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Abstract

This thesis concerns optimal semiclassical analysis in two different settings. The
first setting concerns an optimal semiclassical bound for the trace norm of certain
commutators. The second setting is a more classic semiclassical question and it
concerns an optimal Weyl law. Both settings concerns optimal semiclassical analysis
but different methods are used in each setting.

The commutators considered is a non-magnetic Schrödinger operator commuted
with either a positions operator or a momentum operator. For these commutators
an optimal bound on the trace norm in terms of a semiclassical parameter is proven.
Commutators of this type are not usual objects to consider in semiclassical analysis.
But the bounds on the trace norm of the commutators correspond to a mean-field
version of bounds introduced as an assumption by N. Benedikter, M. Porta and B.
Schlein in a study of the evolution of a fermionic system.

What is presented here in this thesis on the Weyl law is work in progress. It is
well established that a Weyl law is valid for self-adjoint differential operators with
smooth coefficients under certain assumptions. The question considered in this thesis
is what happens if the coefficients are not smooth. Can an optimal Weyl law still be
proven?

In the thesis an optimal Weyl law is proven/reproven where the coefficients are
once differentiable and the first derivative is Hölder continuous. In order to prove
this Weyl law a class of rough symbols is defined. For this class a full symbolic and
functional calculus is proven. Moreover a microlocal approximation of the propagator
is constructed, which is not a Fourier integral operator!

The thesis also has a section on the possible future directions to go with the work
on the Weyl law. There are a substantial number of interesting questions that could
be pursued.
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Resumé

Denne afhandling omhandler optimal semiklassisk analyse i to forskellige situationer.
Den første situation omhandler en optimal semiklassisk begrænsning på spornormen af
bestemte kommutatorer. Den anden situation er mere klassisk semiklassisk analyse, da
det omhandler en optimal Weyl lov. Begge situation omhandler optimale semiklassiske
resultater, men der bruges forskellige metoder i de to situationer.

Kommutatorerne, der betragtes i afhandlingen, er en ikke magnetisk Schrödinger
operator kommuteret med enten en positions operator eller en impuls operator. For
disse kommutatorer bevises der en optimal semiklassisk begrænsning på spornormen.
Kommutatorer af denne type bliver normalt ikke betragtet i semiklassisk analyse,
men begrænsningen på spornormen af disse kommutatorer svarer til en middel-felts
approksimation af nogle begrænsninger introduceret som en antagelse af N. Benedikter,
M. Porta and B. Schlein i et studie af evolutionen af et fermionisk system.

Det der præsenteres i afhandlingen om Weyl loven er i gangværende arbejde. Det er
velkendt at der gælder en optimal Weyl lov for selvadjungerede differential operatorer
med glatte koefficienter under visse antagelser. Det spørgsmål, der undersøges i
afhandlingen er: Hvad sker der hvis koefficienterne ikke er glatte? Er det så stadig
muligt at bevise en optimal Weyl lov?

I afhandlingen bevises/genbevises en optimal Weyl lov, hvor koefficienterne er en
gang differentiable med Hölder kontinuerte første afledte. For at bevise denne Weyl
lov introduceres en klasse af grove symboler. For denne klasse af symboler bevises
der fuld symbol og funktional kalkyle. Yderligere konstrueres der også en mikrolokal
approksimation til tidsudviklingen, der ikke er en Fourier integral operator!

Afhandlingen indeholder også en sektion om mulige retninger man kunne arbejde
videre med i forbindelse med Weyl loven. Der er et betydeligt antal interessante
spørgsmål man kunne forfølge.
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Preface

"Mathematics is not a deductive science – that’s a cliché. When you try
to prove a theorem, you don’t just list the hypotheses, and then start to
reason. What you do is trial and error, experimentation, guesswork."

—Paul R. Halmos I want to be a Mathematician

This thesis marks the end of my studies as a PhD student at the Department
of Mathematics, Aarhus University. The studies were supervised by Professor Søren
Fournais and funded by the Sapere Aude project: Semiclassical Quantum Mechanics
(DFF–4181-00221) from the Danish Council for Independent Research held by Søren
Fournais.

The thesis consists of some introductory chapters and two papers. The papers are
at first glance very different but they are both concerned with optimal semiclassical
analysis. The main difference is the methods used in each paper. The two papers are:

• Paper I: An optimal semiclassical bound on certain commutators.

• Paper II: Optimal Weyl asymptotics for operators with irregular coefficients.

Paper I has been uploaded to arXiv with identification arXiv:1912.08467 and is
presented in the same form in the thesis as the one on arXiv. This paper is co-authored
with my supervisor. While we discussed all results and cooperated on the calculations
I have done most of the typesetting for the paper with useful comments from my
supervisor. Parts of paper I is advances on the result contained in my progress rapport
for my qualifying exam.

Paper II is work in progress and is a self-contained review of what we so far have
been able to prove/understand concerning optimal Weyl laws without full regularity.
The paper is slightly rough around the edges since it really is work in progress. Most
results have been discussed with my supervisor and some details have been work out
in cooperation.

The structure of the thesis is such that the first chapter is an introduction to
semiclassical analysis and the Weyl law. The second chapter is an introduction to
Paper I followed by the paper itself. The third chapter is an introduction to Paper II
and a discussion on in which directions we hope to be able to continue this research,
after this follows Paper II. Each chapter has its own bibliography which is the last
section of the chapter.
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Chapter 1

Introduction to semiclassical
analysis and Weyl’s law

Semiclassical analysis can be viewed as the study of a system as a parameter tends
to zero. In the context of quantum mechanics and classical mechanics, semiclassical
analysis is the mathematically rigorous investigation of the Bohr correspondence
principle i.e. that classical mechanics is the limit as ~ tends to zero of quantum
mechanics. From a mathematical point of view letting a parameter tend to zero is not
an unnatural case to consider but in physics the parameter ~ is Planck’s (reduced)
constant which is a fixed number up to the units in which one is working. But how
can it be allowed to take a physical constant to zero. Here it should be noted that
Planck’s reduced constant is a small number ~ = 1.054571817× 10−34 J · s (joules
times seconds). This number is negligibly small in a world where quantities are
measured in joules and seconds (classical physics). But in the world of subatomic
physics this is no longer a small scale (quantum physics). Hence letting ~ tend to
zero can be interpreted as moving from microscopic to macroscopic scale which is the
essence of the Bohr correspondence principle.

Besides a physical interpretation of semiclassical analysis it is also widely used
within the theory of partial differential equations where the parameter often will
appear by a scaling of the original partial differential equation. Moreover it also
appears in a connection between geometry and analysis.

1.1 Weyl’s law

In 1910 the physicist H. Lorentz came to Göttingen to give a seminar. In his lecture
he proposed the mathematical problem of counting the eigenvalues of the Laplace
operator on a domain (the standing waves or pure tones) and conjectured an asymp-
totic solution formula. Famously, D. Hilbert commented that this problem seemed
too difficult to be solved in his lifetime. It was therefore surprising that D. Hilbert’s
own student H. Weyl succeeded in proving the expected formula already the next
year [27]! Notes from the lectures by H. Lorentz were published in [19]. Actually this
formula was also conjectured independently in 1910 by the physicist A. Sommerfeld
in [26]. Both had based their conjecture on the book “The Theory of Sound” (1887)
by Lord Rayleigh.

The operator considered by H. Weyl was the Dirichlet Laplacian on a bounded
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2 Chapter 1. Introduction to semiclassical analysis and Weyl’s law

domain Ω in Rd, where he proved the formula:

Tr(1(−∞,λ](−∆D,Ω)) =
1

(2π)d
ωd Vol(Ω)λ

d
2 (1 + o(1)) as λ→∞,

where ωd is the volume of the unit ball in Rd. During the following years H. Weyl
published several papers [28–31] on the asymptotic distribution of eigenvalues and
in [30] he conjectured the two term asymptotic formula

Tr(1(−∞,λ](−∆D,Ω))

=
1

(2π)d
ωd Vol(Ω)λ

d
2 − 1

4

ωd−1

(2π)d−1
Vol′(∂Ω)λ

d−1
2 + o(λ

d−1
2 ),

(1.1)

as λ→∞, where Vol′(∂Ω) is the surface area of Ω. The formula is also formulated for
Neumann boundary conditions where the minus in front of the second term should
be a plus.1

H. Weyl’s original proof was based on a technique which is now called Dirichlet-
Neumann bracketing. This technique is simple, elegant and very robust. However, it
cannot be used to obtain precise formulae including lower order correction terms. The
variational methods were further developed but did not lead to sharp error bounds
but generalisations instead.

The next advance was the application of Tauberian methods in this context first
due to T. Carleman [4].2 The idea of this method is to consider a function F (A, t) of
the operator A and an auxiliary parameter t. Then, under the right assumptions,

Tr[F (A, t)] =

∫
R
F (s, t) dTr[EA(s)], (1.2)

where EA(s) is the spectral projection. Now one tries to construct Tr[F (A, t)] using
theory from partial differential equations and then try to recover Tr[EA(s)]. One of
the very essential steps in this method is the choice of the function F . Some of the
examples are F (A, t) = e−tA, F (A, t) = (t−A)−1 or F (A, t) = At. For each of these
functions there is a rich theory in PDE but they are difficult in the Tauberian part
(the recovering of Tr[EA(s)]) and have not yielded sharp error bounds so far (to the
author’s knowledge).

In the context of the Tauberian method V. Avakumović [2] and B. Levitan [18]
used the function F (A, t) = eitA. They were able to recover estimates of the order
O(λ

d−1
2 ) for closed manifolds and away from the boundary.

The next step was due to L. Hörmander who in [11] approximated the operator
eitA by Fourier integral operators and thereby extended the results of V. Avakumović
and B. Levitan. The results of L. Hörmander was further extended by J. Duistermaat
and V. Guillemin in [7], who recovered the error o(λ

d−1
2 ) for elliptic differential

1 H. Weyl only considered the cases d = 2, 3.
2 The Tauberian method or theorems originates from analytic number theory and is named after a Hun-
garian born, Austrian mathematician Alfred Tauber. The name Tauberian theorem was first introduced
by Hardy and Littlewood in 1913.
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operators on a compact smooth manifold without a boundary. For the proof they
needed to assume that the measure of all periodic geodesics is 0.

The obstacle to get results with sharp remainder for smooth manifolds with
boundary was the construction of the approximation to eitA close to the boundary.
This problem was partially circumvented by R. Seeley in [22]. It was first in 1980
that V. Ivrii proved the conjecture under two assumptions. The first assumption is
that the boundary ∂Ω is smooth and the second is that the measure of all periodic
billiards is zero. In the same year R. Melrose in [20] proved an analogous result for
compact manifolds with smooth boundary but under more assumptions. One of these
assumptions is that the boundary is everywhere strictly geodesically concave.

This short survey is not giving the full history of the progress on the Weyl
conjecture. For a more detailed history about this problem see the surveys [1, 5, 15]
or see the introductions in the mentioned papers.

We should in this section also mention that the development did not end with the
proof of V. Ivrii in 1980. After this V. Ivrii and others tried to relax the assumptions
on the boundary [3, 13, 14]. Others have not just considered the counting function
but also the sum of the negative eigenvalues, where R. Frank and S. Larson this year
(2019) obtained an optimal result on two terms asymptotic for the sum of negative
eigenvalues for the Dirichlet Laplacian in a Lipschitz domain [8].

1.2 Generalisations of Weyl’s law

The result obtained for the Laplacian on a manifold with or without boundary was
during the period also extended to higher order differential operators. The higher
order differential operators were assumed to be elliptic and defined on a manifold with
or without boundary. A special case is the Schrödinger operator. They also started
to consider the question of operators acting in L2(Rd) and not just on a compact
manifold. The question asked here was essentially the same: How many eigenvalues
are there less than or equal to a certain number λ?

We will focus on the case of operators acting in L2(Rd). Different types of problems
were considered simultaneously but with similar methods. As an example we have
the two following problems for Schrödinger operators:

• Find the spectral asymptotics as λ → ∞ for Tr[1(−∞,λ](H)], the number of
eigenvalues less than or equal to λ, where H = −∆ + V and V (x) → ∞ as
|x| → ∞.

• Find the spectral asymptotics as ~ → 0 for Tr[1(−∞,0](H~)], the number of
eigenvalues less than or equal to 0, where H = −~2∆ + V .

These two problems are quite different but the first can be deduced from the second
under the right assumptions. The classical problem was the one receiving the most
attention at the start but some also did work on the semiclassical problem. We will
not give a full survey of the development for the semiclassical problem but instead
fast forward to the results due to B. Helffer and D. Robert, which first appeared
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in [9] for the counting function. The results can also be found in the monograph [21].
We will consider more general operators than just the Schrödinger operator.

As we saw in the previous section optimal results relied on microlocal analysis
and the same is true in the semiclassical setting. The class of operators they consider
they call ~-admissible operators. We can think of these operators as operators of the
form

A(~) =
∑
j≥0

~j Opw
~ (aj),

where Opw
~ (aj) is a Weyl-quantised ~-pseudo-differential operator of the smooth

symbol aj and the sum should be understood as a formal sum. The rigorous definition
for these types of operators will be recalled later. The prime example for this type of
operators is the semiclassical Schrödinger operator H~ = −~2∆ + V which is given
just by the principal symbol a0(x, p) = p2 + V (x) for V which is smooth and not ill
behaved. An optimal Weyl law for these operators is an expression of the form

Tr[1(−∞,λ0](A(~))] =
1

(2π~)d

∫
Rd

∫
Rd

1(−∞,λ0](a0(x, p)) dxdp+O(~1−d),

for a number λ0 < λ such a−1
0 ((−∞, λ]) is compact and non-critical for a0(x, p). A

number λ0 is a non-critical value when

|∇a0(x, p)| ≥ c > 0 for all (x, p) ∈ a−1
0 ({λ0}).

This non-critical condition is essential for the proofs to be valid. It should be remarked
that the form of the leading term of the Weyl conjecture is of the same form as the
above phase space integral. Moreover in order for the proof to be valid we need extra
assumptions on the symbols than stated here.

In the previous section we stated some of the techniques entering the proof of
the Weyl conjecture. As it turns out these ideas also enter in the proof of the above
formula. Their proof has roughly three main steps. First they use a functional calculus
for ~-admissible operators to localise the problem in energy space such that all
remaining values are non-critical. Then a Tauberian argument is used to smoothen
the spectral measure and introduce a propagator. The third step is to approximate
the propagator by a Fourier integral operator and do a stationary phase argument.
Hence the steps used in this approach are very similar to the steps described in the
previous section.

These results were further extended by B. Helffer and D. Robert in [10], where
they consider functions of the form gs(t) = (t)s−, where (t)− = (|t| − t)/2 and s ≥ 0,
of the operators. Here they get more terms in the asymptotic expansions. In the case
where the subprincipal synbol is zero (a1(x, p) = 0) the expansion becomes

Tr[gs(A(~)− λ)] =
1

(2π~)d

∫
Rd

∫
Rd
gs(a0(x, p)− λ) dxdp+O(~1+s−d),

for 0 ≤ s ≤ 1 and a number λ0 < λ such a−1
0 ((−∞, λ]) is compact and non-critical

for a0(x, p).



1.3. Non-smooth theory 5

Similar results to these have also been proven by V. Ivrii [12] but with a slightly
different method. In Ivrii’s approach he considers the Schwarz kernel of the counting
function directly and proves his results on the level of kernels. In his work there is a
key observation: The construction of the propagator as a Fourier integral operator is
not required to get full asymptotics for these types of problems. Usually the Fourier
integral operator of the propagator is constructed for times in a small interval around
zero. But by applying suitable scaling arguments and hyperbolic energy estimates he
showed that the traces under consideration is negligible in the region ~δ ≤ |t| ≤ T0

for 0 < δ < 1. For |t| ≤ ~δ he showed that a “rough” approximation to the propagator
is sufficient to get the full asymptotics. This observation will be discussed further in
Chapter 3.

The above generalisations have all been for global operators. There have also
been work where the problem is localised by a multiplication operator with a smooth
compactly supported function. Results of this kind have been obtain by V. Ivrii
and can be found in [12, 16]. In the case of the Schrödinger operator A. V. Sobolev
obtained local result in [23]. In the results obtained by A. V. Sobolev one does not
need to assume the potential to be smooth in the whole space but only in a sufficiently
large neighbourhood of the localisation.

The semicalssical results have so far all been with a non-critical condition at an
energy λ. For a Schrödinger operator there is an approach due to V. Ivrii (see [12, 16])
where it is possible to prove optimal error terms with out a non-critical condition.
This approach is also described by A. V. Sobolev in [24], where he extends the results
mentioned above to operators which only locally are assumed to be Schrödinger
operators. The approach is called multiscale analysis and the one suggested by V.
Ivrii can be viewed as a discrete approach. There is also a continuous version suggested
by J. P. Solovej and W. L. Spitzer in [25].

There are also works by L. Zielinski where he does not assume the non-critical
condition [36, 38–40]. Here L. Zielinski rewrites the error in terms of volumes and is
able to get a sharp bound with an assumption on the size of phase space volume.

Weyl laws have also be extended to symbols not taking values in C but in a
Hilbert space. The case of the Hilbert space being a space of matricies can be fund
in the monograph by M. Dimassi and J. Sjöstrand [6] and monographs [12, 16] by V.
Ivrii.

1.3 Non-smooth theory

Almost all the previous results have assumed smoothness of the symbols. There were
results in Section 1.1, where the boundary was not smooth. But what about the case
of general differential operators with non-smooth coefficients? Can an optimal Weyl
law still be proven?

These types of results were first proven by L. Zielinski in [32–35], where he obtained
sharp estimates without assuming smoothness. We only mention L. Zielinski here,as
he was the first to obtain sharp estimates, but others also considered the case of
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non smooth coefficients. L. Zielinski considered globally elliptic differential operators
with non-smooth coefficients on compact manifolds with or without boundaries and
on the whole space (Rd). In these papers L. Zielinski considered the number of
eigenvalues less than a number λ and the asymptotics as λ tends to infinity. As
microlocal analysis requires smoothness of the symbols this type of theory can not
a priori be applied. Instead the first step is to regularise the coefficients such that
they become smooth. This regularisation was based on ideas that appeared in [17]
by H. Kumano-go and M. Nagase. Then he could use techniques from microlocal
analysis on the regularised operator and by comparing the spectral asymptotics for
the two operators he could obtain the result. He proved the sharp estimate under the
assumption that the coefficients are differentiable and the first derivative is Lipschitz
continuous.

The results of L. Zielinski were generalised by V. Ivrii in the semiclassical setting
in [13]. Here the coefficients are assumed to be differentiable and with a Hölder
continuous first derivative. Moreover in the paper he uses the semiclassical result to
prove the classical analogue. In [3] V. Ivrii together with M. Bronstein reduced the
assumptions further by assuming the first derivative to have modulus of continuity
O(| log(x− y)|−1). In this paper they considered not only one regularisation of the
original operator A but two framing operators A±ε such

A−ε ≤ A ≤ A+
ε ,

in the sense of quadratic forms. The parameter ε is connected to the semiclassical
parameter ~ in a way which depends on the regularity of the coefficients. One of
the advantages of constructing two approximating operators is that by the min-max
theorem we have

Tr[1(−∞,0](A
+
ε )] ≤ Tr[1(−∞,0](A)] ≤ Tr[1(−∞,0](A

−
ε )].

This implies that they can reduce the proof to showing a Weyl law for the approxi-
mating operators and compare the phase space integrals. They prove this Weyl law
by microlocal techniques. We will later return to some of the ideas entering this
approach.

In [37] L. Zielinski used the semiclassical setting to generalise the methods used
in [32–35] to obtain sharp estimates for globally elliptic differential operators with
non-smooth coefficients, which he assumed to be differentiable and with a Hölder
continuously bounded first derivative.

For the non-smooth theory there are also works without a non-critical condition.
The ones known to the author are the works by V. Ivrii and L. Zielinski.

1.4 Applications of Weyl’s law

Weyl’s law is not just a purely mathematical pursuit. It has a strong and deep
connection to physical problems. As seen in the very start of this introduction the
problem was first introduced by two physicists. Some of the connection to physics is
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in the description of vibrations of a string or membrane, heat radiation of a body in
thermal equilibrium or the Schrödinger equation. We will not here go into further
details about these connections here. In stead we refer to [1, 5], which is still not a
complete list.
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Chapter 2

An optimal semiclassical bound on
certain commutators

In the first paper we consider semiclassical bounds on the trace norm of the commu-
tators

[1(−∞,0](H~), xj ], [1(−∞,0](H~), Qj ] and [1(−∞,0](H~), eitx]. (2.1)

Here H~ is a Schrödinger operator acting in L2(Rd) of the form H~ = −~2∆ + V ,
where ∆ is the Laplacian on Rd and V is a real-valued function. The operator Qj is
given by Qj = −i~∂xj for j in {1, . . . , d}, xj is the multiplication operator with xj
for j in {1, . . . , d} and eitx is the multiplication operator with the function eitx. The
bound on the trace norm of the commutators we prove is

‖[1(−∞,0](H~), xj ]‖1 ≤ C~1−d and ‖[1(−∞,0](H~), Qj ]‖1 ≤ C~1−d, (2.2)

where ‖·‖1 denotes the trace norm. The bound on the trace norm of the last commu-
tator in (2.1) follows as a corollary. The exact statement of our main theorem and
our assumptions will follow shortly.

First of all why is this an interesting question? In order give some answers we
need to set up some notation and terminology.

Definition 2.0.1. Let Ω ⊆ Rdx×Rdp be open, ρ be in [0, 1] and m a tempered weight
function on Rdx × Rdp. We call a function a a symbol with weights (m, ρ) if a is in
C∞(Ω) and satisfies that

|∂αx ∂βp a(x, p)| ≤ Cαm(x, p)(1 + |(x, p)|)−ρ(|α|+|β|), (2.3)

for all (x, p) in Ω and α, β in Nd0. The space of these functions is denoted Γmρ (Ω).
This space is a Fréchet space with the natural family of semi-norms.

The tempered weight function is also called an order function. This is the case in the
monographs [5] and [11]. We have chosen to call them temperate weights to align
with the terminology in the monographs [6] and [9].

With this definition we can define the Weyl-quantised ~ pseudo-differential opera-
tor (~-ΨDO) we consider.

Definition 2.0.2. Let m be a tempered weight function. For a symbol a in the set
Γmρ
(
Rdx × Rdp

)
we associate the operator Opw

~ (a) defined by

Opw
~ (a)ψ(x) =

1

(2π~)d

∫
Rd

∫
Rd
ei~
−1〈x−y,p〉a

(x+y
2 , p

)
ψ(y) dy dp, (2.4)
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for ψ in S(Rd) (the Schwartz space). The integral in (2.4) shall be interpered as an
oscillating integral.

For the properties of this type of operators we refer to one of the monographs
[5, 6, 9, 11].

We can now give some answers to why this question is interesting. If we consider
two ~-pseudo-differential operators A(~) = Opw

~ (a) and B(~) = Opw
~ (b) with symbols

satisfying that |∂αx ∂
β
p a(x, p)| and |∂αx ∂

β
p b(x, p)| are elements of L1(Rdx × Rdp) for all

multi indicies α and β in Nd0. Then by Theorem II-32 and Theorem II-49 in [9] we
have the bound

‖[A(~), B(~)]‖1 ≤ C~1−d.

This bound implies that the bounds in (2.2) are optimal in terms of the semiclassical
parameter ~ even though the operator 1(−∞,0](H~) is not a ~-ΨDO. Hence as a purely
semiclassical question is interesting to see if optimal errors can be achieved in this
setting.

The bounds in (2.2) correspond to a mean-field version of bounds assumed in
a series of papers by N. Benedikter, M. Porta and B. Schlein et. al. [1–4]. In these
papers they consider time evolutions of fermionic systems in certain regimes. They
prove that if the initial state is a Slater determinant and the one-particle reduced
density matrix of this state satisfies a semiclassical commutator bound as in (2.2),
then the evolved state remains close to a Slater determinant. We will not here go into
further details of the result, as it requires another formalism and machinery than we
otherwise will use but refer to the papers [1–4] for further details. Bounds of this type
have also been assumed in [7], which appeared this year (2019). So the semiclassical
bounds of this type is not just interesting from a purely semiclassical view it also has
applications in other areas.

2.1 Main theorem

Before we state the main theorem we will state the assumptions on V for which we
can prove the theorem.

Assumption 2.1.1. Let V : Rd → R be a function for which there exists an open
set ΩV ⊂ Rd and ε > 0 such that

1) V is in C∞(ΩV ).

2) There exists an open bounded set Ωε such that Ωε ⊂ ΩV such that V ≥ ε for
all x ∈ Ωc

ε.

3) V 1ΩcV
is an element of L1

loc(Rd).

The assumption of smoothness in the set ΩV is needed in order to use the theory of
pseudo-differential operators. The second assumption is needed to ensure that we
have noncontinuous spectrum in (−∞, 0] and enable us to localise the operator. The
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last assumption is just to ensure that we can define the operator H~ by a Friedrichs
extension of the associated form. We can now state our main theorem:

Theorem 2.1.2. Let H~ = −~2∆ + V be a Schrödinger operator acting in L2(Rd)
with d ≥ 2, where V satisfies Assumption 2.1.1 and let Qj = −i~∂xj for j ∈ {1, . . . , d}.
Then the following bounds hold

‖[1(−∞,0](H~), xj ]‖1 ≤ C~1−d and ‖[1(−∞,0](H~), Qj ]‖1 ≤ C~1−d, (2.5)

where C is a positive constant.

As a corollary to the above theorem we obtain:

Corollary 2.1.3. Let H~ = −~2∆ + V be a Schrödinger operator acting in L2(Rd)
with d ≥ 2, where V satisfies Assumption 2.1.1. Then the following bound holds

‖[1(−∞,0](H~), ei〈t,x〉]‖1 ≤ C|t|~1−d, (2.6)

for all t in Rd, where 〈t, x〉 is the Euclidean inner product and C is a positive constant.

The corollary follows by an application of the Duhamel formula/principle and the
the first bound in Theorem 2.1.2. One thing we emphasise is that in our proof we
found a way to circumvent the use of a smoothing procedure. This step will be briefly
explained in the next section.

2.2 Ideas entering the proof of the main theorem

We will in the following use the notation from Assumption 2.1.1. Moreover we will
only discuss the first commutator in Theorem 2.1.2 as the ideas used to prove the
two bounds are the same.

The first step in the proof of Theorem 2.1.2 is to localise the problem. This is done
by choosing a χ in C∞0 (ΩV ) such that χ(x) = 1 for all x in Ωε. With this localisation
we have

‖[1(−∞,0](H~), xj ]‖1 = ‖[1(−∞,0](H~), χxj ]‖1 + ‖[1(−∞,0](H~), (1− χ)xj ]‖1. (2.7)

For the last term in the right hand side of (2.7) we use an Agmon type estimate and
a corollary to the Cwikel-Lieb-Rosenbljum bound from [8] to prove it is negligible.
What remains is the localised part of the commutator.

For the localised part we prove the bound in two steps. First we prove the bound
under a non-critical assumption, where we are localised to a ball. Then this result is
used to obtain the general local result by the multiscale argument.

Before we state the localised version with a non-critical condition we need some
notation and to recall an assumption:

Assumption 2.2.1. Let H be an operator acting in L2(Rd) such that

1) H is selfadjoint and lower semibounded.
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2) There exists an open set Ω ⊂ Rd and a realvalued function Vloc in C∞0 (Rd) such
that C∞0 (Ω) ⊂ D(H) and

Hu = H loc
~ u

for all u in C∞0 (Ω), where H loc
~ = −~2∆ + Vloc.

This assumption is taken directly from [10] and we will also be applying a result from
that paper. The first localised version we prove is:

Theorem 2.2.2. Suppose the operator H acting in L2(Rd) with d ≥ 2 obeys As-
sumption 2.2.1 with Ω = B(0, 4R) for R > 0 and

|V (x)|+ |∇V (x)|2 + ~ ≥ c, (2.8)

for all x in B(0, 2R), where c > 0. For ϕ in C∞0 (B(0, R/2)) it holds that

‖[1(−∞,0](H), ϕ]‖1 ≤ C~1−d and ‖[1(−∞,0](H), ϕQj ]‖1 ≤ C~1−d, (2.9)

for all sufficiently small ~ and j ∈ {1, . . . , d}, where Qj = −i~∂xj . The constant C
only depends on the dimension, the numbers ‖∂αxV ‖∞ and ‖∂αxϕ‖∞ for all α in Nd0,
and the numbers R and c in (2.8).

The new assumption on V in equation (2.8) ensures that 0 is a non-critical value
of the operator. In order to prove the bounds here it is convenient to rewrite the
commutator as

[1(−∞,0](H), ϕ] = 1(−∞,0](H)ϕ1(0,∞)(H)− 1(0,∞)(H)ϕ1(−∞,0](H), (2.10)

where the bound is proven for each of the two terms in (2.10). In order to prove the
bounds we localise in energy to a region close to zero where all values are non-critical
and the rest. For the technical details, see the paper. This localisation gives us a term
of the form

1(−η,0](H)ϕ1(0,η)(H),

where η is chosen such all values in [−2η, 2η] are non-critical values. In order to
estimate this term we make a ~ dependent dyadic decomposition of the interval
(−η, 0] by introducing the functions

χn,~(t) =

{
1(~,0](t) n = 0

1(−4n~,−4n−1~](t) n ∈ N.

By letting χ̃n,~(t) = χn,~(−t) we also have a decomposition of (0, η). With these
function we get

‖1(−η,0](H)ϕ1(0,ε](H)‖1 ≤
N(~)∑
n=0

N(~)∑
m=0

‖χn,~(H)ϕχ̃m,~(H)‖1. (2.11)

Why is this a useful estimate? Under the assumptions in the theorem one can prove
that

Tr[1[−4n~,−4n−2~](H)ϕ] ≤ 4n~1−dC,
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by applying [10, Theorem 4.1], which is an optimal Weyl law for this type of operators.
Hence by a Cauchy-Schwarz inequality we have

‖χn,~(H)ϕχ̃m,~(H)‖1 ≤ C4
n+m

2 ~1−d.

The issue is that these terms are not summable. To make the sum converge we split
the sum according to which of the numbers m and n are largest. In the case n ≤ m
we use the simple fact that t+ 22n−1~ is large on the support of χ̃m,~ and small on
the support of χn,~. This trick gives the estimate

‖χn,~(H)ϕχ̃m,~(H)‖1 ≤
1

42(m−1)~2
‖χn,~(H)[[ϕ,H],H]χ̃m,~(H)‖1. (2.12)

What we have gained from this is a prefactor which will make the sum convergent if we
can estimate the double commutator. The semiclassical parameter ~−2 in the prefactor
is canceled by the ~2 coming from the double commutator. By the assumptions on
the operator H the double commutator can be calculated explicitly and then the
term can be estimated.

The above trick is the one that enable us to avoid a smoothing procedure which
is often used to get optimal error bounds in such problems.

To move from this local result to a local result without a non-critical condition
we use a multiscale argument as stated in [10]. We will not give further details here
on how this argument works but we refer to the paper. This local result without a
non-critical condition now gives the estimate for the first term of the right hand side
in (2.7).

2.3 Possible extensions of the result

A first question could be to incorporate a magnetic potential. The answer to this is
most likely positive as the optimal Weyl law we used is actually proven for a magnetic
Schrödinger operator. Moreover the double commutator should still be computable.
For other types of operators one would need to ensure an optimal Weyl law as the
one we have used and an Agmon type estimate, as the one we applied heavily used
that our operator was a Schrödinger operator.

Then there is the work to generalise this result to the precise assumption in [1–4],
where the setup is that of a many-body problem. This would probably require some
additional techniques than the ones we apply. However we consider the present
contribution a first important step.
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Paper I

An optimal semiclassical bound on
certain commutators
by Søren Fournais and Søren Mikkelsen

Aarhus University

Abstract: We prove an optimal semiclassical bound on the trace norm of the
following commutators [1(−∞,0](H~), x], [1(−∞,0](H~),−i~∇] and [1(−∞,0](H~), eitx],
where H~ is a Schrödinger operator with a semiclassical parameter ~, x is the position
operator and −i~∇ is the momentum operator. These bounds corresponds to a
mean-field version of bounds introduced as an assumption by N. Benedikter, M. Porta
and B. Schlein in a study of the mean-field evolution of a fermionic system.

I.1 Introduction and main result

We consider a Schrödinger operator H~ = −~2∆ + V acting in L2(Rd) with d ≥ 2.
Here ∆ is the Laplacian acting in L2(Rd) and V is a real valued function. We will be
interested in the following trace norms of commutators:

‖[1(−∞,0](H~), xj ]‖1, ‖[1(−∞,0](H~), Qj ]‖1 and ‖[1(−∞,0](H~), eitx]‖1,

where Qj = −i~∂xj and xj is the position operator for j ∈ {1, . . . , d}. Moreover 1A
denotes the characteristic function of a set A and ‖·‖1 denotes the trace norm. The
main theorem will be the bound for the first two commutators and the bound on the
last will follow as a corollary.

Let us specify the assumptions on the function V for which we study the operator
H~.

Assumption I.1.1. Let V : Rd → R be a function for which there exists an open
set ΩV ⊂ Rd and ε > 0 such that

1) V is in C∞(ΩV ).

2) There exists an open bounded set Ωε such that Ωε ⊂ ΩV such that V ≥ ε for
all x ∈ Ωc

ε.

3) V 1ΩcV
is an element of L1

loc(Rd).
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The assumption of smoothness in the set ΩV is needed in order to use the theory of
pseudo-differential operators. The second assumption is needed to ensure that we
have non continuous spectrum in (−∞, 0] and enable us to localise the operator. The
last assumption is just to ensure that we can define the operator H~ by a Friedrichs
extension of the associated form. We can now state our main theorem:

Theorem I.1.2. Let H~ = −~2∆ + V be a Schrödinger operator acting in L2(Rd)
with d ≥ 2, where V satisfies Assumption I.1.1 and let Qj = −i~∂xj for j ∈ {1, . . . , d}
futhermore, let ~0 be a strictly positive number. Then the following bounds hold

‖[1(−∞,0](H~), xj ]‖1 ≤ C~1−d and ‖[1(−∞,0](H~), Qj ]‖1 ≤ C~1−d, (2.1)

for all ~ in (0, ~0], where C is a positive constant.

From Theorem I.1.2 we get the corollary:

Corollary I.1.3. Let H~ = −~2∆ + V be a Schrödinger operator acting in L2(Rd)
with d ≥ 2, where V satisfies Assumption I.1.1 futhermore, let ~0 be a strictly positive
number. Then the following bound holds

‖[1(−∞,0](H~), ei〈t,x〉]‖1 ≤ C|t|~1−d, (2.2)

for all t in Rd and all ~ in (0, ~0], where 〈t, x〉 is the Euclidean inner product and C
is a positive constant.

Theorem I.1.2 and Corollary I.1.3 are semiclassical in the sense that they are of most
interest in the cases where the semiclassical parameter ~ is small. The upper bound
~0 on the semiclassical parameter is needed in order to control the constants as we
do not have uniformity for ~ tending to infinity.

The proofs of Theorem I.1.2 and Corollary I.1.3 are given in section I.4. The
proof of Theorem I.1.2 is divided into three parts. First a local version of the theorem
(see Theorem I.3.3) is proven with a non-critical assumption (2.4). This proof is
based on local Weyl-asymptotics proven in the paper [15] and an ~ dependent dyadic
decomposition which will be introduced in the proof. In the first part we will not
be considering the operator H~ directly but an abstract operator H which satisfies
Assumption I.2.1 below. The abstract version is needed for the later multiscale
argument.

The second part is to remove the non-critical condition by a multiscale argument
as in [15] (see also [9, 10]). The main idea is to make a partition of unity and on each
partition scale the operator in such a way that a non-critical assumption is achieved
and then use the theorem with the non-critical condition. The final step in this part
is to remove the dependence of the partition by integration.

The third part is to first note that the theorem obtained in the second part gives
the desired estimate in the classically allowed region {V < ε} and then prove that the
classically forbidden region {V > ε} contributes less to the error term than the desired
estimate. This is done by applying an Agmon type bound on the eigenfunctions of
the operator H~.
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Commutator bounds of the type considered in this paper were introduced as
assumptions in a series of papers by N. Benedikter, M. Porta and B. Schlein et. al. [2–5]
where they considered mean-field dynamics of fermions in different settings. The
bounds considered here are a first step to verifying their assumption, since the
bounds proven here correspond to a mean field version of the bounds they need. The
assumption reappeared in the paper [11].

Already the mean-field version of the bounds, treated in this paper, is non-trivial
as they are optimal in terms of the semiclassical parameter ~, which is easily seen by
the calculus of pseudo-differential operators.

I.2 Preliminaries

Assumptions and notation

First we will describe the operators we are working with. Under Assumption I.1.1 we
can define the operator H~ = −~2∆ + V as the Friedrichs extension of the quadratic
form given by

h[f, g] =

∫
Rd

~2
d∑
i=1

∂xif(x)∂xig(x) + V (x)f(x)g(x) dx, f, g ∈ D(h),

where

D(h) =

{
f ∈ L2(Rd)|

∫
Rd
|p|2|f̂(p)|2 dp <∞ and

∫
Rd
|V (x)||f(x)|2 dx <∞

}
.

In this set up the Friedrichs extension will be unique and self-adjoint see e.g. [13].
Moreover, we will also consider operators that satisfy the following assumption

Assumption I.2.1. Let H be an operator acting in L2(Rd) such that

1) H is selfadjoint and lower semibounded.

2) There exists an open set Ω ⊂ Rd and a realvalued function Vloc in C∞0 (Rd) such
that C∞0 (Ω) ⊂ D(H) and

Hu = H loc
~ u

for all u in C∞0 (Ω), where H loc
~ = −~2∆ + Vloc.

The above assumption is exactly the same as in [15]. It is important to note that the
assumptions made on the the operator H~ in Theorem I.1.2 imply that H~ satisfies
Assumption I.2.1 for a suitable Vloc. When referring to this assumption further on we
will omit the loc on the operator H loc

~ and the function Vloc when we only consider
an operator satisfying the assumption.

The construction of the operator via a Friedrichs extension will also work for
the local Schrödinger operator, where Vloc is C∞0 (R). But in this case the operator
can also be constructed as the closure of an ~-pseudo-differential operator (~-ΨDO)
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defined on the Schwarz space. By an ~-ΨDO, A = Opw
~ (a) we mean the operator

with Weyl symbol a, that is

Opw
~ (a)ψ(x) =

1

(2π~)d

∫
Rd

∫
Rd
ei~
−1〈x−y,p〉a

(x+y
2 , p

)
ψ(y) dy dp,

for ψ ∈ S(Rd) (the Schwarz space). The symbol a is assumed to be in C∞(Rdx × Rdp)
and to satisfy the condition

|∂αx ∂βp a(x, p)| ≤ Cα,βm(x, p), (2.3)

for all multi-index α and β and some tempered weight function m. The above
integrals should be understod as oscillating integrals. We need this as the results
on Weyl-asymptotics needed is based on (~-ΨDOs). For more details see e.g. the
monographs [7, 14, 16].

We call a number E in R a non-critical value for a symbol a if

(∇xa(x, p),∇pa(x, p)) 6= 0 ∀(x, p) ∈ a−1({E}).

In the case where a(x, p) = p2 + V (x) the non-critical condition can be expressed
only in terms of the function V by assuming that

|∇xV (x)|2 + |E − V (x)| > 0, ∀(x, p) ∈ a−1({E}),

since it is immediate that

|∇xa(x, p)|2 + |∇pa(x, p)|2 = |∇xV (x)|2 + 4|E − V (x)|, ∀(x, p) ∈ a−1({E}).

Optimal Weyl-asymptotics

We are interested in optimal Weyl-asymptotics for an operator H acting in L2(Rd)
satisfying Assumption I.2.1. When we only have one operator we will not write the
loc subscript on the operator. In the following we will denote the open ball with
radius R by B(0, R). For this kind of operators we have from [15, Theorem 4.1] the
following theorem:

Theorem I.2.2. Suppose the operator H acting in L2(Rd) with d ≥ 2 obeys Assump-
tion I.2.1 with Ω = B(0, 4R) for R > 0 and

|V (x)|+ |∇V (x)|2 + ~ ≥ c, (2.4)

for all x in B(0, 2R) furthermore, let ~0 be a strictly positive number. For ϕ in
C∞0 (B(0, R/2)) it holds that∣∣∣Tr[1(−∞,0](H)ϕ]− 1

(2π~)d

∫
Rd

∫
Rd

1{p2+V (x)≤0}(x, p)ϕ(x) dx dp
∣∣∣ ≤ C~1−d,

for C a positive constant and all ~ in (0, ~0]. The constant C depends on the numbers
R, ~0 and c in (2.4) and on the bounds on the derivatives of V and ϕ.



I.2. Preliminaries 21

One can note that in our “non-critical” assumption (2.4) in the above theorem there
has appeared an ~. This assumption would either imply that |V (x)|+ |∇V (x)|2 ≥ c/2
or ~ ≥ c/2. In the first case the assumption gives us our non-critical assumption.
In the second both sides will be finite and the formula can be made true by an
appropriate choice of constants.

Proposition I.2.3. Suppose the operator H acting in L2(Rd) with d ≥ 2 obeys
Assumption I.2.1 with Ω = B(0, 4R) for R > 0. Moreover suppose there is an ε > 0

such that
|V (x)− E|+ |∇V (x)|2 + ~ ≥ c, (2.5)

for all x in B(0, 2R) and all E in [−2ε, 2ε] furthermore let ~0 be a strictly positive
number. For ϕ in C∞0 (B(0, R/2)) and two numbers a and b such that

−ε < a ≤ b < ε,

it holds that
Tr[1[a,b](H)ϕ] ≤ C1|b− a|~−d + C2~1−d,

for two positive constants C1 and C2 and all ~ in (0, ~0]. The constants C1 and C2

depend only on the numbers R, ~0 and c in (2.5) and on the bounds on the derivatives
of V and ϕ.

Remark I.2.4. We suppose we have an operator H acting in L2(Rd) with d ≥ 2,
which obeys Assumption I.2.1 with Ω = B(0, 4R) for R > 0. If it is assumed that
there exists a c > 0 for which

|V (x)|+ |∇V (x)|2 + ~ ≥ c,

for all x in B(0, 2R), then by continuity this would imply the existence of a c̃ > 0

and an ε > 0 such that

|V (x)− E|+ |∇V (x)|2 + ~ ≥ c,

for all x in B(0, 2R) and all E in [−2ε, 2ε]. That is we could generalise the assumptions
in the proposition. But we have chosen this form of the proposition due to later
applications.

Proof. We can rewrite the trace of interest as

Tr[1[a,b](H)ϕ] = Tr[1(−∞,b](H)ϕ]− Tr[1(−∞,a)(H)ϕ]. (2.6)

If we consider the trace Tr[1(−∞,b](H)ϕ] then we can rewrite this in the following way

Tr[1(−∞,b](H)ϕ] = Tr[1(−∞,0](H− b)ϕ].

The operator H − b satisfies Assumption I.2.1 with V replaced by V − b and by
assumption we have

|V (x)− b|+ |∇V (x)|2 + ~ ≥ c, (2.7)
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for all x in B(0, 2R). The b should be understood as bχ(x) where χ is C∞0 (B(0, 4R))

and χ(x) = 1 for x in B(0, 3R). Hence we can omit the χ when we are localised to
B(0, 2R). By Theorem I.2.2 we have the following identity

Tr[1(−∞,b](H)ϕ] = Tr[1(−∞,0](H− b)ϕ]

=
1

(2π~)d

∫
Rd

∫
Rd

1{p2+V (x)−b≤0}(x, p)ϕ(x) dxdp+O(~1−d)

=
1

(2π~)d

∫
Rd

∫
Rd

1{p2+V (x)≤b}(x, p)ϕ(x) dxdp+O(~1−d),

(2.8)

where the error term is independent of b. Analogously we get that

Tr[1(−∞,a](H)ϕ] =
1

(2π~)d

∫
Rd

∫
Rd

1{p2+V (x)≤a}(x, p)ϕ(x) dxdp+O(~1−d). (2.9)

Since the two error terms are of the same order we can, when subtracting the two
traces, add the two error terms and obtain a new error term of order ~1−d. Hence we
will consider the integral∫

Rd

∫
Rd

1{p2+V (x)≤b}(x, p)ϕ(x)− 1{p2+V (x)≤a}(x, p)ϕ(x) dxdp. (2.10)

By assumption this integral is finite. In order to evaluate these integrals we note that
by assumption we are in one of the following two cases

~ >
c

2
(2.11)

or
|V (x)− E|+ |∇V (x)|2 ≥ c

2
, (2.12)

for all x in B(0, 2R) and all E in [−2ε, 2ε]. In the first case (2.11) we can estimate
the integrals by a constant and replace ~−d by ~1−d at the cost of 2

c . For the second
case (2.12) we have, by the Coarea formula, the equality∫

Rd

∫
Rd

1{p2+V (x)≤b}(x, p)ϕ(x)− 1{p2+V (x)≤a}(x, p)ϕ(x) dxdp

=

∫ b

a

∫
{p2+V (x)=E}

ϕ(x)
1

|(∇xV (x),∇pp2)|
dSdE,

(2.13)

where S is the surface measure. By support properties of ϕ and (2.12) we have that

sup
E∈[−ε,ε]

∫
{p2+V (x)=E}

ϕ(x)
1

|(∇xV (x),∇pp2)|
dS ≤ C. (2.14)

Using (2.14) we get∫ b

a

∫
{p2+V (x)=E}

ϕ(x)
1

|(∇xV (x),∇pp2)|
dSdE ≤

∫ b

a
CdE ≤ C|b− a|, (2.15)

where C is the constant from (2.14), which is independent of a, b and ~. By combining
(2.6), (2.8), (2.9), (2.13) and (2.15) we get

Tr[1[a,b](H)ϕ] ≤ C1|b− a|~−d + C2~1−d.

Which is the desired estimate and this ends the proof. �
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The previous proposition gives that we can get the right order in ~ of the trace if
we consider sufficiently small intervals. This will be a crucial point in the proof of
Theorem I.3.3.

Furthermore we will be needing a corollary to the Cwikel-Lieb-Rosenbljum (CLR)
bound. This corollary is stated in [12, Chapter 4].

Corollary I.2.5. Let d ≥ 1, γ > 0, λ > 0 and H = −∆ + V be a Schrödinger
operator acting in L2(Rd) with (V + λ

2 )− in L
d
2

+γ(Rd) and V+ in L1
loc(Rd). Then

Tr(1(−∞,−λ](H)) ≤ 2γ

λγ
1

(4π)
d
2

Γ(γ)

Γ(d2 + γ)

∫
Rd

(V (x) + λ
2 )

d
2

+γ
− dx,

where Γ is the gamma function.

We will use this corollary in the following way.

Remark I.2.6. Let H~ = −~2∆ + V be a Schrödinger operator acting in L2(Rd)
and suppose it satisfies Assumption I.2.1. We will later need an a priori estimate
on the number Tr(1(−∞, ε

4
](H~)). To obtain this we will consider the operator H̃~ =

−~2∆ + V − ε
2 . Clearly,

Tr(1(−∞,− ε4 ](H~ − ε
2)) = Tr(1(−∞,− ε

4~2 ](−∆ + V
~2 −

ε
2~2 )). (2.16)

If we apply Corollary I.2.5 to the right hand side of (2.16) with γ = 1 and λ = ε
4~2

we get

Tr(1(−∞,− ε
4~2 ](−∆ + V

~2 −
ε

2~2 )) ≤ cd
~2

ε

∫
Rd

(V (x)
~2 −

3ε
8~2 )

d
2

+1
− dx

=
cd
ε~d

∫
Rd

(V (x)− 3ε
8 )

d
2

+1
− dx.

(2.17)

The last integral in (2.17) is finite by Assumption I.2.1 since the support of (V (x)−
3ε
8 )− is compact and the function is continuous. Combining (2.16) with (2.17) we get
the bound

Tr(1(−∞, ε4 ](H~)) ≤ C

~d
. (2.18)

where we have absorbed the integral and ε into the constant.

Trace norm estimates of operators

In this subsection we will list some results on trace norms and estimates of trace
norms for operators. First recall that for an operator A the trace norm is

‖A‖1 = Tr
(

[AA∗]
1
2

)
and the Hilbert-Schmidt norm is

‖A‖2 =
√

Tr (AA∗)

Moreover we will use the convention that ‖A‖ is the operator norm of A. The following
lemma is a modification of [15, Lemma 3.9]. The proofs are completely analogous.
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Lemma I.2.7. Let H~ = −~2∆ +V be a Schrödinger operator acting in L2(Rd) with
V in C∞0 (Rd). Let f be in C∞0 (R) and ϕ in C∞0 (Rd). We let r ∈ {0, 1}, ~0 > 0 and
Qj = −i~∂xj for j ∈ {1, . . . , d}. Then

‖ϕQrjf(H~)‖1 ≤ C~−d,

for all ~ in (0, ~0]. If ψ is a bounded function from C∞(Rd) and c > 0 such that

dist[supp(ϕ), supp(ψ)] ≥ c. (2.19)

Then for any N in N0

‖ϕQrjf(H~)ψ‖1 ≤ CN~N ,

for all ~ in (0, ~0]. Both constants C and CN depend on the dimension, the functions
ϕ and ψ, the numbers ~0, ‖∂αV ‖∞ for α in Nd0, ‖∂jf‖∞ for j in N0, c in (2.19) and
sup(supp(f)).

The following theorem is an extension of Theorem 3.12 from the paper [15] as an
extra operator has been added. It is less general in the sense that we only consider
compactly supported, smooth functions applied to the operator, whereas in the paper
more general functions are considered. Again we omit the easy modifications of the
proof in [15].

Theorem I.2.8. Let H satisfy Assumption I.2.1 with Ω = B(0, 4R) for an R > 0.
Let f be in C∞0 (R) and let r ∈ {0, 1}, ~0 > 0 and Qj = −i~∂xj for j ∈ {1, . . . , d}. If
ϕ is in C∞0 (B(0, 3R)) then for any N ≥ 0

‖ϕQrj [f(H)− f(H~)]‖1 ≤ CN~N

and

‖ϕQrjf(H)‖1 ≤ C~−d

for all ~ in (0, ~0], where the constants CN and C only depend on the dimension and
the numbers ~0, ‖∂jf‖∞ for j in N0 and ‖∂αV ‖∞, ‖∂αϕ‖∞ for α in Nd0.

I.3 Local case

In this section we will present the first step in the proof of Theorem I.1.2 where we
prove a local version of the theorem under a non-critical condition. It should be noted
that we are not trying to get optimal constants in the following.

Auxiliary bounds

Before we proceed we will consider a simple case where the function applied to the
operator is a smooth function with compact support. Moreover we will prove a bound
on a Hilbert-Schmidt norm which will prove to be useful.

The first auxiliary result is a simple case of Theorem I.3.3, where we consider the
same commutators as in the theorem but we apply a smooth, compactly supported
function to our operator instead of the characteristic function.
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Lemma I.3.1. Suppose the operator H obeys Assumption I.2.1 with Ω = B(0, 4R) for
R > 0 and let f be in C∞0 (R) and ~0 > 0. For ϕ in C∞0 (B(0, 3R)) and Qj = −i~∂xj
for j ∈ {1, . . . , d} it holds that

‖[f(H), ϕ]‖1 ≤ C~1−d and ‖[f(H), ϕQj ]‖1 ≤ C~1−d,

for all ~ in (0, ~0] and a positive constant C, where C only depend on the dimension,
the function ϕ, the numbers ~0, ‖∂αV ‖∞ for α in Nd0, ‖∂jf‖∞ for j in N0 and
sup(supp(f)).

Proof. We start by proving the first commutator bound. By Theorem I.2.8 we note
that for any N ≥ 0

‖[f(H), ϕ]‖1 ≤ ‖[f(H~), ϕ]‖1 + CN~N , (2.20)

hence we need only prove the bound for the trace norm of [f(H~), ϕ]. Let g ∈ C∞0 (R)

such that g(t)f(t) = f(t) and 0 ≤ g(t) ≤ 1 for all t in R. Then we have that

[f(H~), ϕ] = f(H~)ϕ− ϕf(H~)

= g(H~)f(H~)ϕ− ϕg(H~)f(H~) + g(H~)ϕf(H~)− g(H~)ϕf(H~)

= g(H~)[f(H~), ϕ] + [g(H~), ϕ]f(H~).

These equalities implie that

‖[f(H~), ϕ]‖1 ≤ ‖g(H~)[f(H~), ϕ]‖1 + ‖[g(H~), ϕ]f(H~)‖1. (2.21)

We start by considering the first trace norm ‖g(H~)[f(H~), ϕ]‖1 and the second can
be treated by an analogous argument. Let ϕ̃ be in C∞0 (Rd) such that ϕ̃ϕ = ϕ and
0 ≤ ϕ̃ ≤ 1. Then we have that

‖g(H~)[f(H~), ϕ]‖1 ≤ ‖g(H~)ϕ̃[f(H~), ϕ]‖1 + ‖g(H~)(1− ϕ̃)f(H~)ϕ‖1
≤ ‖g(H~)ϕ̃‖1‖[f(H~), ϕ]‖+ ‖(1− ϕ̃)f(H~)ϕ‖1
≤ C~−d‖[f(H~), ϕ]‖+ CN~N ,

(2.22)

for all N ≥ 0, where we have used Lemma I.2.7 in the last inequality. That

‖[f(H~), ϕ]‖ ≤ C~, (2.23)

is a consequence of the functional calculus for ~-ΨDOs presented in [14]. It also
follows fairly easily from an argument using the Helffer-Sjöstrand formula [6] and the
resolvent identities. The estimate on the second term in (2.21) is similar and will be
left to the reader. This estimate concludes the proof. �

The next lemma is very similar to the above lemma.

Lemma I.3.2. Suppose the operator H obeys Assumption I.2.1 with Ω = B(0, 4R)

for R > 0 and let f be in C∞0 (R) and ~0 > 0. For ϕ in C∞0 (B(0, 3R)) it holds that

‖[H, ϕ]f(H)‖2 ≤ C~1− d
2 ,

for all ~ in (0, ~0] for a positive constant C, where C only depends on the dimension,
the function ϕ, the numbers ~0, ‖∂αV ‖∞ for α in Nd0, ‖∂jf‖∞ for j in N0 and
sup(supp(f)).
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Proof. Let ϕ1 be in C∞0 (B(0, 3R)) such that ϕ1ϕ = ϕ and 0 ≤ ϕ1 ≤ 1. Then by
Assumption I.2.1 the commutator [H, ϕ] is local in the sense that

[H, ϕ] = [H~, ϕ]ϕ1,

where H~ is the operator from Assumption I.2.1 i.e. H~ = −~2∆ + V , where V is in
C∞0 (Rd). Therefore there exists a λ0 ≥ 0 such that −λ0 is in the resolvent set of H~
and the operator H~ + λ0 is positive (e.g. λ0 = 1 + ‖V ‖∞) We then have that

‖[H, ϕ]f(H)‖2 =‖[H~, ϕ]ϕ1RH~(−λ0)(H~ + λ0)f(H)‖2
≤‖[H~, ϕ]RH~(−λ0)ϕ1(H~ + λ0)f(H)‖2

+ ‖[H~, ϕ][ϕ1, RH~(−λ0)](H~ + λ0)f(H)‖2,
(2.24)

where RH~(z) = (H~ − z)−1. If we now consider each of the terms separately we can
for the first term note that by Assumption I.2.1 and Theorem I.2.8 we have

‖[H~, ϕ]RH~(−λ0)ϕ1(H~ + λ0)f(H)‖2 ≤ ‖[H~, ϕ]RH~(−λ0)‖‖ϕ1(H+ λ0)f(H)‖2

≤ c~−
d
2 ‖[H~, ϕ]RH~(−λ0)‖

≤ C~1− d
2 ,

(2.25)

where we have used the bound

‖[H~, ϕ]RH~(−λ0)‖ ≤ ~
d∑
j=1

‖(2ϕxjQj − i~ϕxjxj )RH~(−λ0)‖ ≤ c~, (2.26)

where we have calculated the commutator explicitly. The bound in (2.26) is valid
since D(H~) ⊂ D(Qj) for all j ∈ {1, . . . , d}. Moreover in (2.25) we have used the
following estimate

‖ϕ1(H+ λ0)f(H)‖22 = Tr[ϕ1(H+ λ0)f(H)2(H+ λ0)ϕ1]

≤ ‖ϕ1(H+ λ0)f(H)2(H+ λ0)ϕ1‖1 ≤ C~−d,

by Theorem I.2.8. For the other term on the right hand side of (2.24) we note that

‖[H~, ϕ][ϕ1, RH~(−λ0)](H~+λ0)f(H)‖2 = ‖[H~, ϕ]RH~(−λ0)[H~, ϕ1]f(H)‖2 (2.27)

Let ϕ2 be in C∞0 (B(0, 3R)) such that ϕ2ϕ1 = ϕ1 and 0 ≤ ϕ2 ≤ 1 and note that by
Theorem I.2.8

‖[H~, ϕ]RH~(−λ0)[H~, ϕ1]f(H)‖2
= ‖[H~, ϕ]RH~(−λ0)[H~, ϕ1]ϕ2f(H)‖2
≤ ‖[H~, ϕ]RH~(−λ0)

1
2 ‖‖RH~(−λ0)

1
2 [H~, ϕ1]‖‖ϕ2f(H)‖2

≤ C~2− d
2 ,

(2.28)

where we have used that the commutators [H~, ϕ] and [H~, ϕ1] can be calculated
explicitly and that their domains contains the form domain ofH~. Combining estimates
(2.24), (2.25) and (2.28) we get the desired bound. �
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Local case with a non-critical condition

We will now state and prove the local version of the main theorem (Theorem I.1.2)
with a non-critical condition. It should be noted that we are only dealing with open
balls as the domain in Assumption I.2.1 since when we extend the result we will use
them to cover a general open set.

Theorem I.3.3. Suppose the operator H acting in L2(Rd) with d ≥ 2 obeys Assump-
tion I.2.1 with Ω = B(0, 4R) for R > 0 and

|V (x)|+ |∇V (x)|2 + ~ ≥ c, (2.29)

for all x in B(0, 2R), where c > 0. Furthermore, let ~0 be a strictly positive number.
For ϕ in C∞0 (B(0, R/2)) it holds that

‖[1(−∞,0](H), ϕ]‖1 ≤ C~1−d and ‖[1(−∞,0](H), ϕQj ]‖1 ≤ C~1−d, (2.30)

for all ~ in (0, ~0] and j ∈ {1, . . . , d}, where Qj = −i~∂xj . The constant C only
depends on the dimension, the numbers ‖∂αxV ‖∞ and ‖∂αxϕ‖∞ for all α in Nd0, and
the numbers R and c in (2.29).

Proof. We start by proving the first bound in (2.30). We notice that

[1(−∞,0](H), ϕ] = 1(−∞,0](H)ϕ1(0,∞)(H)− 1(0,∞)(H)ϕ1(−∞,0](H). (2.31)

We will consider each of the terms in (2.31) separately and they can be handled with
analogous arguments. So we only consider the term 1(−∞,0](H)ϕ1(0,∞)(H). By (2.29)
and continuity, there exists an ε > 0 such that for all E in [−2ε, 2ε] we have

|E − V (x)|+ |∇V (x)|2 + ~ ≥ c

2
,

for all x in B(0, 2R). Without loss of generality we can assume ε ≤ 1. Let g1 and g0

be two functions such that

• g1(H) + g0(H) = 1(−∞,0](H).

• supp(g0) ⊂ [−ε, 0] and g0(t) = 1 for t ∈ [−ε/2, 0].

• g1 ∈ C∞0 (R).

That g1 can assumed to be compactly supported is due to the fact that the spectrum
of H is bounded from below. With these functions we get that

1(−∞,0](H)ϕ1(0,∞)(H) = g1(H)ϕ1(0,∞)(H) + g0(H)ϕ1(0,∞)(H)

= [g1(H), ϕ]1(0,∞)(H) + g0(H)ϕ1(0,∞)(H).
(2.32)

For the first term we note that by Lemma I.3.1 we have the estimate:

‖[g1(H), ϕ]1(0,∞)(H)‖1 ≤ ‖[g1(H), ϕ]‖1 ≤ C~1−d. (2.33)
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In order to estimate the term g0(H)ϕ1(0,∞)(H) we let f be in C∞0 (R) such that
f(t) = 1 on [−ε, 0] and supp(f) ⊂ [−2ε, ε]. Then we have

g0(H)ϕ1(0,∞)(H) = g0(H)f(H)ϕ1(ε,∞)(H) + g0(H)ϕ1(0,ε](H)

= g0(H)[f(H), ϕ]1(ε,∞)(H) + g0(H)ϕ1(0,ε](H).

Again from Lemma I.3.1 we have the estimate:

‖g0(H)[f(H), ϕ]1(ε,∞)(H)‖1 ≤ ‖[f(H), ϕ]‖1 ≤ C~1−d. (2.34)

What remains is to get an estimate of the trace norm of the term g0(H)ϕ1(0,ε](H). In
order to estimate this term we define the following ~ dependent dyadic decomposition:

χn,~(t) =

{
1(~,0](t) n = 0

1(−4n~,−4n−1~](t) n ∈ N0.

moreover we let χ̃n,~(t) = χn,~(−t). Then there exist N(~) in N0 such that

g0(H) =

N(~)∑
n=0

g0(H)χn,~(H) and 1(0,ε](H) =

N(~)∑
m=0

1(0,ε](H).χ̃m,~(H).

With these equalities we get the following inequality:

‖g1(H)ϕ1(0,ε](H)‖1 ≤
N(~)∑
n=0

N(~)∑
m=0

‖χn,~(H)ϕχ̃m,~(H)‖1

=

N(~)∑
n=1

N(~)∑
m≥n
‖χn,~(H)ϕχ̃m,~(H)‖1 +

N(~)∑
m=1

N(~)∑
n>m

‖χn,~(H)ϕχ̃m,~(H)‖1

+

N(~)∑
n=1

‖χn,~(H)ϕχ̃0,~(H)‖1 +

N(~)∑
m=1

‖χ0,~(H)ϕχ̃m,~(H)‖1 + ‖χ0,~(H)ϕχ̃0,~(H)‖1.

(2.35)

We will start by considering a term from the first double sum. Hence we assume that
m ≥ n > 0. The support of χn,~(H) is [−4n~,−4n−1~] = [−22n~,−22(n−1)~], which
contains the point −22n−1~, and similarly the support of χ̃m,~(H) is [4m−1~, 4m~] =

[22(m−1)~, 22m~]. We note that we can make the following estimate, using the spectral
theorem.

‖χn,~(H)ϕχ̃m,~(H)‖1
= ‖χn,~(H)ϕ(H+ 22n−1~)χ̃m,~(H)(H+ 22n−1~)−1‖1
≤ ‖χn,~(H)ϕ(H+ 22n−1~)χ̃m,~(H)‖1(22(m−1)~ + 22n−1~)−1

≤ (22(m−1)~ + 22n−1~)−1
{
‖χn,~(H)(H+ 22n−1~)ϕχ̃m,~(H)‖1

+ ‖χn,~(H)[ϕ,H]χ̃m,~(H)‖1
}

≤ 22n−1

22(m−1) + 22n−1
‖χn,~(H)ϕχ̃m,~(H)‖1

+ (22(m−1)~ + 22n−1~)−1‖χn,~(H)[ϕ,H]χ̃m,~(H)‖1,
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With

a :=
22n−1

22(m−1) + 22n−1
.

The above calculation implies that

(1− a)‖χn,~(H)ϕχ̃m,~(H)‖1 ≤ (22(m−1)~ + 22n−1~)−1‖χn,~(H)[ϕ,H]χ̃m,~(H)‖1.

This implies the following estimate

‖χn,~(H)ϕχ̃m,~(H)‖1 ≤(1− a)−1(22(m−1)~ + 22n−1~)−1‖χn,~(H)[ϕ,H]χ̃m,~(H)‖1

≤ 1

22(m−1)~
‖χn,~(H)[ϕ,H]χ̃m,~(H)‖1

(2.36)

Due to the double sum in (2.35) we need to repeat the argument. By an analogous
argument the following estimate holds

‖χn,~(H)[ϕ,H]χ̃m,~(H)‖1 ≤
1

22(m−1)~
‖χn,~(H)[[ϕ,H],H]χ̃m,~(H)‖1. (2.37)

By combining (2.36) and (2.37) we get that

‖χn,~(H)ϕχ̃m,~(H)‖1 ≤
1

42(m−1)~2
‖χn,~(H)[[ϕ,H],H]χ̃m,~(H)‖1. (2.38)

We will now prove that

‖χn,~(H)ϕχ̃m,~(H)‖1 ≤ C
4
m+n

2 ~3−d

42(m−1)~2
=

16C

4
3
4
m− 1

2
n
~1−d, (2.39)

for m ≥ n ≥ 1 is true. By Assumption I.2.1 we have that

[[ϕ,H],H] = [[ϕ,H~], H~], (2.40)

since we have assumed that the operator H acts on C∞0 (B(0, 4R)) as the operator
H~. By a calculation we note that

[[ϕ,H~], H~] = ~2
d∑
j=1

d∑
l=1

[
− 2(QlϕxjxlQj +QjϕxjxlQl) + 2ϕxjVxj + ~2ϕxjxjxlxl

]
,

(2.41)
where Qj = −i~∂xj and ϕxj (x) = (∂xjϕ)(x). With this form of the double commutator
we have

‖RH~(i)[[ϕ,H],H]RH~(i)‖ ≤ c~2, (2.42)

where RH~(i) = (H~ − i)−1 is the resolvent at the point i, since D(H~) ⊂ D(Qj)

for all j ∈ {1, . . . , d}. In order to estimate the right hand side in (2.37) let ψ be in
C∞0 (Rd) such that ψ(x) = 1 for all x in supp(ϕ) and supp(ψ) ⊂ B(0, R/2). As the
double commutator is local, which follows from (2.40) and (2.41), we have

‖χn,~(H)[[ϕ,H],H]χ̃m,~(H)‖1 = ‖χn,~(H)ψ[[ϕ,H],H]ψχ̃m,~(H)‖1. (2.43)
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By inserting two resolvents, applying a Cauchy-Schwarz inequality and the estimate
(2.42), we have

‖χn,~(H)ψ[[ϕ,H],H]ψχ̃m,~(H)‖1
= ‖χn,~(H)ψ(H~ − i)RH~(i)[[ϕ,H],H]RH~(i)(H~ − i)ψχ̃m,~(H)‖1
≤ c~2‖χn,~(H)ψ(H~ − i)‖2‖(H~ − i)ψχ̃m,~(H)‖2.

(2.44)

If we consider the first of the two Hilbert-Schmidt norms we have

‖χn,~(H)ψ(H~ − i)‖2 ≤ ‖χn,~(H)(H~ − i)ψ‖2 + ‖χn,~(H)[ψ,H~]‖2. (2.45)

By Assumption I.2.1 and Proposition I.2.3 we have

‖χn,~(H)(H~ − i)ψ‖2 ≤ 2‖χn,~(H)ψ‖2 = 2
√

Tr[ψχn,~(H)2ψ] ≤ 2
√
C4n~1−d. (2.46)

For the second term in (2.45) let f be in C∞0 (R) such that f(t) = 1 for t ∈ [−3
2ε,

3
2ε]

and f(t) = 0 for |t| ≥ 2ε. Then we have the bound

‖χn,~(H)[ψ,H~]‖2 = ‖χn,~(H)f(H)[ψ,H~]‖2 ≤ ‖f(H)[ψ,H~]‖2 ≤ c~1− d
2 .

by Lemma I.3.2. Combining this estimate with (2.45) and (2.46) we get

‖χn,~(H)ψ(H~ − i)‖2 ≤
√
C̃4n~1−d. (2.47)

By analogous estimates we also get

‖(H~ − i)ψχ̃m,~(H)‖2 ≤
√
C̃4m~1−d. (2.48)

Now by combing(2.47) and (2.48) with (2.43) and (2.44) we get

‖χn,~(H)[[ϕ,H],H]χ̃m,~(H)‖1 ≤ C4
n+m

2 ~1−d. (2.49)

By (2.38) and (2.49) we have the estimate (2.39). Using (2.39) we can now estimate
the double sum

N(~)∑
n=1

N(~)∑
m≥n
‖χn,~(H)ϕχ̃m,~(H)‖1 ≤

∞∑
n=1

∞∑
m≥n

C

4
3
4
m− 1

2
n
~1−d ≤ C̃~1−d.

The remaining terms in (2.35) can be estimated in a similar way. The second double
sum is estimated by the same argument but with the roles of m and n interchanged.
To estimate the two single sums we only need to introduce one commutator to make
the sum converge and then use the same arguments as for the double sum. For the
last term we use a Cauchy-Schwarz inequality. Adding all our estimates up we have
the bound

‖g1(H)ϕ1(0,ε](H)‖1 ≤ C~1−d. (2.50)

By combining (2.50) with (2.33) and (2.34) we get the estimate

‖1(−∞,0](H)ϕ1(0,∞)(H)‖1 ≤ C~1−d. (2.51)
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Since the trace norm satisfies the equality ‖A‖1 = ‖A∗‖1 we also have the bound,

‖1(0,∞)(H)ϕ1(−∞,0](H)‖1 ≤ C~1−d. (2.52)

By combining (2.51) and (2.52) with (2.31) we obtain the desired bound for the first
part of (2.30).

For the second estimate in (2.30) we essentially repeat the argument. The main
difference occurs when the double commutator [[ϕ,H],H] is calculated. In this case,
one has to calculate the commutator [[ϕQi,H],H]. This can be done and one obtains
the result

[[ϕQi,H],H] = [[ϕQi, H~], H~]

=~2
d∑
j=1

2ϕxjVxiQj + 2ϕxjVxjQi − 2i~ϕxjVxjxi − i~ϕxjxjVxi

+ ~2
d∑

k=1

{
2(ϕVxi)xkQk − i~(ϕVxi)xkxk +

d∑
j=1

[
− 4QkϕxjxkQiQj

− 4i~ϕxjxkxkQiQj + 2i~ϕxjxkQiQj + 2~ϕxjxjxkQiQk + ~2ϕxjxjxkxkQi
]}
,

where we have used Assumption I.2.1. From this form we can note that again we
have a bound of the type

‖RH~(i)[[ϕQi,H],H]RH~(i)‖ ≤ c~2,

since D(H~) ⊂ D(QjQi) for all j, i ∈ {1, . . . , d}. From here the proof proceeds as
above just with some extra terms to consider. We omit the details. �

Local case without non-critical condition

In this subsection we will apply the multiscale techniques of [15] (see also [9, 10]).
Using this approach will allow us to remove the non-critical assumption on the
potential. Before we state and prove our theorem we will need a lemma and a remark.

Lemma I.3.4. Let Ω ⊂ Rd be an open set and let f be a function in C1(Ω̄) such
that f > 0 on Ω̄ and assume that there exists ρ in (0, 1) such that

|∇xf(x)| ≤ ρ, (2.53)

for all x in Ω.
Then

i) There exists a sequence {xk}∞k=0 in Ω such that the open balls B(xk, f(xk)) form
a covering of Ω. Furthermore, there exists a constant Nρ, depending only on
the constant ρ, such that the intersection of more than Nρ balls is empty.



32 Paper I

ii) One can choose a sequence {ϕk}∞k=0 such that ϕk ∈ C∞0 (B(xk, f(xk))) for all k
in N0. Moreover, for all multiindices α and all k in N0

|∂αxϕk(x)| ≤ Cαf(xk)
−|α|,

and
∞∑
k=1

ϕk(x) = 1,

for all x in Ω.

This lemma is taken from [15] where it is Lemma 5.4. The proof is analogous to the
proof of [8, Theorem 1.4.10].

Remark I.3.5. A crucial step in the following proof is scaling of our operator. Let
Df and Tz, for f > 0 and z ∈ Rd, be the unitary dilation and translation operators
defined by

(Dfu)(x) = f
d
2u(fx),

and
(Tzu)(x) = u(x+ z),

for u in L2(Rd). We let f be a positive number and supposeH satisfies Assumption I.2.1
with Ω being the open ball B(z, f). We will consider the operator

H̃ = f−2(TzUf )H(TzUf )∗.

The operator H̃ is selfadjoint and lower semibounded since H is assumed to be
selfadjoint and lower semibounded which is the first part of Assumption I.2.1. The
last part of the assumption will be fulfilled with the set B(0, 1), the function Ṽf (x) =

f−2V (fx + z) and a scaled ~ which we will call h. To see this note that for ϕ ∈
C∞0 (B(0, 1)) it holds that (TzUf )∗ϕ is an element of C∞0 (B(z, f)) since

(TzUf )∗ϕ(x) = f−
d
2ϕ
(
x−z
f

)
.

Hence we have that, using Assumption I.2.1 for H

H̃ϕ = −
(

~
f2

)2
∆ϕ(x) + f−2V (fx+ z)ϕ(x), (2.54)

This calculation shows that our operator H̃ satisfies Assumption I.2.1 with Ω = B(0, 1),
Vloc = Ṽf and the new “Planck’s constant” h = ~

f2
.

We are now ready to remove the non-critical assumption.

Theorem I.3.6. Suppose the operator H acting in L2(Rd) with d ≥ 2 obeys Assump-
tion I.2.1 with an open set Ω ⊂ Rd and let ~0 be a strictly positive number. For ψ in
C∞0 (Ω) it holds that

‖[1(−∞,0](H), ψ]‖1 ≤ C~1−d and ‖[1(−∞,0](H), ψQj ]‖1 ≤ C~1−d, (2.55)

for all ~ in (0, ~0], where C is a positive constant.
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Proof. First note that by assumption ψ is in C∞0 (Ω). Hence there exists ε > 0 such
that

dist(supp(ψ), ∂Ω) > ε.

We define the function f by

f(x) = A−1
[
V (x)2 + |∇xV (x)|4 + ~2

] 1
4 A > 0, (2.56)

where we have to choose a sufficiently large A. It can be noted that f is a positive
function due to ~ being a fixed positive number. We will need to choose A such that

f(x) ≤ ε

9
and |∇xf(x)| ≤ ρ < 1

8
. (2.57)

Since V is smooth with compact support A can be chosen such that (2.57) is satisfied.
The construction of f allows us to choose A such that the bounds are valid for all ~
in (0, ~0]. Hence A will be independent of ~, for ~ in the interval (0, ~0]. Moreover,
we observe that this construction gives the estimates

|V (x)| ≤ Af(x)2, and |∂xiV (x)| ≤ Af(x). (2.58)

This observation will prove useful for controlling bounds on some derivatives.
By Lemma I.3.4 with the set Ω and our function f there exists a sequence {xk}∞k=0

in Ω such that Ω ⊂
⋃∞
k=0B(xk, f(xk)) and there exists a constant N 1

8
in N such that⋂

k∈I
B(xk, f(xk)) = ∅,

for all I ⊂ N such that #I > N 1
8
. Moreover, there exists a sequence {ϕk}∞k=0 such

that ϕk ∈ C∞0 (B(xk, f(xk))),

|∂αxϕk| ≤ Cαf(xk)
−|α| ∀α ∈ Nd0,

and
∞∑
k=1

ϕk(x) = 1 ∀x ∈ Ω.

Since supp(ψ) ⊂ Ω the union
⋃∞
k=0B(xk, f(xk)) forms an open cover of supp(ψ) by

assumption the support is compact hence there exists I ⊂ N such that #I <∞ and

Ω ⊂
⋃
k∈I

B(xk, f(xk)).

We can assume that each ball has a nontrivial intersection with Ω. Since at most N 1
8

balls intersect nontrivially we can without loss of generality assume that∑
k∈I

ϕk(x) = 1 ∀x ∈ supp(ψ).

From this we get the following estimate:

‖[1(−∞,0](H), ψ]‖1 ≤
∑
k∈I
‖[1(−∞,0](H), ϕkψ]‖1. (2.59)
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We will consider each term separately. We can note that the function ϕkψ is smooth
and supported in the ball B(xk, f(xk)). The idea is now to make a unitary conjugation
of our commutator such that a non-critical assumption is obtained.

Let Txk be the unitary translation with xk and let Uf(xk) be the unitary scaling
operator with f(xk). We will use the notation from Remark I.3.5 and let

ϕ̃kψ(x) = ϕkψ(f(xk)x+ xk).

Since the trace norm is invariant under unitary conjugation we have that

‖[1(−∞,0](H), ϕkψ]‖1
= f(xk)

2‖f(xk)
−2(TxkUf(xk))[1(−∞,0](H), ϕkψ](TxkUf(xk))

∗‖1
= f(xk)

2‖[1(−∞,0](H̃), ϕ̃kψ]‖1.

By Remark I.3.5, H̃ satisfies Assumption I.2.1 with h = ~f(xk)
−2, Ṽf and B(0, 8),

since by construction we have that B(xk, 8f(xk)) ⊂ Ω.
For all x in B(xk, 8f(xk)) we have that

f(x) = f(x)− f(xk) + f(xk)

≥ − max
c∈[0,1]

|∇xf(cx+ (1− c)xk)||x− xk|+ f(xk)

≥ (1− 8ρ)f(xk).

(2.60)

Analogously we can note that

f(x) ≤ (1 + 8ρ)f(xk), (2.61)

for all x in B(xk, 8f(xk)). We note that the numbers 1 ± 8ρ are independent of k.
The aim is to use Theorem I.3.3. To see that the non-critical assumption (I.3.6) is
satisfied we note that

|Ṽf (x)|+h+ |∇xṼf (x)|2

= f(xk)
−2
(
|V (f(xk)x+ xk)|+ ~ + |(∇xV )(f(xk)x+ xk)|2

)
= f(xk)

−2
(√
|V (f(xk)x+ xk)|2 +

√
~2 +

√
|(∇xV )(f(xk)x+ xk)|4

)
≥ f(xk)

−2
(
|V (f(xk)x+ xk)|2 + ~2 + |(∇xV )(f(xk)x+ xk)|4

) 1
2

= f(xk)
−2A2f(f(xk)x+ xk)

2

≥ cA2 > 0.

Here we used (2.60) and (2.61) to get the cancelation. Therefore the assumption
(I.3.6) is valid for the operator H̃. In order to ensure uniformity of the error terms
from Theorem I.3.3 we need the derivatives of Ṽf and ϕ̃kψ to be bounded uniformly
in k. We note that

|∂αx Ṽf | = |f(xk)
|α|−2(∂αxV )(f(xk)x+ xk)| ≤ Cα,
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where we in the cases of α = 0 and |α| = 1 use the estimates from equation (2.58).
For ϕ̃kψ we note that

|∂αx ϕ̃kψ| = |f(xk)
|α|
∑
β≤α

(
α

β

)
(∂βxϕk)(f(xk)x+ xk)(∂

α−β
x ψ)(f(xk)x+ xk)|

≤
∑
β≤α

(
α

β

)
f(xk)

|α−β||(∂α−βx ψ)(f(xk)x+ xk)| ≤ C̃α.

Lastly we need to verify that the new semiclassical parameter is bounded. By the
choice of A we have

hk =
~

f(xk)2
≤ A2,

where we have used the definition of the function f (2.56). Hence we are in a situation
where we can use Theorem I.3.3 which implies that

‖[1(−∞,0](H), ϕkψ]‖1 = f(xk)
2‖[1(−∞,0](H̃), ϕ̃kψ]‖1

≤ f(xk)
2c

(
~

f(xk)2

)1−d

≤ C~1−d
∫
B(xk,f(xk))

f(x)d dx,

(2.62)

with C independent of k in I and where we also have used (2.60) and (2.61) in the
last estimate. Since f is a bounded function and at most N 1

8
of the balls B(xk, f(xk))

can intersect non-empty we get the estimate∑
k∈I

∫
B(xk,f(xk))

f(x)d dx ≤ C(N 1
8
)Vol(Ω). (2.63)

By combining (2.62) and (2.63) with (2.59) we get the estimate

‖[1(−∞,0](H~), ψ]‖1 ≤
∑
k∈I
‖[1(−∞,0](H~), ϕkψ]‖1 ≤ C~1−d,

where C depends on the set Ω, the number N 1
8
, the derivatives of ψ and the potential

V . We now need to prove the second bound in (2.55). The proof of this bound is
completely analogous. Notice that when the unitary conjugation is made one should
multiply by f(xk)3f(xk)−3 instead of f(xk)2f(xk)−2 due to the extra derivative. This
ends the proof. �

I.4 of Theorem I.1.2 and Corollary I.1.3

In this section we will use the results obtained in the previous sections to prove
Theorem I.1.2 and then use this theorem to prove Corollary I.1.3. First the proof of
Theorem I.1.2:
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Proof (Proof of Theorem I.1.2). Recall that we are in the setting with H~ = −~2∆ +

V being a Schrödinger operator acting in L2(Rd) with d ≥ 2, where V satisfies
Assumption I.1.1 and ~ is bounded by a strictly positive number ~0. We will here
prove the following bounds

‖[1(−∞,0](H~), xi]‖1 ≤ C~1−d and ‖[1(−∞,0](H~), Qj ]‖1 ≤ C~1−d, (2.64)

where Qj = −i~∂xi and j ∈ {1, . . . , d}.
Without loss of generality we can assume that V attains negative values. If not,

then H~ would be a positive operator with purely positive spectrum which implies
both commutators would be zero and hence satisfy the estimate.

By assumption we have the open set ΩV for which V ∈ C∞(ΩV ) and the bounded
set Ωε satisfying that Ωε ⊂ ΩV . Hence we can find an open set U satisfying that it is
bounded and

Ωε ⊂⊂ U ⊂⊂ ΩV ,

where ⊂⊂ means compactly imbedded. We let χ be in C∞0 (U) such that 0 ≤ χ ≤ 1

and χ(x) = 1 for all x in Ωε. Moreover we let χ̃ be in C∞0 (ΩV ) such that 0 ≤ χ̃ ≤ 1

and χ̃(x) = 1 for all x in U . With these sets and functions we have that our operator
H~ satisfies Assumption I.2.1 with Ω = U and Vloc = V χ̃. With this setup we are
ready to prove the bounds in (2.64).

We will now consider the first commutator in (2.64) and note that

‖[1(−∞,0](H~), xi]‖1 ≤ ‖[1(−∞,0](H~), χxi]‖1 + ‖[1(−∞,0](H~), (1− χ)xi]‖1. (2.65)

For the first term in (2.65) we are in a situation where we can use Theorem I.3.6 since
χxi is in C∞0 (U) and H~ satisfies Assumption I.2.1 with Ω = U . Then the theorem
gives us the bound:

‖[1(−∞,0](H~), χxi]‖1 ≤ C~1−d. (2.66)

For the other term we note that

‖[1(−∞,0](H~), (1− χ)xi]‖1 ≤ ‖1(−∞,0](H~)(1− χ)xi‖1 + ‖(1− χ)xi1(−∞,0](H~)‖1
= 2‖1(−∞,0](H~)(1− χ)xi‖1.

By a Cauchy-Schwarz inequality we have that

‖1(−∞,0](H~)(1− χ)xi‖1 ≤ ‖1(−∞,0](H~)‖2‖1(−∞,0](H~)(1− χ)xi‖2
= Tr(1(−∞,0](H~))

1
2 ‖1(−∞,0](H~)(1− χ)xi‖2.

(2.67)

The first term squared can be estimated by a constant times ~−
d
2 by Remark I.2.6.

For the second term we calculate the trace in a basis of eigenfunctions for H~.

‖1(−∞,0](H~)(1− χ)xi‖22 = Tr[1(−∞,0](H~)(1− χ)x2
i (1− χ)1(−∞,0](H~)]

=
∑
λn≤ ε4

〈1(−∞,0](H~)(1− χ)x2
i (1− χ)1(−∞,0](H~)ψn, ψn〉

=
∑
λn≤0

‖(1− χ)xiψn‖2L2(Rd).

(2.68)
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In order to estimate the L2(Rd)-norm, we let d(x) = dist(x,Ωε). For all x in the
support of 1− χ we have that d(x) > 0 since Ωε is a proper subset of the support
of χ. We can note that V is an element of L1

loc(Rd) hence Lemma I.1.1 gives the
existence of a constant C only depending on V such that for all eigenvectors ψn with
eigenvalue less than ε

4 we have the estimate

‖eδd~−1
ψn‖L2(Rd) ≤ C,

where δ =
√
ε

8 . With these observations we can note that for all norms in the last sum
of (2.68) we have for all N in N0 the bound

‖(1− χ)xiψn‖2L2(Rd) ≤ ‖(1− χ)xie
−δϕ~−1‖2∞‖eδϕ~

−1
ψn‖2L2(Rd)

≤ C‖(1− χ)xi(
~
δϕ

)N (
δϕ

~
)Ne−δϕ~

−1‖2∞

≤ CN~2N ,

(2.69)

where the constant depends on the choice of the set U , δ(ε) and the power N . If we
now combine this estimate with (2.68) we get

‖1(−∞,0](H~)(1− χ)xi‖22 ≤ C~2N−d, (2.70)

where we have used Remark I.2.6 to estimate the number of terms in the sum in
(2.68). Combining (2.70) with (2.67) we get

‖1(−∞,0](H~)(1− χ)xi‖1 ≤ CN~N−d.

Now by combining this bound with (2.66) we get the desired bound in (2.64).
For the second bound in (2.64) we take the same χ as above and note that

‖[1(−∞,0](H~), Qi]‖1 ≤ ‖[1(−∞,0](H~), χQi]‖1 + ‖[1(−∞,0](H~), (1− χ)Qi]‖1.

The first term can as above be estimated by applying Theorem I.3.6. The second
term will be proven to be small as before. We note that

‖[1(−∞,0](H~), (1− χ)Qi]‖1 ≤ ‖1(−∞,0](H~)(1− χ)Qi‖1 + ‖(1− χ)Qi1(−∞,0](H~)‖1
≤ 2‖1(−∞,0](H~)(1− χ)Qi‖1 + ~‖1(−∞,0](H~)∂xiχ‖1.

The second term is on the same form as the left hand side of (2.67) and hence can
be treated as above. For the first term we have that

‖1(−∞,0](H~)(1− χ)Qi‖1 ≤ ‖1(−∞,0](H~)‖2‖1(−∞,0](H~)(1− χ)Qi‖2.

The first term can be controlled by Remark I.2.6. For the second term we have that

‖1(−∞,0](H~)(1− χ)Qi‖2 =‖1(−∞,0](H~)(1− χ)Q2
i (1− χ)1(−∞,0](H~)‖

1
2
1

≤‖1(−∞,0](H~)(1− χ)(H~ + c)(1− χ)1(−∞,0](H~)‖
1
2
1 ,
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where
c = 1− inf

x∈Ωε
(V (x)). (2.71)

If we now calculate the trace norm by choosing a basis of eigenfunctions of H~ we
get that

‖1(−∞,0](H~)(1− χ)(H~ + c)(1− χ)1(−∞,0](H~)‖1
=
∑
λn≤ ε4

〈1(−∞,0](H~)(1− χ)(H~ + c)(1− χ)1(−∞,0](H~)ψn, ψn〉.

If we consider just one of the terms we have by the IMS formula that

〈1(−∞,0](H~)(1− χ)(H~ + c)(1− χ)1(−∞,0](H~)ψn, ψn〉
= c〈(1− χ)1(−∞,0](H~)ψn, (1− χ)1(−∞,0](H~)ψn〉

+ 〈H~(1− χ)1(−∞,0](H~)ψn, (1− χ)1(−∞,0](H~)ψn〉
= c〈(1− χ)1(−∞,0](H~)ψn, (1− χ)1(−∞,0](H~)ψn〉

+ 〈(1− χ)H~1(−∞,0](H~)ψn, (1− χ)1(−∞,0](H~)ψn〉

+ ~2

∫
Rd
|∇xχ|2|ψn|2 dx

≤ (c+ λn)‖(1− χ)ψn‖2L2(Rd) + ~2‖|∇xχ|ψn‖2L2(Rd).

We can note that the number c+ λn is less than or equal to c+ ε
2 for the possible

values of λn. For the two norms we can use the same trick as in (2.69) and thereby
show that they are small in ~. This completes the proof. �

Now the proof of the corollary:

Proof (of Corollary I.1.3). We start by observing that the operator

[1(−∞,0](H~), x],

is a trace class operator by Theorem I.1.2, where the commutator is interpreted as
the sum of the commutators with each entry in the vector x. Moreover we note that

[1(−∞,0](H~), ei〈t,x〉] = 1(−∞,0](H~)ei〈t,x〉 − ei〈t,x〉1(−∞,0](H~)

= ei〈t,x〉
(
e−i〈t,x〉1(−∞,0](H~)ei〈t,x〉 − 1(−∞,0](H~)

)
.

(2.72)

We define the function f : R → B(L2(Rd)), where B(L2(Rd)) are the bounded
operators on L2(Rd), by

f(s) = e−i〈t,x〉s1(−∞,0](H~)ei〈t,x〉s.

For this function we note that

ei〈t,x〉(f(1)− f(0)) = [1(−∞,0](H~), ei〈t,x〉].
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By (2.72) we have that

d

ds
f(s) = −i〈t, x〉e−i〈t,x〉s1(−∞,0](H~)ei〈t,x〉s + ie−〈t,x〉s1(−∞,0](H~)〈t, x〉ei〈t,x〉s

= ie−i〈t,x〉s[1(−∞,0](H~), 〈t, x〉]ei〈t,x〉s.

With this we note by the fundamental theorem of calculus that

‖[1(−∞,0](H~), ei〈t,x〉]‖1 = ‖
∫ 1

0
ei〈t,x〉(1−s)[1(−∞,0](H~), 〈t, x〉]ei〈t,x〉s ds‖1

≤ ‖[1(−∞,0](H~), 〈t, x〉]‖1 ≤
d∑
j=1

|tj |‖[1(−∞,0](H~), xj ]‖1.

With this bound the desired result follows from Theorem I.1.2. �

Appendix: Agmon type estimates

In this appendix we will prove an Agmon type estimate, that is exponential decay
of eigenfunctions for a Schrödinger operator. Such results were proven by S. Agmon
see [1].

Lemma I.1.1. Let H~ = −~2∆ + V be a Schrödinger operator acting in L2(Rd),
where V is in L1

loc(Rd) and suppose that there exist an ε > 0 and a open bounded sets
U such that

V (x) ≥ ε when x ∈ U c.

Let d(x) = dist(x,Ωε) and ψ be a normalised solution to the equation

H~ψ = Eψ,

with E < ε/4. Then there exists a C > 0 depending on V and ε such that

‖eδ~−1dψ‖L2(Rd) ≤ C,

for δ =
√
ε

8 .

Proof. We start by defining the set Ωε by

Ωε = {x ∈ Rd | dist(x, U) < 1}.

For convenience and without loss of generality we assume that 0 ∈ U , which implies
that d(x) ≤ |x| for all x in Rd. For γ ∈ (0, 1] we define the function ϕγ by

ϕγ(x) =
d(x)

1 + γ|x|2
.

Then ϕγ is a bounded function for all γ’s by construction. Moreover we can note
that d(x) is almost everywhere differentiable with the norm of the gradient bounded
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by 1 since it is Lipschitz continuous with Lipschitz constant 1. Hence ϕγ is almost
everywhere differentiable. We will prove the bound on the 2-norm is uniform in the
parameter γ for the functions ϕγ and let γ tend to zero.

In order to prove the desired bound we need a partition of unity. We let χ : Rd → R
be a smooth function such that 0 ≤ χ ≤ 1, χ(x) = 1 for all x in Ωc

ε and Supp(χ) ⊂ U c.
For this function we note that

‖eδϕγ~−1
ψ‖L2(Rd) ≤‖eδϕγ~

−1
(1− χ)ψ‖L2(Rd) + ‖eδϕγ~−1

χψ‖L2(Rd)

≤1 + ‖eδϕγ~−1
χψ‖L2(Rd),

where we have used that 1− χ is supported in Ωε and ϕγ(x) = 0 for x ∈ Ωε. Since
ϕγ is a bounded function the left hand side in the above inequality is well defined.
What remains is to estimate the last term in the above inequality.

To this end we note that since ψ is an eigenfunction with eigenvalue E we have
that

( ε2 − E)‖eδϕγ~−1
χψ‖2L2(Rd) = ( ε2 − E)

∫
Rd
e2δϕγ~−1

χ2|ψ|2 dx

= 〈e2δϕγ~−1
χ2ψ, ( ε2 −H)ψ〉.

Note that the above expression is real, hence we can take the real part of the right
hand side without changing it. If we do this and use the IMS-formula we get that

Re(〈e2δϕγ~−1
χ2ψ, ( ε2 −H)ψ〉) = Re(〈eδϕγ~−1

χψ, ( ε2 −H)eδϕγ~
−1
χψ〉)

+ ~2

∫
Rd
|∇eδϕγ~−1

χ|2|ψ|2 dx.

Note that the above gradient is well defined almost everywhere due to our previous
observations. Since eδϕγ~−1

χψ ∈ Q(H) and is supported in U c we have that

Re(〈eδϕγ~−1
χψ, ( ε2 −H)eδϕγ~

−1
χψ〉) ≤ 0,

since ( ε2 −H) is a negative operator when restricted to U c. From this we obtain the
inequality

( ε2 − E)‖eδϕγ~−1
χψ‖2L2(Rd) ≤ ~2

∫
Rd
|∇eδϕγ~−1

χ|2|ψ|2 dx.

We note that

|∇eδϕγ~−1
χ|2 ≤ 4|∇eδϕγ~−1 |2χ2 + 4e2δϕγ~−1 |∇χ|2, (73)

where the gradients are defined almost everywhere with respect to the Lebesgue
measure. The first term in (73) is almost everywhere given by

4|∇eδϕγ~−1 |2χ2 = 4
δ2

~2
|∇ϕγ |2e2δϕγ~−1

χ2.

We note that for x in Ωε |∇ϕγ(x)| = 0, and for almost all x in Ωc
ε

|∇ϕγ(x)| ≤ |∇d(x)|
1 + γ|x|2

+ 2
d(x)γ|x|

(1 + γ|x|2)2
≤ 1 + 2

γ|x|2

(1 + γ|x|2)2
≤ 2.
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Hence for all x in Rd we have,
|∇ϕγ(x)| ≤ 2.

With these estimates we get that

( ε2 − E)‖eδϕγ~−1
χψ‖2L2(Rd)

≤ 8δ2

∫
Rd
e2δϕγ~−1

χ2|ψ|2 dx+ 4

∫
Rd
e2δϕγ~−1 |∇χ|2|ψ|2 dx

= 8δ2‖eδϕγ~−1
χψ‖2L2(Rd) + 4

∫
Rd
e2δϕγ~−1 |∇χ|2|ψ|2 dx.

This implies that

( ε2 − E − 8δ2)‖eδϕγ~−1
χψ‖2L2(Rd) ≤ 4

∫
Rd
e2δϕγ~−1 |∇χ|2|ψ|2 dx.

With our choice of δ =
√
ε

8 we have that

( ε2 − E − 8δ2) ≥ ε

2
− ε

4
− 8

ε

64
=
ε

8
,

which implies that

‖eδϕγ~−1
χψ‖2L2(Rd) ≤

32

ε

∫
Rd
e2δϕγ~−1 |∇χ|2|ψ|2 dx.

We note that |∇χ|2 is supported on the set Ωε \ U and hence uniformly bounded by
a constant which depends on the sets. Hence we get that∫

Rd
e2δϕγ~−1 |∇χ|2|ψ|2 dx ≤ C

∫
Ωε\U

e2δϕγ~−1 |ψ|2 dx

≤ C
∫

Ωε\U
|ψ|2 dx ≤ C,

where we have used that e2δϕγ~−1
= 1 for all x in Ωε. This implies that there exists a

constant C > 0 which only depends on the potential V such that

‖eδϕγ~−1
χψ‖2L2(Rd) ≤ C.

This estimate implies that we have the following uniform bound in γ

‖eδϕγ~−1
ψ‖L2(Rd) ≤ 1 + C.

By monotone convergence we can take γ to zero and we obtain the desired result:

‖eδϕ~−1
ψ‖L2(Rd) ≤ C,

with a constant only depending on the potential V . �



42 Paper I

Bibliography

[1] S. Agmon. Lectures on exponential decay of solutions of second-order elliptic equations:
bounds on eigenfunctions of N -body Schrödinger operators, volume 29 of Mathematical
Notes. Princeton University Press, Princeton, NJ; University of Tokyo Press, Tokyo,
1982.

[2] N. Benedikter, V. Jakšić, M. Porta, C. Saffirio, and B. Schlein. Mean-field evolution of
fermionic mixed states. Comm. Pure Appl. Math., 69(12):2250–2303, 2016.

[3] N. Benedikter, M. Porta, and B. Schlein. Mean-field dynamics of fermions with
relativistic dispersion. J. Math. Phys., 55(2):021901, 10, 2014.

[4] N. Benedikter, M. Porta, and B. Schlein. Mean-field evolution of fermionic systems.
Comm. Math. Phys., 331(3):1087–1131, 2014.

[5] N. Benedikter, M. Porta, and B. Schlein. Hartree-Fock dynamics for weakly interacting
fermions. In Mathematical results in quantum mechanics, pages 177–189. World Sci.
Publ., Hackensack, NJ, 2015.

[6] E. B. Davies. Spectral theory and differential operators, volume 42 of Cambridge Studies
in Advanced Mathematics. Cambridge University Press, Cambridge, 1995.

[7] M. Dimassi and J. Sjöstrand. Spectral asymptotics in the semi-classical limit, volume
268 of London Mathematical Society Lecture Note Series. Cambridge University Press,
Cambridge, 1999.

[8] L. Hörmander. The analysis of linear partial differential operators. I. Classics in
Mathematics. Springer-Verlag, Berlin, 2003. Distribution theory and Fourier analysis,
Reprint of the second (1990) edition [Springer, Berlin; MR1065993 (91m:35001a)].

[9] V. Ivrii. Microlocal Analysis and Precise Spectral Asymptotics. Springer Monographs in
Mathematics. Springer-Verlag, Berlin, 1998.

[10] V. Ja. Ivrii and I. M. Sigal. Asymptotics of the ground state energies of large Coulomb
systems. Ann. of Math. (2), 138(2):243–335, 1993.

[11] N. Leopold and S. Petrat. Mean-field dynamics for the Nelson model with fermions.
Ann. Henri Poincaré, 20(10):3471–3508, 2019.

[12] E. H. Lieb and R. Seiringer. The stability of matter in quantum mechanics. Cambridge
University Press, Cambridge, 2010.

[13] M. Reed and B. Simon. Methods of modern mathematical physics. II. Fourier analysis,
self-adjointness. Academic Press [Harcourt Brace Jovanovich, Publishers], New York-
London, 1975.

[14] D. Robert. Autour de l’approximation semi-classique, volume 68 of Progress in Mathe-
matics. Birkhäuser Boston, Inc., Boston, MA, 1987.

[15] A. V. Sobolev. Quasi-classical asymptotics of local Riesz means for the Schrödinger
operator in a moderate magnetic field. Ann. Inst. H. Poincaré Phys. Théor., 62(4):325–
360, 1995.

[16] M. Zworski. Semiclassical analysis, volume 138 of Graduate Studies in Mathematics.
American Mathematical Society, Providence, RI, 2012.



Chapter 3

Weyl asymptotics with irregular
coefficients

This paper draft is concerned proving Weyl laws for operators with irregular coeffi-
cients, where irregular means non-smooth and we consider operators acting in L2(Rd).
The presentation in the paper is self contained but it is work in progress. Some of
the results in the paper is already know from the works of V. Ivrii and L. Zielinski.
In the cases of already known results we have here given different proofs of these
statements.

3.1 The main theorem

The prime operators in this paper are differential operators of the form

A(~) =
∑

|α|,|β|≤m

(~D)αaαβ(x)(~D)β, (3.1)

which is of order 2m, and defined via the associated quadratic form. Here we have
used the notation

(~D)α =
d∏
j=1

(−i~∂xj )αj ,

for all multi indices α in Nd0, where N0 is the natural numbers including 0. We remark
that the semiclassical magnetic Schrödinger operator:

H~ = (−i~∇x +A)2 + V,

where A is a vector potential and V a potential, can be written in the form (3.1). In
the case where the coefficients aαβ and the potentials are smooth there are condition
implying an optimal Weyl law see e.g. [8]. In this paper we prove the following Weyl
law:

Theorem 3.1.1. Let A(~) be a differential operator of order 2m with the form

A(~) =
∑

|α|,|β|≤m

(~D)αaαβ(x)(~D)β,

where the coefficients aαβ(x) are in C1,µ(Rd) for µ in (0, 1] and real. We suppose the
following conditions on the coefficients are satisfied.

43
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(i) There is a γ0 > 0 such that minx∈Rd(aαβ(x)) > −γ0 for all α and β.

(ii) There is a γ1 > γ0 and C1,M > 0 such that

aαβ(x) + γ1 ≤ C1(aαβ(y) + γ1)(1 + |x− y|)M ,

for all x, y in Rd.

(iii) For all j in {1, . . . , d} there is a cj > 0 such that

|∂xjaαβ(x)| ≤ cj(aαβ(x) + γ1).

Suppose there exists a constant C2 such that∑
|α|=|β|=m

aαβ(x)pα+β ≥ C2|p|2m, (3.2)

for all (x, p) in Rdx × Rdp. Moreover we suppose there is c > 0 such that

|∇pa0(x, p)| ≥ c for all (x, p) ∈ a−1
0 ({0}), (3.3)

where
a0(x, p) =

∑
|α|,|β|≤m

aαβ(x)pα+β.

Lastly we suppose there is a ν > 0 such that the set a−1
0 ((−∞, ν]) is compact.

Then we have

|Tr[1(−∞,0](A(~))]− 1

(2π~)d

∫
Rd

∫
Rd

1(−∞,0](a0(x, p)) dxdp| ≤ C~1−d,

for all sufficiently small ~.

Where the set C1,µ(Rd) is defined by

C1,µ(Rd)
= {f ∈ C1(Rd) | |∂xjf(x)− ∂xjf(y)| ≤ C|x− y|µ ∀x, y ∈ Rd and j ∈ {1, . . . , d}}.

The list of assumptions in the theorem is not short. But why do we need all these
assumptions?

That we need some regularity of the coefficients is expected and that is why the
coefficients are supposed to be in C1,µ(Rd) for a µ > 0. The assumptions in (i), (ii)

and (iii), can be seen assumptions on the behaviour of the coefficients for large values
of x. Since in the case of the coefficients having compact support they are all verified.
This regularity is need as we will use functional calculus of rough pseudo-differential
operators.

Without assumption global ellipticity (3.2) we could easily be in a situation, where
we there operator only had essential spectrum. This assumptions is also used to verify
properties of the approximating operators.



3.2. Rough symbols and pseudo differential operators 45

The non-critical assumption (3.3) is essential for our proof to be valid. Compared
to the usual non-critical assumption, where the whole gradient is assumed not to
vanish, then this assumption is more strict as it imply the usual non-critical condition.
But as we will see in the very last section in this chapter it is possible to use multiscale
arguments with such a non-critical condition.

I strongly believe that these assumptions is not optimal. The assumptions that the
coefficients are real on should be able to relax to the assumption that the coefficients
may be complex but should satisfies that aαβ(x) = aαβ(x) for all α and β in Nd0. To
allow the coefficients to be complex would require a slight change of the assumptions
in (i), (ii) and (iii). These assumptions could possible also be changed slightly on
their own, but I am at the moment unsure if this change would generalise them. As
stated in the beginning this is really work in progress.

Results of this type was first obtained by L. Zielinski in [11–14] but with higher
regularity. V. Ivrii generalised the result by L. Zielinski in [6] to coefficients which
is differentiable and with a Hölder continuous first derivative. This was further
generalised by M. Bronstein and V. Ivrii in [1], where they reduced the assumptions
further by assuming the first derivative to have modulus continuity O(| log(x− y)|−1).
In all these papers they considered operators defined on a compact smooth manifold
with and without a boundary.

Firstly we will briefly describe the main ideas entering a proof of this type of
Weyl law in general. Usually an optimal Weyl law is proven by means of microlocal
analysis and this is not possible to use when the coefficients are not smooth. Instead
we construct two framing operators A±ε (~) such that

A−ε (~) ≤ A(~) ≤ A+
ε (~),

in the sense of quadratic forms. By the min-max theorem we have

Tr[1(−∞,0](A
+
ε )] ≤ Tr[1(−∞,0](A)] ≤ Tr[1(−∞,0](A

−
ε )].

Hence what we need to do is to prove an optimal Weyl law for the framing operators
such the difference between the phase space integrals is of the right order to.

These framing operators are what we call rough pseudo differential operators and
we will in the next section state the definition and discuss some of their properties.

3.2 Rough symbols and pseudo differential operators

In this paper we consider a different types of symbols inspired by the framing
procedure. This procedure can be seen in Section II.3 in the paper. We have chosen
to call the rough symbols which aligns with the terminology in [7]. We define the
rough symbols by:

Definition 3.2.1 (Rough symbol). Let Ω ⊆ Rdx ×Rdp ×Rdy be open, ρ be in [0, 1],
ε > 0, τ be in Z and m a tempered weight function on Rdx × Rdp × Rdy. We call a
function aε a rough symbol of regularity τ with weights (m, ρ, ε) if aε is in C∞(Ω)
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and satisfies that

|∂αx ∂βp ∂γy aε(x, p, y)|

≤

{
Cαβγm(x, p, y)(1 + |(x, p, y)|)−ρ(|α|+|β|+|γ|) if |α|+ |γ| ≤ τ
Cαβγε

τ−|α|−|γ|m(x, p, y)(1 + |(x, p, y)|)−ρ(|α|+|β|+|γ|) if |α|+ |γ| > τ,

(3.4)

for all (x, p, y) in Ω and α, β, γ in Nd0, where the constants Cαβγ ’s do not depend on
ε. The space of these functions is denoted Γm,τρ,ε (Ω). The space can be turned into a
Fréchet space with semi norms associated to the estimates in (3.4).

This definition of the symbols is almost the same as the one in [8]. The new thing is
the regularity parameter which can be interpreted as the measure of how smooth the
“original” symbol was and the parameter ε. For further remarks on the dependence on
the parameter ε see the paper. To these classes of symbols we can define associated
operators and this is done in the paper.

To consider rough symbols is not new. In [7, Section 2.3 and 4.6] V. Ivrii considers
a similar class of symbols and associated operators. We remark that generally in the
monographs [5, 7] the symbols are not assumed to be smooth but to have a sufficient
number of derivatives. This is due to the fact that in reality we never take an infinite
number of derivatives but only a finite number when working with pseudo-differential
operators.

In the monographs [2] and [19] they also consider rough symbols but here all
variables become rough. These classes are introduced as these types of symbols
naturally appear in a proof of the sharp Gårdinger inequality.

With this definition we can almost analogous to the definitions in [8], define
~-ε-admissible symbols, pseudo-differential operators with symbols from the above
class and ~-ε-admissible operators. In order for the operators not to diverge in all
norms as ~ tends to zero we need to assume there exists a δ ∈ (0, 1) such that
ε ≥ ~1−δ. This assumption is no real restriction as we want to choose ε = ~1−δ for a
suitable δ. Moreover under the assumption ε ≥ ~1−δ it is also fairly easy to prove
that the operators with positive regularity are well-defined operators from S(Rd) into
itself. The proof of this is complete analogous to the proof of the same statement for
the operators considered in [8]. In the case of negative regularity the operator does
not diverge in operator norm as ~ tends to zero if the operator comes with ~ raised
to at least the absolute value of the regularity.

One of the main differences is we need to specify the regularity of these objects. An
other significant difference concerns the error terms in asymptotic expansions of these
new operators. To give an example of this we recall the definition of a ~-admissible
operator from [8].

Definition 3.2.2. We call an operator A(~) from L(S(Rd), L2(Rd)) ~-admissible
with weight m if the map

A : (0, ~0]→ L(S(Rd), L2(Rd)),
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is smooth. There exists a sequence aj in Γm0 (Rdx × Rdp) and a sequence RN (~) in
L(L2(Rd)) such that for N ≥ N0, N0 sufficient large,

A(~) =

N∑
j=0

~j Opw
~ (aj) + ~N+1RN (~),

and
sup

~∈(0,~0]
‖RN (~)‖L(L2(Rd)) <∞.

here L(S(Rd), L2(Rd)) is the linear operators from S(Rd) into L2(Rd). If we compare
with the definition of ~-ε-admissible operators which is

Definition 3.2.3. We call an operator Aε(~) from L(S(Rd), L2(Rd)) ~-ε-admissible
of regularity τ ≥ 0 with weight m if the map

Aε : (0, ~0]→ L(S(Rd), L2(Rd)),

is smooth. There exists a sequence aε,j in Γ
m,τj
0,ε (Rdx × Rdy × Rdp), where τ0 = τ and

τj+1 = τj − 1 and a sequence RN in L(L2(Rd)) such that for N ≥ N0, N0 sufficient
large,

Aε(~) =

N∑
j=0

~j Op~(aε,j) + ~N+1RN (ε, ~),

and
~N+1‖RN (ε, ~)‖L(L2(Rd)) ≤ ~κ(N)CN ,

for a strictly positive increasing function κ.

At first glance the two definition semens the same bot in the later we need to introduce
an increasing function κ in the estimate of the norm of the error terms. The necessity
of this function is due to the error term which comes from application of the stationary
phase theorem. If we just recall Quadratic stationary phase theorem:

Theorem 3.2.4. Let B be a invertible, symmetric real d × d matrix and (u, v) →
a(u, v; ~) be a function in C∞(Rdu×Rnv ) for all ~ in (0, ~0]. We suppose v → a(u, v; ~)

has compact support for all u in Rdu and ~ in (0, ~0]. Moreover we let

I(u; a,B, ~) =

∫
Rn
e
i
2~ 〈Bv,v〉a(u, v; ~) dv.

Then for each N in N we have

I(u;a,B, ~)

= (2π~)
n
2
ei
π
4

sgn(B)

|det(B)|
1
2

N∑
j=0

~j

j!

(〈B−1Dv, Dv〉
2i

)j
a(u, v; ~)

∣∣∣
v=0

+ ~N+1RN+1(u; ~),
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where sgn(B) is the difference between the number of positive and negative eigenvalues
of B. Moreover there exists a constant cn only depending on the dimension such the
error term RN+1 satisfies the bound

|RN+1(u; ~)| ≤ cn‖
〈B−1Dv, Dv〉N+1

(N + 1)!
a(u, v; ~)‖

H
[
n
2 ]+1

(Rnv )
, (3.5)

where [n2 ] is the integer part of n
2 , and the norm is the Sobolev norm.

This version is from [8]. For the estimate on the error term in (3.5) it is evident what
the challenge is. When we have to evaluate the Sobolev norm we need to take up to
additional [n2 ] + 1 derivatives which does not come with a ~. Hence if these derivatives
are in the rough variables we need to be able to compensate up to ε−[

n
2 ]−1. But this

number is fixed so for application we just need to take a sufficient number of terms in
the expansion. Hence it does not give rise to a problem just a detail to be aware of.

After defining these symbol classes and operators we prove that we still have a
full symbolic calculus for the rough operators. We prove a Calderon-Vaillancourt
type theorem and give criteria for the operators to be Hilbert-Schmidt and trace
class. Finally we also prove that a full functional calculus is still valid for this type of
operators under assumptions similar to the assumptions in [8]. To my knowledge the
construction of the functional calculus has not been consider by others prior to this
work.

3.3 The approximation of the propagator

In order to prove a Weyl law we will need some sort of approximation of a propagator.
After the work of L. Hörmander in [4] this approximation, also called parametric, have
usually been constructed as a Fourier integral operator. For the actual construction
in the semiclassical setting see [2, 8]. The challenge in this approach is that the
construction is not explicit. The phase function is the solution to the Hamilton-Jacobi
equation associated to the principal symbol. Hence it becomes hard to see how the
roughness of the principal symbol affects the Fourier integral operator.

Instead we do a microlocal approximation by an operator for which we directly
construct the integral kernel. The kernel has the following form

KUN (x, y, t, ε, ~)

=
1

(2π~)d

∫
Rd
ei~
−1〈x−y,p〉eit~

−1aε,0(x,p)
N∑
j=0

(it~−1)juj(x, p, ~, ε) dp,

where the uj ’s are compactly support in x and p so the integral do exists as a proper
integral. This construction is inspired by the construed used by L. Zielinski in [15].
This construction is completely explicit and is made recursively by choosing a u0 and
then find u1 and so fort. The construction is only valid as an approximation for short
times of the order ~1− δ

2 , where the δ is the one from the assumption on ε.
We need an approximation which is valid for a ~ independent time T0 in order to

be able to prove a Weyl law. What we do is to prove the following theorem.
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Theorem 3.3.1. Let Aε(~) be a ~-ε-admissible operator of regularity τ ≥ 1 which
satisfies Assumption II.7.1, has a bounded principal symbol and there exists a δ in
(0, 1) such that ε ≥ ~1−δ. Suppose there exists a number η > 0 such a−1

ε,0([−2η, 2η]) is
compact and a constant c > 0 such

|∇paε,0(x, p)| ≥ c for all (x, p) ∈ a−1
ε,0([−2η, 2η]),

where aε,0 is the principal symbol of Aε(~). Let f be in C∞0 ((−η, η)) and θ be in
C∞0 (Rdx ×Rdp) such that supp(θ) ⊂ a−1

ε,0((−η, η)). There exists a constant T0 > 0 such
that if χ is in C∞0 ((1

2~
1−γ , T0)) for a γ in (0, δ], then for every N in N, we have

|Tr[Opw
~ (θ)f(Aε(~))F−1

~ [χ](s−Aε(~)) Opw
~ (θ)]| ≤ CN~N

uniformly for s in (−η, η).

Assumption II.7.1 is the assumption that ensures selfadjointness of the operator the
exact assumption is in the paper and F−1

~ [χ] is the inverse to the semiclassical Fourier
transform. This is a version of [2, Proposition 12..4], where we have modified the
proof to fit in the framework of rough pseudo differential operators. The result in the
theorem is of the same nature as the theorems in [7, Section 2.3].1 Moreover there are
similar result in the papers [16–18] by L. Zielinski proved by another method then in
our paper and [7].

This theorem shows that the construction of the propagator in the ~ dependent
interval is sufficient as the traces we consider is negligible for times in (1

2~
1−γ , T0)

under a non-critical condition, where the times are hidden the support of χ.
I was slightly surprised by the fact that the theorem is true. The way I think

about it heuristically is that the theorem gives the bound

|Tr[Opw
~ (θ)eit~

−1Aε(~) Opw
~ (θ)]| ≤ CN~N ,

for t in (1
2~

1−γ , T0) under a non-critical assumption. The operator Opw
~ (θ) can be

viewed as localisations since θ has compact support. Then the term eit~
−1Aε(~) Opw

~ (θ)

is the evolution of a particle initially located in the support of θ under the operator
Aε(~). The non-critical condition says in terms of classical mechanics that the particle
is moving. Hence if the support of θ is sufficiently small we should have moved out of
the support. So when we compare against the non evolved θ we should have obtained
that the support of the two operators are disjoint. Hence the trace becomes small.
This heuristic idea is rather hard to see directly in the proof given in the paper.

3.4 The Weyl law

After establishing the symbolic and function calculus for the for certain rough pseudo-
differential operators and constructing an approximation to the propagator we are in
the paper able to prove the following Weyl law for rough pseudo-differential operators.

1 V. Ivrii was the first to prove these types of theorems.
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Theorem 3.4.1 (Weyl law). Let Aε(~) be a strongly ~-ε-admissible operator of
regularity τ ≥ 1 which satisfies Assumption II.7.1 and there exists a δ in (0, 1) such
that ε ≥ ~1−δ. Suppose there exists a η > 0 such a−1

ε,0((−∞, η]) is compact, where aε,0
is the principal symbol of Aε(~). Moreover we suppose

|∇paε,0(x, p)| ≥ c for all (x, p) ∈ a−1
ε,0({0}). (3.6)

Then we have

|Tr[1(−∞,0](Aε(~))]− 1

(2π~)d

∫
Rd

∫
Rd

1(−∞,0](aε,0(x, p)) dxdp| ≤ C~1−d,

for all sufficiently small ~.

The proof of this theorem is analogous to the proof of the corresponding theorem in
the non-rough case in [8]. What is remarkable in this theorem is that we do not need
to assume the operator to be a differential operator.

After this is proven we are able to prove the main theorem state in the beginning
of this chapter (Theorem 3.1.1). The proof is to verify that the assumptions in the
theorems ensures that the framing operators satisfies the assumption of the just stated
Weyl law (Theorem 3.4.1). This is the last proof in the main part of the paper draft.
For sake of completeness we have added an appendix on multivariate differentiation
and Taylor’s formula.

There is one remarkable observation to do concerning the results obtained here.
If now the starting operator A(~) had been a ~-admissible operator which satisfies
the assumptions in [8] for an optimal Weyl law. Then one might be interested in
perturbing this operator by a non smooth potential V and consider the operator

A(~) + V. (3.7)

Then this operator would no longer be a ~-admissible operator. But it will be possible
to frame this operator by two rough pseudo-differential operators which can be chosen
to be ~-ε-admissible under the right assumptions on V . Then we could get an optimal
Weyl law for these operators and compare phase-space integrals to see if an optimal
Weyl law can be achieved for the operator (3.7). These kinds of results have not, to
my knowledge, been obtained before.

3.5 Future work

As said in the beginning of this chapter, this is work in progress and what is presented
in the thesis is where we are at the moment. In this section we will describe where
we want to go from here.

A first thing we would like to do, is to extend the Weyl law to other functions
than 1(−∞,0](t). In particular we are interested in functions of the form

gs(t) = (t)s− =
( |t| − t

2

)s
, (3.8)
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for s in (0, 1]. We should be able to use the techniques from [3] to obtain results of
the form

|Tr[gs(Aε(~))]− 1

(2π~)d

∫
Rd

∫
Rd
gs(aε,0(x, p)) dxdp| ≤ C~1+s−d,

in the case where the subprincipal symbol is zero (aε,1(x, p) = 0). In the case where
the subprincipal symbol is not zero we expect an extra phase space integral. From
this results we would like to extract similar results for the irregular operators. But
we do suspect that more regularity of the coefficients are needed to obtain optimal
results for s > 0 than the case s = 0, which requires the coefficients to be in C1,µ(Rd)
for a µ > 0. The case s = 1 is of particular interest for the Schrödinger operator.

If we in the following let H~ be a Schrödinger operator given by

H~ = (−i~∇x +A)2 + V,

where A is a vector potential and V a potential. Then we would also like to investigate
if the methods used here can give local results for the Schrödinger operator without
full regularity and with a non-critical condition, that is results of the form

|Tr[ϕgs(H~)ϕ]− 1

(2π~)d

∫
Rd

∫
Rd
gs((p+A(x))2+V (x))ϕ(x)2 dxdp| ≤ C~1+s−d, (3.9)

where ϕ is a function from C∞0 (Rd). We suspect that in the case where s = 0 will
require that the potentials is in C1,µ(Rd) for a µ > 0 and we suspect the restrictions
to be more strict in the case of a s > 0.

One of the main obstacles at the moment for our approach to work is that if we
have the relation

H−~ ≤ H~ ≤ H+
~

in the sense of quadratic forms. Then we can not use the min-max theorem to get
the relation

Tr[ϕ1(−∞,0](H
+
~ )ϕ] ≤ Tr[ϕ1(−∞,0](H~)ϕ] ≤ Tr[ϕ1(−∞,0](H

−
~ )ϕ]. (3.10)

Moreover I do believe that a relation like the one in (3.10) is not valid in general.
But it might be possible to compare the trace with small errors in the semiclassical
parameter. But without this relation we need some other method to compare the
traces. This other method is unclear to us at the moment of handing in this thesis.

An other interesting thing to investigate if some of the results also can be extended
to also cover Pauli operators, but we will just leave this as a small remark.

Of cause it could also be interesting to see to what extent we can prove optimal
Weyl laws without a non-critical condition. As mentioned this have already been
studied before by V. Ivrii with collaborators see [1, 6, 7] and L. Zielinski see [17, 18].

In the case we are able to prove a statement as in (3.9) we will be able to
remove the non-critical condition under some assumptions. Unfortunately one of these
assumptions is on the dimension. This will be sketched in the following subsection.
The method we will use is a multiscale argument as in Paper I but with some other
choices of auxiliary function(s).
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Before this argument is sketched and we end this introductory chapter we would
like to make a small comment. One of the generalisations we do hope is possible to do
is to generalise the result from [9, 10] by A. V. Sobolev to cases where the potentials
does not have to be assumed smooth. But much work is needed before this will be
possible.

Multiscale argument sketch

In this subsection we assume H~ to be a Schrödinger operator given by

H~ = −~2∆ + V,

where we assume V to be at least one time differentiable. Assume that if

|V (x)|+ ~
2
3 ≥ c > 0 for all x ∈ B(0, 4R), (3.11)

for a R > 0 then we have for all ψ in C∞0 (B(0, R2 )) the estimate

|Tr[gs(H~)ψ]− 1

(2π~)d

∫
Rd

∫
Rd
gs(p

2 + V (x))ψ(x) dxdp| ≤ C~1+s−d, (3.12)

for all ~ in (0, ~0], where ~0 is some positive number. Now assume we have a potential
V which is at least once differentiable and a function ϕ from C∞0 (Rd). Denote the
support of ϕ by Ω. Then we would like to study the trace

Tr[gs(H~)ϕ].

To do so we define the functions

l(x) = A−1

√
|V (x)|2 + ~

4
3 and f(x) =

√
l(x) = A−

1
2 (|V (x)|2 + ~

4
3 )

1
4 ,

for A > 0. We need to choose the number A such that

|∇xl(x)| ≤ ρ < 1

8
. (3.13)

This choice can be made uniformly for ~ in (0, ~0]. Then there exists a sequence
{xn}N ⊂ Ω such that

Ω ⊂
⋃
n∈N

B(xn, l(xn)),

where at most Nρ balls can intersect non-empty. Moreover there also exists ϕn in
C∞0 (B(xn, l(xn))) such that∑

n∈N
ϕn(x) = 1 for all x ∈ Ω.

The existence of the sequence of points and sequence of function is ensured by
Lemma I.3.4 from Paper I. Since Ω is compact we can find a finite subset I of N such
that

Ω ⊂
⋃
n∈I

B(xn, l(xn)).
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By doing a possible finite extension of I we also have∑
n∈I

ϕn(x) = 1 for all x ∈ Ω.

We will use the following notation

ln = l(xn), fn = f(xn) and hn =
~
lnfn

.

We have that hn is uniformly bounded since

l(x)f(x) = A−
3
2 (|V (x)|2 + ~

4
3 )

3
4 ≥ A−

3
2~,

for all x. We define the two unitary operators Ul and Tz by

Ulf(x) = l
d
2 f(lx) and Tzf(x) = f(x+ z) for f ∈ L2(Rd).

Moreover we set
H̃n,hn = f−2

n (TxnUln)H~(TxnUln)∗

= −h2
n∆ + f−2

n V (lnx+ xn).
(3.14)

What we would like is the function Ṽ (x) = f−2
n V (lnx+ xn) to satisfy (3.11) for all x

in B(0, 8) with hn instead of ~. To see this note that by (3.13) we have

(1− 8ρ)ln ≤ l(x) ≤ (1 + 8ρ)ln for all x ∈ B(xn, 8ln). (3.15)

Hence for x in B(0, 8) we have

|Ṽ (x)|+ h
2
3
n = f−2

n |V (lnx+ xn)|+ ( ~
fnln

)
2
3 = l−1

n (|V (lnx+ xn)|+ ~
2
3 )

≥ l−1
n Al(lnx+ xn) ≥ (1− 8ρ)A.

(3.16)

That is Ṽ (x) to satisfy (3.11) for all x in B(0, 8) with hn instead of ~. Hence by
(3.12) with R = 2 we have for n in I

|Tr[gs(H~)ϕnϕ]− 1

(2π~)d

∫
Rd

∫
Rd
gs(p

2 + V (x))ϕnϕ(x) dxdp|

= f2s
n |Tr[gs(H̃n,hn)(TxnUln)ϕnϕ(TxnUln)∗]

− 1

(2π~)d

∫
Rd

∫
Rd

(fnln)dgs(p
2 + f−2

n V (lnx+ xn))ϕnϕ(lnx+ xn) dxdp|

≤ Ch1+s−d
n f2s

n ,

(3.17)

where we have used that (TxnUln)ϕnϕ(TxnUln)∗ acts as the multiplication operator
ϕnϕ(lnx + xn) on functions supported in B(0, 1). If we try and sum the obtained
error terms over n we get∑

n∈I
Ch1+s−d

n f2s
n =

∑
n∈I

C̃~1+s−d
∫
B(xn,ln)

l−dn f2s
n (lnfn)d−1−s dx

=
∑
n∈I

C̃~1+s−d
∫
B(xn,ln)

ls−dn l
3d−3−3s

2
n dx

≤
∑
n∈I

Ĉ~1+s−d
∫
B(xn,ln)

l(x)
d−3−s

2 dx,

(3.18)



54 Chapter 3. Weyl asymptotics with irregular coefficients

where we have used the definition of fn and (3.15). What we see from this is that in
order to combine (3.17) and (3.18) into a estimate of the type

|Tr[gs(H~)ϕ]− 1

(2π~)d

∫
Rd

∫
Rd
gs(p

2 + V (x))ϕ(x) dxdp| ≤ C~1+s−d. (3.19)

we need to assume d ≥ 3 + s hence for s = 1 we need d = 4 for this argument to
work. We have here followed the approach to multiscale analysis presented in [10] but
arguments like this can also be found in [5, 7].
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Paper II

Optimal Weyl asymptotics for
operators with irregular
coefficients
by Søren Mikkelsen

Aarhus University

Abstract: This paper is a status/review on ongoing work concerning Weyl laws
without full regularity. Some of the results are already known and reproved here.
Others are to the authors knowledge new results. The main result is a Weyl for elliptic
differential operators of order 2m where the coefficients are differentiable with a
Hölder continious derivative. In order to establish this result a class of rough symbols
is defined. For the associated rough operators we prove a symbolic and functional
calculus. The paper also contains a microlocal construction of the propagator which
is not a Fourier integral operator.

II.1 Introduction

In 1911 H. Weyl proved the first Weyl law in [22] and in [23] he conjectured the
formula

Tr(1(−∞,λ](−∆D,Ω))

=
1

(2π)d
ωd Vol(Ω)λ

d
2 − 1

4

ωd−1

(2π)d−1
Vol′(∂Ω)λ

d−1
2 + o(λ

d−1
2 ),

(3.1)

as λ→∞, where −∆D,Ω is the positive Laplacian on an open bounded domain Ω

with Dirichlet boundary conditions, ωd is the volume of the unit ball in Rd, Vol(Ω) is
the volume of Ω and Vol′(∂Ω) is the surface area of Ω. This conjectured formula was
first proven in 1980 by V. Ivrii in [9] under some extra assumptions on the set Ω. In
the yeas between the conjecture was stated and the proof by V. Ivrii, a substantial
number of mathematicians worked on the problem. We will not give a full review of
the development here but we refer to the surveys [1, 3, 14] as our main interest is in
a problem arising from the work on the Weyl conjecture.

This type of formulas was during the period also considered for other types of
operators and slightly different settings. We will in this paper be working in the
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semiclassical setting and study differential operators of the form

A(~) =
∑

|α|,|β|≤m

(~D)αaαβ(x)(~D)β,

acting in L2(Rd), where we have introduced a semiclassical parameter ~ and used
the notation

(~D)α =
d∏
j=1

(−i~∂xj )αj ,

for α ∈ Nd0. In the case of smooth coefficients it was first proven in [6] by B. Helffer
and D. Robert that a formula of the type

Tr[1(−∞,λ0](A(~))] =
1

(2π~)d

∫
Rd

∫
Rd

1(−∞,λ0](a0(x, p)) dxdp+O(~1−d),

where
a0(x, p) =

∑
|α|,|β|≤m

aαβ(x)pα+β,

is true for a number λ0 < λ such a−1
0 ((−∞, λ]) is compact and non-critical for a0(x, p).

A number λ0 is a non-critical value when

|∇a0(x, p)| ≥ c > 0 for all (x, p) ∈ a−1
0 ({λ0}).

Actually the proved such a formula for a larger class of pseudo-differential operators.
The classical analog was proven by L. Hömander in [7], where the operator was
defined on a smooth compact manifold without a boundary.

If we consider the assumptions above. Then this immediate raises two questions:

• What happens if the coefficients are not smooth? Can a Weyl law still be proven
with optimal errors?

• What happens if a non-critical condition is not assumed? Can a Weyl law still
be proven with optimal errors?

We are not the first to ask these questions. Answers to both have been provided in
different cases. We will in this paper focus on the first question. But for the second
question it is possible for Schrödinger operators to prove optimal Weyl laws with out
a non critical condition by a multiscale argument see [2, 10, 15, 16], this approach is
also described in [20]. This multiscale argument can be seen as a discreet approach
and a continuous version have been proved and used in [21]. The essence of this
approach is to localise and the locally introduce a non-critical condition by unitary
conjugation. Then by an optimal Weyl law with a non-critical condition one obtain
the right asymptotics locally. The last step is to average out the localisations. V.
Ivrii has also considered multiscale analysis for higher order differential operators
but to treat these cases extra assumptions on the Hessian of the principal symbol
is needed see [12, 15]. There is also an other approach by L. Zielinski see [30, 31],
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where he proves optimal Weyl laws without a non-critical condition but with an extra
assumption on a specific phase space volume.

If we consider the the first question. Then the first results with an optimal Weyl law
was proven in the papers [24–27] by L. Zielinski. In these papers L. Zielinski obtained
an optimal Weyl law under the assumption that the coefficients are differentiable
with Lipschitz continuous first derivative. L. Zielinski did not in those papers consider
the semiclassical setting. These results was generalised by V. Ivrii in the semiclassical
setting in [11]. Here the coefficients is assumed to be differentiable and with a Hölder
continuous first derivative. This was further generalised by M. Bronstein and V. Ivrii
in [2], where they reduced the assumptions further by assuming the first derivative to
have modulus continuity O(| log(x− y)|−1). All these papers considered differential
operators defined on a compact manifold.

We should mention that both V. Ivrii and L. Zielinski has considered both
questions simultaneously.

We will in this paper consider differential operators acting in L2(Rd). The main
theorem we will prove in this paper is a Weyl law for differential operators of order
2m of the form

A(~) =
∑

|α|,|β|≤m

(~D)αaαβ(x)(~D)β,

where the coefficients aαβ(x) are once differentiable with Hölder continuous derivatives.
We will also need some other conditions on the operator. The exact statement of this
Weyl law is in Theorem II.10.1.

In [29] L. Zielinski also considered operators acting in L2(Rd) but he has to assume
the first derivative to also be bounded, which we do not have to assume, hence our
theorem generalises this assumption.

The structure of the paper is such that the first section is a preliminary section
which fixes some notation. Then in the next section we construct two framing
operators to approximate the operator of interest. Inspired by these framing operators
we define a class of rough pseudo-differential operators. For this class of operators we
verify symbolic and functional calculus. Then we construct an approximation to the
time evolution. After this is done we are ready to prove a Weyl law for the rough
pseudo-differential operators and use this to prove the main theorem.

II.2 Preliminaries

This preliminary section we mainly set up notation and some definitions. We will in
this paper use the notation

λ(x) = (1 + |x|2)
1
2 , (3.2)

for x in Rd and not the usual bracket notation. Moreover for more vectors x, y, w
from Rd we will use the convention

λ(x, y, w) = (1 + |x|2 + |y|2 + |w|2)
1
2 , (3.3)
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and similar in the case of 2 or more vectors. We will denote the negative part of a
number by (t)− for t in R defined by

(t)− =
|t| − t

2
, (3.4)

which is a positive number. We will denote the Schwartz space by S(Rd) that is

S(Rd) = {f ∈ C∞(Rd) | sup
x∈Rd

|xβDαf(x)| <∞ ∀α, β ∈ Nd0}, (3.5)

where we use the convention

N = {1, 2, 3, . . . } and N0 = {0} ∪ N0.

When working with the Fourier transform we will use the following version for ~ > 0

F~[ϕ](p) :=

∫
Rd
e−i~

−1〈x,p〉ϕ(x) dx,

and with inverse given by

F−1
~ [ψ](x) :=

1

(2π~)d

∫
Rd
ei~
−1〈x,p〉ψ(p) dp,

where ϕ and ψ are elements of S(Rd).
We will by L(B1,B2) denote the linear bounded operators from the space B1 into

B1 and L(B1) denotes the linear bounded operators from the space B1 into itself. For
an operator A acting in a Hilbert space we will denote the spectrum of A by

spec(A).

Finally we use the following definition of a non-critical value for an differential
operator:

Definition II.2.1. For a differential operator of the form

A(~) =
∑

|α|,|β|≤m

(~D)αaαβ(x)(~D)β,

where the operator is defined via the associated quadratic form. We call a number E
in R non-critical if there exists c > 0 such that

|∇pa0(x, p)| ≥ c for all (x, p) ∈ a−1
0 ({E}),

where
a0(x, p) =

∑
|α|,|β|≤m

aαβ(x)pα+β.

This condition is not the usual non-critical condition as we only assume the
gradient in p to be non vanishing. This assumption is called ξ-microhyperbolicty
in [10, 15] and is also called a non-critical condition in [28].
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II.3 Approximation of operators

In this section we will construct our approximating (framing) operators. The con-
struction is similar to the one used in [2, 10, 12, 13] and [28]. The most important
part in this construction is Proposition II.3.2, which also can be found in [2, 15].
Before we state it we need a definition. The definition is

Definition II.3.1. For k in N0 and µ in (0, 1] we denote by Ck,µ(Rd) the subspace
of Ck(Rd) defined by

Ck,µ(Rd) =
{
f ∈ Ck(Rd)

∣∣ |∂αx f(x)− ∂αx f(y)| ≤ C|x− y|µ ∀α ∈ Nd0 with |α| = k
}
.

We can now state the proposition.

Proposition II.3.2. Let f be in Ck,µ(Rd) for a µ in (0, 1]. Then for every ε > 0

there exists a function fε in C∞(Rd) such that

|∂αx fε(x)− ∂αx f(x)| ≤Cαεk+µ−|α| |α| ≤ k,

|∂αx fε(x)| ≤Cαεk+µ−|α| |α| ≥ k + 1,
(3.6)

where the constants is independent of ε.

The function fε is a smoothing (mollification) of f . Usually this is done by convolution
with a compactly supported smooth function. However here we will use a Schwartz
function in the convolution in order to ensure the stated error terms. The convolution
with a compactly supported smooth function will in most cases “only” give an error
of order ε except if k is equal to 1.

Proof. We start by letting F1[ω] be in C∞0 (B(0, 1)) with F1[ω](p) = 1 for all p in
B(0, 1

2), 0 ≤ F1[ω] ≤ 1 and F1[ω](p) = F1[ω](−p). Then

ω(x) =
1

(2π)d

∫
Rd
ei〈x,p〉F1[ω](p) dp =

1

(2π)d

∫
Rd

cos(〈x, p〉)F1[ω](p) dp,

is a real Schwartz function. Hence for all n in N0 there exists a cn such that

|ω(y)| ≤ cn
(1 + |y|)n

. (3.7)

Moreover we can note that for all α in N0 with |α| > 0 we have∫
Rd
yαω(y) dy = (−Dp)

αF1[ω](p)
∣∣
p=0

= 0. (3.8)

We now let ωε(x) = ε−dω(ε−1x) and define

fε(x) = f ∗ ωε(x) =

∫
Rd
f(x− εy)ω(y) dy.

For α in Nd0 with |α| ≤ k − 1 we let

Rα(x, y, ε) = ∂αx f(x− εy)−
∑

β:|α+β|≤k

(−εy)β

β!
∂α+β
x f(x),
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that is Rα is the reminder term of the Taylor expansion of ∂αx f(x− εy) around x up
to order k. By Taylor expanding ∂αx f(x− εy) with exact reminder estimate we get

|Rα(x, y, ε)|

=
∣∣∣ ∑
β:|α+β|=k

k
(−εy)β

β!

∫ 1

0
(1− s)k−1∂β+α

x f(x− εsy) ds− (−εy)β

β!
∂β+α
x f(x)

∣∣∣
≤

∑
β:|α+β|=k

k
|εy|β

β!

∫ 1

0
(1− s)k−1|∂β+α

x f(x− εsy)− ∂β+α
x f(x)| ds

≤ cfεk+µ−|α|(1 + |y|)k+1,

where we in the last inequality have used the uniform Hölder continuity of the k’th
derivative. Note that the constant cf only depends on the function thought the
constant in the Hölder continuity of the k’th derivative. If we now use this estimate,
(3.7) and (3.8) we have

|∂αx fε(x)− ∂αx f(x)| =
∣∣∣ ∫

Rd
(∂αx f(x− εy)− ∂αx f(x))ω(y) dy

∣∣∣
=
∣∣∣ ∫

Rd
(Rα(x, y, ε)−

∑
β:1≤|α+β|≤k

(−εy)β

β!
∂α+β
x f(x))ω(y) dy

∣∣∣
≤
∫
Rd
|Rα(x, y, ε)ω(y)| dy

≤ cεk+µ−|α|
∫
Rd

1

(1 + |y|)d+1
dy

≤ Cαεk+µ−|α|.

This gives the first statement in (3.6) in the case |α| ≤ k − 1 for |α| = k we have by
the uniform Hölder continuity

|∂αx fε(x)− ∂αx f(x)| =
∣∣∣ ∫

Rd
(∂αx f(x− εy)− ∂αx f(x))ω(y) dy

∣∣∣
≤
∫
Rd
|∂αx f(x− εy)− ∂αx f(x)|ω(y)| dy

≤ Cεµ
∫
Rd
|y|µω(y) dy ≤ Cαεµ.

For the second statement in (3.6) we let |α| ≥ k + 1 and take a β < α in Nd0 such
that |α− β| = k then

|∂αx fε(x)| = ε−|β|
∣∣∣ ∫

Rd
(∂α−βx f(x− εy)− ∂α−βx f(x))∂βy ω(y) dy

∣∣∣
≤ cεµ−|β|

∫
Rd
|∂βy ω(y)| dy ≤ Cαεk+µ−|α|.

this yields the second statement of (3.6) and hence concludes the proof. �
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We will in the following give a situation where the framing operators can be found.
We will consider is a differential operator of the form

A(~) =
∑

|α|,|β|≤m

(~D)αaαβ(x)(~D)β,

where the operator is defined via the associated quadratic form and the order is 2m.
In order to find the framing operators we need to assume the operator is globally
elliptic. The type of framing operators used here is the same form as the framing
operators used in [28].

Proposition II.3.3. Let A(~) be a differential operator of order 2m of the form

A(~) =
∑

|α|,|β|≤m

(~D)αaαβ(x)(~D)β,

where the coefficients aαβ(x) are in Ck,µ(Rd). Suppose there exists a constant C such
that ∑

|α|=|β|=m

aαβ(x)pα+β ≥ C|p|2m, (3.9)

for all (x, p) in Rdx × Rdp. Moreover we suppose A(~) is self-adjoint and lower semi-
bounded and let Aε(~) be the operator obtainded by replacing the coefficients of A(~)

by aεαβ(x) which is the smoothed function of aαβ(x) according to Proposition II.3.2.
Then there exists a set of framing operators A−ε (~) and A+

ε (~) of the form

A±ε (~) = Aε(~)± C1ε
k+µ(I − ~2∆)m,

where these operators are globally elliptic for all sufficiently small ε and satisfy the
inequalities

A−ε (~) ≤ A(~) ≤ A+
ε (~),

in the sense of quadratic forms. Moreover if 0 is a non-critical value of A(~) in
the sense of Definition II.2.1 then A−ε (~) and A+

ε (~) can be chosen such 0 is also
non-critical for these operators for all sufficiently small ε.

Remark II.3.4. If we consider the magnetic Schrödinger operator

H = (−i~∇+A)2 + V, (3.10)

where A(x) is a magnetic vector potential and V is the electric potential. Then will
H, under suitable assumptions on A of V , satisfy the assumptions from the previous
proposition. In the case of Schrödinger operator without a magnetic potential the
framing operators H±ε can be chosen as

H±ε = −~2∆ + Vε ± cεk+µ.
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Proof. We start by considering the operator Aε(~) of the form

Aε(~) =
∑

|α|,|β|≤m

(~D)αaεαβ(x)(~D)β

where we have replaced the coefficients of A(~) with smooth functions made according
to Proposition II.3.2. For ϕ in Q(A(~)) ∩ Q(Aε(~)) we have by a Cauchy-Schwarz
inequality

|A(~)[ϕ,ϕ]−Aε(~)[ϕ,ϕ]| ≤
∑

|α|,|β|≤m

|〈(aαβ − aεαβ)(~D)βϕ, (~D)αϕ〉|

≤
∑

|α|,|β|≤m

1

2εk+µ
‖(aαβ − aεαβ)(~D)βϕ‖2L2(Rd) +

εk+µ

2
‖(~D)αϕ‖2L2(Rd)

≤cεk+µ
∑
|α|≤m

〈(~D)2αϕ,ϕ〉.

(3.11)

We recognise the last bound in (3.11) as the quadratic form associated to (I −~2∆)m.
Hence for sufficiently choice of constant we can choose the framing operators by
taking

Aε(~)± cεk+µ(I − ~2∆)m,

where the operator are defined in the sense of quadratic forms. We first consider the
ellipticity of the framing operators. Here we have∑

|α|=|β|=m

aεαβ(x)pα+β ± cεk+µ|p|2m

=
∑

|α|=|β|=m

(aεαβ(x)− aαβ(x))pα+β +
∑

|α|=|β|=m

aαβ(x)pα+β ± εk+µ|p|2m

≥− c̃εk+µ|p|2m + C|p|2m ≥ C̃|p|2m,
(3.12)

for sufficiently small ε and all (x, p) in Rdx × Rdp. Hence if we choose C1 such (3.11)
and (3.12) both are satisfied and take

A±ε (~) = Aε(~)± C1ε
k+µ(I − ~2∆)m,

then both operators are uniform elliptic and by (3.11) these operator satisfy the the
inequalities

A−ε (~) ≤ A(~) ≤ A+
ε (~),

in the sense of quadratic forms.
For the last part we assume 0 is a non-critical value for the operator A(~) that is

there exist a c > 0 such that

|∇pa0(x, p)| ≥ c for all (x, p) ∈ a−1
0 ({0}),
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where
a0(x, p) =

∑
|α|,|β|≤m

aαβ(x)pα+β.

In order to prove that 0 is a non-critical value for the framing operators we need to
find an expression for a−1

ε,0({0}) for the framing operators, where we have omitted the
+ and − in the notation. By the ellipticity we can in the following calculation with
out loss of generality assume p belongs to a bounded set. We have

aε,0(x, p)

=
∑

|α|,|β|≤m

(aεαβ(x)− aαβ(x))pα+β ± C1ε
k+µ(1 + p2)m +

∑
|α|,|β|≤m

aαβ(x)pα+β.

(3.13)
Since we can assume p to be in a compact set we have that∣∣∣ ∑

|α|,|β|≤m

(aεαβ(x)− aαβ(x))pα+β ± C1ε
k+µ(1 + p2)m

∣∣∣ ≤ Cεk+µ.

This combined with (3.13) implies the inclusion

{(x, p) ∈ R2d | aε,0(x, p) = 0} ⊆ {(x, p) ∈ R2d | |a0(x, p)| ≤ Cεk+µ}.

Hence for a sufficiently small ε we have the inclusion

{(x, p) ∈ R2d | aε,0(x, p) = 0} ⊆ {(x, p) ∈ R2d | |∇pa0(x, p)| ≥ c

2
}. (3.14)

by continuity. For a point (x, p) in {(x, p) ∈ R2d | aε,0(x, p) = 0} we have

∇paε,0(x, p)

=
∑

|α|,|β|≤m

(aεαβ(x)− aαβ(x))∇ppα+β ± C1ε
k+µ∇p(1 + p2)m +∇pa0(x, p).

(3.15)
Again since we can assume p to be contained in a compact set we have∣∣∣ ∑

|α|,|β|≤m

(aεαβ(x)− aαβ(x))∇ppα+β ± C1ε
k+µ∇p(1 + p2)m

∣∣∣ ≤ Cεk+µ.

Combining this with (3.14) and (3.15) we get

|∇paε,0(x, p)| ≥ |∇pa0(x, p)| − Cεk+µ ≥ c

2
− Cεk+µ ≥ c

4
. (3.16)

where the last inequality is for ε sufficiently small. This inequality proves 0 is also a
non-critical value of the framing operators. �

The framing operators constructed in the previous proposition are operators with
smooth coefficients. But when we take derivatives of these coefficients we start to get
negative powers of ε from some point. Hence the classic theory of pseudo-differential
operators can not a priori be applied.

We will in the following sections see that in fact it is possible to verify most of
the results from classic theory of pseudo-differential operators. After this has been
developed we will return to these framing operators.

Essential there is not a unique way to construct these framing operators but a
large number of different choices.
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II.4 Definitions and quantisations of rough
pseudo-differential operators

In this section we will inspired by the approximation results in the previous section
define a class of pseudo-differential operators with rough symbols and state and prove
some of the properties of these operators relating to quantisation. The definitions
and proof are very similar to the definitions in the monograph [17]. Before we define
our rough symbols we recall the definition of a tempered weight function for the sake
of completeness.

Definition II.4.1. A tempered weight function on RD is a continuous function

m : RD → [0,∞[,

for which there exists positive constants C0, N0 such that for all points x1 in RD the
estimate

m(x) ≤ C0m(x1)(1 + |x1 − x|)N0 ,

holds for all points x in RD.

For our purpose here we will consider the cases where D = 2d or D = 3d. These
types of functions is in the literature sometimes called order functions this is the case
in the monographs [5, 32]. But we have chosen the name tempered weights to align
with the terminology in the monographs [8, 17]. We can now define the symbols we
will be working with.

Definition II.4.2 (Rough symbol). Let Ω ⊆ Rdx×Rdp×Rdy be open, ρ be in [0, 1],
ε > 0, τ be in Z and m a tempered weight function on Rdx × Rdp × Rdy. We call a
function aε a rough symbol of regularity τ with weights (m, ρ, ε) if aε is in C∞(Ω)

and satisfies that

|∂αx ∂βp ∂γy aε(x, p, y)|

≤

{
Cαβγm(x, p, y)(1 + |(x, p, y)|)−ρ(|α|+|β|+|γ|) if |α|+ |γ| ≤ τ
Cαβγε

τ−|α|−|γ|m(x, p, y)(1 + |(x, p, y)|)−ρ(|α|+|β|+|γ|) if |α|+ |γ| > τ,

(3.17)
for all (x, p, y) in Ω and α, β, γ in Nd0, where the constants Cαβγ ’s do not depend on
ε. The space of these functions is denoted Γm,τρ,ε (Ω). The space can be turned into a
Fréchet space with semi norms associated to the estimates in (3.17).

Remark II.4.3. It is important to note that the semi norms on Γm,τρ,ε (Ω) should be
chosen weighted such that the norms associated to a set of numbers α, β, γ will be
bounded by the constant Cαβγ and hence independent of ε.

If ε is equal to 1, then are these symbols the same as the symbols defined in
Robert [17] (Definition II-10). We will always assume ε ≤ 1 as we are interested in
the cases of very small ε.

We will later call a function aε(x, p) or bε(p, y) a rough symbol if it satisfies the
above definition in the two variables x and p or p and y. This more general definition
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is made in order to define the different forms of quantisation and the interpolation
between them.

If we say a symbol of regularity τ with tempered weight m we implicit assume
that ρ = 0.

This type of rough symbols is contained in the class of rough symbols consider
in [15, Section 2.3 and 4.6].

The following remark will be crucial.

Remark II.4.4. We will later assume that a rough symbol is a tempered weight.
When this is done we will implicit assume that the constants from the definition of a
tempered weight is independent of ε. This is an important assumption since we need
the estimates we make to be uniform for ~ in (0, ~0] with ~0 > 0 sufficiently small and
then for a choice of δ in (0, 1) we need the estimates to be uniform for ε in [~1−δ, 1].

Essentially the constants will be uniform for both ~ in (0, ~0] and ε in (0, 1], but
if ε ≤ ~ then the estimates will diverge in the semiclassical parameter. Hence we will
assume the lower bound on ε and when this bound is assumed we will hide ε in ~.
The assumption that ε ≥ ~1−δ is in [10, 15] called a microlocal uncertainty principal.
In [10, 15] there is two parameter instead of just one. This other parameter can to
my knowledge be used to scale in the p-variable.

As we are interested in asymptotic expansions in the semiclassical parameter we
will define ~-ε-admissible symbols, which is the symbols depending on the semiclassical
parameter ~ for which we can make an expansion in ~.

Definition II.4.5. With the notation from Definition II.4.2. We call a symbol aε(~)

~-ε-admissible of regularity τ with weights (m, ρ, ε) in Ω, if for fixed ε and a ~0 > 0

the map that takes ~ into aε(~) is smooth from (0, ~0] into Γm,τρ,ε (Ω) such that there
exists a N0 in N0 such for all N ≥ N0 we have

aε(x, p, y; ~) = aε,0(x, p, y)+~aε,1(x, p, y)+· · ·+~Naε,N (x, p, y)+~N+1rN (x, p, y; ~),

where aε,j is in Γ
m,τj
ρ,ε,−2j (Ω) with the notation τj = τ − j and rN is a symbol satisfying

the bounds

~N+1|∂αx ∂βp ∂γy rN (x, p, y; ~)|

≤Cαβγ~κ1(N)ε−|α|−|γ|m(x, y, p)(1 + |(x, y, p)|)−ρ(κ2(N)+|α|+|β|+|γ|),

where κ1 is a positive strictly increasing function and κ2 is non-decreasing function.
For k in Z Γm,τρ,ε,k (Ω) is the space of rough symbols of regularity τ with weights
(m(1 + |(x, y, p)|)kρ, ρ, ε).

Remark II.4.6. We will also use the terminology ~-ε-admissible for symbols in two
variables, where the definition is the same just in two variables. This definition is
slightly different to the “usual” definition of an ~-admissible symbol [17, Definition II-
11]. One difference is in the error term. Here is the fist sign of error terms getting
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small in the semiclassical parameter but not as fast as in the non-rough case. The
functions κ1 and κ2 will in most cases be dependent on the tempered weight function
through the constants in the definition of a tempered weight, the regularity τ and
the dimension d. It should be noted that the function κ2 might be constant negative.

We will now define the pseudo-differential operators associated to the rough symbols.
We will call them rough pseudo-differential operators.

Definition II.4.7. Let m be a tempered weight function on Rdx×Rdp×Rdy, ρ in [0, 1],
ε > 0 and τ in Z. For a rough symbol aε in Γm,τρ,ε (Rdx × Rdp × Rdy) we associate the
operator Op~(aε) defined by

Op~(aε)ψ(x) =
1

(2π~)d

∫
Rd

∫
Rd
ei~
−1〈x−y,p〉aε(x, p, y)ψ(y) dy dp,

for ψ in S(Rd).

Remark II.4.8. With the notation from Definition II.4.7. We remark that the
integral in the definition of Op~(aε)ψ(x) shall be considered as an oscillating integral.
By applying the techniques for oscillating integrals it can be proven that Op~(aε) is
a continuous linear operator from S(Rd) into itself. The proof of this is analogous to
the proof in [17] in the non-rough case. Hence by duality it is can also be defined as
an operator from S ′(Rd) into S ′(Rd).

Definition II.4.9. We call an operator Aε(~) from L(S(Rd), L2(Rd)) ~-ε-admissible
of regularity τ ≥ 0 with tempered weight m if for fixed ε and a ~0 > 0 the map

Aε : (0, ~0]→ L(S(Rd), L2(Rd))

is smooth. There exists a sequence aε,j in Γ
m,τj
0,ε (Rdx × Rdp × Rdy), where τ0 = τ and

τj+1 = τj − 1 and a sequence RN in L(L2(Rd)) such that for N ≥ N0, N0 sufficient
large,

Aε(~) =

N∑
j=0

~j Op~(aε,j) + ~N+1RN (ε, ~), (3.18)

and
~N+1‖RN (ε, ~)‖L(L2(Rd)) ≤ ~κ(N)CN ,

for a strictly positive increasing function κ.

Remark II.4.10. By the results in Theorem II.6.1 we have if the tempered weight
function m is in L∞(Rd) then for a ~-ε-admissible symbol aε(~) of regularity τ ≥ 0

with tempered weightm the operator Aε(~) = Op~(aε(~)) is a ~-ε-admissible operator
of regularity τ .

Remark II.4.11. When we have an operator Aε(~) with an expansion

Aε(~) =
∑
j≥0

~j Op~(aε,j),
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where the sum is understood as a formal sum and in the sense that for all N sufficiently
large there exists RN in L(L2(Rd)) such that the operator is of the same form as in
(3.18). Then we call the symbol aε,0 the principal symbol and the symbol aε,1 the
subprincipal symbol.

Definition II.4.12. Let Aε(~) be a ~-ε-admissible of regularity τ with tempered
weight m. For any t in [0, 1] we call all ~-ε-admissible symbols bε(~) in Γm,τ0,ε (Rdx×Rdp)
such,

Aε(~)ψ(x) =
1

(2π~)d

∫
Rd

∫
Rd
ei~
−1〈x−y,p〉bε((1− t)x+ ty, p; ~)ψ(y) dy dp,

for all ψ ∈ S(Rd) and all ~ ∈]0, ~0], where ~0 is a strictly positive number, rough
t-ε-symbols of regularity τ associated to Aε(~).

Notation II.4.13. In general for a symbol bε(~) in Γm,τρ,ε (Rdx × Rdp) and ψ in S(Rd)
we will use the notation

Op~,t(bε)ψ(x) =
1

(2π~)d

∫
Rd

∫
Rd
ei~
−1〈x−y,p〉bε((1− t)x+ ty, p; ~)ψ(y) dy dp

We have the special case of Weyl quantisation when t = 1
2 , which is the one we will

work the most with. In this case we write

Op~, 1
2
(bε) = Opw

~ (bε).

For some application we will need stronger assumptions than ~-ε-admissibility of
our operators. The operators satisfying these stronger assumptions will be called
strongly ~-ε-admissible operators with some regularity. As an example we could
consider a symbol aε(x, p) in Γm,τρ,ε (Rdx × Rdp). For this symbol we could then consider
ãε(x, p, y) = aε(tx + (1 − t)y, p) and ask if this symbol is in Γm̃,τρ,ε (Rdx × Rdp × Rdy),
where m̃(x, p, y) = m(tx + (1 − t)y, p). The answer will not in general be positive.
Hence in general we can not ensure decay in the variables (x, p, y) when viewing a
function of (x, p) as a function of (x, p, y). With this in mind we define a new class of
symbols and strongly ~-ε-admissible operators.

Definition II.4.14. A symbol aε belongs to the class Γ̃m,τρ,ε (Rdx × Rdp × Rdy) if aε is
in Γm,τ0,ε (Rdx × Rdp × Rdy) and there exists a positive ν such that

aε ∈ Γm,τρ,ε (Ων),

where Ων = {(x, p, y) ∈ R3d | |x− y| < ν}.

Definition II.4.15. We call the family of operators Aε(~) = Op~(aε(~)) strongly
~-ε-admissible of regularity τ if aε(~) is an ~-ε-admissible symbol of regularity τ
with respect to the weights (m, 0, ε) on Rdx × Rdp × Rdy and the weights (m, ρ, ε) on
Ων = {(x, p, y) ∈ R3d | |x− y| < ν} for a positive ν.
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Remark II.4.16. It should be noted that a strongly ~-ε-admissible operator is also
~-ε-admissible but as a consequence of the definition the error term of a strongly
~-ε-admissible operator will be a pseudo-differential operator and not just a bounded
operator as for the ~-ε-admissible operators.

In what follows we will investigate the connection between strongly ~-ε-admissible
operators and operators defined by t-quantisation. Before we proceed with this we
will just recall Quadratic stationary phase asymptotics.

Theorem II.4.17. Let B be a invertible, symmetric real d× d matrix and (u, v)→
a(u, v; ~) be a function in C∞(Rdu×Rnv ) for all ~ in (0, ~0]. We suppose v → a(u, v; ~)

has compact support for all u in Rdu and ~ in (0, ~0]. Moreover we let

I(u; a,B, ~) =

∫
Rn
e
i
2~ 〈Bv,v〉a(u, v; ~) dv.

Then for each N in N we have

I(u;a,B, ~)

= (2π~)
n
2
ei
π
4

sgn(B)

|det(B)|
1
2

N∑
j=0

~j

j!

(〈B−1Dv, Dv〉
2i

)j
a(u, v; ~)

∣∣∣
v=0

+ ~N+1RN+1(u; ~),

where sgn(B) is the difference between the number of positive and negative eigenvalues
of B. Moreover there exists a constant cn only depending on the dimension such the
error term RN+1 satisfies the bound

|RN+1(u; ~)| ≤ cn‖
〈B−1Dv, Dv〉N+1

(N + 1)!
a(u, v; ~)‖

H
[
n
2 ]+1

(Rnv )
,

where [n2 ] is the integer part of n
2 and ‖·‖

H
[
n
2 ]+1

(Rnv )
is the Sobolev norm.

A proof of the theorem can be found in e.g. [17] or [32]. It should be noted that we
will apply this theorem where the function a is a rough symbol with some regularity.
Hence we need to be aware of the number of derivatives we are taking in the rough
variables and especially we will need to be aware when considering the error terms as
the estimate involves a number of extra differentiation on the symbol.

We will now prove a connection between operators with symbols in the class
Γ̃m,τρ,ε (Rdx × Rdp × Rdy) and t-quantised operators.

Theorem II.4.18. Let aε be a symbol in Γ̃m,τρ,ε (Rdx × Rdp × Rdy) of regularity τ ≥ 0

with weights (m, ρ, ε) and

Aε(~)ψ(x) =
1

(2π~)d

∫
Rd

∫
Rd
ei~
−1〈x−y,p〉aε(x, p, y)ψ(y) dy dp.

We suppose there is a δ in (0, 1) such ε ≥ ~1−δ. Then for every t in [0, 1] we
can associate a unique t-ε-symbol bt of regularity τ with weights (m̃, ρ, ε), where
m̃(x, p) = m(x, x, p). The t-ε-symbol bt is defined by the oscillating integral

bt(x, p, ~) =
1

(2π~)d

∫
Rd

∫
Rd
ei~
−1〈u,q〉aε(x+ tu, p+ q, x− (1− t)u) dq du
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and symbol bt has the following asymptotic expansion

bt(x, p; ~) =
N∑
j=0

~jaε,j(x, p) + ~N+1rε,N+1(x, p; ~),

where

aε,j(x, p) =
(−i)j

j!
〈Du, Dp〉jaε(x+ tu, p, x− (1− t)u)

∣∣∣
u=0

,

and the error term satisfies that

~N+1|∂αx ∂βp rN+1(x, p, ~)| ≤ Cd,N,α,β~N+1ε−(τ−N−2−d−|α|)−m(x, p, x)λ(x, p)ρN0 ,

for all α and β in Nd0. In particular we have that

aε,0(x, p) = aε(x, p, x)

aε,1(x, p) = (1− t)(∇yDpaε)(x, p, x)− t(∇xDpaε)(x, p, x).

Remark II.4.19. It can be noted that in order for the error term not to explode,
when the semiclassical parameter tends to zero, one needs to take N such that

τ − 1− d+ δ(N + 2 + d) ≥ 0.

If the symbol is a polynomial in one of the variables or both then the asymptotic
expansion will be exact and a finite sum. This is in particular the case when “ordinary”
differential operators are considered.

Proof. We start with the case where aε is a Schwartz function. Then the operator Aε
has the kernel

Kaε,~(x, y) =
1

(2π~)d

∫
Rd
ei~
−1〈x−y,q〉aε(x, q, y) dq.

If now the operator Aε(~) had an associated t-ε-symbol bt(x, p, ~) then we would
have

Kaε,~(x, y) =
1

(2π~)d

∫
Rd
ei~
−1〈x−y,q〉bt((1− t)x+ ty, q, ~) dq.

By the change of coordinates given by x = x̃+ tu and y = x̃− (1− t)u in the above
expressions we have

Kaε,~(x+ tu, x− (1− t)u) =
1

(2π~)d

∫
Rd
ei~
−1〈u,q〉bt(x, q, ~) dq.

This identity we recognise as the inverse Fourier transform of the t-ε-symbol. Hence
the associated t-ε-symbol is given by the integral

bt(x, p, ~) =

∫
Rd
e−i~

−1〈u,p〉Kaε,~(x+ tu, x− (1− t)u) du

=
1

(2π~)d

∫
Rd

∫
Rd
ei~
−1〈u,q−p〉aε(x+ tu, q, x− (1− t)u) dq du

=
1

(2π~)d

∫
Rd

∫
Rd
ei~
−1〈u,q〉aε(x+ tu, p+ q, x− (1− t)u) dq du.
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Which defines a unique symbol. In order to pass to general symbols which is not
Schwarts functions we need to use oscillating integral techniques. That is we replace aε
by gσaε and let σ →∞, where g is a Schwartz function which is 1 in a neighbourhood
of the origin and

gσ(x, p, y) = g(xσ ,
p
σ ,

y
σ ).

By this we get the existence of the t-ε-symbol as an oscillating integral and hence
also the uniqueness.

We now turn to the asymptotic expansion of the t-ε-symbol bt. Here we will apply
quadratic stationary phase approximation and in order to do this we will need a
localisation. We introduce a smooth cut-off function χ such that supp(χ) ⊂ [−2, 2]

and χ(t) = 1 for t in [−1, 1] and let

χ4(u, q) = χ
( |u|2 + |q|2

1
4λ(x, p)2ρ

)
.

With this localisation we split the symbol aε in the two parts a(1)
ε = χ4aε and

a
(2)
ε = (1− χ4)aε and b

(j)
t is the part of the t-ε-symbol corresponding to a(j)

ε .
We start with studing the term b

(1)
t . Here we use quadratic stationary phase

asymptotic (Theorem II.4.17). We will use the theorem with the block matrix B
given by

B =

(
0 Id
Id 0

)
,

where |det(B)| = 1, sgn(B) = 0 and B−1 = B. Thus we have for N in N

b
(1)
t (x, p, ~) =

N∑
j=0

~jaε,j(x, p) + ~N+1rN+1(x, p, ~),

where

aε,j(x, p) =
(−i)j

j!
〈Du, Dq〉jaε(x+ tu, p+ q, x− (1− t)u)

∣∣∣u=0
q=0

,

and

|rN+1(x, p, ~)| ≤
∥∥∥〈Du, Dq〉N+1

(N + 1)!
χ4aε(x+ tu, p+ q, x− (1− t)u)

∥∥∥
Hd+1(Rdu×Rdq)

.

In order to control this error term we note that on the support of a(1)
ε we have

|u|2 + |q|2 ≤ 1

2
λ(x, p)2ρ.

From this inequality one can deduce

1

2
λ(x, p) ≤ λ(x+ tu, p+ q, x− (1− t)u) ≤ 4λ(x, p).

Moreover since m is a tempered weight function there exists N0 in N0 and a positive
constant C such that

m(x+ tu, p+ q, x− (1− t)u) ≤ Cm(x, p, x)λ(x, p)N0ρ.
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With this we get the following bounds on the error term

~N+1|rN+1(x, p, ~)|
≤Cd,N~N+1 sup

(u,q)∈R2d

|α|=|β|=N+1
|γ|+|δ|≤d+1

|∂γ+α
u ∂δ+βq χ4(u, q)aε(x+ tu, p+ q, x− (1− t)u)|

≤Cd,N~N+1ε−(τ−N−1−d)−m(x, x, p)λ(x, p)ρN0 .

For α and β in Nd0 an analogous argument yields the bound.

~N+1|∂αx ∂βp rN+1(x, p, ~)| ≤ Cd,N,α,β~N+1ε−(τ−N−2−d−|α|)−m(x, p, x)λ(x, p)ρN0 .

Which is the desired estimates on the first part of the error term. If we consider the
aε,j ’s then by our assumptions on aε we have

aε,j(x, p) ∈ Γ
m̃,τj
ρ,ε,−2j

(
Rdx × Rdp

)
,

where the class is defined in Definition II.4.5. What remains is to estimate the part
of the error term arising from b

(2)
t .

On the support of a(2)
ε we have |u|2 + |q|2 ≥ 1

4λ(x, p)2ρ this implies the following
operator

L =
−i~

|u|2 + |q|2
d∑
j=1

[qj∂uj + uj∂qj ],

is well-defined when acting on a(2)
ε . The real tronsposed of L is

Lt = i~
d∑
j=1

qj∂uj + uj∂qj
|u|2 + |q|2

− 2ujqj
(|u|2 + |q|2)2

.

By induction we get for k in N

(Lt)k =
(i~)k

(|u|2 + |q|2)
k
2

∑
|α|+|β|≤k

fα,β(u, v)∂αu∂
β
q ,

where fα,β(u, v) are uniformly bounded on the support of a(2)
ε . We note that

L(ei~
−1〈u,q〉) = ei~

−1〈u,q〉,

which implies

b
(2)
t (x, p, ~)

=
(~
i

)k 1

(2π~)d

∫
Rd

∫
Rd
ei~
−1〈u,q〉(Lt)ka(2)

ε (x+ tu, p+ q, x− (1− t)u) dq du.

By our assumptions on the symbol aε and the definition of a tempered weight, there
exist a N0 in N and a positive constant C such that

|∂αu∂βq a(2)
ε (x+ tu, p+ q, x− (1− t)u)| ≤ ε−(τ−|α|)−Cm(x, p, x)(1 + |u|+ |q|)N0



74 Paper II

for all α and β in Nd0. Now for k ≥ 2d+ 2 +N0 we have

|b(2)
t (x, p, ~)|

≤ ~k−dCk
∑

|α|+|β|≤k

∫
Rd

∫
Rd

1{|u|2+|q|2≥ 1
4
λ(x,p)2ρ}

(|u|2 + |q|2)
k
2

× |∂αu∂βq a(2)
ε (x+ tu, p+ q, x− (1− t)u)| dq du

≤ C~k−dε−(τ−k)−m(x, p, x)λ(x, p)−ρ(k+1−2d−N0).

By analogous arguments we get the estimate

|∂αx ∂βp b
(2)
t (x, p, ~)| ≤ C~k−dε−(τ−k−|α|)−m(x, p, x)λ(x, p)−ρ(k+1−2d−N0).

Hence by choosing k sufficiently large we get a better estimate for |b(2)
t (x, p, ~)| and

|∂αx ∂
β
p b

(2)
t (x, p, ~)| for α and β in Nd0, than for the error term from Quadratic stationary

phase asymptotic. This yields the desired estimate. �

From this Theorem we immediate obtain the following Corollary, which will prove
useful in later sections.

Corollary II.4.20. Let t1 be in [0, 1] and bt1 be a t1-ε-symbol of regularity τ ≥ 0 with
weights (m, ρ, ε) and suppose ε ≥ ~1−δ for a δ in (0, 1). Let Aε(~) be the associated
operator acting on a Schwarzt function by the formula

Aε(~)ψ(x) =
1

(2π~)d

∫
Rd

∫
Rd
ei~
−1〈x−y,p〉bt1((1− t1)x+ t1y, p)ψ(y) dy dp.

Then for every t2 in [0, 1] we can associate an admissible t2-ε-symbol given by the
expansion

bt2(~) =

N∑
j=0

~jbt2,j + ~N+1rε,N+1(x, p; ~),

where

bt2,j(x, p) =
(t2 − t1)j

j!
(∇xDp)

jbt1(x, p),

and the error term satisfies that

~N+1|∂αx ∂βp rN+1(x, p, ~)| ≤ Cd,N,α,β~N+1ε−(τ−N−2−d−|α|)−m(x, p)λ(x, p)ρN0 ,

for all α and β in Nd0, the number N0 is the number connected to the tempered weight
m.

This corollary can also be proven directly by considering the kernel as an oscillating
integral and the integrant as a function in the variable t1. To obtain the corollary
do a Taylor expansion in t1 at the point t2, then do partial integration a number of
times and then one would recover the result.
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II.5 Composition of rough pseudo-differential operators

With the rough pseudo-differential operators defined and the ability to interpolate
between the different quantisations our next aim is results concerning composition
of rough pseudo-differential operators. The theorems and proofs in this section is
almost equivalent to the ones in [17]. The first result on composition of operators is
the following theorem.

Theorem II.5.1. Let Aε(~) and Bε(~) be two t-quantised operators given by

Aε(~)ψ(x) =
1

(2π~)d

∫
Rd

∫
Rd
ei~
−1〈x−z,p〉aε((1− t)x+ tz, p)ψ(z) dz dp

and

Bε(~)ψ(z) =
1

(2π~)d

∫
Rd

∫
Rd
ei~
−1〈z−y,q〉bε((1− t)z + ty, q)ψ(y) dy dq.

Where aε and bε be two rough symbols of regularity τ1, τ2 ≥ 0 with weights (m1, ρ, ε)

and (m2, ρ, ε) respectively. We suppose there exists a number δ > 0 such that ε ≥ ~1−δ.
Then the operator Cε(~) = Aε(~) ◦ Bε(~) is strongly ~-ε-admissible and Cε(~) =

Op~,t(cε), where cε is a rough admissible symbol of regularity τ = min(τ1, τ2) with
weights (m1m2, ρ, ε). The symbol cε satisfies the following: For every N ≥ Nδ we have

cε(~) =
N∑
j=0

~jcε,j + ~N+1rε,N+1(aε, bε; ~)

with

cε,j(x, p) =
(iσ(Du, Dµ;Dv, Dν))j

j!
[ãε(x, p;u, v, µ, ν)b̃ε(x, p;u, v, µ, ν)]

∣∣∣u=v=0
µ=ν=0

,

where
σ(u, µ; v, ν) = 〈v, µ〉 − 〈u, ν〉

ãε(x, p;u, v, µ, ν) = aε(x+ tv + t(1− t)u, ν + (1− t)µ+ p)

b̃ε(x, p;u, v, µ, ν) = bε(x+ (1− t)v − t(1− t)u, ν − tµ+ p),

Moreover the error term rε,N+1(aε, bε; ~) satisfies that for every multi indices α, β in
Nd0 there exists a constant C(N,α, β) independent of aε and bε and a natural number
M such that:

~N+1|∂αx ∂βp rε,N+1(aε, bε;x, p, ~)|

≤Cε−|α|~δ(τ−N−2d−2)−+τ−2d−1Gα,βM,τ (aε,m1, bε,m2)m1(x, ξ)m2(x, ξ)

× λ(x, ξ)−ρ(Ñ(M)+|α|+|β|),

where

Gα,βM,τ (aε,m1, bε,m2)

= sup
|γ1+γ2|+|η1+η2|≤M

(x,ξ)∈R2d

ε(τ−M)−+|α| |∂
α
x ∂

β
ξ (∂γ1x ∂

η1
ξ aε(x, ξ)∂

γ2
x ∂

η2
ξ bε(x, ξ))|

m1(x, ξ)m2(x, ξ)

× λ(x, ξ)ρ(|γ1+γ2|+|η1+η2|).
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The function Ñ(M) is also depending on the weights m1, m2 and the dimension d.

Remark II.5.2. The number Nδ is explicit and it is the smallest number such that

δ(Nδ + 2d+ 2− τ) + τ > 2d+ 1.

This restriction is made in order to ensure that the error term is estimated by the
semiclassical parameter raised to a positive power. If one compares this result to the
classic result of composition of t-quantised operators. Then there are some similarities
and differences. The similarities are in the form of the symbol for the composition and
how it is proven. The main differences is that for this new class there is a minimum
of terms in the expansion of the symbol for the composition in order to obtain an
error that does not diverge as ~→ 0.

The form of the c’s we obtain in the theorem is sometimes written as

cε(x, ξ; ~) =ei~σ(Du,Dµ;Dv ,Dν)[aε(x+ tv + t(1− t)u, ν + (1− t)µ+ ξ)

× bε(x+ (1− t)v − t(1− t)u, ν − tµ+ ξ)]
∣∣∣u=v=0
µ=ν=0

.

Proof. The first step is to notice that the kernes of Aε(~) and Bε(~) are

KAε(~)(x, z) =
1

(2π~)d

∫
Rd
ei~
−1〈x−z,p〉, aε((1− t)x+ tz, p) dp

and

KBε(~)(z, y) =
1

(2π~)d

∫
Rd
ei~
−1〈z−y,q〉bε((1− t)z + ty, q) dq,

where the integrals is oscillating integrals. Hence the kernel of the operator Cε(~) is
given by

KCε(~)(x, y) =
1

(2π~)2d

∫
Rd

∫
Rd

∫
Rd
ei~
−1(〈x−z,p〉+〈z−y,q〉)aε((1− t)x+ tz, p)

× bε((1− t)z + ty, q) dq dp dz.

As in the proof of Theorem II.4.18 we now have that a t-ε-symbol for the operator
Cε(~) is given by the following expression in order to correspond to the kernel above.

cε(x, ξ; ~) =
1

(2π~)2d

∫
Rd

∫
Rd

∫
Rd

∫
Rd
ei~
−1(〈x+tu−z,p〉+〈z−(x−(1−t)u),q〉−〈u,ξ〉)

aε((1− t)(x+ tu) + tz, p)bε((1− t)z + t(x− (1− t)u), q) dq dp dz du.

It is important to note that the above integrals all should be understood as oscillating
integrals and one can verify that all phase functions satisfies the assumption for the
integrals to be well-defined. In order to apply Quadratic stationary phase asymptotic
we need to make a change of variables to the variables (µ, ν, v, u) given by

u = u ν = tp+ (1− t)q − ξ
v = z − x µ = p− q.
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The old coordinates can be recovered by the equations

u = u q = ν − tµ+ ξ

z = v + x p = ν + (1− t)µ+ ξ.

The determinant of the Jacobmatrix for this change of variable is 1. Hence when we
make the change of variables we get

cε(x, ξ; ~) =

1

(2π~)2d

∫
Rd

∫
Rd

∫
Rd

∫
Rd
e−i~

−1(〈v,µ〉−〈u,ν〉)aε(x+ tv + t(1− t)u, ν + (1− t)µ+ ξ)

× bε(x+ (1− t)v − t(1− t)u, ν − tµ+ ξ) dµ dν dv du.

With this change of variables we have transformed the phase function into the map
σ(u, µ; v, ν) = 〈v, µ〉 − 〈u, ν〉 which corresponds to the Quadratic form on R4d given
by the matrix B defined by

B =


0 In 0 0

In 0 0 0

0 0 0 −In
0 0 −In 0

 .

We have that |det(B)| = 1 , sgn(B) = 0 and B−1 = B. In order to apply quadratic
stationary phase we have to first make a partition of unity. We let χ be in C∞0 (R)

such that χ(t) = 1 for t ∈ [−1, 1] and χ(t) = 0 for |t| ≥ 2. With this function we
define

χ 1
16

(x, ξ; v, µ, u, ν) = χ
( |v|2 + |µ|2 + |u|2 + |ν|2

1
16λ(x, ξ)2ρ

)
,

and we let

d1(x, ξ; v, µ, u, ν) =χ 1
16

(x, ξ; v, µ, u, ν)aε(x+ tv + t(1− t)u, ν + (1− t)µ+ ξ)

× bε(x+ (1− t)v − t(1− t)u, ν − tµ+ ξ)

d2(x, ξ; v, µ, u, ν) =(1− χ 1
16

(x, ξ; v, µ, u, ν))aε(x+ tv + t(1− t)u, ν + (1− t)µ+ ξ)

× bε(x+ (1− t)v − t(1− t)u, ν − tµ+ ξ).

We now split the expression for cε(x, ξ; ~) up in two parts c1
ε(x, ξ; ~) and c2

ε(x, ξ; ~)

corresponding to the integral over d1 and d2 respectively.
We start by considering consider the part arising from the integral of the function

d2(x, ξ; v, µ, u, ν). On the support of d2 we have

|v|2 + |µ|2 + |u|2 + |ν|2 ≥ 1

16
λ(x, ξ)2ρ.

Hence we can construct a linear first order differential operator L which acts on
e−i~

−1(〈v,µ〉−〈u,ν〉) as the identity and then use partial integration. The operator L is
given by

L = i~
∑d

j=1[µj∂vj + vj∂µj − uj∂νj − νj∂uj ]
|v|2 + |µ|2 + |u|2 + |ν|2

.
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The real transposed of the operator L is given by

Lt = −i~
d∑
j=1

[µj∂vj + vj∂µj − uj∂νj − νj∂uj
|v|2 + |µ|2 + |u|2 + |ν|2

− µjvj − ujνj
(|v|2 + |µ|2 + |u|2 + |ν|2)2

]
.

By induction we get for M in N

(Lt)M =
(−i~)M

(|v|2 + |µ|2 + |u|2 + |ν|2)
M
2

∑
|α|+|β|+|γ|+|δ|≤M

fMαβγδ(v, µ, u, ν)∂αv ∂
β
µ∂

γ
u∂

δ
ν ,

where the functions fMαβγδ(v, µ, u, ν) are smooth uniformly bounded functions defined
on the support of d2. We now have

c2
ε(x, ξ; ~)

=
1

(2π~)2d

∫
Rd

∫
Rd

∫
Rd

∫
Rd
e−i~

−1(〈v,µ〉−〈u,ν〉)(Lt)Md2(x, ξ; v, µ, u, ν) dµ dν dv du.

We will shortly impose conditions on the number M for the integral to be convergent.
If we consider the absolute value of the integrant we have

|(Lt)Md2(x, ξ; v, µ, u, ν)|

≤ ~M

(|v|2 + |µ|2 + |u|2 + |ν|2)
M
2

∑
|α|+|β|+|γ|+|η|≤M

CMαβγη|∂αv ∂βµ∂γu∂δνd2(x, ξ; v, µ, u, ν)|

The function d2 is a product of three different functions (1−χ 1
4
), ãε and b̃ε hence we

need Leibniz’s formula in order to estimate the derivatives of d2. Firstly we note that
all derivatives of (1−χ 1

4
) are uniformly bounded. Hence in estimating the derivatives

of d2 what is important is the derivatives of ãε and b̃ε. In the following we will use
the notation and estimates

m̃1(x, ξ; v, µ, u, ν) = m1(x+ tv + t(1− t)u, ν + (1− t)µ+ ξ)

≤ Cm1(x, ξ)(1 + |u|+ |v|+ |ν|+ |µ|)N0 ,

and

m̃2(x, ξ; v, µ, u, ν) = m2(x+ (1− t)v − t(1− t)u, ν − tµ+ ξ)

≤ Cm2(x, ξ)(1 + |u|+ |v|+ |ν|+ |µ|)N0 ,

where the existence of the constants is ensured by the definition of tempered weights.
If we just consider the sum in the above expression we get by applying Leibniz’s
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formula a number of times∑
|α|+|β|+|γ|+|η|≤M

CMαβγη|∂αv ∂βµ∂γu∂ηνd2(x, ξ; v, µ, u, ν)|

≤
∑

|α|+|β|+|γ|+|η|≤M

∑
α1+α2=α
γ1+γ2=γ

∑
β1+β2=β
η1+η2=η

CMαβγη|∂α1
v ∂β1µ ∂

γ1
u ∂

η1
ν ãε(x, ξ; v, µ, u, ν)|

× |∂α2
v ∂β2µ ∂

γ2
u ∂

η2
ν b̃ε(x, ξ; v, µ, u, ν)|

≤
∑

|α|+|β|≤M

∑
α1+α2=α
β1+β2=β

CMαβ|(∂α1
x ∂β1ξ ãε(x, ξ; v, µ, u, ν)||(∂α2

x ∂β2ξ b̃ε(x, ξ; v, µ, u, ν)|

≤ ε−(τ−M)−
∑

|α|+|β|≤M

∑
α1+α2=α
β1+β2=β

CMαβε
(τ−M)− m̃1(x, ξ; v, µ, u, ν)

m̃1(x, ξ; v, µ, u, ν)

m̃2(x, ξ; v, µ, u, ν)

m̃2(x, ξ; v, µ, u, ν)

× |(∂α1
x ∂β1ξ ãε)(x, ξ; v, µ, u, ν)(∂α2

x ∂β2ξ b̃ε)(x, ξ; v, µ, u, ν)|

≤ CMε−(τ−M)−m1(x, ξ)m2(x, ξ)GM,τ (aε,m1, bε,m2)(1 + |u|+ |v|+ |ν|+ |µ|)2N0 ,

where

GM,τ (aε,m1, bε,m2)

= sup
|α1+α2|+|β1+β2|≤M

(x,ξ)∈R2d

ε(τ−M)−
|∂α1
x ∂β1ξ aε(x, ξ)∂

α2
x ∂β2ξ bε(x, ξ)|

m1(x, ξ)m2(x, ξ)
λ(x, ξ)ρ(|α1+α2|+|β1+β2|).

The number GM,τ (aε,m1, bε,m2) is by assumption finite for all M in N and indepen-
dent of ε because of the factor ε(τ−M)− since τ = min(τ1, τ2). The inclusion of λ(x, ξ)

in GM,r(aε,m1, bε,m2) is technically not required here but it will be useful for later
estimates. If we use this estimate in the expression of c2

ε(x, ξ; ~) we have

|c2
ε(x, ξ; ~)| ≤ 1

(2π~)2d

∫
Rd

∫
Rd

∫
Rd

∫
Rd
|(Lt)Md2(x, ξ; v, µ, u, ν)| dµ dν dv du

≤C~
Mε−(τ−M)−

(2π~)2d
m1(x, ξ)m2(x, ξ)GM,τ (aε,m1, bε,m2)

×
∫

Ω

(1 + |u|+ |v|+ |ν|+ |µ|)2N0

(|v|2 + |µ|2 + |u|2 + |ν|2)
M
2

dµ dν dv du,

where
Ω = {(v, µ, u, ν) ∈ R4d | |v|2 + |µ|2 + |u|2 + |ν|2 ≥ 1

16
λ(x, ξ)2ρ}.

We observe that the integral is convergent if M > 2N0 + 4d. But in order to make
the constant arising from the integral independent of N0 we choose M > 4N0 + 4d

then we have∫
Ω

(1 + |u|+ |v|+ |ν|+ |µ|)2N0

(|v|2 + |µ|2 + |u|2 + |ν|2)
N
2

dµ dν dv du

≤
∫

Ω

(|u|+ |v|+ |ν|+ |µ|)4N0

(|v|2 + |µ|2 + |u|2 + |ν|2)
N
2

dµ dν dv du ≤ cλ(x, ξ)−ρ(M−4N0−4d).
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Hence we have

|c2
ε(x, ξ; ~)|

≤ CM~M−2dε−(r−M)−m1(x, ξ)m2(x, ξ)GM,τ (aε,m1, bε,m2)λ(x, ξ)−ρ(M−4N0−4d).

By our assumptions on ε we have for M ≥ τ

~M−2dε−(τ−M)− ≤ ~τ+δ(M−τ)−2d.

Hence for every N in N there exists an M in N and a constant only depending on N
such that

|c2
ε(x, ξ; ~)| ≤ CN~Nm1(x, ξ)m2(x, ξ)GM,r(aε,m1, bε,m2)λ(x, ξ)−ρÑ(M).

By analogous arguments this extents too the following: For every N in N and α,β in
Nd0 there exists an M in N and a constant C(N,α, β) only depending N , α and β
such that

|∂αx ∂
β
ξ c

2
ε(x, ξ; ~)|

≤ C(N,α, β)~Nε−|α|m1(x, ξ)m2(x, ξ)Gα,βM,r(aε,m1, bε,m2)λ(x, ξ)−ρÑ(M).
(3.19)

This was first part of the error term. The second part will come from the remainder
when applying Quadratic stationary phase asymptotics.

We now turn to the part of the integral where we integrate d1(x, ξ; v, µ, u, ν).
For this integral we can now apply Quadratic stationary phase asymptotics hence
Theorem II.4.17 gives for N in N the expansion

c1
ε(x, ξ; ~) =

1

(2π~)2d

∫
Rd

∫
Rd

∫
Rd

∫
Rd
e−i~

−1(〈v,µ〉−〈u,ν〉)d1(x, ξ; v, µ, u, ν) dµ dν dv du

=

N∑
j=0

(iσ(Du, Dµ;Dv, Dν))j

j!
[ãε(x, p;u, v, µ, ν)b̃ε(x, p;u, v, µ, ν)]

∣∣∣u=v=0
µ=ν=0

+ ~N+1r̃ε,N+1(aε, bε; ~)

where we in the sum have used that the localising part of d1 is constant 1 in a
neighbourhood of 0, hence if a derivative have been applied to it and we evaluate at
0 we get 0. Moreover the reminder r̃ε,N+1 satisfies that

|r̃ε,N+1(aε, bε; ~)| ≤ cd
∥∥ (σ(Du,Dµ;Dv ,Dν))N+1

(N+1)! d1(x, ξ; v, µ, u, ν)
∥∥
H2d+1(Rdu×Rdµ×Rdv×Rdν)

.

We can note that we have the desired form for the terms contributing to the new
symbol. What remains is to estimate the error term from the Quadratic stationary
phase asymptotic and the contribution from the integral of d2. For the error from the
Quadratic stationary phase asymptotic we start by noticing∥∥ (σ(Du,Dµ;Dv ,Dν))N+1

(N+1)! d1(x, ξ; v, µ, u, ν)
∥∥
H2d+1(Rdu×Rdµ×Rdv×Rdν)

≤ CN,dλ(x, ξ)2dρ sup
|η|≤2d+1

{|v|2+|µ|2+|u|2+|ν|2≤ 1
8
λ(x,ξ)2ρ}

|∂ηuµvν(σ(Du, Dµ;Dv, Dν))N+1d1(x, ξ; v, µ, u, ν)| (3.20)
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If we only consider the expression σ(Du, Dµ;Dv, Dν))N+1d1(x, ξ; v, µ, u, ν) we have

σ(Du, Dµ;Dv, Dν))N+1d1(x, ξ; v, µ, u, ν)

=(〈Dv, Dµ〉 − 〈Du, Dν〉)N+1d1(x, ξ; v, µ, u, ν)

=
∑

|α|+|β|=N+1

Jαβ∂
α
v ∂

α
µ∂

β
u∂

β
ν d1(x, ξ; v, µ, u, ν),

where the Jαβ ’s are constants which may be negative. In particular one should note
that from the above expression we see that in the rough variables u and v we can at
most get N + 1 derivatives. This is the important part in the above calculation. How
the derivatives exactly are is not important for the next estimate. We now have, as
above, for M = N + 1 + |η|

|∂ηuµvν(σ(Du, Dµ;Dv, Dν))N+1d1(x, ξ; v, µ, u, ν)|

≤ CN,dε−(τ−M)−GM,r(aε,m1, bε,m2)m1(x+ tv + t(1− t)u, ν + (1− t)µ+ ξ)

×m2(x+ (1− t)v − t(1− t)u, ν − tµ+ ξ)

×
∑

2(N+1)
≤j+k+l≤

2(N+1)+|η|

λ(x, ξ)−lρλ(x+ tv + t(1− t)u, ν + (1− t)µ+ ξ)−jρ

× λ(x+ (1− t)v − t(1− t)u, ν − tµ+ ξ)−kρ,

(3.21)

where again

GM,τ (aε,m1, bε,m2)

= sup
|α1+α2|+|β1+β2|≤M

(x,ξ)∈R2d

ε(τ−M)−
|∂α1
x ∂β1ξ aε(x, ξ)∂

α2
x ∂β2ξ bε(x, ξ)|

m1(x, ξ)m2(x, ξ)
λ(x, ξ)ρ(|α1+α2|+|β1+β2|).

The different powers j, k and l in (3.21) corresponds to j derivatives on ãε, k
derivatives on b̃ε and l derivatives on χ 1

16
. Now since we, on the support of d1, have

the estimate |v|2 + |µ|2 + |u|2 + |ν|2 ≤ 1
8λ(x, ξ)2ρ we get the following two estimates

λ(x+ tv + t(1− t)u, ν + (1− t)µ+ ξ)−1 ≤2λ(x, ξ)−1,

λ(x+ (1− t)v − t(1− t)u, ν − tµ+ ξ)−1 ≤2λ(x, ξ)−1.
(3.22)

By the properties of tempered weight functions there exists C1 > 0 and N0 in N0

such that

m1(x+ tv + t(1− t)u, ν + (1− t)µ+ ξ) ≤C1λ(x, ξ)N0ρ,

m2(x+ (1− t)v − t(1− t)u, ν − tµ+ ξ) ≤C1λ(x, ξ)N0ρ.
(3.23)

Now by combining (3.20), (3.21), (3.22) and (3.23) and with M = N + 2d + 2 we
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have

|r̃ε,N+1(aε, bε; ~)|

≤ Cd,Nε−(τ−N−2d−2)−GM,τ (aε,m1, bε,m2)

×m1(x, ξ)m2(x, ξ)λ(x, ξ)−ρ2(N+1−N0−d)

≤ Cd,N~(δ−1)(τ−N−2d−2)−GM,τ (aε,m1, bε,m2)

×m1(x, ξ)m2(x, ξ)λ(x, ξ)−ρ2(N+1−N0−d).

Recall that the error term comes with ~N+1. Hence if we expand to at least a number
Nδ such that δ(Nδ + 2d+ 2− τ) + τ > 2d+ 1 we will have an estimate with ~ raised
to a positive power. For α and β in Nd0 we can by an analogous argument find a
positive constant C = C(α, β, d,N) such that

|∂αx ∂
β
ξ r̃ε,N+1(aε, bε; ~)|

≤ Cε−|α|~(δ−1)(τ−N−2d−2)−Gα,βM,r(aε,m1, bε,m2)

×m1(x, ξ)m2(x, ξ)λ(x, ξ)−ρ2(N+1+|α|+|β|−N0−d)

(3.24)

Now we can combine the estimates on the two different parts (3.19) and (3.24) of the
error term and then we arrive at the estimate

~N+1|∂αx ∂
β
ξ rε,N+1(aε, bε; ~)| = ~N+1|∂αx ∂

β
ξ r̃ε,N+1(aε, bε; ~) + ∂αx ∂

β
ξ c

2
ε(x, ξ; ~)|

≤Cε−|α|~δ(τ−N−2d−2)−+τ−2d−1Gα,βM,τ (aε,m1, bε,m2)m1(x, ξ)m2(x, ξ)

× λ(x, ξ)−ρ(Ñ(M)+|α|+|β|),

for N ≥ Nδ, where we have used that the contribution to the error from c2
ε(x, ξ; ~)

can be arbitrary small. Hence the main error term is the part from the Quadratic
stationary phase theorem. This ends the proof. �

Remark II.5.3 (Particular cases of Theorem II.5.1). We will see the 3 most
important cases for this presentation of the composition for t-quantised operators.
We suppose the assumptions of Theorem II.5.1 is satisfied.

t = 0: In this case the amplitude will be independent of u hence we have

cε(x, p; ~) = ei~〈Dy ,Dq ,〉[aε(x, q)bε(y, p)]
∣∣∣y=x
p=q

.

This gives the formula

cε,j(x, p) =
∑
|α|=j

1

α!
∂αp aε(x, p)D

α
x bε(x, p).
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t = 1: This case is similar to the one above, except a change of signs. The composi-
tion formula is given by

cε(x, p; ~) = e−i~〈Dy ,Dq ,〉[aε(y, p)bε(x, q)]
∣∣∣y=x
p=q

.

This gives the formula

cε,j(x, p) = (−1)j
∑
|α|=j

1

α!
Dα
xaε(x, p)∂

α
p bε(x, p).

t = 1
2 (Weyl-quatisation): In order to obtain a not to complicated formula for

the cj ’s we will need an extra change of variables in the proof. Recall that before
applying stationary phase we had the following expression for cε

cε(x, ξ; ~) =
1

(2π~)2d

∫
Rd

∫
Rd

∫
Rd

∫
Rd
e−i~

−1(〈v,µ〉−〈u,ν〉)

aε(x+
v

2
+
u

4
, ν +

µ

2
+ ξ)bε(x+

v

2
− u

4
, ν − µ

2
+ ξ) dµ dν dv du,

in the case t = 1
2 . If we do the change of variables

1

2
v +

1

4
u = w

µ

2
+ ν = η

1

2
v − 1

4
u = r ν − µ

2
= τ

we note that the determinant for this change of variables is 22d and the function σ
satisfies that

σ(u, µ; v, ν) = 2σ(w, ρ; r, τ).

Hence we obtain

cε(x, ξ; ~) =
22d

(2π~)2d

∫
Rd

∫
Rd

∫
Rd

∫
Rd
e−i~

−12σ(w,ρ;r,τ)

aε(x+ w, ρ+ ξ)bε(x+ r, τ + ξ) dρ dτ dw dr.

As in the proof of Theorem II.5.1 we can obtain

cε(x, p; ~) = ei
~
2
σ(Dx,Dp;Dy ,Dq)[aε(x, p)bε(y, q)]

∣∣∣y=x
p=q

with
cε,j(x, p) =

( i
2

)j 1

j!
[σ(Dx, Dp;Dy, Dq)]

jaε(x, p)bε(y, q)
∣∣∣y=x
p=q

.

The last equation can be rewritten by some algebra to the classic formula

cε,j(x, p) =
∑

|α|+|β|=j

1

α!β!

(1

2

)|α|(
− 1

2

)|β|
(∂αpD

β
xaε)(∂

β
pD

α
x bε)(x, p).

The above formula could also have been derived from the expression in Theorem II.5.1
but this is a slightly harder calculation.

In all three cases we can note that the symbols for the compositions of operators
is the same as in the non-rough case.



84 Paper II

We now have composition of operators given by a single symbol. The next result
generalises the previous to composition of strongly ~-ε-admissible operators. Moreover
it verifies that the strongly ~-ε-admissible operators form an algebra. More precisely
we have.

Theorem II.5.4. Let Aε(~) and Bε(~) be two strongly ~-ε-admissible operators of
regularity τa ≥ 0 and τb ≥ 0. with weights (m1, ρ, ε) and (m2, ρ, ε) respectively and of
the form

Aε(~) = Opw
~ (aε) and Bε(~) = Opw

~ (bε)

We suppose ε ≥ ~1−δ for a δ in (0, 1) and let τ = min(τa, τb). Then is Cε(~) =

Aε(~) ◦ Bε(~) a strongly ~-ε-admissible operators of regularity τ ≥ 0 with weights
(m1m2, ρ, ε). The symbol cε(x, p; ~) of Cε(~) has for N ≥ Nδ the expansion

cε(x, p; ~) =

N∑
j=0

~jcε,j(x, p) + ~N+1ζε(aε(~), bε(~); ~),

where

cε,j(x, p) =
∑

|α|+|β|+k+l=j

1

α!β!

(1

2

)|α|(
− 1

2

)|β|
(∂αpD

β
xaε,k)(∂

β
pD

α
x bε,l)(x, p).

The symbols aε,k and bε,l are from the expansion of aε and bε respectively. Let

aε(x, p) =
N∑
k=0

~jaε,j(x, p) + ~N+1rε,N+1(aε, x, p; ~)

and equvalint for bε(x, p). Then for every multi indices α, β there exists a constant
C(α, β,N) independent of aε and bε and an integer M such that

~N+1|∂αx ∂βp ζε(aε(~), bε(~);x, p; ~)|

≤ C(α, β,N)~δ(τ−N−2d−2)−+τ−2d−1ε−|α|m1(x, p)m2(x, p)λ(x, p)−ρ(Ñ(M)+|α|+|β|)

×
[ N∑
j=0

{Gα,βM,τ (aε,j ,m1, rε,N+1(bε(~)),m2) + Gα,βM,τ (rε,N+1(aε(~)),m1, bε,j ,m2)}

+
∑

N≤j+k≤2N

Gα,βM,τ (aε,j ,m1, bε,k,m2) + Gα,βM,τ (rε,N+1(aε(~)),m1, rε,N+1(bε(~)),m2)
]
,

where

Gα,βM,τ (aε,m1, bε,m2)

= sup
|γ1+γ2|+|η1+η2|≤M

(x,ξ)∈R2d

ε(τ−M)−+|α| |∂
α
x ∂

β
ξ (∂γ1x ∂

η1
ξ aε(x, ξ)∂

γ2
x ∂

η2
ξ bε(x, ξ))|

m1(x, ξ)m2(x, ξ)

× λ(x, ξ)ρ(|γ1+γ2|+|η1+η2|).

The function Ñ(M) is also depending on the weights m1, m2 and the dimension d.

The proof of this theorem is an application of Theorem II.5.1 a number of times
and recalling that the error operator of a strongly ~-ε-admissible operator of some
regularity is a quantised pseudo-differential operator.
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II.6 Rough pseudo-differential operators acting on
L2(Rd)

So far we have only considered operators acting on S(Rd) or S ′(Rd). Hence they can
be viewed as unbounded operators acting in L2(Rd) with domain S(Rd). The question
is then when is this a bounded operator? The first theorem of this section gives a
criteria for when the operator can be extended to a bounded operator. This theorem
is a Calderon-Vaillancourt type theorem and the proof uses the Calderon-Vaillancourt
Theorem for the non-rough pseudo-differential operators. We will not recall this
theorem but refer to [5, 17, 32].

Theorem II.6.1. Let aε be in Γm,τ0,ε (Rdx×Rdp), where m is a bounded tempered weight
function, τ ≥ 0 and there exists a δ in (0, 1) such that ε ≥ ~1−δ. Then there exists a
constant Cd and an integer kd only depending on the dimension such that

‖Opw
~ (aε)ψ‖L2 ≤ Cd sup

|α|,|β|≤kd
(x,p)∈R2d

~(1−δ)|α||∂αx ∂βp aε(x, p)|‖ψ‖L2(Rd),

for all ψ in S(Rd). Especially can Opw
~ (aε) be extended to a bounded operator on

L2(Rd).

That the above result is in-fact true is some kind of miracle. But as we shall see in the
proof most of the work nedded to prove the theorem is actually to prove the classical
Calderon-Vaillancourt theorem for non-rough symbols. Which we know is valid.

Proof. We start by writing the L2-norm of interest and make a change of variables

‖Opw
~ (aε)ψ‖2L2(Rd)

=

∫
Rd

1

(2π~)2d

∣∣ ∫
Rd

∫
Rd
ei~
−1〈x−y,p〉aε(

x+y
2 , p)ψ(y) dydp

∣∣2 dx
=

∫
Rd

~(1−δ)d

(2π)2d

∣∣ ∫
Rd

∫
Rd
ei〈x̃−ỹ,p̃〉aε(~1−δ x̃+ỹ

2 , ~δp̃)ψ(~1−δỹ) dỹdp̃
∣∣2 dx̃

=

∫
Rd

~(1−δ)d

(2π)2d

∣∣ ∫
Rd

∫
Rd
ei〈x̃−ỹ,p̃〉ãε(

x̃+ỹ
2 , p̃)ψ̃(ỹ) dỹdp̃

∣∣2 dx̃,
(3.25)

where we have used the change of variables

x̃ = ~−1+δx ỹ = ~−1+δy p̃ = ~−δp

and the following definition of functions

ãε(x̃, p̃) := aε(x, p) = aε(~1−δx̃, ~δp̃) ψ̃(x̃) := ψ(x) = ψ(~1−δx̃).

We can from this change of variables note that we are now calculating the L2-norm
of the function Opw

1 (ãε)ψ̃ times ~(1−δ)d. If we consider the new symbol ãε, then it is
still a symbol and in the new coordinates and

|∂αx̃ ∂
β
p̃ ãε(x̃, p̃)| = |∂

α
x̃ ∂

β
p̃ aε(~

1−δx̃, ~δp̃)| ≤ ~(1−δ)|α|+δ|β|ε−|α|m(x, p) ≤ m(x, p),
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for all α and β in Nd0. Hence in the new coordinates the symbol is not rough. Now
from the classical Calderon-Vaillancourt theorem we get existence of a constant Cd
and an integer kd only depending on the dimension such that

‖Opw
1 (ãε)ψ̃‖L2(Rd) ≤ Cd sup

|α|,|β|≤kd
(x̃,p̃)∈R2d

|∂αx̃ ∂
β
p̃ ãε(x̃, p̃)|‖ψ̃‖L2(Rd),

Now by combining this with (3.25) we get

‖Opw
~ (aε)ψ‖2L2(Rd) = ~(1−δ)d‖Opw

1 (ãε)ψ̃‖L2(Rd)

≤ ~(1−δ)dCd sup
|α|,|β|≤kd
(x̃,p̃)∈R2d

|∂αx̃ ∂
β
p̃ ãε(x̃, p̃)|‖ψ̃‖L2(Rd)

≤ Cd sup
|α|,|β|≤kd
(x,p)∈R2d

~(1−δ)|α||∂αx ∂βp aε(x, p)|‖ψ‖L2(Rd).

This is the desired estimate and this concludes the proof. �

We have now established criteria for which a rough pseudo-differential operator is
bounded. But we also need some criteria for which they are Hilbert-Schmidt and
trace class. First we consider the Hilbert-Schmidt case.

Proposition II.6.2. Let aε be in Γm,τ0,ε (Rdx × Rdp) with τ ≥ 0 and suppose aε is an
element of L2(Rdx × Rdp). Then is

‖Opw
~ (aε)‖2HS =

1

(2π~)d

∫
Rd

∫
Rd
|aε(x, p)|2 dxdp.

Proof. By assumption the object

F−1
~ [aε(

x+y
2 , ·)](x− y) =

1

(2π~)d

∫
Rd
ei~
−1〈x−y,p〉aε(

x+y
2 , p) dp

exists as an oscillating integral and is an element of L2(Rdx×Rdy). Let {ϕn}n∈N be an
orthonormal basis for L2(Rdx × Rdy) then by Parsival’s formula

‖Opw
~ (aε)‖2HS =

∞∑
n=1

‖Opw
~ (aε)ϕn‖L2(Rd) =

∫
Rd

∫
Rd
|F−1

~ [aε(
x+y

2 , ·)](x− y)|2 dydx

With the change of variables

w =
x+ y

2
z = x− y,

which have a determinant with absolute value 1, and the Plancherel theorem we have

‖Opw
~ (aε)‖2HS =

1

(2π~)d

∫
Rd

∫
Rd
|aε(x, p)|2 dxdp.

This is the desired equality and this ends the proof. �
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The above Proposition is a complete characteristic of all rough pseudo differential
operators which are Hilbert-Schmidt operators. In the case of rough pseudo differential
operators we are only able to give a sufficient condition for the operator to be trace
class.

Before we continue we will just recall/prove the following Lemma

Lemma II.6.3. Let bε be a rough function of regularity τ ≥ 0 in C∞0 (Rdx×Rdp). Then
the estimate

‖Opw
~ (bε)‖L(L2(Rd)) ≤

1

(π~)d

∫
Rd

∫
Rd
|bε(x, p)| dxdp

holds.

Proof. Let ϕ and ψ be two functions from C∞0 (Rd). Then we have

〈Opw
~ (bε)ϕ,ψ〉 =

1

(2π~)d

∫
Rd

∫
Rd

∫
Rd
ei~
−1〈x−y,p〉bε(

x+y
2 , p)ϕ(y)ψ(x) dydpdx.

With the change of variables

w =
x+ y

2
z = x− y,

which have a determinant with absolute value 1, we have

|〈Opw
~ (bε)ϕ,ψ〉| ≤

1

(2π~)d

∫
Rd

∫
Rd
bε(w, p)

∫
Rd
ϕ(w − z

2
)ψ(w +

z

2
) dzdpdw.

Now by changing z into 2z and apply a Cauchy-Schwarz inequality in z we have

|〈Opw
~ (bε)ϕ,ψ〉| ≤

1

(π~)d

∫
Rd

∫
Rd
bε(w, p) dpdw

∫
Rd
|ϕ(z)|2 dz

∫
Rd
|ψ(z)|2 dz.

This inequality implies the desired estimate and this ends the proof. �

We can now give a criteria for the rough pseudo differential operators to be trace
class. The criteria will be sufficient but not necessary. Hence it does not provide a full
characteristic for the set of rough pseudo differential operators which are trace class.

Theorem II.6.4. There exists a constant C(d) only depending on the dimension
such

‖Opw
~ (aε)‖Tr ≤

C(d)

~d
∑

|α|+|β|≤2d+2

~|β|
∫
Rd

∫
Rd
|∂αx ∂βp aε(x, p)] dxdp.

for every aε in Γm,τ0,ε (Rdx × Rdp) with τ ≥ 0.

Remark II.6.5. The above estimate does not a priori imply that the trace norm of
a rough pseudo differential operator is of the order ~−d as there might appear extra
factors of ε−1 from the integrands. These extra factors will be determined by the
regularity of the symbol.
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If one had used a semiclassical Harmonic oscillator in the proof the estimate
would have been

‖Opw
~ (aε)‖Tr ≤

C(d)

~2d+1

∑
|α|+|β|≤2d+2

~|α|+|β|
∫
Rd

∫
Rd
|∂αx ∂βp aε(x, p)] dxdp.

which in terms of the semiclassical parameter ~ is a “worse” estimate even though we
do not get factors of ε−1 from the derivatives.

In the case where the rough symbol aε is a Schwarz function it is possible to
obtain a bound of the type

‖Opw
~ (aε)‖Tr ≤

C(d, aε)

~d+κ

for any κ > 0, where the constant now also depends on the symbol aε. Hence this
indicates that the right order of the semiclassical parameter should still be ~−d for
the trace norm of the rough pseudo differential operators.

In the following section we will use estimates of the type

‖Opw
~ (aε)‖Tr ≤

C(d, aε)

~2d+1
(3.26)

under the assumption that the symbol and all derivatives are integrable. Estimates
is the worst we can possible get from the theorem but they are sufficient for our
applications.

Proof. In this proof we let |(x, p)|∞ = maxj(|xj |, |pj |). We start by letting χ be in
C∞0 (Rdx × Rdp) such χ(x, p) = 1 on the set {(x, p) ∈ R2d | |(x, p)|∞ ≤ 2

3} and with
support contained in {(x, p) ∈ R2d | |(x, p)|∞ ≤ 1}. With this function we let

χγ,η(x, p) =
χ(x− γ, p− η)∑

γ′,η′∈Nd0
χ(x− γ′, p− η′)

.

for γ, η in Nd0. This is a partition of unity for Rdx × Rdp and hence we have

‖Opw
~ (aε)‖Tr ≤

∑
γ,η∈Nd0

‖Opw
~ (χγ,ηaε)‖Tr. (3.27)

We start by considering one of the terms in the sum, hence let a γ and η be given.
We define the unitary operators Tγ and Uη by

(Tγf)(x) = f(x− γ) and (Uηf)(x) = e−i~
−1〈η,x〉f(x).

With these operators we have

(TγUη) Opw
~ (χγ,ηaε)(TγUη)

∗ = Opw
~ (χ0,0ãε),

where ãε(x, p) = aε(x + γ, p + η). Sine the trace norm is invariant under unitary
conjugation we have

‖Opw
~ (χγ,ηaε)‖Tr = ‖Opw

~ (χ0,0ãε)‖Tr.
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We now let Hd = −∆ + x2 (the harmonic oscillator). This operator is positive,
self-adjoint and has pure point spectrum. The eigenvalues are given by

Ej = (2j1 + 1) + (2j2 + 1) + · · ·+ (2jd + 1),

for j in Nd0. For this operator we have

‖H−d−1
d ‖Tr =

∑
j∈Nd0

1

Ed+1
j

= C̃(d) <∞.

The above number only depend on the dimension. We now have

‖Opw
~ (χ0,0ãε)‖Tr = ‖H−d−1

d Hd+1
d Opw

~ (χ0,0ãε)‖Tr

≤ C̃(d)‖Hd+1
d Opw

~ (χ0,0ãε)‖L(L2(Rd)).
(3.28)

The operator Hd+1
d is a pseudo differential operator with a symbol b(x, p) which is a

polynomial in x and p of degree 2d+2. If we choose to consider the Weyl-quantisation
of Hd+1

d and apply the result on composition of pseudo-differential operators we
get that Hd+1

d Opw
~ (χ0,0ãε) = Opw(cε) is a rough pseudo-differential operator. The

symbol cε(x, ~p) of this operator satisfy the bound

|cε(x, ~p)| ≤
∑

|α|+|β|≤2d+2

cα,β~β|∂αx ∂βpχ0,0(x, ~p)ãε(x, ~p)|

≤ c
∑

|α|+|β|≤2d+2

~|β|1supp(χ0,0)(x, p)|(∂αx ∂βp ãε)(x, ~p)|,

where we have used the correspondence between a semiclassical pseudo-differential
operator and a non semiclassical pseudo-differential operator and that the support
of χ0,0 is contained in {(x, p) ∈ R2d | |(x, p)|∞ ≤ 1}. The constant c is dependent on
the multi indices α and β (as it is the maximum of the cαβ’s) and the estimates
on the derivatives of χ0,0. All of these numbers is only dependent on the dimension.
Lemma II.6.3 now imply

‖Hd+1
d Opw

~ (χ0,0ãε)‖L(L2(Rd))

≤ c

(π~)d

∑
|α|+|β|≤2d+2

~|β|
∫
Rd

∫
Rd

1supp(χ0,0)(x, p)|(∂αx ∂βp ãε)(x, p)| dxdp

=
c̃

~d
∑

|α|+|β|≤2d+2

~|β|
∫
Rd

∫
Rd

1supp(χγ,η)(x, p)|(∂αx ∂βp aε)(x, p)| dxdp.

For the functions χγ,η at most 22d of them has not disjoint support. Hence combing
the above estimate with (3.27) and (3.28) we get

‖Opw
~ (aε)‖Tr

≤ C̃(d)c̃

~d
∑

γ,η∈Nd0

∑
|α|+|β|≤2d+2

~|β|
∫
Rd

∫
Rd

1supp(χγ,η)(x, p)|(∂αx ∂βp aε)(x, p)| dxdp

≤ C̃(d)c̃22d

~d
∑

γ,η∈Nd0

∑
|α|+|β|≤2d+2

~|β|
∫
Rd

∫
Rd
|(∂αx ∂βp aε)(x, p)| dxdp.

By letting C(d) = C̃(d)c̃22d we have the desired estimate and this ends the proof. �
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The previous theorem gives us a sufficient condition for the rough pseudo differential
operators to be trace class. The next theorem gives the form of the trace for the
rough pseudo differential operators.

Theorem II.6.6. Let aε be in Γm,τ0,ε (Rdx × Rdp) with τ ≥ 0 and suppose ∂αx ∂
β
p aε(x, p)

is an element of L1(Rdx × Rdp) for all |α|+ |β| ≤ 2d+ 2. Then is Opw
~ (aε) trace class

and
Tr(Opw

~ (aε)) =
1

(2π~)d

∫
Rd

∫
Rd
aε(x, p) dxdp.

The proof of this theorem is analogous to the proof of [17, Theorem II-53] and
will not be given here.

II.7 Self-adjointness and functional calculus for rough
pseudo-differential operator

In this section we will establish a functional calculus for rough pseudo-differential
operators. The construction is similar to the one made in [17] except we need to be
more aware when taking derivatives in x.

First we will give criteria for the operator to be semi-lower bounded and self
adjoint.

Assumption II.7.1. Let Aε(~) be a ~-ε-admissible operator of regularity τ and
suppose that

(H1) Aε(~) is symmetric on S(Rn) for all ~ in ]0, ~0].

(H2) The principal symbol aε,0 satisfies that

min
(x,p)∈R2n

aε,0(x, p) = γ0 > −∞.

(H3) Let γ1 < γ0 and γ1 ≤ 0. Then aε,0 − γ1 is a tempered weight function with
constants independent of ε and

aε,j ∈ Γ
aε,0−γ1,τ−j
0,ε

(
Rdx × Rdp

)
,

for all j in N0.

Remark II.7.2. The assumption in (H3) that aε,0−γ1 is a tempered weight function
with constants independent of ε is crucial. If this is not satisfied then all constants
will start to be dependent on ε, which is not desirable. Written out the assumption is
that there should exist C0 > 0 and N0 in N such that

aε,0(x, p)− γ1 ≤ C0(aε,0(x0, p0)− γ1)
(

1 +
√
|x− x0|2 + |p− p0|2

)N0

(3.29)

for all (x, p) and (x0, p0) in Rdx × Rdp and all ε in (0, 1].
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Theorem II.7.3. Let Aε(~), for ~ in (0, ~0], be a ~-ε-admissible operator of regularity
τ ≥ 1 with tempered weight m and symbol

aε(~) =
∑
j≥0

~jaε,j .

Suppose that Aε(h) satisfies Assumption II.7.1. Then there exists ~1 in ]0, ~0] such
that for all ~ in ]0, ~1] Aε(~) is essential self-adjoint and lower semi-bounded.

Proof. We let t < γ0, where γ0 is the number from Assumption II.7.1. For this t we
define the symbol

bε,t(x, p) =
1

aε,0(x, p)− t
.

By assumption we have that bε,t ∈ Γ
(aε,0−γ1)−1,τ
0,ε (Rdx × Rdp). For N sufficiently large

we get by the formula for composition of symbols and the Calderon-Vaillancourt
theorem that

(Aε(~)− t) Opw
~ (bε,t) =

N∑
j=0

~j Opw
~ (aε,j) Opw

~ (bε,t)

+ ~N+1RN (~) Opw
~ (bε,t)

=I + ~SN (ε, ~),

where the operator SN satisfies that sup~∈(0,~0]‖SN (ε, ~)‖L(L2(Rd)) <∞. In the above
calculation have we chosen N sufficiently large such that the operator has the form
written above. We note that if ~ is chosen such that ~‖SN (ε, ~)‖L(L2(Rd)) < 1 then
the operator I + ~SN (ε, ~) will be invertible. We have by the Calderon-Vaillancourt
theorem that Opw

~ (bε,t) is a bounded operator. This implies that the expression
Opw

~ (bε,t)(I+~SN (ε, ~))−1 is a well defined bounded operator. Hence we have that the
operator (Aε(~)−t) maps its domain surjective onto all of L2(Rd). By [19, Proposition
3.11] this implies that Aε(~) is essential self-adjoint.

Since we have for all t < γ0 that (Aε(~)− t) maps its domain surjective onto all
of L2(Rd) they are all in the resolvent set and hence the operator has to be lower
semi-bounded. �

If the rough symbol is positive, does this imply that the associated operator than
positive? In general this is not true but it is close to be true as the next theorems shows.
which is a version of the sharp Gårdinger inequality for rough pseudo-differential
operators.

Theorem II.7.4. Let aε be a bounded rough symbol of regularity τ ≥ 0 which satisfies

aε(x, p) ≥ 0 for all (x, p) ∈ Rdx × Rdp,

and suppose there exists δ > 0 such that ε > ~1−δ. Then there exists a C0 > 0 and
~0 > 0 such

〈Opw
~ (aε)g, g〉 ≥ −~δC‖g‖L2(Rd)

for all g in L2(Rd).
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Proof. We will really on the “usual” semiclassical sharp Gårdinger inequality with
the semiclassical parameter h = ~ε−1. We have by a change of variables

〈Opw
~ (aε)g, g〉 =

1

(2π~)d

∫
Rd

∫
Rd

∫
Rd
ei~
−1〈x−y,p〉aε(

x+y
2 , p)g(y)g(x) dydpdx

=
ε2d

(2π~)d

∫
Rd

∫
Rd

∫
Rd
eiε~

−1〈x̃−ỹ,p〉aε(ε
x̃+ỹ

2 , p)g(εỹ)g(εx̃) dỹdpdx̃

=εd
1

(2πh)d

∫
Rd

∫
Rd

∫
Rd
eih
−1〈x̃−ỹ,p〉ãε(

x̃+ỹ
2 , p)g̃(ỹ)g̃(x̃) dỹdpdx̃

=εd〈Opw
h (ãε)g̃, g̃〉,

(3.30)

where the change of variables was

x̃ = ε−1x ỹ = ε−1y,

and the new functions are defined by

ãε(
x̃+ỹ

2 , p) := aε(
x+y

2 , p) = aε(ε
x̃+ỹ

2 , p) g̃(x̃) := g(x) = g(εx).

The change of variables have given us a new operator to consider Opw
h (ãε) with the

new semiclassical parameter h. The new symbol satisfies for all α and β in Nd0 the
estimate

|∂αx̃ ∂βp ãε(x̃, p)| = |∂αx̃ ∂βp aε(εx̃, p)| ≤ ε|α|ε−|α|C ≤ C,

by our assumptions on the symbol aε. Hence in the new coordinates and with the
new semiclassical parameter h the shapr Gårdinger inequality imply there exists a
constant C0 > 0 and h0 > 0 such for h ∈ (0, h0] we have

〈Opw
h (ãε)g̃, g̃〉 ≥ −C0h‖g̃‖L2(Rd).

Now combing this with (3.30) we arrive at

〈Opw
~ (aε)g, g〉 ≥ −C0ε

dh‖g̃‖L2(Rd) ≥ −C0~δ‖g‖L2(Rd).

This is the desired estimate and this ends the proof. �

The next theorem shows that the resolvent of an operator which satisfies Assump-
tion II.7.1 is a rough pseudo-differential operator.

Theorem II.7.5. Let A(~), for ~ in (0, ~0], be a ~-ε-admissible operator of regularity
τ ≥ 1 with tempered weight m and symbol

aε(~) =
∑
j≥0

~jaε,j .
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Suppose that Aε(h) satisfies Assumption II.7.1 with the numbers γ0 and γ1. For z in
C \ [γ1,∞) we define the sequence of symbols

bε,z,0 = (aε,0 − z)−1

bε,z,j+1 = −bε,z,0 ·
∑

l+|α|+|β|+k=j+1
0≤l≤j

1

α!β!

1

2|α|
1

(−2)|β|
(∂αpD

β
xaε,k)(∂

β
pD

α
x bε,z,l), (3.31)

for j ≥ 1. Moreover we define

Bε,z,M (~) =

M∑
j=0

~jbε,z,j .

Then for N in N0 we have that

(Aε(h)− z) Opw
~ Bε,z,N = I + hN+1∆z,N+1(h), (3.32)

with

~N+1‖∆z,N+1(h)‖L(L2(Rd)) ≤ C~κ(N)

(
|z|

dist(z, [γ1,∞))

)q(N)

, (3.33)

where κ is a positive strictly increasing function and q(N) is a positive integer
depending on N . In particular we have for all z in C \ [γ1,∞) and all ~ in (0, ~1] (~1

sufficient small and independent of z), that (Aε(h)− z)−1 is a ~-ε-admissible operator
with respect to the tempered weight (aε,0 − γ1)−1 and of regularity τ with symbol:

Bz(h) =
∑
j≥0

hjbε,z,j . (3.34)

Before we prove the actual theorem we will need some lemma’s with the same setting.

Lemma II.7.6. Let the setting be as in Theorem II.7.5. For every j in N we have

bε,z,j =

2j−1∑
k=1

dε,j,kb
k+1
ε,z,0, (3.35)

where dε,j,k are universal polynomials in ∂αp ∂
β
xaε,l for |α| + |β| + l ≤ j and dε,j,k ∈

Γ
(a0−γ1)k,τ−j
0,ε for all k, 1 ≤ k ≤ 2j − 1. In particular we have that

bε,z,1 = −aε,1b2ε,z,0.

In order to prove this Lemma we will be needing the following Lemma:

Lemma II.7.7. Let the setting be as in Lemma II.7.6. For any j and k in N we let
dε,j,kb

k+1
ε,z,0 be one of the elements in the expansion of bε,z,j. Then for all multiindices

α and β it holds that

∂βp ∂
α
x dε,j,kb

k+1
ε,z,0 =

|α|+|β|∑
n=0

d̃ε,j,k,n,α,βb
k+1+n
ε,z,0 ,

where d̃ε,j,k,n,α,β are polynomials in ∂α′x ∂
β′
p aε,k with |α′|+ |β′|+ k ≤ j + |α|+ |β| of

degree at most k+n and they are of regularity at least τ−j−|α|. They are determined
only by α, β and dε,j,k.
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Proof. The proof is an application of Theorem II.1.2 (Faà di Bruno formula) and
the Corollary II.1.3 to the formula. For our α, β we have by the Leibniz’s formula
(Theorem II.1.1) that:

∂βp ∂
α
x dε,j,kb

k+1
ε,z,0 =∂βp

{
(∂αx dε,j,k)b

k+1
ε,z,0 +

|α|∑
|γ|=1
γ≤α

(
α

γ

)
∂α−γx dε,j,k∂

γ
xb
k+1
ε,z,0

}

=(∂βp ∂
α
x dε,j,k)b

k+1
ε,z,0 +

|β|∑
|ζ|=1
ζ≤β

(
β

ζ

)
∂β−ζp ∂αx dε,j,k∂

ζ
pb
k+1
ε,z,0

+

|α|∑
|γ|=1
γ≤α

(
α

γ

)
(∂βp ∂

α−γ
x dε,j,k)∂

γ
xb
k+1
ε,z,0

+

|β|∑
|ζ|=1
ζ≤β

|α|∑
|γ|=1
γ≤α

(
β

ζ

)(
α

γ

)
(∂β−ζp ∂α−γx dε,j,k)∂

ζ
p∂

γ
xb
k+1
ε,z,0.

We will here consider each of the three sums separately for the first we get by the
Faà di Bruno formula (Theorem II.1.2)

|β|∑
|ζ|=1
ζ≤β

(
β

ζ

)
∂β−ζp ∂αx dε,j,k∂

ζ
pb
k+1
ε,z,0

=

|β|∑
|ζ|=1
ζ≤β

(
β

ζ

)
∂β−ζp ∂αx dε,j,k

|ζ|∑
n=1

(−1)n
(k + n)!

k!
bk+1+n
ε,z,0

∑
ζ1+···+ζn=ζ
|ζi|>0

cζ1,...,ζn∂
ζ1
p a0 · · · ∂ζnp a0

=

|β|∑
nβ=1

{ |β|∑
|ζ|≥nβ
ζ≤β

ck,nβ ,β,ζ∂
β−ζ
p ∂αx dε,j,k

∑
ζ1+···+ζnβ=ζ

|ζi|>0

cζ1,...,ζn∂
ζ1
p a0 · · · ∂

ζnβ
p a0

}
b
k+1+nβ
ε,z,0

=

|β|∑
nβ=1

d̃ε,j,k,α,β,nβb
k+1+nβ
ε,z,0 .

This calculation implies that we have a polynomial structure where the polynomials
d̃ε,j,k,α,β,nβ are polynomials in ∂α′x ∂

β′
p aε,k with |α′|+ |β′|+ k ≤ j + |α|+ |β| and of

regularity τ − j − |α|.
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For the second sum we again use Faà di Bruno formula (Theorem II.1.2) and get

|α|∑
|γ|=1
γ≤α

(
α

γ

)
(∂βp ∂

α−γ
x dε,j,k)∂

γ
xb
k+1
ε,z,0

=

|α|∑
|γ|=1
γ≤α

(
α

γ

)
∂βp ∂

α−γ
x dε,j,k

|γ|∑
n=1

(−1)n
(k + n)!

k!
bk+1+n
ε,z,0

∑
γ1+···+γn=γ
|γi|>0

cγ1,...,γn∂
γ1
x a0 · · · ∂γnx a0

=

|α|∑
nα=1

{ |α|∑
|γ|≥nα
γ≤α

ck,nα,α,γ∂
β
p ∂

α−γ
x dε,j,k

∑
γ1+···+γnα=γ
|γi|>0

cγ1,...,γn∂
γ1
x a0 · · · ∂γnαx a0

}
bk+1+nα
ε,z,0

=

|α|∑
nα=1

d̃ε,j,k,α,β,nαb
k+1+nα
ε,z,0 .

This calculation implies that we have a polynomial structure where the polynomials
d̃ε,j,k,α,β,nα are polynomials in ∂α′x ∂

β′
p aε,k with |α′|+ |β′|+ k ≤ j + |α|+ |β| and they

are of at least regularity τ − j − |α|.
For the last sum we need a slightly modified version of the Faà di Bruno formula

which is Corollary II.1.3. If we use this we get that

|β|∑
|ζ|=1
ζ≤β

|α|∑
|γ|=1
γ≤α

(
β

ζ

)(
α

γ

)
(∂β−ζp ∂α−γx dε,j,k)∂

ζ
p∂

γ
xb
k+1
ε,z,0

=

|β|∑
|ζ|=1
ζ≤β

|α|∑
|γ|=1
γ≤α

(
β

ζ

)(
α

γ

)
(∂β−ζp ∂α−γx dε,j,k)

|ζ|+|γ|∑
n=1

cnb
k+1+n
ε,z,0

×
∑
In(γ,ζ)

cζ1···ζkγ1···γk∂
ζ1
p ∂

γ1
x aε,0 · · · ∂ζnp ∂γnx aε,0

=

|α|+|β|∑
n=1

{ |β|+|α|∑
|ζ|+|γ|≥n
ζ≤β, γ≤α

∑
In(γ,ζ)

ck,n,α,β,γ,ζ(∂
β−ζ
p ∂α−γx dε,j,k)

× ∂ζ1p ∂γ1x aε,0 · · · ∂ζnp ∂γnx aε,0

}
bk+1+n
ε,z,0

=

|α|+|β|∑
n=1

d̃ε,j,k,n,α,βb
k+1+n
ε,z,0 ,

where d̃ε,j,k,n,α,β are polynomials in ∂α′x ∂
β′
p aε,k with |α′|+ |β′|+ k ≤ j + |α|+ |β| of

degree at most k + n and they are of regularity at least τ − j − |α|. If we combine all
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of the above calculations we get the desired result:

∂βp ∂
α
x dε,j,kb

k+1
ε,z,0 =

|α|+|β|∑
n=0

d̃ε,j,k,n,α,βb
k+1+n
ε,z,0 ,

where d̃ε,j,k,n,α,β are polynomials in ∂α′x ∂
β′
p aε,k with |α′|+ |β′|+ k ≤ j + |α|+ |β| of

degree at most k + n and they are of regularity at least τ − j − |α|. The form of
the polynomials is entirely determined by the multi-indices α, β and the polynomial
dε,j,k. �

Proof (Proof of Lemma II.7.6). The proof will be induction in the parameter j. We
start by considering the case j = 1, where we by definition of bε,z,1 have

bε,z,1 = −bε,z,0 ·
∑

|α|+|β|+k=1

1

α!β!

1

2|α|
1

(−2)|β|
(∂αpD

β
xaε,k)(∂

β
pD

α
x bε,z,0)

= −bε,z,0
(
aε,1bε,z,0 +

d∑
n=1

−i
2
∂pnaε,0∂xnbε,z,0 +

i

2
∂xnaε,0∂pnbε,z,0

)
= −bε,z,0

(
aε,1bε,z,0 −

i

2

d∑
n=1

∂pnaε,0∂xnaε,0b
2
ε,z,0 + ∂xnaε,0∂pnaε,0b

2
ε,z,0

)
= −aε,1b2ε,z,0.

This calculation verifies the form of bε,z,1 stated in the lemma and that it has the
form given by (3.35) with dε,1,1 = −aε,1 which is in the symbol class Γ

(a0−γ1),τ−1
0,ε by

assumption.
Assume the lemma to be correct for bε,z,j and consider bε,z,j+1. By the definition

of bε,z,j+1 and our assumption we have

bε,z,j+1 =− bε,z,0 ·
∑

l+|α|+|β|+k=j+1
0≤l≤j

1

α!β!

1

2|α|
1

(−2)|β|
(∂αpD

β
xaε,k)(∂

β
pD

α
x bε,z,l)

=− bε,z,0
{ ∑
|α|+|β|+k=j+1

cα,β(∂αpD
β
xaε,k)(∂

β
pD

α
x bε,z,0)

+

j∑
l=1

∑
l+|α|+|β|+k=j+1

cα,β(∂αpD
β
xaε,k)(∂

β
pD

α
x bε,z,l)

}
=− bε,z,0

{ ∑
|α|+|β|+k=j+1

cα,β(∂αpD
β
xaε,k)(∂

β
pD

α
x bε,z,0)

+

j∑
l=1

2l−1∑
m=1

∑
l+|α|+|β|+k=j+1

cα,β(∂αpD
β
xaε,k)(∂

β
pD

α
xdε,l,mb

m+1
ε,z,0 )

}
.

We will consider each of the sums separately. To calculate the first sum we get by
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applying Corollary II.1.3∑
|α|+|β|+k=j+1

cα,β(∂αpD
β
xaε,k)(∂

β
pD

α
x bε,z,0)

=cα,βaε,j+1bε,z,0 +
∑

|α|+|β|+k=j+1
|α|+|β|≥1

{
cα,β(∂αpD

β
xaε,k)

|α|+|β|∑
n=1

cnb
n+1
ε,z,0

×
∑
In(α,β)

cβ1···βnα1···αn∂
β1
p D

α1
x aε,0 · · · ∂βnp Dαn

x aε,0

}

=cα,βaε,j+1bε,z,0 +

j+1∑
n=1

{ ∑
|α|+|β|+k=j+1
|α|+|β|≥n

∑
In(α,β)

cα,β,n

× (∂αpD
β
xaε,k)∂

β1
p D

α1
x aε,0 · · · ∂βnp Dαn

x aε,0

}
bn+1
ε,z,0

=

j+1∑
n=0

d̃ε,j,n,α,βb
n+1
ε,z,0,

where d̃ε,j,n,α,β are polynomials in ∂α′x ∂
β′
p aε,k with |α′| + |β′| + k ≤ j + 1 of degree

n+ 1 and of regularity at least τ − j − 1. The index set In(α, β) is defined by

In(α, β) = {(α1, . . . , αn,β1, . . . , βn) ∈ N2nd
0

|
n∑
l=1

αl = α,

n∑
l=1

βl = β, max(|αl|, |βl|) ≥ 1∀l}.

The form of the polynomials is determined by the multi indices α and β. Moreover
we have that the polynomials d̃ε,j,n,α,β are elements of Γ

(a0−γ1)n,τ−j−1
0,ε .

If we now consider the triple sum and apply Lemma II.7.7 we get

j∑
l=1

2l−1∑
m=1

∑
l+|α|+|β|+k=j+1

cα,β(∂αpD
β
xaε,k)(∂

β
pD

α
xdε,l,mb

m+1
ε,z,0 )

=

j∑
l=1

2l−1∑
m=1

∑
l+|α|+|β|+k=j+1

cα,β(∂αpD
β
xaε,k)(−i)|α|

|α|+|β|∑
n=0

d̃ε,l,m,n,α,βb
m+1+n
ε,z,0

=

2j−1∑
m=1

j∑
l=dm−1

2
e+1

∑
l+|α|+|β|+k=j+1

|α|+|β|∑
n=0

cα,β(∂αpD
β
xaε,k)(−i)|α|d̃ε,l,m,n,α,βbm+1+n

ε,z,0

=

2j−1∑
m=1

j∑
l=dm−1

2
e+1

j+1−l∑
n=0

∑
|α|+|β|=n

cα,β(∂αpD
β
xaε,j+1−l−n)(−i)|α|d̃ε,l,m,n,α,βbm+1+n

ε,z,0 ,

where the d̃ε,l,m,nα,β are the polynomials from Lemma II.7.7. The way we have
expressed the sums ensures k always is the fixed value j+1− l−n. From Lemma II.7.7
we have that d̃ε,l,m,n,α,β are polynomials in ∂α

′
x ∂

β′
p aε,m with |α′| + |β′| + m ≤ l +

n ≤ j + 1 of degree n + m and with regularity at least τ − l − |α|. Hence the
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factors cα,β(∂αpD
β
xaε,j+1−l−n)(−i)|α|d̃ε,l,m,n,α,β will be polynomials in ∂α′x ∂

β′
p aε,m with

|α′|+ |β′|+m ≤ j+ 1 of degree n+m+ 1. The regularity of the terms will be at least

τ − l − |α| − (j + 1− l − n)− |β| = τ − (j + 1),

where most terms will have more regularity. By rewriting and renaming some of the
terms we get the following equality

j∑
l=1

2l−1∑
m=1

∑
l+|α|+|β|+k=j+1

cα,β(∂αpD
β
xaε,k)(∂

β
pD

α
xdε,l,mb

m+1
ε,z,0 ) =

2j∑
n=1

d̃ε,j,n,α,βb
n+1
ε,z,0,

where d̃ε,j,n,α,β again are polynomials in ∂α
′

x ∂
β′
p aε,k with |α′| + |β′| + k ≤ j + 1 of

degree n+ 1 of regularity at least τ − (j + 1). By combing these calculation we arrive
at the expression

bε,z,j+1 =− bε,z,0 ·
∑

l+|α|+|β|+k=j+1
0≤l≤j

1

α!β!

1

2|α|
1

(−2)|β|
(∂αpD

β
xaε,k)(∂

β
pD

α
x bε,z,l)

=− bε,z,0
{ j+1∑
n=0

d̃ε,j,n,α,βb
n+1
ε,z,0 +

2j∑
n=1

d̃ε,j,n,α,βb
n+1
ε,z,0

}
=

2j+1∑
k=1

dε,j+1,kb
k+1
ε,z,0,

where the polynomials dε,j+1,k are universal polynomials in ∂α
′

x ∂
β′
p aε,k with |α′| +

|β′|+ k ≤ j + 1 of degree k and with regularity at least τ − j − 1. Hence they are
elements of Γ

(a0−γ1)k,τ−(j+1)
0,ε . This ends the proof. �

Lemma II.7.8. Let the setting be as in Theorem II.7.5. For every j in N0 and α, β
in Nd0 there exists a number cj,α,β > 0 such that

|∂βp ∂αx bε,z,j | ≤ cj,α,βε−(τ−j−|α|)−(aε,0 − γ1)−1

(
|z − γ1|

dist(z, [γ1,∞))

)2j+|α|+|β|
,

for all z ∈ C \ [γ1,∞) and all (x, p) ∈ Rdx × Rdp.

Proof. We start by considering the fraction |aε,0−γ1||aε,0−z| and we will divide it into two
cases according to the real part of z. If Re(z) < γ1 then

|aε,0 − γ1|
|aε,0 − z|

≤ 1 ≤ |z − γ1|
dist(z, [γ1,∞))

.

If instead Re(z) ≥ γ1 and |Im z| > 0 we have by the law of sines that

|aε,0 − z|
sin(φ1)

=
|aε,0 − γ1|

sin(φ2)
≥ |aε,0 − γ1|,
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Figure 31: One case of Re(z) ≥ γ1 and |Im z| > 0.

where we have used that 0 < sin(φ2) ≤ 1. If we apply this inequality and the law of
sines again we arrive at the following expression

|aε,0 − γ1|
|aε,0 − z|

≤ 1

sin(φ1)
=
|z − γ1|
|Im(z)|

.

Combining these two cases we get the estimate

|aε,0 − γ1|
|aε,0 − z|

≤ |z − γ1|
dist(z, [γ1,∞))

For all z ∈ C \ [γ1,∞). (3.36)

If we now consider a given bε,z,j and α, β in Nd0. Lemma II.7.6 and Lemma II.7.7 gives
us

∂βp ∂
α
x bε,z,j =

2j−1∑
k=1

∂βp ∂
α
x (dε,j,kb

k+1
ε,z,0) =

2j−1∑
k=1

|α|+|β|∑
n=0

d̃ε,j,k,n,α,βb
k+1+n
ε,z,0 ,

with d̃ε,j,k,α,β in Γ
(a0−γ1)k+n,τ−j−|α|
0,ε . By taking absolute value and applying (3.36) we

get that

|∂βp ∂αx bε,z,j | ≤
2j−1∑
k=1

|α|+|β|∑
n=0

|d̃ε,j,k,n,α,βbk+1+n
ε,z,0 |

≤|bε,z,0|
2j−1∑
k=1

|α|+|β|∑
n=0

ε−(τ−j−|α|)−cj,k,α,β

(
|aε,0 − γ1|
|aε,0 − z|

)k+n

≤cj,α,βε−(τ−j−|α|)−(aε,0 − γ1)−1

(
|z − γ1|

dist(z, [γ1,∞))

)2j+|α|+|β|
,

where we have use

|bε,z,0| =
(aε,0 − γ1)

|aε,0 − z|(aε,0 − γ1)
≤ 1

(aε,0 − γ1)

(
|z − γ1|

dist(z, [γ1,∞))

)
.

We have now obtained the desired estimate and this ends the proof. �

Proof (Proof of Theorem II.7.5). We have by Lemma II.7.6 that the symbols bε,z,j
are in the class Γ

(a0−γ1)−1,τ−j
0,ε for every j in N0, where bε,z,j is defined (3.31). Hence

we have that

Bε,z,N (~) =
N∑
j=0

~jbε,z,j .
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is a well defined symbol for every N in N0. Moreover as (a0 − γ1)−1 is a bounded
function we have by Theorem II.6.1 that Opw

~ (Bε,z,N (~)) is a bounded operator. Now
for N sufficiently large we have by assumption

Aε(~)− z = Opw
~ (aε,0 − z) +

N∑
k=1

~k Opw
~ (aε,k) + ~N+1RN (ε, ~),

where the error term satisfies

~N+1‖RN (ε, ~)‖L(L2(Rd)) ≤ ~κ(N)CN

for a positive strictly increasing function κ. If we consider the composition of Aε(~)

and Opw
~ (Bε,z,N (~)) we get

Aε(~) Opw
~ (Bε,z,N (~)) =

N∑
k=0

~k Opw
~ (aε,k)

N∑
j=0

~j Opw
~ (bε,z,j)

+

N∑
j=0

~N+1+jRN (ε, ~) Opw
~ (bε,z,j).

(3.37)

If we consider the first part then this corresponds to a composition of two strongly
~-ε-admissible operators. As we want to apply Theorem II.5.4 we need to ensure N
satisfies the inequality

δ(N + 2d+ 2− τ) + τ > 2d+ 1.

As this is the condition that ensures a positive power in front of the error term. If we
assume N satisfies the inequality. Then by Theorem II.5.4 we have

N∑
k=0

~k Opw
~ (aε,k)

N∑
j=0

~j Opw
~ (bε,z,j)

=

N∑
l=0

~l Opw
~ (cε,l) + ~N+1 Opw

~ (ζε(aε(~), Bε, z,N(~); ~)),

where

cε,l(x, p) =
∑

|α|+|β|+k+j=l

1

α!β!

(1

2

)|α|(
− 1

2

)|β|
(∂αpD

β
xaε,k)(∂

β
pD

α
x bε,z,j)(x, p).

The error term satisfies for every multi indices α, β in Nd0, that there exists a constant
C(α, β,N) independent of aε and Bε,z,N and an integer M such that

~N+1|∂αx ∂βp ζε(aε(~),bε(~);x, p; ~)| ≤ C(α, β,N)~δ(τ−N−2d−2)−+τ−2d−1ε−|α|

×
∑

j+k≤2N

Gα,βM,τ−j−k(aε,k, (aε,0 − γ1), bε,z,j , (aε,0 − γ1)−1),
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where Gα,βM,τ−j−k are as defined in Theorem II.5.4. By Lemma II.7.8 we have for all
j + k ≤ 2N

Gα,βM,τ−j−k(aε,k, (aε,0 − γ1), bε,z,j , (aε,0 − γ1)−1)

= sup
|γ1+γ2|+|η1+η2|≤M

(x,ξ)∈R2d

ε(τ−j−k−M)−+|α||∂αx ∂
β
ξ (∂γ1x ∂

η1
ξ aε,k(x, ξ)∂

γ2
x ∂

η2
ξ bε,z,j(x, ξ))|

≤ Cα,β,M sup
|γ1+γ2|+|η1+η2|≤M

(x,ξ)∈R2d

ε(τ−j−k−M)−−(τ−k−γ1)−−(τ−j−γ2)−

×
(

|z − γ1|
dist(z, [γ1,∞))

)2j+M+|α|+|β|

≤ Cα,β,M
(

|z − γ1|
dist(z, [γ1,∞))

)2j+M+|α|+|β|
.

Now by Theorem II.6.1 (Calderon-Vaillancourt Theorem) there exists a number Md

such that

~N+1‖Opw
~ (ζε(aε(~), Bε, z,N(~); ~))‖L(L2(Rd)) ≤ C~κ(N)

(
|z − γ1|

dist(z, [γ1,∞))

)Md

.

If we now consider the symbols cε,l(x, p) for 0 ≤ l ≤ N . For l = 0 we have

cε,0(x, p) = (aε,0(x, p)− z)bε,z,0(x, p) = 1.

By definition of bε,z,0(x, p). Now for 1 ≤ l ≤ N we have

cε,l =
∑

|α|+|β|+k+j=l

1

α!β!

(1

2

)|α|(
− 1

2

)|β|
(∂αpD

β
xaε,k)(∂

β
pD

α
x bε,z,j)

=
∑

|α|+|β|+k+j=l
0≤j≤l−1

1

α!β!

(1

2

)|α|(
− 1

2

)|β|
(∂αpD

β
xaε,k)(∂

β
pD

α
x bε,z,j) + (aε,0 − z)bε,z,l

=
∑

|α|+|β|+k+j=l
0≤j≤l−1

1

α!β!

(1

2

)|α|(
− 1

2

)|β|
(∂αpD

β
xaε,k)(∂

β
pD

α
x bε,z,j)

−
∑

|α|+|β|+k+j=l
0≤j≤l−1

1

α!β!

1

2|α|
1

(−2)|β|
(∂αpD

β
xaε,k)(∂

β
pD

α
x bε,z,j)

=0,

by definition of bε,z,l. These two equalities implies

N∑
k,j=0

~k+j Opw
~ (aε,k) Opw

~ (bε,z,j) = I + ~N+1 Opw
~ (ζε(aε(~), Bε, z,N(~); ~)). (3.38)

This was the first part of equation (3.37). If we now consider the second part of
(3.37):

N∑
j=0

~N+1+jRN (ε, ~) Opw
~ (bε,z,j).
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By Theorem II.6.1 and Lemma II.7.8 there exist constants Md and C such that

~j‖Opw
~ (bε,z,j)‖L(L2(Rd)) ≤ C

(
|z − γ1|

dist(z, [γ1,∞))

)2j+Md

for all j in {0, . . . , N}. Hence by assumption we have

N∑
j=0

~N+1+j‖RN (ε, ~) Opw
~ (bε,z,j)‖L(L2(Rd)) ≤ C~κ(N)

(
|z − γ1|

dist(z, [γ1,∞))

)q(N)

Now by combining this with (3.37) and (3.38) we get

(Aε(h)− z) Opw
~ Bε,z,N = I + hN+1∆z,N+1(h)

with

~N+1‖∆z,N+1(h)‖L(L2(Rd)) ≤ C~κ(N)

(
|z|

dist(z, [γ1,∞))

)q(N)

,

where κ is a positive strictly increasing function and q(N) is a positive integer
depending on N . Which is the desired form and this ends the proof. �

We are now almost ready to construct/prove a functional calculus for operators
satisfying Assumption II.7.1. First we need to settle some terminology and recall a
theorem.

Definition II.7.9. For a smooth function f : R→ R we define the almost analytical
extension f̃ : C→ C of f by

f̃(x+ iy) =

(
n∑
r=0

f (r)(x)
(iy)r

r!

)
σ(x, y),

where n ≥ 1 and
σ(x, y) = ω

(
y

λ(x)

)
,

for some smooth function ω, defined on R such that ω(t) = 1 for |t| ≤ 1 and ω(t) = 0

for |t| ≥ 2. Moreover we will use the notation

∂̄f̃(x+ iy) :=
1

2

(
∂f̃

∂x
+ i

∂f̃

∂y

)

=
1

2

(
n∑
r=0

f (r)(x)
(iy)r

r!

)
(σx(x, y) + iσy(x, y)) +

1

2
f (n+1)(x)

(iy)n

n!
σ(x, y),

where σx and σy are the partial derivatives of σ with respect to x and y respectively.

Remark II.7.10. The above choice is one way to define an almost analytic extension
and it is not unique. Once an n has been fixed the extension has the property that

|∂̄f̃(x+ iy)| = O(|y|n)
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as y → 0. Hence when making calculation a choice has to be made concerning how
fast |∂̄f̃ | vanishes when approaching the real axis. If f is a C∞0 (R) function one can
find an almost analytic extension f̃ in C∞0 (C) such f(x) = f̃(x) for x in R and

|∂̄f̃(x+ iy)| ≤ CN |y|N , for all N ≥ 0.

without chancing the extension. This type of extension could be based on a Fourier
transform hence it may not work for a general smooth function. For details see [5,
Chapter 8].

The type of functions for which we can construct a functional calculus is introduced
in the next definition:

Definition II.7.11. For ρ in R we define the set Sρ to be the set of smooth functions
f : R→ R such that

|f (r)(x)| :=
∣∣∣drf
dxr

(x)
∣∣∣ ≤ crλ(x)ρ−r

for some cr < ∞, all x in R and all integers r ≥ 0, where λ(x) = (1 + |x|2)1/2.
Moreover we define A by

A :=
⋃
ρ<0

Sρ.

We can now recall the form of the spectral theorem which we will use:

Theorem II.7.12 (The Helffer-Sjöstrand formula). Let H be a self-adjoint op-
erator acting on a Hilbert space H and f a function from A. Moreover let f̃ be an
almost analytic extension of f with n terms. Then the bounded operator f(H) is given
by the equation

f(H) = − 1

π

∫
C
∂̄f̃(z)(z −H)−1 L(dz),

where L(dz) = dxdy is the Lebesgue measure on C. The formula holds for all numbers
n ≥ 1.

We are now ready to state and prove the functional calculus for a certain class of
rough pseudo-differential operators.

Theorem II.7.13. Let Aε(~), for ~ in (0, ~0], be a ~-ε-admissible operator of regu-
larity τ ≥ 1 and with symbol

aε(~) =
∑
j≥0

~jaε,j .

Suppose that Aε(h) satisfies Assumption II.7.1. Then for any function f from A,
f(Aε(h)) is a ~-ε-admissible operator of regularity τ with respect to a constant
tempered weight function. f(Aε(h)) has the symbol

afε (~) =
∑
j≥0

~jafε,j ,
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where

afε,0 = f(aε,0),

afε,j =

2j−1∑
k=1

(−1)k

k!
dε,j,kf

(k)(aε,0) for j ≥ 1,
(3.39)

the symbols dε,j,k are the polynomials from Lemma II.7.6. Especially we have

afε,1 = aε,1f
(1)(aε,0).

The proof is an application of Theorem II.7.12 and the fact that the resolvent is a
~-ε-admissible operator as well.

Proof. By Theorem II.7.3 the operator Aε(~) is essentially self-adjoint for sufficiently
small ~. Hence Theorem II.7.12 gives us

f(Aε(~)) = − 1

π

∫
C
∂̄f̃(z)(z −Aε(~))−1 L(dz),

where f̃ is an almost analytic extension of f . For the almost analytic extension of f
we will need a suffiently large number of terms which we assume to have chosen from
the start. Theorem II.7.5 gives that the resolvent is a ~-ε-admissible operator and
the explicit form of it as well. Hence

f(Aε(~)) =
1

π

∫
C
∂̄f̃(z)

M∑
j=0

~j Opw
~ (bε,z,j)L(dz)

− 1

π

∫
C
∂̄f̃(z)hN+1(z −Aε(~))−1∆z,N+1(h)L(dz),

where the symbols bε,z,j and the operator ∆z,N+1(h) are as defined in Theorem II.7.5.
If we start by considering the error term we have by Theorem II.7.5 the estimate

‖(z −Aε(~))−1∆z,N+1(h)‖L(L2(Rd)) ≤C~κ(N) 1

|Im(z)|

(
|z|

dist(z, [γ1,∞))

)q(N)

≤C~κ(N) |z|q(N)

|Im(z)|q(N)+1
,

for N sufficiently large and where q(N) is some integer dependent of the number N .
We have

|∂̄f̃(z)| ≤ c1

n∑
r=0

|f̃ (r)(Re(z))|λ(Re(z))r−11U (z) + c2|f̃ (n+1)(Re(z))|| Im(z)|n1V (z),

where

U = {z ∈ C |λ(Re(z)) < |Im(z)| < 2λ(Re(z))},
and

V = {z ∈ C | 0 < |Im(z)| < 2λ(Re(z))}.
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This estimate follows directly from the definition of f̃ . By combining these estimates
and the definition of the class of functions A we have∥∥∥ 1

π

∫
C
∂̄f̃(z)hN+1(z −Aε(~))−1∆z,N+1(h)L(dz)

∥∥∥
L(L2(Rd))

≤ C~κ(N).

What remains to prove the following equality
M∑
j=0

~j
1

π

∫
C
∂̄f̃(z) Opw

~ (bε,z,j)L(dz) =
M∑
j=0

~j Opw
~ (afε,j), (3.40)

where the symbols afε,j are as defined in the theorem. We will only consider one of
the terms as the rest is treated analogously. Hence we need to establish the equality

1

π

∫
C
∂̄f̃(z) Opw

~ (bε,z,j)L(dz) = Opw
~ (afε,j).

As both operators are bounded we need only establish the equality weekly for a dense
subset of L2(Rd). Hence let ϕ and ψ be two functions from C∞0 (Rd) and a j be given.
We have

〈 1
π

∫
C
∂̄f̃(z) Opw

~ (bε,z,j)L(dz)ϕ,ψ〉 =
1

π

∫
C
∂̄f̃(z)〈Opw

~ (bε,z,j)ϕ,ψ〉L(dz), (3.41)

where we have

〈Opw
~ (bε,z,j)ϕ,ψ〉

=
1

(2π~)d

∫
Rd

∫
Rd

∫
Rd
ei~
−1〈x−y,p〉bε,z,j(

x+y
2 , p)ϕ(y)ψ(x) dydpdx

= lim
σ→∞

1

(2π~)d

∫
Rd

∫
Rd

∫
Rd
ei~
−1〈x−y,p〉gσ(x, y, p)bε,z,j(

x+y
2 , p)ϕ(y)ψ(x) dydpdx,

(3.42)

where the function g is a positiv Schwartz function bounded by 1 and identical 1 in a
neighbourhood of 0. I the above we have set gσ(x, y, p) = g(xσ ,

y
σ ,

p
σ ). The next step

in the proof is to apply dominated convergence to move the limit outside the integral
over z.

We let χ be in C∞0 (Rd) such that χ(p) = 1 for |p| ≤ 1 and χ(p) = 0 for |p| ≥ 2.
With this function we have

1

(2π~)d

∫
Rd

∫
Rd

∫
Rd
ei~
−1〈x−y,p〉gσ(x, y, p)bε,z,j(

x+y
2 , p)ϕ(y)ψ(x) dydpdx

=
1

(2π~)d
[ ∫

Rd

∫
Rd

∫
Rd
ei~
−1〈x−y,p〉gσ(x, y, p)χ(p)bε,z,j(

x+y
2 , p)ϕ(y)ψ(x) dydpdx

+

∫
Rd

∫
Rd

∫
Rd
ei~
−1〈x−y,p〉gσ(x, y, p)(1− χ(p))bε,z,j(

x+y
2 , p)ϕ(y)ψ(x) dydpdx

]
.

(3.43)

By Lemma II.7.8 we have∣∣∣ ∫
Rd

∫
Rd

∫
Rd
ei~
−1〈x−y,p〉gσ(x, y, p)χ(p)bε,z,j(

x+y
2 , p)ϕ(y)ψ(x) dydpdx

∣∣∣
≤ Cjε−(τ−j)−

(
|z − γ1|
|Im(z)|

)2j

,

(3.44)
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where the γ1 is the number from Assumption II.7.1. The factor ε−(τ−j)− is not an
issue as the operator we consider has ~j in front. We have just omitted to write this
factor. This bound is clearly independent of σ. We now need to bound the term with
1 − χ(p). Here we use that on the support of 1 − χ(p) we have |p| > 1. Hence the
operator

M =
(−i~)2d

|p|2d
(
d∑

k=1

∂2
yk

)d =
(−i~)2d

|p|2d
∑
|α|=d

∂2α
y ,

is well defined when acting on functions supported in supp(1− χ). We have

Mei~
−1〈x−y,p〉 = ei~

−1〈x−y,p〉.

We now have

|
∫
Rd

∫
Rd

∫
Rd
ei~
−1〈x−y,p〉gσ(x, y, p)(1− χ(p))bε,z,j(

x+y
2 , p)ϕ(y)ψ(x) dydpdx|

= |
∫
Rd

∫
Rd

∫
Rd

(Mei~
−1〈x−y,p〉)gσ(x, y, p)(1− χ(p))bε,z,j(

x+y
2 , p)ϕ(y)ψ(x) dydpdx|

= |
∫
Rd

∫
Rd

∫
Rd
ei~
−1〈x−y,p〉(1− χ(p))M t(gσ(x, y, p)bε,z,j(

x+y
2 , p)ϕ(y))ψ(x) dydpdx|.

If we consider the the expression M tgσ(x, y, p)bε,z,j(
x+y

2 , p)ϕ(y) we have by Leibniz’s
formula

|M tgσ(x, y, p)bε,z,j(
x+y

2 , p)ϕ(y)|

=
~2d

|p|2d
∣∣∣ ∑
|α|=d

∂2α
y gσ(x, y, p)bε,z,j(

x+y
2 , p)ϕ(y)

∣∣∣
=

~2d

|p|2d
∣∣∣ ∑
|α|=d

∑
β≤2α

∂2α−β
y (gσ(x, y, p)ϕ(y))∂βy bε,z,j(

x+y
2 , p)

∣∣∣
≤ Cj

~2d

|p|2d
1supp(ϕ)(y)

∑
|α|=d

∑
β≤2α

ε−(τ−j−|β|)−
(
|z − γ1|
|Im(z)|

)2j+|β|

≤ C ~2d

|p|2d
ε−(τ−j−2d)−1supp(ϕ)(y)

(
1 +
|z − γ1|
|Im(z)|

)2j+2d

,

where we again have used Lemma II.7.8. This imply the estimate∣∣∣ ∫
Rd

∫
Rd

∫
Rd
ei~
−1〈x−y,p〉gσ(x, y, p)(1− χ(p))bε,z,j(

x+y
2 , p)ϕ(y)ψ(x) dydpdx

∣∣∣
≤ Cjε−(τ−j)−

(
1 +
|z − γ1|
|Im(z)|

)2j+2d

.

If we combine this estimate with (3.43) and (3.44) we have∣∣∣ 1

(2π~)d

∫
Rd

∫
Rd

∫
Rd
ei~
−1〈x−y,p〉gσ(x, y, p)bε,z,j(

x+y
2 , p)ϕ(y)ψ(x) dydpdx

∣∣∣
≤ Cε−(τ−j)−

(
1 +
|z − γ1|
|Im(z)|

)2j+2d

.
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As above we have ∣∣∣ ∫
C
∂̄f̃(z)

(
1 +
|z − γ1|
|Im(z)|

)2j+2d

L(dz)
∣∣∣ <∞.

Hence we can apply dominated convergence and by an analogous argument we can
also apply Fubini’s Theorem. This gives

1

π

∫
C
∂̄f̃(z)〈Opw

~ (bε,z,j)ϕ,ψ〉L(dz)

= lim
σ→∞

1

(2π~)d

∫
Rd

∫
Rd

∫
Rd
ei~
−1〈x−y,p〉gσ(x, y, p)

× 1

π

∫
C
∂̄f̃(z)bε,z,j(

x+y
2 , p)L(dz)ϕ(y)ψ(x) dydpdx

(3.45)

If we only consider the integral over z then we have by a Cauchy formula and
Lemma II.7.6 that

1

π

∫
C
∂̄f̃(z)bε,z,j(

x+y
2 , p)L(dz)

=
1

π

∫
C
∂̄f̃(z)

2j−1∑
k=1

dε,j,k(
x+y

2 , p)bk+1
ε,z,0(x+y

2 , p)L(dz)

=

2j−1∑
k=1

dε,j,k(
x+y

2 , p)
1

π

∫
C
∂̄f̃(z)

( 1

aε,0(x+y
2 , p)− z

)k+1
L(dz)

=

2j−1∑
k=1

(−1)k

k!
dε,j,k(

x+y
2 , p)f (k)(aε,0(x+y

2 , p)) = afε,j(
x+y

2 , p),

which is the desired form of afε,j given in (3.39). Now combing this with (3.41), (3.42)
and (3.45) we arrive at

〈 1
π

∫
C
∂̄f̃(z) Opw

~ (bε,z,j)L(dz)ϕ,ψ〉 = 〈Opw
~ (afε,j)ϕ,ψ〉.

The remaning j’ can be treated analogously and hence we obtain the equality (3.40).
This ends the proof. �

With the functional calculus we can now prove some useful theorems and lemmas.
One of them is an asymptotic expansion of certain traces. But before we do this we
have the following theorem.

Theorem II.7.14. Let Aε(~), for ~ in (0, ~0], be a ~-ε-admissible operator of regu-
larity τ ≥ 1 and symbol

aε(~) =
∑
j≥0

~jaε,j .

Suppose that Aε(~) satisfies Assumption II.7.1. Let E1 < E2 be two real numbers and
suppose there exists an η > 0 such a−1

ε,0([E1 − η,E2 + η]) is compact. Then we have

spec(Aε(~)) ∩ [E1.E2] ⊆ specpp(Aε(~)), (3.46)

for ~ sufficiently small, where specpp(Aε(~)) is the pure point spectrum of Aε(~).
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Proof. Let f and g be in C∞0 ((E1 − η,E2 + η)) such g(t) = 1 for t ∈ [E1, E2] and
f(t) = 1 for t in supp(g). By Theorem II.7.13 we have

f(Aε(~)) = Aε,f,N (~) + ~N+1RN+1,f (ε, ~), (3.47)

where the terms Aε,f,N (~) consists of the first N terms in the expansion in ~ of
f(Aε(~)). We get by (3.47) and the definition of g and f that

g(Aε(~))(I − ~N+1RN+1,f (ε, ~)) = g(Aε(~))Aε,f,N (~).

Hence for ~ sufficiently small we have

g(Aε(~)) = g(Aε(~))Aε,f,N (~)(I − ~N+1RN+1,f (ε, ~))−1,

thereby we have the inequality

‖g(Aε(~))‖Tr ≤ c‖g‖∞‖Aε,f,N (~)‖Tr ≤ C~−2d−1, (3.48)

where we have used Theorem II.6.4. Since 1[E1,E2](t) ≤ g(t) we have that 1[E1,E2](Aε(~))

is a trace class operator by (3.48). This implies the inclusion

spec(Aε(~)) ∩ [E1.E2] ⊆ specpp(Aε(~)),

for ~ sufficiently small. This ends the proof. �

Theorem II.7.15. Let Aε(~), for ~ in (0, ~0], be a ~-ε-admissible operator of regu-
larity τ ≥ 1 and symbol

aε(~) =
∑
j≥0

~jaε,j .

Suppose that Aε(~) satisfies Assumption II.7.1. Let E1 < E2 be two real numbers and
suppose there exists an η > 0 such a−1

ε,0([E1 − η,E2 + η]) is compact. Then for every
f in C∞0 ((E1, E2)) and any N0 in N there exists an N in N such that

|Tr[f(Aε(~))]− 1

(2π~)d

N∑
j=0

~jTj(f,Aε(~))| ≤ C~N0+1−d.

for all sufficiently small ~, where the Tj’s is given by

Tj(f,Aε(~)) =

∫
Rd

∫
Rd

2j−1∑
k=1

(−1)k

k!
dε,j,kf

(k)(aε,0) dxdp,

where dε,j,k are the polynomials from Lemma II.7.6. In particular we have

T0(f,Aε(~)) =

∫
Rd

∫
Rd
f(aε,0) dxdp

and

T1(f,Aε(~)) =

∫
Rd

∫
Rd
aε,1f

(1)(aε,0) dxdp.
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The proof is an application of Theorem II.7.13 which gives the form of the operator
f(Aε(~)) combined with the trace formula from Theorem II.6.6 and we use some of
the same ideas as in the proof of Theorem II.7.14.

Proof. Let f in C∞0 ((E1, E2)) be given and fix a g in C∞0 ((E1− η,E2 + η)) such that
g(t) = 1 for t ∈ [E1, E2]. By Theorem II.7.13 we have

f(Aε(~)) = Aε,f,N (~) + ~N+1RN+1,f (ε, ~),

and

g(Aε(~)) = Aε,g,N (~) + ~N+1RN+1,g(ε, ~),

where the terms Aε,f,N (~) and Aε,g,N (~) consist of the first N terms in the expansion
in ~ of f(Aε(~)) and g(Aε(~)) respectively. Since f(Aε(~))g(Aε(~)) = f(Aε(~)) we
have

f(Aε(~))

= (Aε,f,N (~) + ~N+1RN+1,f (ε, ~))(Aε,g,N (~) + ~N+1RN+1,g(ε, ~))

= Aε,f,N (~)Aε,g,N (~) + ~N+1[Aε,f,N (~)RN+1,g(ε, ~) +RN+1,f (ε, ~)Aε,g,N (~)].

By Theorem II.6.4 we have that

‖f(Aε(~))−Aε,f,N (~)Aε,g,N (~)‖Tr ≤ C~κ(N)−2d−1 (3.49)

as ~→ 0. Hence taking N sufficiently large we can consider the composition of the op-
erators Aε,f,N (~)Aε,g,N (~) instead of f(Aε(~)). By the choice of g and Theorem II.5.4
(composition of operators) we have

Aε,f,N (~)Aε,g,N (~) =
N∑
j=0

~j Opw
~ (afε,j) + ~N+1RN,f,g(ε~, aε)

= Aε,f,N (~) + ~N+1RN,f,g(ε~, aε).

(3.50)

Hence we have Theorem II.6.4 that

‖Aε,f,N (~)−Aε,f,N (~)Aε,g,N (~)‖Tr ≤ C~κ(N)−2d−1, (3.51)

where we have used that the error term in (3.50) is a ~-pseudo-differential operator,
which follows from Theorem II.5.4. Theorem II.6.6 now gives

Tr[Aε,f,N (~)] =

N∑
j=0

~j Tr[Opw
~ (afε,j)]

=
1

(2π~)d

N∑
j=0

~j
∫
Rd

∫
Rd

2j−1∑
k=1

(−1)k

k!
dε,j,kf

(k)(aε,0) dxdp.

(3.52)

By combining (3.49) and (3.51) implies that

|Tr[f(Aε(~))]− Tr[Aε,f,N (~)]| ≤ C~κ(N)−2d−1. (3.53)

Hence by choosing N sufficiently large and combining (3.52) and (3.53) we get the
desired estimate. �
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The next Lemmas will be use-full in the proof of the Weyl law. Both of these Lemmas
are proven by applying the functional calculus and the results on compositions of
operators.

Lemma II.7.16. Let Aε(~), for ~ in (0, ~0], be a ~-ε-admissible operator of regularity
τ ≥ 1 and symbol

aε(~) =
∑
j≥0

~jaε,j .

Suppose that Aε(h) satisfies Assumption II.7.1. Let E1 < E2 be two real numbers
and suppose there exists an η > 0 such a−1

ε,0([E1 − η,E2 + η]) is compact. Let f be in
C∞0 ((E1, E2)) and suppose θ is in C∞0 (Rdx×Rdp) such supp(θ) ⊂ a−1

ε,0([E1−η,E2 +η])

and θ(x, p) = 1 for all (x, p) in supp(f(a0,ε)). Then we have the bound

‖(1−Opw
~ (θ))f(Aε(~))‖Tr ≤ CN~N

for every N in N0

Proof. We choose g in C∞0 ((E1, E2)) such g(t)f(t) = f(t). We now have

‖(1−Opw
~ (θ))f(Aε(~))‖Tr ≤ ‖(1−Opw

~ (θ))f(Aε(~))‖L(L2(Rd))‖g(Aε(~))‖Tr

As in the proof of Theorem II.7.15 and combined with Theorem II.6.4 we get

‖g(Aε(~))‖Tr ≤ Cd~−2d−1.

Form Theorem II.7.13 f(Aε(~)) is ~-ε-admissible operator with symbols

afε (~) =
∑
j≥0

~jafε,j ,

where

afε,j =

2j−1∑
k=1

(−1)k

k!
dε,j,kf

(k)(aε,0),

the symbols dε,j,k are the polynomials from Lemma II.7.6. The support of these
functions is disjoint from the support of symbol for the operator (1−Opw

~ (θ)). Hence
by Theorem II.5.4 we get the desired estimate. �

Lemma II.7.17. Let Aε(~), for ~ in (0, ~0], be a ~-ε-admissible operator of regularity
τ ≥ 1 and symbol

aε(~) =
∑
j≥0

~jaε,j .

Suppose that Aε(h) satisfies Assumption II.7.1. Let E1 < E2 be two real numbers and
suppose there exists an η > 0 such a−1

ε,0([E1 − η,E2 + η]) is compact. Suppose θ is in
C∞0 (Rdx × Rdp) such supp(θ) ⊂ a−1

ε,0((E1, E2)).
Then for every f in C∞0 ([E1−η,E2 +η]) such f(t) = 1 for all t in [E1− η

2 , E2 + η
2 ]

the bound
‖Opw

~ (θ)(1− f(Aε(~)))‖L(L2(Rd)) ≤ CN~N ,

is true for every N in N0
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Proof. Theorem II.7.13 gives us that f(Aε(~)) is ~-ε-admissible operator with symbols

afε (~) =
∑
j≥0

~jafε,j ,

where

afε,j =

2j−1∑
k=1

(−1)k

k!
dε,j,kf

(k)(aε,0),

the symbols dε,j,k are the polynomials from Lemma II.7.6. Hence we have that the
principal symbol of (1− f(Aε(~))) is 1− f(aε,0). By assumption we then have that
the support of θ and the support of every symbol in f(Aε(~)) are disjoint. Hence
Theorem II.5.4 implies the desired estimate. �

II.8 Microlocal approximation and properties of
propagator

In this section we will study the solution to the operator valued Cauchy problem:{
~∂tU(t, ~)− iU(t, ~)Aε(~) = 0 t 6= 0

U(0, ~) = θ(x,D) t = 0,

where Aε is self-adjoint and the symbol θ is in C∞0 (Rdx × Rdp). In particular we will
only consider the case where Aε(~) is a strongly ~-ε-admissible operator of regularity
τ ≥ 1 which satisfies Assumption II.7.1. Hence for sufficiently small ~ the operator
Aε(~) is self-adjoint by Theorem II.7.3. It is well-known that the solution to the
operator valued Cauchy problem is the micro localised propagator θ(x,D)ei~

−1tAε(~).
We are interested in the propagators as they turn up in a smoothing of functions

applied to the operators we consider. In this smoothing procedure we need to know the
behaviour of the propagator for t in a small interval around zero. Usually this is done
by constructing a Fourier integral operator (FIO) as an approximation to propagator.
For our set up the FIO approximation is not desirable as we can not control the
number of derivatives in the space variables and hence we can not be certain about
how the operator behave. Instead we will use a microlocal approximation for times in
[−~1− δ

2 , ~1− δ
2 ].

The construction of the approximation is recursive and inspired by the construction
in the works of L. Zielinski. If the construction is compered to the approximation in
the works of V. Ivrii, one can note that Ivrii’s construction is successive. Hence the
constructions are not the same.

Our objective is to construct the approximation UN (t, ~) such that

‖~∂tUN (t, ~)− iUN (t, ~)Aε‖L(L2(Rd)),

is small and the trace of the operator has the “right” asymptotic behaviour. The
approximation we will construct as a polynomial in t and 1

~ with operator coefficients.
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These operators will have kernels given by some rough functions. The kernel of the
approximation will have the following form

(x, y)→ 1

(2π~)d

∫
Rd
ei~
−1〈x−y,p〉eit~

−1aε(x,p)
N∑
j=0

(it~−1)juj(x, p, ~, ε) dp,

where N is chosen such that the error are of a desired order, and the uj ’s are compactly
supported rough functions in x and p. It can be noted that this kernel is much like a
kernel of a rough pseudo-differential operator.

If we consider the expression we want to show is small and assume Aε having
quantisation Op~,1(aε) and use the results on how to compose two operators given
by kernels. Then the kernel of ~∂tUN (t, ~)− iUN (t, ~)Aε is given by

(x, y)→ 1

(2π~)d

∫
Rd
ei~
−1〈x−y,p〉{~∂t[eit~

−1aε(x,p)
N∑
j=0

(it~−1)juj(x, p, ~, ε)]

− ieit~−1aε(x,p)
N∑
j=0

(it~−1)juj(x, p, ~, ε)ãε(y, p)} dp.

If we now make a Taylor expansion in the space variable y centred at the point x of
ãε(y, p) we get

ãε(y, p) =
∑
|α|≤N

(y − x)α

α!
∂αx ãε(x, p)

+
∑

|α|=N+1

(N + 1)
(y − x)α

α!

∫ 1

0
(1− s)N∂αx ãε(x+ s(y − x), p) ds.

When inserting the Taylor expansion without the error term in the kernel we get

(x, y)→ 1

(2π~)d

∫
Rd
ei~
−1〈x−y,p〉{~∂t[eit~

−1aε(x,p)
N∑
j=0

tjuj(x, p, ~, ε)]

− ieit~−1aε(x,p)
N∑
j=0

tjuj(x, p, ~, ε)
∑
|α|≤N

(y − x)α

α!
∂αx ãε(x, p)} dp.

By partial integration in p and applying the identity

(y − x)αei~
−1〈x−y,p〉 = (i~)|α|∂αp e

i~−1〈x−y,p〉,

the kernel becomes

(x, y)→ 1

(2π~)d

∫
Rd
ei~
−1〈x−y,p〉{~∂t[eit~

−1aε(x,p)
N∑
j=0

tjuj(x, p, ~, ε)]

−i
∑
|α|≤N

(−i~)|α|

α!
∂αp [eit~

−1aε(x,p)
N∑
j=0

tjuj(x, p, ~, ε)∂αx ãε(x, p)]} dp.
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We note that we act we the operator

~∂t − iPN : C∞(Rt × Rdx × Rdp)→ C∞(Rt × Rdx × Rdp),

where

PNb(x, p) =
∑
|α|≤N

(−i~)|α|

α!
∂αp {b(x, p)∂αx ãε(x, p)},

on the expression

eit~
−1aε(x,p)

N∑
j=0

(it~−1)juj(x, p, ~, ε).

Hence in order to obtain the desired estimates we need to understand what the action
of ~∂t − iPN is.

The above discussion is the heuristic behind the next theorem, where we construct
the approximation explicitly.

Theorem II.8.1. Let Aε(~) be a ~-ε-admissible operator of regularity τ ≥ 1 with
tempered weight m which is self-adjoint for all ~ in (0, ~0], for ~0 > 0 and with
ε ≥ ~1−δ for a δ > 0. Let θ(x, p) be a function in C∞0 (Rdx×Rdp). Then for all N0 ∈ N0

there exist an operator UN (t, ε, ~) with integral kernel

KUN (x, y, t, ε, ~)

=
1

(2π~)d

∫
Rd
ei~
−1〈x−y,p〉eit~

−1aε,0(x,p)
N∑
j=0

(it~−1)juj(x, p, ~, ε) dp,

such that KUN (x, y, 0, ε, ~) is the kernel of the operator Op~,0(θ) = θ(x, ~D). The
terms in the sum satisfies u0(x, p, ~, ε) = θ(x, p),

uj(x, p, ~, ε) ∈ C∞0 (Rdx × Rdp)

and they satisfies the bounds

|∂βx∂αp uj(x, p, ~, ε)| ≤


Cαβ j = 0

Cαβ~ε−|β| j = 1

Cαβ~1+δ(j−2)ε−|β| j ≥ 2

for all α and β in Nd0 in the case τ = 1. For τ ≥ 2 the uj’s satisfies the bounds

|∂βx∂αp uj(x, p, ~, ε)| ≤


Cαβ j = 0

Cαβ~ε−|β| j = 1, 2

Cαβ~2+δ(j−3)ε−|β| j ≥ 3

for all α and β in Nd0. Moreover UN satisfies the following bound:

‖~∂tUN (t, ~)− iUN (t, ~)Aε‖L(L2(Rd)) ≤ C~N0

for |t| ≤ ~1− δ
2 .
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Remark II.8.2. If the operator satisfies Assumption II.7.1, then by Theorem II.7.3
the operator will be self-adjoint for all sufficiently small ~. Hence Assumption II.7.1
would be sufficient but not necessary for the above theorem to be true.

The number N is explicit dependent on N0, d and δ as N need to greater than or
equal to the number 2(N0+d−1

δ + 1). This follows directly from the proof.

Proof. We start by fixing N such that N is the smallest integer greater than or equal
to

2(
N0 + d− 1

δ
+ 1)

since this implies

1 + δ

(
N

2
− 1

)
− d ≥ N0.

By assumption we have for sufficiently large M in N the following form of Aε(~)

Aε(~) =
M∑
j=0

~j Opw
~ (aε,j) + ~M+1RM (ε, ~). (3.54)

We can choose and fix M such the following estimate is true

~M+1‖RM (ε, ~)‖L(L2(Rd)) ≤ CM~N0 .

With this M we consider the sum in the expression of Aε(~). By Corollary II.4.20
there exists a sequence {ãε,j}j∈N0 of symbols where ãε,j is of regularity τ − j and a
M̃ such

M∑
j=0

~j Opw
~ (aε,j) =

M̃∑
j=0

~j Op~,1(ãε,j) + ~M̃+1R̃M̃ (ε, ~), (3.55)

where aε,0 = ãε,0 and

~M̃+1‖R̃M̃ (ε, ~)‖L(L2(Rd)) ≤ CM̃~N0 .

We will for the reminder of the proof use the notation

ãε(x, p) =

M̃∑
j=0

~j ãε,j(x, p). (3.56)

The function ãε(y, p) is a rough function of regularity τ . These choices and definitions
will become important again at the end of the proof.

For our fixed N we define the operator ~∂t − iPN : C∞(Rt × Rdx × Rdp) →
C∞(Rt × Rdx × Rdp), where

PNb(t, x, p) =
∑
|α|≤N

(−i~)|α|

α!
∂αp {b(t, x, p)∂αx ãε(x, p)}

for a b ∈ C∞(Rt×Rdx×Rdp). First step is to observe how the operator ~∂t− iPN acts
on eit~−1aε,0(x,p)ψ(x, p) for ψ ∈ C∞0 (Rdx × Rdp). We will in the following calculation
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omit the dependence of the variables x and p. By Leibniz’s formula and the chain
rule we get

(~∂t − iPN )eit~
−1aε,0ψ = ~∂teit~

−1aε,0ψ − i
∑
|α|≤N

(−i~)|α|

α!
∂αp {eit~

−1aε,0ψ∂αx ãε}

=iaε,0e
it~−1aε,0ψ − i

∑
|α|≤N

(−i~)|α|

α!

∑
β≤α

(
α

β

)
∂βp e

it~−1aε,0∂α−βp {ψ∂αx ãε}

=iaε,0e
it~−1aε,0ψ − ieit~−1aε,0ψãε − i

N∑
|α|=1

(−i~)|α|

α!
eit~

−1aε,0∂αp {ψ∂αx ãε}

− i
N∑
|α|=1

∑
β≤α

(−i~)|α|

α!

(
α

β

)
∂βp e

it~−1aε,0∂α−βp {ψ∂αx ãε}

=ieit~
−1aεψ(aε,0 − ãε)− i

N∑
|α|=1

(−i~)|α|

α!
eit~

−1aε,0∂αp {ψ∂αx ãε} − i
N∑
|α|=1

(−i~)|α|

α!

×
|α|∑
k=1

(it~−1)k
∑

β1+···+βk≤α
|βj |>0

cα,β1···βke
it~−1aε,0

k∏
j=1

∂
βj
p aε,0∂

α−(β1+···+βk)
p {ψ∂αx ãε}

=eit~
−1aε,0

[
iψ(aε,0 − ãε)− i

N∑
|α|=1

(−i~)|α|

α!
∂αp {ψ∂αx ãε} − i

N∑
k=1

(it~−1)k

×
N∑
|α|=k

(−i~)|α|

α!

∑
β1+···+βk≤α
|βj |>0

cα,β1···βk

k∏
j=1

∂
βj
p aε,0∂

α−(β1+···+βk)
p {ψ∂αx ãε}

]

=ieit~
−1aε,0

N∑
k=0

(it~−1)kqk(ψ, x, p, ~, ε)

(3.57)

From this we note after acting with ~∂t−iPN on eit~−1aε,0(x,p)ψ(x, p) we get ieit~−1aε,0

times a polynomial in it~−1 with coefficients in C∞0 (Rdx ×Rdp) depending on ψ, ~ and
ε. If we consider the coefficients in the polynomial we have

|q0(ψ, x, p, ~, ε)|

= |ψ(aε,0 − ãε) +
N∑
|α|=1

(−i~)|α|

α!
∂αp {ψ∂αx ãε}|

≤ c1~ +

N∑
|α|=1

~|α|

α!
|∂αp {ψ∂αx ãε}| ≤ c1~ +

τ∑
|α|=1

~|α|

α!
cα +

N∑
|α|=τ+1

~|α|

α!
cαε

τ−|α|

≤ c1~ +
τ∑
|α|=1

~|α|

α!
cα +

N∑
|α|=τ+1

~|α|

α!
cα~(1−δ)(τ−|α|) ≤ C~

(3.58)
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where C depends on the p-derivatives of ψ and ∂αx aε on the support of ψ for |α| ≤ N .
For 1 ≤ k ≤ τ we have

|qk(ψ, x, p, ~, ε)|

=|
N∑
|α|=k

(−i~)|α|

α!

∑
β1+···+βk≤α
|βj |>0

cα,β1···βk

k∏
j=1

∂
βj
p aε,0∂

α−(β1+···+βk)
p {ψ∂αx ãε}|

≤
τ∑
|α|=k

cα
~|α|

α!
+

N∑
|α|=τ+1

cα
~|α|

α!
ετ−|α|

≤
τ∑
|α|=k

cα
~|α|

α!
+

N∑
|α|=τ+1

cα
~|α|

α!
~(1−δ)(τ−|α|) ≤ C~k.

(3.59)

where C depends on the p-derivatives of ψ and ∂αx aε on the support of ψ. For
τ < k ≤ N we have

|qk(ψ, x, p, ~, ε)|

=|
N∑
|α|=k

(−i~)|α|

α!

∑
β1+···+βk≤α
|βj |>0

cα,β1···βk

k∏
j=1

∂
βj
p aε,0∂

α−(β1+···+βk)
p {ψ∂αx ãε}|

≤
N∑
|α|=k

cα
~|α|

α!
ετ−|α| ≤

N∑
|α|=k

cα
~|α|

α!
~(1−δ)(τ−|α|) ≤ C~τ+(k−τ)δ.

(3.60)

where C depends on the p-derivatives of ψ and ∂αx aε on the support of ψ. It is
important the the the coefficients only depends on derivatives in p for the function we
apply the operator to. One should also note that if ψ had ~ to some power multiplied
to it. Then it should be multiplied to the new power obtained. In the reminder of the
proof we will continue to denote the coefficients obtained by acting with ~∂t − iPN
by qj and the exact form can be found in (3.57).

We are now ready to start constructing the kernel. We set u0(x, p, ~, ε) = θ(x, p)

which gives the first term. In order to find u1 we act with the operator ~∂t − iPN on
eit~

−1aε,0u0(x, p, ~, ε) (where we in the reminder of the construction of the approxi-
mation will omit writing the dependence of the variables (x, p) in the exponential).
By the calculation (3.57) we get

(~∂t − iPN )eit~
−1aε,0u0(x, p, ~, ε) = ieit~

−1aε,0

N∑
k=0

(it~−1)kqk(u0, x, p, ~, ε).

This would not lead to the desired estimate. So we now take

u1(x, p, ~, ε) = −q0(u0, x, p, ~, ε).

We can note by the previous estimates (3.58) we have

|u1(x, p, ~, ε)| = |q0(u0, x, p, ~, ε)| ≤ ~C. (3.61)
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If we now use the operator ~∂t − iPN on eit~−1aε,0(u0(x, p, ~, ε) + it~−1u1(x, p, ~, ε)).
Then according to (3.57) we get

(~∂t − iPN )(eit~
−1aε,0(u0(x, p, ~, ε) + it~−1u1(x, p, ~, ε)))

=ieit~
−1aε,0

N∑
k=0

(it~−1)kqk(u0, x, p, ~, ε) + ieit~
−1aε,0u1(x, p, ~, ε)

+ it~−1ieit~
−1aε,0

N∑
k=0

(it~−1)kqk(u1, x, p, ~, ε)

=ieit~
−1aε,0(

N∑
k=1

(it~−1)kqk(u0, x, p, ~, ε) +
N∑
k=0

(it~−1)k+1qk(u1, x, p, ~, ε)).

If we now take u2(x, p, ~, ε) = −1
2(q1(u0, x, p, ~, ε) + q0(u1, x, p, ~, ε)) and act with

the operator ~∂t − iPN according to (3.57) we get

(~∂t − iPN )eit~
−1aε,0

2∑
j=0

(it~−1)juj(x, p, ~, ε)

= ieit~
−1aε,0

[ 2∑
j=0

N∑
k=0

(it~−1)k+jqk(uj , x, p, ~, ε) +

2∑
j=1

j(it~−1)j−1uj(x, p, ~, ε)
]

= ieit~
−1aε,0

2∑
j=0

N∑
k=2−j

(it~−1)k+jqk(uj , x, p, ~, ε).

We note that the “lowest” power of it~−1 is 2. Hence it is these terms which should
be used to construct u3. Moreover we note that by (3.58) and (3.59) we have

|u2(x, p, ~, ε)| = 1
2 |q1(u0, x, p, ~, ε) + q0(u1, x, p, ~, ε)| ≤ 1

2C(~ + ~2) ≤ C~, (3.62)

and u2 is a smooth compactly supported function in the variables x and p. Generally
for 2 ≤ j ≤ N we have

uj(x, p, ~, ε) = −1

j

j−1∑
k=0

qj−1−k(uk, x, p, ~, ε).

We now need estimates for these terms. In the case τ = 1 the next step will be empty,
but for τ ≥ 2 it is needed. For τ ≥ 2 we have

|u3(x, p, ~, ε)| ≤ 1

3

2∑
k=0

|q2−k(uk, x, p, ~, ε)| ≤ C~2,

where we have used (3.58), (3.59), (3.61) and (3.62). For the rest of the uj ’s we split
in the two cases τ = 1 or τ ≥ 2. First the cases τ = 1 for 2 ≤ j ≤ N the estimate is

|uj(x, p, ~, ε)| ≤ C~1+δ(j−2)
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Note that u2 satisfies the above equation hence if we assume it okay for j− 1 between
2 and N − 1 we want to show the above estimate for j. We note that

|uj(x, p, ~, ε)| ≤
1

j

j−1∑
k=0

|qj−1−k(uk, x, p, ~, ε)|

≤C(|qj−1(u0, x, p, ~, ε)|+ |qj−2(u1, x, p, ~, ε)|

+

j−2∑
k=2

|qj−1−k(uk, x, p, ~, ε)|+ |q0(uj−1, x, p, ~, ε)|)

≤C(~j−1 + ~j−1 +

j−2∑
k=2

~1+δ(j−1−k−1)+1+δ(k−2) + ~2+δ(j−3))

≤C(~1+δ(j−2) + ~2+δ(j−2) + ~2+δ(j−4) + ~2+δ(j−3)) ≤ C~1+δ(j−2),

where the last inequality only holds for δ ≤ 1
2 and we have used (3.58), (3.60) and

the induction assumption.
Now the case τ ≥ 2 which we will treat as τ = 2, here the estimate is

|uj(x, p, ~, ε)| ≤ C~2+δ(j−3)

for 3 ≤ j ≤ N . To prove this bound is the same as in the case of τ = 1. In order to
prove the bound with the derivatives as stated in the theorem the above arguments
are repeated with a number of derivatives on the uj ’s otherwise it is analogous.

What remains is to prove this construction satisfies the bound

‖~∂tUN (t, ~)− iUN (t, ~)Aε‖L(L2(Rd)) ≤ C~N0

Here we only consider the case τ = 1 as the cases τ ≥ 2 will have better estimates.
Hence from the above estimates we have for k in {0, . . . , N} and |t| ≤ ~1− δ

2

|(it~−1)kuk(x, p, ~, ε)| ≤


C k = 0

C~1− δ
2 k = 1

C~1+δ( k
2
−2) k ≥ 2

(3.63)

The first step is to apply the operator ~∂t − iPN on then “full” kernel and see what
error this produces. By construction we have

(~∂t − iPN )eit~
−1aε,0

N∑
k=0

(it~−1)kuk(x, p, ~, ε)

=
N∑
j=0

N∑
k=N−j

(it~−1)k+jqk(uj , x, p, ~, ε).
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If we start by considering j equal 0 and 1 we note that:∣∣∣ 1∑
j=0

N∑
k=N−j

(it~−1)k+jqk(uj , x, p, ~, ε)
∣∣∣

≤C(~−
δ
2
N~1+δ(N−1) + ~−

δ
2
N~2+δ(N−2) + ~−

δ
2

(N+1)~2+δ(N−1))

≤C(~1+δ(N
2
−1) + ~2+δ(N

2
−2) + ~2+ δ

2
(N−3))

≤C̃~1+δ(N
2
−1),

where we have used (3.63). For the rest of the terms we have that

∣∣∣ N∑
j=2

N∑
k=N−j

(it~−1)k+jqk(uj , x, p, ~, ε)
∣∣∣

≤C
N∑
j=2

N∑
k=max(N−j,1)

~−
δ
2

(k+j)~2+δ(k−1)+δ(j−2) + ~−
δ
2
N~2+δ(N−2)

≤C
N∑
j=2

N∑
k=max(N−j,1)

~2+δ( j+k
2
−3) + ~2+δ(N

2
−2) ≤ C̃~1+δ(N

2
−1),

where we have used (3.63) and that in the double sum k + j ≥ N and δ < 1
2 . When

these estimates is combined we have

|(~∂t − iPN )eit~
−1aε,0

N∑
k=0

(it~−1)kuk(x, p, ~, ε)| ≤ C~1+δ(N
2
−1). (3.64)

We now let UN (t, ~) be the operator with the integral kernel:

KUN (x, y, t, ε, ~)

=
1

(2π~)d

∫
Rd
ei~
−1〈x−y,p〉eit~

−1aε,0(x,p)
N∑
j=0

(it~−1)juj(x, p, ~, ε) dp,

which is well defined due to our previous estimates. In particular we have that it is a
bounded operator by the Schur test. We now need to find an expression for

~∂tUN (t, ~)− iUN (t, ~)Aε(~).

In the start of the proof we wrote the operator Aε(~) in two different ways (3.54)
and (3.55). If we combine these we have

Aε(~) =
M̃∑
j=0

~j Op~,1(ãε,j) + ~M̃+1R̃M̃ (ε, ~) + ~M+1RM (ε, ~)

= Op~,1(ãε) + ~M̃+1R̃M̃ (ε, ~) + ~M+1RM (ε, ~),

where the two reminder terms satisfies

‖~M̃+1R̃M̃ (ε, ~) + ~M+1RM (ε, ~)‖L(L2(Rd)) ≤ C~N0 .
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If we use this form of Aε(~) we have

~∂tUN (t, ~)− iUN (t, ~)Aε(~) = ~∂tUN (t, ~)− iUN (t, ~) Op~,1(ãε)

− i~M̃+1UN (t, ~)R̃M̃ (ε, ~)− i~M+1UN (t, ~)RM (ε, ~).

If we consider the the operator norm of the two last terms we have

‖~M̃+1UN (t, ~)R̃M̃ (ε, ~) + ~M+1UN (t, ~)RM (ε, ~)‖L(L2(Rd)) ≤ C~N0 (3.65)

as UN (t, ~) is a bounded operator. What remains is the expression

~∂tUN (t, ~)− iUN (t, ~) Op~,1(ãε).

The rules for composition of kernels gives by a straight forward calculation that the
kernel of the above expression is

K(x, y; ε, ~) :=
1

(2π~)d

∫
Rd
ei~
−1〈x−y,p〉(~∂t − iãε(y, p))eit~

−1aε,0(x,p)

×
N∑
j=0

(it~−1)juj(x, p, ~, ε) dp.

The next step is to rewrite the above kernel. This is done by doing a Taylor expansion
of ãε in the variable y centred at x. This gives

ãε(y, p) =
∑
|α|≤N

(y − x)α

α!
∂αx ãε(x, p)

+
∑

|α|=N+1

(N + 1)
(y − x)α

α!

∫ 1

0
(1− s)N∂αx ãε(x+ s(y − x), p) ds.

We replace ãε(y, p) by the above Taylor expansion in the kernel and start by consid-
ering the part of the kernel with the first sum. Here we have

1

(2π~)d

∫
Rd
ei~
−1〈x−y,p〉[~∂teit~

−1aε,0(x,p)
N∑
j=0

(it~−1)juj(x, p, ~, ε)

− i
∑
|α|≤N

(y − x)α

α!
∂αx ãε(x, p)e

it~−1aε,0(x,p)
N∑
j=0

(it~−1)juj(x, p, ~, ε)] dp

=
1

(2π~)d

∫
Rd
ei~
−1〈x−y,p〉[~∂teit~

−1aε,0(x,p)
N∑
j=0

(it~−1)juj(x, p, ~, ε)

− i
∑
|α|≤N

(−i~)|α|

α!
∂αp [∂αx ãε(x, p)e

it~−1aε,0(x,p)
N∑
j=0

(it~−1)juj(x, p, ~, ε)]] dp

=
1

(2π~)d

∫
Rd
ei~
−1〈x−y,p〉(~∂t − iPN )[eit~

−1aε(x,p)
N∑
j=0

(it~−1)juj(x, p, ~, ε)] dp,
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where we have used the identity

(y − x)αei~
−1〈x−y,p〉 = (i~)α∂αp e

i~−1〈x−y,p〉,

and integration by parts. If we now consider the part of the kernel with the error
term we have

−i
(2π~)d

∫
Rd
ei~
−1〈x−y,p〉eit~

−1aε(x,p)
N∑
j=0

(it~−1)juj(x, p, ~, ε)

×
∑

|α|=N+1

(N + 1)
(y − x)α

α!

∫ 1

0
(1− s)N∂αx ãε(x+ s(y − x), p) dsdp

=
−i

(2π~)d

∫
Rd
ei~
−1〈x−y,p〉

∑
|α|=N+1

(N + 1)
(−i~)α

α!
∂αp [e−it~

−1aε(x,p)
N∑
j=0

(−it~−1)j

× uj(x, p, ~, ε)
∫ 1

0
(1− s)N∂αx ãε(x+ s(y − x), p) ds]dp,

where we again have used the above identity and partial integration. Combing the
two expressions we get

K(x, y; ε, ~)

=
1

(2π~)d

∫
Rd
ei~
−1〈x−y,p〉(~∂t − iPN )[eit~

−1aε(x,p)
N∑
j=0

(it~−1)juj(x, p, ~, ε)] dp

+
−i

(2π~)d

∫
Rd
ei~
−1〈x−y,p〉

∑
|α|=N+1

(N + 1)
(−i~)α

α!
∂αp [eit~

−1aε(x,p)
N∑
j=0

(it~−1)j

× uj(x, p, ~, ε)
∫ 1

0
(1− s)N∂αx ãε(x+ s(y − x), p) ds]dp

(3.66)

In order to estimate the operator norm we will divide the kernel into two parts. We
do this by considering a part localised in y and the reminder. To localise in y we let ψ
be a smooth function on Rd such ψ(y) = 1 on the set {y ∈ Rd | dist[y, suppx(θ)] ≤ 1}
and supported in the set {y ∈ Rd | dist[y, suppx(θ)] ≤ 2}. With this function our
kernel can be written as

K(x, y; ε, ~) = K(x, y; ε, ~)ψ(y) +K(x, y; ε, ~)(1− ψ(y)) (3.67)

If we consider the part multiplied by ψ(y) then this part has the form as in (3.66)
but each term is multiplied by ψ(y). By the estimate in (3.64) we have for the first
part of K(x, y; ε, ~)ψ(y) the following estimate

∣∣∣ ∫
Rd
ei~
−1〈x−y,p〉(~∂t − iPN )[eit~

−1aε,0(x,p)
N∑
j=0

(it~−1)juj(x, p, ~, ε)]ψ(y) dp
∣∣∣

≤ψ(x)ψ(y)C~1+δ(N
2
−1).

(3.68)
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For the second part of K(x, y; ε, ~)ψ(y) we have by Leibniz’s formula and Faà di
Bruno formula (Theorem II.1.2) for each term in the sum over α

(−i~)|α|

α!
∂αp [eit~

−1aε,0(x,p)

×
N∑
j=0

(it~−1)juj(x, p, ~, ε)
∫ 1

0
(1− s)N∂αx ãε(x+ s(y − x), p) ds]ψ(y)

=
N∑
j=0

(−i~)|α|

α!
eit~

−1aε,0(x,p)
N+1∑
k=0

(it~−1)k+j
∑

β1+···+βk≤α
|βj |>0

cα,β1···βk

k∏
n=1

∂βnp aε,0(x, p)

× ∂α−(β1+···+βk)
p [uj(x, p, ~, ε)

∫ 1

0
(1− s)N∂αx ãε(x+ s(y − x), p) ds]ψ(y).

We note that for j equal 0 we have an estimate of the following form:

∣∣∣(−i~)|α|

α!
eit~

−1aε,0(x,p)
N+1∑
k=0

(it~−1)k
∑

β1+···+βk≤α
|βj |>0

cα,β1···βk

k∏
n=1

∂βnp aε,0(x, p)

× ∂α−(β1+···+βk)
p [u0(x, p, ~, ε)

∫ 1

0
(1− s)N∂αx ãε(x+ s(y − x), p) ds]ψ(y)

∣∣∣
≤ C

N+1∑
k=0

~N+1~−
δ
2
kε−Nψ(x)ψ(y) ≤ C~N+1~−

δ
2

(N+1)~−N+δNψ(x)ψ(y)

≤ C~1+ δ
2

(N−1)ψ(x)ψ(y).

(3.69)
We note that for j equal 1 we have an error of the following form:

∣∣∣(−i~)|α|

α!
eit~

−1aε,0(x,p)
N+1∑
k=0

(it~−1)k+1
∑

β1+···+βk≤α
|βj |>0

cα,β1···βk

k∏
n=1

∂βnp aε,0(x, p)

× ∂α−(β1+···+βk)
p [u1(x, p, ~, ε)

∫ 1

0
(1− s)N∂αx ãε(x+ s(y − x), p) ds]ψ(y)

∣∣∣
≤ C

N+1∑
k=0

~N+1~−
δ
2

(k+1)~ε−Nψ(x)ψ(y) ≤ C~N+2~−
δ
2

(N+2)~−N+δNψ(x)ψ(y)

≤ C~2+ δ
2

(N−2)ψ(x)ψ(y),

(3.70)
where we have used the estimate |u1(x, p, ~, ε)| ≤ c~. We note that for j greater than
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or equal to 2, we have an error of the following form:

∣∣∣(−i~)|α|

α!
eit~

−1aε,0(x,p)
N+1∑
k=0

(it~−1)k+j
∑

β1+···+βk≤α
|βj |>0

cα,β1···βk

k∏
n=1

∂βnp aε,0(x, p)

× ∂α−(β1+···+βk)
p [uj(x, p, ~, ε)

∫ 1

0
(1− s)N∂αx ãε(x+ s(y − x), p) ds]ψ(y)

∣∣∣
≤ C

N+1∑
k=0

~N+1~−
δ
2

(k+j)~1+δ(j−2)ε−Nψ(x)ψ(y)

≤ C~N+1~−
δ
2

(N+1+j)~1+δ(j−2)~−N+δNψ(x)ψ(y) ≤ C~2+ δ
2

(N+j−1)−2δψ(x)ψ(y)

≤ C~1+ δ
2

(N+j−1)ψ(x)ψ(y),

(3.71)
where we have used the estimate |uj(x, p, ~, ε)| ≤ c~1+δ(j−2). Now by combining
(3.71), (3.70) and (3.71) we arrive at

∣∣∣∫
Rd
ei~
−1〈x−y,p〉

∑
|α|=N+1

(N + 1)
(−i~)α

α!
∂αp [eit~

−1aε(x,p)
N∑
j=0

(it~−1)j

× uj(x, p, ~, ε)
∫ 1

0
(1− s)N∂αx ãε(x+ s(y − x), p) ds]ψ(y) dp

∣∣∣
≤ C~1+ δ

2
(N−1)ψ(x)ψ(y).

Combining this estimate with (3.68) we have

|K(x, y; ε, ~)ψ(y)| ≤ C~1+ δ
2

(N−1)−dψ(x)ψ(y) ≤ C~N0ψ(x)ψ(y), (3.72)

where the last inequality is due to our choice of N made in the start of the proof.
Now we turn to the term K(x, y; ε, ~)(1− ψ(y)). On the support of this kernel we
have

1 ≤ |x− y|

due to the definition of ψ. This imply we can divide by the difference between x and
y where the kernel is supported. The idea is now to multiply the kernel with |x−y||x−y| to
an appropriate power η. We take η such

m(x+ s(y − x), p)

|x− y|2η
≤ C

|x− y|d+1
for (x, p) ∈ supp(θ),

where m is the tempered weight function associated to our operator. The existence
of such a η is ensured by the definition of the tempered weight. By (3.66) the kernel
K(x, y; ε, ~)(1− ψ(y)) is of the form

1

(2π~)d

∫
Rd
ei~
−1〈x−y,p〉ϕ(x, y, p; ~, ε)(1− ψ(y))dp,
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where the exact form of ϕ is not important at the moment. Now for our choice of η
we have∫

Rd
ei~
−1〈x−y,p〉ϕ(x, y, p; ~, ε)(1− ψ(y))dp

=

∫
Rd
ei~
−1〈x−y,p〉 |x− y|2η

|x− y|2η
ϕ(x, y, p; ~, ε)(1− ψ(y))dp

=

∫
Rd

(−i~)2η
∑
|γ|=η

cγ∂
2γ
p (ei~

−1〈x−y,p〉)
1

|x− y|2η
ϕ(x, y, p; ~, ε)(1− ψ(y))dp

=

∫
Rd
ei~
−1〈x−y,p〉 1− ψ(y)

|x− y|2η
∑
|γ|=η

cγ(i~)2η∂2γ
p ϕ(x, y, p; ~, ε)dp.

By analogous estimates to the estimate used above we have∣∣∣1− ψ(y)

|x− y|2η
∑
|γ|=η

(i~)2η∂2γ
p ϕ(x, y, p; ~, ε)

∣∣∣
≤ C~2η(1− δ

2
)+1+ δ

2
(N−1) 1− ψ(y)

|x− y|d+1
1supp(θ)(x, p),

where the term ~−ηδ is due to the exponentials eit~−1aε(x,p) in ϕ which gives it~−1

when we take a derivative with respect to pj for all j in {1, . . . , d} and that |t| ≤ ~1− δ
2 .

The rest of the powers in ~ is found analogous to above. Hence we have

|K(x, y; ε, ~)(1− ψ(y))| ≤C~2η(1− δ
2

)+1+ δ
2

(N−1)−d1suppx(θ)(x)
1− ψ(y)

|x− y|d+1

≤C~N0ψ(x)
1− ψ(y)

|x− y|d+1
.

By combining this with (3.67) and (3.72) we have

|K(x, y; ε, ~)| ≤ C~N0

[
ψ(x)ψ(y) + 1suppx(θ)(x)

1− ψ(y)

|x− y|d+1

]
. (3.73)

We have by definition of ψ the estimates

sup
x∈Rd

∫
Rd
|ψ(x)ψ(y) + 1suppx(θ)(x)

1− ψ(y)

|x− y|d+1
| dy ≤ c+

∫
|y|≥1

1

|y|d+1
dy ≤ C1

sup
y∈Rd

∫
Rd
|ψ(x)ψ(y) + 1suppx(θ)(x)

1− ψ(y)

|x− y|d+1
| dx ≤ C2

These estimates combined with the Schur test, (3.65) and (3.73) gives

‖~∂tUN (t, ~)− iUN (t, ~)Aε‖L(L2(Rd)) ≤ C~N0

for |t| ≤ ~1− δ
2 . This is the desired estimate which ends the proof. �

In the previous proof we constructed a microlocal approximation for the propagator
for short times dependent on ~. It would be preferable to not have this dependence of
~ in the time. In the following Lemma we prove that under a non-critical condition
on the principal symbol a localised trace of the approximation becomes negligible.
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Lemma II.8.3. Let Aε(~) be a ~-ε-admissible operator of regularity τ ≥ 1 with
tempered weight m which is self-adjoint for all ~ in (0, ~0] and with ε ≥ ~1−δ for a
δ > 0. Let θ(x, p) be a function in C∞0 (Rdx × Rdp). Suppose

|∇paε,0(x, p)| ≥ c > 0 for all (x, p) ∈ supp(θ),

where aε,0 is the principal symbol of Aε(~). Moreover let the operator UN (t, ~) be the
one constructed in Theorem II.8.1 with the function θ. Then for |t| ∈ [1

2~
1− δ

2 , 1] and
every N0 in N0 it holds

|Tr[UN (t, ~) Op~,1(θ)]| ≤ C~N0

for a constant C > 0, which depends on the constant from the non-critical condition.

The essence of the proof is partial integration and cyclicality of the trace.

Proof. Recall that the kernel of UN (t, ~) is given by

KUN (x, y, t, ε, ~)

=
1

(2π~)d

∫
Rd
ei~
−1〈x−y,p〉eit~

−1aε(x,p)
N∑
j=0

(it~−1)juj(x, p, ~, ε) dp,

where we have from Theorem II.8.1 the estimate

sup
x,p

sup
|t|≤1
|∂αx ∂βp

N∑
j=0

(it~−1)juj(x, p, ~, ε)| ≤ Cαβ~(δ−1)Nε−|α|.

This initial estimate is a priori not desirable. In order to make the notation less
complicated we let B be an operator with integral kernel

KB(x, y, t, ε, ~) =
1

(2π~)d

∫
Rd
ei~
−1〈x−y,p〉eit~

−1aε,0(x,p)b(x, p, t, ~, ε) dp,

where b ∈ C∞0 (Rdx × Rdp), supp(b) ⊂ supp(θ) and satisfies

sup
x,p

sup
|t|≤1
|∂αx ∂βp b(x, p, t, ~, ε)| ≤ Cαβ~−lε−|α|,

for some positive number l and all α and β in Nd0. Here we note that UN (t, ~) is an
operator of this kind. Since we suppose |∇paε,0| ≥ c > 0 on the support of θ(x, p) we
have

KB(x, y, t, ε, ~)

=
1

(2π~)d

∫
Rd
ei~
−1〈x−y,p〉eit~

−1aε,0(x,p)b(x, p, t, ~, ε) dp

=
1

(2π~)d

∫
Rd
ei~
−1〈x−y,p〉

∑d
j=1(∂pjaε,0(x, p))2

|∇paε,0(x, p)|2
eit~

−1aε,0(x,p)b(x, p, t, ~, ε) dp

=
−i~t−1

(2π~)d

d∑
j=1

∫
Rd
ei~
−1〈x−y,p〉 ∂pjaε,0(x, p)

|∇paε,0(x, p)|2
∂pje

it~−1aε,0(x,p)b(x, p, t, ~, ε) dp

=
i~t−1

(2π~)d

d∑
j=1

∫
Rd
eit~

−1aε,0(x,p)∂pj [e
i~−1〈x−y,p〉 ∂pjaε,0(x, p)

|∇paε,0(x, p)|2
b(x, p, t, ~, ε)] dp.
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If we calculate the derivative we get that

∂pj [e
i~−1〈x−y,p〉 ∂pjaε,0(x, p)

|∇paε,0(x, p)|2
b(x, p, t, ~, ε)]

= i~−1(xj − yj)ei~
−1〈x−y,p〉 ∂pjaε,0(x, p)

|∇paε,0(x, p)|2
b(x, p, t, ~, ε)

+ ei~
−1〈x−y,p〉∂pj

[ ∂pjaε,0(x, p)

|∇paε,0(x, p)|2
b(x, p, t, ~, ε)

]
.

Combining these calculations we have that

B = −t−1
d∑
j=1

[xj , B1,j ] + i~t−1
d∑
j=1

B2,j ,

where B1,j and B2,j are operators given by the kernels:

KB1,j (x, y, t, ~, ε)

=
1

(2π~)d

∫
Rd
ei~
−1〈x−y,p〉eit~

−1aε,0(x,p) ∂pjaε,0(x, p)

|∇paε,0(x, p)|2
b(x, p, t, ~, ε) dp,

and

KB2,j (x, y, t, ~, ε)

=
1

(2π~)d

∫
Rd
ei~
−1〈x−y,p〉eit~

−1aε,0(x,p)∂pj

[ ∂pjaε,0(x, p)

|∇paε,0(x, p)|2
b(x, p, t, ~, ε)

]
dp.

If we now consider the trace and use the cyclisity of the trace we have

Tr(BOp~,1(θ)) = t−1
d∑
j=1

Tr([xj , B1,j ] Op~,1(θ))− i~t−1
d∑
j=1

Tr(B2,j Op~,1(θ))

= t−1
d∑
j=1

Tr(B1,j [xj ,Op~,1(θ)])− i~t−1
d∑
j=1

Tr(B2,j Op~,1(θ))

= ~t−1
d∑
j=1

Tr(B1,j Op~,1(∂pjθ))− i~t−1
d∑
j=1

Tr(B2,j Op~,1(θ)).

By our assumptions on t we note that we have gained ~
δ
2 compared to our naive first

estimate hence if do this procedure again on the operators B1,j and B2,j we will gain
an additional factor of ~

δ
2 . By continuing this a sufficient amout of times we end up

with the desired estimate. �

The previous Lemma showed that under a non-critical assumption on the principal
symbol a localised trace of our approximation becomes negligible. But we would also
need a result similar to this for the true propagator. Actually this can be proven in
a setting for which we will need it, which is the content of the next Thoerem. An
observation of this type was first made by V. Ivrii (see [11]). Here we will follow
the proof of such a statement as made by M. Dimassi and J. Sjöstrand in [5]. The
statement is:
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Theorem II.8.4. Let Aε(~) be a ~-ε-admissible operator of regularity τ ≥ 1 which
satisfies Assumption II.7.1, has a bounded principal symbol and suppose there exists
a δ in (0, 1) such that ε ≥ ~1−δ. Furthermore, suppose there exists a number η > 0

such a−1
ε,0([−2η, 2η]) is compact and a constant c > 0 such

|∇paε,0(x, p)| ≥ c for all (x, p) ∈ a−1
ε,0([−2η, 2η]),

where aε,0 is the principal symbol of Aε(~). Let f be in C∞0 ((−η, η)) and θ be in
C∞0 (Rdx × Rdp) such that supp(θ) ⊂ a−1

ε,0((−η, η)).
Then there exists a constant T0 > 0 such that if χ is in C∞0 ((1

2~
1−γ , T0)) for a γ

in (0, δ], then for every N in N, we have

|Tr[Opw
~ (θ)f(Aε(~))F−1

~ [χ](s−Aε(~)) Opw
~ (θ)]| ≤ CN~N

uniformly for s in (−η, η).

Remark II.8.5. Theorems of this type for non-regular operators can be found in
the works of V. Ivrii see [15] and L. Zielinski see [30, 32]. In both cases the proof
of such theorems is different from the one we present here. The techniques used by
both is based on propagation of singularities. The propagation of singularities is not
directly present in the proof presented here but hidden in the techniques used.

In both [5] and [15] they assume the symbol to microhyperbolic in some direction.
It might also be possible to extend the Theorem here to a general microhyperbolic
assumption instead of the non-critical assumption. The challenge in this will be
that for the proof to work under a general microhyperbolic assumption the symbol
should be change such that microhyperbolic assumption similar to the non-critical
assumption is achieved. This change might be problematic to do since it could mix
the rough and non rough variables.

The localising operators Opw
~ (θ) could be omitted if the first step of the proof is

change to introducing them by applying Lemma II.7.16. We have chosen to state the
theorem with them since when we will apply the theorem we have the localisations.

Proof. We start by remarking that it suffices to show the estimate with a function
χξ(t) = χ( tξ ), where χ is in C∞0 ((1

2 , 1)) uniformly for ξ in [~1−γ , T0]. Indeed assume
such an estimate has been prove. We can split the interval (1

2~
1−γ , T0) in 2T0

~1−γ intervals
of size 1

2~
1−γ and make a partition of unity which members is supported in each

of these intervals. Hence by linearity of the inverse Fourier transform and trace we
would have

|Tr[Opw
~ (θ)f(Aε(~))F−1

~ [χ](s−Aε(~)) Opw
~ (θ)]|

≤
M(~)∑
j=1

|Tr[Opw
~ (θ)f(Aε(~))F−1

~ [χξj ](s−Aε(~)) Opw
~ (θ)]| ≤ C̃N~N−1+δ.

Hence we will consider the trace

Tr[Opw
~ (θ)f(Aε(~))F−1

~ [χξ](s−Aε(~)) Opw
~ (θ)],
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with χξ(t) = χ( tξ ), where χ is in C∞0 ((1
2 , 1)) and ξ in [~1−γ , T0]. For the rest of the

proof we let a N in N be given as the error we want.
Without loss of generality we can assume θ =

∑
k θk, where the θk’s satisfies that

if supp(θk) ∩ supp(θl) 6= ∅ then there exists j in {1, . . . , d} such |∂pjaε,0(x, p)| > c̃ on
the set supp(θk) ∪ supp(θl). With this splitting of θ we have

Tr[Opw
~ (θ)f(Aε(~))F−1

~ [χξ](s−Aε(~)) Opw
~ (θ)]

=
∑
k

∑
l

Tr[Opw
~ (θk)f(Aε(~))F−1

~ [χξ](s−Aε(~)) Opw
~ (θl)].

By the cyclicity of the trace and the formulas for composition of pseudo-differential
operators we observe if supp(θk) ∩ supp(θl) = ∅ then the term is negligible. Hence
what remains is the terms with supp(θk) ∩ supp(θl) 6= ∅. All terms of the form
are estimated with analogous techniques but some different indexes. Hence we will
suppose we have a pair supp(θk) ∩ supp(θl) 6= ∅ such |∂p1aε,0(x, p)| > c̃ on the set
supp(θk)∪ supp(θl). This imply we either have ∂p1aε,0(x, p) > c̃ or −∂p1aε,0(x, p) > c̃.
We suppose we are in the first case. The other case is treated in the same manner
but with a change of some signs.

To sum up we have reduced to the case where we consider

Tr[Opw
~ (θk)f(Aε(~))F−1

~ [χξ](s−Aε(~)) Opw
~ (θl)],

where ∂p1aε,0(x, p) > c̃ on the the set supp(θk)∪ supp(θl). The next step is to change
the principal symbol of our operator such it becomes global microhyperbolic in the
direction (0; (1, 0, . . . , 0)), where 0 is the d-dimensional vector with only zeros.

We let ϕ2 be a function in C∞0 (Rdx × Rdp) such ϕ2(x, p) = 1 on a small neighbour-
hood of supp(θk) ∪ supp(θl) and have support contained in the set

{(x, p) ∈ R2d | |∂p1aε,0(x, p)| > c̃
2}.

Moreover we let ϕ1 be a function in C∞0 (Rdx×Rdp) such ϕ1(x, p) = 1 on supp(ϕ2) and
such that

supp(ϕ1) ⊆ {(x, p) ∈ R2d | |∂p1aε,0(x, p)| > c̃
4}. (3.74)

With these functions we define the symbol

ãε,0(x, p) = aε,0(x, p)ϕ1(x, p) + C(1− ϕ2(x, p)),

where the constant C is chosen such ãε,0(x, p) ≥ 1 + η outside the support of ϕ2(x, p).
We have

∂p1 ãε,0(x, p) = (∂p1aε,0)(x, p)ϕ1(x, p) + aε,0(x, p)(∂p1ϕ1)(x, p)− C∂p1ϕ2(x, p).

Hence there exist constants c0 and c1 such

∂p1 ãε,0(x, p) ≥ c0 − c1(ãε,0(x, p))2, (3.75)

for all (x, p) in R2d. To see this we observe that on supp(θk) ∪ supp(θl) we have the
inequality

∂p1 ãε,0(x, p) ≥ c̃.
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By continuity there exists an open neighbourhood Ω of supp(θk) ∪ supp(θl) such
∂p1 ãε,0(x, p) ≥ c̃

3 and (1− ϕ2) 6= 0 on Ωc. Hence outside Ω we get the the bound

∂p1 ãε,0(x, p) ≥ c0 − c1(ãε,0(x, p))2,

by choosing c1 sufficiently large. This estimates is that our new symbol is global
microhyperbolic in the direction (0; (1, 0, . . . , 0)).

Our assumptions on the operator Aε(~) imply the form

Aε(~) =

N0∑
j=0

~j Opw
~ (aε,j) + ~N0+1RN0(~, ε),

where N0 is chosen such

~N0+1‖RN0(~, ε)‖L(L2(Rd)) ≤ C~N+d.

By Ãε(~) we denote the operator obtained by taking the N0 first terms of Aε(~) and
exchanging the principal symbol aε,0 of Aε(~) by ãε,0 . Note that the operator Ãε(~)

still satisfies Assumption II.7.1 as the original symbols where assumed to be bounded.
We have

Aε(~)− Ãε(~) = Opw
~ (aε,0 − ãε,0) + ~N0+1RN0(~, ε),

and by construction is aε,0 − ãε,0 supported away from supp(θk) ∪ supp(θl). Hence if
we apply the identity

(z −Aε(~))−1 − (z − Ãε(~))−1 = (z −Aε(~))−1(Aε(~)− Ãε(~))(z − Ãε(~))−1,

and use the formula for composition of operators we get for N1 ≥ τ the estimate

‖Opw
~ (θk)((z −Aε(~))−1 − (z − Ãε(~))−1) Opw

~ (θl)‖Tr

=C~−d‖Opw
~ (θk)[(z −Aε(~))−1(Aε(~)− Ãε(~))(z − Ãε(~))−1]‖L(L2(Rd))

≤CN1

~(N1−τ)δ+τ−d

|Im(z)|N+2
+ CN0

~N

|Im(z)|2
,

(3.76)

for z in C with | Im(z)| > 0. In order to use the above estimate we will use Theo-
rem II.7.12 and hence we need to make an almost analytic extensions of the function
f . Let f̃ be an almost analytic extension of f , such f̃ is in C∞0 (C) and

f̃(x) = f(x) for all x ∈ R
∂̄f̃(z) ≤ CN |Im(z)|N for all N ∈ N.

Such an extension exists according to Remark II.7.10. As F−1
~ [χξ](s−z) is an analytic

function in z we have by Theorem II.7.12 the identity

Tr[Opw
~ (θk)f(Aε(~))F−1

~ [χξ](s−Aε(~)) Opw
~ (θl)]

= − 1

π

∫
C
∂̄(f̃)(z)F−1

~ [χξ](s− z) Tr[Opw
~ (θk)(z −Aε(~))−1 Opw

~ (θl)]L(dz).

(3.77)
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This identity is also true for Ãε(~). On the support of f̃ we have

F−1
~ [χξ](s− z) =

1

2π~

∫
R
eit~

−1(s−z)χξ(t) dt ≤ C
ξ

~
.

Now by the properties of f̃ , (3.76), (3.77) and the above estimate we have for N1 ≥ τ

|Tr[Opw
~ (θk)f(Aε(~))F−1

~ [χξ](s−Aε(~)) Opw
~ (θl)]

− Tr[Opw
~ (θk)f(Ãε(~))F−1

~ [χξ](s− Ãε(~)) Opw
~ (θl)]|

≤ 1

π

∫
C
|∂̄(f̃)(z)F−1

~ [χξ](s− z)

× Tr[Opw
~ (θk)((z −Aε(~))−1 − (z − Ãε(~))−1) Opw

~ (θl)]|L(dz)

≤ CN1~(N1−τ)δ+τ−d−1 + C~N .

Hence by choosing N1 sufficiently large we can change the principal symbol. Note
that the constant CN1 also depends on the symbols.

For the reminder of the proof we will omit the tilde on the operator and principal
symbol but instead assume the principal symbol to be global micro-hyperbolic in the
direction (0; (1, 0, . . . , 0)) ((3.75) without the tildes).

In order to estimate

Tr[Opw
~ (θk)f(Aε(~))F−1

~ [χξ](s−Aε(~)) Opw
~ (θl)],

we will need an auxiliary function. Let ψ be in C∞(R) such ψ(t) = 1 for t ≤ 1 and
ψ(t) = 0 for t ≥ 2. Moreover let M be a sufficiently large constant which will be fixed
later and put

ψµ1(z) = ψ
( Im(z)

µ1

)
,

where µ1 = M~
ξ log(1

~). With this function we have

|∂̄(f̃ψµ1)| ≤

{
CN |Im(z)|N , if Im(z) < 0

CNψµ1(z)|Im(z)|N + µ−1
1 1[1,2](

Im(z)
µ1

), if Im(z) ≥ 0,
(3.78)

for any N in N. Again we can use Theorem II.7.12 for the operator Aε(~) on the
function (f̃ψµ1)(z)F−1

~ [χξ](s− z). This gives

(f̃ψµ1)(Aε(~))F−1
~ [χξ](s−Aε(~))

= − 1

π

∫
C
∂̄(f̃ψµ1)(z)F−1

~ [χξ](s− z)(z −Aε(~))−1 L(dz),

where we have used that F−1
~ [χξ](s− z) is an analytic function in z. Hence the trace

we consider is

Tr[Opw
~ (θk)f(Aε(~))F−1

~ [χξ](s−Aε(~)) Opw
~ (θl)]

= − 1

π

∫
C
∂̄(f̃ψµ1)(z)F−1

~ [χξ](s− z) Tr[Opw
~ (θk)(z −Aε(~))−1 Opw

~ (θl)]L(dz)

= − 1

π

∫
Im(z)<0

· · · L(dz)− 1

π

∫
Im(z)≥0

· · · L(dz)

(3.79)
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If we shortly investigate each of the integrals. Firstly we note the bound

|Tr[Opw
~ (θk)(z −Aε(~))−1 Opw

~ (θl)]| ≤
C

~d|Im(z)|
.

If we consider the integral over the negative imaginary part we have∣∣∣ 1
π

∫
Im(z)<0

∂̄(f̃ψµ1)(z)F−1
~ [χξ](s− z) Tr[Opw

~ (θk)(z −Aε(~))−1 Opw
~ (θl)]L(dz)

∣∣∣
≤ C2Nξ

π~d+1

∫
Im(z)<0

Im(z)2N

| Im(z)|
e
ξ Im(z)

2~ d Im(z)

≤ C2N

π~d
(
~
ξ

)2N−2 ≤ C̃~(2N−2)γ−d,

for any N in N. We have in the above calculation used partial integration and the
estimate

|F−1
~ [χξ](s− z)| ≤ C

ξ

~
e
ξ Im(z)

2~ .

The above estimate imply that the contribution to the trace from the negative integral
is negligible. If we split the integral over positive imaginary part up according to µ1

we have by (3.78) the estimate

| 1
π

∫
0≤Im(z)≤µ1

∂̄(f̃ψµ1)(z)F−1
~ [χξ](s− z) Tr[Opw

~ (θk)(z −Aε(~))−1 Opw
~ (θl)]L(dz)|

≤ C2Nξ

π~d+1

∫
0≤Im(z)≤µ1

ψµ1(z)|Im(z)|Ne
ξ Im(z)

2~ d Im(z)

≤ C̃ ξ

~d+1
µN+1

1 ≤ C̃ ξ

~d+1

M~
ξ

log(
1

~
)N+1 ≤ C̃M~(N+1)γ−d−1,

For any N in N. Hence this terms also becomes negligible. What remains from (3.79)
is the expression

− 1

π

∫
Im(z)>µ1

∂̄(f̃ψµ1)(z)F−1
~ [χξ](s− z) Tr[Opw

~ (θk)(z −Aε(~))−1 Opw
~ (θl)]L(dz).

(3.80)
In order to estimates this we will need to change all our operators. This is done
by introducing an auxiliary variable in the symbols and make an almost analytic
extension in this variable. Recall we have change the operator Aε(~) such it is a
sum of Weyl quantised pseudo differential operators. Hence in the following we let
q(x, p) be one of our symbols and we let qt(x, p) = q(x, (p1 + t, p2, . . . , pd)). We now
take t be complex and make an almost analytic extension q̃t of qt in t according to
Definition II.7.9 for | Im(t)| < 1. The form of q̃t is

q̃t(x, p) =
n∑
r=0

(∂rp1q)(x, (p1 + Re(t), p2, . . . , pd))
(i Im(t))r

r!
,

Recalling the identity

Opw
~ (qRe(t)) = e−iRe(t)~−1x1 Opw

~ (q)eiRe(t)~−1x1 ,
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we have

Opw
~ (q̃t) =

n∑
r=0

(i Im(t))r

r!
e−iRe(t)~−1x1 Opw

~ (∂rp1q)e
iRe(t)~−1x1 . (3.81)

If we take derivatives with respect to Re(t) and Im(t) in operator sense we see

∂

∂ Re(t)
Opw

~ (q̃t) = − i
~

n∑
r=0

(i Im(t))r

r!
e−iRe(t)~−1x1 [x1,Opw

~ (∂rp1q)]e
iRe(t)~−1x1

=

n∑
r=0

(i Im(t))r

r!
e−iRe(t)~−1x1 Opw

~ (∂r+1
p1 q)eiRe(t)~−1x1 ,

and

∂

∂ Im(t)
Opw

~ (q̃t) = i

n∑
r=1

(i Im(t))r−1

(r − 1)!
e−iRe(t)~−1x1 Opw

~ (∂rp1q)e
iRe(t)~−1x1

=

n−1∑
r=0

(i Im(t))r

r!
e−iRe(t)~−1x1 Opw

~ (∂r+1
p1 q)eiRe(t)~−1x1 .

In the above calculation the unbounded operator x1 appear, but for all the symbols
we consider the commutator [x1,Opw

~ (∂rp1q)] will be bounded. This calculation gives

( ∂

∂ Re(t)
+ i

∂

∂ Im(t)

)
Opw

~ (q̃t) =
(i Im(t))n

n!
e−iRe(t)~−1x1 Opw

~ (∂n+1
p1 q)eiRe(t)~−1x1

This imply

‖ ∂
∂t̄

Opw
~ (θ̃j,t)‖Tr ≤ Cn~−d|Im(t)|n for j = k, l

‖ ∂
∂t̄
Ãε(~; t)‖L(L2(Rd)) ≤ Cn|Im(t)|n,

(3.82)

for any n in N0 by choosing an almost analytic expansion of this order. The operator
Ãε(~; t) is the operator where we have made the above construction for each symbol
in the expansion of the operator. Moreover we have by the construction of Ãε(~; t)

Ãε(~; t) = e−iRe(t)~−1x1Aε(~)eiRe(t)~−1x1 + i Im(t)Bε(~; t)

where Bε(~; t) is a bounded operator this form is obtained from (3.81) with q replaced
by the symbol of Aε(~). This gives

z − Ãε(~; t) = (z − U∗Aε(~)U)[I + (z − U∗Aε(~)U)−1i Im(t)Bε(~; t)],

where U = eiRe(t)~−1x1 . Hence if |Im(t)| ≤ |Im(z)|
C1

the operator z − Ãε(~; t) has an
inverse where C1 ≥ ‖Bε(~; t)‖L(L2(Rd)) + 1. This imply that the following function

η(t, z) = Tr[Opw
~ (θ̃k,t)(z − Ãε(~; t))−1 Opw

~ (θ̃l,t)]
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is well defined for |Im(t)| ≤ |Im(z)|
C1

. The function have by construction the properties

|η(t, z)| ≤ c

~d|Im(z)|

|
( ∂

∂ Re(t)
+ i

∂

∂ Im(t)

)
η(t, z)| ≤ cn|Im(t)|n

~d|Im(z)|2
.

for n in N0. But by cyclicity of the trace the function η(t, z) is independent of Re(t).
Hence we have

|η(±i Im(t), z)− η(0, z)| ≤ cN |Im(t)|n

~d|Im(z)|2

by the fundamental theorem of calculus. The construction of η gives us that

η(0, z) = Tr[Opw
~ (θk)(z −Aε(~))−1 Opw

~ (θl)].

Hence we can exchange the trace in (3.80) by η(−i µ1C1
, z) with an error of the order

~γn−d. This is due to our choice of µ1 = M~
ξ log(1

~) in the start of the proof and that
the integral is only over a compact region where |Im(z)| > µ1

C1
due to the definition

of ψµ1 . It now remains to estimate the term

− 1

π

∫
Im(z)>µ1

∂̄(f̃ψµ1)(z)F−1
~ [χξ](s− z)η(−iµ2, z)L(dz), (3.83)

where

η(−iµ2, z) = Tr[Opw
~ (θ̃k,−iµ2)(z − Ãε(~;−iµ2))−1 Opw

~ (θ̃l,−iµ2)],

and µ2 = µ1
C1

. From the construction of the almost analytic extension we have the
following form of the principal symbol of z − Ãε(~;−iµ2)

z − ãε,0(x, p;−iµ2) = z − (aε,0(x, p)− iµ2(∂p1aε,0)(x, p) +O(µ2
2)).

For − c0µ2
4 < Im(z) < 0, where c0 is the constant from the global micro-hyperbolicity

(3.75), we have by the global micro-hyperbolicity for |Re(z)| < η and ~ sufficiently
small

Im(z − ãε,0(x, p;−iµ2)) ≥ c0µ2 + Im(z)− Cµ2(Re(z)− aε,0(x, p))2.

To see this recall how the principal symbol was changed and that if Re(z)− aε,0(x, p)

is zero or small then is (∂p1aε,0)(x, p) > 2c0 hence we have to assume ~ sufficiently
small. This implies there exists a C2 such we have the inequality

Im(z − ãε,0(x, p;−iµ2) + C2µ2(z − ãε,0(x, p;−iµ2))(z − ãε,0(x, p;−iµ2))

≥ c0

2
µ2 + Im(z),

Where we again assume ~ sufficiently small and that all terms from the product in
the above equation which is not (Re(z)− aε,0(x, p))2 comes with at least one extra
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µ2. Now by Theorem II.7.4 we have for every g in L2(Rd)

Im(〈Opw
~ (z − ãε,0(−iµ2))g, g〉) + C2µ2‖Opw

~ (z − ãε,0(−iµ2))g‖2L2(Rd)

≥ 〈Opw
~ (Im(z − ãε,0(−iµ2)) + C2µ2(z − ãε,0(−iµ2))(z − ãε,0(−iµ2)))g, g〉

− cµ2~δ‖g‖2L2(Rd)

≥ (
c0µ2

2
+ Im(z))‖g‖2L2(Rd) − c̃(~

δ + µ2~δ)‖g‖2L2(Rd) ≥
c0µ2

6
‖g‖2L2(Rd),

for ~ sufficiently small. Now by a Hölder inequality we have

c0µ2

6
‖g‖2L2(Rd)

≤|〈Opw
~ (z − ãε,0(−iµ2))g, g〉|+ C2µ2‖Opw

~ (z − ãε,0(−iµ2))g‖2L2(Rd)

≤c0µ2

12
‖g‖2L2(Rd) + (

6

2c0µ2
+ C2µ2)‖Opw

~ (z − ãε,0(−iµ2))g‖2L2(Rd).

This shows that there exists a constant C such

c0µ2

C
‖g‖L2(Rd) ≤ ‖Opw

~ (z − ãε,0(−iµ2))g‖L2(Rd),

for all g in L2(Rd). Since Opw
~ (z − ãε,0(−iµ2)) is the principal part of Ãε(~;−iµ2)

and the rest comes with an extra ~ in front as we have assumed regularity τ ≥ 1 the
above estimate imply

c0µ2

2C
‖g‖L2(Rd) ≤ ‖z − Ãε(~;−iµ2)g‖L2(Rd),

for ~ sufficiently small. We can do the above argument again for Im(z) ≥ 0 and obtain
the same result. The estimate implies that the set {z ∈ C | Im(z) > − c0µ2

4 } is in the
regularity set of Ãε(~;−iµ2). Since {z ∈ C | Im(z) > − c0µ2

4 } is connect we have that
this is a subset of the resolvent set if just one point of the set is in the resolvent
set. For a z in C with positive imaginary part and |z| ≥ 2‖Ãε(~;−iµ2)‖ we have
existence of (z − Ãε(~;−iµ2))−1 as a Neumann series. Hence we can conclude that
(z− Ãε(~;−iµ2))−1 extends to a holomorphic function for z in C such Im(z) ≥ − c0µ2

4C1
.

This implies

0 = − 1

π

∫
C

(f̃ψµ1ψ− c0µ2
4C1

)(z)F−1
~ [χξ](s− z)∂̄η(−iµ2, z)L(dz)

=
1

π

∫
C
∂̄(f̃ψµ1ψ− c0µ2

4C1

)(z)F−1
~ [χξ](s− z)η(−iµ2, z)L(dz)

=
1

π

∫
Im(z)≥0

∂̄(f̃ψµ1)(z)F−1
~ [χξ](s− z)η(−iµ2, z)L(dz)

+
1

π

∫
Im(z)<0

∂̄(f̃ψµ1ψ− c0µ2
4C1

)(z)F−1
~ [χξ](s− z)η(−iµ2, z)L(dz),
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where we have used that ψ− c0µ2
4C1

(z) = 1 for all z in C with Im(z) ≥ 0. This equality

gives us the following rewriting of (3.83)

− 1

π

∫
Im(z)>µ1

∂̄(f̃ψµ1)(z)F−1
~ [χξ](s− z)η(−iµ2, z)L(dz)

=
1

π

∫
Im(z)<0

∂̄(f̃ψµ1ψ− c0µ2
4C1

)(z)F−1
~ [χξ](s− z)η(−iµ2, z)L(dz) +O(~N0),

(3.84)

for any N0 in N0. We have

∂̄(f̃ψµ1ψ− c0µ2
4C1

)(z) = ∂̄(f̃)(z)(ψµ1ψ− c0µ2
4C1

)(z) + f̃ψµ1(z)∂̄ψ− c0µ2
4C1

(z),

for Im(z) < 0, where we have used that ψµ1(z) = 1 for Im(z) ≤ 1. The part of the
integral on the right hand side of (3.84) with the derivative on f̃ will be small due to
the same argumentation as previously in the proof. What remains is the part where
the derivative is on ψ− c0µ2

4C1

. For this part we have

1

π
|
∫

Im(z)<0
f̃(z)∂̄ψ− c0µ2

4C1

(z)F−1
~ [χξ](s− z)η(−iµ2, z)L(dz)|

≤ C

~d
(
M~
C1ξ

log(1
~)
)2

∫
−η<Re(z)<η

−M~c0
2C2

1ξ
log( 1

~ )<Im(z)<−M~c0
4C2

1ξ
log( 1

~ )

ξ

~
e
ξ Im(z)

2~ L(dz)

=
C

~d
(
M~
C1ξ

log(1
~)
)2

)
e
− coM

2C2
1

log( 1
~ )

=
C̃ξ2

~d+2M2 log(1
~)2

~
co

2C2
1
M
.

Hence by choosing M sufficiently large we can make the above expression smaller
than ~N for any N in N0. This concludes the proof. �

This proposition actually imply a stronger version of it self, where the assumption of
boundedness is not needed.

Corollary II.8.6. Let Aε(~) be a strongly ~-ε-admissible operator of regularity τ ≥ 1

which satisfies Assumption II.7.1 and there exists a δ in (0, 1) such that ε ≥ ~1−δ.
Suppose there exists a number η > 0 such a−1

ε,0([−2η, 2η]) is compact and a constant
c > 0 such

|∇paε,0(x, p)| ≥ c for all (x, p) ∈ a−1
ε,0([−2η, 2η]),

where aε,0 is the principal symbol of Aε(~). Let f be in C∞0 ((−η, η)) and θ be in
C∞0 (Rdx ×Rdp) such that supp(θ) ⊂ a−1

ε,0((−η, η)). There exists a constant T0 > 0 such
that if χ is in C∞0 ((1

2~
1−γ , T0)) for a γ in (0, δ], then for every N in N, we have

|Tr[Opw
~ (θ)f(Aε(~))F−1

~ [χ](s−Aε(~)) Opw
~ (θ)]| ≤ CN~N ,

uniformly for s in (−η, η).
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Proof. The operator Aε(~) satisfies the assumptions of Theorem II.7.13. This gives
us the functional calculus for the pseudo differential operator for functions in the set
A which contains all functions from C∞0 (R). It can be remarked that the function
f(t)F−1

~ [χ](s − t) is a C∞0 (R) in t and both imaginary and real part is also in
C∞0 (R) just with real values. By g(t) we denote either the real or imaginary part of
f(t)F−1

~ [χ](s− t). Theorem II.7.13 gives

g(Aε(h)) =
∑
j≥0

~j Opw
~ (agε,j),

where
agε,0 = g(aε,0)

agε,j =

2j−1∑
k=1

(−1)k

k!
dε,j,kg

(k)(aε,0) for j ≥ 1,
(3.85)

the symbols dε,j,k are the polynomials from Lemma II.7.6. Now Let ϕ be in C∞0 (Rdx×
Rdp) such ϕ(x, p) = 1 on a neighbourhood of supp(f(aε,0)F−1

~ [χ](s− aε,0)). Then if
we define the operator Ãε(~) as the operator with symbol

ãε(~) =
∑
j≥0

~jϕaε,j .

This operator satisfies the assumptions in Theorem II.8.4. Hence we have

|Tr[Opw
~ (θ)f(Ãε(~))F−1

~ [χ](s− Ãε(~)) Opw
~ (θ)]| ≤ CN~N (3.86)

But by construction we have

‖g(Aε(h))− g(Ãε(h))‖ ≤ Cn~n,

for every n in N0, where we have used the form of the symbols given in (3.85).
Combining this with (3.86) we achieve the desired estimate. �

II.9 Weyl law for Rough pseudo-differential operators

In this section we will prove a Weyl law for rough pseudo differential operators and we
will do it with the approach used in [17]. Hence we will first consider some asymptotic
expansions of certain integrals.

Theorem II.9.1. Let Aε(~) be a ~-ε-admissible operator of regularity τ ≥ 1 which
satisfies Assumption II.7.1 and there exists a δ in (0, 1) such that ε ≥ ~1−δ. Suppose
there exists η > 0 such that a−1

0,ε([−2η, 2η]) is compact, where aε,0 is the principal
symbol of Aε(~). Let χ be in C∞0 ((−T0, T0)) and χ = 1 in a neighbourhood of 0, where
T0 is the number from Corollary II.8.6. Then for every f in C∞0 ((−η, η)) we have∫

R
Tr[f(Aε(~))eit~

−1Aε(~)]e−its~
−1
χ(t) dt = (2π~)1−d

[ N0∑
j=0

~jξj(s) +O(~N )
]
.
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where the error term is uniform with respect to s ∈ (−η, η) and the number N0

depends on the desired error. The functions ξj(s) are smooth functions in s and are
given by

ξ0(s) = f(s)

∫
{aε,0=s}

1

|∇aε,0|
dSs,

ξj(s) =

2j−1∑
k=1

1

k!
f(s)∂ks

∫
{aε,0=s}

dε,j,k
|∇aε,0|

dSs,

where the symbols dε,j,k are the polynomials from Lemma II.7.6. In particular we have

ξ1(s) = −f(s)∂s

∫
{aε,0=s}

aε,1
|∇aε,0|

dSs.

The proof of the theorem is split in two parts. First is the existence of the expansion
proven by a stationary phase theorem. Next is the form of the coefficients found by
application of the functional calculus developed earlier.

Proof. In order to be in a situation, where we can apply the stationary phase theorem
we need to exchange the propagator with the approximation of it constructed in
Section II.8. As the construction required auxiliary localisation we need to introduce
these. Let θ be in C∞0 (Rdx × Rdp) such supp(θ) ⊂ a−1

ε,0((−η, η)) and θ(x, p) = 1 for all
(x, p) in supp(f(aε,0)). Now by Lemma II.7.16 we have

‖(1−Opw
~ (θ))f(Aε(~))eit~

−1Aε(~)‖Tr ≤ ‖(1−Opw
~ (θ))f(Aε(~))‖Tr ≤ CN~N , (3.87)

for every N in N. Hence we have

|Tr[f(Aε(~))eit~
−1Aε(~)]− Tr[Opw

~ (θ)f(Aε(~))eit~
−1Aε(~)]| ≤ CN~N ,

for any N in N. This implies the estimate∫
R

Tr[f(Aε(~))eit~
−1Aε(~)]e−its~χ(t) dt

=

∫
R

Tr[Opw
~ (θ)f(Aε(~))eit~

−1Aε(~)]e−its~χ(t) dt+O(~N ).

(3.88)

In order to use the results of Section II.8 we need also to localise in time. To do
this we let χ2 be in C∞0 (R) such χ2(t) = 1 for t in [−1

2~
1− δ

2 , 1
2~

1− δ
2 ] and supp(χ2) ⊂

[−~1− δ
2 , ~1− δ

2 ]. With this function we have∫
R

Tr[Opw
~ (θ)f(Aε(~))eit~

−1Aε(~)]e−its~χ(t) dt

=

∫
R

Tr[Opw
~ (θ)f(Aε(~))eit~

−1Aε(~)]e−its~χ2(t)χ(t) dt

+

∫
R

Tr[Opw
~ (θ)f(Aε(~))eit~

−1Aε(~)]e−its~(1− χ2(t))χ(t) dt.

(3.89)

We will use the notation χ̃(t) = (1 − χ2(−t))χ(−t) in the following. If we start
with the second term which we will prove is negligible. Before we do so we need an
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extra localisation. This localisation can be introduced as the first hence if we use the
estimate in (3.87) and cyclicity of the trace again we have

Tr[Opw
~ (θ)f(Aε(~))eit~

−1Aε(~)] = Tr[Opw
~ (θ)f(Aε(~))eit~

−1Aε(~) Opw
~ (θ)] + CN~N .

Now by Corollary II.8.6 we have∫
R

Tr[Opw
~ (θ)f(Aε(~))eit~

−1Aε(~) Opw
~ (θ)]e−its~χ̃(−t) dt

= 2π~Tr[Opw
~ (θ)f(Aε(~))F−1

~ [χ̃](s−Aε(~)) Opw
~ (θ)]

≤ C̃N~N ,

(3.90)

uniformly in s in [−η, η] and any N in N0. What remains in (3.89) is the first term.
We need to change the positions of the operators f(Aε(~)) and eit~−1Aε(~) but they
commute so we can just do it. Here we have to change the quantisation of the
localisation. By Corollary II.4.20 we have for any N in N0

Opw
~ (θ) = Op~,0(θN0 ) + ~N+1RN (~),

where RN is a bounded operator uniformly in ~ since θ is a non-rough symbol.
Moreover we have

θN0 (x, p) =

N∑
j=0

~j

j!

(
− 1

2

)j
(∇xDp)

jθ(x, p)

If we choose N sufficiently large (greater than or equal to 2) we can exchange Opw
~ (θ)

by Op~,0(θN0 ) plus a negligible error. We will in the following omit the N on θN0 .
For the first term on the right hand side in (3.89) we have |t| ≤ ~1− δ

2 . Now by
Theorem II.8.1 there exists UN (t, ε, ~) with integral kernel

KUN (x, y, t, ε, ~)

=
1

(2π~)d

∫
Rd
ei~
−1〈x−y,p〉eit~

−1aε,0(x,p)
N∑
j=0

(it~−1)juj(x, p, ~, ε) dp,

such that
‖~∂tUN (t, ε, ~)− iUN (t, ε, ~)Aε(~)‖L(L2(Rd)) ≤ C~N0 , (3.91)

for |t| ≤ ~1− δ
2 and UN (0, ε, ~) = Op~,0(θ0). We emphasise that the number N in the

operator UN is dependent on the error N0. We now have

|Tr[Op~,0(θ0)eit~
−1Aε(~)f(Aε(~))]− Tr[UN (t, ε, ~)f(Aε(~))]|

= |Tr[

∫ t

0
∂s(UN (t− s, ε, ~)eis~

−1Aε(~)f(Aε(~)) ds]|

= |Tr[

∫ t

0
(−(∂tUN )(t− s, ε, ~) + i~−1UN (t− s, ε, ~)Aε(~))eis~

−1Aε(~)f(Aε(~)) ds]|

≤ ~−1

∫ t

0
‖~∂sUN (s, ε, ~)− iUN (s, ε, ~)Aε(~)‖L(L2(Rd))

× ‖ei(t−s)~−1Aε(~)f(Aε(~))‖Tr ds

≤ CN~N0−d,
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where we have used (3.91). By combining this with (3.89) and (3.90) we have∫
R

Tr[Opw
~ (θ)f(Aε(~))eit~

−1Aε(~)]e−its~χ2(t)χ(t) dt

=

∫
R

Tr[UN (t, ε, ~)f(Aε(~))]e−its~χ2(t)χ(t) dt+O(~N ).

(3.92)

Before we proceed we will change the quantisation of f(Aε(~)). From Theorem II.7.13
we have

f(Aε(~)) =
∑
j≥0

~j Opw
~ (afε,j),

where

afε,j =

2j−1∑
k=1

(−1)k

k!
dε,j,kf

(k)(aε,0), (3.93)

the symbols dε,j,k are the polynomials from Lemma II.7.6. We choose a sufficiently
large N and consider the first N terms of the operator f(Aε(~)). For each of these
terms we can use Corollary II.4.20 and this yields

Opw
~ (afε,j) = Op~,1(af,Mε,j ) + ~M+1RM ,

where ~M+1RM is a bounded by CM~N in operator norm. The symbol af,Mε,j is given
by

af,Mε,j =
M∑
j=0

~j

j!

(1

2

)j
(∇xDp)

jafε,j .

If we choose N sufficiently large we can exchange f(Aε(~)) by

Op~,1(ãf,Mε ) :=
N∑
j=0

~j Op~,1(af,Mε,j ),

plus a negligible error as UN (t, ε, ~) is trace class. We will omit the M when writing
ãf,Mε . Hence we have the equality∫

R
Tr[Opw

~ (θ)f(Aε(~))eit~
−1Aε(~)]e−its~χ2(t)χ(t) dt

=

∫
R

Tr[UN (t, ε, ~) Op~,1(ãf,Mε )]e−its~χ2(t)χ(t) dt+O(~N ).

As we have the non-critical assumption we have by Lemma II.8.3 that the trace in
the above expression is negligible for 1

2~
1− δ

2 ≤ |t| ≤ T0. Hence we can omit the χ̂2(t)

in the expression and then we have∫
R

Tr[Opw
~ (θ)f(Aε(~))eit~

−1Aε(~)]e−its~χ2(t)χ(t) dt

=

∫
R

Tr[UN (t, ε, ~) Op~,1(ãf,Mε )]e−its~χ(t) dt+O(~N ).

(3.94)
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The two operators UN (t, ε, ~) and Op~,1(ãf,Mε ) are both given by kernels and the
composition of the operators has the kernel

K
UN (t,ε,~) Op~,1(ãf,Mε )

(x, y)

=
1

(2π~)d

∫
Rd
ei~
−1〈x−y,p〉eit~

−1aε,0(x,p)
N∑
j=0

(it~−1)juj(x, p, ~, ε)ãf,Mε (y, p) dp.

We can now calculate the trace and we get∫
R

Tr[UN (t, ε, ~) Op~,1(ãf,Mε )]e−its~χ(t) dt

=
1

(2π~)d

∫
R

∫
Rd

∫
Rd
χ(t)eit~

−1(aε,0(x,p)−s)u(x, p, t, ~, ε)ãf,Mε (x, p) dxdpdt,

(3.95)

where

u(x, p, ~, ε) =
N∑
j=0

(it~−1)juj(x, p, t, ~, ε).

In order to evaluate the integral we will need the stationary phase theorem. We will
use the theorem in t and one of the p coordinates after using a prober partition
of unity according to p. By assumption we have that |∇paε| > c on the support of
θ. Hence we can make a partition Ωj such that ∂pjaε 6= 0 on Ωj and with loss of
generality we can assume that Ωj is connected. To this partition we choose a partition
of the unit supported on each of the sets Ωj . When we have localised to each of these
sets the calculation will be identical with some indicies changed. Hence we assume
that ∂p1aε 6= 0 on the entire support of the integrant. We will now make a change of
variables in the integral in the following way:

F : (x, p)→ (X,P ) = (x1, . . . , xd, aε,0(x, p), p2, . . . , pd).

This transformation has the following jacobian matrix

DF =

 Id 0d×d
∇xatε,0 ∇patε,0

0d−1×d+1 Id−1

 ,

where Id is the d-dimensional identity matrix, ∇xatε and ∇patε are the transposed of
the respective gradients and the zeros are corresponding matrices with only zeroes
and the dimensions indicated in the subscript. We note that

det(DF ) = ∂p1aε,0,

which is non zero by our assumptions. Hence the inverse map exists and we will
denote it by F−1 and the inverse. For the inverse we denote the part that gives p as
a function of (X,P ) by F−1

2 . By a change of variables we have∫
R

∫
Rd

∫
Rd
χ(t)eit~

−1(aε,0(x,p)−s)u(x, p, t, ~, ε)ãf,Mε (x, p) dxdpdt

=

∫
R

∫
Rd

∫
Rd
χ(t)eit~

−1(P1−s)u(X,F−1
2 (X,P ), t, ~, ε)ãf,Mε (X,F−1

2 (X,P ))

∂p1aε,0(X,F−1
2 (X,P ))

dXdPdt,
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where we have omitted the prefactor (2π~)−d. If we do the variable change P̃1 = P1−s
we arrive at a situation we we can apply quadratic stationary phase. Hence by
stationary phase in the variables P̃1 and t, (3.88), (3.89), (3.92), (3.94) and (3.95) we
get∫

R
Tr[f(Aε(~))eit~

−1Aε(~)]e−its~χ(t) dt = (2π~)1−d
[ N0∑
j=0

~jξj(s) +O(~N )
]
, (3.96)

uniformly for s in (−η, η). This ends the proof of the existence of the expansion.
From the above expression we have that ξj(s) are smooth functions in s hence

the above expression defines a distribution on C∞0 ((−η, η)). So in order to find the
expressions of the ξj(s)’s we consider the action of the distribution. We let ϕ be in
C∞0 ((−η, η)) and consider the expresion∫

R

∫
R

Tr[f(Aε(~))eit~
−1Aε(~)]e−its~χ(t)ϕ(s) dtds. (3.97)

Using that f is supported in the pure point spectrum of Aε(~) we have∫
R

∫
R

Tr[f(Aε(~))eit~
−1Aε(~)]e−its~χ(t)ϕ(s) dtds

= Tr[f(Aε(~))

∫
R
F1[χ]( s~)ϕ(Aε(~)− s) ds],

(3.98)

where we have used Fubini’s theorem. That f is supported in the pure point spectrum
follows from Theorem II.7.14. If we consider the integral in the right hand side of
(3.98) and let ψ be in C∞0 ((−2, 2)) such that ψ(t) = 1 for |t| ≤ 1 we have∫

R
F1[χ]( s~)ϕ(Aε(~)− s) ds =

∫
R

∫
R
e−its~

−1
χ(t)ψ(s)ϕ(Aε(~)− s) dsdt

+

∫
R

∫
R
e−its~

−1
χ(t)(1− ψ(s))ϕ(Aε(~)− s) dsdt.

(3.99)

If we consider the last integral on the right hand side of (3.99). Then by the identity( i~
s

)n
∂nt e

−its~−1
= e−its~

−1
,

partial integration, the spectral theorem and that the function (1− ψ(s)) is support
on |s| ≥ 1, we have that

‖
∫
R

∫
R
e−its~

−1
χ(t)(1− ψ(s))ϕ(Aε(~)− s) dsdt‖L(L2(Rd)) = CN~N , (3.100)

for any N in N. Now for the first integral in the right hand side of (3.99) we have by
Theorem II.4.17 (Quadratic stationary phase)∫

R

∫
R
e−its~

−1
χ(t)ψ(s)ϕ(Aε(~)− s) dsdt

= 2π~
N∑
j=0

~j
(i)j

j!
χ(j)(0)ϕ(j)(Aε(~)) + ~N+1RN+1(~),

(3.101)
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where we have used that ψ(0) = 1 and ψ(j)(0) = 0 for all j ∈ N. Moreover we have
from Theorem II.4.17 the estimate

|RN+1(~)| ≤ c
∑
l+k=2

∫
R

∫
R
|χ(N+1+l)(t)∂N+1+k

s ψ(s)ϕ(Aε(~)− s)| dtds.

As the integrants are supported on a compact set the integral will be convergent and
since ϕ is C∞0 (R) we have by the spectral theorem

‖RN+1(~)‖L(L2(Rd)) ≤ C. (3.102)

If we now use that χ is 1 in a neighbourhood of 0 and combine (3.98)–(3.102) we
have ∫

R

∫
R

Tr[f(Aε(~))eit~
−1Aε(~)]e−its~χ(t)ϕ(s) dtds

= 2π~Tr[f(Aε(~))ϕ(Aε(~))] + CN~N .
(3.103)

Since both f and ϕ are C∞0 ((−η, η)) functions we have by Theorem II.7.15 the
identity

Tr[f(Aε(~))ϕ(Aε(~))] =
1

(2π~)d

N∑
j=0

~jTj(fϕ,Aε(~)) +O(~N+1−d). (3.104)

From Theorem II.7.15 we have the exact form of the terms Tj(fϕ,Aε(~)), which is
given by

Tj(fϕ,Aε(~)) =


∫
Rd
∫
Rd(fϕ)(aε,0) dxdp j = 0∫

Rd
∫
Rd aε,1(fϕ)(1)(aε,0) dxdp j = 1∫

Rd
∫
Rd
∑2j−1

k=1
(−1)k

k! dε,j,k(fϕ)(k)(aε,0) dxdp j ≥ 2,

where the symbols dε,j,k are the polynomials from Lemma II.7.6. If we combine (3.96),
(3.103) and (3.104) we get∫

R
ξj(s)ϕ(s) ds = Tj(fϕ,Aε(~)).

If we consider T0(fϕ,Aε(~)) we have

T0(fϕ,Aε(~)) =

∫
Rd

∫
Rd

(fϕ)(aε,0) dxdp

=

∫
R
f(ω)ϕ(ω)

∫
{aε,0=ω}

1

|∇aε,0|
dSωdω,

where Sω is the euclidian surface measure on the surface in Rdx × Rdp given by the
equation aε,0(x, p) = ω. If we now consider Tj(fϕ̌, Aε(~)) we have

Tj(fϕ,Aε(~)) =

∫
Rd

∫
Rd

2j−1∑
k=1

(−1)k

k!
dε,j,k(fϕ)(k)(aε,0) dxdp

=

2j−1∑
k=1

(−1)k

k!

∫
R

(fϕ)(k)(ω)

∫
{aε,0=ω}

dε,j,k
|∇aε,0|

dSωdω

=

2j−1∑
k=1

1

k!

∫
R

(fϕ)(ω)∂kω

∫
{aε,0=ω}

dε,j,k
|∇aε,0|

dSωdω,

(3.105)
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where we in the last equality used partial integration. These equalities implies the
stated form of the functions ξj . �

We will now fixing some notation which will be useful for the rest of this section.
We let χ be a function in C∞0 ((−T0, T0)), where the T0 is a sufficiently small number.
The number will be the number T0 from Corollary II.8.6. We suppose χ is even and
χ(t) = 1 for |t| ≤ T0

2 . We then set

χ̂1(s) =
1

2π

∫
R
χ(t)e−its dt.

We assume χ̂1 ≥ 0 and that there is a c > 0 such that χ̂1(t) ≥ c in a small interval
around 0. These assumptions can be guaranteed by replacing χ by χ ∗ χ. With this
we set

χ̂~(s) =
1

~
χ̂1( s~) =

1

2π~

∫
R
χ(t)eits~

−1
dt.

Before we prove a Weyl law we recall a Tauberian theorem from [17, Theorem V–13].

Theorem II.9.2. Let τ1 < τ2 and σ~ : R → R be a family of increasing functions,
where ~ is in (0, 1]. Suppose that

(i) σ~(τ) = 0 for every τ ≤ τ1.

(ii) σ~(τ) is constant for τ ≥ τ2.

(iii) σ~(τ) = O(~−n) as ~→ 0, n ≥ 1 and uniformly with respect to τ in R.

(iv) ∂τσ~ ∗ χ̂~(τ) = O(~−n) as ~→ 0, with the same n as above and uniformly with
respect to τ in R.

where χ̂~ is defined as above. Then we have

σ~(τ) = σ~ ∗ χ̂~(τ) +O(~1−d),

as ~→ 0 and uniformly with respect to τ in R.

We can now formulate and prove a Weyl law for the rough pseudo differential
operators.

Theorem II.9.3 (Weyl law). Let Aε(~) be a strongly ~-ε-admissible operator of
regularity τ ≥ 1 which satisfies Assumption II.7.1 and there exists a δ in (0, 1) such
that ε ≥ ~1−δ. Suppose there exists a η > 0 such a−1

ε,0((−∞, η]) is compact, where aε,0
is the principal symbol of Aε(~). Moreover we suppose

|∇paε,0(x, p)| ≥ c for all (x, p) ∈ a−1
ε,0({0}). (3.106)

Then we have

|Tr[1(−∞,0](Aε(~))]− 1

(2π~)d

∫
Rd

∫
Rd

1(−∞,0](aε,0(x, p)) dxdp| ≤ C~1−d,

for all sufficiently small ~.
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Proof. By the assumption in (3.106) there exists a ν > 0 such

|∇paε,0(x, p)| ≥ c

2
for all (x, p) ∈ a−1

ε,0([−2ν, 2ν]).

More over by Theorem II.7.3 we have that the spectrum of Aε(~) is bounded from
below uniformly in ~ and let E denote a number with distance 1 to the bottom of
the spectrums. We now take two functions f1 and f2 in C∞0 (R) such

f1(t) + f2(t) = 1,

for every t in [E, 0], supp(f2) ⊂ [−ν
4 ,

ν
4 ], f2(t) = 1 for t in [−ν

8 ,
ν
8 ] and f2(t) = f2(−t)

for all t. With these functions we have

Tr[1(−∞,0](Aε(~))] = Tr[f1(Aε(~))] + Tr[f2(Aε(~))1(−∞,0](Aε(~))]. (3.107)

For the first term on the right hand in the above equality we have by Theorem II.7.15
that

Tr[f1(Aε(~))] =
1

(2π~)d

∫
Rd

∫
Rd
f1(aε,0(x, p)) dxdp+O(~1−d). (3.108)

In order to calculate the second term on the right hand side in (3.107) we will study
the function

ω →M(ω; ~) = Tr[f2(Aε(~))1(−∞,ω](Aε(~))]. (3.109)

We have that M(ω; ~) satisfies the three first conditions in Theorem II.9.2. We will
use the notation

P = supp(f2) ∩ spec(Aε(~)),

where spec(Aε(~)) is the spectrum of the operator Aε(~). The function M can be
written in the following form

M(ω; ~) =
∑
ej∈P

f2(ej)1[ej ,∞)(ω),

since f2 is supported in the pure point spectrum of Aε(~). This follows from Theo-
rem II.7.14. Let χ̂~ be defined as above. Then we will consider the convolution

(M(·; ~) ∗ χ̂~)(ω) =

∫
R
M(s; ~)χ̂~(ω − s) ds =

∑
ej∈P

f2(ej)

∫ ∞
ej

χ̂~(ω − s) ds.

If we take a derivative with respect to ω we get

∂ω(M(·; ~) ∗ χ̂~)(ω) =
∑
ej∈P

f2(ej)χ̂~(ω − ej)

=
1

2π~

∫
R

Tr[f2(Aε(~))eit~
−1Aε(~)]e−itω~

−1
χ(t) dt,

by the definition of χ̂~. We get now by Theorem II.9.1 the identity

∂ω(M(·; ~) ∗ χ̂~)(ω) =
1

(2π~)d
f2(ω)

∫
{aε,0=ω}

1

|∇aε,0|
dSω +O(~1−d). (3.110)
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This verifies the fourth condition in Theorem II.9.2 for M(·; ~), hence the Theorem
gives the identity

Tr[f2(Aε(~))1(−∞,0](Aε(~))]

=
1

(2π~)d

∫ 0

−∞
f2(ω)

∫
{aε,0=ω}

1

|∇aε,0|
dSωdω +O(~1−d)

=
1

(2π~)d

∫
Rd

∫
Rd
f2(aε,0(x, p))1(−∞,0](aε,0(x, p)) dxdp+O(~1−d).

(3.111)

By combining (3.107), (3.108) and (3.111) we get

Tr[1(−∞,0](Aε(~))] =
1

(2π~)d

∫
Rd

∫
Rd

1(−∞,0](aε,0(x, p)) dxdp+O(~1−d).

This is the desired estimate and this ends the proof. �

II.10 Weyl law for differential operators with irregular
coefficients

We now return to the differential operator of the form

A(~) =
∑

|α|,|β|≤m

(~D)αaαβ(x)(~D)β,

where the operator is defined via the associated quadratic form and the order is 2m.
As we saw in Section II.3 we could find framing operators for this type of operators.
The aim now is to use the theory that we have just developed to prove a Weyl law
for these operators.

Theorem II.10.1. Let A(~) be a differential operator of order 2m of the form

A(~) =
∑

|α|,|β|≤m

(~D)αaαβ(x)(~D)β,

where the coefficients aαβ(x) are in C1,µ(Rd) for µ in (0, 1] and real. We suppose the
following conditions on the coeficients are satisfied

(i) There is a γ0 > 0 such that minx∈Rd(aαβ(x)) > −γ0 for all α and β.

(ii) There is a γ1 > γ0 and C1,M > 0 such that

aαβ(x) + γ1 ≤ C1(aαβ(y) + γ1)(1 + |x− y|)M ,

for all x, y in Rd.

(iii) For all j in {1, . . . , d} there is a cj > 0 such that

|∂xjaαβ(x)| ≤ cj(aαβ(x) + γ1).
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Suppose there exists a constant C2 such that∑
|α|=|β|=m

aαβ(x)pα+β ≥ C2|p|2m, (3.112)

for all (x, p) in Rdx × Rdp. Moreover we suppose there is c > 0 such that

|∇pa0(x, p)| ≥ c for all (x, p) ∈ a−1
0 ({0}),

where
a0(x, p) =

∑
|α|,|β|≤m

aαβ(x)pα+β.

Lastly we suppose there is a ν > 0 such that the set a−1
0 ((−∞, ν]) is compact.

Then we have

|Tr[1(−∞,0](A(~))]− 1

(2π~)d

∫
Rd

∫
Rd

1(−∞,0](a0(x, p)) dxdp| ≤ C~1−d,

for all sufficiently small ~.

There are quite a number of assumptions in this theorem. We will shortly here
discuss them. The assumptions in (i), (ii) and (iii), can be seen assumptions on the
behaviour of the coefficients for large values of x. Since in the case of the coefficients
having compact support they are all verified. This regularity is need as we will use
functional calculus of rough pseudo-differential operators.

Without assumption global ellipticity (3.2) we could easily be in a situation,
where we there operator only had essential spectrum. This assumptions is also used
to verify properties of the approximating operators. The non-critical assumption (3.3)
is essential for our proof to be valid.

Proof. By Proposition II.3.3 we can find two framing operators A−ε (~) and A+
ε (~) of

the form
A±ε (~) = Aε(~)± C1ε

1+µ(I − ~2∆)m,

where Aε(~) is the original operator with the coefficients replaced by aεαβ(x) which
is the smoothed function of aαβ(x) according to Proposition II.3.2. The proposition
also gives for a sufficiently small ε, 0 is a non-critical value for the framing operators
and they are globally elliptic. With out loss of generality we can assume ε to be less
than or equal to 1.

If we consider the new coefficients aεαβ(x) the by construction they are given by

aεαβ(x) =

∫
Rd
aαβ(x− εy)ω(y) dy,

where ω(y) is a real Schwarz function integrating to 1. Hence there exists a sequence
of numbers cn for n in N0 such that

|ω(y)| ≤ cn
(1 + |y|)n

. (3.113)
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By taking a slightly larger γ than γ1 in the assumptions we have that aεαβ(x) + γ is
positive. Moreover by assumption we have for any x and z in Rd

aεαβ(x) + γ =

∫
Rd

(aαβ(x− εy) + γ)ω(y) dy

≤C1(aαβ(z) + γ)

∫
Rd

(1 + |x− εy − z|)Mω(y) dy

≤C1(aαβ(z) + γ)

∫
Rd

2M [(1 + |x− z|)M + |y|M ]ω(y) dy

≤C(aεαβ(z) + aαβ(z)− aεαβ(z) + γ)(1 + |x− z|)M

≤C̃(aεαβ(z) + γ)(1 + |x− z|)M ,

(3.114)

where we have used
|aαβ(z)− aεαβ(z)| ≤ cε1+µ, (3.115)

by Proposition II.3.2 and we have used that ε ≤ 1. This calculation verifies that
the functions aεαβ(x) + γ are tempered weights and the numbers C̃ and M are both
independent of ε in (0, 1]. Moreover for j in {1, . . . , d} we have

|∂xjaεαβ(x)| =|
∫
Rd
∂xjaαβ(x− εy)ω(y) dy| ≤

∫
Rd
|∂xjaαβ(x− εy)ω(y)| dy

≤
∫
Rd
cj(aαβ(x− εy) + γ1)|ω(y)| dy

≤C(aαβ(x) + γ1)

∫
Rd

(1 + ε|y|)M |ω(y)| dy

≤Cj(aεαβ(x) + γ),

(3.116)

where we again have used (3.115). The calculation also shows that Cj is uniform for
ε in (0, 1]. For any η in Nd with |η| ≥ 2 we have

|∂ηxaεαβ(x)| ≤ cε1+µ−|η| ≤ cαε1−|η|(aεαβ(x) + γ), (3.117)

by Proposition II.3.2 with a constant which is uniform for ε in (0, 1]. All these
estimates will prove useful later. If we consider the framing operators A−ε (~) and
A+
ε (~) they have the form

A±ε (~) =
∑

|α|,|β|≤m

(~D)αaεαβ(x)(~D)β ± C1ε
1+µ(I − ~2∆)m, (3.118)

as the coefficients are smooth we can represent the operators A±ε (~) as Weyl quantised
rough pseudo differential operators,

A±ε (~) =

2m∑
j=1

~j Opw
~ (a±ε,j), (3.119)

where the principal symbol is

a±ε,0(x, p) =
∑

|α|,|β|≤m

aεαβ(x)pα+β ± C1ε
1+µ(1 + p2)m. (3.120)
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The subprincipal symbol is the terms where 1 derivative have been used on one of the
coefficients. The symbol aε,2 contains the cases where 2 derivatives have been used
on the coefficients. This continues for all the symbols. By the estimates in (3.116)
and (3.117) gives us that the framing operators satisfies Assumptions II.7.1 and has
regularity τ = 1. What remains in order to be able to apply Theorem II.9.3 is the
existence of a ν̃ > 0 such that the preimage of (−∞, ν̃] under a±ε,0 is compact. By the
uniform ellipticity we have that the preimage is compact in p. Hence if we choose
ν̃ = ν

2 and note that as in the proof of Proposition II.3.3 we have the estimate

|
∑

|α|,|β|≤m

(aεαβ(x)− aαβ(x))pα+β ± C1ε
k+µ(1 + p2)m| ≤ Cεk+µ, (3.121)

since we can assume p to be in a compact set. This implies the inclusion

{(x, p) ∈ R2d | a±ε,0(x, p) ≤ ν

2
} ⊆ {(x, p) ∈ R2d | |a0(x, p)| ≤ ν

2
+ Cεk+µ}.

Hence for a sufficiently small ε we have that {(x, p) ∈ R2d | a±ε,0(x, p) ≤ ν
2} is compact

due to our assumptions. Now by Theorem II.9.3 we get for sufficiently small ~ and
ε ≥ ~1−δ for a positive δ ≤ 1

2 that

|Tr[1(−∞,0](A
±
ε (~))]− 1

(2π~)d

∫
Rd

∫
Rd

1(−∞,0](a
±
ε,0(x, p)) dxdp| ≤ C~1−d. (3.122)

Here we choose δ = µ
1+µ . Now if we consider the following difference between integrals

|
∫
Rd

∫
Rd

1(−∞,0](a
±
ε,0(x, p)) dxdp−

∫
Rd

∫
Rd

1(−∞,0](aε,0(x, p)) dxdp|

≤
∫
Rd

∫
Rd

1[−Cε1+µ,Cε1+µ](aε,0(x, p)) dxdp ≤ C̃ε1+µ,

(3.123)

for ε and hence ~ sufficiently small. Where we in the last inequality have used the
non-critical condition. By combining (3.122) and (3.123) we get

|Tr[1(−∞,0](A
±
ε (~))]− 1

(2π~)d

∫
Rd

∫
Rd

1(−∞,0](a
(
ε,0x, p)) dxdp| ≤ C~

1−d + C̃ε1+µ~−d.

(3.124)
If we take ε = ~1−δ we have that

ε1+µ = ~(1+µ)(1−δ) = ~.

Hence (3.124) with this choice of δ and ε gives the estimate

|Tr[1(−∞,0](A
±
ε (~))]− 1

(2π~)d

∫
Rd

∫
Rd

1(−∞,0](aε,0(x, p)) dxdp| ≤ C~1−d. (3.125)

Now as the framing operators satisfied the relation

A−ε (~) ≤ A(~) ≤ A+
ε (~),

we get by the min-max-theorem the ralation

Tr[A+
ε (~)] ≤ Tr[A(~)] ≤ Tr[A−ε (~)].
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Combining this with (3.125) we get the estimate

|Tr[1(−∞,0](A(~))]− 1

(2π~)d

∫
Rd

∫
Rd

1(−∞,0](aε,0(x, p)) dxdp| ≤ C~1−d. (3.126)

Which is the desired estimate and this ends the proof. �

Remark II.10.2. Both Weyl laws have been for the function 1(−∞.0](t) applied to
the operator. By translations and changing the assumptions slightly we could have
taken any number E instead of 0 and we could have considered 1[E1,E2](t) also under
a slight change of assumptions.

Remark II.10.3. This is how far we got before i handed in my thesis. One observa-
tion to do, is that the method we use here to prove the Weyl law for the irregular
differential operators actually also would work if in stead the operator had been a
~-admissible operator as in [17] perturbed by an irregular potential. Of cause this
is only under the right conditions on the ~-admissible operator and the irregular
potential. But to our knowledge this has note been covered before.

Appendix: Multivariate differentiation and Taylor’s
formula

In this appendix we will recall some results about multivariate differentiation and
the multivariate Taylor’s formula. We will start with Leibniz’s formula:

Theorem II.1.1 (Leibniz’s formula). Let α be in Nd0. For any C |α|(Rd) functions
f and g it holds

∂αx f(x)g(x) =
∑
β≤α

(
α

β

)
∂βxf(x)∂α−βx g(x).

A proof of the forumla can eg. be found in [18]. The next result gives a multivariate
chain rule for any number of derivatives:

Theorem II.1.2 (Faà di Bruno formula). Let f be a function from C∞(R) and
g a function from C∞(Rd). Then for all multi indices α with |α| ≥ 1 the following
formula holds:

∂αx f(g(x)) =

|α|∑
k=1

f (k)(g(x))
∑

α1+···+αk=α
|αj |>0

cα1···αk∂
α1
x g(x) · · · ∂αkx g(x),

where f (k) is the k’th derivative of f. The second sum should be understod as a sum
over all ways to split the multi index α in k non-trivial parts. The numbers cα1···αk ’s
are combinatorial constants independent of the functions.
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A proof of the Faà di Bruno formula can be found in [4], where they prove the
formula in greater generality than stated here. It is also possible to find the constants
from their proof, but for our purpose here the exact value of the constants are not
important. The next Corollary is the Faà di Bruno formula in the case of a R2d

instead of just Rd. But we need to controle the exact number of derivatives in the
first d components hence it is stated separately.

Corollary II.1.3. Let f be a function from C∞(R) and a a function from C∞(Rdx×
Rdp). Then for all multi indices α and β with |α|+ |β| ≥ 1 the following formula holds:

∂βp ∂
α
x f(a(x, p)) =

|α|+|β|∑
k=1

f (k)(a(x, p))
∑
Ik(α,β)

cβ1···βkα1···αk∂
β1
p ∂

α1
x a(x, p) · · · ∂βkp ∂αkx a(x, p),

where the set Ik(α, β) is defined by

Ik(α, β) = {(α1, . . . , αk,β1, . . . , βk) ∈ N2kd
0

|
k∑
l=1

αl = α,

k∑
l=1

βl = β, max(|αl|, |βl|) ≥ 1 ∀l}.

The second sum is a sum over all elements in the set Ik(α, β), the constants cβ1···βkα1···αk
are combinatorial constants independent of the functions and f (k) is the k’th derivative
of the function f .

We will only give a short sketch of the proof of this corollary.

Proof (Sketch). We have by the Faà di Bruno formula (Theoram II.1.2) the identity

∂αx f(a(x, p)) =

|α|∑
k=1

f (k)(a(x, p))
∑

α1+···+αk=α
|αj |>0

cα1···αk∂
α1
x a(x, p) · · · ∂αkx a(x, p) (127)

By Leibniz’s formula we have

∂βp ∂
α
x f(a(x, p))

=
∑
γ≤β

(
β

γ

) |α|∑
k=1

∂γp f
(k)(a(x, p))

∑
α1+···+αk=α
|αj |>0

cα1···αk∂
β−γ
p [∂α1

x a(x, p) · · · ∂αkx a(x, p)].

(128)
In order to obtain the form stated in the corollary we need to use the Faà di Bruno
formula on the terms

∂γp f
(k)(a(x, p)), (129)

and we need to use Leibniz’s formula (multiple times) on the terms

∂β−γp [∂α1
x a(x, p) · · · ∂αkx a(x, p)]. (130)

If this is done, then by using some algebra the stated form can be obtained. The
particular form of the index set Ik(α, β) also follows from this algebra. �
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We end this appendix by recalling the multidimensional Taylor’s formula just for sake
of completeness as it is used multiple times.

Theorem II.1.4 (Taylor’s formula). Let f be in Ck(Rd); then for x and y in Rd

one has

f(x+ y) =
∑
|α|<k

yα

α!
∂αx f(x) +

∑
|α|=k

k
yα

α!

∫ 1

0
(1− s)k−1∂αx f(x+ sy) ds.

A proof of the formula can e.g. be found in [18].
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