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Abstract

It was a major breakthrough when design-based stereological methods for ver-
tical sections were developed by Adrian Baddeley and coworkers in the 1980’s.
Most importantly, it was shown how to estimate in a design-based fashion sur-
face area from observations in random vertical sections with uniform position
and uniform rotation around the vertical axis. The great practical importance
of these developments is due to the fact that some biostructures can only be
recognized on vertical sections. Later, local design-based estimation of mean
particle volume from vertical sections was developed. In the present paper,
we review these important advances in stereology. Quite recently, vertical sec-
tions have gained renewed interest, since it has been shown that mean particle
shape can be estimated from such sections. These new developments are also
reviewed in the present paper.
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1 Introduction

The main practical purpose of stereology is to estimate quantitative parameters of a
spatial structure from microscopy images of sections through the structure. A tran-
sition from ‘classical’ to ‘modern’ stereology occurred in the late 1970’s. Modern
stereology has rigorous statistical foundations, involving a number of key concepts
from survey sampling theory, offering new stereological identities and using a wider
range of stochastic models. Design-based as well as model-based methods are avail-
able (Baddeley & Jensen, 2005).

Vertical sections play an important role in modern stereology. The initiator of
design-based methods for vertical sections is Baddeley (1983, 1984, 1985, 1987) who
has had a major impact on the way microscopy images are analyzed, see the highly
cited paper Baddeley, Gundersen & Cruz-Orive (1986).

An early and celebrated example of the importance of vertical sectioning was pre-
sented by Dr. E. Hasselager at one of the first Workshops on Stochastic Geometry,
Stereology and Image Analysis. (These workshops are still running every second year.
Another important workshop series was the GEOBILD workshops in the former



DDR.) Hasselager wanted to make inference on microvilli in pig placenta, finger-like
objects that must be sectioned longitudinally for correct identification, see Hasse-
lager (1986).

Examples of quantitative parameters that can be estimated from vertical sections
are volume (Baddeley & Jensen, 2005, p. 179), surface area (Baddeley, 1983, 1984,
1985, 1987; Baddeley, Gundersen & Cruz-Orive, 1986), particle number (Miles, 1978;
Sterio, 1984) and mean particle volume (Gundersen, 1988; Jensen & Gundersen,
1993). Recently, it has been shown that also mean particle shape can be estimated
from vertical sections (Kousholt et al., 2017; Larsen et al., 2019). Here, volume
tensors of rank 0, 1 and 2 are used, from which ellipsoidal approximations to the
particles can be constructed.

In the present paper, we review these important advances in stereology. The main
focus is on the recent research on estimation of mean particle shape from vertical
sections.

The paper is organized as follows. In Section 2, vertical sections are defined,
and stereological estimators of volume and surface area from vertical sections are
derived. The remaining part of the paper deals with stereological inference for par-
ticle populations. The particles are modelled by a stationary marked point process
in Section 3, and estimators of particle number and mean particle volume, based
on observations in vertical sections, are presented. The estimator of mean particle
volume is valid in this model-based setting under the restricted isotropy assumption,
meaning that the particle distribution is invariant under rotations around the ver-
tical axis. Under the same assumption, an estimator of mean particle shape from
vertical sections is described in Section 4. The mean particle shape is represented
by the so-called Miles ellipsoid! which is a function of mean particle volume tensors
of rank 0, 1 and 2. These tensors can be estimated consistently (in a probabilistic
sense) from observations in vertical sections.

2 Volume and surface area from vertical sections

A ‘vertical’ section is a plane L in R3, which is parallel to a pre-chosen fixed di-
rection, called the ‘vertical’ direction. Equivalently, a vertical section is a plane,
perpendicular to a fixed plane, called the ‘horizontal’ plane. The vertical direction
may be chosen as a special direction in the structure under study, an example is
longitudinal sections of muscle tissue. Alternatively, the vertical direction may be
chosen for experimental convenience. Some structures can only be recognized on
vertical sections.

If we choose a coordinate system in R? such that the z-axis is the vertical direction
and the xy-plane is the horizontal plane, then a vertical plane is any plane of the
following form

L="Lp,={(x,y,2): xcosh +ysinh = u},

6 € [0,7) and v € R. The parameters (6, u) specify the position of the intersection
line between L and the xy-plane. Clearly, the vertical plane is uniquely determined

1Roger E. Miles was a pioneer in the development of stereological methods for particle popula-
tions with arbitrarily shaped particles.



by its intersection line, see also Figure 1. A natural uniform measure on vertical
planes is
dL = dud#.

Figure 1: A vertical plane can be parametrized by polar coordinates 6 € [0, 7) and u € R.

Let Y be a compact subset of R3. It is straightforward to see that the volume
(Lebesgue measure) V(Y) of Y can be determined from the areas A(Y N L) on
vertical planes L. Using the product structure of Lebesgue measure in R?, we thus
have

/ A(Y A L)dL = / / A(Y A Ly,) dudd = 7V (V).
vertical planes 0 —00

The situation is more complicated for quantitative parameters like surface area.
Until the beginning of the 1980’s, it was actually not possible in a design-based
setting to estimate stereologically surface area from observations in vertical sections
of the structure under study. The classical stereological methods were based on
probes (lines, planes) that had the freedom to be arbitrarily oriented. As an example,
the surface area S(Y) of Y, satisfying mild smoothness conditions, was estimated
from observation of intersection points on lines 7% in R3 that could have any direction
in R®. The basic geometric identity used was the following

/ N(OY A Ty) dTs = 7S(Y),
lines in R3

where N(0Y N T5) is the number of intersection points between the boundary 0Y
of Y and T3. If we parametrize the line T3 in R3 by (w,t), where w is its direction
represented as a point on the unit hemi-sphere in R? and ¢ is the intersection point
between T3 and the plane w' through o perpendicular to w, then

ATy = dt dw,

where dw is the element of the uniform measure on the unit hemi-sphere and dt is
the element of two-dimensional Lebesgue measure on w.

It was a major breakthrough when Adrian Baddeley developed design-based
stereological methods for vertical sections in the 1980’s (Baddeley, 1983, 1984, 1985,
1987) and published together with collaborators the highly cited paper Baddeley,

Gundersen & Cruz-Orive (1986) in Journal of Microscopy. A basic observation was



that any non-vertical line in R? is contained in a unique vertical plane. The math-
ematical problem in the case of surface area estimation was therefore to find a de-
composition of the measure d73 via vertical planes. Such a measure decomposition
was already found in Baddeley (1983, p. 13-16), using the coarea formula,

dT3 = sin Oé(TQ)dTQ dL. (21)

Here, dT5 is the element of the uniform measure on lines in L and «(73) is the angle
between T3 and the vertical axis. Using (2.1), we find

TS(YV) = / N(OY NTy) dTs
lines in R3
= / / N(@YHTQ) SiIlCM(TQ) dTQ dL
vertical planes Jlines C L

— / W(9Y N L)dL, (2.2)
vertical planes

where

W(OY A L) = / N(OY ATy sina(Ty) dT. (2.3)
lines C L

Based on (2.2) and (2.3), a number of designs, involving systematic sampling, have

been developed for estimating surface area from vertical sections, see Baddeley,

Gundersen & Cruz-Orive (1986) or Baddeley & Jensen (2005, 182-187).

Methods as described above have much earlier been derived in a model-based set-
ting by Spektor (1960) and Hilliard (1967) under the assumption that the structure
under study is stationary and isotropic with respect to rotations around the vertical
axis. The design-based version, derived by Adrian Baddeley, applies to arbitrary
orientation distribution of the structure which, of course, is a great advantage.

3 Stereological inference for particle populations

Vertical sections also play an important role in stereological inference for particle
populations. We will here treat the model-based case which, we believe, is most

appealing for statisticians. For design-based inference on particle populations, see
e.g. Baddeley & Jensen (2005, p. 255-269).

3.1 The particle model

We assume that the particles can be modelled by a marked point process

U= {[?Jz‘;Zz']}7

where the ith particle Y; = y; + Z; is represented by a reference point y; € R? and
a mark Z; C R3. We suppose that the marks are compact subsets of R and the
process of reference points {y;} is a point process in R3, i.e. a locally finite random
set in R3. For an introduction to marked point processes, see e.g. Chiu et al. (2013,
Section 4.2).



An important example is the case where the particles are biological cells and the
reference points are cell nuclei or some identifiable part of the nuclei such as the
nucleoli.

We assume that the marked point process W is stationary, such that

Uty ={lyi +y; Z]}

has the same distribution as ¥ for all y € R3. The process of reference points {y;}
is thereby also stationary. Its intensity is denoted .

Under stationarity, we can give a precise meaning to the particle mark distribu-
tion via the so-called intensity measure of the marked point process, also in cases
where the marks are not necessarily independent and identically distributed. If we let
C3 be the set of compact subsets of R?, the intensity measure of ¥ is for measurable
sets A C R? and C C C? given by

An(AxC)=EY 1y € A, Z € C}.

Since W is stationary, A,,(-xC) is a translation invariant measure on R?® and therefore
proportional to volume measure V(- ). Accordingly, A,, can be decomposed as

Am(A x C) = AV (A), (3.1)

where A\ is the mean number of particles per unit volume with marks in C'. The
particle mark distribution is then defined by

P (C) = A/ (3.2)
Combining (3.1) and (3.2), we have
An(A X C)=AV(A)P,(C). (3.3)

We let Zy be a random compact set, distributed according to the particle mark
distribution F,,. The random set Zj may be regarded as a randomly chosen particle
or a typical particle with the origin o as its reference point.

3.2 Particle number and mean particle volume from vertical
sections

As is common in optical microscopy, we will here study the particle process via sec-
tions. An important methodological problem is sampling bias. Restricting attention
to those particles hit by a plane section introduces a bias: larger particles are more
likely to be sampled since they are more likely to be hit by the section plane. The
sampling bias is eliminated if we instead sample those particles with reference point
in a 3D sampling box W,

S={i:y; e W}, (3.4)
cf. Figure 2. If N(S§) is the number of sampled particles, we clearly have

EN(S)=E> 1{y; € W} =\V(W),

so A = N(8)/V(W) is an unbiased estimator of A.
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Figure 2: Sampling of particles, using a 3D version of Miles’ associated point rule. A
particle is sampled if its reference point belongs to the 3D sampling box. Sampled particles
are marked by ticks. Reproduced from Baddeley & Jensen (2005) by kind permission of
Chapman & Hall/CRC. (©) 2005 Chapman & Hall/CRC.

R

Figure 3: The particles are sampled if they first appear in the space bounded by neigh-
bouring light grey and dark grey planes. If the planes are ordered from top to bottom, only
the uppermost particle is sampled by this procedure. Reproduced from Baddeley & Jensen
(2005) by kind permission of Chapman & Hall/CRC. () 2005 Chapman & Hall/CRC.

This type of sampling can be performed in optical microscopy where W is gen-
erated by moving the focal plane down through a transparent histological slab. The
height of W is equal to the distance, travelled by the focal plane. See also the il-
lustration Ziegel, Nyengaard & Jensen (2015, Fig. 4). The sampling procedure is a
3D version of Miles” (Miles, 1974) associated point rule. An alternative is to sample
those particles with upper-most point in W, cf. Figure 3. This type of sampling
design, called the disector (Sterio, 1984), has had widespread applications in the
biosciences.

Based on the sample of particles (3.4), we can also estimate a mean value E ¢(Z)
in the particle mark distribution where ¢(Z) is a particle characteristic, such as
volume, centre of mass or shape of Z. It follows from (3.3) that

EZ e(Yi—y) =E Z o(Zi) = A\V(W)E p(Zy),

€S y, €W



w0 EY . soYi - u)
EN(S)

= ESO(ZO);

and
S (Y — ) /N(S) (3.5)
=
becomes a ratio-unbiased estimator of E ¢(Z). Note that each sampled particle Y;
enters into the estimator with its own reference point y; as origin. If the particle
process is ergodic, (3.5) is also a consistent estimator of E ¢(Z) in an expanding
window regime, see Daley & Vere-Jones (2008, Corollary 12.2.V).

For the determination of the estimator (3.5), it is needed to have direct access to
the sampled particles in 3D. If this is not possible, stereological methods may be used
to estimate p(Y; — y;). We will here focus on the situation from optical microscopy
where a transparent histological slab, cut vertically from the biostructure under
study, is available. Let us suppose that the slab is parallel to a vertical plane L, say.
Without loss of generality, we can assume that L passes through the origin o. The
observations are

yi, iN(yi+L), 1€S8. (3.6)

Here, y; + L is the focal plane through the reference point y; of the sampled parti-
cle Y;. Note that, when placing the histological slab onto the microscope stage for
observation, the slab will appear horizontal, as shown in Figure 2. A design of this
type is called local (Jensen, 1998).

In our model-based setting, the stereological estimators of Ep(Zg) are valid under
the restricted isotropy assumption, meaning that the distribution of Zg is invariant
under rotations around the vertical axis.

As an example, let us consider estimation of EV(Z), using the observations (3.6).
(In the next section, we consider more involved cases.) Let us choose a coordinate
system such that the vertical axis is the z-axis and the vertical plane L is the xz-
plane,

L ={(u,0,2) : u,z € R}.

Using cylindrical coordinates with respect to the z-axis, we have, see Figure 4,

A

dx=luld0dudz

Figure 4: Decomposition of volume measure, using cylindrical coordinates.



EV (Z) = / dz

/ / / ((ucosO,usinb, z) € Zy)
Z=—00 =—o0 J0 0

% |u| df dudz.

Under restricted isotropy, we find

EV(Zy) = 77/ / P((u,0,2) € Zo)|u| dudz
—EV(ZoN L),

where

V(znL) = w/ | du dz. (3.7)
ZNL

It follows that

> V(Y —y:) N L)/N(S) (3.8)

€S

is a ratio-unbiased estimator of EV(Z;). The estimator (3.8) is also a consistent
estimator of EV(Z,) in an expanding window regime if the particle process is ergodic.
Note that the estimator (3.8) can be determined from the observations in (3.6), since

(Yi—y)NL=1[YiN (y; + L)] — .

A discretized version of (3.8), called the wvertical rotator, was presented in Jensen &
Gundersen (1993), see also the recent paper Hasselholt et al. (2019).

4 Mean particle volume tensors from vertical
sections

Recently, it has been shown under the restricted isotropy assumption that mean
particle volume tensors can be estimated from observations in vertical sections
(Kousholt et al., 2017). The estimators can be combined to provide a consistent
estimator of the Miles ellipsoid. This ellipsoid carries important information about
mean particle shape and orientation.

Below, we give a short introduction to volume tensors, present the Miles ellipsoid
and its properties, and describe the estimation of mean particle volume tensors from
vertical sections. We focus on the model-based setting. A dual design-based approach
is discussed in Larsen et al. (2019).

4.1 Volume tensors

For a non-negative integer r, the volume tensor of rank r of a compact subset Y of

R3 is defined by
1
®,.(Y) =+ /y dy. (4.1)

rl



Here, y" is the symmetric rank r tensor. For y = (y1,y2,%3) € R3, y" can be repre-
sented as an array of elements
3
(Y )iriais = Y1 YSYS, i1,12,13 € {0,...,7}, Z iy =T
j=1

The integration in (4.1) is to be understood elementwise.
The volume tensor of rank 0

Bo(v) = [ 1y =vY)

is the volume of Y, while the volume tensor of rank 1 is the following point in R?

o (Y) = </Yy1dy,/yyzdy,/yyady>-

Note that ¢(Y) = ®1(Y)/Po(Y) is the centre of mass ¢(Y') of Y. The volume tensor
of rank 2 can be represented as a 3 X 3 matrix with entries

1
(I)Q(Y)i,j = 5/}/%’% dy,

i,j=1,23.

Using ®o(Y"), ®1(Y) and $(Y'), we can construct a centred ellipsoid e(Y") of the
same volume as Y such that ¢(Y) + e(Y) is an ellipsoidal approximation to Y, cf.
Figure 5. It can be obtained from a spectral decomposition of ®o(Y — ¢(Y)),

®,(Y)?
204(Y)
where B is an orthogonal matrix and D is a diagonal matrix with diagonal elements
d;, i =1,2,3. The ellipsoid e(Y") has directions of semi-axes equal to the columns of

B, lengths of semi-axes proportional to v/d;, i = 1,2, 3, and volume equal to V(Y.
If YV is an ellipsoid, Y = ¢(Y) + e(Y), see e.g. Jensen & Ziegel (2014, Section 3).

(Y — (V) = Da(Y) — BDB",

4.2 The Miles ellipsoid

Let us suppose that the particles can be modelled by a stationary marked point
process ¥, as described in Section 3.1. The Miles ellipsoid e(V) is a centred ellipsoid
that provides information about mean particle shape and orientation. The ellipsoid
e(V) is determined from E®(Zg), EPi(Zy) and Edy(Zg), using exactly the same
method as the one used for determining e(Y") from ®4(Y"), ®1(Y") and $o(Y"). If the
particles are translates of the same particle Zy, then e(V) = e(Z)), the ellipsoidal
approximation to Z.

Under the assumption of restricted isotropy, the average orientation of the par-
ticles in 3D coincides with the vertical axis. Under restricted isotropy, the Miles
ellipsoid e(W¥) is an ellipsoid of revolution around the vertical axis (Larsen et al.,
2019, Appendix A), containing information about mean particle shape. If we let the
lenghts of the semi-axes of this Miles ellipsoid e(¥), parallel and perpendicular to
the vertical axis, be denoted a and b, respectively, then the ratio I = a/b indicates
the degree of elongation of the particles in the direction of the vertical axis.

9



t c(V)+e(Y)

Figure 5: Illustration in 2D of the ellipsoidal approximation to a particle Y. The centre
of mass of Y is denoted ¢(Y'), while e(Y") is a centred ellipsoid, such that ¢(Y) + e(Y) is
an ellipsoidal approximation to Y. If Y is an ellipsoid, then Y = ¢(Y') + e(Y).

4.3 Estimation of mean particle volume tensors

The estimators of mean particle volume tensors can be derived, using the same type
of reasoning as the one presented in Section 3 for estimation of EV(Z). Here, we
also choose a coordinate system such that the vertical axis is the z-axis and use
cylindrical coordinates with respect to this axis. It turns out to be most convenient
to let (0,u,z) vary in the set [0,27) x Ry x R. We get, cf. Kousholt et al. (2017,
Section 14.3),

E®,.(Zy) = —IE/ z" dx

— / / / ((ucos@,usinb, z) € Zg)
—oo Ju=0J0 0

(ucosO,usinb, z) udfd dudz
:/ / P((U,,O,Z) € ZO)gr(u7z) dUdZ> (42)
z=—o00 Ju=0

where we at the third equality sign have used restricted isotropy and g, (u, z) is the
following rank r tensor

1 2
gr(u,z) = —'/ (ucos@,usinf, z) udb, u>0,z€R (4.3)
T Jo=0

We find
BO(Z0) =B [ gu2)dudz,
ZoNL4

where
Ly ={(u,0,2) :u >0,z € R}.

Using symmetry arguments, we get
E®,(Zo) = ED,(Zo N L),
where

~ 1
(2N L) :5/2 arlful. ) duds (4.4)
N

10



and
L ={(u,0,2) : u,z € R},

as previously. (Note that (4.4) is valid for the actual choice of the z-axis as vertical
axis.) The resulting estimators of E®,.(Z),

Z O, ((Y; — i) N L)/N(S), r non-negative integer, (4.5)
i€S
can be determined from the available observations (3.6). If the particle process is
ergodic, the estimators (4.5) are consistent and can for » = 0, 1,2 be combined into
a consistent estimator of the Miles ellipsoid e(¥).
It follows from Kousholt et al. (2017, p. 427-428) that for iy, i9,i3 € {0,...,r}
with 23:1 iy =T,

%cimu““ﬁlz”’, i1, 19 even,

0, otherwise,

g?”(u7z)i1’i2i3 - {

where

( (i1 +i2)/2 )
o — 2Wi1+i2+2 i1/2
e Wiy 4ig+1 ( 1+ i )

41

Here, w; = 27%/2/I'(i/2) is the surface area of the unit sphere in R’. These results
have recently been generalized to R" in Eriksen & Kiderlen (2020).
For r =0, we get

~

O0(ZNL)= 7T/ lu| dudz,
ZnL

as in (3.7), while for 7 = 1 we obtain

~

o, (ZNL) = (0,077'('/ |u|zdudz).
ZnL

The estimator of E®y(Zy) can be represented as the following 3 x 3 matrix

~

By(ZN L)
= ynp vl dudz 0 0
= 0 5 [ lul? dudz 0
0 0 2 Ly ul2® dudz

It follows that the resulting estimator of the Miles ellipsoid e(¥) is an ellipsoid of
revolution around the z-axis, just like (V).
The non-zero elements of the estimators ®,.(Z N L) are, apart from known con-

stants, all of the form
/ lul? 2* du dz,
ZnL

where 7, k are non-negative integers and j is odd. If automatic segmentation of Z N L
is not available, the integral may be discretized, using e.g. a line grid, perpendicular
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to the z-axis, see Larsen et al. (2019, p. 11). In this paper, the method has been
implemented in human brain tissue, and the precision of the estimators is assessed,
using a bootstrap procedure. The method is superiour to an earlier, more time-
consuming method (Rafati et al., 2016).

If Z is modelled parametrically, the parameters in the model may be estimated,
using the mean particle volume tensors. One example is the Lévy particle model,
studied in Kousholt et al. (2017); Rafati et al. (2016); Ziegel, Nyengaard & Jensen
(2015), see an illustration in Figure 6.

QUOUO0ODO

Figure 6: Particles simulated under a Lévy particle model as random deformations of a
prolate ellipsoid, shown to the left. Five random deformations are shown. Reproduced from
Kousholt et al. (2017) by kind permission of Springer International Publishing. (©) 2017
Springer International Publishing.
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