiplica-

tion by the point (p, q) ∈ Sp(1)× Sp(1) on the left:

E1(p, q) = (pi, 0), E2(p, q) = (pj, 0), E3(p, q) = (−pk, 0),
E4(p, q) = (0, qi), E5(p, q) = (0, qj), E6(p, q) = (0,−qk).

The differentials of the duals ek of Ek satisfy dei = 2ejk for (ijk) cyclic permutation of (123)
and (456). We define the differential forms

σ0 := g0(J0 · , · ) = 2
3
√

3

(
e14 + e25 + e36),

ϕ0 := 4
9
√

3

(
e126 − e135 − e156 + e234 + e246 − e345),

ψ0 := −Jϕ0 = − 4
27

(
2e123 + 2e456 + e135 − e156 − e234 − e126 + e246 − e345).

Since dei = 2ejk for cyclic permutations (ijk) = (123), (456), then

dσ0 = 2
3
√

3

(
2e234 − 2e156 + 2e315 − 2e264 + 2e126 − 2e345) = 3ϕ0,

dψ0 = − 4
27

(
2e1364 − 2e2356 − 2e2356 − 2e1245 + 2e3146 − 2e1245)

= − 8
27

(
2e1436 + 2e2536 + e1425)

= −2σ0 ∧ σ0.

The nearly Kähler structure equations follow. By extending σ0, ϕ0, φ0 we get a nearly
Kähler structure (σ, ψ±) on S3 × S3.





Chapter 3

Multi-moment maps

In this chapter we introduce multi-moment maps, the essential ingredient in our theory of
nearly Kähler six-manifolds with two-torus symmetry. They generalise moment maps in
symplectic geometry, we are going to see how.

The set-up we are interested in is characterised by a smooth manifold M, a closed
three-form α on M, and a Lie group G acting on M preserving α. One can also consider
geometries defined by forms of higher degree [MS13]. In general there are topological
obstructions to the existence of such maps, but we do not touch upon this question. We
refer to [MS12] for a general theory, here we focus on concrete examples. Unlike in the
case of symplectic geometry, the dimension of the manifold is not relevant.

The goal is to head to the case where the Lie group acting is a two-torus T2. What we
aim for in the first section, following [MS12, Section 2], is a general definition. The main
construction we use throughout the rest of this work will be part of a final example. In
the remaining sections of this chapter we specialise Example 3.1.5 to the homogeneous
nearly Kähler six-manifolds. We write the explicit expression of the multi-moment maps
in terms of the structures defined in Chapter 2, find their range and critical points. As
already mentioned, we consider actions of a two-torus, which in the first three cases will
be a maximal torus contained in the symmetry groups of the various examples. We will
have to discuss more carefully the case of S3 × S3, where there is no preferred choice of
the T2-action.

An important piece of information is contained in the critical sets of the multi-moment
maps, which is why we shall investigate their structure. In the next chapter we will see
that regular values for our maps exist, and that if s is such a value for a multi-moment
map ν, then we can take the quotient of ν−1(s) by T2 and find a three-dimensional smooth
manifold. The study of critical sets in the homogeneous cases partly integrates this picture
and will play a more general role in topological arguments we go through in Chapter 6.
Also, at critical points the infinitesimal generators of the action are linearly dependent
over C, (cf. (4.2) below). In particular, when the dependence is over the reals then the
torus action cannot be free, and non-trivial stabilisers arise. We will study the structure
of the critical sets computing fixed points and one-dimensional orbits, and see how the
information obtained may be encoded in trivalent graphs (see Chapter 5).

Let us now start describing the general framework. As mentioned already, we in-
troduce one example we will use in the applications. More examples related to other
geometries may be found in Section 6.5.

39
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3.1 The general set-up

Let M be a smooth manifold and α a closed three-form. We call the pair (M, α) a strong
geometry. Now let G be a group of symmetries for (M, α), i.e. a Lie group acting smoothly
on M—say on the left—preserving α. An element X in the Lie algebra g of G generates
a one-parameter group via the exponential map: if p ∈ M and · denotes the action of G
on M, then

φt(p) := exp(tX) · p

is a curve on M for any real value of t and φ0 = IdM, φt+s = φt ◦ φs. Hence X generates a
vector field on M, which we still denote by X. Its expression at p is

Xp =
d
dt

(
exp(tX) · p

)∣∣∣
t=0

.

The correspondence g→ X(M) is a Lie algebra homomorphism. In particular, if X, Y in
g commute, then the induced vector fields on M commute as well. Since the action of G
preserves α, the Lie derivative of α with respect to X vanishes, so Cartan’s formula and
dα = 0 yield

0 = LXα = d(X y α) + X y dα = d(X y α). (3.1)

Now consider Y ∈ g commuting with X. The induced vector fields on M commute, so

0 = X y LYα = LY(X y α) = d(Y y X y α). (3.2)

This shows the one-form α(X, Y, · ) is closed when X and Y commute.
We look at pairs of commuting vector fields as inside the kernel of the linear map

L : Λ2g → g induced by the Lie bracket. We can check that L is g-linear, beucase g acts
on itself by ad : g → gl(g), adX := [X, · ], and on Λ2g by ρ : g → gl(Λ2g), defined as
ρ(X)(Y ∧ Z) := adX(Y) ∧ Z + Y ∧ adX(Z). The Jacobi identity implies

L(ρ(X)(Y ∧ Z)) = L([X, Y] ∧ Z + Y ∧ [X, Z])
= [[X, Y], Z] + [[Z, X], Y] = adX(L(Y ∧ Z)).

Consequently, ker L is a g-submodule of Λ2g. We can then give the following

Definition 3.1.1. The Lie kernel Pg of a Lie algebra g is the g-module

Pg := ker
(

L : Λ2g→ g
)

,

where L is the g-linear map induced by the Lie bracket.

Remark 3.1.2. Note that if G is Abelian, then all pairs in g commute, thus Pg = Λ2g.

We extend here the calculations in (3.1) and (3.2) to elements of the Lie kernel. Let us
fix the notation first: for a bivector p = ∑k

i=1 Xi ∧Yi we write p y α := ∑k
i=1 α(Xi, Yi, · ).

Lemma 3.1.3 ([MS12]). Let G be a group of symmetries for a strong geometry (M, α). Let
p = ∑k

i=1 Xi ∧Yi be an element of the Lie kernel Pg and p = ∑k
i=1 Xi ∧Yi be the corresponding

bivector on M. Then
d(p y α) = 0.
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Proof. We have 0 = L(p) = ∑k
i=1[Xi, Yi] because p sits in Pg. This together with (3.1) and

dα = 0 gives

0 =
k

∑
i=1

[Yi, Xi] y α =
k

∑
i=1

(LYi Xi) y α

=
k

∑
i=1
LYi(Xi y α)− Xi y LYi α =

k

∑
i=1

d(Yi y Xi y α) = d(p y α).

Thus, if for example the first Betti number b1(M) = 0, there is a smooth function
νp : M→ R with dνp = p y α for each p ∈ Pg. We then give the following

Definition 3.1.4 ([MS12]). Let (M, α) be a strong geometry with a symmetry group G. A
multi-moment map is an equivariant map ν : M→ P∗g satisfying

d〈ν, p〉 = p y α, p ∈ Pg. (3.3)

Example 3.1.5. On a nearly Kähler six-manifold we have an SU(3)-structure (σ, ψ+ + iψ−)
satisfying in particular dσ = 3ψ+. Thus (M, 3ψ+) is a strong geometry in the above
sense. Assume a two-torus T2 acts on M preserving σ and ψ+. Since T2 is Abelian, by
Remark 3.1.2 we have that Pt2 = Λ2t2 ∼= R. Let U, V be the infinitesimal generators of the
action, so LUσ = 0 = LVσ. Further, since U and V commute, LV(U y σ) = U y LVσ = 0.
Now, define the real-valued function

νM := σ(U, V).

We claim this is a multi-moment map on M: first of all it is T2-invariant by construction.
Further, by Cartan’s formula one has

dνM = d(V y U y σ) = LV(U y σ)−V y d(U y σ)

= −V y LUσ + V y U y dσ = 3ψ+(U, V, · ),

which is exactly (3.3) with α = 3ψ+ and p = U ∧V.

3.2 On the six-sphere

Let us start applying the construction in Example 3.1.5 to the six-sphere S6 ⊂ R7.
Concretely, the torus action on R7 = C3 � R is the following: consider the maximal
torus T2 inside SU(3) given by matrices of the form Aϑ,φ := diag(eiϑ, eiφ, e−i(ϑ+φ)). If
(z, t) = (z1, z2, z3, t) ∈ C3 � R, then a matrix Aϑ,φ acts on it on the left as

Aϑ,φ(z1, z2, z3, t) := (eiϑz1, eiφz2, e−i(ϑ+φ)z3, t).

Remark 3.2.1. Note that this action is effective: assume Aϑ,φ(z, t) = (z, t) for all (z, t) ∈
C3 � R. Then in particular eiϑz1 = z1 and eiφz2 = z2 for all z1, z2, so eiϑ = eiφ = 1, namely
Aϑ,φ = Id.
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Due to the particular convention chosen for the three-form (2.4) it is convenient to
set z1 = x1 + ix6, z2 = x5 + ix2, z3 = x4 + ix3, and t = x7. Let p = (z1, z2, z3, t) ∈ C3 � R,
then we have the following fundamental vector fields corresponding to (1, 0), (0, 1) ∈ t2:

Up =
d
dt

(
exp((t, 0)) · p

)∣∣∣
t=0

= −x6∂1 − x4∂3 + x3∂4 + x1∂6,

Vp =
d
dt

(
exp((0, t)) · p

)∣∣∣
t=0

= x5∂2 − x4∂3 + x3∂4 − x2∂5.

Plugging the two vectors in the expression of σ found in (2.5), one can compute

νR7(p) = 3
(
x1(x4x5 − x2x3)− x6(x3x5 + x2x4)

)
. (3.4)

On the other hand z2z3 = x4x5 − x2x3 + i(x3x5 + x2x4), so our map can also be written as

νR7(p) = 3(Re(z1)Re(z2z3)− Im(z1) Im(z2z3)) = 3 Re(z1z2z3).

Note that this expression is invariant under the action of T2 as expected, because mapping
z1 7→ eiϑz1, z2 7→ eiφz2, z3 7→ e−i(ϑ+φ)z3 leaves νR7 unchanged.

What we need now is the restriction of this map to the six-sphere, which we call νS6 .
Since ψ+ = i∗ϕ, we have

dνS6 = 3ψ+(U, V, · ) = 3(i∗ϕ)(U, V, · ) = 3g(P(U, V), · )TS6 ,

which vanishes if and only if P(U, V) is parallel to N, by non-degeneracy of the metric.
We work out when this happens on the sphere by computing P(U, V) and imposing it is
parallel to N. One finds

g(P(U, V), ∂1) = φ(∂1,−x6∂1 − x4∂3 + x3∂4 + x1∂6, x5∂2 − x4∂3 + x3∂4 − x2∂5)

= φ(∂1,−x4∂3,+x5∂2) + φ(∂1, x3∂4,−x2∂5)

= x4x5 − x2x3,

g(P(U, V), ∂2) = φ(∂2,−x6∂1 − x4∂3 + x3∂4 + x1∂6, x5∂2 − x4∂3 + x3∂4 − x2∂5)

= φ(∂2,−x6∂1,−x4∂3) + φ(∂2, x1∂6, x3∂4)

= −x4x6 − x1x3,

g(P(U, V), ∂3) = φ(∂3,−x6∂1 − x4∂3 + x3∂4 + x1∂6, x5∂2 − x4∂3 + x3∂4 − x2∂5)

= φ(∂3,−x6∂1, x5∂2) + φ(∂3, x1∂6,−x2∂5)

= −x5x6 − x1x2,

g(P(U, V), ∂4) = φ(∂4,−x6∂1 − x4∂3 + x3∂4 + x1∂6, x5∂2 − x4∂3 + x3∂4 − x2∂5)

= φ(∂4,−x6∂1,−x2∂5) + φ(∂4, x1∂6, x5∂2)

= −x2x6 + x1x5,

g(P(U, V), ∂5) = φ(∂5,−x6∂1 − x4∂3 + x3∂4 + x1∂6, x5∂2 − x4∂3 + x3∂4 − x2∂5)

= φ(∂5,−x6∂1, x3∂4) + φ(∂5, x1∂6,−x4∂3)

= −x3x6 + x1x4,
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g(P(U, V), ∂6) = φ(∂6,−x6∂1 − x4∂3 + x3∂4 + x1∂6, x5∂2 − x4∂3 + x3∂4 − x2∂5)

= φ(∂6,−x4∂3,−x2∂5) + φ(∂6, x3∂4, x5∂2)

= −x2x4 − x3x5,

g(P(U, V), ∂7) = φ(∂7,−x6∂1 − x4∂3 + x3∂4 + x1∂6, x5∂2 − x4∂3 + x3∂4 − x2∂5)

= φ(∂7,−x4∂3, x3∂4) + φ(∂7, x3∂4,−x4∂3)

= 0.

Therefore

P(U, V) = (x4x5 − x2x3)∂1 − (x4x6 + x1x3)∂2

− (x5x6 + x1x2)∂3 + (x1x5 − x2x6)∂4

+ (x1x4 − x3x6)∂5 − (x2x4 + x3x5)∂6.

To see where P(U, V) is proportional to N = x1∂x1 + . . . + x7∂x7 we need to find the points
(x1, . . . , x7) such that λx7 = 0 and

x4x5 − x2x3 = λx1

−x4x6 − x1x3 = λx2

−x5x6 − x1x2 = λx3,


x1x5 − x2x6 = λx4

x1x4 − x3x6 = λx5

−x2x4 − x3x5 = λx6,

for some real number λ. We start with the case λ = 0, which gives points p where
P(U, V) = 0, i.e. Up and Vp are linearly dependent over R, namely the multi-moment
map vanishes.

Assume x1 = 0, then one gets a trivial case if x6 6= 0, namely x2 = x3 = x4 = x5 = 0,
whereas when x6 = 0 we get only two equations: x4x5 − x2x3 = 0 = x2x4 + x3x5. Now if
x2 = x5 = 0 then x3, x4, x7 are subject to no constraint and we are done. Otherwise, the
system tells us the vector (x3, x4) is parallel and orthogonal to (x2, x5) with respect to the
standard scalar product in R2, so x3 = x4 = 0. The results may be summarised as follows:

1. x1 = x2 = x3 = x4 = x5 = 0, (x6)2 + (x7)2 = 1.

2. x1 = x2 = x5 = x6 = 0, (x3)2 + (x4)2 + (x7)2 = 1.

3. x1 = x3 = x4 = x6 = 0, (x2)2 + (x5)2 + (x7)2 = 1.

When x1 6= 0 we end up with x4x5 − x2x3 = 0 = x2x4 + x3x5 and the relations

x2 = −x5x6/x1, x3 = −x4x6/x1, x4 = x3x6/x1, x5 = x2x6/x1. (3.5)

Then x4x5 − x2x3 = 2x2x4x6/x1 = 0, thus one of the following cases is necessary: x2 = 0,
x4 = 0, or x6 = 0.

If x2 = 0 then x5 = 0 as well by (3.5). Combining the relations giving x3 and x4 one
finds that x3 = x4 = 0. Thus x1 6= 0 and x2, . . . , x5 vanish. This result together with
solution 1 above implies there is a third two-sphere of critical points, that is (x1)2 + (x6)2 +
(x7)2 = 1. In the case x4 = 0 we get the same result. When x6 = 0 then x2, . . . , x5 = 0,
with x1 6= 0.

Therefore, we obtain three two-spheres of critical points where the multi-moment map
vanishes:
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1. (x1)2 + (x6)2 + (x7)2 = 1 and x2 = x3 = x4 = x5 = 0.

2. (x2)2 + (x5)2 + (x7)2 = 1 and x1 = x3 = x4 = x6 = 0.

3. (x3)2 + (x4)2 + (x7)2 = 1 and x1 = x2 = x5 = x6 = 0.

Note that they intersect only at the poles (x7)2 = 1, xi = 0, i 6= 7. We will come back
to this fact later. Consider now the case λ 6= 0. Assume we are at a critica point p, so in
particular x7 = 0. If x1 6= 0, then we can move p in the direction of U—i.e. multiplying p
by diag(eiϑ, 1, e−iϑ) on the left—getting a point of the form

(x1 cos ϑ− x6 sin ϑ, · , · , · , · , x6 cos ϑ + x1 sin ϑ, 0),

and this is still a critical point by the T2-invariance of the differential of the multi-moment
map. We can always choose ϑ such that x1 cos ϑ− x6 sin ϑ = 0. So we assume x1 = 0 and
x6 ≥ 0 up to the action of U. Now one can move this new point in the direction of V
multiplying by diag(1, eiφ, e−iφ). The action fixes the plane x1 + ix6, so the first component
remains the same. We get

(0, x2 cos φ− x5 sin φ, · , · , · , · , 0).

As above, we can choose φ such that x2 cos φ− x5 sin φ = 0. So, up to the action of U
and V, we can assume x1 = x2 = 0 and x5, x6 ≥ 0. The system of equations characterising
critical points yields x4 = 0 and x5x6 = −λx3, x3x6 = −λx5, x3x5 = −λx6. If one among
x3, x5, x6 vanishes, so do all the others, and we get a contradiction because we need
solutions on the sphere. Therefore we can assume without loss of generality all of them
non-zero, which gives (xi)2 = λ2 for i = 3, 5, 6, namely x5 = x6 = 1/

√
3 and (x3)2 = 1/3.

We thus obtain two stationary T2-orbits where νS6 attains its maximum and minimum,
and νS6(S6) = [−1/

√
3, 1/
√

3].

3.3 On the flag manifold

Consider the maximal torus T2 in SU(3) given by the matrices diag(eiα, eiβ, e−i(α+β)). Two
linearly independent generators of its Lie algebra are then

U = diag(i, 0,−i), V = diag(0, i,−i),

and the infinitesimal generators of the action at p ∈ SU(3) are given by

Up := Up =
d
dt

(
exp(tU) · p

)∣∣∣
t=0

, Vp := Vp =
d
dt

(
exp(tV) · p

)∣∣∣
t=0

.

Thus p−1Up, p−1Vp are vectors in the Lie algebra su(3), which splits as t2 �m, m contain-
ing matrices with zeros on the diagonal. So when we work on the quotient SU(3)/T2 we
need to consider the projections (p−1Up)m and (p−1Vp)m.

A matrix p = (pij) ∈ SU(3) satisfies the conditions det p = 1 and
|p11|2 + |p21|2 + |p31|2 = 1
|p12|2 + |p22|2 + |p32|2 = 1
|p13|2 + |p23|2 + |p33|2 = 1,


p11 p12 + p21 p22 + p31 p32 = 0
p11 p13 + p21 p23 + p31 p33 = 0
p12 p13 + p22 p23 + p32 p33 = 0.
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One can compute explicitly p−1Up, p−1Vp and project them onto m:

(p−1Up)m =

 iz1 iz2

iz1 iz3

iz2 iz3

 ,


z1 = p11 p12 − p31 p32

z2 = p11 p13 − p31 p33

z3 = p12 p13 − p32 p33,

(p−1Vp)m =

 iw1 iw2

iw1 iw3

iw2 iw3

 ,


w1 = p21 p22 − p31 p32

w2 = p21 p23 − p31 p33

w3 = p22 p23 − p32 p33.

Note that the coefficients zi and wk are all T2-invariant. Using the set-up as in Section 2.3
we write (p−1Up)m, (p−1Vp)m in terms of the basis of su(3)/t2, the vectors J(p−1Up)m
and J(p−1Vp)m follow trivially by (2.7):

(p−1Up)m = Re z1E1 − Im z1 JE1 − Im z2E3

+ Re z2 JE3 + Re z3E5 − Im z3 JE5, (3.6)

(p−1Vp)m = Re w1E1 − Im w1 JE1 − Im w2E3

+ Re w2 JE3 + Re w3E5 − Im w3 JE5. (3.7)

The multi-moment map is then νF1,2(C3)(p) = σp(Up, Vp) = σ0((p−1Up)m, (p−1Vp)m),
namely

νF1,2(C3)(p) = −Re z1 Im w1 + Re w1 Im z1 − Im z2 Re w2

+ Re z2 Im w2 − Re z3 Im w3 + Re w3 Im z3

= − Im(z1w1 − z2w2 + z3w3).

Since zi, wk are T2-invariant it is clear that νF1,2(C3) is T2-invariant as well.
We go ahead and compute dνF1,2(C3) = 3ψ+(U, V, · ), where U, V are shorthands for

the vectors in (3.6), (3.7). Recall that

ψ+ = −e1 ∧ e3 ∧ Je5 + Je1 ∧ Je3 ∧ Je5 − Je1 ∧ e3 ∧ e5 − e1 ∧ Je3 ∧ e5.

Therefore

−e1 ∧ e3 ∧ Je5(U, V, · ) = −e1(U)e3(V)Je5 + e1(U)Je5(V)e3 + e3(U)e1(V)Je5

− e3(U)Je5(V)e1 − Je5(U)e1(V)e3 + Je5(U)e3(V)e1

= (Im z3 Im w2 − Im z2 Im w3)e1

+ (Im z3 Re w1 − Re z1 Im w3)e3

+ (Re z1 Im w2 − Im z2 Re w1)Je5,

Je1 ∧ Je3 ∧ Je5(U, V, · ) = Je1(U)Je3(V)Je5 − Je1(U)Je5(V)Je3 − Je3(U)Je1(V)Je5

+ Je3(U)Je5(V)Je1 + Je5(U)Je1(V)Je3 − Je5(U)Je3(V)Je1

= (Im z3 Re w2 − Re z2 Im w3)Je1

+ (Im z3 Im w1 − Im z1 Im w3)Je3

+ (Re z2 Im w1 − Im z1 Re w2)Je5,
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−Je1 ∧ e3 ∧ e5(U, V, · ) = −Je1(U)e3(V)e5 + Je1(U)e5(V)e3 + e3(U)Je1(V)e5

− e3(U)e5(V)Je1 − e5(U)Je1(V)e3 + e5(U)e3(V)Je1

= (Im z2 Re w3 − Re z3 Im w2)Je1

+ (Re z3 Im w1 − Im z1 Re w3)e3

+ (Im z2 Im w1 − Im z1 Im w2)e5,

−e1 ∧ Je3 ∧ e5(U, V, · ) = −e1(U)Je3(V)e5 + e1(U)e5(V)Je3 + Je3(U)e1(V)e5

− Je3(U)e5(V)e1 − e5(U)e1(V)Je3 + e5(U)Je3(V)e1

= (Re z3 Re w2 − Re z2 Re w3)e1

+ (Re z1 Re w3 − Re z3 Re w1)Je3

+ (Re z2 Re w1 − Re z1 Re w2)e5.

Thus summing all terms

ψ+(U, V, · )|p = (Im z3 Im w2 − Im z2 Im w3 + Re z3 Re w2 − Re z2 Re w3)e1

+ (Im z3 Re w2 − Re z2 Im w3 + Im z2 Re w3 − Re z3 Im w2)Je1

+ (Im z3 Re w1 − Re z1 Im w3 + Re z3 Im w1 − Im z1 Re w3)e3

+ (Im z3 Im w1 − Im z1 Im w3 + Re z1 Re w3 − Re z3 Re w1)Je3

+ (Im z2 Im w1 − Im z1 Im w2 + Re z2 Re w1 − Re z1 Re w2)e5

+ (Re z1 Im w2 − Im z2 Re w1 + Re z2 Im w1 − Im z1 Re w2)Je5

= Re(z3w2 − z2w3)e1 + Im(z3w2 + z2w3)Je1 + Im(z3w1 − z1w3)e3

+ Re(z1w3 − z3w1)Je3 + Re(z2w1 − z1w2)e5 + Im(z2w1 + z1w2)Je5.

This implies that a point p ∈ SU(3)/T2 is critical if and only if

z2w3 = z3w2, z1w3 = z3w1, z1w2 = z2w1.

Since p lies in SU(3), using the relations z1 + w1 = −3p31 p32, z2 + w2 = −3p31 p33, z3 +
w3 = −3p32 p33 we find that p is critical precisely when


p22 p23 p31 p33 = p21 p23 p32 p33

p22 p23 p31 p32 = p21 p22 p32 p33

p21 p23 p31 p32 = p21 p22 p31 p33.

(3.8)

We may use the T2-actions on the left and on the right to simplify the system: the matrix p
becomes ei(α+σ)p11 ei(α+ρ)p12 ei(α−σ−ρ)p13

ei(β+σ)p21 ei(β+ρ)p22 ei(β−σ−ρ)p23

ei(γ+σ)p31 ei(γ+ρ)p32 ei(γ−σ−ρ)p33

 ,



3.3. On the flag manifold 47

so we can make p21, p22, p23, p32 real and non-negative. This is possible because there are
unique values of β, γ, σ, ρ such that

β + σ = −c21

β + ρ = −c22

β− σ− ρ = −c23

γ + ρ = −c32,

where cij is the argument of pij. Let us write a = p21, b = p22, c = p23, d = p32. Then (3.8)
becomes 

bcp31 p33 = acdp33

bcdp31 = abdp33

acdp31 = abp31 p33.

Our set-up is invariant under cyclic permutations of columns or rows of p up to a sign of
νF1,2(C3), so in order to work out maxima and minima we can distinguish three cases:

1. a = b = 0, c 6= 0,

2. a = 0, b 6= 0, c 6= 0,

3. a 6= 0, b 6= 0, c 6= 0.

In the first one the criticality conditions are automatically satisfied. Since rows and
columns are unitary, one necessarily has p13 = p33 = 0 and c = 1. The conditions
characterising p ∈ SU(3) imply 

|p11|2 + |p31|2 = 1
|p12|2 + d2 = 1
p11 p12 + p31d = 0
p12 p31 − p11d = 1.

When d = 0 then p31 = eiϑ, which implies p12 = e−iϑ and p11 = 0. If d 6= 0 then the last
two equations yield p11 = (p12 p31− 1)/d and p31 = −p11 p12/d. Using that d2 + |p12|2 = 1
and |p11|2 + |p31|2 = 1 we find p31 = p12 and p11 = −|p11|2/d. In particular, p11 is real
and non-positive. If it is zero then we get p31 = eiϑ and p12 = e−iϑ, whereas all the other
entries except for c vanish. If p11 6= 0, then p11 = −d. In all cases p has the following form:−d p12 0

0 0 1
p12 d 0

 , with |p12|2 + d2 = 1.

In the second case the critical conditions become p31 p33 = 0 and p31d = 0. Assume
first p31 = 0. Then p11 = eiϑ, p12 = p13 = 0 and the conditions on p yield{

b2 + d2 = 1
c2 + |p33|2 = 1,

{
bc + dp33 = 0
bp33eiϑ − cdeiϑ = 1.
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If d = 0 then c = 0 as well, but this is a contradiction, so d 6= 0. We then find p33 = −bc/d,
so in particular p33 is real. Then bp33eiϑ − cdeiϑ = 1 forces eiϑ = ±1, so d = −c when
eiϑ = 1 and c = d when eiϑ = −1. This yields the solutions

p =

1 0 0
0 b c
0 −c b

 ,

−1 0 0
0 b c
0 c −b

 , with b2 + c2 = 1.

If p31 6= 0 then necessarily p33 = 0 and d = 0 by criticality, which implies p31 = eiϑ and
p11 = 0. Imposing that p lies in SU(3) we find the conditions

eiϑ(p12c− p13b) = 1
|p12|2 + b2 = 1
|p13|2 + c2 = 1
p12 p13 + bc = 0.

Now p13 = 0 would imply b = 0, so p13 6= 0 and then p12 = −(c/b)p13. The first equation
yields p13 = −be−iϑ, so p12 = ce−iϑ. Then p has the form 0 ce−iϑ −be−iϑ

0 b c
eiϑ 0 0

 , with b2 + c2 = 1.

The multi-moment map vanishes at all the critical points found.
In the third case a, b, c 6= 0 then d cannot be 0, otherwise the criticality conditions

would imply either p31 = 0 or p33 = 0, thus either a = 0 or c = 0. Then our equations are
bp31 p33 = ap33d
cp31 = ap33

cp31d = bp31 p33.

Set p31 := ρeiϑ, p33 := σeiϕ, so that the system becomes
bρσei(ϕ−ϑ) = aσe−iϕd
cρeiϑ = aσe−iϕ

cρeiϑd = bρσei(ϕ−ϑ).

Observe that if ρ = 0 then σ = 0, so d = 1 and b = 0, which is a contradiction. Anal-
ogously, if σ = 0 then ρ = 0, contradiction. Then p31, p33 6= 0 and a comparison of
the arguments in the system shows that 3ϕ ≡ 0 (mod 2π), ϑ ≡ −ϕ (mod 2π). Com-
paring the radii we obtain ad = bρ, cρ = aσ, cd = bσ, so ρ = ad/b and σ = cd/b and
p31 = (ad/b)e−iϕ, p33 = (cd/b)eiϕ. Now second and third row have unit length, whence
a2d2/b2 + d2 + c2d2/b2 = 1, which implies d = b. Our matrix has then the form p11 p12 p13

a b c
ae−iϕ b ceiϕ

 ,
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and the constraint p ∈ SU(3) gives
|p11|2 + 2a2 = 1
|p12|2 + 2b2 = 1
|p13|2 + 2c2 = 1,


p11 p12 = −ab(1 + eiϕ)

p11 p13 = −ac(1 + eiϕ)

p12 p13 = −bc(1 + eiϕ).

The second system in particular implies the chain of equations

p11 p12

ab
=

p11 p13

ac
=

p12 p13

bc
= −1− eiϕ,

whereas the first allows us to write p11 =
√

1− 2a2eiα, p12 =
√

1− 2b2eiβ, p13 =√
1− 2c2eiγ. Now we have three possibilities: ϕ = 0, ϕ = 2π/3, ϕ = 4π/3. In the

first one two rows in the matrix p are the same, so the determinant vanishes, which is a
contradiction. We can then assume ϕ = 2π/3, so that

p11 p12

ab
=

p11 p13

ac
=

p12 p13

bc
= e4πi/3.

Comparing the arguments we find
β− α ≡ 4π/3 (mod 2π)

α− γ ≡ 4π/3 (mod 2π)

γ− β ≡ 4π/3 (mod 2π),

which implies β ≡ α + 4π/3 (mod 2π) and γ ≡ α + 2π/3 (mod 2π). Comparing the
radii instead, we get

c
√

1− 2a2
√

1− 2b2 = b
√

1− 2a2
√

1− 2c2

c
√

1− 2a2
√

1− 2b2 = a
√

1− 2b2
√

1− 2c2

b
√

1− 2a2
√

1− 2c2 = a
√

1− 2b2
√

1− 2c2.

We can assume a, b, c 6= 1/
√

2, otherwise we swap first and second row and end up with
one of the cases we started with. Hence a = b = c = 1/

√
3. We have an expression for all

the entries of our matrix p, which then has the form

1√
3

 eiα ei(α+4π/3) ei(α+2π/3)

1 1 1
e−2πi/3 1 e2πi/3

 ,

Imposing the condition det p = 1 we find α ≡ 7π/6 (mod 2π), so

p =
1√
3

iω i iω2

1 1 1
ω2 1 ω

 , with ω = e2πi/3. (3.9)

This is a point of minimum, the value of the multi-moment map at p is −
√

3/2.
The last case ϕ = 4π/3 is similar: we have p11 p12/ab = p11 p13/ac = p12 p13/bc =

e2πi/3, whence 
β− α ≡ 2π/3 (mod 2π)

α− γ ≡ 2π/3 (mod 2π)

γ− β ≡ 2π/3 (mod 2π),
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so β ≡ α + 2π/3 (mod 2π), γ ≡ α + 4π/3 (mod 2π). The comparison of the radii still
yields a = b = c = 1/

√
3. The condition det p = 1 implies α = 5π/6. So

p =
1√
3

−iω2 −i −iω
1 1 1
ω 1 ω2

 , ω = e2πi/3,

and since νF1,2(C3)(p) = −νF1,2(C3)(p), by (3.9) the value of the multi-moment map is
√

3/2.
Summing up, we got two stationary orbits corresponding to maximum and minimum,
and Im νF1,2(C3) = [−

√
3/2,
√

3/2].

3.4 On the complex projective space

Let T2 be the maximal torus in G = Sp(2) given by matrices of the form diag(eiϑ, eiϕ).
Then the generators of sp(2) are U = diag(i, 0) and V = diag(0, i). We want to compute
the vectors p−1Up and p−1Vp in terms of the coefficients of p as an element of Sp(2). We
split p as pik = p1

ik + p2
ik j, where p1, p2 are now 2× 2 matrices of complex numbers, and

recall that p−1 = t p, which is equivalent to{
t p1 p1 + t p2 p2 = Id
t p1 p2 − t p2 p1 = 0.

Expanding this system we get the conditions
|p1

11|2 + |p1
21|2 + |p2

11|2 + |p2
21|2 = 1

|p1
12|2 + |p1

22|2 + |p2
12|2 + |p2

22|2 = 1
p1

11 p1
12 + p1

21 p1
22 + p2

12 p2
11 + p2

22 p2
21 = 0

p1
11 p2

12 + p1
21 p2

22 − p1
12 p2

11 − p1
22 p2

21 = 0.

We can thus calculate the vectors generating the action:

p−1Up =

((
p1

11 p1
21

p1
12 p1

22

)
−
(

p2
11 p2

21
p2

12 p2
22

)
j
)((

ip1
11 ip1

12
0 0

)
+

(
ip2

11 ip2
12

0 0

)
j
)

=

(
i(|p1

11|2 − |p2
11|2) i(p1

11 p1
12 − p2

11 p2
12)

i(p1
12 p1

11 − p2
12 p2

11) i(|p1
12|2 − |p2

12|2)

)
+

(
2ip1

11 p2
11 i(p1

11 p2
12 + p2

11 p1
12)

i(p1
12 p2

11 + p2
12 p1

11) 2ip2
12 p1

12

)
j,

p−1Vp =

((
p1

11 p1
21

p1
12 p1

22

)
−
(

p2
11 p2

21
p2

12 p2
22

)
j
)((

0 0
ip1

21 ip1
22

)
+

(
0 0

ip2
21 ip2

22

)
j
)

=

(
i(|p1

21|2 − |p2
21|2) i(p1

21 p1
22 − p2

21 p2
22)

i(p1
22 p1

21 − p2
22 p2

21) i(|p1
22|2 − |p2

22|2)

)
+

(
2ip1

21 p2
21 i(p1

21 p2
22 + p2

21 p1
22)

i(p1
22 p2

21 + p2
22 p1

21) 2ip1
22 p2

22

)
j.

The Lie algebra h contains elements of the form
(

ia 0
0 ib

)
+
(

0 0
0 c
)

j, with a, b real and c
complex. The Lie algebra g splits as h�m. The projections (p−1Up)m, (p−1Vp)m must be
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of the form
( xj ρ
−ρ 0

)
, for x complex and ρ quaternion, so

(p−1Up)m =

(
α

−α

)
+

(
γj 0
0 0

)
,

{
α = i(p1

11 p1
12 − p2

11 p2
12) + i(p1

11 p2
12 + p2

11 p1
12)j

γ = 2ip1
11 p2

11,

(p−1Vp)m =

(
β

−β

)
+

(
δj 0
0 0

)
,

{
β = i(p1

21 p1
22 − p2

21 p2
22) + i(p1

21 p2
22 + p2

21 p1
22)j

δ = 2ip1
21 p2

21.

We now write (p−1Up)m, (p−1Vp)m in terms of the basis introduced in Section 2.4: note
that we shift the indices so that E0 7→ E1, . . . , E5 7→ E6, the first convention we used is no
longer needed. Then

(p−1Up)m = 2 Re(p1
11 p2

11)E1 − 2 Im(p1
11 p2

11)E2

+
√

2
(
− Im(p1

11 p1
12 − p2

11 p2
12)E3 + Re(p1

11 p1
12 − p2

11 p2
12)E4

− Im(p1
11 p2

12 + p2
11 p1

12)E5 + Re(p1
11 p2

12 + p2
11 p1

12)E6

)
,

(p−1Vp)m = 2 Re(p1
21 p2

21)E1 − 2 Im(p1
21 p2

21)E2

+
√

2
(
− Im(p1

21 p1
22 − p2

21 p2
22)E3 + Re(p1

21 p1
22 − p2

21 p2
22)E4

− Im(p1
21 p2

22 + p2
21 p1

22)E5 + Re(p1
21 p2

22 + p2
21 p1

22)E6

)
.

It is convenient to write

(p−1Up)m = f ′E1 + e′E2 +
√

2(a′E3 + b′E4 + c′E5 + d′E6),

(p−1Vp)m = f ′′E1 + e′′E2 +
√

2(a′′E3 + b′′E4 + c′′E5 + d′′E6),

where α = a′ + b′i + c′ j + d′k, β = a′′ + b′′i + c′′ j + d′′k, γ = e′ + f ′i, δ = e′′ + f ′′i. The
multi-moment map ν

CP3(p) = σ((p−1Up)m, (p−1Vp)m), with σ as in Section 2.4, has the
form

ν
CP3(p) = ( f ′e′′ − f ′′e′) + 2(a′b′′ − a′′b′ + c′d′′ − c′′d′)

= Im γδ + 2 Re(iαβ), (3.10)

which is indeed invariant under the torus action, because α, β, γ, δ are invariant.
We now want to find the points where ψ+(U, V, · ) = 0. In this case at the identity

ψ+ = e1 ∧ e3 ∧ e5 − Je1 ∧ Je3 ∧ e5 − e1 ∧ Je3 ∧ Je5 − Je1 ∧ e3 ∧ Je5.

Again, we use U and V as shorthands for (p−1Up)m, (p−1Vp)m. Therefore

V y U y (e1 ∧ e3 ∧ e5) = 2(a′c′′ − a′′c′)e1 +
√

2(c′ f ′′ − f ′c′′)e3 +
√

2( f ′a′′ − a′ f ′′)e5,

−V y U y (Je1 ∧ Je3 ∧ e5) = 2(c′b′′ − b′c′′)Je1 +
√

2(e′c′′ − c′e′′)Je3 +
√

2(b′e′′ − b′′e′)e5,

−V y U y (e1 ∧ Je3 ∧ Je5) = 2(b′′d′ − b′d′′)e1 +
√

2( f ′d′′ − d′ f ′′)Je3 +
√

2(b′ f ′′ − f ′b′′)Je5,

−V y U y (Je1 ∧ e3 ∧ Je5) = 2(a′′d′ − a′d′′)Je1 +
√

2(e′d′′ − d′e′′)e3 +
√

2(a′e′′ − e′a′′)Je5.
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The equation ψ+(U, V, · )|p = 0 is then equivalent to the system

(a′c′′ − a′′c′) + (b′′d′ − b′d′′) = 0
(b′′c′ − b′c′′) + (a′′d′ − a′d′′) = 0
(c′ f ′′ − f ′c′′) + (e′d′′ − d′e′′) = 0
(e′c′′ − c′e′′) + ( f ′d′′ − d′ f ′′) = 0
( f ′a′′ − a′ f ′′) + (b′e′′ − b′′e′) = 0
(b′ f ′′ − f ′b′′) + (a′e′′ − e′a′′) = 0.

A direct calculation shows that these conditions may be rephrased in terms of α, β, γ, δ as

αβ ∈ Span{1, i}, αδ− βγ ∈ Span{1, i}, αδ− βγ ∈ Span{j, k}.

In terms of the pk
ij, the latter three conditions are respectively

p1
11 p1

21(p1
12 p2

22 − p2
12 p1

22) + p2
11 p2

21(p1
12 p2

22 − p2
12 p1

22)

+p1
11 p2

21(p2
12 p2

22 + p1
12 p1

22)− p2
11 p1

21(p1
12 p1

22 + p2
12 p2

22) = 0

p1
11 p2

11(p1
21 p2

22 + p2
21 p1

22)− p1
21 p2

21(p1
11 p2

12 + p2
11 p1

12) = 0

p1
11 p2

11(p1
21 p1

22 − p2
21 p2

22)− p1
21 p2

21(p1
11 p1

12 − p2
11 p2

12) = 0.

As in the previous case, we combine the left action of T2 and the right action of Sp(1)U(1):(
eiϑ

eiϕ

)(
p11 p12
p21 p22

)(
eiτ

ω

)
=

(
eiϑ p11eiτ eiϑ p12ω
eiϕ p21eiτ eiϕ p22ω

)
.

Thus ω ∈ Sp(1) can be fixed so that p12 = c is a non-negative real number, ϑ, ϕ, τ can be
chosen so that p11 = a + bj, where a, b are non-negative real numbers, and p21 = d + ρj,
where d is a non-negative real and ρ is complex. Therefore we can assume without loss of
generality that p has the form

p =

(
a + bj c
d + ρj σ + τ j

)
.

The system giving critical points then reduces to
c
(
a(τd + ρσ)− b(σd− ρτ)

)
= 0

b
(
a(τd + ρσ)− cρd

)
= 0

a
(
b(σd− ρτ)− cρd

)
= 0,

and the conditions defining Sp(2) are
a2 + b2 + d2 + |ρ|2 = 1
ac + σd + ρτ = 0
bc− τd + ρσ = 0
c2 + |σ|2 + |τ|2 = 1.

In order to solve these systems we first distinguish two main cases: c = 0 and c > 0.
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When c = 0 then the critical conditions become ab(τd + ρσ) = 0 and ab(σd− ρτ) = 0.
Then either ab = 0 or ab 6= 0. However, in the case c = 0 we cannot have a = 0 = b, so
the first subcase implies a = 0 and b 6= 0 or a 6= 0 and b = 0. In both, the conditions
giving criticality are satisfied, moreover either b = 1 or a = 1 respectively. This implies
d = 0 = ρ, so the matrices we get are simply(

j 0
0 σ + τ j

)
,

(
1 0
0 σ + τ j

)
.

When both a and b are non-zero, then τd + ρσ = 0 = σd − ρτ by criticality and
σd + ρτ = 0 = ρσ− τd by the conditions on Sp(2). Thus ρσ = 0 = σd. So if σ = 0 then
we are at a critical point, and τ has length one. This implies d = 0 = ρ. If σ 6= 0 instead,
then d = 0 = ρ. So in the respective cases we find the critical points(

a + bj 0
0 τ j

)
,

(
a + bj 0

0 σ + τ j

)
.

All the points found are zeros of the multi-moment map.
To find non-zero critical points we can then safely assume c > 0. The system giving

criticality simplifies as 
a(dτ + ρσ)− b(dσ + ρτ) = 0
b(a(dτ + ρσ)− cdρ) = 0
a(b(dσ− ρτ)− cdρ) = 0.

We distinguish four cases:

1. a = b = 0.

2. a = 0, b 6= 0.

3. a 6= 0, b = 0.

4. a 6= 0, b 6= 0.

The first one yields critical points automatically and we can then split the system defining
Sp(2) according to the subcases d = 0 or d 6= 0. If d = 0 then ρ = eiϑ, thus σ = 0 = τ.
When d 6= 0 then σ = −ρτ/d and τ = ρσ/d. Therefore τ = −(|ρ|2/d2)τ, which implies
τ = 0, hence σ = 0. So c = 1, and we have found the critical points(

0 c
d + ρj σ + τ j

)
,

(
0 1

d + ρj 0

)
.

Again, the multi-moment map vanishes at them.
In the second case a = 0 and b 6= 0. Critical points are thus characterised by the two

equations −σd + ρτ = 0 and ρd = 0. But σd + ρτ = 0, so the two conditions are in fact
ρτ = 0 = ρd. There are two subcases: ρ = 0 or ρ 6= 0 and d = 0 = τ. In the first one d 6= 0,
otherwise c = 0, and we are assuming c positive. Then σ = 0 and we are done. In the case
ρ 6= 0 and d = 0 = τ then we get a critical point with bc + ρσ = 0, which specifies σ. But
the conditions on Sp(2) imply that either ρ = 0 or c = 0 or b = 0, so a contradiction. All
in all we find the critical points (

bj c
d τ j

)
,
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and the multi-moment map vanishes at them.
The third case a 6= 0, b = 0 is similar. The constraints yielding critical points are

ρσ = 0 = dρ, so either ρ = 0 or ρ 6= 0 and σ = 0 = d. In both cases we find critical points
where ν

CP3 vanishes.
Lastly, we have the fourth case a, b 6= 0. One can easily see that in the system giving

critical points the equation a(τd + ρσ)− b(σd + ρτ) = 0 is redundant. The orthogonality
relations for Sp(2) yield the condition bσd = aρσ. So we have the subcases σ = 0 and
σ 6= 0. In the first one we find the critical point(

a + bj c
d + ρj τ j

)
,

where now ρ and τ are reals. The multi-moment map vanishes at these points.
We have finally arrived to the last case a, b, c, σ 6= 0, where we get the first non-zero

critical points. The critical conditions are{
a(τd + ρσ) = cρd
b(σd− ρτ) = cρd,

and orthogonality of the columns of matrices in Sp(2) yields{
τd− ρσ = bc
σd + ρτ = −ac.

Plugging the last two equations in the critical conditions above we find four equations
giving information on σ and τ:

aρσ = bσd,
aτd = −bρτ,
abc = aτd− bσd,
abc = −aρσ− bρτ.

The first two force the values of ρ, σ, τ in the following way: write ρ = Reir, σ = Seis, and
τ = Teit. Comparing the angles in the first two equations we find the congruences

s ≡ r− s (mod 2π),
t ≡ π + r− t (mod 2π),

which imply t = π/2 + s (mod π). This gives two subcases: eit = ieis and eit = −ieis,
which we solve in the same fashion. Observe that eir = e2is, so plugging these results in
our starting equations aρσ = bσd and aτd = −bρτ we find R = ad/b = bd/a, hence a = b.
Therefore, the equations aρσ = bσd and aτd = −bρτ simplify as ρσ = σd, τd = −ρτ.
They imply σ = ρσ/d and τ = −ρτ/d, so

|σ|2 + |τ|2 = |ρ|2
d2 (|σ|2 + |τ|2),

whence d = |ρ|, namely ρ = deir. But 2a2 + c2 = a2 + b2 + c2 = 1 and a2 + b2 + d2 + |ρ|2 =
1 = 2a2 + 2d2, so c2 = 2d2, that is c =

√
2d. Observe now that by the conditions

abc = aτd− bσd and abc = −aρσ− bρτ we have τ − σ =
√

2a and σ + τ = −
√

2aeir, so

2τ =
√

2a(1− eir),

2σ = −
√

2a(1 + eir).
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Then the critical condition bdσ− bρτ = cdρ becomes

−
√

2
2 a2d(1 + eir)−

√
2

2 a2deir(1− e−ir) =
√

2d3e−ir,

and simplifying −a2e2ir = d2. Then e2ir must be real and negative, thus 2r ≡ π (mod 2π),
or equivalently r = ±π/2, and a = d. But since the first column has unit length 4a2 = 1,
so a = 1/2 = b = d = c/

√
2 = |ρ|. We then obtain the critical points(

1
2 +

1
2 j 1√

2
1
2 +

1
2 ij − 1

2
√

2
(1 + i) + 1

2
√

2
(1− i)j

)
,

(
1
2 +

1
2 j 1√

2
1
2 −

1
2 ij − 1

2
√

2
(1− i) + 1

2
√

2
(1 + i)j

)
.

The values of the multi-moment map at these two points are respectively −3/4 and 3/4,
and we end up with two critical T2-orbits giving maximum and minimum.

3.5 On the product of three-spheres

Finally we consider SU(2)3/SU(2)∆
∼= S3 × S3. An element (t1, t2, t3), tk = eiϑk , of a

maximal three-torus T3 ⊂ SU(2)3 acts on (g1, g2, g3)SU(2)∆ as

(t1, t2, t3)(g1, g2, g3)SU(2)∆ := (t1g1, t2g2, t3g3)SU(2)∆

and then on (p, q) ∈ S3 × S3 as (t1 pt−1
3 , t2qt−1

3 ). Each pair of linearly independent vectors
a = (a1, a2) in Z3 yields a two-torus T2

a = Ra1 � Ra2/Za1 � Za2 in our three-torus T3,
so in this case we end up with infinitely many possible choices for the two-torus acting.
Recall that in Section 2.5 we introduced a basis of the tangent space T(p,q)(S

3 × S3) ∼=
TpS3 × TqS3 ∼= sp(1)� sp(1) given by

E1(p, q) = (pi, 0), E2(p, q) = (pj, 0), E3(p, q) = (−pk, 0),
E4(p, q) = (0, qi), E5(p, q) = (0, qj), E6(p, q) = (0,−qk).

The T3-action defined above yields the following infinitesimal generators at the point
(p, q) ∈ S3 × S3:

U1(p, q) = (ip, 0), U2(p, q) = (0, iq), U3(p, q) = (−pi,−qi).

Note that pip + pip = −pip + pip = 0, so pip = 〈pip, i〉i + 〈pjp, j〉j + 〈pkp, k〉k in Sp(1),
where 〈 · , · 〉 denotes the standard inner product on the quaternions. This is equivalent
to saying ip = 〈pip, i〉pi + 〈pjp, j〉pj + 〈pkp, k〉pk, because p has unit length. But then
(ip, 0) = 〈pip, i〉(pi, 0) + 〈pjp, j〉(pj, 0)− 〈pkp, k〉(−pk, 0) in sp(1)� sp(1), which implies

U1(p, q) = 〈pip, i〉E1(p, q) + 〈pip, j〉E2(p, q)− 〈pip, k〉E3(p, q).

A similar expression is obtained for U2, whereas the one for U3 is trivial: we have

U1(p, q) = 〈pip, i〉E1(p, q) + 〈pip, j〉E2(p, q)− 〈pip, k〉E3(p, q),
U2(p, q) = 〈qiq, i〉E4(p, q) + 〈qiq, j〉E5(p, q)− 〈qiq, k〉E6(p, q),
U3(p, q) = −E1(p, q)− E4(p, q).
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A multi-moment map in this case is an equivariant map ν : S3 × S3 → Λ2R3 ∼= R3. Its
three real-valued components correspond to νi := σ(Uj, Uk), with σ as in Section 2.5 and
for (ijk) cyclic permutation:

ν(p, q) =
(
σ(U2, U3), σ(U3, U1), σ(U1, U2)

)
= 2

3
√

3

(
〈qiq, i〉, 〈pip, i〉, 〈pip, qiq〉

)
.

Pointwise, the generators U, V of the T2-action we are interested in are then linear combi-
nations of the Uis:

U = a11U1 + a12U2 + a13U3, V = a21U1 + a22U2 + a23U3.

The multi-moment map for the T2-action is νS3×S3 := σ(U, V):

νS3×S3(p, q) = (a12a23 − a22a13)ν1 − (a11a23 − a21a13)ν2 + (a11a22 − a12a21)ν3.

Now let us focus on the critical points of this map. As usual, these are the points
(p, q) ∈ S3 × S3 where ψ+(U, V, · ) = 0. The generators U, V in terms of E1, . . . , E6 are

U = (a11〈pip, i〉 − a13)E1 + a11〈pip, j〉E2 − a11〈pip, k〉E3

+ (a12〈qiq, i〉 − a13)E4 + a12〈qiq, j〉E5 − a12〈qiq, k〉E6,
V = (a21〈pip, i〉 − a23)E1 + a21〈pip, j〉E2 − a21〈pip, k〉E3

+ (a22〈qiq, i〉 − a23)E4 + a22〈qiq, j〉E5 − a22〈qiq, k〉E6.

Set b = a1× a2 = (a12a23− a13a22,−a11a23 + a13a21, a11a22− a12a21) and x = (x1, x2, x3) :=
(〈pip, i〉, 〈pip, j〉, 〈pip, k〉), y = (y1, y2, y3) := (〈qiq, i〉, 〈qiq, j〉, 〈qiq, k〉). The multi-moment
map has then the form

νS3×S3(p, q) = b1ν1 + b2ν2 + b3ν3

= 2
3
√

3
(b1y1 + b2x1 + b3〈x, y〉).

A computation of ψ+(U, V, · )|(p,q) gives

V y U y e126 = −b3x2y3e1 +
(
b3x1y3 + b1y3)e2 − b2x2e6,

V y U y e315 = b3x3y2e1 +
(
b3x1y2 + b1y2)e3 − b2x3e5,

V y U y e156 =
(
b3x1y3 + b1y3)e5 +

(
b3x1y2 + b1y2)e6,

V y U y e234 = −
(
b3x3y1 + b2x3)e2 − (b3x2y1 + b2x2)e3,

V y U y e264 = b1y3e2 − b3x2y3e4 −
(
b3x2y1 + b2x2)e6,

V y U y e345 = b1y2e3 + b3x3y2e4 −
(
b3x3y1 + b2x3)e5.

Therefore, the equation ψ+(U, V, · ) = 0 is equivalent to the following system:

b3(x3y2 − x2y3) = 0
b3(x1y3 − x3y1)− b2x3 = 0
b3(x1y2 − x2y1)− b2x2 = 0
b3(x3y1 − x1y3)− b1y3 = 0
b3(x2y1 − x1y2)− b1y2 = 0.

(3.11)
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This set of equations yields a variety of peculiar situations: as it turns out S3 × S3 is
the only homogeneous example where saddle points appear and where maximum and
minimum of the multi-moment map are not symmetric with respect to 0. We assign
explicit values to our parameters b1, b2, b3 so as to see which critical sets arise.

Recall that the vectors x and y lie in S2 ⊂ Im H, because Re(pip) = 0 and |pip|2 = 1,
similarly for y. We distinguish the cases b3 = 0 and b3 6= 0. Since not all the bis vanish,
when b3 = 0 we have three subcases:

1. If b1 6= 0 and b2 = 0 then y = ±i.

2. If b1 = 0 and b2 6= 0 then x = ±i.

3. If b1 6= 0 6= b2 then x = ±i, y = ±i.

If b3 6= 0 then the first equation yields x3y2 − x2y3 = 0. Summing respectively second and
fourth, third and fifth equation in (3.11) we get

b1y3 + b2x3 = 0 = b1y2 + b2x2. (3.12)

We end up with three more cases:

1. If b1 = b2 = 0 then we obtain at once that x is parallel to y, thus y = ±x.

2. If b1 6= 0 and b2 = 0 or b1 = 0 and b2 6= 0 then x is parallel to y and y = ±i.

3. If b1 6= 0 and b2 6= 0 then by (3.12) we get x2 = −(b1/b2)y2, x3 = −(b1/b2)y3, so
plugging these solutions in the system one obtains{

y2(b2b3x1 + b1b3y1 + b1b2) = 0
y3(b2b3x1 + b1b3y1 + b1b2) = 0,

so either y = ±i (and then x = ±i) or b2b3x1 + b1b3y1 + b1b2 = 0.

In the latter case the point (x1, y1) ∈ R2 lies on the line

r : b2b3x1 + b1b3y1 + b1b2 = 0.

On the other hand, since |x|2 = 1 and x2 = −(b1/b2)y2, x3 = −(b1/b2)y3, we have
(x1)2 + (b2

1/b2
2)
(
(y2)2 + (y3)2) = 1. But |y|2 = 1 as well, so (y2)2 + (y3)2 = 1− (y1)2, and

replacing this in the former identity we find a curve

h : b2
2(x1)2 − b2

1(y
1)2 = b2

2 − b2
1.

Therefore (x1, y1) lies in the intersection between h and r.
Note that when b1 = b2 the curve h is the union of the two lines x1 = ±y1. The slope

of r is −b2/b1 in general, so it is −1 when b1 = b2. Since b2 6= 0 the only non-trivial
intersection is between y1 = x1 and y1 = −x1 − b2/b3, which gives x1 = y1 = −b2/2b3.
Similarly, when b2 = −b1 the only non-trivial intersection is between x1 = −y1 and
y1 = x1 − b2/b3, namely x1 = −y1 = b2/2b3.

When b2 6= ±b1, the curve h is a hyperbola and its asymptotes have equations y1 =
±(b2/b1)x1. Since b2 6= 0 there is a unique intersection between h and r with x1 =
(b2

1b2
3 − b2

1b2
2 − b2

2b2
3)/2b1b2

2b3 and y1 = (b2
2b2

3 − b2
1b2

2 − b2
1b2

3)/2b2
1b2b3.
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Summing up, in every case we have a uniquely determined solution that may be
written as

x1 = (b2
1b2

3 − b2
1b2

2 − b2
2b2

3)/2b1b2
2b3, y1 = (b2

2b2
3 − b2

1b2
2 − b2

1b2
3)/2b2

1b2b3,

x2 = −(b1/b2)y2, x3 = −(b1/b2)y3.

Note that even in the special cases b2 = ±b1 these expressions reduce to the ones found
above. Hereafter we list the possible values of the multi-moment map:

1. If b3 = 0 we may summarise all the subcases saying νS3×S3(p, q) = 2
3
√

3
(y1b1 + x1b2).

2. If b3 6= 0 and at least one between b1 and b2 is zero, then

νS3×S3(p, q) = 2
3
√

3

(
y1b1 + x1b2 ± b3

)
.

3. If b1, b2, b3 6= 0, first observe that

b1y1 + b2x1 =
b2

2b2
3 − b2

1b2
2 − b2

1b2
3

2b1b2b3
+

b2
1b2

3 − b2
1b2

2 − b2
2b2

3
2b1b2b3

= −b1b2

b3
.

Secondly, it is convenient to write 〈x, y〉 as cos ϑ, where ϑ is the angle between
the vectors x and y. The system giving critical points and the conditions x2 =
−(b1/b2)y2, x3 = −(b1/b2)y3 are saying that

1− cos2 ϑ = sin2 ϑ = ‖x× y‖2 = (b2
1/b2

3)
(
1− (y1)2),

namely

cos2 ϑ = 1− b2
1

b2
3

(
1− (b2

2b2
3 − b2

1b2
2 − b2

1b2
3)

2

4b4
1b2

2b2
3

)
=

(
b2

2b2
3 − b2

1b2
2 + b2

1b2
3

2b1b2b2
3

)2

.

Consequently 〈x, y〉 = cos ϑ = ±(b2
2b2

3 − b2
1b2

2 + b2
1b2

3)/2b1b2b2
3, and

νS3×S3(p, q) =
2

3
√

3
(b1y1 + b2x1 + b3〈x, y〉)

=
2

3
√

3

(
−b1b2

b3
± b2

2b2
3 − b2

1b2
2 + b2

1b2
3

2b1b2b3

)
,

the signs ± giving two stationary orbits.

As regards the set of critical points, the situation is significantly different compared
to the other homogeneous examples. First, consider the case b3 = 0 with b1, b2 6= 0, so
that x = ±i, y = ±i. We write x = ε1i, y = ε2i, with εk ∈ {±1}. If e.g. a1 = (2, 3, 1) and
a2 = (2, 3, 5), then b = (12,−8, 0) and

12ε2 − 8ε1 ∈ {−20,−4, 4, 20},

so we have four different non-zero critical values. The points corresponding to the value 4
are obtained when x = (1, 0, 0) = y and are actually saddle points. To check this recall
that the T2-symmetry allows one to evaluate the multi-moment map on points in S2 × S2
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rather than in S3 × S3. So considering particular points around (x, y) = ((1, 0, 0), (1, 0, 0))
we can prove our claim. For example, for α 6= 0 and small

νS3×S3((cos α, sin α, 0), (1, 0, 0)) =
2

3
√

3
(12− 8 cos α)

>
8

3
√

3
= νS3×S3((1, 0, 0), (1, 0, 0)).

Likewise

νS3×S3((1, 0, 0), (cos α, sin α, 0)) =
2

3
√

3
(12 cos α− 8)

<
8

3
√

3
= νS3×S3((1, 0, 0), (1, 0, 0)),

hence ((1, 0, 0), (0, 0, 1)) in S2 × S2 corresponds to an orbit of saddle points in S3 × S3. The
same steps can be repeated for the value −4.

Choosing a1 = (1,−1, 0) and a2 = (1, 1,−1) we have b = (1, 1, 2), so all the bis are
non-zero and the multi-moment map takes all values between −3/2

√
3 and 5/6

√
3. This

shows that maximum and minimum may occur without being symmetric with respect to
the origin.

Finally, if a1 = (1, 0, 0), a2 = (0, 1, 0), then b = (0, 0, 1) and νS3×S3(p, q) = ±2/3
√

3.
The corresponding critical orbits in S3 × S3 are four-dimensional.





Chapter 4

Torus symmetry

In Chapter 1, specifically in Section 1.5, we proved that a nearly Kähler six-manifold is an
almost Hermitian manifold (M, g, J) equipped with an SU(3)-structure (σ, ψ±) such that

dσ = 3ψ+, dψ− = −2σ ∧ σ.

This statement resulted in Definition 1.5.5. Assume a two-torus T2 acts effectively on M
preserving g, J, and the complex form ψC = ψ+ + iψ−. Let U, V denote the infinitesimal
generators of the action. Since the two-torus acts effectively on M, the vector fields U and
V are linearly independent over M. This follows from [KN96, Proposition 4.1].

In Example 3.1.5 we introduced a multi-moment map νM := σ(U, V). We now study
its general properties in this set-up and use it to perform the so-called T2-reduction. We
first show the existence of regular values for νM, hence prove that if s ∈ R is such, then
T2 acts freely on the level set ν−1

M (s). The quotients ν−1
M (s)/T2 corresponding to regular

values s are then smooth three-dimensional manifolds. In a second stage we reverse
this construction. We study under which conditions this is possible and then apply the
result to the three-dimensional Heisenberg group, getting a new example of nearly Kähler
six-manifold.

4.1 The infinitesimal generators

In what follows we denote g(U, U), g(U, V), g(V, V) by gUU , gUV , gVV . We call h the
non-negative real-valued function on M satisfying

h2 := gUU gVV − g2
UV . (4.1)

We use the same notations even when working pointwise.
Assume at the point p the vectors Up and Vp are in general position and consider

an SU(3)-basis {Ek, JEk}, k = 1, 2, 3, with dual basis {ek, Jek}. Up to applying a special
unitary transformation we have

Up = g1/2
UU E1, Vp = x1E1 + y1 JE1 + x2E2,

for some real numbers x1, x2, y1. By the definition of νM and the conditions (x1)2 + (y1)2 +

(x2)2 = gVV , gUV = g1/2
UU x1, we find

Up = g1/2
UU E1, g1/2

UUVp =
(

gUV E1 + νM JE1 +
(
h2 − ν2

M
)1/2E2

)
. (4.2)

61
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Thus, (1.31) implies dνM = 3ψ+(U, V, · ) = 3
(
h2 − ν2

M
)1/2e3 pointwise. Further, h2 − ν2

M
is non-negative because of (1.9), so it makes sense to take its square root.

We now prove a simple characterisation of critical points where the multi-moment
map vanishes.

Proposition 4.1.1. The vectors Up and Vp are linearly dependent over R if and only if the
multi-moment map νM and its differential dνM vanish at p.

Proof. If Up and Vp are linearly dependent over R at p then both νM = σ(U, V) and its
differential dνM = 3ψ+(U, V, · ) vanish at p.

Conversely, since dνM = 3ψ+(U, V, · ), the expressions in (4.2) imply that a point p is
critical if and only if Up and Vp are linearly dependent over C, or equivalently that Vp is a
linear combination of Up and JUp. Therefore

gUUVp = gUVUp + νM JUp,

so since νM vanishes the result follows.

This is what we need for the moment. More properties of U and V will be worked out
in Section 6.1.

4.2 The multi-moment map and its properties

Expanding V y U y (σ ∧ σ) we obtain a useful formula we are going to use in the next
lemma:

V y U y (σ ∧ σ) = 2
(
νMσ− (U y σ) ∧ (V y σ)

)
. (4.3)

Lemma 4.2.1. Let ∆ be the Laplace operator on C∞(M), defined as ∆ = d∗d := −∗d∗d. The
multi-moment map is an eigenfunction of ∆:

∆νM = 24νM. (4.4)

Proof. Firstly, we show that ∗dνM = ∗
(
3ψ+(U, V, · )

)
= 3

2 σ ∧ σ ∧ α0, where α0 is defined
as V y U y ψ−. From the expressions of σ and ψ− in (1.30), (1.32) we get pointwise

σ ∧ σ = 2(e1 ∧ Je1 ∧ e2 ∧ Je2 + e1 ∧ Je1 ∧ e3 ∧ Je3 + e2 ∧ Je2 ∧ e3 ∧ Je3),

α0 =
(
h2 − ν2

M
)1/2 Je3.

Hence σ ∧ σ ∧ α0 = 2
(
h2 − ν2

M
)1/2e1 ∧ Je1 ∧ e2 ∧ Je2 ∧ Je3, and

3ψ+(U, V, · ) ∧ (σ ∧ σ ∧ α0) =
2
3

∥∥3ψ+(U, V, · )
∥∥2 volM,

from which we obtain ∗dνM = ∗
(
3ψ+(U, V, · )

)
= 3

2 σ ∧ σ ∧ α0. Thus d∗dνM = 3
2 σ ∧ σ ∧

dα0, because d(σ∧σ) = 0. By Cartan’s formula dα0 = d(V y U y ψ−) = −2V y U y (σ∧σ).
Then, identity (4.3) yields

d∗dνM = −6νMσ ∧ σ ∧ σ + 6σ ∧ σ ∧ (U y σ) ∧ (V y σ)

= −36νM volM +12νM volM

= −24νM volM,

and we are done.
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Proposition 4.2.2. The average value of the multi-moment map νM is 0. Moreover, the range of
νM is a compact interval containing 0 in its interior.

Proof. We can apply Stokes’ theorem and Lemma 4.2.1: since M has no boundary we find

24
∫

M
νM volM =

∫
M

∆νM volM = −
∫

M
∗d∗dνM ∧ ∗1

=
∫

M
d(∗dνM) =

∫
∂M
∗dνM = 0.

We then have our first claim ∫
M

νM volM = 0.

However, νM cannot be constantly zero: if it was, by Proposition 4.1.1 we would have that
U and V are linearly dependent vector fields. Thus the action of T2 would not be effective
on M, which is a contradiction. This allows us to write νM : M→ [a, b], where a < 0 < b,
for M is compact and connected.

Now assume s is a regular value for νM. In the next proposition we show that the
T2-action on ν−1

M (s) is free, so ν−1
M (s)/T2 is a smooth three-dimensional manifold by the

compactness of the two-torus, and ν−1
M (s)→ ν−1

M (s)/T2 is a principal T2-bundle. We call
its base space the T2-reduction of M at level s. We will study the geometry of the quotients
ν−1

M (s)/T2 in Section 4.3. Now we recall a useful definition and a result from topology,
see e.g. [Bre72], in particular Section 2 in Chapter VI.

Let H be a compact subgroup of a group G acting on a vector space V on the left and
on G by right translation. Then h ∈ H acts on the left on (g, X) ∈ G× V by h(g, X) :=
(gh−1, h∗X).

Definition 4.2.3. The orbit space of this action is denoted by G ×H V and is called the
twisted product of G and V with respect to H.

Theorem 4.2.4 (Equivariant Tubular Neighbourhood Theorem). Let G be a compact Lie
group acting smoothly on M on the left. Let p be a point in M and H be the stabiliser of p in G.
Then there exists an open neighbourhood of p equivariantly diffeomorphic to the twisted product
G×H V, where V is the normal space Tp M/Tp(G · p).

Remark 4.2.5. When H fixes all of Tp M, then the action of H on V is trivial and G×H V =
(G/H)×V.

Let us go back to our multi-moment map. A consequence of Theorem 4.2.4 is

Proposition 4.2.6. The multi-moment map νM has non-zero regular values. For any regular
value s the T2-action on ν−1

M (s) is free. Thus ν−1
M (s)/T2 are smooth three-dimensional manifolds.

Proof. By Sard’s Theorem the set of critical values has Lebesgue measure 0 in [a, b], so
we can assert there exist infinitely many regular values for νM in (a, b) 6= ∅. Let s be
any of them. Then dνM|p has rank one at each p ∈ ν−1

M (s), so 3ψ+(U, V, · )p = dνM|p 6= 0.
Thus U, V are linearly independent over the complex numbers on ν−1

M (s), and this yields
a discrete stabiliser of p.

On the other hand, if H is the stabiliser in T2 of some p ∈ ν−1
M (s), it preserves g, J

and ψ± as well as U and V. Hence, H fixes U, JU, V, JV, (∇U J)V, and J(∇U J)V—because
((∇U J)V)[ = ψ+(U, V, · )—so all of Tp M. Then, by Theorem 4.2.4 and Remark 4.2.5,
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the set B := {q ∈ M : hq = q, h∗|q = IdTq M for each h ∈ H} is open in M: this is
because every point in B admits an open neighbourhood A = (T2/H)× V in M, with
V = Tp M/Tp(T2 · p), and every h ∈ H acts trivially on it, so A ⊆ B by the equivariance.
Obviously B is also closed and not empty because it contains p, so B = M for M is
connected. If H is not trivial, then the action is not effective, and we are done.

The next step is then to study T2-reductions at levels corresponding to regular values.

4.3 Reduction to three-manifolds

In order to study the geometric structure of the quotients Q3
s := ν−1

M (s)/T2, with s 6= 0 a
regular value for νM, we need to determine which forms on ν−1

M (s) descend to them. A
k-form β on ν−1

M (s) descends to Q3
s if and only if it is basic, that is LU β = LV β = 0 and

U y β = V y β = 0. We consider only regular values away from zero: as we will see, the
behaviour of this case is critical. Before starting, let us define the dual forms of U and V:

ϑ1 := h−2(gVVU[ − gUVV[
)
, ϑ2 := h−2(gUUV[ − gUVU[

)
,

where h satisfies (4.1). The pair (ϑ1, ϑ2) is a connection one-form for the T2-bundle
ν−1

M (s) → ν−1
M (s)/T2. The invariant functions we find are gUU , gUV , gVV . Then we have

the basic one-forms

α0 := V y U y ψ−, α1 := sϑ1 + V y σ, α2 := sϑ2 −U y σ, (4.5)

and lastly the two-forms U y ψ+, V y ψ+, U y V y σ2 are basic.
The next step is to specify g, σ, ψ± on M in terms of the forms dνM, ϑ1, ϑ2, α0, α1, α2. We

work on M, pointing out what holds in particular on the level sets ν−1
M (s). We already

found the pointwise expressions dνM = 3(h2 − ν2
M)1/2e3 and α0 = (h2 − ν2

M)1/2 Je3 (cf. the
proof of Lemma 4.2.1). The connection one-form (ϑ1, ϑ2) can be written as

ϑ1 = h−2g−1/2
UU

(
h2e1 − gUVνM Je1 − gUV

(
h2 − ν2

M
)1/2e2

)
,

ϑ2 = h−2g1/2
UU

(
νM Je1 +

(
h2 − ν2

M
)1/2e2

)
,

whereas the three one-forms α0, α1, α2 are

α0 =
(
h2 − ν2

M
)1/2 Je3,

α1 = h−2g−1/2
UU

(
h2 − ν2

M
)1/2

(
gUV

(
h2 − ν2

M
)1/2 Je1 − gUVνMe2 + h2 Je2

)
,

α2 = h−2g1/2
UU
(
h2 − ν2

M
)1/2

(
νMe2 −

(
h2 − ν2

M
)1/2 Je1

)
.

Now we invert this system and write all the terms needed in the expressions of
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g, σ, ψ+, ψ−. The metric g is ∑3
k=1 ek � ek + Jek � Jek, where

e1 � e1 = gUUϑ1 � ϑ1 +
g2

UV
gUU

ϑ2 � ϑ2 + gUV(ϑ1 � ϑ2 + ϑ2 � ϑ1),

Je1 � Je1 =
ν2

M
gUU

ϑ2 � ϑ2 −
νM

gUU
(ϑ2 � α2 + α2 � ϑ2) +

1
gUU

α2 � α2,

e2 � e2 =
ν2

M

gUU(h2 − ν2
M)

α2 � α2 +
νM

gUU
(α2 � ϑ2 + ϑ2 � α2) +

h2 − ν2
M

gUU
ϑ2 � ϑ2,

Je2 � Je2 =
gUU

h2 − ν2
M

α1 � α1 +
g2

UV

gUU(h2 − ν2
M)

α2 � α2 +
gUV

h2 − ν2
M
(α1 � α2 + α2 � α1),

e3 � e3 =
1

9(h2 − ν2
M)

dνM � dνM,

Je3 � Je3 =
1

h2 − ν2
M

α0 � α0.

The two-form σ is ∑3
k=1 ek ∧ Jek, wose summands are

e1 ∧ Je1 = νMϑ1 ∧ ϑ2 − ϑ1 ∧ α2 −
gUV

gUU
ϑ2 ∧ α2,

e2 ∧ Je2 = ϑ2 ∧ α1 +
gUV

gUU
ϑ2 ∧ α2 −

νM

h2 − ν2
M

α1 ∧ α2,

e3 ∧ Je3 = (3(h2 − ν2
M))−1dνM ∧ α0.

The terms for ψ+ are:

e1 ∧ e2 ∧ e3 =
νM

3(h2 − ν2
M)

ϑ1 ∧ α2 ∧ dνM +
1
3

ϑ1 ∧ ϑ2 ∧ dνM

+
νMgUV

3gUU(h2 − ν2
M)

ϑ2 ∧ α2 ∧ dνM,

Je1 ∧ Je2 ∧ e3 =
νM

3(h2 − ν2
M)

ϑ2 ∧ α1 ∧ dνM +
νMgUV

3gUU(h2 − ν2
M)

ϑ2 ∧ α2 ∧ dνM

− 1
3(h2 − ν2

M)
α2 ∧ α1 ∧ dνM,

e1 ∧ Je2 ∧ Je3 =
gUU

h2 − ν2
M

ϑ1 ∧ α1 ∧ α0 +
gUV

h2 − ν2
M

ϑ1 ∧ α2 ∧ α0

+
gUV

h2 − ν2
M

ϑ2 ∧ α1 ∧ α0 +
g2

UV

gUU(h2 − ν2
M)

ϑ2 ∧ α2 ∧ α0,

Je1 ∧ e2 ∧ Je3 =
h2

gUU(h2 − ν2
M)

ϑ2 ∧ α2 ∧ α0.

In order to get the terms for ψ− it is enough to replace e3 with Je3 and change the signs of
the last two terms in ψ+.

Now let s 6= 0. The five one-forms ϑi, αk are linearly independent on ν−1
M (s) if and

only if h2 6= s2. Observe that h2 − ν2
M = ‖(h2 − ν2

M)1/2e3‖2 = 1
9‖dνM‖2 = ‖ψ+(U, V, · )‖2,

and this quantity is non-zero under our assumptions. Therefore, we have the following
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general expressions of g, σ, ψ± on M:

g =
1

9
(
h2 − ν2

M
)dν�2

M + gUUϑ�2
1 + gVVϑ�2

2 + gUV
(
ϑ1 � ϑ2 + ϑ2 � ϑ1

)
+

1
h2 − ν2

M

(
α�2

0 + gUUα�2
1 + gVVα�2

2 + gUV
(
α1 � α2 + α2 � α1

))
, (4.6)

σ =
1

3
(
h2 − ν2

M
)dνM ∧ α0 + νMϑ1 ∧ ϑ2 − ϑ1 ∧ α2 + ϑ2 ∧ α1 −

νM

h2 − ν2
M

α1 ∧ α2, (4.7)

ψ+ =
1

3
(
h2 − ν2

M
)dνM ∧

((
h2 − ν2

M
)
ϑ1 ∧ ϑ2 + νM

(
ϑ1 ∧ α2 − ϑ2 ∧ α1

)
− α1 ∧ α2

)
− 1

h2 − ν2
M

(
ϑ1 ∧

(
gUUα1 + gUVα2

)
+ ϑ2 ∧

(
gUVα1 + gVVα2

))
∧ α0, (4.8)

ψ− =
1

3
(
h2 − ν2

M
)dνM ∧

(
ϑ1 ∧

(
gUUα1 + gUVα2

)
+ ϑ2 ∧

(
gUVα1 + gVVα2

))
+

1
h2 − ν2

M

((
h2 − ν2

M
)
ϑ1 ∧ ϑ2 + νM

(
ϑ1 ∧ α2 − ϑ2 ∧ α1

)
− α1 ∧ α2

)
∧ α0. (4.9)

If we use the nearly Kähler structure equations we get further relationships. The
cotangent space of M splits as the direct sum of vertical and horizontal spaces V � H,
where ϑi ∈ V, i = 1, 2, and H contains dνM, αk, k = 0, 1, 2.

Comparing coefficients in dσ = 3ψ+ we obtain

νMdϑ2 = dα2 +
1

h2 − ν2
M

(
3gUUα1 ∧ α0 + 3gUVα2 ∧ α0 + νMdνM ∧ α2

)
, (4.10)

νMdϑ1 = dα1 −
1

h2 − ν2
M

(
3gUVα1 ∧ α0 + 3gVVα2 ∧ α0 − νMdνM ∧ α1

)
, (4.11)

dϑ1 ∧ α2 − dϑ2 ∧ α1 =

(
2ν2

M(
h2 − ν2

M
)2 dνM −

νM(
h2 − ν2

M
)2 d(h2)

)
∧ α2 ∧ α1

+ dνM ∧
(

1

3
(
h2 − ν2

M
)2 d(h2) ∧ α0 −

1
3
(
h2 − ν2

M
)dα0

)
+

νM

h2 − ν2
M

d(α2 ∧ α1).

(4.12)

The equation dψ− = −2σ ∧ σ gives

dα0 = − 4νM

3
(
h2 − ν2

M
)dνM ∧ α0 +

4h2

h2 − ν2
M

α1 ∧ α2, (4.13)
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dϑ2 ∧ α0 =
−1

3
(
h2 − ν2

M
)2

(
dνM ∧

(
gUUα1 + gUVα2

)
+ 3νMα0 ∧ α2

)
∧ d(h2)

− 1
3
(
h2 − ν2

M
)(dνM ∧ d

(
gUUα1 + gUVα2

)
+ 3νMdα2 ∧ α0

)
− h2 − 3ν2

M

3
(
h2 − ν2

M
)2 dνM ∧ α0 ∧ α2, (4.14)

dϑ1 ∧ α0 =
1

3
(
h2 − ν2

M
)2

(
dνM ∧

(
gUVα1 + gVVα2

)
− 3νMα0 ∧ α1

)
∧ d(h2)

+
1

3
(
h2 − ν2

M
)(dνM ∧ d

(
gUVα1 + gVVα2

)
− 3νMdα1 ∧ α0

)
− h2 − 3ν2

M

3
(
h2 − ν2

M
)2 dνM ∧ α0 ∧ α1. (4.15)

The relations among α0, α1, α2 on the T2-reduction at level s are then

dα0 =
4h2

h2 − s2 α1 ∧ α2, (4.16)

dα1 ∧ α0 =
s2

h2
(
h2 − s2

)d(h2) ∧ α1 ∧ α0, (4.17)

dα2 ∧ α0 =
s2

h2
(
h2 − s2

)d(h2) ∧ α2 ∧ α0. (4.18)

Define f := 4h2/(h2 − s2). Trivially f > 4, which will be relevant later, and

d f
f

= − s2

h2
(
h2 − s2

)d(h2).

Hence we can summarise our results as follows.

Proposition 4.3.1. On the level sets ν−1
M (s), with s 6= 0 regular value for νM, the curvature

two-form is given by

sdϑ1 = dα1 −
1

h2 − s2

(
3gUVα1 + 3gVVα2

)
∧ α0,

sdϑ2 = dα2 +
1

h2 − s2

(
3gUUα1 + 3gUVα2

)
∧ α0.

Proposition 4.3.2. Define f := 4h2/(h2 − s2). The relations among α0, α1, α2 on the T2-
reduction at level s 6= 0 are given by

dα0 = f α1 ∧ α2, dα1 ∧ α0 = −d f
f
∧ α1 ∧ α0, dα2 ∧ α0 = −d f

f
∧ α2 ∧ α0. (4.19)

Remark 4.3.3. Observe that at points where νM vanishes we get no information on the
curvature two-form. Define β0 := α0 and βi := f αi, i = 1, 2. Equations (4.19) are then
equivalent to

dβ0 =
1
f

β1 ∧ β2, dβ1 ∧ β0 = 0, dβ2 ∧ β0 = 0.
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4.4 Inverse construction

Now we wish to invert the construction described above. Assume we are given a three-
dimensional smooth manifold Q3, and let gUU , gUV , gVV be three functions on Q3 such that
gUU > 0 and gUU gVV − g2

UV > 0. We define the latter quantity as h2 := gUU gVV − g2
UV .

Let f > 4 be a real function and α0, α1, α2 be a basis of one-forms satisfying (4.19). Our
first goal is to construct a principal T2-bundle over Q3.

Let s 6= 0 be a real number. Given

Θ1 :=
1
s

(
dα1 −

3
h2 − s2

(
gUVα1 + gVVα2

)
∧ α0

)
, (4.20)

Θ2 :=
1
s

(
dα2 +

3
h2 − s2

(
gUUα1 + gUVα2

)
∧ α0

)
, (4.21)

we find the conditions for which they are closed and with integral period, namely [Θi] ∈
H2(Q3, Z). We follow [Swa10, Section 2.1], for this last part. If

dΘ1 = 0 = d
(

3
h2 − s2

(
gUVα1 + gVVα2

)
∧ α0

)
we get

gUV

h2 d(h2) ∧ α1 ∧ α0 +
gVV

h2 d(h2) ∧ α2 ∧ α0 = dgUV ∧ α1 ∧ α0 + dgVV ∧ α2 ∧ α0. (4.22)

Similarly dΘ2 = 0 yields

gUU

h2 d(h2) ∧ α1 ∧ α0 +
gUV

h2 d(h2) ∧ α2 ∧ α0 = dgUU ∧ α1 ∧ α0 + dgUV ∧ α2 ∧ α0. (4.23)

Under the conditions (4.22) and (4.23) one can apply Chern–Weil theory and find a
principal T2-bundle E5 → Q3 with connection one-form (ϑ1, ϑ2) such that dϑk = Θk,
k = 1, 2. The space E5 must be thought of as the level set ν−1

M (s) of the previous section.
So as s varies we have a five-dimensional foliation of a six-dimensional manifold M =
E × (c, d), for some real numbers c < d. To construct a nearly Kähler structure on M
starting from E5, we flow the ϑks and the αis along the normal vector field to E5, given by
∂/∂s = 1

9 (h
2 − s2)−1ds]. Note that L∂/∂sνM = 1, so ∂/∂s maps level sets to level sets.

In order to establish which equations must be satisfied, we first define σ, ψ± as in
(4.7)–(4.9), then impose the nearly Kähler conditions as we have done above, getting
(4.10)–(4.15). Note that on M the differential d can be split as the sum of the differential on
E and the one in the remaining direction: we write d6 = d5 + ds, where d5 is the differential
on E and dsγ = γ′ ∧ ds, the prime denoting the derivative with respect to s of the form γ.
We use this on (4.10)–(4.15) and then contract with ∂/∂s. The equations found will tell us
how our forms evolve in the direction defined by ∂/∂s.

We have seen that dσ = 3ψ+ implies (4.11) in particular. We rewrite this equation as

sd5ϑ1 + sdsϑ1 = d3α1 + dsα1

− 1
h2 − s2

(
3gUVα1 ∧ α0 + 3gVVα2 ∧ α0 + sα1 ∧ dνM

)
.

By assumption, on E we have

sd5ϑ1 = d3α1 −
1

h2 − s2

(
3gUVα1 + 3gVVα2

)
∧ α0,
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so we can simplify our equation getting

ϑ′1 ∧ ds =
1
s

α′1 ∧ ds− 1
h2 − s2 α1 ∧ ds.

Contracting with ∂/∂s, we obtain

ϑ′1 =
1
s

α′1 −
1

h2 − s2 α1. (4.24)

Similarly, from (4.10) we have

ϑ′2 =
1
s

α′2 −
1

h2 − s2 α2. (4.25)

From (4.12) and (4.13) we get

ϑ′2 ∧ α1 − ϑ′1 ∧ α2 =
−4h2 − 6s2 + 3s(h2)′

3
(
h2 − s2

)2 α1 ∧ α2

+
s

h2 − s2 (α2 ∧ α1)
′ +

1

3
(
h2 − s2

)2 d3(h2) ∧ α0, (4.26)

and by (4.13) itself we find

α′0 =
4s

3
(
h2 − s2

)α0.

The remaining equations yield

α0 ∧ ϑ′2 =
s(

h2 − s2
)2 (h

2)′α2 ∧ α0 +
1

3
(
h2 − s2

)2 d3(h2) ∧
(

gUUα1 + gUVα2
)

+
s

h2 − s2 α′2 ∧ α0 +
h2 − 3s2

3
(
h2 − s2

)2 α2 ∧ α0 −
1

3
(
h2 − s2

)d3
(

gUUα1 + gUVα2
)
,

(4.27)

α0 ∧ ϑ′1 =
s(

h2 − s2
)2 (h

2)′α1 ∧ α0 −
1

3
(
h2 − s2

)2 d3(h2) ∧
(

gUVα1 + gVVα2
)

+
s

h2 − s2 α′1 ∧ α0 +
h2 − 3s2

3
(
h2 − s2

)2 α1 ∧ α0 +
1

3
(
h2 − s2

)d3
(

gUVα1 + gVVα2
)
.

(4.28)

If we set α′1 = ∑i a1iαi, α′2 = ∑j a2jαj, and

d3α1 = ∑
i<j

bijαi ∧ αj, d3α2 = ∑
i<j

cijαi ∧ αj,
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we can find equations giving a10, a11, a12, a20, a21, a22, g′UU , g′UV , g′VV , (h2)′. Denote by Xi
the dual of αi. Using (4.24) and (4.25) in (4.26), (4.27) and (4.28), we get

(α2 ∧ α1)
′ = − s2

h2
(
h2 − s2

) (h2)′α1 ∧ α2 +
10s

3
(
h2 − s2

)α1 ∧ α2 −
s

3h2
(
h2 − s2

)d3(h2) ∧ α0,

α0 ∧ α′2 = − s2

h2
(
h2 − s2

) (h2)′α0 ∧ α2 +
2s

3
(
h2 − s2

)α0 ∧ α2

+
s

3h2
(
h2 − s2

)d3(h2) ∧
(

gUUα1 + gUVα2
)
− s

3h2 d3
(

gUUα1 + gUVα2
)
,

α0 ∧ α′1 = − s2

h2
(
h2 − s2

) (h2)′α0 ∧ α1 +
2s

3
(
h2 − s2

)α0 ∧ α1

− s
3h2
(
h2 − s2

)d3(h2) ∧
(

gUVα1 + gVVα2
)
+

s
3h2 d3

(
gUVα1 + gVVα2

)
.

From these equations, comparing the coefficients of α0 ∧ α1, α0 ∧ α2 and α1 ∧ α2, one finds

a10 =
s

3h2
(
h2 − s2

)X2(h2), a20 =
−s

3h2
(
h2 − s2

)X1(h2), (4.29)

a21 =
gUUs

3h2
(
h2 − s2

)X0(h2)− s
3h2

(
X0(gUU) + gUUb01 + gUVc01

)
, (4.30)

a12 =
−gVVs

3h2
(
h2 − s2

)X0(h2) +
s

3h2

(
X0(gVV) + gUVb02 + gVVc02

)
, (4.31)

(h2)′ = −2h2

s
+

h2 − s2

3s
(
(b01 − c02)gUV + c01gVV − b02gUU

)
, (4.32)

a11 =
8s

3
(
h2 − s2

) + s
3h2

(
X0(gUV) + b02gUU + c02gUV

)
− sgUV

3h2
(
h2 − s2

)X0(h2), (4.33)

a22 =
8s

3
(
h2 − s2

) − s
3h2

(
X0(gUV) + b01gUV + c01gVV

)
+

sgUV

3h2
(
h2 − s2

)X0(h2). (4.34)

Further, differentiating (4.10), (4.11), and repeating the same process, we get

g′UU = gUU

(
(h2)′

h2 − s2 +
1
s
+ a11 −

2s
3
(
h2 − s2

))− h2

3s
c01 + gUV a21,

g′UV = gUV

(
(h2)′

h2 − s2 +
1
s
+ a22 −

2s
3
(
h2 − s2

))− h2

3s
c02 + gUUa12 +

sX0(h2)

3
(
h2 − s2

) ,

g′UV = gUV

(
(h2)′

h2 − s2 +
1
s
+ a11 −

2s
3
(
h2 − s2

))+
h2

3s
b01 + gVV a21 −

sX0(h2)

3
(
h2 − s2

) ,

g′VV = gVV

(
(h2)′

h2 − s2 +
1
s
+ a22 −

2s
3
(
h2 − s2

))+
h2

3s
b02 + gUV a12.

These results imply that α0, α1, α2, gUU , gUV , gVV can be found from a system of first order
ordinary differential equations, so by Cauchy theorem we find a unique local solution on
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E× (s0 − ε, s0 + ε), for some ε > 0, where s0 6= 0 is an initial data. Observe that the value
of s0 is specified by f and h through the equation f = 4h2/(h2 − s2

0). Finally, (4.24) and
(4.25), together with the expressions of α′1 and α′2 found, give differential equations for
ϑ1, ϑ2, which we can apply the same theorem to. Thus we have the final result:

Theorem 4.4.1. Let Q3 be a smooth three-manifold, f > 4 a smooth real function on Q3, and
{αi}i=0,1,2 a basis of one-forms on Q3 satisfying (4.19). Suppose there exists a smooth positive
definite G =

( gUU gUV
gUV gVV

)
on Q3 such that (4.22) and (4.23) are fulfilled, and that s = s0 =

(1− 4/ f )1/2h is constant. Put h2 = det G, and define ϑ1, ϑ2 by (4.20) and (4.21) for s = s0.
Then, if ϑks have integral periods, there exist a T2-bundle E5 → Q3 with connection one-form

(ϑ1, ϑ2), such that dϑk = Θk, and an ε > 0 such that E5 × (s0 − ε, s0 + ε) has a unique nearly
Kähler structure of the form (4.7)–(4.9).

Proof. Let ′ denote differentiation with respect to s and assume the functions aijs are those
listed in (4.29)–(4.34). Then our forms satisfy the equations

α′0 =
4s

3(h2 − s2)
α0, α′1 =

2

∑
i=0

a1iαi, α′2 =
2

∑
j=0

a2jαj,

ϑ′1 =
1
s

α′1 −
1

h2 − s2 α1, ϑ′2 =
1
s

α′2 −
1

h2 − s2 α2.

For the initial data s = s0 = (1− 4/ f )1/2h they have a unique solution, which corresponds
to a nearly Kähler structure on E5 × (s0 − ε, s0 + ε), for some ε > 0.

4.5 Invariant structures on the Heisenberg group

In this section we are going to study the construction described above in the particular
case where Q3 is the three-dimensional Heisenberg group H3. Making specific choices of
the forms involved and assuming (4.16)–(4.18), we write the equations in Theorem 4.4.1
and solve them getting explicit solutions. Finally, Proposition 4.5.2 proves our solution is
general.

Let us consider the Heisenberg group H3, i.e. the unipotent Lie group given by the
upper triangular, real, 3× 3 matrices of the form (aij), aii = 1, and aij = 0, i > j. Its Lie
algebra is generated by

E0 =

0 1 0
0 0 0
0 0 0

 , E1 =

0 0 0
0 0 1
0 0 0

 , E2 =

0 0 −1
0 0 0
0 0 0

 .

They satisfy the commutation relations [E1, E2] = −E0, [E0, E1] = [E0, E2] = 0. If σi is the
dual of Ei, then we have

dσ0 = σ1 ∧ σ2, dσ1 = 0, dσ2 = 0.

Define αk := fk(s)σk, and set gUU(s) = gVV(s) =: h(s), and gUV(s0) = 0 for some initial
data s0 6= 0. With this choice, equations (4.22) and (4.23) are automatically fulfilled. Then,
according to Theorem 4.4.1, there exists a T2-bundle E5 → H3 with connection one-form
(ϑ1, ϑ2) satisfying

sd5ϑ1 = − 3h
h2 − s2 α2 ∧ α0, sd5ϑ2 =

3h
h2 − s2 α1 ∧ α0.
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Equations d3αk = 0, k = 1, 2, imply that all the coefficients bij, cij vanish. Furthermore, we
have an algebraic relation among the fks given by

f0/ f1 f2 = 4h2/(h2 − s2).

Then we can compute: a10 = a20 = a12 = a21 = 0, a11 = a22 = 8s/3(h2 − s2), and h′ =
g′UU = g′VV = −h/s, g′UV = 0. So the following differential equations for α0, α1, α2, ϑ1, ϑ2
hold:

α′0 =
4s

3
(
h2 − s2

)α0, α′k =
8s

3
(
h2 − s2

)αk, ϑ′k =
5

3
(
h2 − s2

)αk, k = 1, 2.

Since h = gUU > 0, we obtain the expression h(s) = |s0h(s0)|/|s| =: C/s, and the
following differential equations for f0, f1, f2:

f ′0 = − f0

(
4s

3
(
h2 − s2

)), f ′k = − fk

(
8s

3
(
h2 − s2

)), k = 1, 2.

Hence one can solve them getting

f0(s) = f0(s0)

(
C2 − s4

C2 − s4
0

)1/3

, fk(s) = fk(s0)

(
C2 − s4

C2 − s4
0

)2/3

, k = 1, 2.

Let us set f0(s0) = f1(s0) = f2(s0) = f (s0)−1. In this case, having the expressions of
h, f0, f1, f2, we can write equations (4.6)–(4.9) explicitly: for 0 6= s2 < |C| the nearly Kähler
metric we obtain is

g =
s2

9
(
C2 − s4

)ds�2 +
C
s

(
ϑ�2

1 + ϑ�2
2

)
+

s2(C2 − s4
0
)

16C4

((
C2 − s4

0
C2 − s4

)1/3

σ�2
0 +

C
s

(
C2 − s4

C2 − s4
0

)1/3(
σ�2

1 + σ�2
2

))
. (4.35)

The fundamental two-form σ and the volume form ψC are given by

σ =
s2

12C2

(
C2 − s4

0
C2 − s4

)2/3

ds ∧ σ0 + sϑ1 ∧ ϑ2

+
C2 − s4

0
4C2

(
C2 − s4

C2 − s4
0

)2/3(
ϑ2 ∧ σ1 − ϑ1 ∧ σ2

)
−

s3(C2 − s4
0
)

16C4

(
C2 − s4

C2 − s4
0

)1/3

σ1 ∧ σ2,

(4.36)

ψ+ =
1
3

ds ∧
(

ϑ1 ∧ ϑ2 +
s3

4C2

(
C2 − s4

0
C2 − s4

)1/3(
ϑ1 ∧ σ2 − ϑ2 ∧ σ1

))

− C2 − s4
0

16C4

(
s2

3

(
C2 − s4

C2 − s4
0

)1/3

ds ∧ σ1 ∧ σ2 + Cs
(
ϑ1 ∧ σ1 + ϑ2 ∧ σ2

)
∧ σ0

)
, (4.37)

ψ− =
s

12C

(
C2 − s4

0
C2 − s4

)1/3

ds ∧
(
ϑ1 ∧ σ1 + ϑ2 ∧ σ2

)
+

C2 − s4
0

4C2

(
C2 − s4

C2 − s4
0

)1/3

ϑ1 ∧ ϑ2 ∧ σ0

+
s2(C2 − s4

0
)

16C4

(
s
(
ϑ1 ∧ σ2 − ϑ2 ∧ σ1

)
−
(
C2 − s4

0
)1/3(C2 − s4)2/3

4C2 σ1 ∧ σ2

)
∧ σ0.

(4.38)
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One can check explicitly that dσ = 3ψ+ and dψ− = −2σ ∧ σ by comparing the coefficients
of the various bits. Here are the results for those that are less trivial to compute:

dσ = − s2

12C2

(
C2 − s4

0
C2 − s4

)2/3

ds ∧ σ1 ∧ σ2 + ds ∧ ϑ1 ∧ ϑ2

− 3s(C2 − s4
0)

16C3 σ2 ∧ σ0 ∧ ϑ2 −
3s(C2 − s4

0)

16C3 ϑ1 ∧ σ1 ∧ σ0

− 2s3

3C2

(
C2 − s4

0
C2 − s4

)1/3

ds ∧ ϑ2 ∧ σ1 −
5s3

12C2

(
C2 − s4

0
C2 − s4

)1/3

ϑ1 ∧ σ2 ∧ ds

+
2s3

3C2

(
C2 − s4

0
C2 − s4

)1/3

ds ∧ ϑ1 ∧ σ2 +
5s2(C2 − s4

0)

24C4

(
C2 − s4

C2 − s4
0

)1/3

ds ∧ σ1 ∧ σ2

− 9s2C2 − 13s6

48C4

(
C2 − s4

0
C2 − s4

)2/3

ds ∧ σ1 ∧ σ2 +
5s3

12C2

(
C2 − s4

0
C2 − s4

)1/3

σ1 ∧ ds ∧ ϑ2,

−2σ ∧ σ = − s3

3C2

(
C2 − s4

0
C2 − s4

)2/3

ds ∧ σ0 ∧ ϑ1 ∧ ϑ2 −
s2(C2 − s4

0)

12C4 ds ∧ σ0 ∧ ϑ2 ∧ σ1

+
s2

12C4 (C
2 − s4

0)ds ∧ σ0 ∧ ϑ1 ∧ σ2

+
s5

48C6

(
C2 − s4

0
C2 − s4

)1/3

(C2 − s4
0)ds ∧ σ0 ∧ σ1 ∧ σ2

+
s4(C2 − s4

0)
2/3(C2 − s4)1/3

4C4 ϑ1 ∧ ϑ2 ∧ σ1 ∧ σ2

+
(C2 − s4

0)
2/3(C2 − s4)4/3

4C4 ϑ2 ∧ σ1 ∧ ϑ2 ∧ σ2,

dψ− =
s(C2 − s4

0)

32C4

(
C2 − s4

0
C2 − s4

)1/3

ds ∧ σ2 ∧ σ0 ∧ σ1 −
s3

3C2

(
C2 − s4

0
C2 − s4

)2/3

ds ∧ ϑ1 ∧ ϑ2 ∧ σ0

+
5s2(C2 − s4

0)

48C4 σ1 ∧ ds ∧ ϑ2 ∧ σ0 −
5s2(C2 − s4

0)

48C4 ϑ1 ∧ σ2 ∧ ds ∧ σ0

+
(C2 − s4

0)
2/3(C2 − s4)1/3

4C2 ϑ1 ∧ ϑ2 ∧ σ1 ∧ σ2 +
3s2(C2 − s4

0)

16C4 ds ∧ ϑ1 ∧ σ2 ∧ σ0

+
5s5(C2 − s4

0)
4/3

192C6(C2 − s4)1/3 σ1 ∧ ds ∧ σ2 ∧ σ0 −
3s2(C2 − s4

0)

16C4 ds ∧ ϑ2 ∧ σ1 ∧ σ0

− 5s5(C2 − s4
0)

4/3

192C6(C2 − s4)1/3 σ2 ∧ ds ∧ σ1 ∧ σ0

− s(C2 − s4
0)

4/3(6C2 − 14s4)

192C6(C2 − s4)1/3 ds ∧ σ1 ∧ σ2 ∧ σ0.

Remark 4.5.1. By the expression of the metric g in (4.35) we can observe that the fiber blows
up when s→ 0, whereas the remaining four-dimensional subspace collapses to a point. If
s2 → |C|, the fiber stabilises, a two-dimensional subspace of the base space collapses to a
point, and the rest blows up.

The following proposition states this is indeed a general solution.
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Proposition 4.5.2. The nearly Kähler structure in (4.35)–(4.38) gives a general left-invariant
structure for the case of the Heisenberg group H3.

Proof. As seen in Remark 4.3.3, the geometry of Q3 can be described by three one-forms
β0, β1, β2 satisfying

dβ0 =
1
f

β1 ∧ β2, dβ1 ∧ β0 = 0, dβ2 ∧ β0 = 0.

Denote by τ0, τ1, τ2 a dual basis of the Lie algebra of H3 satisfying dτ0 = τ1 ∧ τ2 and
dτ1 = dτ2 = 0. In our particular case we can observe that dβ0 ∈ Span{τ1 ∧ τ2}, so
β1 ∧ β2 = c1τ1 ∧ τ2 for some real number c1 6= 0. This happens only when β1, β2 ∈
Span{τ1, τ2}, so dβ1 = dβ2 = 0, and then dβ1 ∧ β0 = dβ2 ∧ β0 = 0, as we wanted.

Therefore β0 = (c1/ f )τ0 + aτ1 + bτ2 for some real numbers a, b. Now define σ0 := f β0,
and choose σ1, σ2 ∈ Span{τ1, τ2} so that σ1 is g̃-orthogonal to σ2, ‖σ1‖g̃ = ‖σ2‖g̃, σ1 ∧ σ2 =
β1 ∧ β2, and σ1 ∧ σ2 = c2τ1 ∧ τ2, for some positive constant c2. Define β̃0 := β0, β̃1 := σ1,
and β̃2 := σ2. This new dual frame satisfies

dβ̃0 =
1
f

β̃1 ∧ β̃2, dβ̃1 = dβ̃2 = 0, g̃ = h Id,

As in the end of Section 4.3, we can define three one-forms α̃i, i = 0, 1, 2 such that β̃0 =: α̃0
and β̃i =: f α̃i, i = 1, 2. Hence

α̃0(s0) = β̃0(s0) =
1

f (s0)
σ0

α̃k(s0) =
1

f (s0)
β̃k(s0) =

1
f (s0)

σk, k = 1, 2,

so if f0, f1, f2 are such that α̃k = fk(s)σk, we get f0(s0) = f1(s0) = f2(s0) = f (s0)−1. Thus
it is always possible to restrict ourselves to the case studied above.



Chapter 5

Critical sets and graphs

In Chapter 3 we computed explicitly some multi-moment maps and their critical sets.
As Proposition 4.1.1 tells us, there is a simple characterisation of critical points where
the multi-moment map vanishes in terms of the infinitesimal generators of the action:
the multi-moment map νM and its differential vanish at p if and only if the generators
Up and Vp are linearly dependent over the reals. But if U and V are linearly dependent
at some point p, the torus-action cannot be free (cf. [KN96, Proposition 4.1]). Therefore,
Proposition 4.1.1 tells us the stabiliser of those points where the multi-moment map and
its differential vanish is non-trivial.

Our task now is to compute these stabilisers in the homogeneous cases. We look for
those points with non-trivial stabiliser first, then we draw a graph whose vertices corre-
spond to points fixed by all of the two-torus, and whose edges correspond to points with
one-dimensional stabiliser. Discrete and non-trivial stabilisers exist when the torus-action
is not effective. This construction will be formalised in Theorem 5.5.1 and subsequent
remarks. We stress that just the existence of such a graph in a specific case means that the
torus action cannot be free. We already computed critical sets where the multi-moment
maps vanish and got algebraic solutions, so we expect the graphs to encode and clarify
their structure geometrically.

5.1 The six-sphere

Let us start off with S6 ⊂ R7 ∼= C3 � R. We use the same notations as in Section 3.2. Recall
that an element Aϑ,φ ∈ T2 acts on C3 � R in the following way:

Aϑ,φ(z1, z2, z3, t) := (eiϑz1, eiφz2, e−i(ϑ+φ)z3, t).

Our goal is to solve Aϑ,φ(z1, z2, z3, t) = (z1, z2, z3, t), namely the system eiϑz1 = z1, eiφz2 =

z2, e−i(ϑ+φ)z3 = z3. The first equation implies either eiϑ = 1 or z1 = 0, so we have the
following four possibilities:

z1 = 0, ϑ free
z2 = 0, φ free
e−i(ϑ+φ)z3 = z3,


z1 = 0, ϑ free
eiφ = 1, z2 free
e−iϑz3 = z3,


eiϑ = 1, z1 free
eiφ = 1, z2 free
z3 free,


eiϑ = 1, z1 free
z2 = 0, φ free
e−iφz3 = z3.

It is readily seen that the third system gives a trivial stabiliser, so we can ignore it. From
the first system we get either z3 = 0 or ϑ + φ ≡ 0 (mod 2π). In the former case we get the

75
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A B

Figure 5.1: Graph of the fixed subspaces of S6

solution (0, 0, 0, t), which corresponds to the points (0, 0, 0,±1) on the six-sphere. Their
stabiliser is a two-torus because ϑ, φ are free, so we have two distinct points in our graph.
If ϑ + φ ≡ 0 (mod 2π) and z3 6= 0, we get a set of fixed points on S6 of the form (0, 0, z3, t)
which satisfy t2 + |z3|2 = 1. The equation ϑ + φ ≡ 0 (mod 2π) implies that the stabilisers
of these points are copies of S1. Note that t2 + |z3|2 = 1 corresponds to the equation of the
two-sphere (x3)2 + (x4)2 + (x7)2 = 1 already found in Section 3.2.

The second system gives z3 = 0 as ϑ is free. We obtain a fixed subspace of S6 given
by the points of the form (0, z2, 0, t) such that t2 + |z2|2 = 1, namely the two-sphere
(x2)2 + (x5)2 + (x7)2 = 1.

The last system yields z3 = 0 as φ is free, so finally we have the third two-sphere
t2 + |z1|2 = 1, namely (x1)2 + (x6)2 + (x7)2 = 1.

One can see we have just recovered the three two-spheres of critical points where the
multi-moment map vanishes. The poles are fixed by the whole two-torus, so they play a
distinguished role here:

{
(0, 0, 0,±1), poles fixed by all of T2,
t2 + |zi|2 = 1, i = 1, 2, 3, two-spheres of points fixed by S1.

Our graph will be then given by two points and three edges. As |zi| → 0 the two-spheres
collapse to the common poles. Moreover, the spheres do not intersect each other at any
point but the poles, so the edges of the graph do not intersect (see Figure 5.1). Observe
that the graph we find is trivalent, which is to say there are three edges departing from
each vertex.

5.2 The flag manifold

Recall the flag is defined as F1,2(C
3) := {(L, U) : L ≤ U ≤ C3, dim L = 1, dim U = 2}.

The T2-action on C3 is given by Aϑ,φ = diag(eiϑ, eiφ, e−i(ϑ+φ)) as in the previous case.
Our aim now is to find which pairs of subspaces (L, U) are fixed by the Aϑ,φs. As we
are going to see, it turns out that this action is not really effective: a copy of Z3 in
T2 fixes all the flags. However, there is an isomorphism between T2 and T2/Z3: the
map (eiϑ, eiφ) 7→ (e3iϑ, ei(ϑ−φ)) is surjective onto T2, and its kernel is a subgroup of T2

isomorphic to Z3, so it yields an isomorphism T2/Z3 ∼= T2. In the case below where Z3
appears as a discrete stabilizer of all the flags, we can use this trick to argue that the action
of T2 ∼= T2/Z3 is effective and the discrete stabilizers are all trivial.

Let us consider a non-zero z = (z1, z2, z3) ∈ C3 and assume that L := Span(z) is a
T2-invariant one-dimensional subspace of C3. The equation we want to solve is Aϑ,φz =

λ(ϑ, φ)z, where λ is some complex-valued function of ϑ, φ. Explicitly eiϑz1 = λz1, eiφz2 =
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λz2, e−i(ϑ+φ)z3 = λz3. As before, we have the following cases:
eiϑ = λ, z1 free
eiφ = eiϑ, z2 free
e−i3ϑz3 = z3


eiϑ = λ, z1 free
z2 = 0, φ free
e−i(2ϑ+φ)z3 = z3


z1 = 0, ϑ free
eiφ = λ, z2 free
e−i(ϑ+2φ)z3 = z3.


z1 = 0, ϑ free
z2 = 0, φ free
e−i(ϑ+φ)z3 = λz3.

The first system gives two subcases: 3ϑ ≡ 0 (mod 2π) or z3 = 0. In the former we have

ϑ ∈
{

0,
2π

3
,

4π

3

}
(mod 2π)

and zi 6= 0 for any i = 1, 2, 3, which gives a discrete stabilizer of L since ϑ ≡ φ (mod 2π).
This is a copy of Z3 and we can argue as above to conclude that the stabilizer is trivial. In
the latter case we have (z1, z2, 0) which is fixed by an S1 given by Aϑ,φ = diag(λ, λ, λ−2),
because ϑ ≡ φ (mod 2π) and ϑ is free.

The second system gives either 2ϑ + φ ≡ 0 (mod 2π) or z3 = 0. From the first we see
that (z1, 0, z3) is fixed by a copy of S1, that is Aϑ,φ = diag(λ, λ−2, λ). The second one gives
(z1, 0, 0) fixed by all of T2 as we have no restrictions on ϑ and φ.

The third system gives either ϑ + 2φ ≡ 0 (mod 2π) or z3 = 0. The first one yields
(0, z2, z3) fixed by an S1, which is given by matrices of the form Aϑ,φ = diag(λ−2, λ, λ),
whereas the second one gives (0, z2, 0) fixed by all of T2.

Finally, the last system gives only (0, 0, z3) fixed by all of T2 as z 6= 0. Denote by
F1, F2, F3 the vectors (1, 0, 0), (0, 1, 0), (0, 0, 1) ∈ C3 respectively. We write the solutions as{

CF1, CF2, CF3, fixed by all of T2,
CF1 � CF2, CF1 � CF3, CF2 � CF3, fixed by S1.

Since the T2-action preserves CFi and the angles between two vectors, we have that
CFj � CFk is preserved by T2 as well, for different i, j, k that range in {1, 2, 3}. On the other
hand, since S1 preserves Cz, where z ∈ Span{Fi, Fj}, i 6= j, then the pairs (Cz, CFi � CFj)

and (CFi, CFj � Span{z}), are fixed by S1. Therefore, we have six points in F1,2(C
3) fixed

by all of T2 and nine edges corresponding to two-dimensional subspaces of points fixed by
S1. The six points are represented by the following Aα,βγ, which are obviously symmetric
in β and γ: 

A1,12 = (CF1, CF1 � CF2)

A1,13 = (CF1, CF1 � CF3)

A2,12 = (CF2, CF1 � CF2),


A2,23 = (CF2, CF2 � CF3)

A3,13 = (CF3, CF1 � CF3)

A3,23 = (CF3, CF2 � CF3),

and the edges ai, i = 1 . . . , 9 are
If z ∈ Span{F1, F2}
a1 = (Cz, CF1 � CF2)

a2 = (Cz, CF3 � Cz)
a3 = (CF3, Cz � CF3),


If z ∈ Span{F1, F3}
a4 = (Cz, CF1 � CF3)

a5 = (CF2, Cz � CF2)

a6 = (Cz, CF2 � Cz),


If z ∈ Span{F2, F3}
a7 = (CF1, CF1 � Cz)
a8 = (Cz, CF2 � CF3)

a9 = (Cz, CF1 � Cz).

In order to figure out what the vertices of, say, a1 are, one can take the limit z→ F1 (resp.
z→ F2) and see that a1 → A1,12 (resp. a1 → A2,12). The same can be applied to the other
edges. The resulting trivalent graph is shown in Figure 5.2.
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A1,12

A1,13

A3,13

A3,23

A2,32

A2,12

Figure 5.2: Graph of the fixed subspaces of F1,2(C
3)

5.3 The complex projective space

Let us now consider the action of T2 in SU(4) on C4 \ {0} given by the injection

diag(eiϑ, eiφ) ↪→ Aϑ,φ = diag(eiϑ, eiφ, e−iϑ, e−iφ) ∈ SU(4).

Explicitly on CP3 = (C4 \ {0})/C∗ we have

Aϑ,φ([z1 : z2 : z3 : z4]) = [eiϑz1 : eiφz2 : e−iϑz3 : e−iφz4].

Observe that this action is not effective, because A0,0, Aπ,π fix all points of CP3, and these
are the only elements of the torus doing that. The morphism (eiϑ, eiφ) 7→ (ei2ϑ, ei(φ−ϑ))
from the torus to itself induces an isomorphism T2 ∼= T2/Z2, so the action of T2/Z2 ∼= T2

on CP3 is effective.
We want the solutions of Aϑ,φ([z1 : z2 : z3 : z4]) = [z1 : z2 : z3 : z4]. The homogeneous

coordinates allow us to simplify the equations, because

[eiϑz1 : eiφz2 : e−iϑz3 : e−iφz4] = [z1 : ei(φ−ϑ)z2 : e−i2ϑz3 : e−i(ϑ+φ)z4].

It is in fact enough to study this case: if we divide by eiφ instead of eiϑ then we can permute
the indices so as to swap (z1, z3) and (z2, z4), ϑ and φ. We then get the same system of the
previous case. Similarly in the other two cases: if we divide by e−iϑ, we need to map first
(ϑ, φ) 7→ (−ϑ,−φ) and then swap (z1, z2) and (z3, z4), whereas if we divide by e−iφ we
map (ϑ, φ) 7→ (−ϑ,−φ) and finally swap (z1, z2) and (z4, z3). Once we find the solutions
of the first case it will suffice to perform these steps to solve the others.

If we divide by eiϑ we get z1 = λz1, ei(φ−ϑ)z2 = λz2, e−i2ϑz3 = λz3, e−i(ϑ+φ)z4 = λz4,
where λ = λ(ϑ, φ) is a complex-valued function. We distinguish the cases λ = 1, z1 free
and λ free, z1 = 0. In the former case we then have to find the solutions of

ei(φ−ϑ)z2 = z2

e−i2ϑz3 = z3

e−i(ϑ+φ)z4 = z4.

This yields the following cases
z2 = 0
ei2ϑ = 1, z3 free
e−i(ϑ+φ)z4 = z4,


z2 = 0
z3 = 0, ϑ free
e−i(ϑ+φ)z4 = z4,


ei(φ−ϑ) = 1, z2 free
ei2ϑ = 1, z3 free
e−i2φz4 = z4,


ei(φ−ϑ) = 1, z2 free
z3 = 0, ϑ free
e−i2φz4 = z4.
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From the first system we have that φ is free and so is z4 = 0, otherwise we get a trivial
stabilizer. Note that z3 is free, so we get a two-dimensional subspace given by points of
the form [z1 : 0 : z3 : 0] fixed by an S1.

In the second system ϑ is free. If z4 = 0 we get the point [1 : 0 : 0 : 0] fixed by all of T2.
On the other hand, if ϑ + φ ≡ 0 (mod 2π) then z4 is free and we get a two-dimensional
subspace given by the points [z1 : 0 : 0 : z4] fixed by S1.

The solutions of the third system correspond to a trivial stabilizer because φ ≡ ϑ
(mod 2π) and 2ϑ ≡ 0 (mod 2π).

The fourth system yields the two-dimensional subspace given by [z1 : z2 : 0 : 0] fixed
by a copy of S1. The solutions are then the following:{

[1 : 0 : 0 : 0], fixed by all of T2,
[z1 : z2 : 0 : 0], [z1 : 0 : z3 : 0], [z1 : 0 : 0 : z4], fixed by S1.

Now we discuss the case λ free and z1 = 0. We have ei(φ−ϑ)z2 = λz2, e−2iϑz3 =
λz3, e−i(ϑ+φ)z4 = λz4. This implies

ei(φ−ϑ) = λ, z2 free
e−i(φ+ϑ) = 1, z3 free
e−i2φz4 = z4,


ei(φ−ϑ) = λ, z2 free
z3 = 0
e−i2φz4 = z4,

z2 = 0
e−i2ϑ = λ, z3 free
e−i(ϑ+φ)z4 = λz4,


z2 = 0
z3 = 0
e−i(ϑ+φ)z4 = λz4.

The system on the top left gives points of the form [0 : z2 : z3 : 0] fixed by S1 if z4 = 0,
otherwise its solutions correspond to a trivial stabilizer.

The system on the top right gives [0 : 1 : 0 : 0] fixed by all of T2 if z4 = 0, otherwise the
complex line [0 : z2 : 0 : z4] fixed by an S1.

The system on the bottom left gives [0 : 0 : 1 : 0] fixed by all of T2 if z4 = 0, otherwise
the complex line [0 : 0 : z3 : z4] fixed by S1.

The last system gives necessarily [0 : 0 : 0 : 1] fixed by all of T2. Thus, we have got
four points fixed by all of T2, namely

[1 : 0 : 0 : 0], [0 : 1 : 0 : 0],
[0 : 0 : 1 : 0], [0 : 0 : 0 : 1],

and six points fixed by S1, that are

[z1 : z2 : 0 : 0], [z1 : 0 : z3 : 0], [z1 : 0 : 0 : z4],

[0 : z2 : z3 : 0], [0 : z2 : 0 : z4], [0 : 0 : z3 : z4].

Observe that every change of parameters and variables described above will lead us
to the same solutions, because the edges are given by all the possible combinations of
two elements out of four. For any point fixed by S1 we see that if one of the coordinates
approaches 0 then it collapses to one of the points fixed by all of T2. This yields the
trivalent graph shown in Figure 5.3.
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A B

CD

Figure 5.3: Graph of the fixed subspaces of CP3

5.4 The product of three-spheres

We conclude by studying S3 × S3, which we recall to be diffeomorphic to SU(2)3/SU(2)∆.
In this case there is a T3-action: we consider (t1, t2, t3) ∈ T3 = S1 × S1 × S1, with tk = eiϑk

for some ϑk ∈ R and map each of them into SU(2) so that ti 7→ diag(ti, ti
−1) ∈ SU(2).

The action is then given by (t1, t2, t3)(g1, g2, g3)SU(2)∆ := (t1g1, t2g2, t3g3)SU(2)∆. If
(g1, g2, g3)SU(2)∆ is fixed by (t1, t2, t3) then we have (t1g1, t2g2, t3g3) = (g1g, g2g, g3g) for
some g ∈ SU(2), which yields the system of equations t1g1 = g1g, t2g2 = g2g, t3g3 = g3g.
Isolating g on one side we find g1

−1t1g1 = g2
−1t2g2 and g1

−1t1g1 = g3
−1t3g3, so{

t1 = (g1g2
−1)t2(g1g2

−1)−1

t1 = (g1g3
−1)t3(g1g3

−1)−1.

This shows that t1 and t2 are conjugate, as well as t1 and t3. Thus each pair has to have the
same eigenvalues. Since t1, t2, t3 are diagonal matrices we see that if t1 = diag(eiϑ, e−iϑ)
then tk = diag(eiϑ, e−iϑ) or tk = diag(e−iϑ, eiϑ) for k = 2, 3. This leads us to consider four
cases: write t1 = t, then (t1, t2, t3) can be written as either (t, t, t), (t, t−1, t), (t, t, t−1), or
(t, t−1, t−1). Note there is a discrete stabiliser given by t = ± Id, meaning that the action is
not effective. By the usual argument as in the two cases above we can thus ignore it.

In the first case we get either g2g1
−1 = diag(λ, λ) with |λ| = 1, as g2g1

−1 ∈ SU(2)
commutes with t. The same holds for g3g1

−1, so we can write g3g1
−1 = diag(λ′, λ′), with

|λ′| = 1. Hence

(g1, g2, g3)SU(2)∆ = (Id, g2g1
−1, g3g1

−1)SU(2)∆

= (Id, diag(λ, λ), diag(λ′, λ′))SU(2)∆

∼= S1 × S1 = T2.

This shows we have a two-torus whose points are fixed by S1.
The second case is similar: g2g1

−1 =
( −λ

λ

)
, and g3g1

−1 =
(

λ′

λ
′
)
, with |λ| = |λ′| = 1,

as before. Then

(g1, g2, g3)SU(2)∆ = (Id, g2g1
−1, g3g1

−1)SU(2)∆

=
(
Id,
( −λ

λ

)
,
(

λ′

λ
′
))

SU(2)∆

∼= S1 × S1 = T2.

We obtain a second two-torus of points fixed by a copy of S1.
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A B C

Figure 5.4: In A and B the two fixed-point sets for the T2-action when this is not free. In C
the four circles corresponding to the T3-action.

The third case can be discussed analogously switching the roles of g2g1
−1 and g3g1

−1

in the second case. We get

(g1, g2, g3)SU(2)∆ = (Id, g2g1
−1, g3g1

−1)SU(2)∆

=
(
Id,
(

λ
λ

)
,
(

λ′

−λ′

))
SU(2)∆

∼= S1 × S1 = T2,

obtaining a third two-torus with points fixed by S1.
Finally, in the last case one has

(g1, g2, g3)SU(2)∆ = (Id, g2g1
−1, g3g1

−1)SU(2)∆

=
(
Id,
(

λ
−λ

)
,
( λ′

−λ
′
))

SU(2)∆

∼= S1 × S1 = T2.

so there is a fourth two-torus of points fixed by S1. For every T2 in T3, the stabilizers
are still zero- or one-dimensional as StabT2(p) ⊂ StabT3(p). Thus there are no vertices in
our graph, we get only disjoint circles. Further, a T2 ⊂ T3 cannot contain all the circles
(t, t, t), (t, t−1, t), (t, t, t−1), (t, t−1, t−1). There are three cases: the two-torus may contain
none, one or two of the circles above. For example, the first case happens when T2 is of
the form (r, s, Id), r, s ∈ S1, so in this case we get an empty graph and the T2-action is free.
If it contains triples (r, rs, rs2), r, s ∈ S1, then it contains the circle (r, r, r), so the graph is
a single circle. Thirdly, if it is of the form (r, s, r), then it contains the circles (t, t, t) and
(t, t−1, t), but does not include (t, t, t−1) and (t, t−1, t−1), so we get two circles in our graph
(in Figure 5.4 the non-trivial cases are shown).

5.5 A general result

In the first three cases above each graph contains points fixed by all of T2 and is trivalent.
The fourth one exhibits no such points, although it may be considered as a trivalent
graph with an empty set of vertices. On the other hand, S3 × S3 is certainly the only
homogeneous case with a disconnected graph. Inspired by these concrete examples, we
can prove a general statement on the configuration of fixed-points and one-dimensional
orbits: the next result holds for SU(3)-structures with a T2-symmetry and not necessarily
nearly Kähler.
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Theorem 5.5.1. Let (M, σ, ψ±) be a six-dimensional manifold with an SU(3)-structure admitting
a two-torus symmetry. Assume the T2-action is effective on M. Let p be a point in M and Hp its
stabiliser in T2.

1. If dim Hp = 2 then Hp = T2 and there is a neighbourhood W of p in M with the following
properties: the stabiliser of each point of W is either trivial or a one-dimensional circle
S1 < T2, and the set of points in W with one-dimensional stabilisers is a disjoint union of
three totally geodesic two-dimensional submanifolds which are complex with respect to J and
whose closures only meet at p.

2. If dim Hp = 1 then Hp = S1 < T2 and there is a neighbourhood W of p in M with the
following properties: the stabiliser of each point of W is either trivial or Hp and the set of
points {q ∈ W : StabT2(q) = Hp} is a smooth totally geodesic submanifold of dimension
two which is complex with respect to J.

3. If dim Hp = 0 and Hp is non-trivial, then Hp ∼= Zk for some k > 1. The T2-orbit E
through p is a totally geodesic two-dimensional submanifold, complex with respect to J, and
there is a neighbourhood W of this orbit where T2 acts freely on W \ E.

Proof. Let g ∈ T2 and denote by ϑg : M → M, the diffeomorphism of M mapping q to
gq. Its differential Tpϑg is in general an isomorphism between Tp M and Tgp M. Since T2

preserves the SU(3)-structure, Tpϑg preserves the metric g, the almost complex structure J
and the volume form ψC = ψ+ + iψ−. Assume that p is fixed by g ∈ T2. Then Tpϑg is an
automorphism of Tp M, which is isomorphic to C3 with its standard SU(3)-structure

σ0 = i
2

3

∑
k=1

dzk ∧ dzk, ψ0 = dz1 ∧ dz2 ∧ dz3,

so Tpϑg ∈ SU(3). Up to conjugation, Tpϑg is an element of a maximal torus in SU(3), so
for concreteness we assume Tpϑg = diag(eiϑ, eiϕ, e−i(ϑ+ϕ)) with respect to the standard
basis of C3.

When dim Hp = 2 then Hp is exactly T2 by the Closed Subgroup Theorem, and by
Theorem 4.2.4 there is an open neighbourhood of p equivariantly diffeomorphic to

T2 ×T2 (Tp M/Tp(T2 · p)) ∼= Tp M ∼= C3.

We now look for points with non-trivial stabiliser in this neighbourhood of p. A point
q 6= p in the neighbourhood coincides then with a vector X in C3, and by equivariance
the requirement gq = q in M translates to TqϑgX = X in C3. Denote X by (z1, z2, z3) ∈ C3

with respect to the standard basis. Then we can write the action explicitly as

diag(eiϑ, eiζ , e−i(ϑ+ζ)) · (z1, z2, z3) = (z1, z2, z3),

getting the non-trivial cases
eiϑ = 1, z1 ∈ C

z2 = 0, ζ ∈ R

e−iζz3 = z3,


z1 = 0, ϑ ∈ R

eiζ = 1, z2 ∈ C

e−iϑz3 = z3,


z1 = 0, ϑ ∈ R

z2 = 0, ζ ∈ R

e−i(ϑ+ζ)z3 = z3.

One can solve the systems and find there are three S1-invariant directions F1, F2, F3 cor-
responding to the standard basis of C3. Thus the lines zF1, zF2, zF3 correspond to three
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two-dimensional invariant subspaces in C3 whose points have one-dimensional stabiliser.
This proves points p with stabiliser T2 are isolated when exist, and there are three two-
dimensional, disjoint submanifolds in a neighbourhood of p in M, intersecting at p, and
whose points are fixed by a one-dimensional stabiliser. The fact that they are totally
geodesic follows from e.g. [Kob72, Theorem 5.1].

Assume now p has one-dimensional stabiliser Hp. Choosing U in the Lie algebra
of Hp and V such that Span{U, V} = t2, we have Up = 0 and Vp 6= 0 in Tp M. So
Tp M ∼= Span{Vp, JVp}� R4 ∼= C � C2. Since Vp and JVp are Hp-invariant, Tpϑg ∈ SU(2)
for g ∈ Hp. We then claim Hp ∼= S1: the connected component of the identity in Hp is
conjugate to S1, so up to a change of basis its elements are diagonal matrices of the form
diag(eiα, e−iα). But Tpϑg and diag(eiα, e−iα) commute because Hp is Abelian, thus Tpϑg
must be diagonal, hence in S1, and the claim is proved. Therefore, p has a neighbourhood
diffeomorphic to

T2 ×S1 (Tp M/Tp(T2 · p)) ∼= S1 ×R5 ∼= S1 × (R � C2).

Call S1
− the stabiliser Hp, so that T2 = S1

+ × S1
−. The torus-action on S1 × (R � C2) can

be chosen as follows: S1
+ acts on S1, and S1

− acts on R � C2 trivially on R and as the
usual maximal torus in SU(2) on C2. But an element in S1

− preserves JVp, so a point q
in the neighbourhood S1 × (R � C2) is fixed by an element ` in the two-torus when the
corresponding component in R � C2 is fixed, namely Tqϑ`X = X in R � C2. Since the
action of Hp on R is trivial, this condition translates to a condition on C2 ⊂ C3 ∼= Tp M.
The same calculation as above shows there is only one invariant direction. Thus there is
only one invariant two-dimensional totally geodesic submanifold containing p.

Finally, when p has zero-dimensional stabiliser Hp, then there are two invariant
independent directions Up, Vp 6= 0. Two cases may occur: either Vp ∈ Span{Up, JUp} or
Vp 6∈ Span{Up, JUp}.

In the former case, Tp M = 〈Up, JUp〉� C2, so Hp ≤ SU(2) is a discrete subgroup of S1.
But Hp is compact and Abelian, so it is finite in SU(2) and is then conjugate to Zk for some
integer k. In this case p has a neighbourhood diffeomorphic to

T2 ×Zk C2 = (T2 ×Zk {0}) ∪ (T2 ×Zk (C
2 \ {0}))

= (T2/Zk) ∪ (T2 ×Zk (C
2 \ {0})).

Now, assume a point q in this neighbourhood be fixed by Zk. Since the action of Zk is
trivial on T2/Zk and is free on C2 \ {0}, q must lie in T2/Zk

∼= T2, so it belongs to the
orbit of p.

In the case Vp 6∈ Span{Up, JUp} then Hp fixes all of Tp M, so it is a subgroup of
SU(1) = {1}, and is then trivial.

Remark 5.5.2. When Hp has positive dimension, the generators of the action are linearly
dependent over the reals, whereas when Hp is zero-dimensional and non-trivial they are
linearly dependent over the complex numbers. This implies that in the first two cases
listed in the theorem above, our multi-moment map νM vanishes at p, and when Hp is
discrete and not trivial νM(p) 6= 0.

Remark 5.5.3. Consider the projection π : M → M/T2. The graphs are obtained by
mapping fixed-points and two-submanifolds of points with one-dimensional stabiliser
to M/T2. In the first two cases W/T2 is homeomorphic to R4. That C3/T2 is homeo-
morphic to R4 follows from the homeomorphism between S5/T2 and S3 [Mar16] and by
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taking the cones on the respective spaces. For the second case the homeomorphism is
obtained by looking at C2 as a cone over S3 and at the sphere S3 as a principal S1-bundle
over S2:

S1 × (R � C2)/T2 ∼= (R � C2)/S1
−
∼= R× (C2/S1)

∼= R× (C(S3)/S1) ∼= R× C(S3/S1)

∼= R× C(S2) ∼= R4.

In the third case the image of the exceptional orbit is an orbifold point in M/T2. Lastly,
we observe that the shape of the graphs for the examples constructed by Foscolo and
Haskins are the same as for the homogeneous cases, although the general critical sets may
be different.



Chapter 6

Topological aspects

In this final chapter we start by expanding Section 4.1. We describe properties and
symmetries of the generators of a two-torus action on any nearly Kähler six-manifold, then
use part of the data obtained to work out a formula on the Hessian of the multi-moment
map. The idea is to collect material to study nearly Kähler six-manifolds with a two-torus
symmetry from a topological point of view. In this regard, the multi-moment map must
be thought of as a Morse function, so non-degenerate critical points play a distinguished
role. This is why we need information on the Hessian and will show its explicit expression
on one of the homogeneous examples. The results presented can be elaborated further, so
we conclude explaining possible directions and potential applications.

6.1 Further symmetries

The usual, general set-up consists of a six-manifolds M equipped with a nearly Kähler
structure (g, J, ψ±) and admitting a two-torus symmetry. Explicitly, this amounts to say
that the infinitesimal generators of the T2-action U and V satisfy the following properties:

1. [U, V] = 0 = LUV.

2. For X = U, V we have LXg = 0,LX J = 0, and LXψ± = 0.

The first property implies ∇UV = ∇VU, whereas the second gives LUσ = 0 = LVσ. We
have of course made use of all these properties already. A multi-moment map is defined
as νM = σ(U, V) and its differential is given by dνM = 3ψ+(U, V, · ) = 3∇σ(U, V, · ) =
3g((∇U J)V, · ). At critical points p then Vp is in the span of Up, JUp, or equivalently
(∇U J)V|p = 0. Recall that ∇̂ = ∇− 1

2 J(∇J) is a Hermitian connection on M (cf. Proposi-
tion 1.4.2).

We now want general information about ∇U,∇V, ∇̂U, and ∇̂V. We work only with
∇U, ∇̂U, the same respective conclusions hold for the remaining fields. Let us start
working with ∇, then switch to ∇̂.

Our first observation is that the field ∇U preserves the metric, namely ∇U ∈ so(6).
The identities LU g = 0 and ∇g = 0 imply

U(g(X, Y)) = g([U, X], Y) + g(X, [U, Y]),
U(g(X, Y)) = g(∇UX, Y) + g(X,∇UY).

85
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Comparing the two right hand sides we find

g(∇UX−∇XU, Y) + g(X,∇UY−∇YU) = g(∇UX, Y) + g(X,∇UY),

thus g((∇U)X, Y) + g(X, (∇U)Y) = 0, namely ∇U ∈ so(6).
We can repeat the same steps with σ, but since it is not parallel with respect to ∇

we find that ∇U does not preserve σ. This implies that the (2, 0) component of ∇U
in the decomposition of the Lie algebra of skew-symmetric endomorphisms so(6) =
u(3) � u(3)⊥ is non-zero (cf. identities (1.7)). We write ∇U = (∇U)1,1 + (∇U)2,0, with
(∇U)2,0 6= 0. The behaviour of ∇U with respect to J is then non-trivial and interesting,
we will compute [∇U, J] later. Since LUσ = 0 we have

U(σ(X, Y)) = σ([U, X], Y) + σ(X, [U, Y]),
U(σ(X, Y)) = ∇σ(U, X, Y) + σ(∇UX, Y) + σ(X,∇UY).

Therefore
∇σ(U, X, Y) + σ((∇U)X, Y) + σ(X, (∇U)Y) = 0. (6.1)

Let us turn to the relation between ∇U and ψ+. Since ψ+ = ∇σ, we expect to get an
expression in terms of ∇2σ = ∇ψ+. In fact we have

U(ψ+(X, Y, Z)) = ψ+([U, X], Y, Z) + ψ+(X, [U, Y], Z) + ψ+(X, Y, [U, Z]),
U(ψ+(X, Y, Z)) = ∇ψ+(U, X, Y, Z) + ψ+(∇UX, Y, Z)

+ ψ+(X,∇UY, Z) + ψ+(X, Y,∇UZ).

Simplifying we find

∇ψ+(U, X, Y, Z) + ψ+((∇U)X, Y, Z)
+ ψ+(X, (∇U)Y, Z) + ψ+(X, Y, (∇U)Z) = 0.

Doing the same for ψ− and recalling ψ− = −Jψ+ we get

∇ψ−(U, X, Y, Z)
= −ψ+((∇U)JX, Y, Z)− ψ+(X, (∇U)JY, Z)− ψ+(X, Y, (∇U)Z)

+ ψ+((∇U J)X, Y, Z) + ψ+(X, (∇U J)Y, Z) + ψ+(X, Y, (∇U J)Z).

We now observe a simple and useful fact about the interplay between U and J. For
every vector field X on M we have [U, JX] = J[U, X]. This is an easy consequence of
LU J = 0, which implies

0 = LU JX− JLUX = [U, JX]− J[U, X], (6.2)

whence the result.
Motivated by the observations above, we finish computing [∇U, J]: using (6.2), the

commutator of the operators ∇U and J acts on any vector field X as

[∇U, J]X = ∇JXU − J∇XU = [JX, U] +∇U JX− J∇XU
= J[X, U] + (∇U J)X + J[U, X] = (∇U J)X.

Since the left hand side is actually [(∇U)2,0, J]X the identity found is

[(∇U)2,0, J] = (∇U J). (6.3)



6.1. Further symmetries 87

We now switch to the same information for ∇̂U. First of all it is true that ∇̂U preserves
the metric, because LU g = 0 and ∇̂U g = 0. Since ∇̂ is not torsion-free, ∇̂U has a non-zero
component in u(3)⊥ ⊂ so(6). In general ∇̂AB− ∇̂B A− [A, B] = J(∇B J)A. An explicit
calculation using LUσ = 0 and ∇̂Uσ = 0 yields

U(σ(X, Y)) = σ([U, X], Y) + σ(X, [U, Y])

= σ(∇̂UX− ∇̂XU − J(∇X J)U, Y) + σ(X, ∇̂UY− ∇̂YU − J(∇Y J)U),

U(σ(X, Y)) = σ(∇̂UX, Y) + σ(X, ∇̂UY).

Therefore

2∇σ(U, X, Y) + σ((∇̂U)X, Y) + σ(X, (∇̂U)Y) = 0. (6.4)

Note that (6.1) and (6.4) imply

σ((∇̂U − 2∇U)X, Y) + σ(X, (∇̂U − 2∇U)Y) = 0,

so ∇̂U − 2∇U ∈ u(3). Note that ∇̂U − 2∇U ∈ u(3) implies (∇̂U)2,0 − 2(∇U)2,0 ∈ u(3),
namely (∇̂U)2,0 = 2(∇U)2,0. We will come back to this point in a moment. The identities
LUψ+ = 0 and ∇̂ψ+ = 0 imply

U(ψ+(X, Y, Z)) =

= ψ+(∇̂UX− ∇̂XU + J(∇U J)X, Y, Z) + ψ+(X, ∇̂UY− ∇̂YU + J(∇U J)Y, Z)

+ ψ+(X, Y, ∇̂UZ− ∇̂ZU + J(∇U J)Z),

U(ψ+(X, Y, Z)) = ψ+(∇̂UX, Y, Z) + ψ+(X, ∇̂UY, Z) + ψ+(X, Y, ∇̂UZ).

It follows

2∇2σ(U, X, Y, Z) + ψ+((∇̂U)X, Y, Z)

+ ψ+(X, (∇̂U)Y, Z) + ψ+(X, Y, (∇̂U)Z) = 0.

Lastly, we can extend (6.3) to ∇̂:

[∇̂U, J]X = ∇̂JXU − J∇̂XU

= ∇JXU − J∇XU − 1
2 J(∇JX J)U + 1

2 J2(∇X J)U

= (∇U J)X− 2 · 1
2 (∇X J)U = 2(∇U J)X,

which is to say [(∇̂U)2,0, J] = 2(∇U J). This identity together with (6.3) implies (∇̂U)2,0 −
2(∇U)2,0 ∈ u(3) ∩ u(3)⊥ = {0}, thus (∇̂U)2,0 = 2(∇U)2,0. But ∇̂U = ∇U − 1

2 J(∇J)U,
so since J(∇J)U ∈ u(3)⊥ one has

∇̂U = (∇̂U)1,1 + (∇̂U)2,0 = (∇̂U)1,1 + 2(∇U)2,0

= (∇U)1,1 + (∇U)2,0 − 1
2 J(∇J)U,

that is 
(∇̂U)1,1 = (∇U)1,1

(∇̂U)2,0 = 2(∇U)2,0

(∇U)2,0 = − 1
2 J(∇J)U.

(6.5)

Summarising, we obtain the following results.
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Proposition 6.1.1. The vector field U satisfies the following properties:

1. The vector fields ∇U, ∇̂U preserve the metric, namely ∇U, ∇̂U ∈ so(6), and for every
vector field X we have [U, JX] = J[U, X].

2. Let X be in so(6) and denote by X1,1 and X2,0 its (1, 1)- and (2, 0)-part in the decomposition
so(6) = u(3)� u(3)⊥. Then

(∇̂U)1,1 = (∇U)1,1, (∇̂U)2,0 = 2(∇U)2,0, (∇U)2,0 = − 1
2 J(∇J)U.

3. The interplay between ∇U and σ, ψ± is expressed by the formulas

0 = ∇σ(U, X, Y) + σ((∇U)X, Y) + σ(X, (∇U)Y),

0 = ∇2σ(U, X, Y, Z) + S
X,Y,Z

∇σ((∇U)X, Y, Z).

4. The interplay between ∇̂U and σ, ψ± is expressed by the formulas

0 = 2∇σ(U, X, Y) + σ((∇̂U)X, Y) + σ(X, (∇̂U)Y),

0 = 2∇2σ(U, X, Y, Z) + S
X,Y,Z

∇σ((∇̂U)X, Y, Z) = 0.

The same properties hold for V.

6.2 The Hessian

Let us call Ĥ the Hessian of νM. The associated (2, 0) tensor is Ĥ(X, Y) := ∇̂dνM:

Ĥ(X, Y) = X(dνM(Y))− dνM(∇̂XY). (6.6)

Remark 6.2.1. When we compute the Hessian at critical points the last term on the right
hand side of (6.6) vanishes, so the choice of the connection does not matter. Since ∇̂
satisfies more symmetries than ∇, we choose to work with it.

The main point of this section is to study the behaviour of Ĥ with respect to J. In
Lemma 4.2.1 we proved 24νM = ∆νM = −TrĤ, so one cannot expect Ĥ to be of type (2, 0):
if this was the case, then Ĥ J = −JĤ, so taking some U(3)-basis {Ei, JEi}, i = 1, 2, 3, of the
tangent space at each point we would have

Tr(Ĥ) =
3

∑
i=1

g(ĤEi, Ei) + g(Ĥ JEi, JEi) =
3

∑
i=1

g(ĤEi, Ei)− g(JĤEi, JEi) = 0,

which is a contradiction. On the other hand, if Ĥ had type (1, 1), then its eigenvectors
would come in pairs: in fact if λ was an eigenvalue of Ĥ with eigenvector X one would
have

Ĥ JX = JĤX = J(λX) = λJX,

and JX would be a second eigenvector with eigenvalue λ. An explicit computation will
tell us the answer is more complicated than this.
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Recall that dνM = 3ψ+(U, V, · ). Then ∇̂ψ+ = 0 implies

X(dνM(Y))− dνM(∇̂XY) = 3
(
X(ψ+(U, V, Y))− ψ+(U, V, ∇̂XY)

)
= 3

(
ψ+(∇̂XU, V, Y) + ψ+(U, ∇̂XV, Y)

)
.

Since ∇̂AB− ∇̂B A− [A, B] = J(∇B J)A, [JX, U] = J[X, U] by (6.2), and ∇̂ preserves J

Ĥ(JX, JY) = 3
(
ψ+(∇̂JXU, V, JY) + ψ+(U, ∇̂JXV, JY)

)
= 3

(
ψ+(∇̂U JX, V, JY) + ψ+([JX, U], V, JY) + ψ+(J(∇U J)JX, V, JY)

+ ψ+(U, ∇̂V JX, JY) + ψ+(U, [JX, V], JY) + ψ+(U, J(∇V J)JX, JY)
)

= 3
(
ψ+(J∇̂UX, V, JY) + ψ+(J[X, U], V, JY) + ψ+(J(∇U J)JX, V, JY)

+ ψ+(U, J∇̂V X, JY) + ψ+(U, J[X, V], JY) + ψ+(U, J(∇V J)JX, JY)
)

= 3
(
−ψ+(∇̂UX, V, Y)− ψ+([X, U], V, Y) + ψ+((∇U J)X, V, JY)

− ψ+(U, ∇̂V X, Y)− ψ+(U, [X, V], Y) + ψ+(U, (∇V J)X, JY)
)
.

Applying once again ∇̂AB− ∇̂B A− [A, B] = J(∇B J)A:

Ĥ(JX, JY) = 3
(
−ψ+(∇̂XU, V, Y)− ψ+([U, X], V, Y)− ψ+(J(∇X J)U, V, Y)

− ψ+(U, ∇̂XV, Y)− ψ+(U, [V, X], Y)− ψ+(U, J(∇X J)V, Y)
− ψ+([X, U], V, Y)− ψ+(U, [X, V], Y) + ψ+((∇U J)X, V, JY)

+ ψ+(U, (∇V J)X, JY)
)

= −Ĥ(X, Y) + 6
(
ψ+((∇U J)X, V, JY) + ψ+(U, (∇V J)X, JY)

)
.

Assume we are at a critical point p, so that Vp is in the span of Up, JUp. We then choose a
basis {Ei}, i = 1, . . . , 6 of Tp M in such a way that Up = g1/2

UU E1, Vp = g−1/2
UU (gUV E1 + νME2),

and E2 = JE1, E4 = JE3, E6 = JE5. Recall that the expression of ψ+ is given pointwise
by ψ+ = e135 − e245 − e146 − e236, in analogy with (1.31). We can compute the term
ψ+((∇U J)X, V, JY) + ψ+(U, (∇V J)X, JY) appearing in the expression found at p:

ψ+((∇U J)X, V, JY) + ψ+(U, (∇V J)X, JY)

= g−1
UU
(
ψ+((∇U J)X, gUVU + νM JU, JY) + ψ+(U, (∇gUVU+νM JU J)X, JY)

)
= g−1

UU
(

gUVψ+((∇U J)X, U, JY)− νMψ+((∇U J)X, U, Y)

+ gUVψ+(U, (∇U J)X, JY) + νMψ+(U, (∇U J)X, Y)
)

= 2g−1
UUνMψ+(U, (∇U J)X, Y).

Write (∇U J)X as a combination of the vectors Ei so that

2g−1
UUνMψ+(U, (∇U J)X, Y) = 2νM

6

∑
i=1

ψ+(E1, g((∇E1 J)X, Ei)Ei, Y)

= −2νM

6

∑
i=1

ψ+(E1, Ei, X)ψ+(E1, Ei, Y)

= −2νM(e3 � e3 + . . . + e6 � e6)(X, Y)

= −2νMg⊥(X, Y),
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where g⊥ is the metric g restricted to the orthogonal complement of the span of E1 and E2
in the tangent space. We can formulate the result as

Proposition 6.2.2. At critical points the relation between J and Ĥ is given by the formula

Ĥ(JX, JY) = −Ĥ(X, Y)− 12νMg⊥(X, Y),

where g⊥ is the metric g restricted to the orthogonal complement of the span of E1, E2.

Example 6.2.3. To give an example of explicit Hessian, we restrict our attention to the
six-sphere S6 ⊂ R7 ∼= C3 � R. Recall that in this case the multi-moment map was obtained
in (3.4) and at the point p = (x1, . . . , x7) ∈ S6 has the form

νS6(p) = 3
(
x1(x4x5 − x2x3)− x6(x3x5 + x2x4)

)
.

In the general set-up described in Section 2.2 we introduced the unit normal N, which in
terms of the coordinate vector fields is ∑k xk∂k, and ∑k(xk)2 = 1. One may easily compute
NνM and find

NνM = 3 ∑
k

xk∂k
(
x1x4x5 − x1x2x3 − x6x3x5 − x6x2x4)

= 9
(

x1x4x5 − x1x2x3 − x6x3x5 − x6x2x4) = 3νM.

Let us denote by ∇ the flat connection on R7 and by ∇ the Levi-Civita connection on S6.
Consider two non-zero tangent vectors Xi = ∂i − xiN, Xj = ∂j − xjN at a point. Then
H(Xi, Xj) is nothing but Xi(XjνM)− (∇Xi Xj)νM. To our purposes there is no need to use
the Hermitian connection for this computation. In the following we denote by δij the
Kronecker delta and by π the pushforward of the projection from R7 \ {0} to S6. Recall
that since ∇ is flat, then ∇∂i ∂j = 0. We then find

Xi(XjνM) = Xi(∂jνM − xjNνM)

= Xi(∂jνM − 3xjνM)

= ∂i∂jνM − 3δijνM − 3xj∂iνM − xi ∑
k

xk∂k∂jνM + 12xixjνM,

whereas the second bit can be computed in general as

∇Xi Xj = π(∇Xi Xj)

= π(∇∂i−xi N(∂j − xjN))

= π(−xi∇N∂j −∇∂i x
jN + xi∇NxjN)

= π(−δijN − xj∇∂i N + xiN(xj)N + xixj∇N N)

= π(−xj∂i + xixjN + xixjN)

= −π(xj∂i) = −xjXi.

Observe that 3∂jνM = ∂j(NνM) = ∑k ∂j(xk∂kνM) = ∑k δk
j ∂kνM + ∑k xk∂j∂kνM, whence

−xi ∑k xk∂j∂kνM = −2xi∂jνM. Therefore the expression of the Hessian is given by

H(Xi, Xj) = ∂i∂jνM − 3δijνM − 2(xj∂i + xi∂j)νM + 9xixjνM.
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6.3 The multi-moment map as Morse function

The idea of this section is to describe the structure of critical sets of νM from a topological
point of view, in the same spirit as in the introduction of [Mil69]. We restrict our attention to
the equivariantly non-degenerate ones, i.e. those orbits where the Hessian is non-degenerate.
This is an essential assumption: in fact our results follow from Morse Lemma—recalled
below—which gives information on non-degenerate critical points of a smooth function.
In our case, the latter will be the multi-moment map.

The following definition is just about simple terminology.

Definition 6.3.1. Let H be a symmetric bilinear form over a vector space V. The index
of H is defined to be the maximal dimension of a subspace of V on which H is negative
definite.

In our set-up one should think of the bilinear form H as the Hessian of the multi-
moment map. The result we apply is the following theorem from [Mil69].

Theorem 6.3.2 (Morse Lemma). Let p be a non-degenerate critical point for a smooth function f .
Then there is a local coordinate system (x1, . . . , xn) in a neighbourhood U of p, centered at p, and
such that the identity

f = f (p)− (x1)2 − . . .− (x`)2 + (x`+1)2 + . . . + (xn)2

holds throughout U, where ` is the index of f at p.

Theorem 6.3.3. Let p ∈ ν−1
M (s), s 6= 0 be a non-degenerate critical point that is a local maximum

or minimum. Assume the stabiliser of p in T2 is a finite group H. Then for t in a neighourhood of
s there is a diffeomorphism

ν−1
M (t) ∼= T2 ×H S3.

Proof. By Theorem 4.2.4 a critical point p ∈ ν−1
M (s) has an open neighbourhood equivari-

antly diffeomorphic to U = T2 ×H V, where V is the normal bundle at p, namely a copy
of R4. The multi-moment map νM is T2-invariant, thus its restriction to V is nothing but a
smooth function with non-degenerate critical point at 0. By Morse Lemma, Theorem 6.3.2,
there is a local coordinate system (x1, x2, x3, x4) in V such that

νM|V = s + ε1(x1)2 + ε2(x2)2 + ε3(x3)2 + ε4(x4)2,

where εk ∈ {±1}. So ν−1
M (t) ∼= T2 × ν−1

M|V(t). In the particular case where s is a maximum,

then the index of the Hessian of νM at p is 4 and t = s− (x1)2 − (x2)2 − (x3)2 − (x4)2, or,
which is the same,

(x1)2 + (x2)2 + (x3)2 + (x4)2 = s− t > 0.

Thus ν−1
M|V(t) is homeomorphic to a three-sphere S3. When s is a minimum, then the index

of the Hessian at p is 0, so

νM|V = s + (x1)2 + (x2)2 + (x3)2 + (x4)2.

On the level set corresponding to t > s then

(x1)2 + (x2)2 + (x3)2 + (x4)2 = t− s > 0,

and again we obtain ν−1
M|V(t)

∼= S3.
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Corollary 6.3.4. Let (M, σ, ψ±) be nearly Kähler with a T2-symmetry. If the T2-action is free
on M then the multi-moment map νM cannot have only two non-degenerate critical sets.

Proof. Suppose the multi-moment map νM : M → [a, b] has only two non-degenerate
critical sets. Then they must correspond to two copies of T2 where νM attains its maximum
and minimum, so in particular they are connected and non-degenerate. Consider Umin
and Umax defined as

Umin := ν−1
M ([a, a + ε)), Umax := ν−1

M ((b− ε, b]),

where ε is positive and such that a + ε > b − ε. Therefore M = Umin ∪ Umax. Since
the action is free both Umin and Umax are equivariantly diffeomorphic to T2 × R4 by
Theorem 4.2.4. Also, Umin ∩Umax = ν−1

M ((b− ε, a + ε)), and is diffeomorphic to (b− ε, a +
ε)× T2 × S3 by Theorem 6.3.3. So we have the long exact Mayer–Vietoris sequence in de
Rham cohomology

H0(M) −→ H0(Umin)� H0(Umax) −→ H0(Umin ∩Umax) −→
−→ H1(M) −→ H1(Umin)� H1(Umax) −→ H1(Umin ∩Umax) −→ . . .

Now, M is connected as well as Umin, Umax, and Umax ∩Umin, so H0(M) = H0(Umin) =
H0(Umax) = H0(Umin ∩ Umax) = R. Further, since M is connected and with finite
fundamental group, H1(M) = 0, and the homotopic equivalences T2 ∼ T2 ×R4 and
(b− ε, a+ ε)× T2× S3 ∼ T2× S3 generate the isomorphisms H1(Umax) ∼= R2 ∼= H1(Umin)
and H1(Umin∩Umax) ∼= R2—the latter holds by Künneth formula. Therefore our sequence
has the form

R −→ R � R −→ R −→ 0 −→ R2 � R2 −→ R2 −→ . . .

and there is an injective homomorphism R4 → R2, which is a contradiction.

6.4 Conclusions

Let us summarise our results. We described properties of multi-moment maps on nearly
Kähler six-manifolds with a torus symmetry and illustrated how these maps can be a
powerful tool in constructing explicit nearly Kähler metrics. In three of the homogeneous
cases, namely S6, F1,2(C

3), CP3, we found out that our multi-moment maps only have two
critical orbits, which necessarily are the maximum and the minimum. The corresponding
values are symmetric with respect to the origin (Sections 3.2–3.4). In the case of S3 × S3

different choices of a two-torus inside the three-torus acting yield different outcomes:
orbits of saddle points arise, critical sets need not be two-dimensional, and maximum and
minimum need not be symmetric (Section 3.5). Incidentally, the latter tells us we cannot
assert that the range of νM has the general form [−a, a] in Proposition 4.2.2.

The information obtained on critical sets is partly recovered and clarified when we look
for points fixed by some subgroup of the action. The nature of multi-moment maps links
these two aspects of the story. In the particular case of the six-sphere this correspondence is
evident (see Section 5.1): the graph representing points with non-trivial stabiliser is given
by two points and three edges, which correspond respectively to the two poles and the
three two-spheres found after computing critical points in Section 3.2. In the other cases
purely algebraic calculations of critical points perhaps hide the geometric structure of these
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two-dimensional submanifolds. Nonetheless, an application of the Equivariant Tubular
Neighbourhood Theorem gives general information on the configuration of points with
non-trivial stabiliser, depending on the dimension of the isotropy groups (Theorem 5.5.1).
When looking at these points in the quotient M/T2 we find graphs as those computed in
the homogeneous cases (cf. Remark 5.5.3).

Just the non-emptiness of the graph tells us the two-torus action cannot be free on
the whole manifold: this is in fact the case for S6, F1,2(C

3), CP3. A particular choice of
a two-torus in the three-torus acting on S3 × S3 yields an empty graph, so this is the
only homogeneous example where the action can be free (see the remarks at the end of
Section 5.4). Regardless of these special cases, the two-torus action is always free on the
level sets of the multi-moment map corresponding to regular values, as it is stated in
Proposition 4.2.6. This is what allows us to perform the T2-reduction and then construct
nearly Kähler six-manifolds from three-dimensional spaces (Chapter 4, in particular
Section 4.5). Part of the future projects will be to apply this theory on the homogeneous
examples, find their T2-reductions and try to construct explicit nearly Kähler (necessarily
non-homogeneous) structures through the inverse process.

The material contained in this last chapter is yet to be completed, and is an attempt to
collect information on topology of nearly Kähler six-manifolds with torus symmetry. In
particular, one possible direction could be to get closer to an answer to the open conjecture
stating that S3 × S3 is the only nearly Kähler six-manifold with a T3-symmetry. Being far
from a conclusive statement, we work out the topology of non-degenerate critical sets of
points of local maximum and minimum on nearly Kähler six-manifolds with two-torus
symmetry. The answer obtained implies that if the multi-moment map has only two
non-degenerate critical sets then the action cannot be free, which is in line with the study
of the special cases summarised above.

6.5 Further developments

Besides the points highlighted in the previous section, there are several possible directions
to extend the work contained in this thesis. The set-up of two of them is sketched here
below, without too many technical details. I take the opportunity to thank Lorenzo Foscolo,
Andrei Moroianu, and Andrew Swann, who pointed me to these projects at different
stages.

The first one concerns nearly Kähler structures on six-dimensional sine-cones over
Sasaki–Einstein five-manifolds. Let Σ be a five-dimensional smooth manifold equipped
with an SU(2)-structure given by (η, ω1, ω2, ω3), where

1. η is a nowhere vanishing one-form (dual of a vector field N) splitting each tangent
space as TxΣ = R � ker ηx,

2. ω1 is a non-degenerate two-form on ker η such that η ∧ω2
1 6= 0,

3. ω2, ω3 are two-forms such that ωi ∧ωj = δijω
2
1, where δij is the Kronecker delta.

On (Σ, η, ω1, ω2, ω3) there exist a unique metric gΣ and an orientation compatible with
the SU(2)-structure.

On the Riemannian cone C(Σ) := (Σ×R>0, gC(Σ) := dr�2 + r2gΣ) there is an SU(3)-
structure (ω, Ω) given by

ω = rdr ∧ η + r2ω1, Ω = (dr + irη) ∧ r2(ω2 + iω3). (6.7)
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The volume form Ω splits into real and imaginary parts

Re Ω = r2dr ∧ω2 − r3η ∧ω3, Im Ω = r2dr ∧ω3 + r3η ∧ω2,

and the identity ωi ∧ωj = δijω
2
1 implies

ω ∧Ω = 0, Re Ω ∧ Im Ω = 2
3 ω3.

Therefore, (ω, Ω) defines an SU(3)-structure (cf. (1.33) and (1.34)).

Definition 6.5.1. The SU(2)-structure (η, ω1, ω2, ω3) on Σ is called Sasaki–Einstein if

dη = 2ω1, dω2 = −3η ∧ω3, dω3 = 3η ∧ω2.

Definition 6.5.2. The SU(3)-structure (ω, Ω) on C(Σ) is called Calabi–Yau if

dω = 0 = dΩ.

Differentiating (6.7) we obtain

dω = rdr ∧ (−dη + 2ω1) + r2dω1,

dΩ = r2dr ∧ (−dω2 − 3η ∧ω3)− r3d(η ∧ω3)

+ i(r2dr ∧ (−dω3 + 3η ∧ω2) + r3d(η ∧ω2)),

from which it is clear that C(Σ) is Calabi–Yau if and only if Σ is Sasaki–Einstein.
We now introduce the sine-cone over Σ: consider the Riemannian product

SC(Σ) := ((0, π)× Σ, gSC = ds�2 + sin2s gΣ),

where s is a parameter in (0, π). The Riemannian cone over it is

C(SC(Σ)) := (R>0 × (0, π)× Σ, g = dρ�2 + ρ2(ds�2 + sin2s gΣ)).

The cylinder over the Calabi–Yau cone C(Σ) defined by

(R×R>0 × Σ, g = dt�2 + dr�2 + r2gΣ)

is diffeomorphic and isometric to C(SC(Σ)).
We know that a six-dimensional manifold is nearly Kähler if and only if the cone

constructed over it has holonomy contained in G2. Hence, the sine-cone SC(Σ) is nearly
Kähler if and only if the cylinder (R× C(Σ), g = dt�2 + gC(Σ)) has a parallel G2-structure.
This is in fact given by the two closed three-forms

ϕ = dt ∧ω + Re Ω, ∗ϕ = −dt ∧ Im Ω + 1
2 ω2,

and the nearly Kähler structure (σ, ψ±) on SC(Σ) turns out to be

σ := sin s ds ∧ η + sin2s cos s ω1 + sin3s ω2,

ψ+ := − sin3s ds ∧ω1 + sin2s cos s ds ∧ω2 − sin3s η ∧ω3,

ψ− := sin2s ds ∧ω3 + sin3s cos s η ∧ω2 − sin4s η ∧ω1.
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One may now assume that a two-torus T2 acts effectively on Σ preserving the Sasaki–
Einstein structure (η, ω1, ω2, ω3), and this yields a two-torus symmetry on the sine-cone
over Σ. Let U, V be the Killing vector fields generating the action. Note that ω1(U, V) is
proportional to dη(U, V) = U(η(V))−V(η(U)) = LU(V y η)−LV(U y η) = 0 since U
and V commute, hence vanishes itself. So one gets a multi-moment map on the sine-cone
given by

νM := σ(U, V) = ω2(U, V) sin3s.

The goal will be to apply the construction as in Chapter 4 to obtain a structure theory and
new concrete examples.

Another possible direction regards G2 geometry. In Section 2.1 we saw how the
group G2 may be defined as the stabilizer of a three-form ϕ0 on R7 in the special orthogonal
group SO(7). Equivalently, one may also define G2 ↪→ Spin(7) as the stabilizer of a
non-zero spinor ψ0 in an eight-dimensional, real representation, the spin representation.
Incidentally, this close relation with spin geometry explains the importance of G2 in the
world of particles and supersymmetry (see e.g. [Str86; Agr08]).

Definition 6.5.3. A G2-structure on a seven-dimensional Riemannian manifold (M, g) is a
three-form ϕ pointwise equivalent to ϕ0. The manifold (M, ϕ) is then called G2-manifold.

Every G2-manifold carries a spinor field ψ canonically induced by ϕ0 and ψ0. Among
the various classes of compact spaces equipped with a G2-structure, we focus on nearly
parallel G2-manifolds.

Definition 6.5.4. A G2-manifold (M, ϕ) is nearly parallel if and only if∇ϕ = λ∗ϕ for some
non-zero constant λ, and ∗ the Hodge star operator.

The condition ∇ϕ = λ∗ϕ is equivalent to saying that the corresponding spinor ψ is
Killing, i.e.∇Xψ = µX · ψ, with X a vector field and µ a real constant, hence M is Einstein.
Examples of nearly parallel G2-manifolds exist: remarkable ones are e.g. the Aloff–Wallach
spaces, i.e. compact, homogeneous, seven-manifolds of the form SU(3)/U(1). Nonethe-
less, constructing explicit G2-metrics remains a non-trivial challenge.

The main point of this project is to study geometry and topology of non-homogeneous
nearly parallel G2-manifolds (M, ϕ) having a three-torus symmetry, and find new, explicit
examples. We assume a three-torus T3 acts effectively on our space preserving the G2-
structure. A T3-symmetry induces Killing vector fields U, V, W, and the three-form ϕ can
be used to generate a T3-invariant real valued function

νM := ϕ(U, V, W),

which in out set-up is a multi-moment map. Again, this is the starting point to apply the
machinery developed in Chapter 4, study the structure theory and find new examples.
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