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Abstract

Locating an obnoxious (undesirable) facility is often modeled by the maximin
or maxisum problem. But the obnoxious facility is often placed unrealisticly far
away from the demand points (nodes), resulting in prohibitively high transporta-
tion cost/time. One solution is to model the problem as a semi-obnoxious location
problem.

Here we model the problem as a bicriterion problem, not in advance determining
the importance of the obnoxious objective compared to the cost/time objective.

We consider this model for both the planar and the network case. The two problems
are solved by an approximation algorithm, and the models are brie
y compared on a
real-life example.

Keywords: Multiple criteria analysis, Semi-obnoxious, Location, Planar, Networks.

1 Introduction

In the two traditional Single Facility Location Problems (SFLP), a new facility is located

(placed) so as to minimize transportation costs (minisum), or as to minimize the distance

to the farthest customer (minimax). In the minisum problem we sum all the distances

between the new facility and the customers, multiplied by a weight depending on the

individual customer. In the minimax problem we minimize the largest weighted distance.

The minisum model can be relevant when locating a warehouse and the minimax model

can be used to locate a �re station. These models are presented in Love et al. [14] and

Francis et al. [8], both including many references. The obnoxious location problem is a

more recent class of problems, where the two most common are the maxisum and maximin
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models. When locating an obnoxious (undesirable) facility the goal is to place it as far

from the existing facilities (demand points, customers) as possible. See Erkut and Neuman

[6] for a review.

There is little literature combining the desirable and the obnoxious facility location

models. In this paper we model the combined problem as a Bicriterion Semi-obnoxious

Location Problem (BSLP). One objective function is obnoxious and one is desirable. We

also consider both the network case and the planar case of the problem. In biobjective

optimization our goal is to �nd the set of eÆcient solutions. These solutions are such

that there does not exist another solution that has a better value in one objective without

having a worse value in the other objective. The concept of eÆcient solutions is the same

as Pareto optimal solutions. In the network case, where the demand points are nodes in a

network and we try to locate the new facility in a node or on an edge, we have found no

references, but ongoing research is presented in Hamacher et al. [11]. In the planar case,

where the feasible locations are in R2, we have found only three references, namely two

papers by Brimberg and Juel, [1] and [2], and a paper by Carrizosa et al. [4].

In the bicriterion model, developed in the �rst paper by Brimberg and Juel [1], the

�rst objective is the minisum objective and the second objective (the obnoxious criterion)

is the minisum objective, where the Euclidean distance is raised to a negative power. It is

proposed to solve the problem (�nding the eÆcient solutions) in two steps. First a convex

combination with parameter � 2 [0; 1] of the two objectives (weighting method, Steuer

[16]) is formed. The resulting objective is neither convex nor concave. By varying � a

trajectory of eÆcient solutions may be determined. In the paper an algorithm based on

this is outlined. A numerical example is presented.

In the second paper by Brimberg and Juel [2] a di�erent bicriterion model is considered.

In this model the �rst objective is again the minisum objective, but the second objective

(obnoxious) is now the maximin objective. They present two di�erent solution methods

for this model, but only one of them is guaranteed to �nd the complete set of eÆcient

solutions.

In the bicriterion model developed in the third paper by Carrizosa et al. [4], the �rst

objective (the obnoxious criterion) is modeled as the maxisum, and the second objective

is modeled as the minisum problem. A solution procedure based on the BSSS (Big Square

Small Square) approach is suggested. The procedure �nds an approximation of the set of

eÆcient solutions but no computational experience is reported.

The theory of the planar and network models is quite di�erent, and the two models

are not often compared, even though they try to describe the same real-life problem. We
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apply the two models on a real-life example in Section 4.

Next we present the basic model for the Bicriterion Semi-obnoxious Location Problem

(BSLP). We assume that there are n existing facilities (demand points). In the planar

case they are denoted aj = (aj1; aj2); j = 1; : : : ; n. In the network case they are denoted

v1; v2; : : : ; vn. We want to place a new facility at location x in order to minimize both the

(transportation) costs and the obnoxiousness. Let S denote the set of feasible solutions,

f(x) the obnoxious objective function and g(x) the cost objective function. The general

model looks as follows:

min f(x)
min g(x)
s.t.

x 2 S

(1)

We assume f depends negatively on the distance function and g depends positively on the

distance function. This means, when we increase the distance between the new facility

and an existing facility, this will have a decreasing e�ect on f and an increasing e�ect on

g, e.g. less obnoxiousness but higher transportation costs.

Since it is very unlikely that there exists a location x which is an optimal solution for

both objectives, we have to settle with something less, namely eÆcient (Pareto Optimal)

solutions. For a reference in multicriteria analysis see Steuer [16].

De�nition 1 A feasible solution x to (1) is eÆcient i� there does not exist another fea-

sible solution �x to (1) such that f(�x) � f(x); g(�x) � g(x) and (f(�x); g(�x)) 6= (f(x); g(x)).

Otherwise x is ineÆcient.

The set of eÆcient solutions are denoted XPar. EÆciency is de�ned in the decision

space. There is a natural counterpart in the criterion space. The feasible region in criterion

space is denoted by Z and is given by Z = fz(x) 2 R2jz(x) = (f(x); g(x)); x is feasible in (1)g.

De�nition 2 z(x) 2 Z is a nondominated criterion vector i� x is an eÆcient solution

to (1). Otherwise z(x) is a dominated criterion vector.

We note that several eÆcient solutions may correspond to the same nondominated

criterion vector. The set of nondominated criterion vectors is denoted ZPar, where ZPar =

z(XPar).

As mentioned we consider two cases of the problem. The planar case, denoted BSPLP,

where the feasible solutions form a region in the plane, and the network case, denoted

BSNLP, where the set of demand points are vertices in a network. For the BSNLP we
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Position Meaning Usage (Examples)

1 number of new facilities

2 type of problem
P planar location problem
D discrete location problem
G network location problem

3 special assumptions and
restrictions

wm = 1 all weights are equal
R a forbidden region

4 type of distance function

l1 Manhattan metric
(lp)�b lp norm to negative power
d(V;V) node to node distance
d(V; G) node to point distance

5 type of objective function

P
Median problemP

obnox Anti-Median problem
max Center problem

maxobnox Anti-Center problem

Table 1: Classi�cation scheme for location problems.

allow solutions to be both the nodes and the points on the edges. This is often referred

to as absolute location (on networks).

The BSPLP is solved using the Big Square Small Square (BSSS) method described by

Hansen et al. [12], and the idea of this method has been applied to solve the BSNLP as

well. The method is described in Section 2.1 for the planar case and in Section 3.1 for the

network case.

Below we introduce a classi�cation scheme for location problems, which should help

to get an overview over the manifold area of location problems. We use a scheme which is

analogous to the one introduced successfully in scheduling theory. The presented scheme

for location problems was developed in Hamacher and Nickel [10] and Hamacher et al. [9].

We have the following �ve position classi�cation

pos1=pos2=pos3=pos4=pos5 ;

where the meaning of each position is explained in Table 1.

If we do not make any special assumptions in a position, we indicate this by a �.

The remaining part of the paper is organized as follows. In Section 2 we describe the

BSPLP and the solution approximation algorithm, and in Section 3 the BSNLP problem

and its solution method is described. In Section 4 an application of the two models is

presented. Section 5 contains the conclusions.
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2 The planar case : BSPLP

The Bicriterion Semi-obnoxious Planar Location Problem (BSPLP) is formulated in the

following way. There are n facilities (demand points) located at points a1; a2; : : : an, and

the objective is to locate a semi-obnoxious facility at x so as to minimize a weighted sum

of the distances raised to a negative power, and to minimize the weighted sum of the

distances between the existing facilities and the new facility. The �rst criterion may be

thought of as a pollution e�ect and the second criterion as transportation costs.

min f(x) =
P

j w1
j (k x� aj kp)

�b; b > 0

min g(x) =
P

j w2
j k x� aj kp

s.t.
x 2 S

(2)

where k x� aj kp= (jx1 � aj1j
p + jx2 � aj2j

p)1=p is the usual lp norm, p � 1.

This problem is classi�ed as 1/P/�/((lp)�b; lp)/(
P

obnox;
P
)Par using the classi�cation

scheme from Table 1.

We prefer this obnoxious function, because it minimizes the overall obnoxiousness

when far from a demand-point, but re
ects the local e�ects when close to a demand-

point. Corresponding to this objective we use the weights w1. The second objective is the

standard formulation for locating an attractive facility by minimizing the weighted sum

of the distances (called minisum or median). Please note that we use weights w2 with this

objective, so that the two objectives may be weighted di�erently with respect to each of

the n demand points. We assume that all weights are nonnegative.

If we are modeling where to place a new airport (the example in Section 4), the �rst

weight w1
j may depend on the population at demand point j (e.g. city), and the second

weight w2
j may be the expected number of passengers on a yearly basis from demand point

j. S is the set of feasible solutions, often assumed to be a compact set. For references on

location theory see Love et al. [14].

An obvious question for this model would be, if all feasible points are eÆcient? The

answer is that there does indeed exist examples where all feasible points are eÆcient, but

that will probably not be the case in a realistic set-up.

If the feasible region is a compact set, and we only have a single demand point with

strictly positive weights for both objectives, the whole feasible region, except the demand

point, will be eÆcient. The demand point will optimize the minisum objective with value

zero, and the obnoxious objective will decrease as we move away from the demand point.

Note that the obnoxious criterion is not de�ned at the demand points. As indicated by
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this simple example, situations may occur where the eÆcient region is not a curve. This

may be a serious problem for the trajectory method used in Brimberg and Juel [1].

2.1 The idea of the Big Square Small Square (BSSS) algorithm

In this paper the idea behind the BSSS method will be applied to the BSPLP (and also

to the BSNLP). Therefore we brie
y review the method below.

Suppose that the feasible region S is contained in a disjoint union of squares of equal

size. We put these squares into a list named ES. Next each of these squares are considered

separately. Consider one of the squares, say Qi. We divide Qi into four sub-squares

Qi1; Qi12; Qi3 and Qi4 of equal size. For each of these sub-squares, say Qi1, lower bounds

on the objective function values (f(x); g(x)); x 2 Qi1, are found. By comparing this lower

bound with a sample set of objective function values (stored in a list called EFV) it may be

determined that square Qi1 contains only ineÆcient points (this is done by the Dominance

Check Routine DCR(Qi1)). If this is the case square Qi1 is called an ineÆcient square

and may be deleted from further consideration. The squares that cannot be classi�ed as

ineÆcient are put into the ES list and will later be divided further into four new sub-

squares. The process continues until the side-lengths of all the remaining squares (those

that are not classi�ed as ineÆcient) in ES are below some pre-speci�ed value �. The idea

is illustrated in Figure 1.

A few comments on the procedure are appropriate. The sample list of objective func-

tion values kept in (the sorted) list EFV (EÆcient Function Value) are used to dominate

sub-squares with poor objective function value bounds. Therefore the values should in a

way represent the objectives' behaviour over the feasible region. This is done by calculat-

ing objective function values in the centers of all the squares, and then deleting pairs of

objective function values being dominated by other objective function values in the EFV

list. It is also essential that we use good lower bounds for the objective function values

over the squares. If the bounds are poor, the convergence of the algorithm may be slow,

because we will end up with a large number of squares. Fortunately, we have found good

bounds that work under mild conditions. These bounds are explained in detail in Sections

2.3 and 2.4. Finally, we need to check if a square is contained in the feasible region, is

overlapping the region or is outside the region. For a discussion of this issue we refer to

the paper by Hansen et al. [12] and Section 2.2.

The output from the algorithm is an ordered set of \eÆcient" squares. These squares

can be associated with a certain objective function value, to illustrate the trade-o� between

the two objectives. This can be done by giving the squares a color corresponding to the
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Figure 1: BSSS idea

value of the �rst objective. This will illustrate how one objective improves as the other gets

worse, and visualize the objective function values being favoured in the di�erent eÆcient

regions.

2.2 Square approximation of the feasible region S

In this section we will use a slightly di�erent approach than the one suggested by Hansen

et al. [12] and described previously in section 2.1.

We assume that the feasible set S is a bounded set (usually it is assumed compact).

We start with an approximation of S consisting of equal size squares. This way we can

skip the feasibility tests, and for the accuracy of a realistic model it may not be a real loss

(but of course, we could approximate S more closely by adding linear constraints).
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2.3 Calculating lower bounds

In order to calculate lower bounds on the two objectives, we use an approximation of the

weighted distances. This distance approximation is illustrated in Figure 2 for the l2 norm.

The lower bound for the distance is found in Hansen et al. [12], and the upper bound for

the distance is an obvious extension of the same idea, found in Hansen et al. [13].

The plane is divided into 9 regions, obtained by extending the four sides of Qi. The

regions are the square Qi, the four side regions, and the four corner regions. The square

Qi will be in the center.

�

�
�

� �

a1 = a1

a2

a2

a3

a3

A: Lower bound

�

�

�

�

�

�

a1

a1

a2

a2
a3

a3

B: Upper bound

Figure 2: Lower and upper bounds on the distances.

Now let aj be a particular location. With this location we associate a closest point

aj 2 Qi and a furthest point aj 2 Qi, see Figure 2. We may then calculate a lower bound

on the values of f and g in Qi as follows:

f(Qi) =
P

j w1
j (k aj � aj kp)

�b Case B in Figure 2

g(Qi) =
P

j w2
j k aj � aj kp Case A in Figure 2

Clearly, (f(Qi); g(Qi) � (minx2Qi
f(x);miny2Qi

g(y)). Therefore we can use the bound

z(Qi) = (f(Qi); g(Qi)) for eÆciency checking in the algorithm. If we at some point have

found a sample value x 2 S, such that (f(x); g(x)) � (f(Qi); g(Qi)), then, clearly all

points in Qi are dominated by x. It follows that square Qi contains only ineÆcient points.

Therefore it is not necessary to consider Qi anymore. This bound approach can be used

for any p 2 [1;1]. Please note that the bounds obviously converge when the squares get

smaller.
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2.4 Exact lower bound

Since the minisum objective is a nice convex function, it is possible to calculate an exact

lower bound for the squares in most situations. The level sets of a convex function are

convex sets, and the gradient can therefore be used as follows.

For a square Qi with corners c1; c2; c3 and c4, �nd the corner ch with the minimum

function value g(ch). If the direction of steepest descent \points away" from the square

Qi, then the lower bound g(Qi) is exactly g(ch). By \pointing away" we mean that the

direction of steepest descent has an angle of at least 90 degrees with the sides of Qi, see

case A in Figure 3. If this angle is less than 90 degrees, the minimum value over Qi is

not in ch, but on the line segment between ch and the corner, the direction points out, see

case B in Figure 3. Finally, if the direction points into Qi, the minimum value is not in

ch but inside Qi.

Case A Case B

ci ci

Figure 3: Exact lower bound, depending on directional derivative

From the above, an exact lower bound can easily be computed, if the directional

derivative points away from the square. We only need to compute four function values

and the directional derivative in the minimum value corner. Case A in �gure 3 will occur

in most evaluations, but not in all.

The directional derivative g0(x0; y) of g at x0 2 S in the direction y is de�ned as follows:

g0(x0; y) = r g(x0) � y

where rg(x0) is the gradient of g evaluated in x0.

If we consider the l2 norm, the gradient looks as follows:

r g(x0) =

0
@X

j

w2
j (x01 � aj1)

k x0 � aj k
;
X
j

w2
j (x02 � aj2)

k x0 � aj k

1
A

9



This reveals the well-known problem; if x0 is at a demand point, the gradient is unde�ned

because of the numerator being zero. In this case we also have to use the lower bound of

Section 2.3. Alternatively we could apply the hyperbolic approximation (see Love et al.

[14]).

A computation of the gradient of the general lp norm, for p 2]1;1[ is given below

along with the gradient for the l1 and l1 norm. All these expressions are well-de�ned,

and can be easily computed. sign(x) is the sign function, which is one if x is positive, and

minus one if x is negative. We therefore conclude that an exact lower bound exists for the

lp norm 8p 2 [1;1].

r g(x0) =

0
@X

j

sign(x01 � aj1)w
2
j jx01 � aj1j

p�1

(jx01 � aj1jp + jx02 � aj2jp)
p�1
p

;

X
j

sign(x02 � aj2)w
2
j jx02 � aj2j

p�1

(jx01 � aj1jp + jx02 � aj2jp)
p�1
p

1
A 1 < p <1

r g(x0) =

0
@X

j

sign(x01 � aj1)w
2
j ;
X
j

sign(x02 � aj2)w
2
j

1
A p = 1

Let us remind the reader of the de�nition of the l1 norm.

l1(x0; aj) = maxfjx01 � aj1j; jx02 � aj2jg

This maximum is attained in either the horizontal or the vertical direction, so we may refer

to the maximum being taken in the �rst or the second coordinate. The partial derivative

of the l1 norm is the following:

@l1(x0; aj)

@x0i
=

�
0 Maximum not in coordinate i

sign(x0i � aji) Maximum in coordinate i

We now see that the partial derivative depends on whether the maximum is taken in the

�rst or the second coordinate. To get a compact form of the gradient, lets de�ne two index

sets as follows. N is the set of the indexes of the n demand points, that is N = f1; 2; : : : ng.

Now de�ne A as the set of indices where the maximum is in the �rst coordinate. We can

now write the gradient for the l1 norm.

r g(x0) =

0
@X

j2A

sign(x01 � aj1)w
2
j ;
X

j2NnA

sign(x02 � aj2)w
2
j

1
A

This gradient is easily computed by simple norm evaluations.

The only assumption needed for the exact lower bound to be valid, is that the level

sets are convex.
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2.5 BSSS algorithm for the BSPLP

Notation:
Qi Square number i
z(Qi) = (f(Qi); g(Qi)) Lower bounds for Qi.

ES List of EÆcient Squares. Note that this is only a name for
squares that have not been proven ineÆcient.

ECL EÆcient Candidate List (of squares of equal size). It consists
of the four sub squares of all the squares in ES.

EFV List of EÆcient Function Values. Function values are calculated
at di�erent points in the feasible region, and the nondominated ones
(at this time in the routine) are in this list.

DCR(Qi) Dominance Check Routine for Qi (with EFV). Is brie
y explained
in Section 2.1.

The idea for the DCR routine was found in [3], and earlier used by the authors in [15].

Algorithm 2.5:

1. Initialize

Find an equal size square approximation Q1; Q2; : : : ; QN of S

Put Qi in ES 8i = 1; 2; : : : ; N .

Let L be the length of a side of Q1

De�ne the tolerance level �

2. Creating New Squares

For each Qi 2 ES do

Create 4 sub-squares Qj ; j = 1; 2; 3; 4, put the Qj's in ECL and delete Qi

from ES

Set L = L
2

3. EÆciency Update

Update EFV by calculating some function values from the Qj's

For each Qj 2 ECL do

Calculate z(Qj) = (f(Qj); g(Qj)) using exact lower bounds when possible

Make DCR(Qj) with EFV

If Qj is eÆcient compared with EFV then add Qj to ES

4. Termination Test
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If L < � Terminate with ES as the solution list

Else go to Step 2

3 The network case : BSNLP

In this section we adapt the BSSS method to the network case. However, instead of

dividing big squares into smaller, we divide edges into sub-edges. This will be explained

in details in Section 3.1. Assume we have an undirected connected network G(V; E) with

node set V = fv1; v2; : : : ; vng where jVj = n nodes, and a �nite set of edges (arcs) E =

f(vi; vj); (vk; vl); : : : ; (vp; vq)g with jEj = m. Edges may also be denoted by e. The length

of edge (vi; vj) is denoted by lij . Each node vj carries two weights (w1
j ; w

2
j ), one for the

obnoxious criterion and one for the desirable criterion. The problem is to �nd the set of

eÆcient points x on G called XPar. A point x can be located both at a node or on an

edge.

The model is a combination of two well-known single criterion models, namely the

maxisum and the minisum models. The two objectives are obviously negatively correlated

and are often referred to as the weighted anti-median and the weighted median of a

network. The Bicriterion Semi-obnoxious Network Location Problem, BSNLP, is then:

max f(x) =
P

j w1
j d(x; vj)

min g(x) =
P

j w2
j d(x; vj)

s.t.
x 2 G(V; E)

(3)

where d(x; vj) is the shortest distance from point x to node vj .

This problem is classi�ed by 1/G/�/d(V; G)/(
P

obnox;
P
)Par using the scheme pre-

sented in Table 1. The solution procedure is described shortly in Section 3.1 and the

algorithm is presented in Section 3.4. An exact algorithm for this simple model is pre-

sented in Hamacher, Nickel and Skriver [11]. The approximation algorithm, however, is

a very general and intuitive approach and can be used for more complicated objective

functions.

Let us consider the two objectives separately. In Church and Gar�nkel [5] the maxisum

has been developed. They introduce the concept of bottleneck points, and refer to nodes

with degree one as dangling nodes (often called pendant nodes). A bottleneck-point B

is a point that has two di�erent shortest paths to a particular node vj . They show that

among the optimal solutions a point x exists that is either a bottleneck-point or a pendant

node. Furthermore they describe (easy) procedures for obtaining the bottleneck-points.
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This is true because the weighted-sum objective is a piecewise linear concave function on

the edges, with break-points only in the bottleneck-points. Note that the optimum need

not be unique, it may be a sub-edge between two (or more) bottleneck-points.

It is well-known that an optimal solution to the minisum problem is found in a node.

To �nd an optimal node we �rst �nd the distance matrix D = fdijg of shortest distances

dij = d(vi; vj) between all pairs of nodes vi and vj. This matrix can be calculated in O(n3)

running time using Floyd's algorithm or by applying Dijkstra's algorithm to all n nodes.

For details on these graph procedures see Thulasiraman and Swamy [17]. Then the rows

of the distance matrix D are multiplied by the corresponding weights. The row with the

smallest weighted sum corresponds to the minisum optimum node. For further details on

the minisum problem see Evans and Minieka [7] or Francis, McGinnis and White [8].

3.1 The Edge Dividing algorithm

The idea of the Edge Dividing (ED) algorithm is similar to the idea behind the BSSS

algorithm. First we divide each edge into two sub-edges. Then bounds on the objective

function values on each sub-edge are calculated. Furthermore, a sample set of objective

function values are calculated. If the bounds calculated for a sub-edge are dominated by

one (or more) of the sample set objective function values then the sub-edge is dominated

and may be deleted from further consideration.

The bounds are derived in detail in Sections 3.2 and 3.3. The sample set of objective

function values are calculated in the middle (center) of the sub-edges. Nondominated

criterion values are kept in the EFV list.

Please note that only an approximation of the eÆcient set XPar is found.

The output from the algorithm is an ordered set of \eÆcient" sub-edges. This general

procedure, however, has a few disadvantages. The eÆcient set (or part of it) may be an

edge-segment. This sub-edge will obviously remain in the ES list, but the sub-edge will

be divided into sub-edges again and again. This reveals that the ES set will probably

almost double in size, when we half the � value. This can in fact be used as an alternative

stopping criterion.

3.2 Calculating upper and lower bounds

We need both upper and lower bounds on the distance d(x; vj), where x can be any point

on the edge (or sub-edge) ei. We refer to the lower bound of this distance by d(ei; vj) and

to the upper bound by d(ei; vj).
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The upper-bound may be calculated as follows:

d(ei; vj) = minfd(vj ; vh) + d(vh; xh); d(vj ; vk) + d(vk; xk)g+ d(xh; xk)

and the lower-bound may be calculated as follows:

d(ei; vj) = minfd(vj ; vh) + d(vh; xh); d(vj ; vk) + d(vk; xk)g

These two bounds can be easily calculated as illustrated in Figure 4, whenever the

distance matrix D is available. The bounds are similar to those found in Hansen et al.

[13] for a square.

vj

vh

vk

xh

xkei

Figure 4: Calculating distance bounds.

Using these bounds we can calculate upper and lower bounds on the objective function

values as

f(ei) =
X
j

w1
j d(ei; vj)

g(ei) =
X
j

w2
j d(ei; vj)

3.3 Exact bounds

In this section we derive some exact bounds. First we need to de�ne the derivative of the

distance function d(x; vk) on the edge (vi; vj).

@+

@x(vi;vj)
d(x; vk) =

�
1 if d(x; vk) is increasing from vi to vj

�1 if d(x; vk) is decreasing from vi to vj

With the notation @+

@x(vi;vj)
d(x; vk) we simply mean that we look in the direction from vi

towards vj, and we want to know if the distance increases or decreases. The \+" indicates

right derivative, so even in a bottleneck-point this derivative is well-de�ned.
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If we de�ne I as the set of node-indexes where the distance function increases, then

V n I is the set of node-indexes where the distance function decreases corresponding to

the point x(vi;vj). We can now de�ne the derivative of the two criterions:

@+

@x(vi;vj)
f(x) =

X
k2I

w1
k �

X
k2VnI

w1
k and

@+

@x(vi;vj)
g(x) =

X
k2I

w2
k �

X
k2VnI

w2
k

The sums
P

j w1
j d(x; vj) and

P
j w2

j d(x; vj) are concave functions on an edge. This is

the reason why the maxisum optimum is located in a bottleneck-point and the minisum

optimum is located in a node. If we are looking at the sub-edge from xh to xk as illustrated

in Figure 4, and the derivatives at the endpoints have the same sign, then an exact upper

bound is simply the largest endpoint value. That is, if

sign

�
@+

@x(vh;vk)
f(xh)

�
= sign

�
@+

@x(vh;vk)
f(xk)

�

then

f(ei) = maxff(xh); f(xk)g (4)

For the minisum criterion it is even easier, since the minimum is always in one of the

(sub-edge) endpoints. So we always have an exact lower bound as follows.

g(ei) = minfg(xh); g(xk)g (5)

3.4 ED algorithm for the BSNLP

Notation:
ei Sub-edge number i

z(ei) = (f(ei); g(ei)) Upper and lower bounds for ei.

ES List of EÆcient Sub-edge. Note that this is only a name for
sub-edges that have not been proven ineÆcient.

ECL EÆcient Candidate List (of sub-edges). It consists
of the two sub-edges of all the sub-edges in ES.

EFV List of EÆcient Function Values. Function values are calculated
at di�erent points on the network, and the nondominated ones
(at this time in the routine) are in this list.

DCR(ei) Dominance Check Routine for ei (with EFV).
L Length of a longest edge in ES.

Algorithm 3.4:

1. Initialize

Find the shortest path matrix D.
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Put all edges e1; e2; : : : ; em in ECL.

Let L be the length of a longest edge in ECL.

De�ne the tolerance level �.

Calculate criterion values in all nodes to make an initial EFV list.

2. EÆciency Update

For each ei 2 ECL do

Calculate z(ei) = (f(ei); g(ei)) using (5) and the exact bound (4) is possible

Make DCR(ei) with EFV

If ei is EÆcient compared with EFV then add ei to ES

Update L (as a longest sub-edge in ES)

3. Termination Test

If L < � Terminate with ES as the solution list

4. Creating New Sub-edges

For each ei 2 ES do

Split ei into two sub-edges ei1 and ei2 of equal length.

Add ei1 and ei2 to ECL and delete ei from ES

Update EFV by calculating criterion values on the middle of all sub-edges ej

in ECL

Go to Step 2

4 An airport example

To illustrate the usefulness of the two models we present an application. Currently, there

is a debate in Denmark about where to locate a new international airport in the mainland

Jutland to replace an existing one. The existing airport is located at a small city called

Tirstrup approximately 45 km. to the North-East of �Arhus, the largest city in Jutland

(with about 215.000 inhabitants). The existing airport is located in an area where not

many people are living and where not many companies are based. Also, the infrastructure

in this area is not too good. For example it takes about 1 hour for people to go from �Arhus

to Tirstrup. Many companies (and people) think that this is too much time to spend on

transportation to the airport.
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It is believed that a new international airport located not too far away from �Arhus

would be attractive to a lot of companies (and people). However, customers (compa-

nies/people) living nearby �Arhus is more likely to use the new airport than customers

living far away from �Arhus. Therefore, for the planar case, we will only consider a region

of potential locations with x-coordinates between 60 and 140, and y-coordinates between

100 and 180, see Figure 5. Furthermore, we have divided Jutland into three zones, namely

a 100 % zone, a 50 % zone, and a 20 % zone, see Figure 5. The weighting zones should

re
ect the fact that customers far from the chosen region will use the new airport less

frequently than customers close by or within this region. These three weighting zones

will be used when de�ning the transportation objectives later in this section. We have

chosen 42 cities to represent the customers in Jutland, ranging in population from 2574

(Hanstholm) to 215587 (�Arhus) inhabitants as demand points. Distance is measured in

kilometers, and the �-value used is 0.15 km (150 meters) for both the planar case and the

network case. Origo is placed on the German island of Sylt.

Next, let us describe the parameters for the two objective functions. For the planar

model we have used the Euclidean distance and a b-value of two. For the network model,

the distance is always the shortest distance in the network. The edge lengths are road

distances collected from an intercity distance table. All input data is available from the

corresponding author.

For the obnoxious criterion we have used weights w1
j =\population in city j". This is

a simple form of letting the larger cities count more than the smaller cities.

For the transportation cost objective we have used weights w2
j =\population in city

j multiplied by the weight of the zone in which the city is located". This means that

cities nearby �Arhus count much more than cities far away from �Arhus re
ecting the fact

that customers far away from �Arhus is likely to use the new airport less frequently than

customers living nearby �Arhus.

Whether the city population is an appropriate measure of passengers is not an issue

here. The data for the example is presented in Table 2. The three dummy-nodes in Table

2 are introduced only to make the road-network more realistic, and are located right to

the West of �Arhus.

First we present the results of the planar model. The norm to the negative power

function is illustrated in Figure 6, covering the region of [60; 140] � [100; 180]. The peaks

indicate the cities, where the function values goes to in�nity. As can be seen from Figure

6 it may be hard to �nd an exact lower bound for this function.

The minisum global optimum is attained in (110; 145) with a value of 3; 27 � 107. The

17



100 %

50 %

20 %

50

50 100

100

150

150

200

250

Figure 5: Jutland divided into three weighting-zones. Coordinates are in kilometers.
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City (j) aj1 aj2 w1
j w2

j

Esbjerg 7.17 69.31 73422 14684.4
T�nder 34.416 8.126 8161 1632.2
Ribe 28.202 52.102 8046 1609.2
Kolding 72.178 68.832 53012 26506
Vejle 76.002 93.21 47839 23919.5
Horsens 95.122 110.418 48410 48410
Skanderborg 99.902 130.494 12067 12067
�Arhus 118.066 142.922 215587 215587
Randers 106.116 177.338 56123 56123
Viborg 67.876 175.904 31872 31872
Silkeborg 76.958 146.746 36762 36762
Ikast 52.102 141.01 14014 7007
Herning 40.63 141.966 29231 14615.5
Holstebro 18.642 166.344 30770 15385
Struer 17.208 181.206 11272 5636
Skive 44.454 188.332 20557 10278.5
Hadsten 108.028 162.042 6616 6616
Gren�a 158.696 172.08 14441 14441
Hobro 91.298 196.936 10704 5352
Aars 74.568 216.056 7066 3533
�Alborg 98.468 240.434 119157 59578.5
Fredericia 88.43 78.392 29376 14688
Haderslev 74.09 42.064 21106 4221.2
Aabenr�a 69.31 20.076 16218 3243.6
Vejen 52.58 66.442 8507 1701.4
Br�nderslev 99.902 267.202 11365 2273
Hj�rring 103.248 289.668 24889 4977.8
Frederikshavn 135.274 288.234 24768 4953.6
Bjerringbro 83.547 169.246 7201 7201
Varde 10.994 83.172 12478 2495.6
Grindsted 38.718 97.034 9497 1899.4
Skjern 11.95 119.978 6949 1389.8
Ringk�bing -4.302 135.274 9166 1833.2
Brande 50.668 119.022 6214 3107
Lemvig 0 185.464 7302 1460.4
Nyk�bing 33.46 212.71 9319 1863.8
Thisted 25.334 231.352 12609 2521.8
Hanstholm 19.12 249.516 2574 514.8
Fjerritslev 58.316 244.736 3332 666.4
Hirtshals 100.858 301.14 6949 1389.8
Skagen 136.708 315.958 10674 2134.8
Ebeltoft 146.746 144.834 4396 4396
Dummi North 113 152 0 0
Dummi West 109 144 0 0
Dummi South 109 137 0 0

Table 2: Locations aj = (aj1; aj2) and weights (w1
j ; w

2
j ) of 42 cities in Jutland.
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Figure 6: Surface-plot of the obnoxious objective-function.

20



Figure 7: Surface-plot of the minisum objective-function

minisum function is plotted in Figure 7.

The eÆcient region is illustrated on the map in Figure 8. For clarity, we have drawn

two minisum level curves. The inner level curve is minisum values 10 % above the global

minisum minimum (3; 6 � 107), and the outer level curve is 20 % above (3; 92 � 107).

Figure 8 reveals three eÆcient regions. The central region just West-North-West of

�Arhus containing the global minisum minimum, and with minisum-values within 10 %

of the minimum. The central region re
ects in which direction the obnoxious objective

decreases, namely North-West. This region has the highest obnoxious values, ranging

from 3400 (at the minisum optimum) to 675 in the North-Western part of the region.

The South-West region has minisum values from approximately 10 % to 25 % above the

minimum. This region has obnoxious values from 675 to 440. The last eÆcient region

is the North-East region with minisum values more the 25 % above the minimum. This

region has the lowest obnoxious values, below 440, simply because there are no major cities

in this part of the country as can be seen in Figure 5. As a matter of fact the existing

airport at Tirstrup is nearby this region.

Potential locations for a new airport should be found within these eÆcient regions.

Next we present the results of the network model. For this model only the resulting

network, with the eÆcient sub-edges, are presented, see Figure 9. Notice that we do not

restrict ourselves to a smaller region in this case. The minisum objective function has
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Figure 8: EÆcient regions for airport location
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its global minimum in the node representing the city of �Arhus. The maxisum objective

function has its global maximum on the edge between Skagen and Hirtshals to the North

of Jutland. Figure 9 reveals that the location of the new airport should be in an area

North-East of �Arhus (in fact nearby Tirstrup) or in the North-Eastern part of Jutland.

It is interesting to learn that the planar and the network location models does not

give the same answer to the problem of locating the new airport. If we just consider the

region of interest in the planar model, one of the three eÆcient regions are in the same

part of Jutland as the eÆcient region found in the network model. However, the planar

location model proposes two eÆcient regions which are not proposed by the network model.

Fortunately, the explanation to this is straightforward. The reason is simply that two

distinct obnoxious criteria are used. In the planar case we minimize a weighted sum of the

distances raised to a negative power whereas in the network model we maximize a weighted

sum of distances. It is interesting to see the impact of the maxisum objective function.

This is a global obnoxious function, which means that cities far from the new location

count as much as cities close by. This e�ect is probably not reasonable, and therefore a

maximin or norm to a negative power objective function may be more appropriate for the

obnoxious objective in the network case as well.

5 Concluding remarks

In this paper we have set up two bicriterion location models for locating one obnoxious

facility, namely one for the planar case and one for the network case. EÆcient (well-

working) solution algorithms based on the well-known BSSS algorithm has been proposed.

Both models are easily extended to multiple criteria. All that needs to be changed is the

merge operation, presently merging two dimensional sets.

Even though the planar and the network model may seem distinct in structure, they

are designed to solve the same real-life problem. Often a combination of the two models

would be preferable. For example, modeling air pollution such as noise makes most sense

in the planar model, whereas the network model would be the correct description of a

road network with distances or travel times as coeÆcients. One possible combination is

to embed the network on top of the plane, so that each point on the network corresponds

to a point in the plane, but not necessarily the other way around.

Another issue is the choice of obnoxious criterion functions. In the planar case we have

used the negative power function also used in Brimberg and Juel [1], and for the network

case we have used the maxisum function often used in the literature. They share the

common feature that they depend negatively on the distance between the new location
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Figure 9: Road-network of Jutland. Bold parts constitute the eÆcient set.
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and the existing location(s). Of course, many other functions may be used, and for more

complicated functions, the approximation approach described in this paper may be the

only applicable approach.

It may also be appropriate to have weights depending on distance. However, in most

exact models this will cause mathematical diÆculties. In the airport example presented

in Section 4, the number of yearly passengers from a city using the new airport most

probably depend negatively on the distance.

It should also be considered what kind of pull objective (cost function) is appropriate.

We have only considered the minisum. It should also be noted that for some objectives

an exact bound, or at least an improved bound, may be applied. This would be the case

for the maxisum objective in the planar case.

The data on hand may determine which model is the most appropriate, in a given

application.

The output of the models reveal the trade-o� between the two negatively correlated

criteria. We conclude that the two proposed models are good tools for obnoxious location

decisions.

Finally, we have illustrated the models on a real-life application.
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