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Preface

The thesis in hand is the result of my PhD studies from 1 September 2017 to 31 August
2020 under supervision of Professor Mark Podolskij at the Department of Mathemat-
ics, Aarhus University.

This treatise encompasses the following five papers which can be read independ-
ently, but several of these contains natural links to each other.

Paper A A limit theorem for a class of stationary increments Lévy moving average
process [sic] with multiple singularities. Modern Stochastics: Theory and

Applications 5(3), 297–316.

Paper B A minimal contrast estimator for the linear fractional stable motion. Statis-
tical Inference for Stochastic Processes 23, 381–413.

Paper C A note on parametric estimation of Lévy moving average processes. Springer
Proceedings in Mathematics & Statistics 294, 41–56.

Paper D Multi-dimensional normal approximation of heavy-tailed moving averages.
Submitted.

Paper E Multi-dimensional parameter estimation of heavy-tailed moving averages.
Submitted.

Besides minor corrections in terms of spelling and typographical adjustment, the
Papers A–E agree with the submitted or accepted versions. While Paper A was tech-
nically finished during my part A studies it was not included in the progress report
due to page constraints. Moreover, parts of the necessary arguments was included
in my master thesis. Paper B was partially included in the aforementioned progress
report but critical additions and corrections has been made before its completion and
subsequent submission and acceptance. In extension of Paper B I would like to thank
Dmitry Otryakhin for collaboration culminating in the inclusion of the estimation
techniques from this paper into the R-package rlfsm(∗). Paper C was included in
the aforementioned report almost as is. Papers D and E have been developed and
completed in part B of my PhD studies.

� � �

The dissertation starts with an introductory part which partly serves to motivate the
use of Lévy-driven moving averages and more specifically the heavy-tailed setup.
Secondly, this part also raises classical and always relevant statistical question, and
relates the questions to previous literature. Thirdly, a summary of each paper is given
relating them not only to the previously mentioned questions, but also internally.
Indeed, Papers B–E have a natural line of thought and development which hopefully
will be come clear.

� � �

The three years of studies culminating in this treatise is at its end and my gratitude
for the resulting journey cannot be expressed in a few words, but I shall try anyway.

(∗) See https://gitlab.com/Dmitry_Otryakhin/Tools-for-parameter-estimation-of-the-linear-fraction
al-stable-motion
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Summary

This thesis concerns continuous-time Lévy-driven moving averages with deterministic
kernels. These are motivated as a noisy component of a more general model using
intuitive concepts and then deduced and specified by more rigorous mathematical
theorems. The driver will use a heavy-tailed distribution chiefly to accommodate
certain real-world phenomena such as rare events being non-negligible in terms of a
probabilistic analysis. The endeavour is to understand the possible dynamics of such
driven moving averages—indeed, this is key to extracting or inferring central aspects
of the chosen model from actual data. In more concrete terms, using, extending
and proving novel limit theory for variational statistics, e.g. the power variation, of
given stationary data in this heavy world we shall develop a statistical methodology
which allows inference and in particular estimation in a large class of parametrized
Lévy-driven moving averages for which the dynamics are allowed to be surprisingly
preposterous. Even more concretely, we shall, among other tasks, derive first- and
second-order asymptotics for an estimator which finds the optimal parametric model
by comparing, under a suitable weighing, the variational statistic of the empirical
distribution with the theoretical counterpart of a possible distribution provided by
the model—a procedure aptly named the minimal contrast method.
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Resumé

Denne afhandling omhandler Lévy-drevne glidende gennemsnit i kontinuert tid med
deterministiske kerner. Disse gennemsnit vil blive motiveret som en støj-komponent
af en mere generel model, ved hjælp af intuitivt klare koncepter og derefter deduceret
og specificeret med stringente, matematiske sætninger. Den drivende kraft vil følge en
tung-halet fordeling, hovedsageligt for at afstedkomme fænomener fra virkelighedens
verden, såsom sjældne hændelser der ikke er negligerbare set fra sandsynlighedsteo-
retiske overvejelser. Formålet vil være at forstå de mulige dynamiske egenskaber ved
disse sådan drevne glidende gennemsnit – dette er nemlig nøglen til at ekstrahere
eller ekstrapolere centrale aspekter af den valgte model fra data. Konkret set vil vi
i denne tunge verden bruge, udvide eller bevise ny grænseværditeori for variation-
er, som for eksempel kvadratisk variation, af given stationær data til at udvikle en
statistisk metodologi som muliggør ekstrapolering og i særdeleshed estimation i en
stor klasse af parametriserede Lévy-drevne glidende gennemsnit, hvis dynamiske
egenskaber kan tillades at være helt henne i det absurde. I endnu mere konkrete
termer, så skal vi, blandt andet, udlede første- og andenordens asymptotik for en esti-
mator som bestemmer den optimale parametriske model ved at sammenligne, under
passende vejning, variationen af den empiriske fordeling med den teoretiske pendant
stillet tilrådighed af modellen – en procedure som passende kaldes minimal-kontrast
metoden.

� vii �





Introduction

This part offers a mostly informal introduction to the class of heavy-tailed Lévy-driven
moving averages. We shall in particular deduce this class as a (noise) component of
a general time series model. Then the aim of this treatise will be formulated and a
very rough overall methodology to tackle this will be sketched. This methodology
will then in turn be used as a motivation for each individual paper.

Stationarity and Heavy-Tailed Models

Any analysis of a time series entails the study of the underlying dynamics of the
system at hand and any proper analysis will identify components which are fairly
homogeneous in some regard. Indeed, the classical decomposition model of a time series
(Xt)t∈T reads as

Xt = Tt + St +Yt , (t ∈ T ), (1)

consisting of a trend (Tt)t∈T , a seasonal or periodic component (St)t∈T and a noise
process (Yt)t∈T . Different standard methods exist for either estimating the trend and
seasonality components or transforming (Xt) appropriately, such as taking (higher
order) increments at possibly different rates, so we are left with the noise term (Yt),
see [14, Section 1.4]. A frequent assumption on the noise is some kind of statisti-
cal equilibrium, such as a symmetrical variation around a mean both of which are
constant in time, or a mean reversion over time. This leads to the class of (weakly)
stationary processes as a model for the noise component (Yt) which we shall discuss
in the coming text.

Regardless of the type of observations (e.g. high or low frequency) of our data set
let us assume a continuous-time setup as such is reality, in short set T = R. Suppose
for the time being that we may formulate the aforementioned equilibrium in the
classical, rigorous terms of expectation E and (co)variance Cov; then homogeneity in
time of these quantities could be defined as

E[Yt] ≡m ∈R and Cov(Yt+h,Yh) = Cov(Yt ,Y0) for all h, t ∈R, (2)

allowing the covariance to be time-dependent but not the individual variance. Prop-
erty (2) is known in the literature as weak stationarity or sometimes as second-order
stationarity. Let us glance over the seemingly innocuous implication that (Yt) now
belongs to L2(P) and hence the powerful tools of harmonic analysis and Hilbert
space theory are at one’s disposal. Under fairly mild regularity conditions on the auto-
covariance function in (2) then Yt , if centred, will admit a Wold-type decomposition
(see [54, 29]):

Yt =
∫ t

−∞
g(t − s)dLs + ξt (3)

consisting of a casual moving average and a term ξt which is essentially known in
terms of the observations Yt from the beginning of time t = −∞; see the formulation
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Introduction

in [2, Theorem 4.1]. Here (Ls) is a square integrable process with weakly stationary
and orthogonal increments, and the integral should be understood as an L2-limit of
simple functions. The kernel g is a square integrable Borel-measurable function, also
known as the spectral density. Assuming additionally that the auto-covariance at (2)
is an absolutely continuous function with respect to the Lebesgue measure the term
(ξt) vanishes and (Yt) reduces to a casual moving average.

While (3) provides a moving average structure for a large class of noisy compo-
nents it necessarily does not provide much information besides the second-order
properties of (Yt) and additionally, for modelling certain dynamics of the given
system, it would therefore be desirable to put extra properties on (Lt), see the intro-
duction in [38]. Alluding instead to the discrete-time setup (such as MA(∞)-processes,
see [14]) a natural noise component (Yt) would be driven by i.i.d. observations (Lt).
But unfortunately no such, even remotely, nice process can exists, even if we drop
the assumption of square integrability. Indeed, if (Lt)t∈R is any i.i.d. collection of
random variables with a bi-measurable version, then at least one variable would
be independent of itself and hence this and therefore all of the collection would be
degenerate, see [26, 19] for more on this.

Thus quite naturally (3) inspires us to instead consider dynamics as in (3) with
drivers having stationary and independent increments. Requiring independent incre-
ments instead of orthogonal allows a framework beyond square integrability for our
driver. Assuming slightly more than simply bi-measurability a driver must necessar-
ily be a (two-sided) Lévy process, see [51, 1] for an introduction to Lévy processes
and infinitely divisible distributions. Now, in this generality the moving average
at (3) can no longer be defined in L2-terms, but rest assured we shall return to this
problem later. These driving processes are sufficiently flexible to warrant an already
extensive and increasing literature on continuous-time Lévy-driven moving averages.
To name simply a few contributions in this area, dependence properties such as
the semi-martingale property [6] and path properties [46] has been studied. Mixing
conditions [15, 23] exists and uniqueness of the kernel [47] is understood, both of
which are crucial in the inference realm of study. The former is crucial in first-order
limit theory and the latter in proper parametrization or specification of a moving
average model.

It would also be appropriate to name a few common and popular classes of Lévy-
driven moving averages. The first example is the Ornstein–Uhlenbeck process with
kernel g(s) = e−λs and for a non-Gaussian driver the authors of [5] show that certain
stylized facts from finance can be modelled by this class. One example generalizing
the Ornstein–Uhlenbeck is the CARMA processes, whose kernel may be represented
as sum of exponential terms, see [13]. Another example generalizing the Ornstein–
Uhlenbeck process are the so-called stochastic delay differential equations, see, e.g.
[9]. The common trait of these models are that they are defined through equations
which govern their dynamics directly rather than specify the kernel g explicitly, which
is obviously enticing from a modelling viewpoint.

On the other hand, certain kernel behaviours are known to be, at least on an
intuitive level, reflected in the moving average process. For example a non-smooth
behaviour at 0 leads to more erratic local behaviour and a slowly decaying tail of g
results in longer memory of the process. This leads more or less directly to the class
of fractional Lévy processes that has power law kernels. Foreshadowing, we shall also
see that these two behaviours will be crucial in this treatise.
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Stationarity and Heavy-Tailed Models

� � �

In systems where the underlying dynamics are propelled by gradual smaller changes,
the assumption of light tails or even as little as square integrability is definitely
satisfied. It is disastrous, even catastrophic, if light-tail modelling is applied to systems
where the governing, sovereign unit is large movements. Indeed, in the heavy-tailed
spectrum and in general the field of extreme-value theory rare events have a non-
negligible probability and it would be ruinous to ignore such events. For example,
value-at-risk estimation would be so stupendously off that it would be useless. These
systems arise many places such as, but not exclusive to,

• Insurance claims, see Figure 1.

• Financial data, e.g. stock market returns, see for example [45, Section 1.3.2].

• Data networks, such as LAN packet traces. See also Figure 2.

1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991

50

150

250

Figure 1. Fire loss insurance claims in units of 1 million DKK from the period of 1980 to 1990,
adjusted for inflation.

Moreover, many common distributions have a fat tail, such as the log-normal and
t-distribution, just to mention a one-sided and a two-sided example.

Judging whether or not the data is heavy-tailed or not and how heavy is obviously
crucial, but let us remark that some standard methods of assessment exist, see again
[45] and let us suppose from now on that this assessment has been answered in the
affirmative. Of course in the heavy-tailed setup we do not necessarily have any Wold
decomposition to motivate the choice of a moving average structure for the noisy
component. Even more grievously, does any quantity resembling a convolutional
structure between the Lévy process and the kernel exists? In layman’s terms, we need
to properly define Lévy-driven moving averages. Luckily, not only sufficient but also
necessary conditions in terms of the characteristic triplet for L, as provided by the
Lévy–Khintchine formula, are given in [44] which specify the class of deterministic
kernels g for which the integral can be defined as a limit of simple functions—see also
[23] for the multivariate matrix-valued case. For modelling or simply general interest,
it is worth remarking that the theory of Lévy-driven moving averages can be extended
to predictable, random kernels, see [30], or [25] for a brief summary of basics.
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Figure 2. Ethernet trace recorded at the Bellcore Morristown Research and Engineering facility
(BC-Oct89Ext). Packet arrival times in seconds against number of packets in bytes. The data has
been aggregated to arrival times in blocks of 1 s and only the 25000 first points are included.

Unfortunately our previous definition of statistical equilibrium through the covari-
ance or expected value is no longer viable—consider, e.g. the extreme, but classical,
Pareto distribution with tail index < 1. And therefore the definition of weak stationar-
ity is not meaningful, and instead we must rely on the stronger requirement (when
both concepts are meaningful) of stationarity, meaning that the finite dimensional
distributions

(Yt1+h, . . . ,Ytn+h), (t1, . . . , tn ∈R),

are invariant under the shifts h ∈R. If we still assume symmetry of our noise, then one
natural candidate would be the class of symmetric α-stable (SαS) distributions. These
are natural partly since they are infinitely divisible and closed under convolution
and scaling, but maybe chiefly since they are the universal (central) limits of (sym-
metrically distributed) sums of i.i.d. random variables—with α = 2 corresponding to
the normal distribution and the classic central limit theorem.

This discussion puts our noise in the class of stationary SαS processes and while
we no longer have a Wold-type decomposition, [48, Theorem 6.1] argues that

Yt = X1
t +X2

t +X3
t (4)

with equality in distribution. Here (X1
t ) is a so-called mixed moving average, which

can be thought of as superposition of moving averages, (X2
t ) is a harmonizable process

(see [50]) and (X3
t ) is a stationary SαS process which is neither a moving average or

harmonizable process, but is, as of now, unsatisfactorily described. Since the compo-
nents in (4) are mutually independent a study of Yt could be split into an analysis of
each component separately. As a side-note (4) shows that for SαS processes stationar-
ity and harmonizability are not the same, which is in stark contrast to the Gaussian
case, where almost all Gaussian processes have both a harmonizable and a moving
average representation, see [22]. This speaks volumes of the flexibility of stationary
SαS processes, at least compared to stationary Gaussian processes. But as might be
apparent from the discussion so far, we will focus solely on the (non-mixed) moving
average part in this dissertation.
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Inference, Simulation and Limit Theory

Lastly, let us remark that there is nothing wrong with a Gaussian driver as our Lévy
process. Indeed, quite interesting phenomenon such as turbulence, [20], could be
modelled with such processes. The limit theory is quite developed for a Brownian pro-
cess, even for random volatility kernel functions, known as Brownian semi-stationary
processes, see [3, 24]. We will therefore focus on the processes without a Gaussian
part and their corresponding novel and emerging limit theory.

Inference, Simulation and Limit Theory

Now that we have settled on the class of SαS moving averages as a potential model
for Y the ensuing quest becomes manifold. It includes in particular the inference of
the kernel function g and Lévy-driver. In the following we will discuss the overall
elements in our study.

To better encompass the processes studied in the treatise we first generalize the
SαS moving average processes and consider stationary increments Lévy-driven moving
averages Y = (Yt) given by:

Yt =
∫ t

−∞
(g(t − s)− g0(−s))dLs, (t ≥ 0), (5)

where g,g0 : R→R are deterministic Borel-measurable functions both of which van-
ishes on (−∞,0). Moreover, L = (Lt) is a symmetric Lévy process with L0 = 0 with no
Gaussian part. The extra function g0 compared to the moving average in, e.g. (3) does
more than simply make the moving average ‘two-sided’. Indeed, data (Xt) accord-
ing to the general decomposition model at (1) may very well be transformed using,
e.g. increments, which in turn will transform the Y at (5) into a proper (stationary)
moving average. In other words, (5) allows for a ‘noise’ component which only after
transformation of the data is stationary. Moreover, the case g0 = g is necessary for
fractional processes and taking a g0 different from g would be akin to the inclusion
of some initial term.

The point of departure for inference in any (sufficiently complicated) model is in
the frequentist world often asymptotic theory. This includes first-order limit theory,
often associated with the ‘law of large number’. Indeed, this first order describes
what the quantity at hand fluctuates around—the common example being the mean.
This is often enough for estimation of a particular characteristic of the underlying
model, but we have not described how our quantity fluctuates. The ‘central limit
theorem’ is used to describe how the empirical average fluctuates around it’s ‘true’
value—in the classical case the description is via weak convergence to the normal
distribution at some rate, often

√
n. If this second-order limit theory is obtained it

allows the construction of asymptotic confidence regions paving the way for a more
refined inference.

We describe now the quantities of interest in our particular setup, which are of
the type:

Vn(Y ;f ) =
1
n

n∑
i=1

f (∆iY ), (n ∈N), (6)

where f : R→ R belongs to a suitably large class of functions and ∆iY = Yi − Yi−1

denotes the increment. Note that the ergodic theorem dictates that Vn(Y ;f ) fluctuates
around the mean E[f (∆1Y )] if the latter is finite.
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A classical example of f includes the power variation and it is incessantly studied
in the setting of (Itô) semi-martingales, see for example [28, 4, 43]. Providing first-
and second-order limit theory in this setting gives a direct inference-link to the
integrated volatility of a financial model—a crucial and fundamental quantity.

For certain f we may in general extract important information of the underlying
model of (Yt) via the quantity E[f (∆1Y )], such as in the case of quadratic power
variation. To be more concrete, suppose a parametric model {Pθ |θ ∈Θ} for (Yt). Then
it might be possible to extract any value θ from Eθ[f (∆1Y )] using a particular f .
Since only the empirical version, Vn(Y ;f ), is available from our data it would be
natural to consider a comparison map:

θ 7−→ ρ
(
Vn(Y ;f ),Eθ[f (∆1Y )]

)
, (7)

for some ‘distance’ ρ. Asymptotically it holds Vn(Y ;f ) ≈ Eθ0
[f (∆1Y )] for the true

parameter θ0, so the argument that minimises the distance ρ should be close to
θ0—under suitable injectivity assumptions of course. This idea lies at the heart of
the minimal contrast approach. Setting fu(x) = eiux, (7) then compares the empirical
characteristic function with the theoretical one as a function of the model parameters.
In other words, ρ compares the empirical distribution with theoretical distribution
Pθ .

Considering fu for only a fixed value u ∈R seems arbitrary and instead we shall
consider a minimal contrast estimator θn by comparing all function values:

θn = argmin
θ∈Θ

∫ ∞
0

∣∣∣Vn(Y ;fu)−Eθ[fu(∆1Y )]
∣∣∣2µ(du)C argmin

θ∈Θ
F(Yn,θ), (8)

where µ is a (symmetric) probability measure on R which weighs the contrast suitably.
θn is an M-type estimator and by differentiation it is turned into a Z-estimator, that
is, θn is determined by solving the estimating equation:

∇θF(Yn,θ) = 0.

General theory exists for M- and Z-estimators, see [53], and knowing this it should be
apparent that limit theorems for quantities of the type Vn at (6) are crucial. Indeed,
if we are to have any success, then the quantities that θn minimizes over should
themselves converge. We remark that with these observations that a possible approach
would be to deploy the machinery of empirical process theory as is often done for M-
and Z-estimator, but the classical theory requires at least independence and for, e.g.
stationary processes this field is still an active field of research. Instead we shall make
use of the implicit function theorem for infinite dimensional spaces; a technique
which does have some similarity with the so-called linearization argument, see again
[53] or [27]. But instead of trying to fit a square peg into a round hole we formulate
the methodology without mention of this type of argument, see, e.g. Section 4.2 in
Paper C.

� � �

Lastly, for various inference procedures such as parametric bootstrap methods it is of
fundamental import to be able to resample from the model Pθ . As of now, no exact
procedure for simulating directly from (5) exists, but for specific subclasses it may
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be possible to find quite suitable methods. The general simulation method in the
coming text comes as no surprise. Consider in the following an ordinary moving
average Y at (5) with g0 ≡ 0. For a fixed t ∈N truncate first the integration region
to [−M,t] and then approximate the integral with a Riemann sum of mesh size 1

m ,
m ∈N. Consider then a fixed element of the Riemann sum and write it as a trivial
integral with respect to L. This can then be paired with a corresponding term in the
truncated integral yielding an error term of the form:∫ k

k−1
(g(t − s/m)− g(t − k/m))dLs/m, (k ∈ {−mM + 1, . . . ,mt}).

If L is an α-stable Lévy motion, then this is an α-stably distributed error term. Since
any Lp-moment, p < α, of an α-stable random variable can be expressed as a constant
times its scale parameter, see [50, Property 1.2.17], it is sufficient to provide bounds
on the scale parameter. It is now clear that the error analysis boils down to two
behaviours of the kernel: the one at 0 corresponding to the error from the Riemann
sum approximation, and the tail decay corresponding to the truncation of the integral.
For bounds in terms of concrete behaviours see [39] and note in particular a potential
trade-off between the truncation parameter M and the mesh size m. For a whole
sequence Y1, . . . ,Yn one would then need an efficient way of computing the many
Riemann sums. This is possible using a Fast Fourier Transform algorithm based on a
convolution form of the Riemann approximation—see [52] for the specific example of
the linear fractional stable motion. We conclude that parametric bootstrap procedures
are often possible in the general setup, see also Paper B.

Paper A

In Paper A we derive a first-order limit theorem for the power variation f (x) = |x|p
at (6) for high frequency observations from the kth order increments of Y :

∆ni,kY =
k∑
j=0

(−1)j
(k
j

)
Y(i−j)/n, i ≥ k. (9)

Before proceeding with the specific investigation of the current paper we note that
limit theorems of (9) for power variations have been investigated in [8] and later
generalised in [7] to a larger class of functions which in particular includes bounded
functions, such as the (real part) of the characteristic function fu discussed in the pre-
vious section. In parallel, a generalisation for the power variation to semi-stationary
case is given in [12], which constitutes a class with kernels modulated by a random
volatility term.

The aforementioned limit theory shows that not only does the mode of conver-
gence (weak or in probability) but also the type of limit (deterministic or random)
depend in a non-trivial way on the interplay between the order of increments, k, the
Blumenthal–Getoor index β ∈ [0,2] of L (see equation (1.4) in Paper A), the behaviour
of the functional g at 0 and the type of functional at hand, where the later type in the
power variation case references the specific power p > 0. The behaviour of g at the
point 0 is defined in terms of a power law equivalence in the sense that

g(t) ∼ tα as t ↓ 0 (10)
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for α ∈ R, where the equivalence f (t) ∼ g(t) as t ↓ 0 means that f (t)/g(t) → 1 as
t ↓ 0. [8] then provides (under some additional conditions, see Assumption (A) and
Assumption (A-log) in Paper A) three possible regimes for the ‘law of large numbers’
of the power variation:

(i) If α < k − 1/p and p > β then Vn(Y ;p) converges weakly to a random limit at rate
nαp.

(ii) If α < k − 1/p and p < β then Vn(Y ;p) converges in probability to a deterministic
limit at rate n−1+p(α+1/β).

(iii) If p ≥ 1 and α > k − 1/(β ∨ p) then Vn(Y ;p) converges in probability to a random
limit at rate n−1+pk .

Note that in the regime (i) 0 is a singularity of g in the sense that the kth derivative
g(k) explodes at 0 due to the behaviour (10). This regime is also strikingly different
from the case of semi-martingales with p-summable jumps, see, e.g. [28]. The main
purpose of Paper A is to investigate the situation of multiple singularity points
0 = θ0 < · · · < θl :

g(t) ∼ |t −θz |αz as t→ θz (z = 1, . . . , l).

We remark that a similar question is carried out in [24] in the case of Brownian
semi-stationary processes. Paper A shows that each singularity θz propagates through
to the limit variable in a similar manner to the point 0, except that the propagation
depends directly on the fractional size of the resulting blow-up of the singularity θz.
Indeed, we extend the result from (i) to multiple singularities for any subsequence
(nj )n∈N ⊆N such that the fractional limit

lim
j→∞
{njθz}C ηz for each z ∈ {0,1 . . . , l} (11)

exists. Hence the generalisation of (i) to multiple singularities is even more peculiar
than the ordinary case since different subsequence (nj ) can lead to different ηz’s
at (11), so the power variation (Vn(Y ;p))n∈N is in general only tight and with multiple
accumulation points.

We note that (i) has as a critical case: α = k − 1/p. This case has been dealt with
separately in article [10] and Paper A also studies this particular case, which for
multiple singularity points corresponds to α1 = · · · = αl = k − 1/p.

Before concluding it is worth noting that [8] also provides second-order limit
theory which in particular displays the multitude of possible limits: central, non-
central, Gaussian and non-Gaussian cases.

Paper B

This article studies the linear fractional stable motion (lfsm) which corresponds to
Y at (5) with the polynomial type kernel: g(s) = g0(s) = sH−1/α

+ where s+ = max{s,0},
H ∈ (0,1) and L is symmetric α-stable Lévy motion with scale parameter σ > 0. As we
shall now discover, the lfsm can be motivated in several ways. First, the integral at (5)
in this case is a direct analogue to the moving average representation of the fractional
Brownian motion (fBM) B:

Bt =
∫ t

−∞
(t − s)H−1/2

+ − (−s)H−1/2
+ dWs, (t ≥ 0),
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where W = (Wt) is a zero-mean two-sided Brownian motion, cf. [36]. The lfsm is in
this regard a generalisation which contains the fractional Brownian motion as the
special case: α = 2. The wide applicability of the fBM can then be transferred to the
lfsm and actually much empirical data exhibits the Joseph effect, commonly known as
long range dependence of increments—a trait the fBM is famous for. Additionally,
data may also display what is known as the Noah effect, which in a nut shell is larger
governing dynamics. This latter effect is not displayed by the light-tailed distribution
of the Gaussian process, but it is by the SαS-distributed marginal distributions of the
lfsm. Moreover, initially, for simplicity and lack of probabilistic tools, the two effects
where modelled separately, see [35] for more information. The lfsm may therefore
capture both effects. Of course, long range dependence is not understood in the
classical sense of a slow decay of the auto-correlations but instead of a slow decay of
the (incremented) kernel:

xH−1/α − (x − 1)H−1/α ∼ CxH−1−1/α as x→∞

for some constant C ∈R. In a similar note the lfsm can be motivated using fractional
calculus, cf., e.g. [42], since these tools are sometimes used to obtain long memory
or dependence from a given process—in the lfsm case a SαS Lévy process. Such a
procedure has been done in [21] for the aforementioned stochastic delay differen-
tial equations to obtain a semi-martingale, contrary to the lfsm, with long-range
dependence.

So secondly, the lfsm is also motivated by real-world phenomena. Indeed, the lfsm
is considered as a possible model for heavy network traffic, such as Figure 2, since
this kind of data is considered to exhibit both self-similarity and heavy tails, see [34].

The fBm is self-similar with (Hurst) index H ∈ (0,1), meaning that in distribution:

(Bct)t≥0 = (cHBt)t≥0,

and it is the only (up to a scale σ > 0) zero-mean Gaussian process with stationary
increments with this property. While the lfsm is also self-similar with index H it is
no longer uniquely determined by this property among the SαS distributions, cf. [16].
But the contrasting properties of the lfsm and the fBM does not stop here. The path
properties of the lfsm are well-known, see [50], but contrary to the fBM which has
locally Hölder continuous path of any order < H the lfsm has only Hölder continuous
paths up to order H − 1/α in the case H − 1/α > 0, but if this exponent is negative the
lfsm is unbounded on any open interval, see Figure 3.

Parameter estimation of (H,σ ) for the fBM has been tackled successfully, see
the references in Paper B. But the situation for estimation of the three-dimensional
parameter (σ,α,H) for the lfsm has been much more partial in the sense that no
estimation of the joint parameter (σ,α,H) together with accompanying second-order
theory has been proposed—that is, until recently in [37]. Here the authors proposes a
ratio-type estimator for the Hurst parameterH based on the power variation of the kth
orders increments at (9) but at different rates. This is then combined with identities
for the characteristic function of the kth order increments to obtain expressions for
the scale σ and stability index α, see Section 4.1 in Paper B. Moreover, using [8] as a
starting point the authors of [37] provide second-order limit theory consisting of a
normal regime in the case k > H − 1/α and a stable regime when k < H − 1/α.
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Figure 3. Top two rows are paths of the linear fractional stable motion and the bottom row is
the driving α-stable Lévy motion.
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To obtain the necessary identities for the scale and stability index (σ,α) only
two values of the characteristic function are needed, concretely the values at t1 = 1
and t2 = 2 are used. Hence, as already mentioned, it would be natural to instead
compare for all values t ∈R and therefore consider the minimal contrast estimator
θn at (8) with θ B (σ,α,H) ∈ Θ B (0,∞)× (0,2)× (0,1). To obtain first- and second-
order limit theory we will therefore naturally need limit theorems for the underlying
integral functional F at (8). In Paper B we analyse, extend and develop the necessary
arguments for our ‘linearization’ methodology to work. To obtain a weak limit theory
for the centred object nr (θn−θ) for some rate r, three fundamental steps are required:

Step 1 Obtain finite dimensional weak convergence of the underlying processes
u 7→ Vn(Y ;fu)−Eθ[fu(∆1Y )].

Step 2 Analysis of the path properties of the limit process obtain at Step 1.

Step 3 Extend the convergence from Step 1 to convergence of the integral functional
F(Yn,θ).

Step 1 has been dealt with in [37] which is necessary for their limit theory, but it is
not viewed in the sense of finite dimensional convergence of processes as it is for the
minimal contrast estimator in Paper B.

Step 3 is related to the general question of whether finite dimensional convergence
of a sequence of processes can be extended to integral functional of these. This has of
course been studied before but the available results are not particularly satisfactory
for our purpose. Instead we observe that certain moment bounds are sufficient for
the extension in Step 3. This is also related to Step 2 since in the normal regime,
k > H + 1/α, we analyse the covariance of the functionals in Step 1 to obtain an
expression for the covariance function of the Gaussian limit. This analysis also
yields a Hölder continuous version of the limit Gaussian process which concludes
Step 2 and here the tractability of the characteristic function of an SαS distributed
variable is important since it is directly related to the covariance function of the limit,
see Theorem 2.1(i) and the quantity at (2.4) in Paper B.

For the stable regime, k < H+1/α, covariance bounds are not available and instead
we prove a Karamata type theorem to provide uniform bounds on the moments of
the processes at Step 1, see Proposition 5.7 in Paper B. These moment bounds are
not suitable for the analysis of the stable limit process, but this process is extremely
simple as it is of the form: (κ(u)S)u≥0, for some deterministic function κ : R+ → R

and some skewed α-stable variable S—making Step 2 a trivial matter in this regime.
After the second-order limit theory has been developed Paper B tackles the

question of asymptotic confidence regions for the parameters. The most imme-
diate problem is which regime we are in, the normal regime, k > H + 1/α, or the
stable regime, k < H + 1/α. This is quite crucial since the rate in the stable regime is
r = 1− 1/(1 +α(k −H)) while in the normal case it is r = 1/2. Since the parameters are
unknown the regime and rate is a priori unknown. Moreover, 1/α is unbounded in
α ∈ (0,2) so we cannot simply pick a large increment k ∈N. However, if we are in
the continuous case H − 1/α > 0, then trivial algebra says that any k ≥ 2 will place us
in the normal regime. In this case Paper B uses a parametric bootstrap approach to
build asymptotic confidence regions, see Section 4.2.
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In the general case pre-estimation of α will provide an estimate of the necessary
order k ∈N such that we may obtain a known rate of

√
n-convergence. Unfortunately

this yields four different regimes and the limiting type of distribution is no longer
known. To overcome this Paper B then proposes in Section 4.3 a subsampling pro-
cedure to estimate the distribution functions of the limiting distribution and hence
estimate the necessary quantiles for building the asymptotic confidence regions.

We conclude with an unfortunate problem for our general minimal contrast
approach. The parameters (σ,α,H) are not completely determined from the (one-
dimensional) characteristic function. This forces us to use a plug-in approach by
inserting the same ratio estimator as in [37] for the Hurst parameterH in our minimal
contrast estimator for (σ,α). In particular we really do need the more complicated
limit theory of the variation Vn(Y ;f ) for unbounded functionals f .

Paper C

In Paper C we take a step back from Paper B and realize that much of the overall
approach, namely Steps 1–3 are generally applicable. Paper C then provides first-
and second-order limit theory for the minimal contrast estimator for the class of
parametric SαS-driven moving averages, that is, (Yt) at (5) with g0 ≡ 0 and g = gθ for a
one-dimensional parameter θ ∈Θ ⊆R. Of course the underlying limit theory at Step 1
from Paper B is no longer available, but theory for general bounded functionals such
as the characteristic function has luckily been developed in [41]. For later emphasis
we remark here that the functionals in Vn(Y ;f ) are of the type:

f : R −→R
d . (12)

I.e. the co-domain is multi-dimensional, and this is important as it will ensure fi-
nite dimensional convergence of our processes induces by the (empirical) character-
istic functions. If d = 1 then we would only have weak convergence of a single fixed
value of our characteristic functions.

As Papers B and C has taught us it would now be foolish to hope that the we can
tackle a multi-parametric framework Θ ⊆ R

m with the current methodology. The
desire to envelop this framework leads us to the following two papers. The first
paper, Paper D, relates directly to Step 1 above and the second, Paper E, completes
the second-order limit theory in Steps 2 and 3 for the general multi-parametric
framework.

Paper D

The main purpose of this paper is to generalise the limit theory for bounded function-
als as in (12) of heavy-tailed Lévy-driven moving averages to multivariate functionals
of the type:

f : Rm −→R
d . (13)

This was at the time an interesting question in itself and deserved a specific study,
hence the separate, independent article. Our statistical motivation will become clear
in the description of the next article, but already now it is intuitively clear that
functionals form > 1 can capture significantly more complicated behaviour, especially
dependence in the stationary sequence (∆i,kY )i≥k .
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A very successful method in deriving Gaussian limit theorems has been the
combination of Stein’s method with Malliavin calculus. We will sketch the overall
(univariate) approach in the following.

Consider a metric d on the space of Borel probability measures on R which
metricizes weak convergence. For concreteness consider the Wasserstein distance
defined as:

d(Y ,N )B sup
h∈Lip1(R)

∣∣∣E[h(Y )]−E[h(N )]
∣∣∣,

where Y andN are random variables on R and Lip1(R) denotes the space of Lipschitz
functions h : R→R with Lipschitz constant 1. Recall now Stein’s Lemma which states
that N has a standard normal distribution if and only if

E[f ′(N )−Nf (N )] = 0 (14)

for all f : R→R in a class of sufficiently smooth functions. So if Y is supposed to be
close to N in distribution then replacing N in (14) with Y should result in something
small. Similarly, the expectations of h(Y ) and h(N ) should be roughly the same, or
equivalently, the difference should be zero, for a large class of functions h : R→ R.
Comparing the two differences then yields, on average,

f ′(x)− xf (x) ≈ h(x)−E[h(N )].

Fixing h and replacing the approximation ‘≈’ with an equality yields a first-order
differential equation in f known as Stein’s equation for normal approximation. For some
classes of h the functional solution f to Stein’s equation is known to satisfy certain
regularity conditions—e.g. for Lipschitz h as in the Wasserstein distance the solu-
tion f is a continuous differentiable function with absolutely continuous derivative.
Hence we obtain the following bound:

d(Y ,N ) ≤ sup
f ∈H
|E[f ′(Y )−Y f (Y )]|,

for a certain class of functions H; we refer to [18] for more details. We have now
reduced the problem to terms depending solely on Y . Suppose from now on that Y
is a Poisson functional, i.e. a function of a Poisson (point) process (on some abstract
space). This includes moving averages driven by a pure jump Lévy process, [49,
Proposition 2.10], but is not exclusive to these. In this Poissonian framework the
powerful tools of Malliavin calculus (on Poisson spaces) are available to us. We refer
the reader to [33, 32] for an excellent introduction into this elegant field of mathemat-
ics. Indeed, using key formulas it is possible to obtain so-called second-order Poincaré
inequalities, where ‘second-order’ simply refers to the fact that bounds on, e.g. the
Wasserstein distance leads to second-order limit theorems, see [17]. Correspondingly,
these inequalities may involve the analysis of (second-order) Malliavin derivatives.

Until recently the available second-order Poincaré inequalities in [31] where not
suitable for heavy-tailed moving averages since the available bounds diverged in
this case. This was rectified in [11] and a refined second-order Poincaré inequality
was established by careful distinction between small and large values for certain
Malliavin derivatives.
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The method of [11] was also the departure for Paper D where the extension to func-
tionals at (13) for a general m > 1 was possible due to the simple, but not simplistic,
method. For the extension to (13) for a general d > 1 the classical Wasserstein was no
longer suitable. Indeed, if we wish to provide bounds between a multivariate normal
distribution and our Poisson functional the situation depends on the covariance ma-
trix of the normal distribution—if we do not put any assumption of invertibility on
this matrix, then we need to increase the smoothness of the class H, see [40, Table 1]
for a concrete comparison.

Luckily, for our statistical purposes the exact metric is not so important as long as
it implies weak convergence and as a corollary of the refined Poincaré inequality in
a multivariate setting, m > 1, the article provide bounds for a suitably large class of
multi-dimensional moving averages. Let us elaborate slightly more on this, consider
an m-dimensional random vector (Y 1, . . . ,Ym) of moving averages with

Y it =
∫ t

−∞
gi(t − s)dLs, (i ∈ {1, . . . ,m}),

where the kernel gi : R→R satisfy certain power law behaviours at 0 and at∞ and L
is a common SαS-driver. To draw parallels with previous limit theory suppose that

gi(t) ∼ tκi as t ↓ 0 and gi(t) ∼ t−βi as t ↑ ∞

for β1, . . . ,βm > 0 and κ1, . . . ,κm ∈R. Then if the kernel is not too ‘explosive’ at 0, i.e.
κi > −1/α, and the underlying common driver L is not too heavy-tailed combined
with the memory being not too long, i.e. αβi > 2, then we obtain a joint central limit
theorem for

Vn(Y ;f ) =
1
n

n∑
i=1

f (Y 1
i , . . . ,Y

m
i )

for bounded C2-functions f : Rm→ R
d with bounded derivatives. We conclude by

remarking that this fits our intuition, based on previously established theory such
as [7], quite well, and that Paper D generalises the framework of f : R→R in [11] to
functionals as in (13).

Paper E

We now return to our previous defeat in Papers B and C. Viz, the methodology has
so far only been able to tackle moving averages Y as in (5) with g0 ≡ 0 and g = gθ
for a low-dimensional parameter θ ∈Θ. To make this more precise, we consider the
theoretical characteristic function of the marginal Y1:

φθ(u) = Eθ[exp(iuY1)] = exp(−uα ‖gθ‖αα), (u ∈R) (15)

where ‖gθ‖αα =
∫
R
|gθ(s)|α ds denotes the ordinary Lα(R)-norm—this specific form for

the characteristic function follows since Y1 is a SαS-distributed, see [50, Chapter 3].
It seems clear that it is unreasonable to deduce high-dimensional parameters θ from
(15), especially parameters retaining to path or dependence properties such as a self-
similarity index. This of course relates to a discussion on uniqueness of the spectral
representation of (SαS-) moving averages as mentioned previously; see also [47].
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A natural step towards a solution would be to instead consider the characteristic
function of the joint distribution (Y1, . . . ,Ym):

ϕθ(u1, . . . ,um) = Eθ
[
ei

∑m
k=1 ukYk

]
= exp

(
−
∥∥∥∥ m∑
k=1

ukgθ( · + k)
∥∥∥∥α
α

)
and it is empirical counterpart:

Vn(Y ;fu) =
1

n−m
n−m∑
s=0

fu(Ys+1, . . . ,Ys+m), (u ∈Rm),

where fu(y1, . . . , ym) = exp(i
∑m
k=1ukyk). This immediately places us in the framework

of m > 1 and d = 1 of Paper D. Moreover, as already mentioned we need to vary
u ∈Rm to obtain finite dimensional convergence of our (empirical) processes (which
are now of course called fields) and therefore we require the full generality of our
newly developed framework in Paper D: d,m > 1.

Paper E then discusses the assumptions on the kernel and (theoretical) charac-
teristic function necessary for the statistical methodology to work. Indeed, these
assumptions falls into two categories; one related to the parameter identification
from the m-dimensional marginal distributions as we have just discussed, and a
category related to our linearization type argument.

Of course Paper E also studies several important examples including Ornstein–
Uhlenbeck type processes and we are finally able to defeat the lfsm and provide a full
minimal contrast estimator for this process without relying on a plug-in method. It
should be clear from the general formulation that the methodology could in principle
handle a very large class of parametric moving average processes and provide Gaus-
sian limit theorems in the case where this is a reasonable goal to pursue, i.e. under
appropriate behaviour of the kernel gθ at 0 and∞—as we have alluded to at several
times.
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Abstract. In this paper we present some new limit theorems for power variations
of stationary increments Lévy moving average processes. Recently, such asymptotic
results have been investigated in [5, 6] under the assumption that the kernel function
potentially exhibits a singular behaviour at 0. The aim of this work is to demonstrate
how some of the results change when the kernel function has multiple singularity
points. Our paper is also related to the article [8] that studied the same mathematical
question for the class of Brownian semi-stationary models.
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1 Introduction

In recent years limit theorems and statistical inference for high frequency obser-
vations of stochastic processes have received a great deal of attention. The most
prominent class of high frequency statistics are power variations that have been
proved to be of immense importance for the analysis of the fine structure of an un-
derlying stochastic process. The asymptotic theory for power variations and related
statistics has been intensively studied in the setting of Itô semimartingales, fractional
Brownian motion and Brownian semi-stationary processes, to name just a few; see
for example [2, 3, 4, 7, 9] among many others.
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In the recent work [5, 6] power variations of stationary increments Lévy mov-
ing average processes have been investigated in details. These are continuous-time
stochastic processes (Xt)t≥0, defined on a probability space (Ω,F ,P), that are given
by

Xt =
∫ t

−∞

(
g(t − s)− g0(−s))dLs, (1.1)

where L = (Lt)t∈R is a symmetric Lévy process on R with L0 = 0 and without Gaussian
component. Moreover, g,g0 : R→R are deterministic functions vanishing on (−∞,0).
The most prominent subclasses include Lévy moving average processes, which corres-
pond to the setting g0 = 0, and the linear fractional stable motion, which is obtained by
taking g(s) = g0(s) = sα+ and L being a symmetric β-stable Lévy process with β ∈ (0,2).
The latter is a self-similar process with index H = α + 1/β; see [12].

We introduce the kth order increments ∆ni,kX of X, k ∈N, that are defined by

∆ni,kX B
k∑
j=0

(−1)j
(k
j

)
X(i−j)/n, i ≥ k. (1.2)

For example, we have that ∆ni,1X = X i
n
− X i−1

n
and ∆ni,2X = X i

n
− 2X i−1

n
+ X i−2

n
. The

main statistic of interest is the power variation computed on the basis of kth order
increments:

V (X,p;k)n B
n∑
i=k

|∆ni,kX |p, p > 0. (1.3)

A variety of asymptotic results has been shown for the statistic V (X,p;k)n in [5, 6].
The mode of convergence and possible limits heavily depend on the interplay between
the power p, the form of the kernel function g and the Blumenthal–Getoor index of L.
We recall that the Blumenthal–Getoor index is defined via

β B inf
{
r ≥ 0 :

∫ 1

−1
|x|r ν(dx) <∞

}
∈ [0,2], (1.4)

where ν denotes the Lévy measure of L. It is well-known that
∑
s∈[0,1] |∆Ls |p is finite

when p > β, while it is infinite for p < β. Here ∆Ls = Ls −Ls− where Ls− = limu↑s,u<s Lu .
To formulate the results of [5, 6], we introduce the following set of assumptions on g,
g0 and ν:

Assumption (A). The function g : R→R satisfies the condition

g(t) ∼ c0t
α as t ↓ 0 for some α > 0 and c0 , 0, (1.5)

where g(t) ∼ f (t) as t ↓ 0 means that limt↓0 g(t)/f (t) = 1. For some w ∈ (0,2] then
limsupt→∞ ν({x : |x| ≥ t})tw <∞ and g − g0 is a bounded function in Lw(R+). Further-
more, g is k-times continuous differentiable on (0,∞) and there exists a δ > 0 such
that |g(k)(t)| ≤ Ktα−k for all t ∈ (0,δ), |g(k)| is decreasing on (δ,∞) and g(j) ∈ Lw((δ,∞))
for j ∈ {1, k}.

Assumption (A-log). In addition to Assumption (A) suppose that∫ ∞
δ
|g(k)(s)|w ∣∣∣log(|g(k)(s)|)∣∣∣ds <∞.
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Intuitively speaking, Assumption (A) says that g(k) may have a singularity at 0 when
α is small, but it is smooth outside of 0. The theorem below has been proved in
[5, 6]. We recall that a sequence of Rd-valued random variables (Yn)n∈N is said to
converge stably in law towards a random variable Y , defined on an extension of the
original probability space (Ω,F ,P), whenever the joint convergence in distribution
(Yn,Z) L−−→ (Y ,Z) holds for any F -measurable Z; in this case we use the notation
Yn

L-s−−−→ Y . We refer to [1, 11] for a detailed exposition of stable convergence.

Theorem 1.3 ([5, Theorem 1.1(i)] and [6, Theorem 1.2(i)]).
Suppose Assumption (A) holds, the Blumenthal–Getoor index satisfies β < 2 and p > β.
If w = 1 assume that Assumption (A-log) holds. Then we obtain the following cases:

(i) When α < k − 1/p, then we have the stable convergence

nαpV (X,p;k)n
L-s−−−→ |c0|p

∑
m:Tm∈[0,1]

|∆LTm |pVm

with Vm =
∞∑
l=0

|hk(l +Um)|p,
(1.6)

where (Tm)m∈N denotes the jump times of L, (Um)m∈N is an i.i.d. U (0,1)-distributed
sequence independent of L, and the function hk is defined by

hk(x) =
k∑
j=0

(−1)j
(k
j

)
(x − j)α+ with y+ = max{y,0}. (1.7)

(ii) When α = k − 1/p and additionally 1/p+ 1/w > 1, then we have

nαp

log(n)
V (X,p;k)n

P−−→ |c0qk,α |p
∑
s∈(0,1]

|∆Ls |p with qk,α B
k−1∏
i=0

(α − i). (1.8)

We remark that the first-order asymptotic theory of [5, Theorem 1.1] includes two
more regimes: an ergodic type limit theorem in the setting p < β, α < k − 1/β and
convergence in probability towards a random integral in the setting p ≥ 1, α >

k − 1/max{p,β}. However, in this paper we concentrate on the results of Theorem 1.3,
which are quite non-standard in the literature. More specifically, our aim is to extend
the theory of Theorem 1.3 to kernels g that exhibit multiple singularities. We call a
point x ∈R+ a singularity point when the kth derivative g(k) of g explodes at x. Note
that under Assumption (A) and condition α ≤ k − 1/p the function g has only one
singularity point at x = 0. In practical applications a singularity point x ∈R+ leads to
a strong feedback effect stemming from the past jumps around the time t − x. Such
effects has been discussed in the context of turbulence modelling in [8].

We will show that the limits in Theorem 1.3(i) and (ii) will be affected by the
presence of multiple singularity points. More precisely, we will see that the increments
∆ni,kX can be heavily influenced by the jumps of L that happened in the past, and
the time delay is determined by the singularity points of g. The obtained result is
similar in spirit to the work [8] that studied quadratic variation of Brownian semi-
stationary processes under multiple singularities of the kernel g. Furthermore, we
will prove that in general the stable convergence in Theorem 1.3(i) only holds along a
subsequence.
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The paper is structured as follows. Section 2 presents the main results of the
article. Proofs are collected in Section 3.

2 Main Results

We consider stationary increments Lévy moving average processes as defined at (1.1)
and recall that the driving motion L is a pure jump Lévy process with Lévy measure ν.
Now, we introduce the condition on the kernel function g:

Assumption (B). For some w ∈ (0,2], limsupt→∞ν({x : |x| ≥ t})tw <∞ and g − g0 is a
bounded function in Lw(R+). Furthermore, there exist points 0 = θ0 < θ1 < · · · < θl
such that the following properties hold:

(i) g(t) ∼ c0t
α0 as t ↓ 0 for some α0 > 0 and c0 , 0.

(ii) g(t) ∼ cz |t −θz |αz as t→ θz for some αz > 0 and cz , 0 and for all z ∈ {1, . . . , l}.
(iii) g ∈ Ck(R+ \ {θ0, . . . ,θl}).
(iv) There exist δ,K > 0 such that |g(k)(t)| ≤ K |t−θz |αz−k for all t ∈ (θz−δ,θz+δ)\{θz},

for any z = 0, . . . , l. Furthermore, there exists a δ′ > 0 such that |g(k)| is decreasing
on (θl + δ′ ,∞) and g(j) ∈ Lw((θl + δ′ ,∞)) for j ∈ {1, k}.

Let us give some remarks on Assumption (B). First of all, conditions (B)(i) and (B)(ii),
which are direct extensions of (1.5), mean that for small powers αz > 0 the points
θz are singularities of g in the sense that g(k)(θz) does not exist. On the other hand,
condition (B)(iii) states that there exist no further singularities. The parameter w
is by no means unique. It simultaneously describes the tail behaviours of the Lévy
measure ν and the integrability of the function |g(k)|, which exhibit a trade-off. When
L is β-stable we always take w = β. Furthermore, Assumption (B) guarantees the
existence of Xt for all t ≥ 0. Indeed, it follows from [10, Theorem 7] that the process
X is well-defined if and only if for all t ≥ 0,∫ ∞

−t

∫
R

(
|ft(s)x|2 ∧ 1

)
ν(dx)ds <∞, (2.1)

where ft(s) = g(t + s)− g0(s). By adding and subtracting g to ft it follows by Assump-
tion (B) and the mean value theorem that ft is a bounded function in Lw(R+). For all
ε > 0, Assumption (B) implies that∫

R

(|yx|2 ∧ 1)ν(dx) ≤ K
(
1{|y|≤1} |y|w +1{|y|>1} |y|β+ε

)
,

which shows (2.1) since ft is a bounded function in Lw(R+).

Remark 2.2 (Toy example).
Recall the following well-known results about the power variation of a pure jump
Lévy process L:

V (L,p;k)n
P−−→

∑
s∈[0,1]

|∆Ls |p <∞

for any k ≥ 1 and any p > β. Let us now consider a simple stationary increments Lévy
moving average process X with g0 = 0 and g(x) = 1[0,1](x). In this case we may call
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2. Main Results

the points θ0 = 0 and θ1 = 1 the singularities of g, although they do not precisely
correspond to conditions (B)(i) and (B)(ii), and we observe that Xt = Lt −Lt−1. Hence,
we obtain the convergence in probability

V (X,p;k)n
P−−→

∑
s∈[0,1]

|∆Ls |p +
∑

s∈[−1,0]

|∆Ls |p

for any k ≥ 1 and any p > β. This result demonstrates that even in the simplest setting
multiple singularities lead to a different limit. ^

It turns out that only the minimal powers among α0, . . . ,αl determine the asymptotic
behaviour of the statistic V (X,p;k)n. Thus, we define

αBmin{α0, . . . ,αl} and AB {z : αz = α}. (2.2)

Furthermore, we introduce the notation hk,0 B hk and

hk,z(x) =
k∑
j=0

(−1)j
(k
j

)
|x − j |αz for z ∈ {1, . . . , l}. (2.3)

In the main result below we consider a subsequence (nj )j∈N such that the following
condition holds:

lim
j→∞
{njθz} = ηz ∈ [0,1] for all z ∈ A, (2.4)

where {x} denotes the fractional part of x ∈R. Obviously, such a subsequence always
exists since ({nθz})n∈N is a bounded sequence. Sometimes we will require a stronger
condition, which is analogous to Assumption (A-log):

Assumption (B-log). Assumption (B) holds and we have that∫ ∞
θl+δ′
|g(k)(t)|w |log(|g(k)(t)|)|dt <∞.

The main result of the paper is the following theorem.

Theorem 2.4. Suppose that Assumption (B) holds, the Blumenthal–Getoor index satisfies
β < 2 and p > β. If w = 1 assume that Assumption (B-log) holds. Recall the notations (2.2)
and (2.3). Then we obtain the following cases:

(i) When max0≤z≤l αz < k − 1/p and condition (2.4) holds, then we have the stable
convergence

n
αp
j V (X,p;k)nj

L-s−−−→
∑
z∈A
|cz |p

∑
m:Tm∈[−θz ,1−θz]

|∆LTm |pV zm

with V zm =
∑
r∈Z
|hk,z(r + 1− {Um + ηz})|p.

(2.5)

as j→∞, where (Um)m∈N is an i.i.d. U (0,1)-distributed sequence independent of L.

(ii) Let α = α0 = · · · = αl = k − 1/p. Assume that the functions fz : R+→ R defined by
fz(x) = g(x)/ |x −θz |α are in Ck((θz − δ,θz + δ)) for all δ < max1≤j≤l(θj −θj−1). If
1/p+ 1/w > 1, then we have

nαp

log(n)
V (X,p;k)n

P−−→ |qk,α |p
l∑
z=0

|cz |p(1 +1{z≥1})
∑

m:Tm∈[−θz ,1−θz]
|∆LTm |p, (2.6)

where the constant qk,α has been introduced in Theorem 1.3(ii).
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We remark that the stable convergence in Theorem 2.4(i) only holds along the sub-
sequence (nj )j∈N, which is seen from the form of the limit in (2.5) that depends on (ηz).
The original statistic (nαpV (X,p;k)n)n∈N is tight, but does not converge except when
θz ∈ N for all z ∈ A. On the other hand, in Theorem 2.4(ii) we do not require to
consider a subsequence.

Notice that the interval [−θz,1−θz], which appears in Theorem 2.4, is the set [0,1]
shifted by θz to the left. Given the discussion of Remark 2.2, such a shift in the limit is
not really surprising. We recall that a similar phenomenon has been discovered in [8]
in the context of Brownian semi-stationary processes. These are stochastic processes
(Yt)t≥0 defined by

Yt =
∫ t

−∞
g(t − s)σsdWs,

where W is a two-sided Brownian motion and (σt)t∈R is a càdlàg process. When
the kernel function g satisfies conditions (B)(i) and (B)(ii) along with some further
assumptions, which in particular ensure the existence of Yt , the authors have shown
the following convergence in probability (see [8, Theorem 3.2]):

1

nτ2
n
V (Y ,2;k)n

P−−→
∑
z∈A

πz

∫ 1−θz

−θz
σ2
s ds,

where τ2
n = E[(∆nk,kG)2] with Gt =

∫ t
−∞ g(t− s)dWs, and the probability weights (πz)z∈A

are given by

πz =
c2
z ‖hk,z‖2L2(R)∑

z∈A c2
z ‖hk,z‖2L2(R)

.

Hence, we observe the same shift phenomenon in the integration region as in The-
orem 2.4.

3 Proofs

Throughout this section all positive constants are denoted by C although they may
change from line to line. We will divide the proof of Theorem 2.4 into several steps.
First, we will show the statements (2.5) and (2.6) for a compound Poisson process.
In the second step we will decompose the jump measure of L into jumps that are
bigger than ε and jumps that are smaller than ε. The big jumps form a compound
Poisson process and hence the claim follows from the first step. Finally, we prove
negligibility of small jumps when ε→ 0.

We start with an important proposition.

Proposition 3.1. Let T = (T1, . . . ,Td) be a stochastic vector with a density v : Rd → R+.
Suppose there exists an open convex set A ⊆R

d such that v is continuously differentiable
on A and vanishes outside of A. Then, under condition (2.4), it holds that

({njT +njθz})z∈A L-s−−−→ ({U + ηz})z∈A as j→∞, (3.1)

where {x} denotes the fractional parts of the vector x ∈Rd and x+a, a ∈R, is componentwise
addition. Here U = (U1, . . . ,Ud) consists of i.i.d. U (0,1)-distributed random variables
defined on an extension of the space (Ω,F ,P) and being independent of F .
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Proof. We first show the stable convergence

{nT } L-s−−−→U. (3.2)

This statement has already been shown in [5, Lemma 4.1], but we demonstrate its
proof for completeness. Let f : Rd ×Rd →R be a C1-function, which vanishes outside
some closed ball in A×Rd . We claim that there exists a finite constant K > 0 such that
for all ρ > 0

Dρ B
∣∣∣∣∫

R
d
f (x, {x/ρ})v(x)dx −

∫
R
k

(∫
[0,1]d

f (x,u)du
)
v(x)dx

∣∣∣∣ ≤ Kρ. (3.3)

By (3.3) used for ρ = 1/n we obtain that

E[f (T , {nT })]→ E[f (T ,U )] as n→∞. (3.4)

Moreover, due to [1, Proposition 2(D”)], (3.4) implies the stable convergence {nT } L-s−−−→
U as n→∞. Thus, we need to prove the inequality (3.3). Define φ(x,u)B f (x,u)v(x).
Then it holds by substitution that∫

R
d
f (x, {x/ρ})v(x)dx =

∑
j∈Zd

∫
(0,1]d

ρdφ(ρj + ρu,u)du

and ∫
R
d

(∫
[0,1]d

f (x,u)du
)
v(x)dx =

∑
j∈Zd

∫
[0,1]d

(∫
(ρj,ρ(j+1)]

φ(x,u)dx
)

du.

Hence, we conclude that

Dρ ≤
∑
j∈Zd

∫
(0,1]d

∣∣∣∣∫
(ρj,ρ(j+1)]

φ(x,u)dx − ρdφ(ρj + ρu,u)
∣∣∣∣du

≤
∑
j∈Zd

∫
(0,1]d

∫
(ρj,ρ(j+1)]

|φ(x,u)−φ(ρj + ρu,u)|dxdu.

Using that A is convex and open, we deduce by the mean value theorem that there
exist a positive constant K and a compact set B ⊆ R

d ×Rd such that for all j ∈ Zd ,
x ∈ (ρj,ρ(j + 1)] and u ∈ (0,1]d we have

|φ(x,u)−φ(ρj + ρu,u)| ≤ Kρ1B(x,u).

Thus, Dρ ≤ Kρ
∫

(0,1]d

∫
R
d 1B(x,u)dxdu, which shows (3.2).

Now, we are ready to prove the statement (3.1). By (3.2) and condition (2.4) we
conclude that ({njT }, {njθz})z∈A L-s−−−→ (U,ηz)z∈A as j→∞.

Next, consider the map f : Rd ×Rl′ → R
d×l′ , where l′ denotes the cardinality of A,

given by
f (x,y1, . . . , yl′ ) = ({x+ y1}, . . . , {x+ yl′ }).

This map is discontinuous exactly in those points x,y1, . . . , yl′ for which xj + yi ∈ Z
for some i ∈ {1, . . . , l′} and some j ∈ {1, . . . ,d}. Note that the probability of the limiting

� 7 �



Paper A · A Limit Theorem for a Class of Stationary Increments Lévy Moving Average
Processes with Multiple Singularities

variable (U,ηz)z∈A lying in the latter set is 0. Hence, it follows from the continuous
mapping theorem for stable convergence that

f
({njT }, ({njθz})z∈A) L-s−−−→ f (U, (ηz)z∈A) = ({U + ηz})z∈A

as j→∞. Since x = {x}+ bxc we have the identity {x + y} = {{x}+ {y}} and the left hand
side becomes

f
({njT }, ({njθz})z∈A)

= ({njT +njθz})z∈A,
which concludes the proof of Proposition 3.1. �

Now, we introduce the notation

gi,n(x) =
k∑
j=0

(−1)j
(k
j

)
g((i − j)/n− x), (3.5)

and observe the identity

∆ni,kX =
∫
R

gi,n(s)dLs.

The next lemma presents some estimates for the function gi,n. Its proof is a straight-
forward consequence of Assumption (B) and Taylor expansion.

Lemma 3.2. Suppose that Assumption (B) holds and let z ∈ {1, . . . , l}. Then there exists an
N ∈N such that for all n ≥N and i ∈ {k, . . . ,n} the following holds:

(i) |gi,n(x)| ≤ C(|i/n− x −θz |αz +n−αz ) for all x ∈ [ i−2k
n −θz, i+2k

n −θz].
(ii) |gi,n(x)| ≤ Cn−k |(i − k)/n− x −θz |αz−k for all x ∈ ( in − δ −θz, i−kn −θz) if αz − k < 0.

(iii) |gi,n(x)| ≤ Cn−k |(i − k)/n− x−θz |αz−k for all x ∈ ( i+kn −θz, i−kn +δ−θz) if αz − k < 0.

(iv) |hk,z(x)| ≤ |x − k|α−k for all x ≥ k + 1 and |hk,z(x)| ≤ |x + k|α−k for all x ≤ −k − 1, if
αz − k < 0.

(v) For each ε > 0 it holds that

nk |gi,n(s)|1(−∞, in−ε−θl ](s) ≤ Cε
(
1[−θl−δ′ ,1−θl ](s) +1(−∞,−θl−δ′)(s) |g(k)(−s)|

)
.

Furthermore, similar estimates hold for z = 0 with obvious adjustments that account for
the fact that g and hk,0 are both vanishing on (−∞,0).

3.1 Proof of Theorem 2.4 in the Compound Poisson Case

In this subsection we assume that L is a compound Poisson process. Recall that
(Tm)m∈N denotes the jump times of L. Let ε > 0 and consider nj ∈N such that εnj > 4k.
Define the set

Ωε =
{
ω ∈Ω :

(a) for all m ∈N with Tm(ω) ∈ [−θl ,1] then |Tm(ω)− Ti(ω)| > 2ε
and Tm(ω) +θz −θz′ < [Ti(ω)− 2ε,Ti(ω) + 2ε] for all i ,m and
for all z,z′ ∈ {0, . . . , l}

(b) ∆Ls(ω) = 0 for all s ∈ [−ε −θz,−θz + ε]∪ [1− ε −θz,1−θz + ε]

and for all z ∈ {0, . . . , l}
}
.
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Roughly speaking, on the set Ωε the jump times in [−θl ,1] are well separated, their
increments are outside a small neighbourhood of θz−θz′ which in total corresponding
statement (a), and there are no jumps around the fixed points −θz and 1−θz according
to (b). In particular, it obviously holds that P(Ωε)→ 1 as ε→ 0.

Throughout the proof we assume without loss of generality that 0 ∈ A. Now, we
introduce a decomposition, which is central for the proof. Recalling the definition
of gi,n at (3.5), we observe the identity

∆ni,kX =
∑
z∈A

Mi,n,ε,z +
∑
z∈Ac

Mi,n,ε,z +Ri,n,ε, (3.6)

where

Mi,n,ε,0 =
∫ i

n

i
n−ε

gi,n(s)dLs, Mi,n,ε,z =
∫ i

n−θz+ bnεcn
i
n−θz−ε

gi,n(s)dLs for z ∈ {1, . . . , l},

Ri,n,ε =
∫ i

n−θl−ε

−∞
gi,n(s)dLs +

l∑
z=1

∫ i
n−θz−1−ε

i
n−θz+ bnεcn

gi,n(s)dLs.

It turns out that the first term
∑
z∈AMi,n,ε,z is dominating, while the other two are

negligible.

3.1.1 Main Terms in Theorem 2.4(i)

In this subsection we consider the dominating term in the decomposition (3.6). We
want to prove that, on Ωε,

n
αp
j

nj∑
i=k

∣∣∣∣∣∑
z∈A

Mi,nj ,ε,z

∣∣∣∣∣p L-s−−−→
∑
z∈A
|cz |p

∑
m:Tm∈[−θz ,1−θz]

|∆LTm |pV zm as j→∞, (3.7)

where the limit has been introduced in (2.5). Let us fix an index z ∈ A. Then, on Ωε,
for each jump time Tm ∈ (−θz,1−θz] there exists a unique random variable im,z ∈N
such that

Tm ∈
( im,z − 1

n
−θz,

im,z
n
−θz

]
.

We also observe the following implication, which follows directly from the definition
of the set Ωε:

On Ωε, if Mi,n,ε,z , 0 for some z ∈ A =⇒ Mi,n,ε,z′ = 0 for any z′ , z in A.
Indeed, this is the consequence of the definition of the term Mi,n,ε,z and the statement

Tm(ω) +θz −θz′ < [Tm′ (ω)− 2ε,Tm′ (ω) + 2ε] ∀m′ ,m ∀z,z′ ∈ {0, . . . , l},
which holds on Ωε. Hence, we conclude that

nαp
n∑
i=k

∣∣∣∣∣∑
z∈A

Mi,n,ε,z

∣∣∣∣∣p = nαp
∑
z∈A

n∑
i=k

|Mi,n,ε,z |p

on Ωε, and we obtain the representation

nαp
n∑
i=k

|Mi,n,ε,z |p = Vn,ε,z with

Vn,ε,z = nαp
∑

m:Tm∈(−θz ,1−θz]
|∆LTm |p

bnεc+vzm∑
u=−bnεc

|gim,z+u,n(Tm)|p,
(3.8)
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where vzm are random variables taking values in {−2,−1,0} that are measurable with
respect to Tm. If z = 0 then the sum above is one-sided, i.e. from u = 0 to bnεc, cf. [5,
Eq. (4.2)]. Next, we observe the identity

{nTm +nθz} = nTm +nθz − bnTm +nθzc = nTm +nθz − (im,z − 1).

Due to Assumption (B), we can write g(x) = cz |x −θz |αf (x) with f (x)→ 1 as x→ θz,
for any z ∈ A (for θ0 = 0 we need to replace |x|α by xα+ ). This allows us to decompose

nαg
( im,z +u − r

n
− Tm

)
= czn

α
∣∣∣∣ im,z +u − r

n
− Tm −θz

∣∣∣∣αf ( im,z +u − r
n

− Tm
)

= cz |u − r + im,z −nTm −nθz |αf
(u − r
n

+n−1(im,z −nTm)
)

= cz |u − r + 1− {nTm +nθz}|αf
(u − r
n

+n−1(nθz + 1− {nTm +nθz})
)

= cz |u − r + 1− {nTm +nθz}|αf
(u − r + 1− {nTm +nθz}

n
+θz

)
.

(3.9)

for any m ∈N, 0 ≤ r ≤ k and z ∈ A. Since f (x)→ 1 as x→ θz, we find that for any
d ∈N (

nαj g
( im,z +u − r

nj
− Tm

))
|u|,m≤d,0≤r≤k,z∈A

L-s−−−→ (cz |u − r + 1− {Um + ηz}|α)|u|,m≤d,0≤r≤k,z∈A,

which holds due to condition (2.4), decomposition (3.9) and Proposition 3.1 (for
θ0 = 0 we again need to replace |x|α by xα+ ). Hence, by the continuous mapping
theorem for stable convergence we deduce that

(
nαj gim,z+u,nj (Tm)

)
|u|,m≤d,z∈A

L-s−−−→ (
czhk,z(1 +u − {Um + ηz})

)
|u|,m≤d,z∈A (3.10)

as j →∞, which is a key result of the proof. We now define a truncated version of
Vn,ε,z introduced in (3.8):

Vn,ε,z,d B nαp
∑
m≤d:

Tm∈(−θz ,1−θz]

|∆LTm |p
(bεdc+vzm∑
u=−bεdc

|gim,z+u,n(Tm)|p
)
.

From (3.10) and properties of stable convergence we conclude that

(Vnj ,ε,z,d)z∈A
L-s−−−→ (Vε,z,d)z∈A as j→∞, (3.11)

where

Vε,z,d = |cz |p
∑
m≤d:

Tm∈(−θz ,1−θz]

|∆LTm |p
(bεdc+vzm∑
u=−bεdc

|hk,z(1 +u − {Um + ηz})|p
)
.

Applying a monotone convergence argument, we deduce the almost sure convergence

Vε,z,d ↑ Vz = |cz |p
∑

Tm∈(−θz ,1−θz]
|∆LTm |p

(∑
u∈Z
|hk,z(1 +u − {Um + ηz})|p

)
(3.12)
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as d → ∞, where the second sum on the right hand side is finite, since |hk,z(x)| ≤
C |x|α−k for large enough |x| and all z ∈ A, and α < k−1/p. In view of (3.11) and (3.12),
we are left to proving the convergence

lim
d→∞

limsup
n→∞

|Vn,ε,z,d −Vn,ε,z | = 0

on Ωε. Set Kd =
∑
m>d:Tm∈(−θz ,1−θz] |∆LTm |p and observe that Kd → 0 as d →∞, since

L is a compound Poisson process. Due to Lemma 3.2 we conclude that |nαgi,n(x)| ≤
Cmin{1, |i/n− x|α−k} and thus

|Vn,ε,z,d −Vn,ε,z | ≤ C
(
Kd +

∑
|u|>bεdc

|u|p(α−k)
)

for all z ∈ A,

and the latter converges to 0 almost surely as d→∞ because α < k−1/p. Consequently,
we have shown (3.7). �

3.1.2 Main Terms in Theorem 2.4(ii)

We start with a simple lemma.

Lemma 3.3. Let (ai)i∈N be a sequence of positive real numbers such that limi→∞ iai = 1.
Then it holds that

lim
n→∞

1
log(n)

cn∑
i=1

ai = 1

for any fixed c ∈N.

Proof. Due to the assumption of the lemma, we have that (ai)i∈N is a bounded
sequence and for each ε > 0 there exists an N =N (ε) with

|ai − i−1| ≤ εi−1 for all i ≥N .

It obviously holds that limn→∞
∑cn
i=1 i

−1/ log(n) = 1. On the other hand, we obtain that

limsup
n→∞

1
log(n)

cn∑
i=N

|ai − i−1| ≤ ε limsup
n→∞

1
log(n)

cn∑
i=1

i−1 = ε.

Since ε > 0 is arbitrary, we conclude the statement of Lemma 3.3. �

Now, we will again use the decomposition (3.8), which holds on Ωε, and treat each
term Vn,ε,z separately. We consider z ≥ 1 and we will show that

1
log(n)

bnεc+vzm∑
u=−bnεc

∣∣∣nαgim,z+u,n(Tm)− czhk,z(u + 1− {nTm +nθz})
∣∣∣p −→ 0 (3.13)

as n→∞, for any m ∈N. Let us first consider the case |u| ≥ k. Recall that we have
assumed that fz(x) = g(x)/ |x−θz |α is inCk((θz−δ,θz+δ)) for any δ <max1≤j≤l(θj−θj−1).
Now, due to identity (3.9) and Taylor expansion of order k, we obtain the bound (cf.
[6, Eqs. (4.8) and (4.9)])

bnεc+vzm∑
u=−bnεc

∣∣∣nαgim,z+u,n(Tm)− czhk,z(u + 1− {nTm +nθz})
∣∣∣p1{|u|≥k} ≤ C,
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for any ε <max1≤j≤l(θj −θj−1). Since |nαgim,z+u,n(Tm)| is bounded for any |u| < k due
to Lemma 3.2, we deduce the convergence in (3.13).

Next, for large enough |u| we observe the bounds

|qk,α |pau ≤
∣∣∣hk,z(u + 1− {nTm +nθz})

∣∣∣p ≤ |qk,α |pau−k−1 where au = |u|−1.

Hence, by Lemma 3.3, we conclude the convergence

1
log(n)

bnεc+vzm∑
u=−bnεc

|hk,z(u + 1− {nTm +nθz})|p→ 2 |qk,α |p as n→∞. (3.14)

The same statement holds for z = 0, but the limit becomes |qk,α |p, since in this setting
the sum is one-sided. We set ‖x‖pp =

∑m
i=1 |xi |p for any x ∈Rm and p > 0, and recall that

‖x‖p is a norm for p ≥ 1. It holds that∣∣∣‖x‖pp − ‖y‖pp∣∣∣ ≤ ‖x − y‖pp when p ∈ (0,1],∣∣∣‖x‖p − ‖y‖p∣∣∣ ≤ ‖x − y‖p when p > 1.
(3.15)

By (3.13), (3.14) and (3.15), and taking into account the definition of Vn,ε,z at (3.8),
we readily deduce the convergence

Vn,ε,z
log(n)

P−−→ |qk,αcz |p(1 +1{z≥1})
∑

m:Tm∈[−θz ,1−θz]
|∆LTm |p

as n→∞, and hence

nαp
n∑
i=k

∣∣∣∣∣ l∑
z=0

Mi,n,ε,z

∣∣∣∣∣p P−−→ |qk,α |p
l∑
z=0

|cz |p(1 +1{z≥1})
∑

m:Tm∈[−θz ,1−θz]
|∆LTm |p

as n→∞, on Ωε. �

3.1.3 Negligible Terms

Due to the inequalities at (3.15), it suffices to show that on Ωε

an

n∑
i=k

|Ri,n,ε |p P−−→ 0 and an

n∑
i=k

|Mi,n,ε,z |p P−−→ 0 for z ∈ Ac, (3.16)

as n→∞, where an = nαp in Theorem 2.4(i) and an = nαp/ log(n) in Theorem 2.4(ii), to
prove that these terms do not affect the limits in Theorem 2.4. At this stage we notice
that outside the singularity points the kernel function g satisfies the same properties
under Assumption (B) (resp. Assumption (B-log)) as under Assumption (A) (resp.
Assumption (A-log)). Consequently, we can apply the estimates for the term Ri,n,ε
derived in [5, Eqs. (4.8), (4.12)] and [6, Section 4] under assumptions (A) and (A-log)

sup
n∈N,i∈{k,...,n}

nk |Ri,n,ε | <∞ almost surely if w ∈ (0,1],

sup
n∈N,i∈{k,...,n}

nk |Ri,n,ε |
(log(n))q

<∞ almost surely if w ∈ (1,2],

where q is determined via 1/q + 1/w = 1, since Ri,n,ε is only affected by the function g
outside the singularity points θz. We readily conclude the first convergence at (3.16)
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in the setting of Theorem 2.4(i), because α < k − 1/p. It also holds in the setting of
Theorem 2.4(ii), where for w ∈ (1,2] we use the assumption that 1/p+ 1/w > 1.

Now, we show the second statement of (3.16), which is only relevant in the setting
of Theorem 2.4(i). Since αz < k −1/p for all z, we can apply to

∑n
i=k |Mi,n,ε,z |p, z ∈ Ac,

the same techniques as for
∑n
i=k |Mi,n,ε,z |p, z ∈ A. Hence, using the same methods as

in Section 3.1.1, we conclude that on Ωε

nαp
n∑
i=k

|Mi,n,ε,z |p =O
P

(
np(α−αz)

)
for all z ∈ Ac,

where the notation Yn =O
P

(an) means that the sequence a−1
n Yn is tight. Since αz > α

for all z ∈ Ac, we obtain the second statement of (3.16). The results of Sections 3.1.1–
3.1.3 and the fact that P(Ωε) ↑ 1 as ε→ 0 imply the assertion of Theorem 2.4 in the
compound Poisson case. �

3.2 Proof of Theorem 2.4 in the General Case

Let now (Lt)t∈R be a general symmetric pure jump Lévy process with Blumenthal–
Getoor index β. We denote by N the corresponding Poisson random measure defined
byN (A)B #{t ∈R : (t,∆Lt) ∈ A} for all measurable A ⊆R×(R\{0}). Next, we introduce
the process

Xt(m) =
∫

(−∞,t]×[− 1
m ,

1
m ]
x
(
g(t − s)− g0(−s))N (ds,dx),

which only involves small jumps of L. We will prove that

lim
m→∞ limsup

n→∞
P(anV (X(m),p;k)n > ε) = 0 for any ε > 0, (3.17)

where an = nαp in Theorem 2.4(i) and an = nαp/ log(n) in Theorem 2.4(ii). First, due to
Markov’s inequality and the stationary increments of Xt(m), it follows that

P(anV (X(m),p;k)n > ε) ≤ ε−1an

n∑
i=k

E[|∆ni,kX(m)|p] ≤ ε−1bnE[|∆nk,kX(m)|p],

where bn = nan. Hence, it is enough to prove that

lim
m→∞ limsup

n→∞
E[|Yn,m|p] = 0 where Yn,m = b1/p

n ∆nk,kX(m). (3.18)

Notice the representation

Yn,m =
∫

(−∞, kn ]×[− 1
m ,

1
m ]

(
b

1/p
n gk,n(s)

)
xN (ds,dx).

Using this together with [10, Theorem 3.3], (3.18) will follow if

lim
m→∞ limsup

n→∞
ξn,m = 0 where ξn,m =

∫ 1
m

− 1
m

χn(x)ν(dx) and

χn(x) =
∫ k

n

−∞

(
|b1/p
n gk,n(s)x|p1{|b1/p

n gk,n(s)x|≥1} + |b
1/p
n gk,n(s)x|21{|b1/p

n gk,n(s)x|<1}
)
ds.
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Suppose there exists a constant K ≥ 0 such that for all large n ∈N
χn(x) ≤ K(|x|p + |x|2) for all x ∈ [−1,1], (3.19)

then the dominated convergence theorem implies that

limsup
m→∞

[
limsup
n→∞

ξn,m
]
≤ K limsup

m→∞

∫ 1
m

− 1
m

(|x|p + |x|2)ν(dx) = 0,

using the assumption that p > β. We consider only (3.19) in the case of Theorem 2.4(i)
as (ii) is very similar, see [6]. In the case of (i) then b1/p

n = nα+1/p. For short notation
define Φp : R→R+ as the function

Φp(y) = |y|21{|y|≤1} + |y|p1{|y|>1}, (y ∈R).

Note that Φp is of modular growth, i.e. there exists a constant Kp > 0 depending only
on p such that for any x,y ∈ R then Φp(x + y) ≤ Kp(Φp(x) +Φp(y)). We consider the
following decomposition

χn(x) =
∫ k

n

k
n− 1

n

Φp(nα+1/pgk,n(s)x)ds+
l∑
z=1

∫ k
n−θz+ 1

n

k
n−θz− 1

n

Φp(nα+1/pgk,n(s)x)ds

+
l∑
z=1

∫ k
n−θz−1− 1

n

k
n−θz+ 1

n

Φp(nα+1/pgk,n(s)x)ds+
∫ k

n−θl− 1
n

k
n−θl−δ

Φp(nα+1/pgk,n(s)x)ds

+
∫ k

n−θl−δ

−∞
Φp(nα+1/pgk,n(s)x)ds

C I0(x) +
l∑
z=1

I1,z(x) +
l∑
z=1

I2,z(x) + I3(x) + I4(x).

We treat the five types of terms separately.

Estimation of I0: By Lemma 3.2

|gk,n(x)| ≤ K(| kn − s|α0 ) for all s ∈ [ kn − 1
n ,

k
n ].

Since Φp is increasing on R+ and α ≤ α0 it follows that

I0(x) ≤ K
∫ 1

n

0
Φp(xnα+1/psα0 )ds ≤ K

∫ 1
n

0
Φp(xnα+1/psα)ds.

By elementary integration it follows that∫ 1
n

0
|xnα+1/psα |21{|xnα+1/psα |≤1}ds

≤ K(x21{|x|≤n−1/p}n
2/p−1 +1{|x|>n−1/p} |x|−1/αn−1−1/(αp))

≤ K(x2 + |x|p).

The second term in Φp is dealt with as follows∫ 1
n

0
|xnα+1/psα |p1{|xnα+1/psα |>1}ds ≤ |x|pnαp+1

∫ 1
n

0
sαpds =

|x|p
αp+ 1

.

Combining the two estimates above it follows that I0(x) ≤ K(|x|2 + |x|p).
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Estimation of I1,z: Similarly as for I0 we have, using arguments as in Lemma 3.2(i),
that

|gk,n(s)| ≤ K
k∑
j=0

| k−jn − s −θz |αz for all s ∈ [ kn −θz − 1
n ,

k
n −θz + 1

n ].

Using the modular growth of Φp it follows that∫ k
n−θz+ 1

n

k
n−θz− 1

n

Φp(nα+1/pgk,n(s)x)ds ≤ Kp
k∑
j=0

∫ k
n−θz+ 1

n

k
n−θz− 1

n

Φp(nα+1/p | k−jn − s −θz |αzx)ds

= Kp
k∑
j=0

∫ − jn+ 1
n

− jn− 1
n

Φp(nα+1/p |s|αzx)ds

≤ Kp
∫ k+1

n

− k+1
n

Φp(nα+1/p |s|αx)ds

= Kp

∫ k+1
n

0
Φp(nα+1/p |s|αx)ds.

As for I0 we get I1,z(x) ≤ K(|x|2 + |x|p).

Estimation of I2,z: We decompose I2,z into three terms corresponding to whether
we are close to the singularity θz from the right or close to the singularity θz−1 from
the left or in between them, but bounded away from both. More specifically, we
decompose as

I2,z(x) =
∫ k

n−θz+δ

k
n−θz+ 1

n

Φp(nα+1/pgk,n(s)x)ds+
∫ k

n−θz−1−δ

k
n−θz+δ

Φp(nα+1/pgk,n(s)x)ds

+
∫ k

n−θz−1− 1
n

k
n−θz−1−δ

Φp(nα+1/pgk,n(s)x)dsC I l2,z(x) + Ib2,z(x) + I r2,z(x).

First we note that arguments similar to Lemma 3.2(iii) implies that

|gk,n(s)| ≤ Kn−k | kn − s −θz |αz−k for all s ∈ [ kn −θz + 1
n ,

k
n −θz + δ].

Using again that Φp is decreasing on R+ it follows that

I l2,z(x) ≤ K
∫ k

n−θz+δ

k
n−θz+ 1

n

Φp(nα+1/p−k | kn − s −θz |αz−kx)ds

≤ K
∫ δ

1
n

Φp(nα+1/p−k |s|αz−kx)ds.

If αz = k − 1/2 then∫ δ

1
n

|xnα+1/p−ksαz−k |21{|x2nα+1/p−ksαz−k |≤1}ds ≤ x2n2(α+1/p−k)
∫ δ

1
n

s−1 ds ≤ Kx2,

where we used that α < k − 1/p. For αz , k − 1/2 we have that∫ δ

1
n

|xnα+1/p−ksαz−k |21{|xnα+1/p−ksαz−k |≤1}ds

≤ K
(
|x|2n2(α+1/p−k) + |x|2n2(α−αz)+2/p−11{|x|≤n−1/p} + |x|

1
k−αz n

α+1/p−k
k−αz 1{|x|>n−1/p}

)
≤ K(x2 + |x|p),
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where we used that α ≤ αz < k − 1/p. Moreover,∫ δ

1
n

|xnα+1/p−ksαz−k |p1{|xnα+1/p−ksαz−k |>1}ds ≤ K |x|p.

The term I r2,z is handled similarly. For the last term Ib2,z we note that, since we are
bounded away from both θz−1 and θz, there exists a constant K > 0 such that

|gk,n(s)| ≤ Kn−k for all s ∈ [ kn −θz + δ, kn −θz−1 − δ].

This readily implies the bound Ib2,z(x) ≤ K(x2 + |x|p).

Estimation of I3: Arguments as in Lemma 3.2 imply that

|gk,n(s)| ≤ Kn−k | kn − s −θz |αl−k for all s ∈ [ kn −θl − δ, kn −θl − 1
n ].

One may then proceed as for the term I l2,z above to conclude that I3(x) ≤ K(x2 + |x|p).

Estimation of I4: First we decompose into two regions:∫ k
n−θl−δ

−∞
Φp(nα+1/pgk,n(s)x)ds =

∫ k
n−δ−θl

−δ′−θl
Φp(nα+1/pgk,n(s)x)ds

+
∫ −δ′−θl
−∞

Φp(nα+1/pgk,n(s)x)ds.

In the first integral we are bounded away from θl , hence |gk,n(s)| ≤ Kn−k for all s in
the interval [−δ′ −θl , kn −δ−θl]. For the latter integral note first that by Lemma 3.2(v)∫ −δ′−θl

−∞
Φp(nα+1/pgk,n(s)x)ds ≤

∫ −δ′−θl
−∞

Φp(nα+1/p−k |g(k)(−s)|x)ds.

Now∫ ∞
δ′+θl
|xnα+1/p−kg(k)(s)|21{|xnα+1/p−kg(k)(s)|≤1}ds ≤ |xnα+1/p−k |2

∫ ∞
δ′+θl
|g(k)(s)|2 ds.

Since |g(k)| is decreasing on (θl + δ′ ,∞) and g(k) ∈ Lw((θl + δ′ ,∞)) for some w ≤ 2 it
follows that the last integral is finite. Lastly, we find for x ∈ [−1,1] that∫ ∞

θl+δ′
|xnα+1/p−kg(k)(s)|p1{|xnα+1/p−kg(k)(s)|>1}ds

≤ |x|pnp(α+1/p−k)
∫ ∞
θl+δ′
|g(k)(s)|p1{|g(k)(s)|>1}ds.

By our assumptions the last integral is finite, indeed∫ ∞
δ′+θl
|g(k)(s)|p1{|g(k)(s)|>1}ds ≤ Kp ‖g(k)‖wLw((δ′+θ,∞)) <∞.

� 16 �



References

3.2.1 Negligibility of Small Jumps

Now, we note that Xt −Xt(m) is the integral (1.1), where the integrator is a compound
Poisson process that corresponds to big jumps of L. Hence, we obtain the results
of Theorem 2.4 for the process X −X(m) as in Section 3.1. More specifically, under
assumptions of Theorem 2.4(i) it holds that

n
αp
j V (X −X(m),p;k)nj

L-s−−−→
∑
z∈A
|cz |p

∑
r:Tr∈[−θz ,1−θz]

|∆LTr |p1{|∆LTr >1/m|}V zr

where V zr has been defined at (2.5). The term on the right hand side convergences
to the limit of Theorem 2.4(i) as m → ∞, since

∑
r:Tr∈[−θz ,1−θz] |∆LTr |p < ∞ for any

p > β. Finally, using the decomposition X = (X −X(m)) +X(m) and letting first nj →
∞ and then m → ∞, we deduce the statement of Theorem 2.4 by (3.17) and the
inequalities (3.15). This completes the proof. �
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Fractional Stable Motion
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Abstract. In this paper we present an estimator for the three-dimensional parameter
(σ,α,H) of the linear fractional stable motion, where H represents the self-similarity
parameter, and (σ,α) are the scaling and stability parameters of the driving symmetric
Lévy process L. Our approach is based upon a minimal contrast method associated
with the empirical characteristic function combined with a ratio type estimator for
the self-similarity parameter H . The main result investigates the strong consistency
and weak limit theorems for the resulting estimator. Furthermore, we propose several
ideas to obtain feasible confidence regions in various parameter settings. Our work
is mainly related to [17, 19], in which parameter estimation for the linear fractional
stable motion and related Lévy moving average processes has been studied.

Key words: linear fractional processes, Lévy processes, limit theorems, parametric
estimation, bootstrap, subsampling, self-similarity, low frequency

AMS 2010 subject classifications: Primary 60G22, 62F12, 62E20; secondary 60E07,
60F05, 60G10

1 Introduction

During the last sixty years fractional stochastic processes have received a great
deal of attention in probability, statistics and integration theory. One of the most
prominent examples of a fractional model is the (scaled) fractional Brownian motion
(fBm), which gained a lot of popularity in science since the pioneering work of
Mandelbrot and van Ness [18]. The scaled fBm is the unique zero mean Gaussian
process with stationary increments and self-similarity property. As a building block
in stochastic models it found numerous applications in natural and social sciences
such as physics, biology and economics. From the statistical perspective the scaled
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fBm is fully determined by its scale parameter σ > 0 and the self-similarity parameter
(or Hurst index) H ∈ (0,1). Nowadays, the estimation of (σ,H) is a well understood
problem. We refer to [11] for efficient estimation of the Hurst parameter H in the low
frequency setting, and to [6, 9, 15] for the estimation of (σ,H) in the high frequency
setting, among many others. In more recent papers [2, 16] statistical inference for the
multifractional Brownian motion has been investigated, which accounts for the time
varying nature of the Hurst parameter.

This paper focuses on another extension of the fBm, the linear fractional stable
motion (lfsm). The lfsm (Xt)t≥0 is a three-parameter statistical model defined by

Xt =
∫
R

{(t − s)H−1/α
+ − (−s)H−1/α

+ }dLs, (1.1)

where x+ = x ∨ 0 denotes the positive part and we set xa+ = 0 for all a ∈ R, x ≤ 0.
Here (Lt)t∈R is a symmetric α-stable Lévy process with α ∈ (0,2) and scale parameter
σ > 0, and H ∈ (0,1) represents the Hurst parameter. In some sense the lfsm is a non-
Gaussian analogue of fBm. The process (Xt)t≥0 has symmetric α-stable marginals,
stationary increments and it is self-similar with parameter H . It is well known that
the process X has continuous paths when H − 1/α > 0, see, e.g. [5]. We remark that
the class of stationary increments self-similar processes becomes much larger if we
drop the Gaussianity assumption, cf. [21, 24], but the lfsm is one of its most famous
representatives due to the ergodicity property. Linear fractional stable motions are
often used in natural sciences, e.g. in physics or Internet traffic, where the process
under consideration exhibits stationarity and self-similarity along with heavy-tailed
marginals, see e.g. [13] for the context of Ethernet and solar flare modelling.

The limit theory for statistics of lfsm, which is indispensable for the estimation
of the parameter ξ = (σ,α,H), turns out to be of a quite complex nature. First cent-
ral limit theorems for partial sums of bounded functions of Lévy moving average
processes, which in particular include the lfsm, have been discussed in [22] and
later extended in [23] to certain unbounded functions. In a more recent work [4]
the authors presented a rather complete asymptotic theory for power variations of
stationary increments Lévy moving average processes. Finally, the results of [4] have
been extended to general functions in [3], who demonstrated that the weak limit the-
ory crucially depends on the Appell rank of the given function and the parameters of
the model (all functions considered in this paper have Appell rank 2). More specific-
ally, they obtained three different asymptotic regimes, a normal and two stable ones,
depending on the particular setting. It is this phase transition that depends on the
parameter (α,H) which makes the statistical inference for lfsm a rather complicated
matter.

Since the probabilistic theory for functionals of lfsm was not well understood
until the recent work [3, 4], the statistical literature on estimation of lfsm is rather
scarce. The articles [1, 23] investigate the asymptotic theory for a wavelet-based
estimator of H when α ∈ (1,2). In [4, 27] the authors use power variation statistics
to obtain an estimator of H , but this method also requires the a priori knowledge
of the lower bound for the stability parameter α. The work [12] suggested to use
negative power variations to get a consistent estimator of H , which applies for any
α ∈ (0,2), but this article does not contain a central limit theorem for this method. The
paper [19] was the first instance, where estimation of the full parameter ξ = (σ,α,H)
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has been studied in low and high frequency settings. Their idea is based upon the
identification of ξ through power variation statistics and the empirical characteristic
function evaluated at two different values.

In this paper we aim at extending the approach of [19] by determining the asymp-
totic theory for the minimal contrast estimator of the parameter ξ = (σ,α,H), which is
based upon the comparison of the empirical characteristic function with its theoretical
counterpart under low frequency sampling. Indeed, the choice of the two evaluation
points for the empirical characteristic function in [19] is rather ad hoc and we will
show in the empirical study that the minimal contrast estimator exhibits better finite
sample properties and robustness in various settings. Similarly to [19], we will show
that the weak limit theory for our estimator has a normal and a stable regime, and the
asymptotic distribution depends on the interplay between the parameters α and H .
At this stage we remark that the minimal contrast approach has been investigated in
[17] in the context of certain Lévy moving average models, which do not include the
lfsm or its associated noise process, but only in the asymptotically normal regime.
Another important contribution of our paper is the subsampling procedure, which
provides confidence regions for the parameters of the model irrespectively of the
unknown asymptotic regime.

The article is organized as follows. In Section 2 we introduce the necessary nota-
tion and formulate a new weak limit result related to [19], which is central to their
parameter estimation for the linear fractional stable motion. The aforementioned
theorem will be our starting point, where the aim is to extend the convergence of the
finite dimensional distributions to convergence of integral functionals appearing in
the minimal contrast method. Section 3 introduces the estimator and presents the
main results of strong consistency and asymptotic distribution. Section 4 is devoted to
a simulation study, which tests the finite sample performance of the minimal contrast
estimator. We also discuss the parametric bootstrap and the subsampling method
that are used to construct feasible confidence regions for the true parameters of the
model. All proofs are collected in Section 5 and all larger tables are in Section 6.

2 Notation and Recent Results

We start out with introducing the main notation and statistics of interest. We consider
low frequency observations X1,X2, . . . ,Xn from the lfsm (Xt)t≥0 introduced in (1.1).
We denote by ∆ri,kX (i,k, r ∈N) the kth order increment of X at stage i and rate r, i.e.

∆ri,kX =
k∑
j=0

(−1)j
(
k
j

)
Xi−rj , i ≥ rk.

The order k plays a crucial role in determining the asymptotic regime for statistics
that we introduce below. We let the function hk,r : R → R denote the kth order
increment at rate r of the kernel in (1.1), specifically

hk,r (x) =
k∑
j=0

(−1)j
(
k
j

)
(x − rj)H−1/α

+ , x ∈R.

We note that ∆ri,kX =
∫
R
hk,r (i−s)dLs. For less cumbersome notation we drop the index

r if r = 1, so ∆i,kX B ∆1
i,kX and hk = hk,1. Throughout this paper we write θ = (σ,α)
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and ξ = (σ,α,H). The main probabilistic tools are statistics of the type

Vn(f ,k, r) =
1
n

n∑
i=rk

f (∆ri,kX),

where f : R→R is a Borel function satisfying E[|f (∆rrk,kX)|] <∞. We will specifically
focus on two classes of functions, namely fp(x) = |x|p for p ∈ (−1,1) and δt(x) = cos(tx)
for t ≥ 0. They correspond to power variation statistics and the real part of the
empirical characteristic function respectively, and we use the notation

ϕn(t) = Vn(δt , k,1) and ψn(r) = Vn(fp, k, r). (2.1)

We note that Birkhoff’s ergodic theorem implies the almost sure convergence

ϕn(t) a.s.−−→ ϕξ (t)B exp(−|σ ‖hk‖αt|α) where ‖hk‖αα B
∫
R

|hk(x)|α dx. (2.2)

An important coefficient in our context is

β = 1 +α(k −H). (2.3)

The rate of convergence and the asymptotic distribution of statistics defined at (2.1)
crucially depend on whether the condition k > H + 1/α is satisfied or not. Hence, we
define the normalized versions of our statistics as

W 1
n (r) =

√
n(ψn(r)− rHmp,k),

W 2
n (t) =

√
n(ϕn(t)−ϕξ (t))

when k > H + 1/α

and
S1
n (r) = n1−1/β(ψn(r)− rHmp,k),
S2
n (t) = n1−1/β(ϕn(t)−ϕξ (t))

when k < H + 1/α.

Here mp,k = E[|∆k,kX |p], which is finite for any p ∈ (−1,α), and ϕξ is given at (2.2).
Note that E[|∆rrk,kX |p] = rHmp,k , which explains the centring of W 1 and S1.

It turns out that the finite dimensional limit of the statistics (W 1
n ,W

2
n ) is Gaus-

sian while the corresponding limit of (S1
n ,S

2
n ) is β-stable (see Theorem 2.1 below).

We now introduce several notations to describe the limiting distribution. We start
with the Gaussian case. For random variables X =

∫
R
g(s)dLs and Y =

∫
R
h(s)dLs with

‖g‖α ,‖h‖α <∞ we define a dependence measure Ug,h : R2→R as

Ug,h(u,v) = E[exp(i(uX + vY ))]−E[exp(iuX)]E[exp(ivY )]

= exp(−σα ‖ug + vh‖αα)− exp
(−σα(‖ug‖αα + ‖vh‖αα)

)
.

(2.4)

Next, for p ∈ (−1,1) \ {0}, we introduce the constant

ap B


∫
R

(1− cos(y)) |y|−1−pdy, p ∈ (0,1),
√

2πΓ (−p/2)/2p+1/2Γ ((p+ 1)/2), p ∈ (−1,0),
(2.5)

where Γ denotes the Gamma-function. Now, for each t ∈R+, we set

Σ11(g,h) = a−2
p

∫
R

2
|xy|−1−pUg,h(x,y)dxdy,

Σ12(g,h; t) = a−1
p

∫
R

2
|y|−1−pUg,h(x, t)dx

(2.6)
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whenever the above integrals are finite. As it has been shown in [19], the following
identities hold for any p ∈ (−1/2,1/2) \ {0} with p < α/2 and t ∈R+:

Cov(|X |p, |Y |p) = Σ11(g,h) and Cov(|X |p,exp(itY )) = Σ12(g,h; t).

Obviously, the quantities Σ11(g,h) and Σ12(g,h; t) will appear in the asymptotic co-
variance kernel of the vector (ψn(r),ϕn(t)) in the normal regime.

Now, we introduce the necessary notations for the stable case. First, we define the
functions

Φ1
r (x)B a−1

p

∫
R

(1− cos(ux))exp(−|σ ‖hk,r‖αu|α) |u|−1−pdu, r ∈N,

Φ2
t (x)B (cos(tx)− 1)exp(−|σ ‖hk‖αt|α), t ≥ 0,

(2.7)

and set

qH,α,k B
k−1∏
i=0

(H − 1/α − i).

Next, we introduce the functions κ1 : N→R+ and κ2 : R→R− via

κ1(r)B α
β

∫ ∞
0

Φ1
r (qH,α,kz)z

−1−α/β dz,

κ2(t)B α
β

∫ ∞
0

Φ2
t (qH,α,kz)z

−1−α/β dz.
(2.8)

In the final step we will need to define two Lévy measures ν1 on (R+)2 and ν2

on R+ that are necessary to determine the asymptotic distribution of (S1
n ,S

2
n ). Let

us denote by ν the Lévy measure of the symmetric α-stable Lévy motion L (i.e.
ν(dx) = c(σ ) |x|−1−α dx) and define the mappings τ1 : R→ (R+)2 and τ2 : R→R+ via

τ1(x) = |x|α/β(κ1(1),κ1(2)), τ2(x) = |x|α/β .

Then, for any Borel sets A1 ⊆ (R+)2 and A2 ⊆ R+ bounded away from (0,0) and 0,
respectively, we introduce

νl(Al)B ν(τ−1
l (Al)), l = 1,2. (2.9)

In the weak limit theorem below we write Zn
L-f−−−→ Z to denote the convergence of

finite dimensional distributions, i.e. the convergence in distribution

(Znt1 , . . . ,Z
n
td ) L−−→ (Zt1 , . . . ,Ztd )

for any d ∈N and ti ∈R+. The following theorem is key for statistical applications.

Theorem 2.1. Assume that either p ∈ (−1/2,0) or p ∈ (0,1/2) together with p < α/2.

(i) If k > H + 1/α then as n→∞

(W 1
n (1),W 1

n (2),W 2
n (t))

L-f−−−→ (W 1
1 ,W

1
2 ,Wt),
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where W 1 = (W 1
1 ,W

1
2 ) is a centred 2-dimensional normal distribution and (Wt)t≥0

is a centred Gaussian process with

Cov(W 1
j ,W

1
j ′ ) =

∑
l∈Z

Σ11(hk,j ,hk,j ′ ( · + l)) j, j ′ = 1,2,

Cov(W 1
j ,Wt) =

∑
l∈Z

Σ12(hk,j ,hk( · + l); t) j = 1,2, t ∈R+,

Cov(Ws,Wt) =
1
2

∑
l∈Z

(
Uhk ,hk(·+l)(s, t) +Uhk ,−hk(·+l)(s, t)

)
s, t ∈R,

where the quantity Σij has been introduce at (2.6). Moreover, the Gaussian pro-
cess W exhibits a modification (denoted again by W ), which is locally Hölder
continuous of any order smaller than α/4.

(ii) If k < H + 1/α then as n→∞

(S1
n (1),S1

n (2),S2
n (t))

L-f−−−→ (S1
1 ,S

1
2 ,κ2(t)S).

where S1 = (S1
1 ,S

1
2 ) is a β-stable random vector with Lévy measure ν1 independent

of the totally right skewed β-stable random variable S with Lévy measure ν2, and
ν1,ν2 have been defined in (2.9).

The finite dimensional asymptotic distribution demonstrated in Theorem 2.1 is
a direct consequence of [19, Theorem 2.2], which even contains a more general
multivariate result. However, the smoothness property of the limiting Gaussian
process W and the particular form of the limit of S2

n have not been investigated
in [19]. Both properties are crucial for the statistical analysis of the minimal contrast
estimator.

We observe that from a statistical perspective it is more favourable to use The-
orem 2.1(i) to estimate the parameter ξ = (σ,α,H), since the convergence rate

√
n

in (i) is faster than the rate n1−1/β in (ii). However, the phase transition happens at the
point k =H +1/α, which depends on unknown parameters α andH . This poses major
difficulties in statistical applications and we will address this issue in the forthcoming
discussion.

3 Main Results

In this section we describe our minimal contrast approach and present the corre-
sponding asymptotic theory. Before stating our the main result we define a power
variation based estimator of the parameter H ∈ (0,1). Since the increments of the
process (Xt)t≥0 are strongly ergodic (cf. [8]), we deduce by Birkhoff’s ergodic theorem
the almost sure convergence

ψn(r) =
1
n

n∑
i=rk

|∆ri,kX |p a.s.−−→ E[|∆rrk,kX |p] = rpHmp,k

for any p ∈ (−1,α). In particular, we have that

Rn(p,k)B
ψn(2)
ψn(1)

a.s.−−→ 2pH ,
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consequently yielding a consistent estimator Hn(p,k) of H as

Hn(p,k) = 1
p log2(Rn(p,k)) a.s.−−→H (3.1)

for any p ∈ (−1,α). The idea of using negative powers p ∈ (−1,0) to estimate H , which
has been proposed in [12] and applied in [19], has the obvious advantage that it does
not require knowledge of the parameter α. From Theorem 2.1(i) and the δ-method
applied to the function vp(x,y) = 1

p (log2(x) − log2(y)) we immediately deduce the
convergence (√

n(Hn(p,k)−H),W 2
n (t)

) L-f−−−→ (M1,Wt) (3.2)

for k > H + 1/α, where M1 is a centred Gaussian random variable. Similarly, when
k < H + 1/α, we deduce the convergence(

n1−1/β(Hn(p,k)−H),S2
n (t)

) L-f−−−→ (M2,κ2(t)S) (3.3)

from Theorem 2.1(ii).
We will now introduce the minimal contrast estimator of the parameter θ = (σ,α).

Let w ∈ L1(R+) denote a positive weight function. Define for r > 1 the norm

‖h‖w,r =
(∫ ∞

0
|h(t)|rw(t)dt

)1/r
,

where h : R+→R is a Borel function. Denote by Lrw(R+) the space of functions h with
‖h‖w,r <∞. Let (θ0,H0) = (σ0,α0,H0) ∈ (0,∞)× (0,2)× (0,1) be the true parameter of
the model (1.1) and consider an open neighbourhood Θ0 ⊆ (0,∞)× (0,2) around θ0

bounded away from (0,0). Define the map F : L2
w(R+)× (0,1)×Θ0→R as

F(ϕ,H,θ) = ‖ϕ −ϕθ,H‖2w,2, (3.4)

where ϕθ,H is the limit introduced at (2.2). We define the minimal contrast estimator
θn of θ0 as

θn ∈ argmin
θ∈Θ0

F(ϕn,Hn(p,k),θ). (3.5)

We remark that by, e.g. [26, Theorem 2.17] it is possible to choose θn universally
measurable with respect to the underlying probability space. The joint estimator of
(θ0,H0) is then given as

ξn = (θn,Hn(p,k))>.

Below we denote by ∇θ the gradient with respect to the parameter θ and similarly by
∇2
θ the Hessian. We further write ∂zf for the partial derivative of f with respect to

z ∈ {σ,α,H}. The main theoretical result of this paper is the following theorem.

Theorem 3.1. Suppose ξ0 = (θ0,H0) is the true parameter of the linear fractional stable
motion (Xt)t≥0 at (1.1) and that the weight function w ∈ L1(R+) is continuous.

(i) ξn
a.s.−−→ ξ0 as n→∞.

(ii) If k > H + 1/α then

√
n(ξn − ξ0) L−−→

[
−2∇2

θF(ϕξ0
,ξ0)−1

(∫ ∞
0
Wt∇θϕξ0

(t)w(t)dt

+∂H∇θF(ϕξ0
,ξ0)M1

)
,M1

]>
.
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(iii) If k < H + 1/α then

n1−1/β(ξn − ξ0) L−−→
[
−2∇2

θF(ϕξ0
,ξ0)−1

(
S

∫ ∞
0
κ2(t)∇θϕξ0

(t)w(t)dt

+∂H∇θF(ϕξ0
,ξ0)M2

)
,M2

]>
.

In principle, the statement of Theorem 3.1 follows from (3.2), (3.3) and an application
of the implicit function theorem. For general infinite dimensional functionals of
our statistics we would usually need to show tightness of the process (W 2

n (t))t≥0

(or (S2
n(t))t≥0), which is by far not a trivial issue. However, in the particular setting

of integral functionals, it suffices to show a weaker condition that is displayed in
Proposition 5.6. Indeed, this is the key step of the proof.

4 Simulations, Parametric Bootstrap and Subsampling

The theoretical results of Theorem 3.1 are far from easy to apply in practice. There are
a number of issues, which need to be addressed. First of all, since the parameters H0

and α0 are unknown, we do not know whether we are in the regime of Theorem 3.1(ii)
or (iii). Furthermore, even if we could determine whether the condition k > H0 + 1/α0

holds or not, the exact computation or a reliable numerical simulation of the quantities
defined in (2.6) and (2.7) seems to be out of reach. Below we will propose two methods
to overcome these problems. In the setting where the lfsm (Xt)t≥0 is continuous, which
corresponds to the condition H0 − 1/α0 > 0, we will see that it suffices to choose k = 2
to end up in the normal regime of Theorem 3.1(ii). The confidence regions are then
constructed using the parametric bootstrap approach. In the general setting we
propose a novel subsampling method which, in some sense, automatically adapts to
the unknown limiting distribution.

For comparison reasons we include the estimation of the parameter H0 using
Hn(p,k) defined at (3.1), even though its properties have already been studied in [19].
Moreover, we pick our weight function in the class of Gaussian kernels:

wν(t) = exp(− t2

2ν2 ) (t,ν > 0).

In particular we can use Gauss–Hermite quadrature, see [25], to estimate the integral

‖ϕn −ϕξ‖2w,2 =
∫ ∞

0
(ϕn(t)−ϕξ (t))2wν(t)dt.

This procedure is based on a number of weights, unless otherwise stated we pick
12 weights. We mentioned that it is possible to choose other weight functions and
standard numerical procedures exist for these. We restrict our simulation study to
three different values of ν ∈ {0.05,0.1,1} for the bootstrap method in Section 4.2.
Additionally, while the theoretical characteristic function ϕξ has an explicit form
it depends on the norm ‖hk‖α which is not readily computable, hence needs to be
approximated.

To produce the simulation study we generate observations from the lfsm using the
recent R-package rlfsm, which implements an algorithm based on [28]; this package
already includes an implementation of the minimal contrast estimator. To compute
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the estimator a minimization

argmin
σ,α

∫ ∞
0

(ϕn(t)−ϕσ,α,Hn(p,k)(t))
2wν(t)dt

has to be carried out. For this purpose we use [20], which in particular entails picking
a starting point for the algorithm. For σ no immediate choice exists, so we simply
pick σ = 2, while α = 1 seems obvious.

4.1 Empirical Bias and Variance

In this section we will check the bias and variance performance of our minimal
contrast estimator. First, we consider the empirical bias and standard deviation,
which are summarized in Tables B.5 and B.6 for n = 1000 and Tables B.7 and B.8 for
n = 10000. These are based on Monte Carlo simulation with at least 1000 repetitions.
We fix the parameters k = 2, p = −0.4, ν = 0.1 and σ0 = 0.3 and perform the estimation
procedure for various values of α and H .

At this stage we recall that due to Theorem 3.1(iii) we obtain a slower rate of con-
vergence when H0 + 1/α0 > 2; the stable regime is indicated in bold in Tables B.5–B.8.
This explains a rather bad estimation performance for α0 = 0.4. The effect is specific-
ally pronounced for the parameter σ , which has the worst performance when α0 = 0.4.
This observation is in line with the findings of [19], who concluded that the scale
parameter σ is the hardest to estimate in practice. Also the starting point σ = 2 of
the minimization algorithm, which is not close to σ0 = 0.3, might have a negative
effect on the performance. The estimation performance for values α0 > 0.4 is quite
satisfactory for all parameters, improving from n = 1000 to n = 10000. We remark
the superior performance of our method around the value α = 1, which is explained
by the fact that α = 1 is the starting point of the minimisation procedure.

For comparison, we display the bias and standard deviation of our estimator for
k = 1 based on n = 10000 observations in Tables B.9 and B.10, where the stable regime
is again highlighted in bold. We see a better finite sample performance for α0 = 0.4,
but in most other cases we observe a larger bias and standard deviation compared
to k = 2. This is explained by slower rates of convergence in the setting of the stable
regime and k = 1.

We will now compare the minimal contrast estimator with the estimator proposed
in [19]. To recall the latter estimator we observe the following identities due to (2.2):

σ =
(− logϕξ (t1;k))1/α

t1 ‖hk‖α
, α =

log |logϕξ (t2;k)| − log |logϕξ (t1;k)|
log t2 − log t1

, ξ = (σ,α,H)

for fixed values 0 < t1 < t2. Since hk depends on α and H we immediately obtain a
function G : R3→R

2 such that

(σ,α) = G(ϕξ (t1;k),ϕξ (t2;k),H), ξ = (σ,α,H).

Hence, an estimator for (σ,α,H) is obtained by insertion of the empirical characteristic
function and Hn(p,k) from (3.1):

(σ̃low, α̃low,Hn(p,k)) = G
(
ϕn(t1;k),ϕn(t2;k),Hn(p,k)

)
. (4.1)

The first comparison of the estimators is between Tables B.7 and B.8 for the minimal
contrast estimator with Tables B.11 and B.12, all of which are based on at least
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1000 Monte Carlo repetitions and the same parameter choices. We see that the
minimal contrast estimator outperforms the old estimator for values α ≤ 0.8, where
the latter is completely unreliable in most cases. But for larger values of α the old
estimator might be slightly better. However, the results for the estimation of the scale
parameter σ in the case α = 0.4 and H0 ∈ {0.2,0.4} are hard to interpret, since σ̃low

often delivers values that are indistinguishable from 0 yielding a small variance and
relatively small bias for σ0 = 0.3.

Another point is the instability of the old estimator. Table B.13, which is based on
at least 1200 simulations, shows the rate at which the estimators fail to return a value
α ∈ (0,2). In this regard the minimal contrast estimator is far superior in most cases
and actually in the case k = 1 the estimator almost never fails, although we dispense
with the simulation results. We remark that in theory the minimal contrast estimator
should never return α’s not in the interval [0,2]. However, we apply the minimization
procedure from [20] that does not allow constrained optimization. One could instead
use, e.g. the procedure from [7]; we choose the first method as it is hailed as very
robust.

An additional advantage of the minimal contrast estimator is that it allows incor-
poration of a priori knowledge of the parameters σ and α, using the weight function
but also the starting point for the minimization algorithm.

4.2 Bootstrap Inference in the Continuous Case

In this section we only consider the continuous case, which corresponds to the set-
ting H0 − 1/α0 > 0. In this setup H0 ∈ (1/2,1) and α0 ∈ (1,2) must hold. We can in
particular choose k = 2 to ensure that Theorem 3.1(ii) applies, thus yielding the faster
convergence rate

√
n. We are interested in obtaining feasible confidence regions for

all parameters, but, as we mentioned earlier, the computation or reliable numerical
approximation of the asymptotic variance in Theorem 3.1(ii) is out of reach. Instead
we propose the following parametric bootstrap procedure to estimate the confidence
regions for the true parameters.

(1) Compute the minimal contrast ξn estimator for given observations X1, . . . ,Xn.

(2) Generate new samples Xi1, . . . ,X
i
n for i = 1, . . . ,N using the parameter ξn.

(3) Compute new estimators ξ in from the samples generated in (2) for each i = 1, . . . ,N .

(4) Calculate the empirical variance Σ̂n of ξn based on the estimators ξ1
n , . . . ,ξ

N
n .

(5) For each parameter construct 95 %-confidence regions based on the relation
√
n(ξn − ξ0) ≈N (0,nΣ̂n).

To test this we repeated the above procedure for 200 Monte Carlo simulations with
N = 200. Tables B.1 and B.2 report acceptance rates for

√
n(ξn−ξ0) for an approximate

95 %-confidence interval. We observe a good performance for all estimators with the
exception of n = 1000 for σ with ν = 0.05,0.1 and α for ν = 0.05 in Table B.1. The
estimator is fairly stable under changes in ν in this parameter regime, but it should
be mentioned that a smaller ν-value does lead to a larger failure rate, we dispense
with the numerics.
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Table B.1. Acceptance rates for the true parameter (σ0,α0,H0) = (0.3,1.8,0.8) and power
p = 0.4.

ν = 0.1

n σ α H

1000 69.2 95.8 96.3
2500 96.6 98.5 95.6
5000 99.0 99.5 96.1

ν = 1

n σ α H

1000 100 95.5 94.8
2500 100 96.3 93.1
5000 100 93.5 93.5

ν = 0.05

n σ α H

1000 81.7 44.2 99.5
2500 99.6 97.9 97.9
5000 100 99.5 96.8

Table B.2. Acceptance rates for the true parameter (σ0,α0,H0) = (0.3,1.3,0.8) and power
p = 0.4.

ν = 0.1

n σ α H

1000 87.1 95.4 93.1
2500 90.1 91.6 97.5
5000 91.6 91.6 95.1

ν = 1

n σ α H

1000 93.9 95.7 93.9
2500 95.7 96.7 94.3
5000 93.5 93.1 93.5

ν = 0.05

n σ α H

1000 91.9 98.6 95.9
2500 89.8 96.6 95.1
5000 91.4 94.3 97.1

4.3 Subsampling Method in the General Case

In contrast to the continuous settingH0−1/α0 > 0, there exists no a priori choice of k in
the general case, which ensures the asymptotically normal regime of Theorem 3.1(ii).
This problem was tackled in [19] via the following two stage approach. In the first
step they obtained a preliminary estimator α0

n(t1, t2) of α0 using (4.1) for k = 1, t1 = 1
and t2 = 2. In the second step they defined the random number

k̂ = 2 +
⌊
α0
n(t1, t2)−1⌋, (4.2)

and computed the estimator (σ̃low, α̃low,Hn(p,k)) based on k = k̂. They showed that
the resulting estimator is

√
n-consistent and derived the associated weak limit theory.

However, this approach does not completely solve the original problem, since they
obtained four different convergence regimes according to whether 1 > H0 + 1/α0 or
not, and whether α−1

0 ∈N or not.
Nevertheless, we apply their idea to propose a new subsampling method to deter-

mine feasible confidence regions for the parameters of the model. For our procedure

� 29 �



Paper B · A Minimal Contrast Estimator for the Linear Fractional Stable Motion

it is crucial that the convergence rate is known explicitly and the weak convergence
of the involved statistics is insured. We proceed as follows:

(1) Given observations X1, . . . ,Xn compute k̂ from (4.2) and construct the minimal
contrast estimator ξn = (σn,αn,Hn(p, k̂)).

(2) Split X1, . . . ,Xn into L groups where the lth group contains (X(l−1)n/L+i)
n/L
i=1 (n/L is

assumed to be an integer). For each l = 1, . . . ,L calculate k̂l from (4.2).

(3) For each l = 1,2, . . . ,L construct the minimal contrast estimators (σ ln,α
l
n) and

H l
n(p, k̂l) based on the lth group. For the estimation of (σ,α) use Hn(p, k̂) from (1)

as plug-in.

(4) Compute the 97.5% and 2.5% quantiles for each of the distribution functions

1
L

L∑
l=1

1{√
n
L (σ ln−σn)≤x

}, 1
L

L∑
l=1

1{√
n
L (αln−αn)≤x

}, 1
L

L∑
l=1

1{√
n
L (H l

n(p,k̂l )−Hn(p,k̂))≤x
}.

Let us explain the intuition behind the proposed subsampling procedure. First of all,
similarly to the theory developed in [19], the minimal contrast estimator ξn obtained
through a two step method described in the beginning of the section leads to four
different limit regimes for

√
n(ξn−ξ0) (although we leave out the theoretical derivation

here). Using this knowledge we may conclude that, for each l = 1, . . . ,L,
√
n/L(ξ ln − ξ0)

has the same (unknown) asymptotic distribution as the statistic
√
n(ξn − ξ0) as long

as n/L→∞. Since the true parameter ξ0 is unknown, we use its approximation ξn,
which has a much faster rate of convergence than

√
n/L when L→∞. Finally, the

statistics constructed on different blocks are asymptotically independent, which
follows along the lines of the proofs in [19]. Hence, the law of large numbers implies
that the proposed subsampling statistics converge to the unknown true asymptotic
distributions when L→∞ and n/L→∞.

In Tables B.3 and B.4 we report the empirical 95%-confidence regions for the
parameters of the model using the subsampling approach. We perform 500 Monte
Carlo simulations and choose n = 12.5×L2.

Table B.3. Acceptance rates (%) for the true parameter (σ0,α0,H0) = (0.3,0.8,0.8). Here p = −0.4
and ν = 0.1.

L n/L σ α H

80 1000 90.65 94.39 89.72
100 1250 87.72 94.24 89.25

Table B.4. Acceptance rates (%) for the true parameter (σ0,α0,H0) = (0.3,1.8,0.8). Here p = −0.4
and ν = 0.1.

L n/L σ α H

80 1000 60.70 67.31 92.19
100 1250 68.88 74.92 94.56
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Table B.3 shows a satisfactory performance for all estimators, while the results of
Table B.4 are quite unreliable for the parameters σ and α. The reason for the latter
finding is the suboptimal finite sample performance of the estimators in the case of
(α,H) = (1.8,0.8), which is displayed in Tables B.5 and B.6.

We conclude this section by remarking the rather satisfactory performance of our
estimator in the continuous setting H0 − 1/α0 > 0. On the other hand, when using
the subsampling method in the general setting, a further careful tuning seems to
be required. In particular, the choice of the weight function w and the group number
L plays an important role in estimator’s performance. We leave this study for future
research.

5 Proofs

We denote byC a finite, positive constant which may differ from line to line. Moreover,
any important dependence on other constants warrants a subscript. To simplify
notations we set Hn =Hn(p,k).

5.1 Proof of Theorem 2.1(i)

As we mentioned earlier, the convergence of finite dimensional distributions has been
shown in [19, Theorem 2.2], and thus we only need to prove the smoothness property
of the limit W . We recall the definition of the quantity Ug,h at (2.4) and start with the
following lemma.

Lemma 5.1 ([23, Eqs. (3.4)–(3.6)]).
Let g,h ∈ Lα(R+). Then for any u,v ∈R

|Ug,h(u,v)| ≤ 2 |uv|α/2
∫ ∞

0
|g(x)h(x)|α/2 dx

× exp
(
−2 |uv|α/2

(
‖g‖αα ‖h‖αα −

∫ ∞
0
|g(x)h(x)|α/2 dx

))
,

|Ug,h(u,v)| ≤ 2 |uv|α/2
∫ ∞

0
|g(x)h(x)|α/2 dx

× exp
(
−
(
‖ug‖α/2α − ‖vh‖α/2α

)2)
.

In particular, it holds that |Ug,h(u,v)| ≤ 2 |uv|α/2
∫∞

0 |g(x)h(x)|α/2 dx.

Next, we define for each l ∈Z

ρl =
∫ ∞

0
|hk(x)hk(x+ l)|α/2 dx

and recall the following lemma from [19].

Lemma 5.2 ([19, Lemma 6.2]).
If k > H + 1/α and l > k then

ρl ≤ l(α(H−k)−1)/2.
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To prove that the process W is locally Hölder continuous of any order smaller than
α/4, we use Kolmogorov’s criterion. Since W is a Gaussian process it suffices to prove
that for each T > 0 there exists a constant CT ≥ 0 such that

E[(Wt −Ws)
2] ≤ CT |t − s|α/2 for all s, t ∈ [0,T ]. (5.1)

This is performed in a similar fashion as in [17, Section 4.1]. First, we reduce the
problem. Using cos(tx) = (exp(itx)+exp(−itx))/2 and the symmetry of the distribution
of X, we observe the identity

Cov(cos(t∆i,kX),cos(s∆i+l,kX)) = 1
2

(
Uhk ,−hk(l+·)(t, s) +Uhk ,hk(l+·)(t, s)

)
.

In the following we focus on the first term in the above decomposition (the second
term is treated similarly). More specifically, we will show the inequality (5.1) for the
quantity r(t, s), which is given as

r(t, s) =
∑
l∈Z

r l(t, s) where

r l(t, s) =Uhk ,−hk(l+·)(t, s)
= exp(−‖thk − shk(l + · )‖αα)− exp(−(tα + sα)‖hk‖αα).

Moreover, since r(t, t)+r(s, s)−2r(t, s) ≤ |r(t, t)−r(t, s)|+ |r(s, s)−r(t, s)| it is by symmetry
enough to prove that

|r(t, t)− r(t, s)| ≤ CT |t − s|α/2 for all s, t ∈ [0,T ].

For l ∈Z decompose now as follows:

r l(t, t)− r l(t, s)
= exp(−2tα ‖hk‖αα)

[
exp(−‖t(hk − hk( · + l))‖αα + 2tα ‖hk‖αα)− 1

]
− exp(−(tα + sα)‖hk‖αα)

[
exp(−‖thk − shk(l + · )‖αα + (tα + sα)‖hk‖αα)− 1

]
=

[
exp(−2tα ‖hk‖αα)− exp(−(tα + sα)‖hk‖αα)

]
×
[
exp(−‖t(hk − hk(l + · ))‖αα + 2tα ‖hk‖αα)− 1

]
+ exp(−(tα + sα)‖hk‖αα)

×
[
exp(−‖t(hk − hk(l + · ))‖αα + 2tα ‖hk‖αα)

− exp(−‖thk − shk(l + · )‖αα + (tα + sα)‖hk‖αα)
]

C r
(1)
l (t, s) + r(2)

l (t, s).

Applying the second inequality of Lemma 5.1 and the mean value theorem we deduce
the estimate:

|r(1)(t, s)| ≤ CT ρl |tα − sα | ≤ CT ρl |t − s|α/2 for all s, t ∈ [0,T ]. (5.2)

Again by the mean value theorem we find that

|r(2)(t, s)| ≤ CT
∣∣∣∣‖thk − shk(l + · )‖αα − ‖t(hk − hk(l + · ))‖αα + (tα − sα)‖hk‖αα

∣∣∣∣.
The last term can be rewritten as

‖thk − shk(l + · )‖αα − ‖t(hk − hk(l + · ))‖αα + (tα − sα)‖hk‖αα
=

∫ ∞
0
|thk(x)− shk(x+ l)|α − |t(hk(x)− hk(l + x))|α + (tα − sα) |hk(x+ l)|α dx.
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As α ∈ (0,2) we have |xα − yα | ≤ |x2 − y2|α/2 for all x,y ≥ 0. In particular∣∣∣|thk(x)− shk(x+ l)|α − |t(hk(x)− hk(x+ l))|α
∣∣∣

≤ CT |t − s|α/2
(|hk(x+ l)|α + |hk(x)hk(x+ l)|α/2).

It then follows that

|r(2)
l (t, s)| ≤ CT |t − s|α/2(ρl +µl) for all s, t ∈ [0,T ], (5.3)

where µl is the quantity defined as

µl =
∫ ∞

0
|hk(x+ l)|α dx.

It remains to prove that ∑
l∈Z

ρl <∞ and
∑
l∈Z

µl <∞. (5.4)

The first claim is a direct consequence of Lemma 5.2. The second convergence can
equivalently be formulated as

∞∑
l=1

l

∫ l+1

l
|hk(x)|α dx <∞.

Recall that |hk(x)| ≤ C |x|H−1/α−k for large x, hence

∞∑
l=1

l

∫ l+1

l
|hk(x)|α dx ≤ C

∞∑
l=1

l

∫ l+1

l
xα(H−k)−1 dx ≤ C

∞∑
l=1

lα(H−k) <∞,

where we used the assumption k > H + 1/α. Combining (5.2) and (5.3) with (5.4) we
can conclude (5.1), and hence the proof of Theorem 2.1(i) is complete.

5.2 Proof of Theorem 2.1(ii)

We recall that the asymptotic distribution of the vector (S1
n (1),S1

n (2)) and its asymp-
totic independence of S2

n(t) have been shown in [19, Theorem 2.2]. Hence, we only
need to determine the functional form of the limit of the statistic S2

n (t).
In the following we will recall a number of estimates and decompositions from

[19, Theorem 2.2], which will be also helpful in the proof of Theorem 3.1(iii). We
start out with a series of estimates on the function Φ2

t given at (2.7), but for a general
scale parameter η > 0. Let Φt,η denote the function

Φt,η(x) = E[cos(t(Y + x))]−E[cos(tY )] x ∈R,

where Y is an SαS distributed random variable with scale parameter η. We obviously
have the representation

Φt,η(x) = (cos(xt)− 1)exp(−|ηt|α). (5.5)

The next lemma gives some estimates on the function Φt,η .

Lemma 5.3. For η > 0 set gη(t) = exp(−|ηt|α) and let Φ (v)
t,η (x) denote the vth derivative at

x ∈R. Then there exists a constant C > 0 such that for all t ≥ 0 it holds that
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(i) |Φ (v)
t,η (x)| ≤ Ctvgη(t) for all x ∈R and v ∈ {0,1,2}.

(ii) |Φt,η(x)| ≤ gη(t)(1∧ |xt|2).

(iii) |Φt,η(x)−Φt,η(y)| ≤ t2gη(t)((1∧ |x|+ 1∧ |y|) |x − y|1{|x−y|≤1} +1{|x−y|>1}).

(iv) For any x,y > 0 and a ∈R then

F(a,x,y)B
∣∣∣∣∣∫ y

0

∫ x

0
Φ (v)
t,η (a+u + v)dudv

∣∣∣∣∣ ≤ Cgη(t)(t + 1)2(1∧ x)(1∧ y).

Proof. (i): This follows directly from (5.5).

(ii): This is straightforward using the standard inequality 1− cos(y) ≤ y2.

(iii): (i) implies that |Φ (1)
t,η (x)| ≤ t2gη(t)(1∧ |x|) and note that

|Φt,η(x)−Φt,η(y)| =
∣∣∣∣∫ x

y
Φ

(1)
t,η (u)du

∣∣∣∣.
If |x − y| > 1 we simply bound the latter by t2gη(t). If |x − y| ≤ 1, then by the mean
value theorem there exists a number s with |x − s| ≤ |x − y| such that∣∣∣∣∫ x

y
Φ (1)
t,η (u)du

∣∣∣∣ = |Φ (1)
t,η (s)| |x − y|.

Observe then
|Φ (1)
t,η (s)| ≤ t2gη(t)(1∧ |s|) ≤ t2gη(t)

(
1∧ (|x|+ |y|)).

This completes the proof of the inequality.

(iv): Let a, x and y be given. Observe that∫ y

0

∫ x

0
Φ (2)
t,η (a+u + v)dudv =

∫ y

0
Φ (1)
t,η (a+ x+ v)−Φ (1)

t,η (a+ v)dv

= Φt,η(a+ x+ y)−Φt,η(a+ y)− (Φt,η(a+ x)−Φt,η(a)).

The last equality implies that F(a,x,y) ≤ Cgη(t). The first equality implies that
F(a,x,y) ≤ Cgη(t)ty. Reversing the order of integration we get a similar expression as
the first equality with x replaced by y. Hence, F(a,x,y) ≤ Cgη(t)tx. Lastly, using (i) on
the first integral yields F(a,x,y) ≤ Cgη(t)t2xy. Splitting into the four cases completes
the proof. �

We will consider the asymptotic decomposition of the statistic S2
n(t) given in [3,

Section 5] (see also [4, 19]). We set

S2
n (t) = n−1/β

n∑
i=k

(
cos(t∆i,kX)−ϕξ (t)

)
C n−1/β

n∑
i=k

Vi(t).

Define for each s ≥ 0 we define the σ -algebras

Gs = σ (Lv −Lu : v,u ≤ s) and G1
s = σ (Lv −Lu : s ≤ v,u ≤ s+ 1).
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We also set for all n ≥ k, i ∈ {k, . . . ,n} and t ≥ 0

Ri(t) =
∞∑
j=1

ζi,j (t) and Qi(t) =
∞∑
j=1

E[Vi(t) | G1
i−j ],

where
ζi,j (t) = E[Vi(t) | Gi−j+1]−E[Vi(t) | Gi−j ]−E[Vi(t) | G1

i−j ].

Then the following decomposition holds:

S2
n (t) = n−1/β

n∑
i=k

Ri(t) +
(
n−1/β

n∑
i=k

Qi(t)− Sn(t)
)

+ Sn(t), (5.6)

where

Sn(t) = n−1/β
n∑
i=k

(
Φt(Li+1 −Li)−E[Φt(Li+1 −Li)]

)
,

Φt(x)B
∞∑
i=1

Φ2
t (hk(i)x). (5.7)

It turns out that the first two terms in (5.6) are negligible while Sn is the dominating
term. More specifically, we can use similar arguments as in [4, Eq. (5.22)] and deduce
the following proposition from Lemma 5.3.

Proposition 5.4. For any ε > 0 there exists a constant C > 0 such that for all n ∈N

sup
t≥0

E

[(
n−1/β

n∑
i=k

Ri(t)
)2]
≤ Cn2(2−β−1/β)+ε.

Using the inequality 2− x − 1/x < 0 for all x > 1 on β > 1 it follows by picking ε > 0
small enough that the first term in (5.6) is asymptotically negligible. Decomposing
the second term and using arguments as in the equations (5.30), (5.31) and (5.38) in
[4] we obtain the following result.

Proposition 5.5. For any ε > 0 there exist an r > 1, an r ′ > β ∨ r and a constant C > 0
such that for all n in N

sup
t≥0

E

[∣∣∣∣n−1/β
n∑
i=k

Qi(t)− Sn(t)
∣∣∣∣r] ≤ C(

nr(ε+2−β−1/β) +n
r
r′ (1−r ′ /β)

)
.

Using again the inequality 2 − x − 1/x < 0 for all x > 1, it follows immediately that
the second term in (5.6) is asymptotically negligible. Hence, Sn(t) is asymptotic-
ally equivalent to the statistic S2

n(t), and it suffices to analyse its finite dimensional
distribution.

Consider t1, . . . , td ∈R+. We will now recall the limiting distribution of the vector
(Sn(t1), . . . ,Sn(td)). Observing the definition (5.7), we deduce the uniform convergence

sup
t≥0

∣∣∣|x|−α/βΦt(x)−κ2(t)
∣∣∣→ 0 as x→−∞, (5.8)
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where κ2 has been introduced at (2.8). Indeed by substituting u = (|x|/z)α/β we have
that

sup
t≥0

∣∣∣|x|−α/βΦt(x)−κ2(t)
∣∣∣

= sup
t≥0

∣∣∣∣|x|−α/β ∫ ∞
0

Φ2
t

(
hk(buc+ 1) |x|)du −

∫ ∞
0

Φ2
t (qH,α,kz)z

−1−α/β du
∣∣∣∣

=
α
β

sup
t≥0

∣∣∣∣∫ ∞
0

Φ2
t

(
hk

(b(|x|/z)α/βc+ 1
) |x|)z−1−α/β du −

∫ ∞
0

Φ2
t (qH,α,kz)z

−1−α/β du
∣∣∣∣

≤ α
β

∫ ∞
0

sup
t≥0

∣∣∣Φ2
t

(
hk

(b(|x|/z)α/βc+ 1
)
x
)
−Φ2

t (qH,α,kz)
∣∣∣z−1−α/β du.

By Lemma 5.3(iii) the integrand vanishes pointwise in z as x → −∞ due to the
asymptotics

hk(x) ∼ qH,α,kx−β/α as x→∞. (5.9)

Due to Lebesgue’s dominated convergence theorem it is enough to bound the integ-
rand uniformly in x < −1. By the triangle inequality it is enough to treat each Φ2

t -term
separately. For the first term Lemma 5.3(ii) implies that

sup
t≥0

∣∣∣Φ2
t

(
hk

(b(|x|/z)α/βc+ 1
) |x|)∣∣∣z−1−α/β ≤ C

(
1∧

∣∣∣hk(b(|x|/z)α/βc+ 1
)
x
∣∣∣2)z−1−α/β .

For large z, say z > 1, the latter is bounded by the integrable function z−1−α/β1{z>1}.
For z ∈ (0,1] we deduce by (5.9)∣∣∣hk(b(|x|/z)α/βc+ 1

)
x
∣∣∣2z−1−α/β ≤ Cx2(b(|x|/z)α/βc+ 1

)−2β/α
z−1−α/β ≤ Cz1−α/β ,

where we used that (|x|/z)α/β ≤ b(|x|/z)α/βc+ 1. Recalling (2.3), we deduce that α/β < 2
and an integrable bound is obtained. The second Φ2

t -term is treated similarly. Hence,
we have (5.8).

Define the map τt1,...,td : R→R
d− as

τt1,...,td (x) = |x|α/β(κ2(t1), . . . ,κ2(td)).

Following [3, Lemma 6.6] the limit of the vector (Sn(t1), . . . ,Sn(td)) is determined by
the Lévy measure

νt1,...,td (A)B ν(τ−1
t1,...,td (A)),

where A ⊆ R
d− is a Borel set and ν is the Lévy measure of L. But νt1,...,td is also the

Lévy measure of the vector (κ2(t1), . . . ,κ2(td))S, where the random variable S has been
introduced in Theorem 2.1(ii). This implies the desired result.

5.3 Finite Dimensional Convergence and Integral Functionals

Let (Y n)n≥1 and Y be stochastic processes index by R+ with paths in L1(R+). We will
give simple sufficient conditions for when the implication

Y n
L-f−−−→ Y =⇒

∫ ∞
0
Y nu du L−−→

∫ ∞
0
Yu du (5.10)

holds true. Such a result is obviously required to obtain Theorem 3.1 from The-
orem 2.1. Before we state these conditions we remark that the question has already
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been studied in the literature. As an example Theorem 22 in Appendix I of [14] gives
two sufficient conditions for (5.10) to hold, but the second condition is a Hölder type
criteria, which is not easily verifiable in our setting. Moreover, the theorem only deals
with integration over bounded sets. The article [10] studies this question in general,
but the conditions of e.g. Lemma 1 therein are too abstract even though we are in
the case of a finite measure (the one induced by the weight function w). What can
be deduced from [10] is that some kind of uniform integrability (with respect to the
product measure) is sufficient for (5.10).

To formulate the lemma, define for each n,m, l ∈ N the intermediate random
variables

Xn,m,l =
∫ l

0
Y nbumc/mdu and Xn,l =

∫ l

0
Y nu du.

Proposition 5.6. Suppose that (Y n)n≥1 and Y are continuous stochastic processes and
assume that the following conditions hold:

lim
l→∞

limsup
n→∞

∫ ∞
l

E[|Y nu |]du = 0, lim
m→∞ limsup

n→∞
P(|Xn,m,l −Xn,l | ≥ ε) = 0, (5.11)

for all l,ε > 0. Then (5.10) holds.

Proof. Note that for each n,m, l ∈N we have the decomposition∫ ∞
0
Y nu du = Xn,m,l + (Xn,l −Xn,m,l) +

∫ ∞
l
Y nu du.

As Y n
L-f−−−→ Y we deduce the weak convergence

Xn,m,l
L−−−−−→

n→∞ Ym,l B

∫ l

0
Ybumc/mdu for each m ∈N.

The continuity of Y implies immediately that Ym,l
a.s.−−→

∫ l
0 Yu du as m→ ∞. The as-

sumptions in (5.11) then imply the convergence
∫∞

0 Y nu du L−−→
∫∞

0 Yu du.
�

5.4 Proof of Theorem 3.1(i) and (ii)

The strong consistency result of Theorem 3.1(i) is an immediate consequence of
(3.1) and ‖ϕn −ϕξ0

‖w,2 a.s.−−→ 0, where the latter follows from (2.2) and the dominated
convergence theorem. Hence, we are left to proving Theorem 3.1(ii).

Recall the definition of the function F : L2
w(R+)× (0,1)×Θ0→ R at (3.4), where

Θ0 ⊆ (0,∞) × (0,2) is an open neighbourhood of (σ0,α0) bounded away from (0,0).
Now, the minimal contrast estimator at (3.5) can be obtained using the criteria

∇θF(ψ,H,θ) = 0,

which is satisfied at (ϕξ0
,ξ0). Denote by ζ(ψ,H) an element of (0,1)×Θ0 such that

∇θF(ψ,H,ζ(ψ,H)) = 0.

To determine the derivative of ζ we will need the infinite dimensional implicit
function theorem, which we briefly repeat.
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Consider three Banach spaces (Ei ,‖·‖i), i = 1,2,3, and open subsetsUi ⊆ Ei , i = 1,2.
Let f :U1×U2→ E3 be a Fréchet differentiable map. For a point (e1, e2) ∈U1×U2 and a
direction (h1,h2) ∈ E1×E2 we denote byDke1,e2f (hk), k = 1,2, the Fréchet derivative of f
at the point (e1, e2) in the direction hk ∈ Ek . Assume that (e0

1, e
0
2) ∈U1 ×U2 satisfies the

equation f (e0
1, e

0
2) = 0 and that the map D2

e0
1 ,e

0
2
f : E2→ E3 is continuous and invertible.

Then there exists open sets V1 ⊆U1 and V2 ⊆U2 with (e0
1, e

0
2) ∈ V1 ×V2 and a bijective

function G : V1→ V2 such that

f (e1, e2) = 0 ⇐⇒ G(e1) = e2.

Moreover, G is Fréchet differentiable with derivative

De1G(h) = −(D2
e1,G(e1)f )−1(D1

e1,G(e1)f (h)). (5.12)

We will adapt this to our setup, which corresponds to U1 = Lrw(R+) × (0,1), for a
r > 1, E2 = Θ0, E3 = R and f = ∇θF. A straightforward calculation shows that the
map θ 7→ ∇2

θF(ϕ,H,θ) is differentiable with derivative at (ϕξ0
,ξ0) represented by the

Hessian

D2
ϕξ0 ,ξ0

∇θF = ∇2
θF(ϕξ0

,ξ0) = 2
(∫ ∞

0
∂θiϕξ0

(t)∂θjϕξ0
(t)w(t)dt

)
i,j=1,2

.

The linear independence of the maps ∂θ1
ϕξ0

and ∂θ2
ϕξ0

immediately shows the
invertibility of the Hessian. Moreover, standard theory for convergence in Lr(R+),
r > 1, shows that the map (ϕ,H) 7→ ∇2

θF(ϕ,H, · ) is continuous, which is needed to
assert that ∇θF is C1.

The determination of the remaining derivative D1
ϕ,ξ∇θF for a point (ϕ,ξ) ∈

Lrw(R+) × (0,1) × Θ0 is slightly more involved. It is given by its two components
D1 = (D1,1,D1,2) corresponding to the partial derivatives. Indeed, D1,1

ϕ,ξ∇θF is the
derivative with respect to the functional coordinate ϕ ∈ Lrw(R+) and D1,2

ϕ,ξ∇θF the
derivative with respect to the Hurst parameter H ∈ (0,1), where ξ = (H,α,σ ). It is
easily seen that

D1,1
ϕ,ξ∇θF(h) =D1,1

ξ ∇θF(h) = −2
∫ ∞

0
h(t)∇θϕξ (t)w(t)dt, h ∈ Lrw(R+).

An application of Hölder’s inequality proves the continuity of the linear map ξ 7→
D1,1
ξ ∇θF. The second partial derivative at (ϕ,ξ) is the linear map represented by the

two dimensional vector

D1,2
ϕ,ξ∇θF = 2

∫ ∞
0
∂Hϕξ (t)∇θϕξ (t)w(t)dt − 2

∫ ∞
0

(ϕ(t)−ϕξ (t))∂H∇θϕξ (t)w(t)dt.

Evaluated at the point (ϕξ0
,ξ0) = (ϕξ0

,G(ϕξ0
,H0)) yields the simpler expression:

D1,2
ϕξ0 ,ξ0

∇θF = 2
∫ ∞

0
∂Hϕξ0

(t)∇θϕξ0
(t)w(t)dt.

Suppose we are in the case k > H +1/α then we may pick r = 2 in the discussion above.
By Fréchet differentiability it follows that

√
n(ξn − ξ0) =

√
n
(
G(ϕn,Hn)−G(ϕξ0

,H0)
)

=Dϕξ0 ,ξ0
G
(√
n(ϕn −ϕξ0

),
√
n(Hn −H0)

)
+
√
n
(
‖ϕn −ϕξ0

‖w,2 + |Hn −H0|
)
R(ϕn −ϕξ0

,Hn −H0),

(5.13)
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where the remainder term R satisfies that R(ϕn −ϕξ0
,Hn −H0) a.s.−−→ 0 as ‖ϕn −ϕξ0

‖w,2 +
|Hn − H0| a.s.−−→ 0. Recall now the derivative of G at (5.12). In order to show The-
orem 3.1(ii) it suffices to prove the convergences

√
n(‖ϕn −ϕξ0

‖w,2 + |Hn −H0|) L−−→ ‖W ‖w,2 + |M1|,
√
n

∫ ∞
0

(ϕn(t)−ϕξ0
(t))∇θϕξ0

(t)w(t)dt L−−→
∫ ∞

0
Wt∇θϕξ0

(t)w(t)dt,
(5.14)

where W = (Wt)t≥0 has been introduced in Theorem 2.1(i).
We will only consider the second convergence at (5.14) since the first is shown

similarly (see also [17, page 14]). For the conditions (5.11) it suffices to find a constant
C > 0 such that

sup
n∈N,t≥0

Var(W 2
n (t)) ≤ C <∞. (5.15)

The identity ∆i,kX =
∫
R
hk(i−s)dLs together with stationarity of the increments {∆i,kX |

i ≥ k} shows that

|Cov(W 2
n (s),W 2

n (t))| ≤ 1
2

∑
l∈Z
|Uhk ,hk(l+·)(s, t) +Uhk ,−hk(l+·)(s, t)|. (5.16)

Indeed, split the series at (5.16) into three terms. For l = 0 it follows from (2.4) that

Uhk ,hk (t, t) +Uhk ,−hk (t, t) = 1 + 2exp(−|2tσ ‖hk‖α |α)− 2exp(−2 |σt ‖hk‖α |α), (5.17)

which is obviously uniformly bounded in t ≥ 0. For l , 0 with |l| ≤ k the first inequality
of Lemma 5.1 implies that∑
l∈Z:|l|≤k

|Uhk ,hk(l+·)(t, t) +Uhk ,−hk(l+·)(t, t)| ≤ 2tα
∑

l∈Z:|l|≤k
ρl exp

(−2tα(‖hk‖αα − ρl)
)

≤ Ctα exp
(−2tα(‖hk‖αα −max

|l|≤k
ρl)

)
.

(5.18)

Now by Cauchy–Schwarz inequality ρl < ‖hk‖αα for all l, and we obtain a uniform
bound in t ≥ 0. By Lemmas 5.1 and 5.2 there exist constants C,K > 0 such that∑

l∈Z:|l|>k
|Uhk ,hk(l+·)(t, t) +Uhk ,−hk(l+·)(t, t)|

≤ 2αtα exp
(
−2tα(‖hk‖αα − sup

|l|>k
ρl)

) ∑
l∈Z:|l|>k

|l|(α(H−k)−1)/2

≤ Ctα exp(−Ktα), (5.19)

where we used the assumption k > H + 1/α and that ρl → 0 for |l| →∞ by Lemma 5.2.
Combining (5.17), (5.18) and (5.19) we can conclude (5.15). This completes the proof
of Theorem 3.1(ii).

5.5 Proof of Theorem 3.1(iii)

As in the proof of Theorem 3.1(ii) we obtain the decomposition (5.13), where the
convergence rate

√
n is replaced by n1−1/β . Furthermore, as in (5.14), it suffices to

prove that for some r ∈ (1,2) then as n→∞
n1−1/β(‖ϕn −ϕξ0

‖w,r + |Hn −H0|
) L−−→ ‖κ2S‖w,r + |M2|,

n1−1/β
∫ ∞

0

(
ϕn(t)−ϕξ0

(t)
)∇θϕξ0

(t)w(t)dt L−−→ S

∫ ∞
0
κ2(t)∇θϕξ0

(t)w(t)dt.

� 39 �



Paper B · A Minimal Contrast Estimator for the Linear Fractional Stable Motion

As before in the Gaussian case it is enough to provide uniform bounds (in n and t) on
the moments in order to use Proposition 5.6.

Recall that the dominating term in (5.6) is given by

Sn(t) = n−1/β
n∑
i=k

(
Φt(Li+1 −Li)−E[Φt(Li+1 −Li)]

)
.

Inspired by the classical case of i.i.d. random variables, each in the domain of attrac-
tion of a stable distribution, we shall prove the following result.

Proposition 5.7. For any r ∈ (0,β) we have that

sup
n∈N,t≥0

E[|Sn(t)|r ] <∞.

Proof. By Jensen’s inequality it suffices to consider r > 1 (indeed β ∈ (1,2)). Recall the
relation Φt,σ ‖hk‖α (x) = Φ2

t (x) = exp(−|σt ‖hk‖α |α)(cos(tx)− 1) together with

Φt(x) =
∞∑
i=1

Φ2
t (hk(i)x).

Note that for all x in some bounded set by Lemma 5.3(ii):

sup
t≥0
|Φt(x)| ≤ sup

t≥0
exp(−|σ ‖hk‖αt|α)

∞∑
i=1

(1∧ (|xthk(i)|)2)

≤ sup
t≥0

exp(−|σ ‖hk‖αt|α)(t + 1)2(|x|+ 1)2
∞∑
i=1

(1∧ |hk(i)|2) ≤ C <∞.

By (5.8) there exists x0 < −1 such that for all t > 0∣∣∣∣∣ |Φt(x)|
|x|q − |κ2(t)|

∣∣∣∣∣ ≤ 1 for all x < x0, (5.20)

where q = α/β, β = 1 +α(k −H) ∈ (1,2) and κ2(t) = Ktq exp(−|t ‖hk‖ασ |α) with K < 0.
For shorter notation we write Di = Li+1 − Li to denote the ith increment of L. Since
E[Φt(D1)] is bounded in t we may replace Φt(x) with Φt(x)−E[Φt(D1)] in (5.20) if x0

is chosen large enough. Define for each t ≥ 0, n ∈N and i ∈ {k, . . . ,n}

Yn,t,i =
(
Φt(Di)−E[Φt(Di)]

)
1{|Φt(Di )−E[Φt(Di )]|≤n1/β },

Zn,t,i =
(
Φt(Di)−E[Φt(Di)]

)
1{|Φt(Di )−E[Φt(Di )]|>n1/β }.

We have the decomposition

Tn,t B
n∑
i=k

(
Φt(Di)−E[Φt(Di)]

)
=

n∑
i=k

(Yn,t,i −E[Yn,t,i]) +
n∑
i=k

(Zn,t,i −E[Zn,t,i])

C Tn,t,1 + Tn,t,2.

The proposition then asserts that

sup
n∈N,t≥0

E[|n−1/βTn,t |r ] <∞ for all r ∈ (1,β).
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To prove this we observe that

E[|n−1/βTn,t |r ] ≤ Cr
(
E[|n−1/βTn,t,1|r ] +E[|n−1/βTn,t,2|r ]

)
.

For the first term we obtain the inequality

E[|n−1/βTn,t,1|r ] ≤ E

[|n−1/βTn,t,1|2
]r/2 ≤ Cr (n1−2/β

E[|Yn,t,k |2]
)r/2

.

For short notation let Et = E[Φt(D1)], which is uniformly bounded in t ≥ 0. Addi-
tionally let pα denote the density of an SαS distribution and recall that pα(x) ≤
C(1 + |x|)−1−α for all x ∈R, cf. [29, Theorem 1.1]. We decompose E[|Yn,t,k |2] into two
regions corresponding to (5.20):

n1−2/β
E[|Yn,t,k |2] = 2n1−2/β

∫ 0

x0

|Φt(x)−Et |21{|Φt(x)−Et |≤n1/β }pα(x)dx

+ 2n1−2/β
∫ x0

−∞
|Φt(x)−Et |21{|Φt(x)−Et |≤n1/β }pα(x)dx.

The first term vanishes as n→∞ since 2/β > 1 and the fact that |Φt(x)−Et | is bounded
for all t and x ∈ (x0,0). The second term is further split into two terms:

n1−2/β
∫ x0

−∞
|Φt(x)−Et |21{|Φt(x)−Et |≤n1/β }pα(x)dx

= n1−2/β
∫ x0

−∞
|Φt(x)−Et |21{|x|q<|Φt(x)−Et |≤n1/β }pα(x)dx

+n1−2/β
∫ x0

−∞
|Φt(x)−Et |21{|Φt(x)−Et |≤n1/β∧|x|q}pα(x)dx.

Using (5.20) and the boundedness of κ2 on the first term we have that

n1−2/β
∫ x0

−∞
|Φt(x)−Et |21{|x|q<|Φt(x)−Et |≤n1/β }pα(x)dx

≤ n1−2/β
∫ ∞
−x0

(|κ2(t)|+ 1)2x2q1{xq≤n1/β }pα(x)dx

≤ Cqn1−2/β
∫ n1/qβ

−x0

x2q−1−α dx = Cqn
1−2/β(1 +n(2q−α)/qβ) ≤ Cq.

The second term contains a similar consideration, indeed

n1−2/β
∫ x0

−∞
|Φt(x)−Et |21{|Φt(x)−Et |≤n1/β∧|x|q}pα(x)dx ≤

∫ ∞
−x0

(n1/β ∧ xq)2pα(x)dx

= n1−2/β
∫ n1/qβ

−x0

x2qpα(x)dx+n1−2/β
∫ ∞
n1/qβ

n2/βpα(x)dx ≤ Cq.

In the next step we treat the term Tn,t,2. Note first that by the von Bahr-Esseen
inequality we obtain

E[|n−1/βTn,t,2|r ] ≤ Crn1−r/β
E[|Zn,t,k |r ].

Decomposing as above we have that

n1−r/β
E[|Zn,t,k |r ] = 2n1−r/β

∫ 0

x0

|Φt(x)−Et |r1{|Φt(x)−Et |>n1/β }pα(x)dx

+ 2n1−r/β
∫ x0

−∞
|Φt(x)−Et |r1{|Φt(x)−Et |>n1/β }pα(x)dx.
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For the first term we recall that Φt(x) is bounded uniformly in t when x lies in
a bounded set, hence n1/β > |Φt(x) − Et | for all sufficiently large n, independent of
x ∈ (0,x0) and t ≥ 0, so the first term is zero for sufficiently large n.

The last term requires more computations. Due to (5.20) and the fact that κ2 is
bounded it follows that

n1−r/β
∫ x0

−∞
|Φt(x)−Et |r1{|Φt(x)−Et |>n1/β }pα(x)dx

≤ Cn1−r/β
∫ x0

−∞
(|κ2(t)|+ 1)r |x|rq1{(|κ2(t)|+1) |x|q>n1/β }pα(x)dx

≤ Cn1−r/β
∫ x0

−∞
|x|rq−1−α1{|x|>n1/qβ /K}dx

= Cn1−r/β
∫ ∞
n1/α /K

xrq−1−α dx ≤ C,

where we used that rq −α < 0 since r < β. �

Combining Propositions 5.4–5.7 we finally complete the proof of Theorem 3.1(iii).
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6. Tables

6 Tables

Table B.5. Absolute value of the bias based
on n = 1000, k = 2, p = −0.4, ν = 0.1 and
σ0 = 0.3 for the minimal contrast estimator.

H0 α0 σn αn Hn(p,k)

0.2 0.4 6.1153 0.4078 0.2015
0.6 0.0998 0.0076 0.1818
0.8 0.0417 0.0018 0.1346
1 0.0540 0.0000 0.1137
1.2 0.0451 0.0008 0.0881
1.4 0.0367 0.0045 0.0702
1.6 0.0309 0.0207 0.0706
1.8 0.0117 0.0535 0.0643

0.4 0.4 5.4236 0.3281 0.1040
0.6 0.0774 0.0035 0.1237
0.8 0.0472 0.0051 0.0748
1 0.0322 0.0003 0.0501
1.2 0.0276 0.0010 0.0351
1.4 0.0115 0.0090 0.0189
1.6 0.0072 0.0487 0.0261
1.8 0.0496 0.1229 0.0193

0.6 0.4 3.6173 0.2007 0.0638
0.6 0.0493 0.0058 0.0608
0.8 0.0375 0.0036 0.0402
1 0.0328 0.0020 0.0235
1.2 0.0115 0.0161 0.0187
1.4 0.0067 0.0327 0.0065
1.6 0.0366 0.0933 0.0112
1.8 0.1129 0.2501 0.0089

0.8 0.4 1.6906 0.0866 0.0204
0.6 0.0483 0.0027 0.0404
0.8 0.0514 0.0025 0.0303
1 0.0345 0.0027 0.0167
1.2 0.0053 0.0215 0.0107
1.4 0.0160 0.0511 0.0057
1.6 0.0702 0.1425 0.0014
1.8 0.1724 0.3915 0.0016

Table B.6. Standard deviation based on n =
1000, k = 2, p = −0.4, ν = 0.1 and σ0 = 0.3 for
the minimal contrast estimator.

H0 α0 σn αn Hn(p,k)

0.2 0.4 7.4104 0.4585 0.1609
0.6 0.4289 0.0925 0.1622
0.8 0.2445 0.0681 0.1468
1 0.2047 0.0773 0.1355
1.2 0.1831 0.0923 0.1283
1.4 0.1733 0.1118 0.1244
1.6 0.1551 0.1376 0.1216
1.8 0.1415 0.1461 0.1210

0.4 0.4 7.9313 0.4407 0.1664
0.6 0.3619 0.0717 0.1723
0.8 0.2295 0.0686 0.1546
1 0.1864 0.0869 0.1503
1.2 0.1698 0.1151 0.1448
1.4 0.1590 0.1583 0.1384
1.6 0.1527 0.1964 0.1447
1.8 0.1255 0.1959 0.1397

0.6 0.4 7.3589 0.3497 0.1923
0.6 0.2561 0.0652 0.1729
0.8 0.1948 0.0676 0.1579
1 0.1817 0.1030 0.1538
1.2 0.1683 0.1411 0.1406
1.4 0.1651 0.1974 0.1498
1.6 0.1559 0.2431 0.1465
1.8 0.1171 0.2271 0.1410

0.8 0.4 5.0779 0.2183 0.1848
0.6 0.2539 0.0632 0.1758
0.8 0.2014 0.0748 0.1523
1 0.1864 0.1140 0.1546
1.2 0.1843 0.1765 0.1533
1.4 0.1749 0.2353 0.1424
1.6 0.1402 0.2413 0.1417
1.8 0.1156 0.2342 0.1361
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Table B.7. Absolute value of the bias based
on n = 10000, k = 2, p = −0.4, ν = 0.1 and
σ0 = 0.3 for the minimal contrast estimator.

H0 α0 σn αn Hn(p,k)

0.2 0.4 2.2799 0.1415 0.2563
0.6 0.0106 0.0018 0.1652
0.8 0.0032 0.0025 0.1134
1 0.0046 0.0005 0.0848
1.2 0.0078 0.0012 0.0636
1.4 0.0110 0.0015 0.0516
1.6 0.0107 0.0012 0.0413
1.8 0.0077 0.0010 0.0318

0.4 0.4 0.6629 0.0458 0.1766
0.6 0.0081 0.0003 0.1022
0.8 0.0050 0.0017 0.0600
1 0.0018 0.0010 0.0366
1.2 0.0052 0.0018 0.0234
1.4 0.0068 0.0019 0.0170
1.6 0.0097 0.0065 0.0103
1.8 0.0124 0.0145 0.0041

0.6 0.4 0.1517 0.0171 0.1130
0.6 0.0021 0.0010 0.0588
0.8 0.0067 0.0015 0.0314
1 0.0057 0.0011 0.0156
1.2 0.0025 0.0008 0.0070
1.4 0.0032 0.0010 0.0034
1.6 0.0081 0.0050 0.0008
1.8 0.0143 0.0126 0.0017

0.8 0.4 0.0575 0.0060 0.0793
0.6 0.0053 0.0013 0.0335
0.8 0.0033 0.0002 0.0131
1 0.0049 0.0004 0.0065
1.2 0.0000 0.0006 0.0014
1.4 0.0030 0.0014 0.0004
1.6 0.0095 0.0045 0.0016
1.8 0.0039 0.0035 0.0002

Table B.8. Standard deviation based on n =
10000, k = 2, p = −0.4, ν = 0.1 and σ0 = 0.3
for the minimal contrast estimator.

H0 α0 σn αn Hn(p,k)

0.2 0.4 4.4680 0.2759 0.0693
0.6 0.0983 0.0292 0.0560
0.8 0.1062 0.0313 0.0510
1 0.0642 0.0236 0.0499
1.2 0.0684 0.0354 0.0484
1.4 0.0699 0.0506 0.0489
1.6 0.0711 0.0666 0.0479
1.8 0.0654 0.0678 0.0476

0.4 0.4 2.2370 0.1458 0.0704
0.6 0.0826 0.0230 0.0628
0.8 0.0933 0.0305 0.0509
1 0.0577 0.0309 0.0504
1.2 0.0574 0.0393 0.0494
1.4 0.0647 0.0620 0.0465
1.6 0.0812 0.0959 0.0484
1.8 0.0825 0.1168 0.0479

0.6 0.4 0.6954 0.0689 0.0713
0.6 0.1014 0.0226 0.0576
0.8 0.0756 0.0290 0.0506
1 0.0589 0.0327 0.0481
1.2 0.0546 0.0446 0.0480
1.4 0.0710 0.0749 0.0479
1.6 0.0955 0.1238 0.0462
1.8 0.0957 0.1469 0.0469

0.8 0.4 0.3571 0.0510 0.0749
0.6 0.1290 0.0256 0.0596
0.8 0.0524 0.0245 0.0515
1 0.0645 0.0388 0.0497
1.2 0.0670 0.0593 0.0475
1.4 0.0845 0.0951 0.0470
1.6 0.1119 0.1512 0.0482
1.8 0.0987 0.1621 0.0508
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Table B.9. Absolute value of bias based on
n = 10000, k = 1, p = −0.4, ν = 0.1 and σ0 =
0.3.

H0 α0 σn αn Hn(p,k)

0.2 0.4 0.0202 0.0177 0.1873
0.6 0.0671 0.0001 0.1329
0.8 0.0256 0.0015 0.0966
1 0.0044 0.0028 0.0745
1.2 0.0026 0.0018 0.0589
1.4 0.0097 0.0065 0.0465
1.6 0.0161 0.0135 0.0376
1.8 0.0216 0.0270 0.0286

0.4 0.4 0.0656 0.0090 0.0824
0.6 0.0623 0.0017 0.0564
0.8 0.0201 0.0020 0.0394
1 0.0017 0.0037 0.0278
1.2 0.0076 0.0052 0.0202
1.4 0.0109 0.0089 0.0128
1.6 0.0229 0.0271 0.0066
1.8 0.0177 0.0288 0.0048

0.6 0.4 0.0659 0.0110 0.0109
0.6 0.0724 0.0018 0.0114
0.8 0.0254 0.0022 0.0025
1 0.0050 0.0101 0.0009
1.2 0.0131 0.0127 0.0002
1.4 0.0189 0.0194 0.0027
1.6 0.0083 0.0167 0.0004
1.8 0.0241 0.0456 0.0014

0.8 0.4 0.0813 0.0116 0.1184
0.6 0.0937 0.0039 0.0825
0.8 0.0343 0.0117 0.0499
1 0.0033 0.0194 0.0258
1.2 0.0035 0.0120 0.0005
1.4 0.0012 0.0197 0.0034
1.6 0.0162 0.0439 0.0054
1.8 0.0214 0.0571 0.0034

Table B.10. Standard deviation based for
n = 10000, k = 1, p = −0.4, ν = 0.1 and σ0 =
0.3.

H0 α0 σn αn Hn(p,k)

0.2 0.4 0.6538 0.0803 0.0655
0.6 0.0681 0.0247 0.0548
0.8 0.0599 0.0239 0.0501
1 0.0693 0.0324 0.0474
1.2 0.0633 0.0422 0.0459
1.4 0.0711 0.0598 0.0461
1.6 0.0835 0.0901 0.0458
1.8 0.0841 0.1071 0.0437

0.4 0.4 0.3547 0.0625 0.0638
0.6 0.0769 0.0271 0.0562
0.8 0.0754 0.0355 0.0494
1 0.0549 0.0409 0.0473
1.2 0.0636 0.0560 0.0478
1.4 0.0751 0.0777 0.0452
1.6 0.1003 0.1242 0.0459
1.8 0.0685 0.1096 0.0441

0.6 0.4 0.8005 0.0619 0.0637
0.6 0.0668 0.0342 0.0544
0.8 0.0722 0.0512 0.0521
1 0.0695 0.0575 0.0494
1.2 0.0772 0.0717 0.0453
1.4 0.1065 0.1194 0.0458
1.6 0.0777 0.1138 0.0441
1.8 0.0648 0.1238 0.0449

0.8 0.4 0.7398 0.0648 0.0660
0.6 0.1042 0.0448 0.0550
0.8 0.1182 0.0728 0.0506
1 0.0845 0.0830 0.0460
1.2 0.0764 0.0747 0.0444
1.4 0.0630 0.1042 0.0464
1.6 0.0700 0.1390 0.0452
1.8 0.0602 0.1412 0.0419
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Table B.11. Absolute value of bias for
(σ̃low, α̃low) for n = 10000, p = −0.4 and
σ0 = 0.3.

H0 α0 σ̃low α̃low

0.2 0.4 0.2872 0.0371
0.6 0.2860 0.1737
0.8 0.2725 0.3817
1 0.2390 0.4889
1.2 0.0888 0.1818
1.4 0.0065 0.0044
1.6 0.0077 0.0080
1.8 0.0047 0.0013

0.4 0.4 0.2805 0.0364
0.6 0.2693 0.1606
0.8 0.2053 0.2938
1 0.0543 0.1374
1.2 0.0052 0.0043
1.4 0.0012 0.0011
1.6 0.0005 0.0010
1.8 0.0006 0.0007

0.6 0.4 0.2764 0.0460
0.6 0.2285 0.1362
0.8 0.1752 0.2583
1 0.0077 0.0135
1.2 0.0020 0.0023
1.4 0.0001 0.0001
1.6 0.0002 0.0005
1.8 0.0006 0.0000

0.8 0.4 0.2688 0.0713
0.6 0.1389 0.0917
0.8 0.0096 0.0286
1 0.0062 0.0073
1.2 0.0013 0.0000
1.4 0.0003 0.0023
1.6 0.0001 0.0010
1.8 0.0000 0.0020

Table B.12. Standard deviation for
(σ̃low, α̃low) for n = 10000, p = −0.4 and
σ0 = 0.3.

H0 α0 σ̃low α̃low

0.2 0.4 0.0514 0.2249
0.6 0.0420 0.2195
0.8 0.0676 0.2181
1 0.1036 0.2549
1.2 0.1322 0.2632
1.4 0.1000 0.2301
1.6 0.0510 0.1362
1.8 0.0264 0.0765

0.4 0.4 0.0680 0.2127
0.6 0.0741 0.2198
0.8 0.1525 0.2459
1 0.2039 0.3633
1.2 0.0528 0.0875
1.4 0.0236 0.0451
1.6 0.0151 0.0308
1.8 0.0112 0.0222

0.6 0.4 0.0734 0.2108
0.6 0.1522 0.2142
0.8 0.1790 0.2618
1 0.1245 0.1896
1.2 0.0259 0.0371
1.4 0.0149 0.0283
1.6 0.0106 0.0252
1.8 0.0078 0.0204

0.8 0.4 0.0853 0.2041
0.6 0.2856 0.2329
0.8 0.2399 0.2664
1 0.0659 0.0793
1.2 0.0201 0.0306
1.4 0.0118 0.0281
1.6 0.0084 0.0255
1.8 0.0064 0.0208
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Table B.13. Failure rates for n = 10000, p = −0.4, k = 2, ν = 0.1 and σ0 = 0.3.

Failure rate (%)

H0 α0 (σ̃low, α̃low, H̃low) ξn

0.2 0.4 88.17 14.83
0.6 84.08 0
0.8 69.67 0
1 38.58 0
1.2 0.42 0
1.4 3.25 0.17
1.6 3.83 1
1.8 1.58 2.25

0.4 0.4 86.08 20.17
0.6 76.75 0.17
0.8 62.58 0
1 19.17 0.18
1.2 0 0
1.4 0 0.33
1.6 0 1.42
1.8 0 7.17

0.6 0.4 87 28.67
0.6 72.67 0
0.8 41.75 0
1 0.08 0
1.2 0 0
1.4 0 0.08
1.6 0 2.42
1.8 0 10.25

0.8 0.4 89.50 26.33
0.6 69.33 0.33
0.8 2.17 0
1 0.08 0.25
1.2 0 0
1.4 0 0.17
1.6 0 3.92
1.8 0 11
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Abstract. In this paper we present a new parametric estimation method for a Lévy
moving average process driven by a symmetric α-stable Lévy motion L, α ∈ (0,2).
More specifically, we consider a parametric family of kernel functions gθ with θ ∈Θ ⊆
R and propose an asymptotically normal estimator of the pair (α,θ). The estimation
idea is based upon the minimal contrast approach, which compares the empirical
characteristic function of the Lévy moving average process with its theoretical coun-
terpart. Our work is related to recent papers [14, 16] that are studying parametric
estimation of a linear fractional stable motion.

1 Introduction

During the past decades a lot of progress has been achieved in the probabilistic
and statistical analysis of fractional type processes. Since the pioneering work of
Mandelbrot and van Ness [15] the fractional Brownian motion (fBm) has received a
great deal of attention. The (scaled) fBm is the unique zero-mean self-similar Gaussian
process with stationary increments. A variety of statistical estimation methods for
fBm has been developed in low and high frequency setting. We refer to, e.g. [9, 6, 8,
12] for the statistical analysis of parametric estimators in both frameworks. More
recently, researchers started to investigate the mathematical properties of the linear
fractional stable motion, which constitutes a particular extension of fBm that drops
the Gaussianity assumption and allows for general α-stable marginal distributions.
The asymptotic theory for statistics of linear fractional stable motions turns out to be
much more complex as it has been shown in the papers [2, 3, 4, 13], which consider a
larger class of stationary increments Lévy moving average processes. First parametric
estimation methods have been proposed in [1, 5, 10, 11, 18]. However, the complete
asymptotic theory has been investigated only in recent papers [14, 16].

� 51 �



Paper C · A Note on Parametric Estimation of Lévy Moving Average Processes

In this article we extend the statistical analysis of [14] to parametric Lévy moving
average processes. We consider the model

Xt =
∫ t

−∞
gθ(t − s)dLs, t ≥ 0, (1.1)

where gθ : [0,∞)→R is a deterministic kernel function parametrized by θ ∈Θ, where
Θ ⊆R is an open set, and L is a symmetric α-stable Lévy motion with α ∈ (0,2) and
scale parameter 1; we use the abbreviation L ∼ SαS(1). We assume that

‖gθ‖αα B
∫
R

|gθ(x)|α dx <∞ (1.2)

for all θ ∈ Θ and α ∈ (0,2), which guarantees the existence of the integral in (1.1),
cf. [19] (we extend gθ to the whole real line by setting gθ(x) = 0 for all x < 0). The aim
of our paper is to construct an asymptotically normal estimator for the pair (α,θ)
given low frequency observations X1, . . . ,Xn of the model (1.1). Our approach is based
upon the (real part of) empirical characteristic function defined as

φn(u)B
1
n

n∑
i=1

cos(uXi), u ≥ 0. (1.3)

Since the process X is strongly ergodic (cf. [7]), we obtain the strong consistency
result

φn(u) a.s.−−→ φα,θ(u)B E[cos(uX1)] = exp(−uα ‖gθ‖αα) for all u ≥ 0. (1.4)

From the latter convergence result it becomes obvious that the parameter θ ∈ Θ is
identifiable through the function φα,θ if and only if the map θ 7→ ‖gθ‖α is bijective,
which we assume in the following. We remark that the characteristic function φα,θ
only takes into account the marginal distribution of X. In the articles [14, 16], which
investigate parametric estimation for the linear fractional stable motion, which is a
three-parameter family, the empirical characteristic function φn is combined with
other statistics to obtain an estimator for the whole set of parameters of the model.

The goal of this paper is to study the asymptotic properties of the minimal contrast
estimator associated with the empirical characteristic function φn. More specifically,
we consider a positive bounded C1-function w with w ∈ L1(R+) and introduce the
estimator (α̂n, θ̂n) of the unknown parameter (α0,θ0) via

(α̂n, θ̂n) = argmin
(α,θ)∈(0,2)×Θ

‖φn −φα,θ‖2L2
w

with ‖f ‖2L2
w
B

∫
R+

f 2(x)w(x)dx. (1.5)

We remark that a similar minimal contrast approach has been studied in [14] in
the setting of the linear fractional stable noise, which corresponds to the kernel
function g(x) = θ{(x+ 1)β − xβ}1{x>0}. Hence, the present work extends the concepts
of [14] to more general parametric classes {gθ : θ ∈Θ} under the bijectivity condition
on the map θ 7→ ‖gθ‖α (on the other hand, in contrast to the present work, [14]
does not assume that the parameter β is known). We will show that the minimal
contrast estimator (α̂n, θ̂n) defined at (1.5) is strongly consistent and, under further
assumptions on the model, asymptotically normal.

The paper is structured as follows. Section 2 presents the model assumption and a
short review of relevant results. Section 3 demonstrates the asymptotic theory for the
minimal contrast estimator (α̂n, θ̂n) including the strong consistency and asymptotic
normality. The proofs of the main statements are collected in Section 4.

� 52 �



2. Model Assumptions and Literature Review

2 Model Assumptions and Literature Review

2.1 Assumptions, Remarks and Examples

We start with a set of assumptions on the functions gθ and φα,θ . Below we write
∂kz1,...,zk f to denote the kth derivative of fθ with respect to z1, . . . , zk ∈ {α,θ}.
Assmuption (A). Additionally to condition (1.2) we assume that∑

i≥1

(∫ i

i−1
|gθ(x)|α dx

)1/2
<∞ (2.1)

for all θ ∈ Θ and α ∈ (0,2). Furthermore, we assume that the map (θ,α) 7→ ‖gθ‖αα
is C2.

Condition (2.1) is required to prove the central limit theorem for the sequence of
statistics

√
n(φn(u)−φα,θ(u)). As we will see below, the standardized version of φn(u)

may have a different asymptotic distribution when (2.1) is violated. On the other
hand, the differentiability condition of Assmuption (A) ensures that the map (θ,α) 7→
φθ,α(u) is differentiable for all u ∈ R+ and that we may interchange differentiation
and integration when computing the asymptotic covariance matrix associated with
the estimator (α̂n, θ̂n).

Example 2.2 (Conditions on the kernel function g).
Let us first consider the exponential type family of kernels defined by gθ(x) =
exp(−θx) with θ ∈ Θ = (0,∞). Then condition (1.2) is obviously satisfied for any
θ ∈Θ and α ∈ (0,2). We also have that∫ i

i−1
|gθ(x)|α dx ≤ exp(−θα(i − 1))

and thus condition (2.1) is satisfied.
Now, let us study the kernel function gθ(x) = θ((x + 1)β − xβ)1{x>0}, where β ∈ R

is a known constant and θ ∈Θ = (0,∞), which turns out to be more complicated to
treat. As remarked earlier this kernel stems from the linear fractional stable noise. In
this setting, recalling that we require integrability of |gθ |α near 0, condition (1.2) is
equivalent to the statement

β ∈ (−1/α,−1/α + 1)

and this can never be satisfied for all α ∈ (0,2). Assume now that we know the bounds
α < α, α,α ∈ (0,2), such that α ∈ (α,α) and

α

2−α > α.

Clearly, the latter condition gives a restriction on the numbers α and α. In this
restrictive setting, the condition β ∈ (−1/α,−1/α + 1) is satisfied for all α ∈ (α,α)
whenever β ∈ (−1/α,−1/α + 1). Furthermore, we have the inequality∫ i

i−1
|gθ(x)|α dx ≤ Cθ(i − 1)(β−1)α for i > 1.

Hence, in the setting α ∈ (α,α) condition (2.1) is satisfied when β ∈ (−1/α,−2/α+1). ©
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Remark 2.3 (Higher order filters).
Let us further study the polynomial family of kernels gθ(x) = θ((x + 1)β − xβ)1{x>0},
where β is known and α ∈ (α,α) ⊆ (0,2). Suppose that condition β > −1/α is satisfied,
but β ≥ −2/α+1 and hence (2.1) does not hold. In this setting we may apply the higher
order filter to the observations X1, . . . ,Xn to solve the problem. For a k ∈N0 BN∪{0}
we introduce the operator

∆kXi B
k∑
j=0

(−1)j
(
k
j

)
Xi−j and ∆kgθ(x)B

k∑
j=0

(−1)j
(
k
j

)
gθ(x − j),

for any i > k and x > k. Defining the statistic

φn(u;k)B
1

n− k
n∑

i=k+1

cos(u∆kXi), (2.2)

we deduce the strong consistency result

φn(u;k) a.s.−−→ φα,θ(u;k) = exp
(−uα ‖∆kgθ‖αα)

for all u ≥ 0.

We conclude that condition (2.1) holds for ∆kgθ when

β < k + 1− 2/α.

Consequently, when β and α, α are known, we may proceed as follows: Choose
the minimal k ∈ N0 such that β < k + 1 − 2/α holds and construct the estimator
of the unknown parameter (α0,θ0) via the minimal contrast approach introduced
at (1.5), where φn(u) (resp. φα,θ(u)) is replaced by φn(u;k) (resp. φα,θ(u;k)) and
the minimization problem is restricted to the set (α,α)×Θ. This procedure, which
can be easily extended to other classes of kernel functions with polynomial decay
at infinity, would result in the same asymptotic theory as presented below (up to
obvious replacement of gθ by ∆kgθ at relevant places). ^

2.2 Some Probabilistic and Statistical Results

In this section we demonstrate some limit theorems and statistical methods, which
are related to our statistical problem. We start with the multivariate central limit
theorem for bounded functionals of Lévy moving average processes, which has been
proved in [17]; see also [18] for further extensions.

Theorem 2.4 ([17, Theorem 2.1]).
Let (Xjt )t≥0, j = 1, . . . ,d, be Lévy moving average processes of the form

X
j
t =

∫ t

−∞
gj (t − s)dLs,

where L ∼ SαS(1) and the kernels gj satisfy ‖gj‖α <∞. Define the statistics

V (fj )
j
n =

1
n

n∑
i=1

fj (Xi), j = 1, . . . ,d,
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where fj are measurable bounded functions. If each kernel gj satisfies the condition (2.1),
we obtain the central limit theorem

√
n
(
V (fj )

j
n −E[fj (X

j
1)]

)
1≤j≤d

L−−→Nd(0,Σ)

where Σ ∈Rd×d is a finite matrix defined via Σjk =
∑
r∈Z Cov(fj (X

j
1), fk(X

k
1+r )).

Theorem 2.4 directly applies to the multivariate statistic
√
n(φn(uj )−φα,θ(uj ))1≤j≤d

with u1, . . . ,ud ∈ R+ by setting, e.g. fj(x) = cos(ujx) and gj = gθ for all j = 1, . . . ,d, a
result which will be useful later. The recent paper [2] gives a more complete probabil-
istic picture when the condition (2.1) is violated. Their results have been formulated
in the high frequency regime, so they do not apply to the low frequency setting
without further modification. However, in the case of the linear fractional stable
motion the results directly translate to the low frequency regime. To demonstrate
ideas we consider a linear fractional stable noise defined by

Zt =
∫ t

−∞
θ
{
(t + 1− s)H−1/α − (t − s)H−1/α}

dLs, (2.3)

where H ∈ (0,1) denotes the self-similarity parameter, i.e. (Zat)t≥0 = (aHZt)t≥0 in
distribution for any a > 0. For simplicity of exposition let us consider the empirical
characteristic function φn(Z,u;k) defined at (2.2) associated with ∆kZi . We already
know from Remark 2.3 and Theorem 2.4 that the standardized version of the statistic
φn(Z,u;k) is asymptotically normal when k + 1 > H + 1/α. Now, we present the limit
distribution in the setting k + 1 < H + 1/α.

Theorem 2.5 ([16, Theorem 2.2] and [2, Theorem 2.6]).
Consider the linear fractional stable noise defined at (2.3). Let k ∈N0 be such that k + 1 <
H + 1/α. Then we obtain the convergence in distribution

n1−1/(1+α(k+1−H))(φn(Z,u;k)−φ(Z,u;k)) L−−→ S(1 +α(k + 1−H),0,ρ,η),

where S(1+α(k+1−H),0,ρ,η) denotes the (1+α(k+1−H))-stable distribution with location
parameter 0, scale parameter ρ and skewness parameter η; we refer to [2, Theorem 2.6] for
the explicit definition of ρ and η.

In contrast to our model (1.1), the linear fractional stable noise Z is a three-parameter
family. This has several consequences for the statistical analysis. First of all, while
the function gθ has a more general form, the power β = H − 1/α is unknown in
the linear fractional stable noise setting. This means that in the latter case it is not
known whether the empirical characteristic function φn(Z,u;k) is in the domain
of attraction of the normal or the stable distribution. The paper [16] suggests a
statistical method to overcome this problem and to obtain a feasible limit theorem
for the parameter (θ,α,H).

3 Main Results

We start this section with the central limit theorem for the quantity
√
n(φn(u) −

φα,θ(u)). In the following we use the notation Y n
L-f−−−→ Y for stochastic processes

(Y nt )t≥0 and (Yt)t≥0 to denote the finite dimensional convergence (Y nt1 , . . . ,Y
n
tk

) L−−→
(Yt1 , . . . ,Ytk ) for any k ∈N and ti ∈R+.
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Proposition 3.1. Suppose that Assmuption (A) holds. Then we obtain the convergence
√
n(φn(u)−φα,θ(u))

L-f−−−→ Gu , (3.1)

where (Gt)t≥0 is a zero mean Gaussian process with covariance kernel defined by

E[GuGv] =
1
2

∑
l∈Z

(
exp(−‖ugθ + vgθ( · + l)‖αα) + exp(−‖ugθ − vgθ(·+ l)‖αα)

− 2exp(−(uα + vα)‖gθ‖αα)
)
, u,v ∈R+.

(3.2)

In particular, there exists a constant C > 0 such that

E[G2
u] ≤ Cuα exp(−uα/C), u ∈R+. (3.3)

Furthermore, if ∑
l≥1

µl <∞ where µl B
∫
R+

|gθ(x+ l)|α dx, (3.4)

there exists a constant CT > 0 such that

E[(Gu −Gv)2] ≤ CT |u − v|α/2, u,v ∈ [0,T ]. (3.5)

Remark 3.2. Note that condition (3.4) can be equivalently written as∑
l≥1

l

∫ l+1

l
|gθ(x)|α dx <∞,

and thus it does not follow from (2.1) in general. However, the two conditions are
equivalent in the context of exponential and polynomial kernels discussed in Ex-
ample 2.2. Furthermore, when |g(x)|, x ∈ R+, is a decreasing function, it holds that
µl ≤ ρl where ρl is defined at (4.1). In this case condition (3.4) does follow from (2.1)
by Lemma 4.1. ^

Note that condition (3.5) implies that the stochastic process (Gt)t≥0 admits a continu-
ous modification. The tightness result associated with convergence at (3.1) is a much
more delicate problem. Indeed, it appears to be difficult to prove tightness by stand-
ard criteria and, in fact, we are not sure whether tightness holds. However, since our
estimation functional defined at (1.5) is of the integral form, tightness is not required
to deduce the asymptotic normality of the estimator (α̂n, θ̂n) via Proposition 3.1. To
be more specific, we demonstrate the following lemma.

Lemma 3.3. Let (Y nu )u≥0 and (Yu)u≥0 be continuous stochastic processes with Y n
L-f−−−→ Y .

Suppose that
∫
R+

E[|Y nu |]du <∞ and
∫
R+

E[|Yu |]du <∞, and define

Xn,m,l B

∫ l

0
Y nbumc/mdu, Xn,l B

∫ l

0
Y nu du.

Assume that the following conditions hold:

lim
l→∞

limsup
n→∞

∫ ∞
l

E[|Y nu |]du = 0, lim
m→∞ limsup

n→∞
P(|Xn,m,l −Xn,l | > ε) = 0, (3.6)

where the latter convergence holds for all l,ε > 0. Then we obtain the convergence in
distribution ∫

R+

Y nu du L−−→
∫
R+

Yu du as n→∞.
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Proof. Observe the decomposition∫
R+

Y nu du = Xn,m,l + (Xn,l −Xn,m,l) +
∫ ∞
l
Y nu du.

For any fixed m ∈N, it holds that

Xn,m,l
L−−→ Xm,l B

∫ l

0
Ybumc/mdu as n→∞,

since Y n
L-f−−−→ Y . Due to continuity of the process Y we also have that Xm,l

a.s.−−→
∫ l

0 Yu du
as m→∞. By conditions (3.6) we obtain the assertion of Lemma 3.3. �

Note that the conditions stated in (3.6) are usually easier to check in practical appli-
cations than tightness of the process (Y nt )t≥0.

To formulate the main result of the paper we need to introduce some more
notations. We set ξ = (α,θ) ∈ (0,2) × Θ and denote by ξ0 the true parameter of
the model. We further define the function

F(ψ,ξ)B ‖ψ −φξ‖2L2
w
, ψ ∈ L2

w. (3.7)

We now transform the M-estimator at (1.5) into a Z-estimator by using the criterium

∇ξF(ψ,ξ) = 0, (3.8)

which is satisfied at (φξ0
,ξ0). For each ξ ∈ (0,2)×Θ and ψ ∈ L2

w we denote by Φ(ψ)
an element of (0,2) ×Θ such that ∇ξF(ψ,Φ(ψ)) = 0 (if such an element exists). To
compute the derivative of Φ we recall the implicit function theorem on Banach spaces.
Let (Ej ,‖ · ‖Ej ), j = 1,2,3, be some Banach spaces and let Ej ⊆ Ej , j = 1,2, be open sets.
Consider a Fréchet differentiable function f : E1 × E2 → E3. For (e1, e2) ∈ E1 × E2

and (h1,h2) ∈ E1 × E2 we denote by Dkhk f (e1, e2), k = 1,2, the Fréchet derivative of
f in the direction hk ∈ Ek . The implicit function theorem is then formulated as
follows. Assume that an element (e0

1, e
0
2) ∈ E1 ×E2 satisfies f (e0

1, e
0
2) = 0 and the map

D2· f (e0
1, e

0
2) : E2→ E3 is continuous and invertible. Then there exist open sets U ⊆ E1

and V ⊆ E2 such that (e0
1, e

0
2) ∈U ×V and a bijective map p :U → V with

f (e1, e2) = 0 if and only if p(e1) = e2.

Furthermore, the function p is Fréchet differentiable and the derivative Dhp :U → V

is given by

Dhp(e1) = −
(
D2· f (e1,p(e1))

)−1(
D1
h f (e1,p(e1))

)
.

We now apply this statement to our setting. Here E1 = L2
w, E2 = (0,2) × Θ ⊆ R

2,
f = ∇ξF and p = Φ . Using the differentiability condition of Assmuption (A) we can
conclude the existence of D2∇ξF(ψ,ξ) and D1

h∇ξF(ψ,ξ). In particular, applying the
representation F(ψ,ξ) = 〈ψ −φξ ,ψ −φξ〉L2

w
, we obtain the formulae

D2∇ξF(φξ0
,ξ0) = ∇2

ξF(φξ0
,ξ0) = 2

(〈∂ξiφξ0
,∂ξjφξ0

〉L2
w

)
i,j=1,2,

D1
h∇ξF(φξ0

,ξ0) = −2
(〈∂ξiφξ0

,h〉L2
w

)
i=1,2, h ∈ L2

w.
(3.9)
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The matrix ∇2
ξF(φξ0

,ξ0) is positive definite if and only if the functions ∂θφξ0
and

∂αφξ0
are linearly independent, which is obviously true since

∂θφξ0
(u) = −uα0φξ0

(u)∂θ
(‖gθ‖α0

α0

)
θ=θ0

∂αφξ0
(u) = −φξ0

(u)uα0
(
log(u)‖gθ0

‖α0
α0 +∂α

(‖gθ0
‖αα

)
α=α0

)
.

(3.10)

The following result presents the asymptotic properties of the minimal contrast
estimator ξn B (α̂n, θ̂n) defined at (1.5).

Theorem 3.4. Let ξ0 ∈ (0,2)×Θ denote the true parameter of the model (1.1). Then we
obtain the strong consistency

ξn
a.s.−−→ ξ0 as n→∞.

Furthermore, if Assmuption (A) and (3.4) hold, we have

√
n(ξn − ξ0) L−−→

(
〈∂ξiφξ0

,∂ξjφξ0
〉L2

w

)−1

i,j=1,2

(
〈∂ξiφξ0

,G〉L2
w

)
i=1,2

, (3.11)

where the Gaussian process (Gt)t≥0 has been introduced in Proposition 3.1. In particular,
the above asymptotic distribution is a two-dimensional Gaussian with mean 0.

In theory we may obtain confidence regions for the unknown parameter ξ0 ∈ (0,2)×
Θ by estimating the asymptotic covariance matrix of the bivariate normal limit
appearing in Theorem 3.4. Indeed, by continuity and dominated convergence we
have that (〈∂ξiφξn ,∂ξjφξn〉L2

w

)−1
i,j=1,2

a.s.−−→ (〈∂ξiφξ0
,∂ξjφξ0

〉L2
w

)−1
i,j=1,2,

and similarly we can consistently estimate the covariance kernel of G via replacing
ξ0 by ξn at (3.2). However, this procedure is extremely involved from the numerical
point of view, since the asymptotic covariance matrix contains improper integrals
and an infinite sum with a potentially slow rate of convergence. Even in the setting
of the exponential family gθ discussed in Example 2.2, the asymptotic covariance can
not be computed explicitly.

To overcome this problem we propose an alternative numerical procedure, which
provides an estimator of the asymptotic covariance matrix in the central limit theorem
(3.11). Our method is based upon the following steps:

1. Compute the minimal contrast estimator ξn of ξ0 from the data X1, . . . ,Xn.

2. For k = 1, . . . ,N generate new independent samples X(k)
1 , . . . ,X(k)

n from model
(1.1) with parameter ξn.

3. For k = 1, . . . ,N compute estimators ξ(k)
n from the data X(k)

1 , . . . ,X(k)
n via (1.5).

4. Compute the empirical covariance matrix Vn,N of ξ(k)
n , k = 1, . . . ,N .

The estimator at (1.5) can be obtained by solving the equation

∇ξF(φn,ξ) = 0,

which is a standard numerical problem. Hence, the estimator Vn,N for large n and N
is likely to be a better proxy for the unknown asymptotic covariance matrix in (3.11)
than its direct numerical approximation.
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4 Proofs

Throughout the proof we denote all positive constants by C (or by Cp if they depend
on the external parameter p) although they may change from line to line.

We start with some preliminary results. Let us introduce the quantity

ρl B

∫
R

|gθ(x)gθ(x+ l)|α/2 dx, l ∈Z. (4.1)

Our first result, which has been shown in [18], concerns the summability of the
coefficients ρl .

Lemma 4.1. Assume that conditions (2.1) holds. Then we have∑
l∈Z

ρl <∞.

Proof. We obtain by Cauchy–Schwarz inequality that∑
l∈Z

ρk =
∑
l,m∈Z

∫ m

m−1
|gθ(x)gθ(x+ l)|α/2 dx

≤
∑
l,m∈Z

(∫ m

m−1
|gθ(x)|α dx

)1/2(∫ m

m−1
|gθ(x+ l)|α dx

)1/2

=
∑
m∈Z

(∫ m

m−1
|gθ(x)|α dx

)1/2 ∑
l∈Z

(∫ m+l

m+l−1
|gθ(x)|α dx

)1/2
.

Hence, the assertion follows from (2.1). �

Another important ingredient is the following measure of dependence. Let X =∫
R
gsdLs and Y =

∫
R
hsdLs with ‖g‖α ,‖h‖α < ∞. Then we introduce the measure of

dependence Ug,h : R2→R via

Ug,h(u,v)B E[exp(i(uX − vY ))]−E[exp(iuX)]E[exp(−ivY )]

= exp(−‖ug − vh‖αα)− exp(−‖ug‖αα − ‖vh‖αα).
(4.2)

The following result is the statement of inequalities (3.4)–(3.6) from [18].

Lemma 4.2. For any u,v ∈R it holds that

|Ug,h(u,v)| ≤ 2 |uv|α/2
∫ ∞

0
|g(x)h(x)|α/2 dx

× exp
(
−2|uv|α/2

(
‖g‖α/2α ‖h‖α/2α −

∫ ∞
0
|g(x)h(x)|α/2 dx

))
,

|Ug,h(u,v)| ≤ 2|uv|α/2
∫ ∞

0
|g(x)h(x)|α/2 dx

× exp
(
−
(
‖ug‖α/2α − ‖vh‖α/2α

)2
)
.

In particular, we have that |Ug,h(u,v)| ≤ 2 |uv|α/2
∫∞

0 |g(x)h(x)|α/2 dx.
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4.1 Proof of Proposition 3.1

The finite dimensional convergence in (3.1) is a direct consequence of Theorem 2.4.
To identify the covariance kernel of (Gt)t≥0, note that for Y =

∫
R
gsdLs with ‖g‖α <∞

it holds that
E[exp(iuY )] = exp(−‖ug‖αα).

Applying the identity cos(ux) = (exp(iux) + exp(−iux))/2 we deduce the formula for
E[GuGv] through a straightforward computation.

To show the remaining statements we introduce the definition

r(u,v)B E[GuGv] =
∑
l∈Z

rl(u,v)

with
rl(u,v)B 1

2

(
exp(−‖ugθ + vgθ( · + l)‖αα) + exp(−‖ugθ − vgθ( · + l)‖αα)

− 2exp(−(uα + vα)‖gθ‖αα)
)
.

(4.3)

Applying Lemma 4.2 to the functions g = gθ , h = gθ( · + l) and u ≥ 0, we deduce that

|rl(u,u)| ≤ Cρluα exp
(−2uα(‖gθ‖αα − ρl)

)
.

By Cauchy–Schwarz inequality we conclude that supl∈Z\{0}ρl < ‖gθ‖αα and hence

|rl(u,u)| ≤ Cρluα exp(−uα/C). (4.4)

Now, Lemma 4.1 implies the statement (3.3).
Next, we turn our attention to the proof of (3.5). We first start with a simplification.

Since cos(ux) = (exp(iux) + exp(−iux))/2 it suffices to show (3.5) for the asymptotic
covariance kernel that corresponds to the function exp(iux), i.e.

r(u,v) =
∑
l∈Z

r l(u,v), r l(u,v)

= exp(−‖ugθ − vgθ( · + l)‖αα)− exp(−(uα + vα)‖gθ‖αα).

Furthermore, due to r(u,u) + r(v,v)− 2r(u,v) ≤ |r(u,u)− r(u,v)|+ |r(v,v)− r(u,v)|, we
will only prove that

|r(u,u)− r(u,v)| ≤ CT |u − v|α/2, u,v ∈ [0,T ].

Observe the identity

r l(u,u)− r l(u,v)

= exp(−2uα ‖gθ‖αα)
{
exp(−‖u(gθ − gθ( · + l))‖αα + 2uα ‖gθ‖αα)− 1

}
− exp(−(uα + vα)‖gθ‖αα)

{
exp(−‖ugθ − vgθ( · + l)‖αα + (uα + vα)‖gθ‖αα)− 1

}
=

{
exp(−2uα ‖gθ‖αα)− exp(−(uα + vα)‖gθ‖αα)

}
×
{
exp(−‖u(gθ − gθ( · + l))‖αα + 2uα ‖gθ‖αα)− 1

}
+ exp(−(uα + vα)‖gθ‖αα)

×
{
exp(−‖u(gθ − gθ( · + l))‖αα + 2uα ‖gθ‖αα)

− exp(−‖ugθ − vgθ( · + l)‖αα + (uα + vα)‖gθ‖αα)
}

C r
(1)
l (u,v) + r(2)

l (u,v).
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We apply the second inequality of Lemma 4.2 and the mean value theorem to conclude
the estimate

|r(1)
l (u,v)| ≤ CT ρl |uα − vα | ≤ CT ρl |u − v|α/2 for u,v ∈ [0,T ]. (4.5)

Applying the mean value theorem once again we deduce that

|r(2)
l (u,v)| ≤ CT

∣∣∣∣‖ugθ − vgθ( · + l)‖αα − ‖u(gθ − gθ( · + l))‖αα + (uα − vα)‖gθ‖αα
∣∣∣∣.

In the next step we write

‖ugθ − vgθ( · + l)‖αα − ‖u(gθ − gθ( · + l))‖αα + (uα − vα)‖gθ‖αα
=

∫
R+

|ugθ(x)− vgθ(x+ l)|α − |u(gθ(x)− gθ(x+ l))|α + (uα − vα) |gθ(x+ l)|α dx.

Since α ∈ (0,2) we have the inequality |xα − yα | ≤ |x2 − y2|α/2 for any x,y ∈R+. Hence,
we conclude that∣∣∣|ugθ(x)− vgθ(x+ l)|α − |u(gθ(x)− gθ(x+ l))|α

∣∣∣
≤ CT |u − v|α/2 ×

(
|gθ(x+ l)|α + |gθ(x)gθ(x+ l)|α/2

)
for any u,v ∈ [0,T ]. Consequently, it holds that

|r(2)
l (u,v)| ≤ CT |u − v||α/2(ρl +µl) for u,v ∈ [0,T ], (4.6)

where the quantity µl has been introduced in (3.4). Finally, by Lemma 4.1, condi-
tion (3.4) and inequalities (4.5), (4.6), we obtain the assertion

E[(Gu −Gv)2] ≤ CT |u − v|α/2, u,v ∈ [0,T ],

which finishes the proof of Proposition 3.1. �

4.2 Proof of Theorem 3.4

We recall the notation ξ = (α,θ), ξn = (α̂n, θ̂n) and ξ0 = (α0,θ0). The strong consistency
result of the estimator ξn follows from standard results for M-estimators, which we
state for completeness. Since the map ξ 7→ φξ is bijective and continuous it suffices
to show that

‖φξn −φξ0
‖L2

w

a.s.−−→ 0

to prove ξn
a.s.−−→ ξ0. We deduce the inequality

‖φξn −φξ0
‖L2

w
≤ ‖φn −φξ0

‖L2
w

+ ‖φn −φξn‖L2
w

≤ 2‖φn −φξ0
‖L2

w
.

Since φn(u) a.s.−−→ φξ0
(u) for all u ∈ R+, we conclude by a standard argument and

dominated convergence that

‖φξn −φξ0
‖L2

w

a.s.−−→ 0,

which shows the strong consistency of our minimal contrast estimator.
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Now, we prove the central limit theorem of Theorem 3.4. First of all, note that

Φ(φn) = ξn and Φ(φξ0
) = ξ0.

Since the function Φ is Fréchet differentiable, we obtain the decomposition
√
n(ξn − ξ0) =

√
n
(
Φ(φn)−Φ(φξ0

)
)

=
(∇2
ξF(ξ0)

)−1
D1√

n(φn−φξ0 )∇ξF(ξ0) +
√
n‖φn −φξ0

‖L2
w
R(φn −φξ0

),
(4.7)

where R(φn −φξ0
) a.s.−−→ 0 as ‖φn −φξ0

‖L2
w

a.s.−−→ 0. Due to (3.9), we deduce that

(∇2
ξF(ξ0)

)−1
D1√

n(φn−φξ0 )∇ξF(ξ0) =
(
〈∂ξiφξ0

,∂ξjφξ0
〉L2

w

)−1

i,j=1,2

×
(
〈∂ξiφξ0

,
√
n(φn −φξ0

)〉L2
w

)
i=1,2

.

In view of the decomposition (4.7) it suffices to show the convergence results(
〈∂ξiφξ0

,
√
n(φn −φξ0

)〉L2
w

)
i=1,2

L−−→
(
〈∂ξiφξ0

,G〉L2
w

)
i=1,2

,
√
n‖φn −φξ0

‖L2
w

L−−→ ‖G‖L2
w

to prove the central limit theorem in Theorem 3.4. We concentrate on the first con-
vergence, since the second one follows by the same arguments. We apply Lemma 3.3
and note that conditions (3.6) can be checked for each component separately. Hence,
we set for a fixed i = 1,2

Y nu =
√
n(φn(u)−φξ0

(u))∂ξiφξ0
(u)w(u), Yu = Gu∂ξiφξ0

(u)w(u).

We obviously have that Y n
L-f−−−→ Y by Proposition 3.1. Observe that

E[≤](∂ξiφξ0
(u)w(u))2

∑
l∈Z
|rl(u,u)|,

where rl(u,v) has been introduced at (4.3). Applying the inequality (4.4) we obtain
that

E[|Y nu |] ≤ C |∂ξiφξ0
(u)w(u)|uα/2 exp(−uα/C),

which shows the first condition of (3.6). Similarly, we have the inequality

E[(Y nu −Y nv )2] ≤ CT
(
|u − v|min(α,1) +

∑
l∈Z
|rl(u,u) + rl(v,v)− 2rl(u,v)|

)
for any u,v ∈ [0,T ], thanks to (3.10) and w ∈ C1(R+). Thus, using the arguments from
the previous section we conclude that

E[(Y nu −Y nv )2] ≤ CT |u − v|α/2, u,v ∈ [0,T ].

The latter estimate and the Markov inequality imply the second condition of (3.6).
This completes the proof of Theorem 3.4.
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Abstract. In this paper we extend the refined second-order Poincaré inequality in [2]
from a one-dimensional to a multi-dimensional setting. Its proof is based on a mul-
tivariate version of the Malliavin–Stein method for normal approximation on Poisson
spaces. We also present an application to partial sums of vector-valued function-
als of heavy-tailed moving averages. The extension we develop is not only in the
co-domain of the functional, but also in its domain. Such a set-up has previously
not been explored in the framework of stable moving average processes. It can po-
tentially capture probabilistic properties which cannot be described solely by the
one-dimensional marginals, but instead require the joint distribution.

Key words: Central limit theorem, heavy-tailed moving average, Lévy process,
Malliavin–Stein method, Poisson random measure, second-order Poincaré inequality
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1 Introduction

In recent decades the combination of Malliavin calculus and Stein’s method for normal
approximation has led to a plethora of Gaussian limit theorems in fields ranging
from stochastic geometry, over cosmology to statistics. Classically, the assumptions
require third or fourth moment conditions which makes the Malliavin–Stein method
unsuitable for distributions with heavier tails. However, in [2] a careful differentiation
between small and large values has led to a refined so-called second-order Poincaré
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inequality for Poisson functionals, which allows to circumvent these difficulties to
a certain extent. Based on the approach in [13] the principal goal of this paper
is to obtain a multivariate extension of the central results in [2]. This opens the
possibility to capture properties of the underlying process not accessible solely by
the one-dimensional marginal distributions.

We shall now define the heavy-tailed moving average model to which we are going
to apply our general multivariate central limit theorem. Let L = (Lt)t∈R be a two-sided
Lévy process with no Gaussian component and Lévy measure ν. We assume that the
latter admits a Lebesgue density w : R→R such that

|w(x)| ≤ C |x|−1−β (1.1)

for all x , 0, some β ∈ (0,2) and a constant C > 0. Hence, the distribution of L1 exhibits
β-stable tails, see [19]. Consider then for each i ∈ {1, . . . ,m}, m ∈N, the process

Xit B

∫
R

gi(t − s)dLs, t ∈R, (1.2)

for some measurable function gi : R→ R. Necessary and sufficient conditions for
the integral to exists are given in [15] and if L is symmetric around zero, i.e. if −L1

and L1 are identically distributed, then we mention that a sufficient condition is∫
R
|gi(s)|β ds <∞.
The main examples of kernels gi we consider satisfy a power law behaviour around

zero and at infinity. Henceforth we shall assume for all i ∈ {1, . . . ,m} the existence of a
constant K > 0 together with exponents αi > 0 and κi ∈R such that

|gi(x)| ≤ K(xκi1[0,ai )(x) + x−αi1[ai ,∞)(x)) (1.3)

for all x ∈R, where ai > 0 are suitable splitting points, which may alter the constant K .
Without loss of generality we choose ai = 1 for all i ∈ {1, . . . ,m} and let K stand for the
corresponding constant. Note that this in particular implies that gi(x) = 0 for x < 0,
consequently we will only consider casual moving averages.

The main objects of interest in this paper are rescaled partial sums of multi-
dimensional functionals of the joint distribution Xs = (X1

s , . . . ,X
m
s ), namely

Vn(X;f ) =
1√
n

n∑
s=1

(
f (X1

s , . . . ,X
m
s )−E[f (X1

0 , . . . ,X
m
0 )]

)
, (1.4)

where f : Rm → R
d is a suitable Borel-measurable function, with d being some

positive integer. Observe that Vn(X;f ) is a d-dimensional random vector and for
convenience we shall denote by V in(X;f ) its ith coordinate. We remark that in the
one-dimensional case d =m = 1 the distributional convergence of Vn(X;f ), as n→∞,
is studied for general functions f in [1] and here the so-called Appell rank of f is
seen to play an important role. The results in that paper also imply that one cannot
in general expect convergence in distribution after rescaling with the factor

√
n as

in (1.4) or a Gaussian limiting distribution if the memory of the processes are too
long, i.e. if the αi are too close to 0. We shall see that if the tails are not too heavy
and the memory is not too long, which in our case means that αiβ > 2, we do in fact
have convergence in distribution of Vn(X;f ) to a Gaussian random variable and we
shall discuss the speed of this convergence by considering an appropriate metric on
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the space of probability laws on R
d , see Section 2 below. To conclude such a result,

we could also in principle rely on a multivariate second-order Poincaré inequality
for random vectors of Poisson functionals in [18]. But as already observed in the
one-dimensional case, the existing bounds are not suitable for the application to Lévy
driven moving averages just described. In fact, in this specific situation the bounds in
[18] do not even tend to zero, as n increases. Against this background we will develop
in this paper a refined multivariate second-order Poincaré inequality for general
random vectors of Poisson functionals, which is more adapted to our situation and
allows us to distinguish carefully between small and large values. We believe that
this result is of independent interest as well. This eventually paves the way to the
central limit theory for the random vectors Vn(X;f ).

One motivation for the extension of the theory from [2] to a multivariate set-up
is the fact that important properties of random processes, such as self-similarity,
are determined by the finite dimensional distributions of X, but not by the one-
dimensional marginals. The one-dimensional theory, i.e. the case d = m = 1, could
so far capture only probabilistic properties of the distribution of X1. In the case of
the linear fractional stable motion this made the estimation of the Hurst parameter
problematic if jointly estimated with the scale parameter and the stability index β,
see [9]. We will come back to such applications of the results we develop in this paper
in a separate work. However, finally we would like to mention that the case m = 1
and general d has been considered in the seminal paper [14].

2 Main Results

2.1 A Refined Multivariate Second-Order Poincaré Inequality

Consider a measurable space (S,S) equipped with a σ -finite measure µ. Let η be a
Poisson process on (S,S) with intensity measure µ. This means that η is a collection
of random variables of the form η(B), B ∈ S , with the properties that

(i) for each B ∈ S with µ(B) <∞ the random variable η(B) is Poisson distributed
with mean µ(B),

(ii) for m ∈ N and pairwise disjoint B1, . . . ,Bm ∈ S with µ(B1), . . . ,µ(Bm) < ∞ the
random variables η(B1), . . . ,η(Bm) are independent.

We can and will regard η as a random function from an underlying probability space
(Ω,F ,P) to N , the space of all integer-valued σ -finite measures on (S,S). The set
N is equipped with the evaluation σ -algebra, i.e. the σ -algebra generated by the
evaluation mappings µ 7→ µ(A), A ∈ S .

To each Poisson process η we associate the Hilbert space L2
η(P) consisting of all

square integrable Poisson functionals F, i.e. those random variables for which there
exists a function φ : N → R such that almost surely F = φ(η) ∈ L2(P). Finally, we
introduce the notion of the Malliavin derivative in a Poisson setting, which is also
known as the add-one-cost operator. For each z ∈ S and F = φ(η) ∈ L2

η(P) we define
DzF as

DzF B φ(η + δz)−φ(η)
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and note that DF is a bi-measurable map from Ω × S to R. In a straightforward
way this definition extends to vector-valued Poisson functionals. Indeed, consider
F = (F1, . . . ,Fd) where each Fi lies in L2

η(P), then the Malliavin derivative DzF at z ∈ S
is given by

DzF = (DzF1, . . . ,DzFd).

Similarly to DzF we may introduce the iterated Malliavin derivative D2F of F by
putting

D2
z1,z2

F BDz1
(Dz2

F) =Dz2
(Dz1

F), z1, z2 ∈ S.

For further background material on Poisson processes we refer to the treatments in
[6, 5, 12], for the Malliavin formalism on Poisson spaces we refer to Section 3.1 below.

To measure the distance between (the laws of) two random vectors X and Y taking
values in R

d we use the so-called d3-distance, see [13]. To introduce it, assume that
E[‖X‖2

R
d ],E[‖Y ‖2

R
d ] <∞, where ‖ · ‖

R
d stands for the Euclidean norm in R

d . The d3-
distance between (the laws of) random vectors X and Y , denoted by d3(X,Y ), is given
by

d3(X,Y )B sup
ϕ∈H3

∣∣∣E[ϕ(X)]−E[ϕ(Y )]
∣∣∣,

where the classH3 of test functions indicates the collection of all thrice differentiable
functions ϕ : Rd →R (i.e. ϕ ∈ C3(Rd ,R)) such that ‖ϕ′′‖∞ ≤ 1 and ‖ϕ′′′‖∞ ≤ 1, where

‖ϕ′′‖∞ B max
1≤i,j≤d

sup
x∈Rd

∣∣∣∣ ∂2

∂xi∂xj
ϕ(x)

∣∣∣∣, ‖ϕ′′′‖∞ B max
1≤i,j,k≤d

sup
x∈Rd

∣∣∣∣ ∂3

∂xi∂xj∂xk
ϕ(x)

∣∣∣∣.
We can now formulate our multivariate second-order Poincaré inequality, which

generalizes [2, Theorem 3.1] and refines [18, Theorem 1.1]. Its proof, which is given in
Section 4 below, is based on the Malliavin–Stein technique for normal approximation
of random vectors of Poisson functionals. For two Poisson functionals F,G ∈ L2

η(P)
we define the quantities

γ2
1 (F,G)B 3

∫
S3

E

[
(D2

z1,z3
F)2(D2

z2,z3
F)2]1/2

E

[
(Dz1

G)2(Dz2
G)2]1/2µ3(dz1,dz2,dz3),

γ2
2 (F,G)B

∫
S3

E

[
(D2

z1,z3
F)2(D2

z2,z3
F)2]1/2

E

[
(D2

z1,z3
G)2(D2

z2,z3
G)2]1/2µ3(dz1,dz2,dz3).

Moreover, for x,y ∈R we denote by x∧ y = min{x,y} the minimum of x and y.

Theorem 2.1. Let d ≥ 1 and assume that F1, . . . ,Fd ∈ L2
η(P) satisfy DFi ∈ L2(P ⊗ µ)

and E[Fi] = 0 for all i ∈ {1, . . . ,d}. Let σik B E[FiFk] and define the covariance matrix
Σ2 = (σik)

d
i,k=1. Let Y ∼Nd(0,Σ2) be a centred Gaussian random vector with covariance

matrix Σ2 and put F B (F1, . . . ,Fd). Then

d3(F,Y ) ≤
d∑

i,k=1

(γ1(Fi ,Fk) +γ2(Fi ,Fk)) +γ3,

where the term γ3 is defined as

γ3 B
d∑

i,j,k=1

∫
S
E

[|DzFjDzFk |3/2 ∧ ‖DzF‖3/2
R
d

]2/3
E

[|DzFi |3]1/3µ(dz). (2.1)
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Remark 2.2.

(i) The difference between Theorem 2.1 and [18, Theorem 1.1] lies in the term γ3.
We emphasize that the bound in [18] does not lead to a meaningful error bound
in the application to heavy-tailed moving averages we consider in the next
section as the corresponding γ3-term in [18] would diverge. Similarly to the
univariate case, the bound provided by Theorem 2.1 is much more suitable for
our purposes as it leads to a reasonable error bound, which tends to zero, as
the number of observations n there tends to infinity.

(ii) It is in principal possible to derive error bounds as in Theorem 2.1 for proba-
bility metrics different from the d3-metric. Namely, assuming in addition that
the covariance matrix Σ2 is positive definite, one can deal with the d2-distance
used in [13] and even with the convex distance introduced and studied in [18].
Since the corresponding error bounds for these notions of distance become
rather long and technical, we refrain from presenting results in this direction.
Moreover, in our application in the next section it seems in general rather
difficult to check whether or not the covariance matrix is positive definite. This
is another reason for us considering only the d3-distance.

(iii) We would like to point out that quantitative central limit theorems for random
vectors of Poisson functionals having a finite Wiener–Itô chaos expansion with
respect to the d3-distance were obtained [7]. Specifically, random vectors of
so-called Poisson U-statistics were considered in [7] together with applications
in stochastic geometry to Poisson process of k-dimensional flat in R

n. ^

2.2 Asymptotic Normality of Multivariate Heavy-Tailed Moving Averages

Here, we present our application of the refined multivariate second-order Poincaré
inequality formulated in the previous section. For this recall the set-up described
in the introduction. Especially recall the definition of the random processes (Xit )t∈R,
i ∈ {1, . . . ,m} from (1.2). Recall also that the exponents αi control the memory of the
processes Xi . Given the limit theory for heavy-tailed moving averages as developed in
[8] it comes as no surprise that the smallest such αi will be of dominating importance.
Hence, we define

α = min{α1, . . . ,αm}.
Finally, by C2

b (Rm,Rd) we denote the space of bounded functions f : Rm→R
d which

are twice continuously differentiable and have all partial derivatives up to order two
bounded by some constant.

Theorem 2.3. Fix d,m ≥ 1. Let (Xit ), i = 1, . . . ,m, be moving averages as in (1.2) with Lévy
measure having density w satisfying (1.1) for some β ∈ (0,2) and kernels gi which satisfy
(1.3) with αiβ > 2 and κi > −1/β. Let a function f = (f1, . . . , fd) ∈ C2

b (Rm,Rd) be given and
consider Vn(X;f ) as at (1.4) based on f and X = (X1, . . . ,Xm). Let Σn = Cov(Vn(X;f ))1/2

denote a non-negative definite square root of the covariance matrix Cov(Vn(X;f )) of the
d-dimensional random vector Vn(X;f ). Then Σn→ Σ = (Σi,j )

d
i,j=1, as n→∞, where, for
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i, j ∈ {1, . . . ,d},
Σ2
i,j =

∞∑
s=0

Cov(fi(X
1
s , . . . ,X

m
s ), fj (X

1
0 , . . . ,X

m
0 ))

+
∞∑
s=1

Cov(fi(X
1
0 , . . . ,X

m
0 ), fj (X

1
s , . . . ,X

m
s )).

(2.2)

Moreover, Vn(X;f ) converges in distribution, as n → ∞, to a d-dimensional centred
Gaussian random vector Y ∼Nd(0,Σ2) with covariance matrix Σ2. More precisely, there
exists a constant C > 0 such that

d3(Vn(X;f ),Y ) ≤ C


n−1/2, if αβ > 3,

n−1/2 log(n), if αβ = 3,

n(2−αβ)/2, if 2 < αβ < 3.

Remark 2.4.

(i) We remark that in the special case d = m = 1 the order for the d3-distance
provided by Theorem 2.1 is precisely the same as that for the Wasserstein
distance in [2].

(ii) Even for particular functions f = (f1, . . . , fd), such as trigonometric functions,
it seems to be a rather demanding task to check whether the covariance ma-
trix Σ2 is positive definite or not. Note in this context that even in the one-
dimensional case d =m = 1 the question of whether the asymptotic variance
constant is strictly positive or not is generally difficult. This is the reason why
we are working with the d3-distance in this paper, since more refined probabil-
ity metric usually require positive definiteness of the covariance matrix, see
Remark 2.2.

(iii) It is straightforward to modify the proof of Theorem 2.3 to the situation where
X = (X1, . . . ,Xm) for some fixed moving average (Xt)t∈R as in (1.2) and where
the kernel g satisfy

|g(x)| ≤ K(xκ1[0,a)(x) + x−α1[a,∞)(x))

for some constants a,α,K > 0 and κ ∈R such that αβ > 2 and κ > −1/β. In this
case the kernel of Xi = Xi is simply gi = g(i + · ). Choosing an appropriate
functional f in Vn(X;f ), such as the empirical characteristic function of X,
opens up the possibility of inference on (Xt)t∈R based on not only the marginal
distribution X1 as in much of the previous literature, but also on the joint
distribution (X1, . . . ,Xm). ^

As in [2], Theorem 2.1 can be applied to particular processes (Xit ). We mention here
the linear fractional stable noises, which may be regarded as heavy-tailed extensions
of a fractional Brownian motion. Let L be a β-stable Lévy process with β ∈ (0,2) and
put

Xit B Y it −Y it−1 for Y it B
∫ t

−∞

[
(t − s)Hi−1/β

+ − (−s)Hi−1/β
+

]
dLs,

where H1, . . . ,Hm ∈ (0,1) (if β = 1 we additionally suppose that L is symmetric). In
this case, αi = 1−Hi + 1/β for all i ∈ {1, . . . ,m} and the condition αβ > 2 translates into
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β ∈ (1,2) and max{H1, . . . ,Hm} < 1 − 1
β . Note that since β > 1 we automatically have

that αβ < 3. In this set-up the bound in Theorem 2.1 reads as follows:

d3(Vn(X;f ),Y ) ≤ Cn1/2−β(1−max{H1,...,Hm})/2.

As a second application we mention a stable Ornstein–Uhlenbeck process. Again, for
a β-stable Lévy process L with β ∈ (0,2) define for i ∈ {1, . . . ,m},

Xit B

∫ t

−∞
e−λi (t−s) dLs,

where λ1, . . . ,λm > 0. In this case, the parameters α1, . . . ,αm may be arbitrary and the
error bound in Theorem 2.1 reduces to

d3(Vn(X;f ),Y ) ≤ Cn−1/2.

In a similar spirit, one may consider multivariate quantitative central limit theorems
for functionals of linear fractional Lévy noises or of stable fractional ARIMA processes,
see [2] for the corresponding one-dimensional situations.

3 Background Material

3.1 Malliavin Calculus on Poisson Spaces

To take advantage of the powerful Malliavin–Stein method we need to recall some
background material regarding the Malliavin formalism on Poisson spaces. For
further details we refer to [6, 5, 11].

Throughout this section η denotes a Poisson process with intensity measure µ
defined on some measurable space (S,S) and over some probability space (Ω,F ,P).
We start by recalling that any F ∈ L2

η(P) admits a chaos expansion (with convergence
in L2(P)). That is,

F =
∞∑
n=0

In(fn), (3.1)

where In denotes the nth order Wiener–Itô integral with respect to the compensated
Poisson process η −µ and the kernels fn ∈ L2(µn) are symmetric functions (i.e. they
are invariant under permutations of its variables). Especially, I0(c) = c for all c ∈R.

The Kabanov–Skorohod integral δ is defined for a subclass of random processes
u ∈ L2(P⊗µ) having chaotic decomposition

u(z) =
∞∑
n=0

In(hn( · , z)),

where for each z ∈ S the function hn(·, z) is symmetric and belongs to L2(µn). Denoting
by h̃ the canonical symmetrisation of a function h : Sn→R, i.e.

h̃(z1, . . . , zn) =
1
n!

∑
σ∈Sn

h(zσ (1), . . . , zσ (n)),

with Sn being the group of all permutations of {1, . . . ,n}, we put

δ(u)B
∞∑
n=0

In+1(h̃n),
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whenever
∑∞
n=0(n+ 1)‖h̃n‖2L2(µn+1) <∞ (we indicate this by writing u ∈ domδ), where

‖ · ‖L2(µn+1) denotes the usual L2-norm with respect to µn+1.
Next, we shall define the two operators L : domL → L2

η(P) and L−1 : L2
η(P) →

L2
η(P), where domL denotes the class of Poisson functionals F ∈ L2

η(P) with chaos
expansion as in (3.1) satisfying

∑∞
n=1n

2n!‖fn‖2L2(µn) <∞. Then, we define

LF B −
∞∑
n=1

nIn(fn).

Similarly, the pseudo-inverse L−1 of L acts on centred F ∈ L2
η(P) with chaotic expan-

sion (3.1) as follows:

L−1F B
∞∑
n=1

1
n
In(fn).

Finally, we recall that for F ∈ L2
η(P) with chaotic expansion (3.1) satisfying

∑∞
n=0(n+

1)!‖fn‖2L2(µn) <∞ the Malliavin derivative admits the representation

DzF =
∞∑
n=1

nIn−1(fn( · , z)), z ∈ S.

Using these definitions and representations, one may prove the following crucial
formulas and relationships of Malliavin calculus, which also play a prominent role in
our approach:

(i) LL−1F = F if F is centred.

(ii) LF = −δDF for F ∈ domL.

(iii) E[Fδ(u)] = E[
∫
S

(DzF)u(z)µ(dz)], when u ∈ domδ.

3.2 Multivariate Normal Approximation by Stein’s Method

Stein’s method for multivariate normal approximation is a powerful device to prove
quantitative multivariate central limit theorems. The proof of Theorem 2.1 is based
on the following result, which is known as Stein’s Lemma (see [10, Lemma 4.1.3]).
To present it, let us recall that the Hilbert–Schmidt inner product between two d × d
matrices A = (aik) and B = (bik) is defined as

〈A,B〉HS = Tr(B>A) =
d∑

i,k=1

bkiaki .

Moreover, for a differentiable function ϕ : Rd →R we shall write ∇ϕ for the gradient
and ∇2ϕ for the Hessian of ϕ. Also, we let 〈·, ·〉

R
d denote the Euclidean scalar product

in R
d .

Lemma 3.1 (Stein’s Lemma).
Let Σ2 ∈Rd×d be a positive semi-definite matrix and Y be a d-dimensional random vector.
Then Y ∼ Nd(0,Σ2) if and only if it for all twice continuously differentiable functions
ϕ : Rd →R with bounded derivatives one has that

E[〈Y ,∇ϕ(Y )〉
R
d − 〈Σ2,∇2ϕ(Y )〉HS] = 0.
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4 Proof of Theorem 2.1

By definition of the d3-distance we need to prove that

|E[ϕ(Y )]−E[ϕ(F)]| ≤
d∑

i,k=1

(γ1(Fi ,Fk) +γ2(Fi ,Fk)) +γ3

for every function ϕ ∈ H3. For this, we may assume that Y and F are independent.
We start out by applying the interpolation technique already demonstrated in [13].
Consider the function Ψ : [0,1]→R given by

Ψ (t)B E[ϕ(
√

1− tF +
√
tY )], t ∈ [0,1].

Note that from the mean value theorem it follows that

|E[ϕ(Y )]−E[ϕ(F)]| = |Ψ (1)−Ψ (0)| ≤ sup
t∈(0,1)

|Ψ ′(t)|.

Hence it is enough to consider Ψ ′ , which is given by

Ψ ′(t) = E

[〈∇ϕ(
√

1− tF +
√
tY ), 1

2
√
t
Y − 1

2
√

1−tF
〉
R
d

]
C 1

2
√
t
T1 − 1

2
√

1−tT2.

We consider the two terms T1 and T2 separately. For T1 it follows first by independence
of F and Y and Stein’s Lemma (used on the function y 7→ ϕ(

√
1− ta+

√
ty) and then

dividing by
√
t) that

T1 = E

[〈∇ϕ(
√

1− tF +
√
tY ),Y 〉

R
d

]
= E

[
E[〈∇ϕ(

√
1− ta+

√
tY ),Y 〉

R
d ] |a=F

]
=
√
tE

[
E[〈Σ2,∇2ϕ(

√
1− ta+

√
tY )〉HS] |a=F

]
.

Let ∂if denote the derivative of f in the ith coordinate. We have by independence of
F and Y and the Malliavin rules (i)–(iii) phrased at the end of Section 3.1 that

T2 = E

[〈∇ϕ(
√

1− tF +
√
tY ),F〉

R
d

]
=

d∑
i=1

E

[
E[∂iϕ(

√
1− tF +

√
ta)Fi] |a=Y

]
=

d∑
i=1

E

[
E[∂iϕ(

√
1− tF +

√
ta)L(L−1Fi)] |a=Y

]
= −

d∑
i=1

E

[
E[∂iϕ(

√
1− tF +

√
ta)δ(DL−1Fi)] |a=Y

]
=

d∑
i=1

E

[
E[〈D∂iϕ(

√
1− tF +

√
ta),−DL−1(Fi)〉L2(µ)] |a=Y

]
.

Consider now the function ϕt,ai : Rd →R defined by

ϕt,ai (x)B ∂iϕ(
√

1− tx+
√
ta).

By Taylor expansion we can write

Dzϕ
t,a
i (F) =

d∑
k=1

∂kϕ
t,a
i (F)(DzFk) +Rai (DzF)
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for any z ∈Rd , where the remainder term Rai (DzF) =
∑d
j,k=1R

a
i,j,k(DzFk ,DzFj ) satisfies

the estimate

|Rai,j,k(x,y)| ≤ 1
2 |xy|max

k,l
sup
x∈Rd

∣∣∣∂k,lϕt,ai (x)
∣∣∣

≤ 1
2 |xy|(1− t)max

k,l
sup
x∈Rd

∣∣∣∂i,k,lϕ(
√

1− tx+
√
ta)

∣∣∣
≤ 1

2 (1− t) |xy|.

(4.1)

Here, we have used the definition of the class H3. On the other hand, the remainder
term also satisfies the inequality∣∣∣∣Dzϕt,ai (F)−

d∑
k=1

∂kϕ
t,a
i (F)(DzFk)

∣∣∣∣ ≤ |Dzϕt,ai (F)|+ |〈∇ϕt,ai (F),DzF〉Rd |

≤ 2‖∇ϕt,ai (F)‖
R
d ‖DzF‖Rd

≤ 2
√

1− t ‖DzF‖Rd ,

(4.2)

where we used again the mean value theorem and the Cauchy–Schwarz inequality.
We may thus rewrite T2 as

T2 =
d∑

i,k=1

E

[
E[〈∂kϕt,ai (F)(DFk),−DL−1(Fi)〉L2(µ)] |a=Y

]

+
d∑
i=1

E

[
E[〈Rai (DF),−DL−1(Fi)〉L2(µ)] |a=Y

]

=
√

1− t
d∑

i,k=1

E

[
∂k,iϕ(

√
1− tF +

√
tY )〈DFk ,−DL−1(Fi)〉L2(µ)

]

+
d∑
i=1

E

[
E[〈Rai (DF),−DL−1(Fi)〉L2(µ)] |a=Y

]
.

From this together with the Cauchy–Schwarz inequality and the bounds (4.1) and (4.2)
it follows that

|E[ϕ(Y )]−E[ϕ(F)]| ≤ sup
t∈(0,1)

|Ψ ′(t)|

≤ sup
t∈(0,1)

1
2

d∑
i,k=1

E

[∣∣∣∂i,kϕ(
√

1− tF +
√
tX)

∣∣∣ ∣∣∣σik − 〈DFk ,−DL−1(Fi)〉L2(µ)

∣∣∣]
+ sup
t∈(0,1)

1

2
√

1− t
d∑
i=1

E

[|〈Rai (DF),−DL−1(Fi)〉L2(µ)| |a=Y
]

≤ 1
2

d∑
i,k=1

E

[|σik − 〈DFk ,−DL−1Fi〉L2(µ)|
]

+
d∑

i,j,k=1

∫
S
E

[
(|DzFjDzFk | ∧ ‖DzF‖Rd ) |DzL−1Fi |

]
µ(dz).

Applying now Proposition 4.1 in [4] to the first of these terms yields the inequality

d∑
i,k=1

E

[∣∣∣σik − 〈DFk ,−DL−1Fi〉L2(µ)

∣∣∣] ≤ 2
d∑

i,k=1

(γ1,i,k +γ2,i,k).
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For the remainder term we deduce by Hölder’s inequality with exponents 3 and 3/2
that ∫

S
E

[(|DzFjDzFk | ∧ ‖DzF‖Rd ) |DzL−1Fi |
]
µ(dz)

≤
∫
S
E

[(|DzFjDzFk | ∧ ‖DzF‖Rd )3/2]2/3E[|DzL−1Fi |3
]1/3

µ(dz)

≤
∫
S
E

[|DzFjDzFk |3/2 ∧ ‖DzF‖3/2
R
d

]2/3
E

[|DzFi |3]1/3µ(dz),

where we also used the contraction inequality E[|DzL−1Fi |p] ≤ E[|DzFi |p] from [4,
Lemma 3.4], which is valid for all p ≥ 1 and z ∈ R

d . This completes the proof of
Theorem 2.1. �

5 Proof of Theorem 2.3

In order to apply Theorem 2.1 we need to ensure that the processes (Xit ) can be
represented in terms of a Poisson process. Indeed, following [16] and [2] we can
represent Xi as the integral

Xit =
∫
R

2
gi(t − s)x

(
η(ds,dx)− τ(gi(t − s)x)dsν(dx)

)
+ b̃i ,

with

b̃i B

∫
R

(
gi(s)b+

∫
R

(τ(xgi(s))− gi(s)τ(x))ν(dx)
)

ds,

and where η is a Poisson process on R
2 with intensity measure µ(ds,dx)B dsν(dx).

Here ν is the Lévy measure of L, b the shift parameter in the characteristic triple for
L1 and τ is a truncation function, cf. (8.3)–(8.4) in [17].

In what follows, C will denote a strictly positive constant whose value might
change from occasion to occasion.

5.1 Estimating the Malliavin Derivative

We start out by deriving simple estimates on the Malliavin derivative. By definition of
the terms γ1, γ2, γ3 introduced in Section 2.1 it is sufficient to consider the Malliavin
derivatives of each of the coordinates of f = (f1, . . . , fd) separately. So, let i ∈ {1, . . . ,d}
and zj = (xj , tj ) ∈ R2 for j ∈ {1,2} be given. Define for z = (x, t) ∈ R2 the vector δs(z),
for s ∈R, as

δs(z)B x(g1(s − t), . . . , gm(s − t)) ∈Rm. (5.1)

The mean value theorem together with the Cauchy–Schwarz inequality and the
assumption that fi ∈ C2

b (Rm,R) then yield the existence of a constant C > 0 such that

|Dz1
fi(X

1
s , . . . ,X

m
s )| = |fi((X1

s , . . . ,X
m
s ) + δs(z1))− fi(X1

s , . . . ,X
m
s )|

≤ C(1∧ ‖δs(z1)‖
R
m ).

(5.2)
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Similarly, we deduce again by the mean value theorem and boundedness of fi and its
derivatives the following inequality for the iterated Malliavin derivative:

|D2
z1,z2

fi(X
1
s , . . . ,X

m
s )| =

∣∣∣fi((X1
s , . . . ,X

m
s ) + δs(z1) + δs(z2))

− fi((X1
s , . . . ,X

m
s ) + δs(z1))

− fi((X1
s , . . . ,X

m
s ) + δs(z2)) + fi(X

1
s , . . . ,X

m
s )

∣∣∣
≤ C(1∧ ‖δs(z1)‖

R
m )(1∧ ‖δs(z2)‖

R
m ).

(5.3)

Note that the estimates (5.2) and (5.3) are purely deterministic and allow us to replace
stochastic terms by deterministic estimates of the underlying kernels. This confirms
in another context that many properties of moving averages can be deduced solely
from the driving spectral density, see, for example, [3].

5.2 Analysing the Asymptotic Covariance Matrix

Define for each k ∈Z and i, j ∈ {1, . . . ,m} the integral

ρi,j,k B

∫
R

|gi(x)gj (x+ k)|β/2 dx (5.4)

and observe that ρi,j,k = ρj,i,−k . Now, ρi,j,k is closely related to the asymptotic covari-
ances, which motivates the following technical lemma, which in turn leads to our as-
sumption that αiβ > 2 for any i ∈ {1, . . . ,m}. In what follows we write x∨y Bmax{x,y}
for the maximum of x,y ∈R.

Lemma 5.1. Let k ∈N and i, j ∈ {1, . . . ,m}. Then there is a constant C > 0 such that

ρi,j,k ≤ Ck−(αi∧αj )β/2.

Proof. The same technique as in the proof of [2, Lemma 4.1] yields the bound ρi,j,k ≤
Ck−αjβ/2 and to obtain a bound symmetric in i and j observe that obviously

ρi,j,k ≤ C(k−αiβ/2 ∨ k−αjβ/2) = Ck−(αi∧αj )β/2.

This completes the argument. �

Proposition 5.2. The series defining Σ2
i,j in (2.2) is absolutely convergent and we have

that Σ2
n→ Σ2, as n→∞. In particular, Σn→ Σ.

Proof. First, we prove that the series in (2.2) converges absolutely. By symmetry it is
enough to show that

∞∑
s=1

∣∣∣Cov(fi(X
1
s , . . . ,X

m
s ), fj (X

1
0 , . . . ,X

m
0 ))

∣∣∣ <∞ for all i, j ∈ {1, . . . ,d}.

To this end, we let η̃ be a Poisson process on [0,1]×R2 with intensity measure duµ(dz)
with the property that η = η̃([0,1]× · ). Using now the covariance identity for Poisson
functionals from [5, Theorem 5.1] we conclude that

Cov(fi(X
1
s , . . . ,X

m
s ), fj (X

1
0 , . . . ,X

m
0 ))

= E

[∫ 1

0

(∫
R

E[Dzfi(X
1
s , . . . ,X

m
s ) | Gu]E[Dzfj (X

1
0 , . . . ,X

m
0 ) | Gu]µ(dz)

)
du

]
,
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where Gu is the σ -algebra generated by the restriction of the Poisson process η̃ to
[0,u]×R2. Applying the Cauchy–Schwarz inequality, our assumption (1.1) on ν and
(5.2) implies that∣∣∣Cov(fi(X

1
s , . . . ,X

m
s ), fj (X

1
0 , . . . ,X

m
0 ))

∣∣∣
≤

∫ 1

0

(∫
R

2
E

[∣∣∣E[Dzfi(X
1
s , . . . ,X

m
s ) | Gu]E[Dzfj (X

1
0 , . . . ,X

m
0 ) | Gu]

∣∣∣]µ(dz)
)

du

≤
∫
R

2
E

[|Dzfi(X1
s , . . . ,X

m
s )|2]1/2E[|Dzfj (X1

0 , . . . ,X
m
0 )|2]1/2µ(dz)

≤ C
∫
R

(∫
R

(
1∧ |x|2 ‖(g`(s − t))m`=1‖Rm ‖(g`(−t))m`=1‖Rm

)
|x|−1−β dx

)
dt

= C
∫
R

‖(g`(s − t))m`=1‖
β/2
R
m ‖(g`(−t))m`=1‖

β/2
R
m dt

≤ C
m∑

k,`=1

∫
R

|g`(s − t)gk(−t)|β/2 dt

= C
m∑

k,`=1

ρk,`,s

≤ Cs−αβ/2,
where the last inequality follows from Lemma 5.1. Since αβ > 2 by assumption the
series in (2.2) converges absolutely. To deduce the convergence Σ2

n→ Σ2 we use the
stationarity of the sequence (X1

t , . . . ,X
m
t ), t ∈R, to see that, for any i, j ∈ {1, . . . ,d},

Cov(V in(X;f ),V jn (X;f ))

= n−1
n∑

s,t=1

Cov(fi(X
1
s , . . . ,X

m
s ), fj (X

1
t , . . . ,X

m
t ))

= n−1
n∑

s,t=1
s≥t

Cov(fi(X
1
s−t , . . . ,Xms−t), fj (X1

0 , . . . ,X
m
0 ))

+n−1
n∑

s,t=1
s<t

Cov(fi(X
1
0 , . . . ,X

m
0 ), fj (X

1
t−s, . . . ,Xmt−s))

=
n−1∑
k=0

(1− k
n )Cov(fi(X

1
k , . . . ,X

m
k ), fj (X

1
0 , . . . ,X

m
0 ))

+
n−1∑
k=1

(1− k
n )Cov(fi(X

1
0 , . . . ,X

m
0 ), fj (X

1
k , . . . ,X

m
k ))

−→ Σ2
i,j ,

as n → ∞, where the convergence follows by Lebesgue’s dominated convergence
theorem together with the absolute convergence of the series defining the limit Σ2

i,j .
Finally, the last claim simply follows by continuity of the square root. �

5.3 Bounding d3(Vn,Y )

Recall for i,k ∈ {1, . . . ,m} the definition of the quantities γ1(Fi ,Fk) and γ2(Fi ,Fk) from
Section 2.1, which are applied with Fi = V in(X;f ) and Fk = V kn (X;f ). According to
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Theorem 2.1 we have that for any n ∈N,

d3(Vn(X;f ),Y ) ≤
d∑

i,k=1

(γ1(Fi ,Fk) +γ2(Fi ,Fk)) +γ3,

where γ3 is defined at (2.1). We consider each of these terms separately in the follow-
ing three lemmas. Let us point to the fact that the sum will converge at a speed of
order 1/

√
n, whereas the γ3-term will generally converge at a lower speed, depending

on the parameters α and β. It is also this last term that requires the stronger assump-
tion (1.3) rather than just

∑∞
u=0ρi,j,u <∞ for all i, j ∈ {1, . . . ,m}. Indeed, as a product,

in γ3 we carefully have to distinguish between small and large values, where the
latter are non-negligible for heavy-tailed moving averages.

Lemma 5.3. There exists a constant C > 0 such that γ1(Fi ,Fk) ≤ Cn−1/2 for any i,k ∈
{1, . . . ,m}.

Proof. To simplify the notation put V in B V in(X;f ) and recall that

γ2
1 (Fi ,Fk) = 3

∫
(R2)3

E

[
(D2

z1,z3
V in)2(D2

z2,z3
V in)2]1/2

×E[
(Dz1

V kn )2(Dz2
V kn )2]1/2µ3(dz1,dz2,dz3).

If zi = (xi , ti) ∈R2 for i ∈ {1,2,3}, the integrand can be bounded using (5.2) and (5.3)
as follows:

E

[
(D2

z1,z3
V in)2(D2

z2,z3
V in)2]1/2

E

[
(Dz1

V kn )2(Dz2
V kn )2]1/2

≤ C

n2

( n∑
s1=1

(
1∧ ‖δs1(z1)‖

R
m

)(
1∧ ‖δs1(z3)‖

R
m

))
×
( n∑
s2=1

(
1∧ ‖δs2(z2)‖

R
m

)(
1∧ ‖δs2(z3)‖

R
m

))
×
( n∑
s3=1

(
1∧ ‖δs3(z1)‖

R
m

))( n∑
s4=1

(
1∧ ‖δs4(z2)‖

R
m

))
≤ C

n2

n∑
s1,...,s4=1

[(
1∧ ‖δs1(z1)‖

R
m ‖δs3(z1)‖

R
m

)(
1∧ ‖δs2(z2)‖

R
m ‖δs4(z2)‖

R
m

)
×
(
1∧ ‖δs1(z3)‖

R
m ‖δs2(z3)‖

R
m

)]
≤ C

n2

n∑
s1,...,s4=1

m∑
j1,...,j6=1

(
1∧ x2

1
∣∣∣gj1(s1 − t1)gj2(s3 − t1)

∣∣∣)
×
(
1∧ x2

2
∣∣∣gj3(s2 − t2)gj4(s4 − t2)

∣∣∣)(1∧ x2
3
∣∣∣gj5(s1 − t3)gj6(s2 − t3)

∣∣∣).
Using the substitution ui = x2

i yi for yi > 0, i ∈ {1,2,3}, one easily verifies the relation∫
R

3
(1∧ x2

1y1)(1∧ x2
2y2)(1∧ x2

3y3) |x1x2x3|−1−β dx1 dx2 dx3 = Cyβ/21 y
β/2
2 y

β/2
3 ,
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for β ∈ (0,2). This yields the bound

γ2
1 (Fi ,Fk) ≤ C

n2

m∑
j1,...,j6=1

n∑
s1,...,s4=1

(∫
R

∣∣∣gj1(s1 − t1)gj2(s3 − t1)
∣∣∣β/2 dt1

×
∫
R

∣∣∣gj3(s2 − t2)gj4(s4 − t2)
∣∣∣β/2 dt2

∫
R

∣∣∣gj5(s1 − t3)gj6(s2 − t3)
∣∣∣β/2 dt3

)
=
C

n2

m∑
j1,...,j6=1

n∑
s1,...,s4=1

ρj1,j2,s3−s1ρj3,j4,s4−s2ρj5,j6,s2−s1

≤ C
n

m∑
j1,...,j6=1

( n∑
u=−n

ρj1,j2,u

)( n∑
u=−n

ρj3,j4,u

)( n∑
u=−n

ρj5,j6,u

)
≤ C
n
,

where the penultimate inequality follows by substitution and the last inequality is
due to Lemma 5.1, and where we used that

∑∞
u=0ρj,`,u <∞ for all j, ` ∈ {1, . . . ,m}. �

Lemma 5.4. There exists a constant C > 0 such that γ2(Fi ,Fk) ≤ Cn−1/2 for all i,k ∈
{1, . . . ,m} and n ∈N.

Proof. Using (5.3) we conclude that the integrand in the definition of γ2(Fi ,Fk) is
bounded as follows:

E

[
(D2

z1,z3
V in)(D2

z2,z3
V in)

]1/2
E

[
(D2

z1,z3
V kn )(D2

z2,z3
V kn )

]1/2
≤ C

n2

n∑
s1,...,s4=1

(
1∧ ‖δs1(z1)‖

R
m ‖δs3(z1)‖

R
m

)(
1∧ ‖δs2(z2)‖

R
m ‖δs4(z2)‖

R
m

)
×
(
1∧ ‖δs1(z3)‖

R
m ‖δs2(z3)‖

R
m ‖δs3(z3)‖

R
m ‖δs4(z3)‖

R
m

)
≤ C

n2

n∑
s1,...,s4=1

m∑
j1,...,j8=1

(
1∧ x2

1
∣∣∣gj1(s1 − t1)gj2(s3 − t1)

∣∣∣)
×
(
1∧ x2

2
∣∣∣gj3(s2 − t2)gj4(s4 − t2)

∣∣∣)
×
(
1∧ x4

3
∣∣∣gj5(s1 − t3)gj6(s2 − t3)gj7(s3 − t3)gj8(s4 − t3)

∣∣∣).
Moreover, as in the proof of the previous lemma we have that∫

R
3
(1∧ x2

1y1)(1∧ x2
2y2)(1∧ x4

3y3) |x1x2x3|−1−β dx1 dx2 dx3 = Cyβ/21 y
β/2
2 y

β/4
3

for β ∈ (0,2) and real numbers y1, y2, y3 > 0. This implies that

γ2
2 (Fi ,Fk) ≤ C

n2

m∑
j1,...,j8=1

n∑
s1,...,s4=1

∫
R

∣∣∣gj1(s1 − t1)gj2(s3 − t1)
∣∣∣β/2 dt1

×
∫
R

∣∣∣gj3(s2 − t2)gj4(s4 − t2)
∣∣∣β/2 dt2

×
∫
R

∣∣∣gj5(s1 − t3)gj6(s2 − t3)gj7(s3 − t3)gj8(s4 − t3)
∣∣∣β/4 dt3

≤ C

n2

m∑
j1,...,j8=1

n∑
s1,...,s4=1

ρj1,j2,s3−s1ρj3,j4,s4−s2(ρj5,j6,s2−s1 + ρj7,j8,s4−s3 )

≤ C
n
,

where the last inequality follows as in Lemma 5.3 and the penultimate inequality
follows immediately from the fact that |xy| ≤ x2 + y2 for all x,y ∈R. �
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Finally, we consider the crucial term γ3.

Lemma 5.5. There exists a constant C > 0 such that, for all n ∈N,

γ3 ≤ C


n−1/2, if αβ > 3,

n−1/2 log(n), if αβ = 3,

n(2−αβ)/2, if 2 < αβ < 3.

Proof. Recall the definition of δs(z) = (δ1
s (z), . . . ,δms (z)) from (5.1) and define for i ∈

{1, . . . ,m},
Ain(z)B

1√
n

n∑
s=1

(
1∧ |δis(z)|

)
.

By (5.2) and the sub-additivity of the minimum it follows that

γ3 ≤ C
∫
R

2

(
n−1/2

n∑
s=1

1∧ ‖δs(z)‖Rm
)2 ∧

(
n−1/2

n∑
s=1

1∧ ‖δs(z)‖Rm
)3
µ(dz)

≤
m∑

i,j=1

∫
R

2

(
Ain(z)2 ∧Ajn(z)3)µ(dz).

From this point on, we can literally follow the proof of Lemma 4.6 in [2]. In fact, this
shows that for any p ∈ [0,2], q > 2 and i, j ∈ {1, . . . ,m}, one has that

∫
R

2

(
Ain(z)p ∧Ajn(z)q

)
µ(dz) ≤ C


n1−q/2, if αβ > q,

n1−q/2 log(n), if αβ = q,

n(2−αβ)/2, if 2 < αβ < 3.

Indeed, these bounds rely solely on the tail behaviour (in terms of the αi ’s) of the
kernels gi , where α reflects the weakest behaviour, and the power behaviour (in terms
of the κi ’s) around 0, all of which satisfies the condition κi > −1/β. This completes
the argument. �

Proof of Theorem 2.3. According to Theorem 2.1 we have that for any n ∈N,

d3(Vn(X;f ),Y ) ≤
d∑

i,k=1

(γ1(Fi ,Fk) +γ2(Fi ,Fk)) +γ3.

Using now Lemmas 5.3, 5.4 and 5.5 we see that

d3(Vn(X;f ),Y ) ≤ C(n−1/2 +n−1/2) +C


n−1/2, if αβ > 3,

n−1/2 log(n), if αβ = 3,

n(2−αβ)/2, if 2 < αβ < 3,

≤ C


n−1/2, if αβ > 3,

n−1/2 log(n), if αβ = 3,

n(2−αβ)/2, if 2 < αβ < 3.

This completes the argument. �
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Abstract. In this paper we present a parametric estimation method for certain multi-
parameter heavy-tailed Lévy-driven moving averages. The theory relies on recent
multivariate central limit theorems obtained in [3] via Malliavin calculus on Pois-
son spaces. Our minimal contrast approach is related to the papers [15, 14], which
propose to use the marginal empirical characteristic function to estimate the one-
dimensional parameter of the kernel function and the stability index of the driving
Lévy motion. We extend their work to allow for a multi-parametric framework that
in particular includes the important examples of the linear fractional stable motion,
the stable Ornstein–Uhlenbeck process, certain CARMA(2,1) models and Ornstein–
Uhlenbeck processes with a periodic component among other models. We present
both the consistency and the associated central limit theorem of the minimal contrast
estimator. Furthermore, we demonstrate numerical analysis to uncover the finite
sample performance of our method.

Key words: Heavy tails, low frequency, Lévy processes, parametric estimation, limit
theorems
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1 Introduction

Steadily through the last decades estimation procedures for various classes of con-
tinuous time moving averages and related processes have been proposed, see, e.g. [2,
11, 16] for estimation of the parameters in the linear fractional stable motion model
and [9, 10] for the more general class of self-similar processes among many others.
The bedrock of these techniques are of course the underlying limit theory for various
functionals of the processes at hand. One such seminal paper is [18], which gives
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conditions for bounded functionals of a large class of moving averages and was later
extended in [19] to certain unbounded functions. In a similar framework [5] gives
an almost complete picture of the ‘law of large numbers’ for the classical case of
the power variation functional. The article [4] extends the functionals from power
variation to a large class of statistically interesting functionals and for a class of
symmetric β-stable moving averages. This paper also provides an almost complete
picture of the corresponding weak limit theorems, at least in the setting of Appell
rank > 1 (such as is the case for power variation and the (real part) of the characteristic
function).

Previous estimation methods suggested in [15, 14, 16] relied on functionals of
the one-dimensional marginal law of the process and specific properties of the pro-
cess at hand. Since the marginal distribution of the considered models have been
symmetric β-stable, only the scale and the stability parameters can be estimated
via such statistics. In particular, they are typically not sufficient to estimate kernel
functions that depend on a multi-dimensional parameter. Indeed, this discrepancy
is observed in [15], where the characteristic function of the one-dimensional law
is not sufficient and instead the authors have to rely on a combination with other
statistics to ensure estimation of all parameters. The aim of this paper is to construct
estimators of the kernel function and the stability index in the general setting of a
multi-dimensional parameter space. Instead of relying on existing theory [4, 5, 18],
which only accounts for the marginal law of the underlying model, we shall use the
framework from the recent paper [3], which is tailor-made for the study of Gaussian
fluctuations of functionals of multiple heavy-tailed moving averages, to estimate the
multi-dimensional parameter.

Let us now define the class of moving average processes for which the underlying
limit theory applies. Let L = (Lt)t∈R be a standard symmetric β-stable Lévy process
and consider the model

Xt =
∫ t

−∞
g(t − s)dLs, t ∈R, (1.1)

for some measurable g : R→R. Necessary and sufficient conditions for the integral
to exist are given in [20] and we mention that in our setting a sufficient condition is∫
R
|g(s)|β ds <∞. The kernel function g is assumed to have a power behaviour around

0 and at infinity. More specifically, we shall assume the existence of a constant K > 0
together with powers α > 0 and κ ∈R for which it holds

|g(x)| ≤ K
(
xκ1[0,1)(x) + x−α1[1,∞)(x)

)
for all x ∈R. (1.2)

We are interested in (scaled) partial sums of multivariate functionals of the vectors
((Xs+1, . . . ,Xs+m))s≥0:

Vn(X;f ) =
1√
n

n−m∑
s=0

(
f (Xs+1, . . . ,Xs+m)−E[f (X1, . . . ,Xm)]

)
, (1.3)

where f : Rm→R
d is a suitable Borel function. Adhering to [3, Remark 2.4(iii)] the

following result holds. Below C2
b (Rm,Rd) denotes the space of twice differentiable

functions f : Rm→R
d such that f and all of its first and second order derivatives are

bounded and continuous.
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Theorem 1.1 ([3, Theorem 2.3]).
Let (Xt)t∈R be a moving average as in (1.1) with kernel function g satisfying (1.2). Assume
that αβ > 2 and κ > −1/β. Let f = (f1, . . . , fd) ∈ C2

b (Rm,Rd) and consider the statistic
Vn(X;f ) introduced at (1.3). Then as n→∞

Σ
i,j
n B Cov(Vn(X;f ))→ Σi,j B

∑
s∈Z

Cov(fi(Xs+1, . . . ,Xs+m), fj (X1, . . . ,Xm)) (1.4)

for any 1 ≤ i, j ≤ d. Moreover, Vn(X;f ) L−−→Nd(0,Σ) as n→∞.

The paper [3] additionally provides Berry–Esseen type bounds for an appropriate
distance between probability laws on R

d , but Theorem 1.1 is sufficient for our statis-
tical analysis. We remark that the limit theory for bounded f in the case of m = 1 and
general d ∈N is handled in [19], but it is actually the reverse situation, i.e. m ∈N
and d = 1, which we shall need. Specifically, f will be the empirical characteristic
function of the joint distribution (Xs+1, . . . ,Xs+m), which then grants us the ability to
estimate parameters which are not determined by the one-dimensional distribution
of X1, see Examples 2.4–2.8 below.

The paper is organized as follows. In Section 2 we introduce the parametric model,
numerous assumptions and the main theoretical results of the paper, which show the
strong consistency and the asymptotic normality of the minimal contrast estimator.
Section 3 is devoted to a numerical analysis of the finite sample performance of our
estimator. Finally, all proofs are collected in Section 4.

2 The Setting and Main Results

2.1 The Model and Assumptions

In the following we will consider a Lévy-driven moving average X = (Xt)t∈R given by

Xt =
∫
R

gβ,θ(t − s)dLs, t ∈R, (2.1)

where L is a symmetric β-stable Lévy process with scale parameter 1 and β ∈ Υ

for some open subset Υ ⊆ (0,2), and {gβ,θ | β ∈ Υ ,θ ∈ Θ} is a measurable family of
functions parametrized by an open subset Υ ×Θ ⊆ (0,2)×Rd for some d ≥ 1. For ease
of notation we shall often denote the joint parameter with ξ = (β,θ) and the open
subset by Ξ = Υ ×Θ.

The main goal of this section is to extend the theory of [14] from a one-dimensional
parameter space, i.e. d = 1, to a general multi-dimensional theory. Such multi-
dimensional parameter spaces include important examples of the linear fractional
stable motion, the stable Ornstein–Uhlenbeck process, certain CARMA(2,1) models,
and Ornstein–Uhlenbeck processes with a periodic component among others. One
of the main difficulties in extending from d = 1 to d ∈N is that, quite naturally, the
parameters (β,θ) should be identifiable from the (theoretical) statistic, which in the
case of [14] is the one-dimensional characteristic function:

φβ,θ(u) = E[eiuX1 ] = exp(−‖ugβ,θ‖ββ).
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This identification can very well be an unreasonable assumption if d > 1, see Ex-
ample 2.4. But if we instead consider the characteristic function of the joint distribu-
tion (X1, . . . ,Xm)

ϕmβ,θ(u1, . . . ,um) = E

[
ei

∑m
k=1 ukXk

]
= exp

(
−
∥∥∥∥ m∑
k=1

ukgβ,θ( · + k)
∥∥∥∥β
β

)
, (2.2)

such an identification may be possible. Let us discuss this in more details. The
underlying stability index β is always identifiable from (2.2) since the stability index
of a stable random variable is unique. The problem is then reduced to whether
the parametrisation of the kernel θ 7→ gβ,θ specifies the distribution of X uniquely.
The question now becomes a matter of uniqueness for the spectral representation
of moving averages, which has been studied in, e.g. [21]. Translating the question
to the characteristic functions of the finite dimensional distributions, (X1, . . . ,Xm),
m ∈ N, we ask whether the β-norm of linear combinations of translations of the
kernel specifies gβ,θ uniquely. This is known as Kanter’s theorem in the literature and
first appeared in [12], but for exposition sake let us repeat it here. Suppose β ∈ (0,∞)
is not an even integer and let g,h ∈ Lβ(R). Then Kanter’s theorem states that if for all
n ∈N and u1, t1, . . . ,un, tn ∈R it holds that∥∥∥∥ n∑

i=1

uig( · + ti)
∥∥∥∥β
β

=
∥∥∥∥ n∑
i=1

uih( · + ti)
∥∥∥∥β
β
,

then there exists an ε ∈ {±1} and a τ ∈ R such that g = εh( · + τ) almost everywhere.
Kanter’s theorem then implies that the distribution of X is the same under θ and θ′

if and only if there exists ε ∈ {±1} and τ ∈R such that

εgβ,θ( · + τ) = gβ,θ′ almost everywhere.

For many concrete examples of the kernel family {gξ |ξ ∈ Ξ} it is often straightforward
to check that such an identity only occurs if ε = 1, τ = 0 and θ = θ′ .

Due to the preceding discussion it is reasonable to make the following assump-
tions on the family of kernels and we note that similar identification requirements are
often explicitly or implicitly required in the literature. An important remark is that
our theory allows for a general m ∈N instead of only m ∈ {1,2}, where the statistics in
the case m = 2 are often autocorrelations. We denote by ∂z1,z2

fξ the partial derivative
of f with respect to the parameters z1, z2 evaluated at ξ ∈ Ξ.

Assumption (A). There exists an m ∈N such that:

(1) 0 < ‖gβ,θ‖β <∞ for all (β,θ) ∈ Υ ×Θ.

(2) The map θ 7→ ϕmβ,θ given in (2.2) is injective.

(3) The function (β,θ) 7→ ‖∑m
i=1uigβ,θ( · + i)‖ββ is C2(Υ ×Θ) for each u1, . . . ,um ∈R.

(4) u 7→ ∂βϕ
m
ξ (u),∂θ1

ϕmξ (u), . . . ,∂θdϕ
m
ξ (u) are linearly independent continuous func-

tions.

Let us give some remarks about the imposed conditions.
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Remark 2.2.

(A) The assumption (A)(1) is a necessary and sufficient condition for X to be well-
defined and non-degenerate. Moreover, (A)(1) makes it apparent why an explicit
dependence on β of the kernel gβ,θ could be useful. This case of dependence is also
necessary for some processes such as increments of the linear fractional stable motion,
see Example 2.5 below.

(B) Condition (A)(2) is necessary to ensure that the model (2.1) is parametrized
properly. Note that the non-existence of an m ∈N such that (A)(2) holds would imply
that the parameters could never be inferred from any finite data sample making
the inference of θ impossible in practice. The identification of the parameters in
a continuous time model from samples at equidistant time points is known in the
literature as the aliasing problem.

(C) Condition (A)(3) is a minimal requirement for our method of proof (see also [14,
Assumption (A)]). In particular, it ensures existence of the derivatives in (A)(4). ^

In order to use Theorem 1.1 we need to make additional assumptions on our kernel
and for this we need to introduce some more notation. Consider a strictly positive
weight function w ∈ L1(Rm+ ) and define the weighted inner product and norms

〈g,h〉w =
∫
R
m
+

g(x)h(x)w(x)dx and ‖h‖pw,p =
∫
R
m
+

|h(x)|pw(x)dx, p ∈ {1,2}.

Let Lpw(Rm+ ) denote the corresponding Banach Lp-space of Borel functions.

Assumption (B).

(1) Assume that for all (β,θ) ∈ Υ ×Θ there exist κ ∈R and α > 0 such that κ > −1/β,
αβ > 2 and (1.2) holds for gβ,θ .

(2) The functions u 7→ |∂ξi ,ξkϕξ (u)|, |∂ξiϕξ (u)|, i,k ∈ {1, . . . ,d+1}, are locally dominated
in L2

w(Rm+ ). That is, there exists for all ξ ∈ Ξ a neighbourhood Ξ0 3 ξ such that the
supremum of these functions over ξ ∈ Ξ0 are dominated by a function in L2

w(Rm+ ).

Assumption (B)(1) is imposed to ensure that we may employ Theorem 1.1. While
(B)(2) seems strict it is always satisfied in the one-dimensional case m = 1 and we
shall need it to ensure validity of the implicit function theorem in our setup.

We now demonstrate some examples, which satisfy Assumption (A) for m ≥ 2 but
not for m = 1.

Example 2.4 (Stable Ornstein–Uhlenbeck process).
Let (Xt)t∈R denote the β-stable Ornstein–Uhlenbeck process with parameter λ > 0
and scale parameter σ > 0. That is, (Xt)t∈R is a stationary solution of the stochastic
differential equation

dXt = −λXt dt + σ dLt .

It has the representation (2.1) with kernel function gθ(u) = σ exp(−λu)1(0,∞)(u) and
θ = (σ,λ) ∈ (0,∞)2. It is clear that the one-dimensional characteristic function does
not characterize the parameter θ, hence Assumption (A)(2) is not satisfied for m = 1.
Consider therefore the case m = 2. Here the characteristic function is uniquely
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determined by θ if the β-norms are. Indeed, using the binomial series one may
deduce the following formula:

‖u1gθ +u2gθ( · + 1)‖ββ =
σβ

βλ

[
u
β
2 (1− e−βλ) + (u1 +u2e−λ)β

]
, u1 > u2 ≥ 0.

It is then straightforward to check that these equations in u1 > u2 ≥ 0 determine
θ ∈ (0,∞)2 uniquely. Additionally, (A)(4) can be checked in a manner similar to
Example 2.6 below and we refer to Section 4.4 for the derivation of these statements.

There are a number of alternative estimation methods for a stable Ornstein–
Uhlenbeck model. When the stability parameter β is known, λ can be estimated
with convergence rate (n/ logn)1/β as it has been shown in [24]. In the discrete-time
setting of the AR(1) model with heavy-tailed i.i.d. noise, it is known that a Gaussian
limit can be obtained, cf. [13], but this method again lacks joint estimation with
the parameter β. In a similar framework the paper [1] investigates the asymptotic
behaviour of the maximum likelihood estimator. In particular, their results imply
that the parameters σ and β can be estimated with a

√
n-precision, while the drift

parameter λ has a faster convergence rate of n1/β . ©

Example 2.5 (Linear fractional stable motion).
Let (Yt)t∈R be the linear fractional stable motion with self-similarity H ∈ (0,1), stabil-
ity index β ∈ (0,2) and scale parameter σ > 0. That is,

Yt =
∫
R

σ [(t − s)H−1/β
+ − (−s)H−1/β

+ ]dLs.

Consider the low frequency kth order increment at rate r (k, r ∈N) defined as

Xi B ∆ri,kY =
k∑
j=0

(−1)j
(
k
j

)
Yi−rj , i ≥ rk.

If r = 1 or k = 1 we remove the corresponding index. In the case of k = r = 1 then
Xi = ∆iY = Yi −Yi−1 is simply the increments of Y and for k = 2 we have that

∆ri,2Y = Yi − 2Yi−r +Yi−2r , i ≥ 2r.

The corresponding kernel of X becomes

gβ,H,σ (u) =
k∑
j=0

(−1)j
(
k
j

)
(u − rj)H−1/β

+ ,

where x+ = x∨ 0 is the positive part and xa+ B 0 for all x ≤ 0. We note the asymptotic
behaviour

gβ,H,σ (u)

KuH−1/β−k −→ 1 as u→∞

for some constant K > 0 depending on α, H and k. Hence, (1.2) holds with κ =
H − 1/β > −1/β and α = k + 1/β −H > 0. In this case Assumption (B) can simply be
translated into an assumption on the parameter space Υ ×Θ, e.g.

Υ ×Θ =
{
(β,H,σ )

∣∣∣ 0 < H < k − 1/β,1/C < σ < C
}
,
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for some arbitrary but finite constant C > 0. It is well-known that X has a version
with continuous paths if and only if H − 1/β > 0, so if we want to do inference in the
continuous case we have the two parameter inequalities:

0 < H − 1/β and H < k − 1/β. (2.3)

Note that these inequalities never hold for k = 1. But they are always satisfied for
k ≥ 2, which shows the usefulness of higher order increments. Moreover, the H-self-
similarity of X implies that

E[|∆2
2k,kY |p]

E[|∆k,kY |p]
= 2pH for p ∈ (−1,0).

For k = 2 the term ∆2
4,2Y is a linear combination of ∆2,2Y , ∆3,2Y , ∆4,2Y . Hence, H is

identifiable from the characteristic function of the three-dimensional distribution
(X1,X2,X3), in other words, m = 3 in the case k = 2. ©

Example 2.6 (OU-type model with a periodic component).
The next example we consider is a periodic extension of the stable Ornstein–Uhlenbeck
process from Example 2.4. Let θ = (θ1,θ2) ∈ (0,∞)2 and consider the kernel function:

gθ(u) = exp(−θ1u −θ2f (u))1(0,∞)(u), u ∈R,

where f : R→R is a bounded measurable function which is either non-negative or
non-positive and has period 1, i.e. f (x+ 1) = f (x) for all x. If f does not vanish except
on Lebesgue null set, then θ 7→ ϕmβ,θ for m = 2 is injective. If, in addition, f is negative
then Assumption (B)(2) is satisfied except possibly at β = 1. We refer to Section 4.4
for the proof of these statements. ©

Example 2.7 (Modulated OU).
Consider the process X defined at (2.1) with kernel given by

gθ(s) = θ1sexp(−θ2s)1(0,∞)(s), s ∈R. (2.4)

Under the assumptions on the parameters θ ∈ (0,∞)2 and β ∈ (1,2) it is possible to
prove that θ is not identifiable from m = 1 while it is in the case m = 2. We refer to
Section 4.5 for the full exposition of these claims. ©

Example 2.8 (CARMA processes).
Consider integers p > q. The CARMA(p,q) process (Yt)t∈R with parameters a1, . . . , ap,

b0, . . . , bq−1 ∈R driven by L is the solution to the stochastic differential equation

Xt = b>Yt with dYt −AYt dt = edLt , (2.5)

where e and b are the p-dimensional column vectors given by

e = (0, . . . ,0,1)> and b = (b0, . . . , bp−1)>,

where bq = 1 and bi = 0 for all q < i < p and A is the p × p matrix given by

A =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . . 1
−ap −ap−1 ap−2 · · · −a1

 .
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CARMA(p,q) processes fits within the framework of (2.1) since if the eigenvalues of
A have strictly negative real part, then a unique stationary solution of (2.5) exists and
is given by

Xt =
∫
R

b>eA(t−s)e1[0,∞)(t − s)dLs, t ∈R,

see [7, Proposition 1]. In this example we discuss a specific three-dimensional sub-
class of CARMA(2,1) processes, which corresponds to the choice λ B −√a2 and
a1 = 2

√
a2 = −2λ. The parameter of interest becomes ξ = (β,b0,λ) and we further

assume that β ∈ (1,2) and θB b0 +λ > 0. In this setting the matrix A is given by

A =
(

0 1
−λ2 2λ

)
and λ < 0 is the only eigenvalue of A. We thus obtain the Jordan normal form

A = S
(
λ 1
0 λ

)
S−1, S =

(
1 0
λ 1

)
, S−1 =

(
1 0
−λ 1

)
.

Using this representation elementary matrix algebra yields the identity

g(s) = b> exp(sA)e1[0,∞)(s) = (1 +θs)exp(λs)1[0,∞)(s).

In Section 4.6 we show that the parameters of the model are identifiable in the case
m = 2. ©

2.2 Parametric Estimation via Minimal Contrast Approach

We note first that the discrete time process (Xt)t∈Z is ergodic according to [8], and so
is the sequence

Yi = f (Xi+1, . . . ,Xi+m), i ∈Z,

for any measurable function f . Hence, we obtain by Birkhoff’s ergodic theorem the
strong consistency (of the real part) of the joint empirical characteristic function:

ϕn(u1, . . . ,um) =
1
n

n−m∑
i=0

cos
( m∑
k=1

ukXi+k

)
a.s.−−→ E

[
cos

(m−1∑
k=0

ukX1+k

)]
= ϕmξ (u1, . . . ,um),

(2.6)

where ξ = (β,θ) ∈ Ξ denotes the unknown parameter of the model. To reduce cum-
bersome notation we drop the dependence on m in the characteristic function and
simply write ϕξ from now on. For a weight function w introduced in the previous
section, we denote by F : L2

w(Rm+ )×Ξ→R the map

F(ψ,ξ) = ‖ψ −ϕξ‖2w,2.

The minimal contrast estimator ξn of ξ is then defined as

ξn ∈ argmin
ξ∈Ξ

F(ϕn,ξ) = argmin
ξ∈Ξ

∫
R
m
+

(ϕn(u)−ϕξ (u))2w(u)du, (2.7)
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and we remark that ξn can be chosen universally measurable by [23, Theorem 2.17(d)].
To obtain the asymptotic normality of the minimal contrast estimator ξn we will
show a central limit theorem for the statistic

√
n(ϕn(u1, . . . ,um)−ϕξ (u1, . . . ,um)) using

Theorem 1.1 and then apply a functional version of the implicit function theorem.
For this purpose we introduce a centred Gaussian field (Gu)u∈Rm+ whose covariance
kernel is defined as

Cov(Gu ,Gv) =
∑
l∈Z

Cov
(
cos(〈u,Z0〉Rm ),cos(〈v,Zl〉Rm )

)
, (2.8)

where Zk = (X1+k , . . . ,Xm+k). The main theoretical result of the paper is the strong
consistency and asymptotic normality of the minimal contrast estimator ξn.

Theorem 2.9. Let (ξn) be the minimal contrast estimator at (2.1) associated with the
true parameter ξ0 = (β0,θ0). Suppose that Assumptions (A) and (B) hold for the under-
lying family of kernels (gξ )ξ∈Ξ. Assume that the weight function w is continuous and∫
R
m
+
‖u‖2

R
mw(u)du <∞.

(i) ξn→ ξ0 almost surely as n→∞.

(ii) The convergence as n→∞
√
n(ξn − ξ0) L−−→ (∇2

ξF(ϕξ0
,ξ0)

)−1(〈∂ξiϕξ0
,G〉w

)
i=1,...,d+1

holds, where G = (Gu)u∈Rm+ is a continuous zero-mean Gaussian random field with
covariance kernel defined by (2.8). In particular, the above limit is a normally
distributed (d + 1)-dimensional random vector.

We note that due to Assumption (A)(4) the matrix ∇2
ξF(ϕξ0

,ξ0) is invertible. In
principle, the normal limit in Theorem 2.9 is explicit up to the knowledge of the
parameter ξ0, but due to the complex covariance kernel of the process G it is hard to
apply the central limit theorem to obtain confidence regions. Instead one may use a
parametric bootstrap approach as it has been suggested in [15, Section 4.2].

We remark that the convergence rate is
√
n for all parameters. Due to the non-

Markovian structure of the general model (2.1) it is a non-trivial task to assess the
optimality of this rate. As we have discussed in Example 2.4 the rate

√
n can be

suboptimal in the particular case of the drift parameter in an Ornstein–Uhlenbeck
model.

Remark 2.10 (Extension to general Lévy drivers).
If we drop the requirement for estimation of β we can consider a larger class of
Lévy drivers. Indeed, according to [3] the statement of Theorem 1.1 still holds for a
symmetric Lévy process L, which admits a Lévy density ν such that

ν(x) ≤ C |x|−1−β for all x , 0.

In this case the characteristic function takes on a more complicated form. Indeed, by
[20, Theorem 2.7] it holds that

E

[
ei〈u,(X1,...,Xm)〉

R
m
]
= exp

(∫
R

∫
R

[cos(〈u,x(gξ (z+ i))i=0,...,m−1〉Rm )− 1]ν(dx)dz
)
.
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In principle, the asymptotic theory of Theorem 2.9 can be extended to this more
general setting. However, the proof of the asymptotic normality relies on the existence
of a continuous modification of the random field (Gu)u∈Rm+ and the behaviour of
E[G2

u] in u ∈Rm+ (cf. Section 4.1), which requires a different treatment compared to
the β-stable case. ^

3 A Simulation Study

In this section we will demonstrate the finite sample performance of our estimator
for three examples, which are supposed to highlight different aspects of the min-
imal contrast approach. First, we will consider the linear fractional stable motion
(cf. Example 2.5) and use m = 3 to estimate the three-dimensional parameter of
the model. The second example is the generalized modulated OU-process, which has
not been shown to satisfy the main assumptions of the paper. We will use m = 2 to
estimate the three-dimensional parametric model and test how our method works in
this framework. The third model is the Ornstein–Uhlenbeck process considered in
Example 2.4 with a fixed and known scale parameter σ . In this setting both m = 1
and m = 2 can be used to estimate the drift λ and the stability index β, and the aim
of the numerical simulation is to test how the choice of higher index m affects the
performance of the estimator.

Since the weight function w depends on m implicitly via its domain we need
a function, which is reasonably compatible between different dimensions and we
consider therefore throughout this study the m-dimensional Gaussian density with
zero mean and a scaled unit covariance matrix ν2Im:

wν(u) = (2πν2)−m/2 exp
(
−‖u‖

2
R
m

2ν2

)
, u ∈Rm, ν > 0. (3.1)

The choice of ν varies between the three example process and it is a subject for future
research to automatically determine an optimal weight. For the computation of the
weighted integral in (2.7) we use Gauss–Laguerra quadrature which is a weighted
sum of function values and the number of weights will also vary depending on the
process.

We note additionally that the minimization involved in computing the minimal
contrast estimator at (2.7) has to be done numerically and for this we use the method
of [17], which requires picking a starting point which naturally will depend on the
example kernel at hand. Lastly, we remark that the β-norm of the kernel function
is generally not known explicitly, hence the theoretical characteristic function is
approximated as well.

All tables in this section are based on at least 200 Monte Carlo repetitions.

3.1 Linear Fractional Stable Motion

Recall from the discussion in Example 2.5 that it is prudent to take higher order in-
crements, and we fix throughout k = 2. Moreover, to properly identify the parameters
we consider the characteristic function of the three-dimensional joint distribution,
hence m = 3. Next we consider throughout the weight function at (3.1) with standard
deviation ν = 10 and the weighted integral is approximated with 123 = 1728 number
of weights. The starting point for the minimization algortihm is (β,H,σ ) = (1.5,0.5,2).
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The estimator is tested in the continuous case, so only parameter combinations
resulting in the equality H − 1/β > 0 are considered. Table E.1 reports the bias and
standard deviation in the case of n = 1000 for different parameter combinations,
while Table E.2 explores the case n = 10000. We observe a rather good performance
of all estimators with superior results in the setting n = 10000 as expected from our
theoretical statements. We note that the estimator of the scale parameter σ performs
the best, which is in line with earlier findings of [16].

Table E.1. Absolute value of bias (|Bias|) and standard deviation (Std) for n = 1000 and σ = 0.3
for the linear fractional stable motion.

|Bias| Std

H β β̂n Ĥn σ̂n β̂n Ĥn σ̂n

0.6 1.8 0.0176 0.0478 0.0362 0.1950 0.2730 0.0705

0.7 1.6 0.0705 0.1710 0.0834 0.2409 0.3581 0.0947
1.8 0.0106 0.0041 0.0120 0.1766 0.2094 0.0429

0.8 1.4 0.0862 0.2444 0.0862 0.2348 0.3457 0.1044
1.6 0.0250 0.0597 0.0270 0.1783 0.2466 0.0541
1.8 0.0120 0.0060 0.0044 0.1452 0.1578 0.0287

Table E.2. Absolute value of bias (|Bias|) and standard deviation (Std) for n = 10000 and
σ = 0.3 for the linear fractional stable motion.

|Bias| Std

H β β̂n Ĥn σ̂n β̂n Ĥn σ̂n

0.6 1.8 0.0133 0.0456 0.0254 0.1272 0.2007 0.0532

0.7 1.6 0.0238 0.0818 0.0331 0.1005 0.2147 0.0685
1.8 0.0060 0.0147 0.0066 0.0869 0.1153 0.0173

0.8 1.4 0.0347 0.1536 0.0504 0.1095 0.2546 0.0865
1.6 0.0078 0.0053 0.0008 0.0665 0.0843 0.0085
1.8 0.0032 0.0020 0.0009 0.0597 0.0732 0.0067

3.2 Generalized Modulated OU Process

The generalized modulated OU process is defined via equation (2.1) with kernel
function

gθ(s) = sσ exp(−λs)1(0,∞)(s), s ∈R,

where θ = (σ,λ) ∈ (0,∞)2. We recall that this class of kernels has not been shown to
satisfy the main assumption of the paper, but it easily seen thatm = 1 is not enough to
identify the parameters in θ. We take m = 2 and increase the number of weights to 20,
hence the weighted integral approximation is based on 202 = 400 nodes. Moreover,
the weight function is as in (3.1) with ν = 0.1. Lastly, we pick as starting point for the
minimization algorithm (β,λ,σ ) = (1.5,1,1).
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Tables E.3 and E.4 report the finite sample performance of the estimators for
n = 10000, and σ = 0.5 and σ = 2, respectively. We observe a good performance
of the estimator β̂n and a very unsatisfactory performance of the estimator σ̂n. We
conjecture that the reason for the suboptimal performance lies in the choice of the
weight function w, which may have opposite effects on different parameters of the
model, as well as in the minimization algorithm, since it has a tendency to get stuck
in local minima.

Table E.3. Absolute value of bias (|Bias|) and standard deviation for n = 10000 and σ = 0.5 for
the generalized modulated OU kernel.

|Bias| Std

β λ β̂n λ̂n σ̂n β̂n λ̂n σ̂n

1.8 0.5 0.0111 0.1585 0.5982 0.0460 0.0444 0.1353
0.75 0.0196 0.0925 0.5620 0.0542 0.0494 0.1718
1.25 0.0147 0.0064 0.0671 0.0813 0.1152 0.0946
1.5 0.0029 0.0361 0.0969 0.0856 0.1006 0.1728

1.2 0.5 0.0062 0.1881 0.6967 0.0349 0.0732 0.2415
0.75 0.0044 0.1787 0.8088 0.0440 0.0443 0.0486
1.25 0.0103 0.0089 0.6124 0.0468 0.0594 0.1307
1.5 0.0110 0.0886 0.5869 0.0519 0.0951 0.2115

Table E.4. Absolute value of bias (|Bias|) and standard deviation (Std) for n = 10000 and σ = 2
for the generalized modulated OU kernel.

|Bias| Std

β λ β̂n λ̂n σ̂n β̂n λ̂n σ̂n

1.8 0.5 0.0076 0.0314 0.1458 0.1730 0.2052 0.7289
0.75 0.0028 0.2089 0.6515 0.0309 0.0241 0.0729
1.25 0.0314 0.2521 1.3273 0.0727 0.0641 0.1244
1.5 0.0626 0.0066 1.3147 0.0889 0.1085 0.1725

1.2 0.5 0.0165 0.0220 0.1531 0.2724 0.1923 0.6673
0.75 0.0011 0.2065 0.6793 0.0335 0.0521 0.1611
1.25 0.0037 0.2068 0.7685 0.0474 0.0454 0.0362
1.5 0.0019 0.1720 1.0176 0.0635 0.0995 0.1928

3.3 Ornstein–Uhlenbeck

In this subsection we consider the Ornstein–Uhlenbeck kernel from Example 2.4
with σ = 1 being fixed and known. In this case Assumption (A) is satisfied for
both m = 2 and m = 1, and we will compare the performance for each of these
dimensions. Akin to Section 3.2 we pick 20m, m = 1,2, number of weights in the
integral approximation with weight function chosen as in (3.1) with ν = 1. The
starting point for the minimization algorithm is throughout (β,λ) = (1.5,0.5).

Tables E.5–E.8 demonstrate the simulation results for m = 1 and m = 2, respect-
ively. We observe a rather convincing performance for both estimators in all settings,
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but the choice m = 1 clearly outperforms the setting m = 2. We conjecture that it has
a theoretical background, i.e. the asymptotic variances in Theorem 2.9(ii) are smaller
for m = 1, and a numerical background. Indeed, the minimization algorithm has a
worse performance for higher values of m. For this reason it is advisable to use the
minimal m, which identifies the parameters of the model.

Table E.5. Absolute value of bias (|Bias|) and standard deviation (Std) for m = 1 and n = 1000.

n = 1000 |Bias| Std

β λ β̂n λ̂n β̂n λ̂n

1.2 0.25 0.0185 0.0030 0.1072 0.0544
0.75 0.0144 0.0061 0.0627 0.0683
1 0.0107 0.0018 0.0573 0.0755
1.25 0.0084 0.0062 0.0531 0.0856
1.5 0.0135 0.0058 0.0561 0.0901
2 0.0044 0.0028 0.0543 0.1282
2.5 0.0122 0.0150 0.0583 0.1530

1.4 0.25 0.0097 0.0079 0.1214 0.0530
0.75 0.0047 0.0029 0.0661 0.0669
1 0.0036 0.0093 0.0593 0.0646
1.25 0.0042 0.0018 0.0572 0.0757
1.5 0.0138 0.0023 0.0550 0.0826
2 0.0091 0.0039 0.0595 0.1072
2.5 0.0060 0.0072 0.0608 0.1507

1.6 0.25 0.0099 0.0012 0.1143 0.0513
0.75 0.0071 0.0066 0.0604 0.0604
1 0.0076 0.0016 0.0590 0.0669
1.25 0.0116 0.0042 0.0533 0.0759
1.5 0.0020 0.0039 0.0563 0.0781
2 0.0101 0.0074 0.0540 0.1021
2.5 0.0144 0.0061 0.0567 0.1283

1.8 0.25 0.0106 0.0004 0.1013 0.0417
0.75 0.0111 0.0007 0.0586 0.0597
1 0.0021 0.0007 0.0529 0.0649
1.25 0.0088 0.0043 0.0453 0.0764
1.5 0.0092 0.0136 0.0494 0.0825
2 0.0084 0.0025 0.0481 0.1015
2.5 0.0144 0.0045 0.0446 0.1273
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Table E.6. Absolute value of bias (|Bias|) and standard deviation (Std) form = 1 and n = 10000.

n = 10000 |Bias| Std

β λ β̂n λ̂n β̂n λ̂n

1.2 0.25 0.0016 0.0004 0.0321 0.0174
0.75 0.0039 0.0028 0.0187 0.0199
1 0.0008 0.0000 0.0197 0.0244
1.25 0.0000 0.0028 0.0189 0.0265
1.5 0.0004 0.0033 0.0164 0.0323
2 0.0003 0.0030 0.0161 0.0365
2.5 0.0016 0.0090 0.0179 0.0466

1.4 0.25 0.0035 0.0014 0.0377 0.0172
0.75 0.0017 0.0010 0.0202 0.0194
1 0.0017 0.0022 0.0196 0.0241
1.25 0.0016 0.0026 0.0174 0.0274
1.5 0.0000 0.0092 0.0177 0.0281
2 0.0016 0.0069 0.0166 0.0362
2.5 0.0014 0.0155 0.0194 0.0404

1.6 0.25 0.0079 0.0019 0.0439 0.0169
0.75 0.0022 0.0014 0.0184 0.0170
1 0.0008 0.0020 0.0182 0.0212
1.25 0.0015 0.0032 0.0183 0.0239
1.5 0.0003 0.0056 0.0169 0.0271
2 0.0005 0.0133 0.0166 0.0325
2.5 0.0020 0.0192 0.0178 0.0401

1.8 0.25 0.0015 0.0011 0.0392 0.0152
0.75 0.0013 0.0010 0.0187 0.0176
1 0.0019 0.0051 0.0162 0.0190
1.25 0.0020 0.0067 0.0159 0.0232
1.5 0.0012 0.0113 0.0151 0.0263
2 0.0032 0.0159 0.0146 0.0298
2.5 0.0000 0.0259 0.0143 0.0411
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Table E.7. Absolute value of bias (|Bias|) and standard deviation (Std) for m = 2 and n = 1000.

n = 1000 |Bias| Std

β λ β̂n λ̂n β̂n λ̂n

1.2 0.25 0.3988 0.1113 0.1044 0.0623
0.75 0.0666 0.0363 0.2178 0.1932
1 0.0150 0.0081 0.0928 0.1339
1.25 0.0125 0.0104 0.0681 0.1226
1.5 0.0054 0.0063 0.0626 0.1181
2 0.0073 0.0090 0.0646 0.1472
2.5 0.0613 0.1477 0.0636 0.0627

1.4 0.25 0.2028 0.0531 0.1407 0.1061
0.75 0.0484 0.0204 0.1793 0.1621
1 0.0063 0.0063 0.0848 0.1165
1.25 0.0124 0.0067 0.0714 0.1096
1.5 0.0025 0.0067 0.0721 0.1204
2 0.0080 0.0203 0.0572 0.1269
2.5 0.0593 0.1395 0.0734 0.0482

1.6 0.25 0.1120 0.1078 0.3009 0.2139
0.75 0.0481 0.0210 0.1669 0.1602
1 0.0165 0.0159 0.0909 0.1164
1.25 0.0072 0.0017 0.0666 0.1039
1.5 0.0012 0.0078 0.0667 0.0990
2 0.0037 0.0133 0.0688 0.1171
2.5 0.0873 0.1364 0.0850 0.0431

1.8 0.25 0.2478 0.1751 0.3584 0.2232
0.75 0.0194 0.0015 0.1182 0.1253
1 0.0112 0.0007 0.0755 0.1010
1.25 0.0098 0.0083 0.0587 0.0881
1.5 0.0150 0.0020 0.0540 0.0973
2 0.0187 0.0121 0.0632 0.1106
2.5 0.0948 0.1346 0.0802 0.0502
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Table E.8. Absolute value of bias (|Bias|) and standard deviation (Std) form = 2 and n = 10000.

n = 10000 |Bias| Std

β λ β̂n λ̂n β̂n λ̂n

1.2 0.25 0.3922 0.1142 0.0464 0.0098
0.75 0.0005 0.0013 0.0391 0.0480
1 0.0019 0.0012 0.0260 0.0421
1.25 0.0007 0.0024 0.0220 0.0377
1.5 0.0003 0.0030 0.0218 0.0428
2 0.0005 0.0050 0.0195 0.0454
2.5 0.0387 0.1186 0.0204 0.0024

1.4 0.25 0.1916 0.0599 0.0731 0.0402
0.75 0.0024 0.0015 0.0439 0.0500
1 0.0019 0.0024 0.0257 0.0363
1.25 0.0009 0.0002 0.0235 0.0361
1.5 0.0012 0.0004 0.0211 0.0381
2 0.0027 0.0020 0.0227 0.0397
2.5 0.0505 0.1184 0.0243 0.0006

1.6 0.25 0.0051 0.0138 0.1794 0.1028
0.75 0.0084 0.0061 0.0451 0.0479
1 0.0002 0.0023 0.0253 0.0324
1.25 0.0003 0.0047 0.0206 0.0305
1.5 0.0003 0.0040 0.0200 0.0334
2 0.0015 0.0060 0.0200 0.0389
2.5 0.0604 0.1185 0.0287 0.0015

1.8 0.25 0.2109 0.1160 0.2539 0.1351
0.75 0.0016 0.0023 0.0389 0.0395
1 0.0001 0.0025 0.0243 0.0316
1.25 0.0004 0.0036 0.0178 0.0266
1.5 0.0001 0.0042 0.0173 0.0280
2 0.0012 0.0092 0.0181 0.0371
2.5 0.0801 0.1184 0.0343 0.0010
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4 Proofs

In this section C > 0 denotes a generic constant, which may change from line to line.
Recall moreover the shorthand ξ = (β,θ) for the joint parameters.

4.1 The Limiting Gaussian Field

To characterize the covariance of the asymptotic Gaussian field (Gu)u∈Rm+ we define
a dependence measure between two m-dimensional stable random vectors Y =
(
∫
h1 dL, . . . ,

∫
hmdL) and Z = (

∫
g1 dL, . . . ,

∫
gmdL):

UY ,Z (u,v)B E

[
ei〈(u,v),(Y ,Z)〉

R
2m

]−E[
ei〈u,Y 〉

R
m
]
E

[
ei〈v,Z〉

R
m
]
, u,v ∈Rm.

This is a straightforward multivariate extension of the measure defined in [19]. We
now apply Theorem 1.1 in conjunction with the smooth and bounded functions

fu(x) = cos(〈u,x〉
R
m ), u,x ∈Rm,

such that we obtain the finite dimensional convergence of the processes:

√
n
(
ϕn(u)−ϕξ (u)

)
u∈Rm+

L-f−−−−−→
n→∞ (Gu)u∈Rm+ .

Let Z0 = (X1, . . . ,Xm) and Z` = (X1+` , . . . ,Xm+`), then the covariance function R : Rm ×
R
m→R of G is, cf. (1.4), given by

R(u,v) =
∑
`∈Z

r`(u,v),

where for ` ∈Z

r`(u,v) = Cov
(
cos(〈u,Z0〉),cos(〈v,Z`〉)

)
, u,v ∈Rm.

We will now prove that there exists a version of G, which is locally Hölder continuous
up to any order less than β/4. By Kolmogorov’s criteria and Gaussianity it is enough
to prove that for any T > 0 there exists a constant CT ≥ 0 such that

E

[
(Gu −Gv)2] ≤ CT ‖u − v‖β/2 for all u,v ∈ [0,T ]m, (4.1)

where ‖u − v‖ =
∑m
i=1 |ui − vi | denotes the `1-norm throughtout the rest of this paper.

To prove (4.1) note the decomposition

E

[
(Gu −Gv)2] = R(u,u)−R(u,v) +R(v,v)−R(u,v).

Hence by symmetry it suffices to consider the term

R(u,u)−R(v,v) =
∑
`∈Z

(r`(u,u)− r`(u,v)).

The main difficulty lies in establishing a bound on r`(u,u)− r(u,v) which is both β
2 -

Hölder in (u,v) and summable in `. Using the standard identity cos(x) = (eix + e−ix)/2
and the symmetry of L1 we deduce the identity

2
(
r`(u,u)− r`(u,v)

)
= [UZ0,Z` (u,−u)−UZ0,Z` (u,−v)] + [UZ0,Z` (u,u)−UZ0,Z` (u,v)].
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The two terms in the square brackets are treated very similarly so we consider only
the first one. Before diving into the tedious calculations we recall the following
inequalities for x,y ∈R:

|e−x − e−y | ≤ |x − y| if x,y ≥ 0, (4.2)

|x+ y|β ≤ |x|β + |y|β for β ∈ (0,1], (4.3)

||x|β − |y|β | ≤ |x − y|β for β ∈ (0,1], (4.4)

||x+ y|β − |x|β − |y|β | ≤ |xy|β/2 for β ∈ (0,2). (4.5)

Define additionally the two quantities

ρi =
∫
R

|gξ (x)gξ (x+ i)|β/2 dx and µi =
∫ ∞
−m
|gξ (x+ i)|β dx, i ∈Z.

We shall need the following lemma.

Lemma 4.1. Let i ∈N. Then it holds:

(i) ρi ≤ Ci−αβ/2.

(ii) If i > m then µi ≤ C(i −m)1−αβ .

Proof. (i) follows as in [6, Lemma 4.1]. For (ii) note if k > m then x + k > 1 for any
x > −m, so according to assumption (1.2)

µi ≤ C
∫ ∞
−m

(x+ k)−αβ dx = C(k −m)1−αβ ,

where we used that αβ > 2. �

Using the expression for the characteristic function of a symmetric β-stable random
variable we decompose as follows

UZ0,Z` (u,−u)−UZ0,Z` (u,−v)

= exp
(
−
∥∥∥∥ m∑
i=1

ui(gξ (i − · )− gξ (i + ` − · ))
∥∥∥∥β
β

)
− exp

(
−2

∥∥∥∥ m∑
i=1

uigξ (i − · )
∥∥∥∥β
β

)
−
[

exp
(
−
∥∥∥∥ m∑
i=1

uig(i − · )− vig(i + ` − · )
∥∥∥∥β
β

)
− exp

(
−
∥∥∥∥ m∑
i=1

uigξ (i − · )
∥∥∥∥β
β
−
∥∥∥∥ m∑
i=1

vigξ (i + ` − · )
∥∥∥∥β
β

)]

= exp
(
2
∥∥∥∥ m∑
i=1

uigξ (i − · )
∥∥∥∥β
β

)
×
[

exp
(
−2

∥∥∥∥ m∑
i=1

uigξ (i − · )
∥∥∥∥β
β

)
− exp

(
−
∥∥∥∥ m∑
i=1

uigξ (i − · )
∥∥∥∥β
β
−
∥∥∥∥ m∑
i=1

vigξ (i − · )
∥∥∥∥β
β

)]
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×
[

exp
(
−
∥∥∥∥ m∑
i=1

ui(gξ (i − · )− gξ (i + ` − · ))
∥∥∥∥β
β

)
− exp

(
−2

∥∥∥∥ m∑
i=1

uigξ (i − · )
∥∥∥∥β
β

)]

+ exp
(
−
∥∥∥∥ m∑
i=1

uigξ (i − · )
∥∥∥∥β
β
−
∥∥∥∥ m∑
i=1

vigξ (i − · )
∥∥∥∥β
β

)
×
exp

(
−
∥∥∥∥ m∑
i=1

ui(gξ (i − · )− gξ (i + ` − · ))
∥∥∥∥β
β

+ 2
∥∥∥∥ m∑
i=1

uigξ (i − · )
∥∥∥∥β
β

)
− exp

(
−
∥∥∥∥ m∑
i=1

uigξ (i − · )− vigξ (i + ` − · )
∥∥∥∥β
β

+
∥∥∥∥ m∑
i=1

uigξ (i − · )
∥∥∥∥β
β

+
∥∥∥∥ m∑
i=1

vigξ (i − · )
∥∥∥∥β
β

)
C r1

` (u,v) + r2
` (u,v).

For the first term, r1
` , we notice that the exponential term in front is bounded in

u ∈ [0,T ]m (and of course in ` ∈Z as well), hence by (4.2)

r1
` (u,v) ≤ CT

∣∣∣∣∣∥∥∥∥ m∑
i=1

uigξ (i − · )
∥∥∥∥β
β
−
∥∥∥∥ m∑
i=1

vigξ (i − · )
∥∥∥∥β
β

∣∣∣∣∣
×
∣∣∣∣∣∥∥∥∥ m∑
i=1

ui(gξ (i − · )− gξ (i + ` − · ))
∥∥∥∥β
β
− 2

∥∥∥∥ m∑
i=1

uigξ (i − · )
∥∥∥∥β
β

∣∣∣∣∣.
The first absolute value term will give the Hölder continuity of order β/2 and the
second will ensure summability in `. For the first term we may bound as follows in
the case β ∈ (0,1] using (4.4) and (4.3)∣∣∣∣∣∥∥∥∥ m∑

i=1

uigξ (i − · )
∥∥∥∥β
β
−
∥∥∥∥ m∑
i=1

vigξ (i − · )
∥∥∥∥β
β

∣∣∣∣∣ ≤ ∫
R

( m∑
i=1

|ui − vi | |gξ (i − x)|
)β

dx

≤ ‖u − v‖β
m∑
i=1

∫
R

|gξ (i − x)|β dx

≤ CT ‖u − v‖β/2.

If instead β > 1, then the map is u 7→ ‖∑m
i=1uigξ (i − · )‖ββ is continuously differentiable,

hence by the mean value theorem it is Hölder continuous of any order less than or
equal to 1, and since β ∈ (0,2) Hölder continuity of order β/2 then holds. For the
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second absolute value term it follows by (4.5) and (4.3)∣∣∣∣∣∥∥∥∥ m∑
i=1

ui(gξ (i − · )− gξ (i + ` − · ))
∥∥∥∥β
β
− 2

∥∥∥∥ m∑
i=1

uigξ (i − · )
∥∥∥∥β
β

∣∣∣∣∣
=

∣∣∣∣∣∥∥∥∥ m∑
i=1

ui(gξ (i − · )− gξ (i + ` − · ))
∥∥∥∥β
β
−
∥∥∥∥ m∑
i=1

uigξ (i − · )
∥∥∥∥β
β

−
∥∥∥∥− m∑

i=1

uigξ (i + ` − · )
∥∥∥∥β
β

∣∣∣∣∣
≤ 2

∥∥∥∥( m∑
i=1

uigξ (i − · )
)( m∑
k=1

ukgξ (k + ` − · )
)∥∥∥∥β/2
β/2

≤ 2T β
m∑

i,k=1

‖gξ (i − · )gξ (k + ` − · )‖β/2β/2

= 2T β
m∑

i,k=1

ρ`+k−i ,

which is summable in ` by Lemma 4.1 and the assumption αβ > 2. We now turn our
attention to the more complicated second term r2

` (u,v). Utilising (4.2) we have that

r2
` (u,v) ≤

∣∣∣∣∣∥∥∥∥ m∑
i=1

ui(gξ (i − · )− gξ (i + ` − · ))
∥∥∥∥β
β
− 2

∥∥∥∥ m∑
i=1

uigξ (i − · )
∥∥∥∥β
β

+
∥∥∥∥ m∑
i=1

vigξ (i − · )
∥∥∥∥β
β

+
∥∥∥∥ m∑
i=1

uigξ (i − · )
∥∥∥∥β
β

−
∥∥∥∥ m∑
i=1

uigξ (i − · )− vigξ (i + ` − · )
∥∥∥∥β
β

∣∣∣∣∣
=

∣∣∣∣∣∫ ∞−m
[∣∣∣∣ m∑
i=1

ui(gξ (x+ i)− gξ (i + ` + x))
∣∣∣∣β

−
∣∣∣∣ m∑
i=1

uigξ (i + x)− vigξ (i + ` + x)
∣∣∣∣β]

+
[∣∣∣∣ m∑
i=1

vigξ (i + ` + x)
∣∣∣∣β − ∣∣∣∣ m∑

i=1

uigξ (i + ` + x)
∣∣∣∣β]dx

∣∣∣∣∣
≤

∫ ∞
−m

∣∣∣∣∣∣∣∣∣ m∑
i=1

ui(gξ (x+ i)− gξ (i + ` + x))
∣∣∣∣β

−
∣∣∣∣ m∑
i=1

uigξ (i + x)− vigξ (i + ` + x)
∣∣∣∣β ∣∣∣∣∣dx

+
∫ ∞
−m

∣∣∣∣∣∣∣∣∣ m∑
i=1

vigξ (i + ` + x)
∣∣∣∣β − ∣∣∣∣ m∑

i=1

uigξ (i + ` + x)
∣∣∣∣β ∣∣∣∣∣dx

C r2,1
` (u,v) + r2,2

` (u,v).

We deal first with the second term r2,2
` . First, if β ∈ (0,1], then by (4.4) and (4.3)

r2,2
` (u,v) ≤

∫ ∞
−m

∣∣∣∣ m∑
i=1

(ui − vi)gξ (i + ` + x)
∣∣∣∣β dx ≤ ‖u − v‖β

m∑
i=1

µi+` ,
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and by Lemma 4.1(ii) we obtain a bound which is summable in ` > m. If instead
β ∈ (1,2) the map

h(u) =
∫ ∞
−m

∣∣∣∣ m∑
i=1

uigξ (i + ` + x)
∣∣∣∣β dx, u ∈Rm,

is continuously differentiable and the absolute value of the derivative is bounded as
follows for any u ∈ [0,T ]m and ` > m:∣∣∣∣ ∂∂uk h(u)

∣∣∣∣ ≤ ∫ ∞
−m

∣∣∣∣ m∑
i=1

uigξ (i + ` + x)
∣∣∣∣β−1 |gξ (k + ` + x)|dx

≤ T β−1
m∑
i=1

∫ ∞
−m
|gξ (i + ` + x)|β−1 |gξ (k + ` + x)|dx

≤ CT β−1m(` −m)1−αβ ,

where we have argued as in Lemma 4.1(ii) in the last inequality. Hence, in the case
β ∈ (1,2) we obtain by the mean value theorem

r2,2
` (u,v) ≤ sup

z∈[0,T ]m
‖∇h(z)‖‖u − v‖ ≤ CT (` −m)1−αβ ‖u − v‖β ,

and as αβ > 2 we have obtained a bound summable in `.
It remains to consider the term r2,1

` . Here it follows from the inequality ||x|β−|y|β | ≤
|x2 − y2|β/2 and the triangle inequality that the integrand is bounded by∣∣∣∣∣∣∣∣∣ m∑

i=1

ui(gξ (i + x)− gξ (i + ` + x))
∣∣∣∣β − ∣∣∣∣ m∑

i=1

uigξ (i + x)− vigξ (i + ` + x)
∣∣∣∣β ∣∣∣∣∣

≤
∣∣∣∣∣ m∑
i,k=1

uiuk(gξ (i + x)− gξ (i + ` + x))(gξ (k + x)− gξ (k + ` + x))

− (uigξ (i + x)− vigξ (i + ` + x))(ukgξ (k + x)− vkgξ (k + ` + x))
∣∣∣∣∣β/2

=
∣∣∣∣∣ m∑
i,k=1

[
(uiuk − vivk)gξ (i + ` + x)gξ (k + ` + x)

+ui(vk −uk)gξ (i + x)gξ (k + ` + x)

+uk(vi −ui)gξ (i + ` + x)gθ,β(k + x)
]∣∣∣∣∣β/2

≤ CT ‖u − v‖β/2
m∑

i,k=1

[∣∣∣gξ (i + ` + x)gξ (k + ` + x)
∣∣∣β/2 +

∣∣∣gξ (i + x)gξ (k + ` + x)
∣∣∣β/2].

Hence, we obtain with arguments as in Lemma 4.1(ii) that

r2,1
` (u,v) ≤ CT ‖u − v‖β/2

(
(` −m)1−αβ +

m∑
i,k=1

ρ`+k−i
)
,

which is summable in ` as αβ > 2.
Lastly, we shall prove that (Gu)u∈Rm+ has paths in L1

w(Rm+ ) almost surely, such that∫
R
m
+
Guw(u)du is well-defined. A sufficient criteria for this is

∫
R
m
+

Var[Gu]1/2w(u)du <
∞, since G is centred. For this we need to study r`(u,u) again. Recall that

r`(u,u) =UZ0,Z` (u,−u) +UZ0,Z` (u,u).
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As both terms are treated almost identically it suffices to consider the first one. Here it
follows from the inequality |ex − 1| ≤ e|x| |x|, x ∈R, and (4.5), that

|UZ0,Z` (u,−u)|

=
∣∣∣∣∣exp

(
−
∥∥∥∥ m∑
i=1

ui(gξ (i − · )− gξ (i + ` − · ))
∥∥∥∥β
β

)
− exp

(
−2

∥∥∥∥ m∑
i=1

uigξ (i − · )
∥∥∥∥β
β

)∣∣∣∣∣
≤ exp

(
−2

∥∥∥∥ m∑
i=1

uigξ (i − · )
∥∥∥∥β
β

)
×
∣∣∣∣∣∥∥∥∥ m∑
i=1

ui(gξ (i − · )− gξ (i + ` − x))
∥∥∥∥β
β
− 2

∥∥∥∥ m∑
i=1

uigξ (i − · )
∥∥∥∥β
β

∣∣∣∣∣
× exp

(∣∣∣∣∣∥∥∥∥ m∑
i=1

ui(gξ (i − · )− gξ (i + ` − x))
∥∥∥∥β
β
− 2

∥∥∥∥ m∑
i=1

uigξ (i − · )
∥∥∥∥β
β

∣∣∣∣∣)

≤ exp
(
−2

∥∥∥∥ m∑
i=1

uigξ (i − · )
∥∥∥∥β
β

+ 2
∥∥∥∥( m∑
i=1

uigξ (i − · )
)( m∑
i=1

uigξ (i + ` − · )
)∥∥∥∥β/2
β/2

)

× ‖u‖β
m∑

i,k=1

ρ`+k−i

≤ ‖u‖β
m∑

i,k=1

ρ`+k−i ,

where we have used the Cauchy–Schwarz inequality in the last line. Summing over `
yields an element in L1

w(Rm+ ) by the assumption on the weight function w.

4.2 Convergence of Integral Functionals

In Section 4.1 we saw that the empirical characteristic functions suitably scaled
and centred converge to a Gaussian process in finite dimensional sense. We wish to
extend this convergence to integrals of our processes. For this we need to extend [14,
Lemma 1] to a multivariate case. For x ∈ R let bxc denote the largest integer l such
that l ≤ x and for a vector u = (u1, . . . ,um) ∈Rm we set buc = (bu1c, . . . ,bumc).
Lemma 4.2. Let (Y nu )u∈Rm+ and (Yu)u∈Rm+ be continuous random fields with Y n

L-f−−−→ Y .
Assume that

∫
R
m
+
E[|Y nu |]du <∞ and

∫
R
m
+
E[|Yu |]du <∞, and set for k,`,n ∈N

Xn,k,` =
∫

[0,`]m
Y nbukc/k du and Xn,` =

∫
[0,`]m

Y nu du.

Suppose that

lim
`→∞

limsup
n→∞

∫
R
m−1−i
+

∫ ∞
`

∫
R
i
+

E[|Y nu |]du = 0,

lim
k→∞

limsup
n→∞

P(|Xn,k,` −Xn,` | > ε) = 0,

where the first convergence holds for all i ∈ {0, . . . ,m−1} and the latter for all ε,` > 0. Then
convergence in distribution holds:∫

R
m
+

Y nu du L−−→
∫
R
m
+

Yu du for n→∞.
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Proof. Observe for each ` > 0 the decomposition∫
R
m
+

Y nu du = Xn,k,` + (Xn,` −Xn,k,`) +
m−1∑
i=0

∫
R
m−1−i
+

∫ ∞
`

∫
[0,`]i

Y nu du.

Conclude now as in [14, Lemma 1]. �

4.3 Convergence of the Estimator

First, ξn
a.s.−−→ ξ0 follows by standard arguments which in particular uses Assump-

tion (A), see, e.g. [14], where one uses

‖ϕn −ϕξ0
‖w a.s.−−→ 0 as n→∞, (4.6)

which is a direct consequence of (2.2) and Lebesgue’s dominated convergence the-
orem. To derive the central limit theorem for the estimator, we consider instead the
requirement

∇ξF(ϕ,ξ) = 0 ϕ ∈ L2
w(Rm+ ), ξ ∈ Ξ,

which is satisfied at (ϕξ0
,ξ0). The problem may now be viewed from a implicit

functional point of view. To this end we recall the implicit function theorem on
general Banach spaces. Consider a Fréchet differentiable map g : U1 × U2 → B3

where U1 and U2 are open subsets of the Banach spaces B1 and B2, respectively,
and B3 is an additional Banach space. Let D ihig(p1,p2), i ∈ {1,2}, denote the partial
derivatives at the point (p1,p2) ∈U1×U2 in the direction hi ∈ Bi . If (p0

1,p
0
2) ∈U1×U2 is

a point such that g(p0
1,p

0
2) = 0 and the map h 7→D2

hg(p0
1,p

0
2) : B2→ B3 is a continuous

and invertible function, then there exists open subsets V1 ⊆ U1 and V2 ⊆ U2 such
that (p0

1,p
0
2) ∈ V1 ×V2 and a Fréchet differentiable and bijective (implicit) function

Φ : V1→ V2 such that

g(p1,p2) = 0 ⇐⇒ Φ(p1) = p2.

In addition, the derivative is given by

DhΦ(p) = −
(
D2· g(p,Φ(p))

)−1(
D1
hg(p,Φ(p))

)
, h ∈ B1, p ∈ V1. (4.7)

As might be apparent we shall consider the specific setup of g = ∇ξF, B1 = U1 =
L2
w(Rm+ ), U2 = Ξ ⊆ B2 = R

d+1. We note that Assumption (B)(2) ensures the existence
and continuity of the first and second order derivatives of F. Moreover, Assump-
tion (A)(4) yields the invertibility of the Hessian ∇2

ξF(ϕξ0
,ξ0).

In this case
Φ(ϕn) = ξn and Φ(ϕξ0

) = ξ0.

Hence, by Fréchet differentiability we find that
√
n(ξn − ξ0) =

√
n
(
Φ(ϕξ0

+ (ϕn −ϕξ0
))−Φ(ϕξ0

)
)

=D√n(ϕn−ϕξ0 )Φ(ϕξ0
) +
√
n‖ϕn −ϕξ0

‖w,2R(ϕn −ϕξ0
),

where the remainder term satisfies that R(ϕn − ϕξ0
) a.s.−−→ 0 as ‖ϕn − ϕξ0

‖w,2 a.s.−−→ 0.
Recalling the derivative at (4.7) and the representation F(ϕ,ξ) = 〈ϕ −ϕξ ,ϕ −ϕξ〉w, it
suffices to prove that

√
n‖ϕn −ϕξ0

‖w,2 L−−→ ‖G‖w,2
(〈∂ξiϕξ0

,
√
n(ϕn −ϕξ0

)〉w)i=1,...,d+1
L−−→ (〈∂ξiϕξ0

,G〉w)i=1...,d+1.
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Note that since it is the same underlying sequence of processes,
√
n(ϕn −ϕξ0

), it is for
the last convergence enough to consider the case of a fixed i ∈ {1, . . . ,d + 1}; indeed,
this requires little modification of Lemma 4.2. We focus on the last convergence as
the first is treated similarly, and to use Lemma 4.2 it is sufficient to provide suitable
moment estimates for

Y nu = ∂ξiϕξ0
(u)w(u)

√
n(ϕn(u)−ϕξ0

(u))C h(u)Gnu , u ∈Rm+ , n ∈N.

Using arguments as in [3, Proposition 3.3, page 12] and the variance estimates from
Section 4.1 we deduce that

E

[|Y nu |2] ≤ (∂ξiϕξ0
(u)w(u))2

∑
`∈Z
|r`(u,u)| ≤ C ‖u‖β(∂ξiϕξ0

(u)w(u))2.

Taking the square root we obtain a bound in L1(Rm+ ) of E[|Y nu |] by the Cauchy–Schwarz
inequality used together with Assumption (B)(2) and that u 7→ ‖u‖ is an element of
L2
w(Rm+ ). Hence the first condition of Lemma 4.2 is satisfied. The second condition is

slightly more involved, but let an ` > 0 be given and consider any u,v ∈ [0, `]m. Then

E

[|Y nu −Y nv |2]1/2 ≤ |h(u)− h(v)|Var[Gnu]1/2 + |h(v)|Cov(Gnu ,G
n
v )1/2

≤ CT (|h(u)− h(v)|+ ‖u − v‖),
which by Markov’s inequality yields the second condition of Lemma 4.2.

4.4 Proof of Statements in Example Example 2.6

Consider the kernel(∗) gθ(u) = exp(−θ1u − θ2f (u))1(0,∞)(u) for θ = (θ1,θ2) ∈ (0,∞)2

and where f is a bounded measurable 1-periodic function which does not vanish
except on a Lebesgue null set. Assume moreover that f is either non-positive or non-
negative. It is straightforward to see that in this case the characteristic function of X1

does not determine the parameter θ uniquely. Consider instead the joint characteristic
function ϕβ,θ(u1,u2) of (X1,X2) for the moving average X with kernel gθ , which is
given by:

ϕβ,θ(u1,u2) = exp
(
−‖u1gθ +u2gθ(·+ 1)‖ββ

)
, u1,u2 ≥ 0.

If ϕβ,θ = ϕβ,θ̃ for θ, θ̃ ∈ (0,∞)2, then the β-norms must be equal. Recalling the gener-
alized binomial theorem

(x+ y)β =
∞∑
k=0

(
β
k

)
xβ−kyk , x > y ≥ 0,

we may calculate these norms explicitly for u1 > u2 ≥ 0:

‖u1gθ +u2gθ(·+ 1)‖ββ
= uβ2

∫ 1

0
exp(−θ1x −θ2f (x))dx

+
∫ ∞

0

∞∑
k=0

(
β
k

)
u
β−k
1 uk2exp

(
− (β − k)(θ1x+θ2f (x))

− k
(
θ1(x+ 1) +θ2f (x+ 1)

))
dx

(∗) Similarly considerations can be done for the Ornstein–Uhlenbeck kernel, albeit easier and more
explicit.
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= uβ2

∫ 1

0
exp(−θ1x −θ2f (x))dx

+
∫ ∞

0

∞∑
k=0

(
β
k

)
u
β−k
1 uk2 exp

(−β(θ1x+θ2f (x))− kθ1
)
dx

= uβ2

∫ 1

0
exp(−θ1x −θ2f (x))dx

+
(
u1 +u2 exp(−θ1)

)β ∫ ∞
0

exp
(−β(θ1x+θ2f (x))

)
dx

where the last equality follows from the generalized binomial theorem since u1 >

u2 ≥ u2 exp(−θ1). Hence if ϕβ,θ = ϕβ,θ̃ then for all u1 > u2 ≥ 0

1 =
u
β
2

∫ 1

0
e−θ1x−θ2f (x) dx+ (u1 +u2e−θ1 )β

∫ ∞
0

e−β(θ1x+θ2f (x)) dx

u
β
2

∫ 1

0
e−θ̃1x−θ̃2f (x) dx+ (u1 +u2e−θ̃1 )β

∫ ∞
0

e−β(θ̃1x+θ̃2f (x)) dx

.

Inserting u1 = 1 > 0 = u2 yields the identity:

K B

∫ ∞
0

exp(−β(θ1x+θ2f (x)))dx =
∫ ∞

0
exp(−β(θ̃1x+ θ̃2f (x)))dx,

hence it suffices to prove that θ1 = θ̃1. Moreover, inserting the above identity in
ϕβ,θ = ϕβ,θ̃ and differentiating with respect to u1 gives that for all u1 > u2:

(u1 +u2 exp(−θ1))β−1K = (u1 +u2 exp(−θ̃1))β−1K,

which proves that θ1 = θ̃1 if β , 1.
Let us additionally show that u 7→ ∂θ1

ϕξ and u 7→ ∂θ2
ϕξ are linearly independent

if the 1-periodic function is negative and bounded and β , 1. Due to their exponential
form these derivatives are linearly independent if the following functions (note that
we only have an explicit formula when u1 > u2 ≥ 0) are linearly independent in
u1 > u2 ≥ 0:

∂θ1
‖u1gθ +u2gθ(·+ 1)‖ββ = −Kθ,1uβ2 −Kθ,2(u1 +u2)β−1u2 −Kθ,3(u1 +u2 exp(−θ1))β ,

∂θ2
‖u1gθ +u2gθ(·+ 1)‖ββ = Kθ,4u

β
2 +Kθ,5(u1 +u2 exp(−θ1))β ,

where the constant Kθ,1, . . . ,Kθ,5 are strictly positive, indeed the only constants which
are not in general positive are:

Kθ,5 = −
∫ ∞

0
βθ2f (x)exp(−β(θ1x+θ2f (x)))dx,

Kθ,4 = −
∫ 1

0
f (x)exp(−θ1x −θ2f (x))dx,

but they are by our assumption f < 0. The main observation needed is that these
functions are of different order in u1 when u2 , 0 and that their constants are of
opposite sign. Indeed, for a,b ∈R we have that

0 =
(
a∂θ1

‖u1gθ +u2gθ(·+ 1)‖ββ + b∂θ1
‖u1gθ +u2gθ(·+ 1)‖ββ

) /
u
β
1

−−−−−−→
u1→∞

−aKθ,3 + bKθ,5.
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The constants aKθ,3 and bKθ,5 must then be same and we have the following major
simplification:

0 = a∂θ1
‖u1gθ +u2gθ(·+ 1)‖ββ + b∂θ1

‖u1gθ +u2gθ(·+ 1)‖ββ
= −(aKθ,1 − bKθ,4)uβ2 − aKθ,2(u1 +u2)β−1u2.

If β > 1 then this is clearly unbounded in u1, hence a = 0, and therefore b = 0 as
well since Kθ,4 > 0. If β < 1 then differentiating with respect to u1 yields the simple
equation:

0 = aKθ,2(u1 +u2)β−2u2 for all u1 > u2 ≥ 0,

which yields a = 0 and therefore b = 0 since again Kθ,4 > 0.

4.5 Proof of Statements in Example 2.7

Recall the moving average kernel from (2.4). First, we show that the one-dimensional
characteristic function is not enough to idenitify θ = (θ1,θ2). Indeed, we see that for
two parameters θ, θ̃ ∈ (0,∞)2 equality of the one-dimensional characteristic functions
gives

θ
β
1 Γ (β + 1)

(βθ2)β+1 =
∫ ∞

0
(θ1sexp(−θ2s))

β ds

=
∫ ∞

0
(θ̃1sexp(−θ̃2s))

β ds =
θ̃
β
1 Γ (β + 1)

(βθ̃2)β+1
.

(4.8)

We claim that the two-dimensional characteristic function is enough to identity θ.
For this we recall the covariation between X1 and X0, cf. [22, Section 2.7], which is
uniquely determined by the distribution of (X1,X0) and hence by its joint character-
istic function. If θ denotes the underlying parameter for the moving average X, then
the covariation is, cf. [22, Proposition 3.5.2],

[X1,X0]β =
∫
R

gθ(s+ 1)gθ(s)β−1 ds = θβ1

∫ ∞
0

(s+ 1)e−θ2(s+1)sβ−1e−(β−1)θ2sds

= θβ1 e−θ2

[∫ ∞
0
sβe−βθ2sds+

∫ ∞
0
sβ−1e−βθ2sds

]
= θβ1 e−θ2

[
Γ (β + 1)
(βθ2)β+1 +

Γ (β)
(βθ2)β

]
=
θ
β
1 Γ (β + 1)

(βθ2)β+1 e−θ2(1 +θ2),

(4.9)

where we used the defining property: βΓ (β) = Γ (β + 1). Hence if θ and θ̃ leads to the
same distribution of (X1,X0), then combining the identities (4.8) and (4.9) yields

(1 +θ2)e−θ2 = (1 + θ̃2)e−θ̃2 .

It is straightforward to check that the function x 7→ (1 + x)e−x is strictly decreasing
on (0,∞), and therefore injective, which proves that θ2 = θ̃2 and therefore θ1 = θ̃1 as
well, cf. (4.8).
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4.6 Proof of Statements in Example 2.8

We consider a CARMA(2,1) model of the form

Xt =
∫ t

−∞
b> exp(A(t − s))edLs, t ∈R,

where b = (b0,1)>, e = (0,1)>, L is a symmetric β-stable Lévy process with β ∈ (1,2),
and

A =
(

0 1
−λ2 2λ

)
with λ < 0. We further assume that θ = b0 + λ > 0. Recall the definition of the
incomplete gamma function:

Γ (β;x) =
∫ ∞
x
yβ−1 exp(−y)dy, β,x > 0.

The following identity is due to partial integration: Γ (β + 1;x) = βΓ (β;x) + xβ exp(−x),
or in other words

Γ (β;x) = β−1(Γ (β + 1;x)− xβ exp(−x)). (4.10)

The one-dimensional characteristic function of X1 uniquely determines the term∫
R

|gξ (x)|β dx =
∫ ∞

0
(1 +θx)β exp(λβx)dx =

(
θ exp(−λθ−1)

)β ∫ ∞
θ−1

yβ exp(λβy)dy

= − 1
λβ

(
−θ exp(−λθ−1)

λβ

)β
Γ (β + 1;−λβθ−1)C c.

Now, we compute the covariation [X1,X0]β :

[X1,X0]β =
∫
R

gξ (x+ 1)gξ (x)β−1 dx

=
∫ ∞

0
(1 +θ(x+ 1))exp(λ(x+ 1))(1 +θx)β−1 exp(λ(β − 1)x)dx

= − 1
λβ

(
−θ exp(−λθ−1)

λβ

)β
exp(λ)

(
Γ (β + 1;−λβθ−1)−λβΓ (β;−λβθ−1)

)
= exp(λ)(c(1−λ)− β−1),

where we used the formula (4.10). Since c is uniquely determined, the quantity
[X1,X0]β identifies the parameter λ (note that −cλ− β−1 > 0, and in particular this
term is never equal to 0).
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