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ON USING STOCHASTIC PROGRAMMING TO PLAN THE
MULTIPERIOD CAPACITY EXPANSION OF ONE CONNECTION
IN TELECOMMUNICATIONS

MORTEN RIIS AND KIM ALLAN ANDERSEN

ABSTRACT. We consider the problem of expanding the capacity of a single con-
nection in a telecommunications network with uncertain demand. The problem
can be formulated as a two-stage stochastic integer program. Using this formu-
lation the problem can be solved in two phases as proposed by Laguna [11]. We
show how the second phase which is a shortest path procedure can be made more
efficient by using a simple preprocessing rule. Next we discuss the alternative of
formulating the problem as a multi-stage stochastic integer program and give a re-
cursive solution procedure for this formulation as well. Strengths and weaknesses
of the two-stage versus the multi-stage formulations are discussed.

1. INTRODUCTION

Capacity expansion problems have been studied extensively in the literature. Ex-
amples taken from telecommunications include Balakrishnan et al. [1],[2], Bienstock
and Gunluk [3] and Chang and Gavish [7],[8], all of which consider the capacity
expansion problem for the entire network. In order to make such an approach prac-
ticable it is customary to make the simplifiyng assumption that the cost of expanding
the capacity of a connection is (piecewise) linear. This will generally not be the case,
though, since capacity is typically installed in lumps. Bienstock and Gunluk studies
the polyhedral structure of the problem when capacity is installed in multiples of
fixed batch sizes but they do not include a multiperiod formulation. Instead, we will
follow the approach taken by Saniee [17] and Laguna [11]. We consider the capacity
expansion problem of a single connection in a telecommunications network over a
given time horizon. We assume that we have a number of different technologies
available for installation in order to meet the demand in each time period. The
capacity supplied by one component of technology i (i = 1,...,I) is denoted by
¢; and the price of the component is p;. The problem is to decide the number of
components of each technology to install in each time period ¢ (t = 1,...,T) in order
to meet demand. Assuming that demand D, in each period is known, this problem
can be formulated as a multiconstraint knapsack problem:

T I
minZZthlpz‘l"it (1.1)

t=1 i=1
t 1

s.t. chix”‘ > D, Vt (1.2)
r=1 i=1
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where 7 is a discount factor and x;; is the number of components of technology i to
be installed in period ¢. This is the formulation proposed by Saniee [17] who also
gives an efficient solution procedure for the problem.

In real life, though, the assumption that demand in each period is known at the
time the decision is made will not be satisfied. Instead, the demand in period ¢
should be thought of as depending on the outcome of some random variable &;.
This means that the decision on capacity expansion cannot be based on actual
demand. The only information that is available is the partial knowledge of demand
conveyed through the distribution of the random vector £ = (&, ...,&r). (This may
be thought of as some kind of forecast of demand.) To be specific we let the random
vector & = (&1,...,&r) be defined on some probability space (Z,F, P). We shall
assume that & has finite support:

=={&,...,£%} (1.4)

This allows us to model uncertainty in terms of scenarios, a scenario s(&7) being a
sequence of outcomes of random demand:

s€) = (Du(g]),--, Dr(&h)  i=1,....8 (1.5)
with corresponding probabilities
m(s(€’) = P(&) j=1...,8 (1.6)

In most of the following we will suppress the dependency on the random vector &.
Thus we simply say that we have a finite set S of scenarios with probabilities 7 (s),
s € 8. Also, we will refer to the #’th coordinate of s, i.e. the demand in period ¢
under scenario s, simply as D;(s).

It is well known (see e.g. Birge and Loveaux [4]) that the expected value prob-
lem, obtained by replacing D;(&;) by its expected value in the above formulation,
may not produce very good solutions to the problem. In this article we will discuss
different ways of incorporating uncertainty in the problem formulation using sto-
chastic programming. Capacity expansion under uncertainty has been approached
by several authors under the more general framework of robust optimization. Ro-
bust optimization was introduced by Mulvey et al. [15] who give an example taken
from capacity expansion in power generation. Other examples include Malcolm and
Zenios [13] who also consider capacity expansion in power generation and Laguna
[11] who considers a problem similar to the one discussed in this article. Stochastic
programming has also been used as a modelling tool in telecommunications. Demp-
ster et al. [9] uses chance-constrained programming to solve the capacity expansion
problem subject to certain grade of service constraints. Sen et al. [18] study a
capacity expansion problem in which the expected number of unserved requests is
minimized subject to limitations on the total capacity expansion. Both of these
articles consider the capacity expansion problem for the entire network, but neither
include multi-period formulations nor do they describe costs by the appropriate step
function considered in this article.

In section 2 we formulate the problem as a two-stage stochastic integer program
with simple recourse and describe the solution procedure proposed by Laguna [11].
We also present a new preprocessing rule which is later demonstrated to decrease
computation time considerably, the effect being somewhat dependent on the input
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data. In section 3 we discuss the alternative of using a multi-stage formulation in-
stead of the two-stage formulation, and argue that this may be a more appropriate
way to incorporate uncertainty in the model. Usually multi-stage stochastic integer
programming problems are too hard to solve in practice. One of the only general
purpose algorithms for such problems is a heuristic using tabu search presented in
Lokketangen and Woodruff [12], but also the dual decomposition procedure devel-
oped by Carge and Schultz [6] for two-stage problems may be adapted to handle
multi-stage formulations. For the particular problem studied in this article it is
possible to solve the multi-stage problem to optimality. We present a recursive
formulation of the multi-stage problem which can be solved by direct calculation in
section 4. All of the algorithms previously discussed have been implemented in C+-+
primarily to test the effect of the new preprocessing rule for the two-stage problem
and to investigate whether or not the recursive multi-stage algorithm is practicable.
In section 5 we report the results of some numerical experiments. Finally, in section
6 we give some conclusions and directions for future research.

2. A TwWO-STAGE FORMULATION

Not knowing the demand at the time the decision on capacity expansion has to be
made, means that we may have to accept that we cannot meet all demand in some
periods. We let z;(s) denote the amount of demand exceeding capacity in period
t under scenario s. Laguna [11] uses this approach to formulate the problem as a
robust optimization problem, using a general penalty cost function p depending on
2;(s) and the probability of occurrence 7 (s). If the function p is linear and we assume
that the cost ¢(s) of not being able to meet one unit of demand under scenario s is
known, this is essentially a two-stage stochastic integer programming problem with
simple recourse. The two-stage capacity expansion problem (T'SCFE) is:

TSCE=min) > ' 'pag+ > w(s) Y +"q(s)zl(s) (2.1)

t=1 =1 sES

s.t. Z Z Citir + 2(8) > Dy(s) Vi, s (2.2)

r=1 =1

Ty, 2 (s) € NU{0} Vi, t, s (2.3)

We assume that both demand Dy(s) and capacity per unit of technology i, ¢; are
integers, so that the variables z;(s) too are integers. If the parameters are rational
this can be achieved by scaling.

Note that we allow the cost of lost demand to differ among scenarios to provide
maximum generality. This is not in compliance with the situation described by
Laguna but does not affect the solution procedure given below. The question of
actually finding/estimating the cost of lost demand ¢(s) is a complicated matter,
since it is seldom readily available. If the network provider has the possibility to rent
capacity from competing network providers, ¢(s) may be taken as the price of such
rented capacity. Otherwise ¢(s) may simply be thought of as lost revenue possibly
with the addition of a penalty cost reflecting customer dissatisfaction.

It is important to note the distinction between periods and stages. Even though
(2.1)-(2.3) is a multiperiod problem we only have two stages. The first stage includes
the decisions x;;, which have to be taken without knowing the outcome of random
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demand, and the second stage includes realizations of the variables z;(s) that occur
after all uncertainty has been revealed - i.e. when we know which scenario has
occurred. We will return to this issue in section 3.

Laguna solves (2.1)-(2.3) by a procedure which is similar in spirit to that proposed
by Saniee [17]. The problem is solved in two phases consisting of a sequence of
knapsack problems and a shortest path problem, respectively. Let D,,,, denote the
maximum demand in any period under any scenario:

Dinas = max max {Di(s)} (24)

First, we find the cost of installing at least Y (y =0,..., Dpqs) units of capacity by
solving a sequence of knapsack problems:

M(y) = min sz-xz- (2:5)

I
s.t. Zcixi >y (2.6)
=1

5 eNU{0} Vi (2.7)

Note that M (y) gives the price of installing exactly y units of capacity if and only
if M(y) < M(y+1). (We assume that all p; and ¢; are strictly positive.)

The problem (2.1) - (2.3) can now be formulated in terms of the total capacity y;
to be installed in period t:

T
TSCE = manfyt "M (y, +Z th’lq(s)zt(s) (2.8)
=1

seS
5.t. Zyr+zt ) > Dy(s) Vt, s (2.9)
e € {0, ..., Dy} Vit (2.10)
z(s) €e NU {0} Vi, s (2.11)

Laguna solves this problem as a shortest path problem in a directed graph con-
structed in the following way. The nodes of the graph are ordered in 7'+ 2 columns
numbered from 0 to 7'+ 1. The columns 1,...,7T represent the time periods in our
time horizon and each has D,,,,+1 nodes such that the node v, , represents the situa-
tion that at least k units of capacity have been installed by period t. Fory =0,...,k

all nodes v;_y ;_, are connected to node v,y (t =2,...,T and k =0,..., Dpyqs) by
edges with cost:
(Wit hmy > Vi) = 7T M (y) + 7D w(s)a(s) | Di(s) — kI (2.12)
sES

The first and the last column each has one node, vy and vy, respectively. vy is
connected to all nodes vy (kK =0,..., Dyaz) by edges with cost:

c(vo , V1) )+ m(s)q(s)|Di(s) — kI (2.13)
SES
Finally, all nodes vry (kK =0,..., Dy4,) are connected to vryy by edges with zero

cost.
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TSCE can now be found as the cost of the shortest (vo-vy1)-path in the graph
by the following forward recursion:

Fl(k) = C('UU ;Ul,k) k= O, Ceey Dmam (214)
Fy(k) = orgnyigk [Fii(k — ) + c(vim1p—y > Vek)]

k=0,... Dy t=2,....T
TSCE = min Fr(k) (2.16)

0<k<Dimaz

(2.15)

As the computational experiments of Laguna indicate, the time consuming part of
this procedure is solving the shortest path problem. As each edge of the graph
is considered exactly once in the above procedure, an efficient way to reduce the
computation time is to reduce the number of edges in the graph. With this in mind
we make the following observations:

Observation 1. If M(y) = M(y+ 1) we see that for k =19, ..., Dy — 1:
C(Utfl,kfg V) = Vt_lM(?j) + ’Yt_l ZW(S)Q(SHDt(S) - I‘9|Jr

sES

>y MG+ 1)+ ) w(s)a(s)[Dils) — k= DI

SES

= C(Ut—l,k—g ,vt,k+1)

Observation 2. Since we always have M(y — 1) < M( ) we see that for k < k':

vk, Vi) = V' MK — k) + Z $)| Dy (s) — K'[*
s€S
>y MK —k—1)+7v Z §)|Dea(s) — K[
seES

= C(Ut,k+1 ) Ut+1,l~c’)

Thus if M(y) = M(y + 1), the subpath (v4_1k—g , Vept1 ,Vep10) Will always be
cheaper than the subpath (v;—1 g—g, Vi, Vir1a) for k =y,..., Dpey — 1 and &' > k.
(The argument does not hold for k& = D,,,, because there is no node v p,,..+1)-
Hence, we can remove all edges (vi—1 5—g,vk) (K =9, ..., Dney — 1) from the graph.
That is, we remove all edges corresponding to the installment of 7 units of capacity
in a period, since we are able to install § + 1 units of capacity at no additional cost.
This changes the recursive shortest path algorithm for the intermediate nodes (2.15)
as we now have:

Ft(k) = 0I<Illn [Ft 1(k y) (Utfl,kfy 7Ut,k)]
S (2.17)
k=0,....,Dpez—1 t=2,....T

where

Y={ye{0,...,Dpazx — 1} | M(y) < M(y+ 1)} (2.18)

As before Fi(k), k = 0,..., Dimazs Ft(Diaz), t = 2,...,T and TSCE are found
using (2.14), (2.15) and (2.16) respectively. (We do not remove the edges (vo, vy )
k ¢ Y in order to make sure that all values Fi(k) are well-defined.)
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Obviously, the effect of this simple preprocessing rule is highly dependent on
the specific problem data, in particular p; and ¢; (i = 1,...,I). If the condition
M(y) = M(y+1) is satisfied for many y € {0, ..., Dy — 1}, we would expect the
preprocessing rule to decrease computation time considerably and this conjecture is
confirmed by the numerical experiments presented in section 5.

The computational complexity of the algorithm is O(max{I D, TD?,,,S}), the
first term corresponding to the solution of the series of knapsack problems and the
second to the shortest path procedure. (Laguna [11] does not include the number
of periods T in the complexity.) Two things are worth noting. The complexity will
usually be dominated by the last term corresponding to the shortest path procedure,
and as mentioned, the numerical experiments reported by Laguna and in section 5
seem to indicate that this is in fact the most time consuming part of the algorithm.
As the shortest path procedure is the part of the algorithm, which is improved by
the new preprocessing rule, we may hope for considerable time savings. Still the
computational complexity of the algorithm is not changed by the preprocessing rule
and thus the sensitivity of the algorithm with respect to T" and S is still expected
to be significant.

3. TWO-STAGE VS. MULTI-STAGE FORMULATIONS

Even though the formulation of the problem given in the previous section explicitly
includes the uncertainty of demand, one might argue that it does not provide a
very good description of the actual process of planning capacity expansion under
uncertainty. The reason for this is the fact that we do not allow the decisions
to depend on the outcomes of the stochastic variables as they are realized. The
formulation in the previous section forces the decision maker to plan the capacity
expansion for the entire time horizon before knowing any outcomes of the random
demands, i.e. the capacity installed in each period will be the same no matter which
scenario occurs. It does not seem reasonable, though, that the amount of capacity
installed in period ¢ should not depend on the actual demands realized up to time
t - if a rapid increase in demand has been observed we would like to install more
capacity and vice versa.

We denote the history of demands up to time ¢ as realized in scenario s by s;:

si=(Di(s),...,Dy(s)) t=1,....T se8 (3.1)

We shall refer to this as a subscenario. Two scenarios s and §' are said to be indis-
tinguishable at time ¢ if s; = s;. We denote the set of distinguishable subscenarios
at time ¢ by &;.

There is another way to think of the subscenarios, which we will briefly consider.
At each time t we can partition the scenarios into bundles A; of indistinguishable
scenarios. We denote the set of scenario bundles at time t by A;. The partitions
form a tree-like structure in the sense that each bundle A; € A, is a union of bundles
Apy1 € Ayyq called the descendants of A;. This simply means that given a history of
demands up to time ¢ (which is the same for all scenarios in a bundle A;), we have a
set of possible outcomes of the random demand in the following period corresponding
to a branching of the scenarios in A;. Clearly, there is a one to one correspondence
between the subscenarios s; and the scenario bundles A;. Thus in the following we
shall refer by s; interchangeably to the subscenario as defined by (3.1) and to the



CAPACITY EXPANSION IN TELECOMMUNICATIONS 7

scenario bundle which it represents, the exact meaning hopefully being clear from
the context.

Since the partitions form a tree-like structure we can think of the scenarios in terms
of a scenario tree. The nodes of the tree are ordered in T" columns corresponding to
the time periods. The leaves of the tree (nodes in column T') represent the S different
scenarios and each node in column ¢ corresponds to a bundle of scenarios that are
indistinguishable at time ¢. In other words each node in the tree corresponds to a
unique subscenario s;.

As before we denote the probability of a scenario s by 7(s). We will also refer to
the probability of a subscenario s;:

w(s)= > 7(s) (3.2)

s':si=s¢

The set of descendants of s; will be denoted by D(s;) and finally, we denote by
7(si41]s:) the conditional probability of subscenario s;y; given subscenario s, for
Sti1 € D(St).

4. A MULTI-STAGE FORMULATION SOLVED RECURSIVELY

In this section we consider the situation where we have a time delay in the in-
stallment of capacity, so that the capacity that we plan to install now will not be
available for customers before the beginning of the next period. Thus we are as-
suming that we have to decide on the capacity to install in the next period without
knowing the actual demand in that period (but we are able to take the realized
demands in previous periods into account). We let x;; denote the number of compo-
nents of technology ¢ to be installed now. Likewise z;(s; 1) (t =2,...,T) denotes
the number of components of technology 7 to be installed in period ¢ knowing the
demand in period £ — 1 as realized in subscenario s;_;. Since we have to plan the
capacity expansion one period ahead, we may still have to accept that we cannot
meet all demand in all periods. As before we let z;(s;) denote the amount of demand
exceeding capacity in period ¢ under scenario s. The multi-stage capacity expansion
problem may now be formulated as:

MSCE = mianyt_1< Z ﬂ(st_l)Zpixit(st_l) + Z W(st)q(st)zt(st)> (4.1)

S¢-1E€St1 1=1 5¢E€St

st ) Y ami(s—1) + z2(s) > Dyls)  Vi,s (4.2)

r=1 i=1
Tit(si-1) , ze(st) € NU {0} Vi, t,s (4.3)
(For notational convenience we refer to x;; as ;1 (so) in (4.1)-(4.3) and let w(sp) =1

and 80 = {So}.)

Once again we will solve the problem by initially solving the series of knapsack
problems (2.5)-(2.7) in order to find the cost of installing y units of capacity (y =
0,..., Dpaz). Now, we introduce the variable y; denoting the amount of capacity to
be installed now and the variables y;,1(s;) (t = 1,...,7 — 1) denoting the amount
of capacity to be installed in period ¢+ 1 knowing the demand in period ¢ as realised
in subscenario s;. Problem (4.1)-(4.3) may then be given an equivalent formulation
similar to (2.8)-(2.11). Instead, we will give a recursive formulation of the problem
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which allows us to solve it directly. We let Q,(k, s;) denote the expected cost at time
t of having installed a total of £ units of capacity under subscenario s;. For the final
period we have:

Qr(k, sp) = min q(sr)zr(sr) )
s.t. zr(st) > Dr(s) — k (4.5)
zr(sr) € NU {0}

and fort =1,...,7 — 1:

Qi (k, s¢) = min q(s)ze(se) + YM (yis1(5e))
9 Y w(silse)Quar (k + g (s0) , se41) (4.7)

st+1€D(s¢)
s.t. Zt(st) Z Dt(S) —k
Yer1(s:) € Yy :
2(s) e NU{0} (4.10)

where:
Vi =Y U{Dpur — k} k=0,..., D (4.11)

and the set Y was defined in section 2. (By the same argument that we used in
section 2 we only consider installing y units of capacity if M(y) < M(y + 1), the
only exception being the situation where we choose to install enough capacity to
reach a total capacity of D,,,,.) The multi-stage capacity expansion problem can
now be stated as:

MSCE =min M(y1) + > m(s1)Q1(y1, 51) (4.12)

51€81

st.y €Y) (4.13)

This formulation allows us to solve the problem directly using a backward recursion.
For the final period we have:

Qr(k,s7) = q(s7)|Dr(s) — k|*

4.14
kZOa---aDmaw sy € St ( )

For all intermediate periods (t = 1,...,7 — 1) we have:
Qulk,50) = q(50)[ Dils) — K[

+ ogygnll)i:}ark [’YM(?J) +7 Z T(set1]50)Qer1(k +y, se1) | (4.15)
yEY}, 5t+1€D(s¢)

kZOa---aDmaw 5. € Sy

And finally the solution for the multi-stage problem is:

MSCE = min [M(y) + Z m(s1)Q1 (v, 81)] (4.16)

y€Yo
51€81
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We will briefly consider the computational complexity of the recursive solution
procedure for the multi-stage formulation given above. The series of knapsack prob-
lems (2.5)-(2.7) used to determine the values of M(y) (y = 0,..., Dpqe:) may be
solved in O(ID,,,;) time. (See e.g. Pisinger [16] or Martello and Toth [14].) For
each node in the scenario tree we have to evaluate either (4.14),(4.15) or (4.16), the
dominating time complexity obviously being that of (4.15). We now define:

S = max max {|D(s)|} (4.17)

1<t<T st€St

i.e. S denotes the maximum number of descendants of any subscenario. The sum
in (4.15) is calculated in O(S) time and this has to be done for & = 0,..., Dz
and y € Yy. Since |Yi| is O(Djnez), we see that the time complexity of evaluating
(4.15) for fixed values of ¢t and s; is O(D2,,S). As the number of nodes in the
scenario tree is O(T'S), the overall time complexity for the recursive solution pro-
cedure is O(max{I D, TD? SS}), which only differs from that of the two-stage

~ max

formulation by a factor of S.

5. COMPUTATIONAL EXPERIMENTS

Laguna [11] implemented the algorithm described in section 2 and carried out a
number of experiments to investigate the sensitivity of the procedure with respect
to the parameters I, T', and S. His experiments indicate that the CPU-time used
by the procedure is highly sensitive to an increase in the number of periods 7" which
can be ascribed to the fact that an increase in T" implies an increase in the maximum
demand D,,,,. His experiments also exhibits an increase in CPU-time for increasing
numbers of scenarios S, whereas the algorithm seems to be quite insensitive to the
number of different technologies I. This indicates that the CPU-time needed to solve
the series of knapsack problems (2.5)-(2.7) is negligible compared to the CPU-time
needed for the shortest path procedure (2.14)-(2.16).

We implemented the algorithm described in section 2 in C++ with and without
the new preprocessing rule primarily to test whether the preprocessing rule in fact
speeds up the algorithm and secondly to investigate whether the sensitivity of the
procedure with respect to 7', I and S is changed when the preprocessing rule is
applied. The experiments were carried out on a HP-UX 9000 workstation and were
performed on instances of the problem generated randomly according to the precepts
used by Laguna:

Di(s) =Y _d(s) Vt, s (5.1)

di(s) ~ N(u,0?)  Vi,s (5.2)
¢~ U(L, p) Vi (5.3)
pi = p+ ¢+ i vi (5.4)

pi ~ U(~0,0) Vi (5.5)
r(s) = = Vs (5.6)
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The input parameters Dy(s), ¢; and p; were all subsequently rounded to integer
values. Onless otherwise specified, the instances were generated using p = 100 and
o = 10 in compliance with Laguna [11]. Likewise the discount factor v was set to
0.86 and the cost of lost demand was fixed to the value 5 used by Laguna.

The results of the first series of experiments are summarized in tables 1 to 3.
TSCE1 refers to the CPU-time (in seconds) used by the procedure without the
preprocessing rule and TSCE?2 refers to the CPU-time (in seconds) when the rule
is applied. All reported CPU-times are averages over 10 independently generated
instances. We also report the maximum demand D,,,, and the number of different
solutions from the series of knapsack problems denoted by |Y|. (The set Y was
defined by (2.18).) These numbers are reported because the reason for us to believe
that the preprocessing rule is efficient, is that it brings the number of installment
levels considered in the minimization down from D,,,, to |Y|. Finally, we report
the reduction in CPU-time and in the number of installment levels considered in the
minimization when the new preprocessing rule is applied.

TABLE 1 I =10and S =100

T 4 6 8 10 12
TSCE1 5.74 19.88 50.01 94.20 161.94
TSCE?2 0.89 3.06 6.53 17.08 26.01

Reduction  84.4%  84.6% 87.0% 81.9%  83.9%
Doz 446.6 663.7 867.8 1081.4 1287.3
Y| 72.2 105.4 124.2 215.5 218.2

Reduction  83.8% 84.1% 85.7% 80.1%  83.0%

TABLE 2 I =10and T =10

S 10 50 100 500 1000
TSCE1 16.23 49.62 94.20 444.71  892.20
TSCE2 2.84 9.55 17.08 66.28 142.11

Reduction  82.5%  80.8% 81.9% 85.1% 84.1%
Doz 1034.8 1070.1 1081.4 1091.2 1106.0
Y| 174,6 210.6 215.5 175.2 187.6
Reduction  83.1%  80.3%  80.1% 83.9%  83.0%

TABLE 3 T =10 and S = 100

I 4 10 20 50 100
TSCE1 94.22 94.20 96.08 95.08 95.03
TSCE?2 9.73 17.08 22.57 34.48 46.98

Reduction  89.7% 81.9% 76.5%  63.7%  50.6%
Doz 1082.8 1081.4 1084.7 1077.6 1078.3
|Y| 113.0 215.5 270.2 411.2 552.0
Reduction 89.6%  80.1% 75.1% 61.8%  48.8%

Let us first consider tables 1 and 2 where the number of technologies are fixed at
10. First of all we note that the algorithm provides consistently shorter CPU-times
when the new preprocessing rule is applied with time savings between 80% and 85%.
Secondly we note that the sensitivity of the algorithm with respect to the parameters
T and S is similar to the one reported by Laguna, also when the preprocessing rule is
applied. Finally, we note that the time savings closely correspond to the reduction in
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the number of installment levels considered in the minimization, a fact that becomes
even more obvious when we turn to table 3. In table 3 the number of time periods
and the number of scenarios have been fixed at 10 and 100, respectively. As reported
by Laguna the procedure without the preprocessing rule seems to be quite insensitive
to the number of technologies, but when the rule is applied we note an increase in the
CPU-time for increasing numbers of technologies. This can be ascribed to the fact
that an increasing number of technologies implies an increasing number of different
solutions from the series of knapsack problems as indicated by |Y|. Again we note
the close relationship between the time saving and the reduction in the number of
installment levels considered.

Finally we conducted a series of experiments to investigate the behavior of the pro-
cedure and the effect of the preprocessing rule when the size of demand is changed.
Ten random instances were generated for 5 different values of 1 and the same num-
bers as before were recorded. In all of the experiments we used o = /10 correspond-
ing to simple scaling of the demand increments (5.2). Thus we have not investigated
the effect of the variance of the demand increments on the procedure. The results
of the experiments are reported in table 4.

TABLE4 T =10,5=100and I =10

W 10 20 50 100 200
TSCFE1 1.00 3.83 23.54 94.20 375.28
TSCE?2 0.72 2.06 7.08 17.08 41.26

Reduction 28.1%  46.1%  69.9% 81.9%  89.0%
Dpos 108.3 215.3 540.5 1081.4 2159.2
Y| 75.8 120.4 170.0 215.5 258.2

Reduction  30.0% 44.1% 68.5% 80.1%  88.0%

As expected the CPU-time is drastically reduced when p is smaller as a result of the
reduction in D,,,,. We also see that the effect of the preprocessing rule decreases
for smaller values of y, once again a fact that is explained by the smaller reductions
in the number of installment levels considered.

The recursive solution procedure for the multi-stage problem was also imple-
mented in C++ and a series of experiments was carried out to test if the method
is practicable. In all experiments we used a fixed number S of descendants for all
nodes in the scenario tree. The random instances were again generated using the
precepts (5.1)-(5.5). Some care has to be taken, though, when generating demand
by (5.1)-(5.2), as we now have to collect the scenarios in scenario bundles in each
period. This was done by generating S demand values for period 1, for each of these
values S independent demand increments (5.2) were generated and so forth. In all
experiments we used:

1
7T(St+1|8t) == § VSt+1 € D(St) (57)

resulting in the same uniform scenario probabilities (5.6) as used in the previous
experiments.

The results of the experiments are reported in tables 5 to 7. Once again we report
the average CPU-time (in seconds) calculated from 10 independently generated in-
stances. The CPU-time used by the recursive solution procedure for the multi-stage
problem is refered to by MSCE. We also report the CPU-time used by the en-
hanced procedure for the two-stage problem when solving problems of comparable
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size (with respect to T, I and S). This is done partly to further investigate the
capabilities of the two-stage algorithm and partly to compare solution times for the
two-stage and the multi-stage problems.

TABLES S=2and =10

T 4 6 8 10 12

S 16 64 256 1024 4096
MSCE 0.26 234 14.00 101.29 620.82
TSCE?2 0.21 219 20.91 148.79 987.74

TABLE 6 S =2and T =10

I 4 10 20 50 100

S 1024 1024 1024 1024 1024
MSCE  39.35 101.29 174.74 262.26 329.01
TSCE2 70.09 148.79 234.44 329.32 436.05

TABLE7 T =4andI=10

S 2 4 6 8 10

S 16 256 1296 4096 10000
MSCE 0.26 221 10.07 3151 60.43
TSCE?2 0.21 1.95 1099 3138 78.11

When comparing the two different formulations, one must be aware of the fact that
they do not solve the exact same problem. As mentioned earlier, we believe that the
multi-stage formulation provides a more accurate description of the actual process
of planning capacity expansion under uncertainty. In section 4 we saw that the im-
proved description provided by the multi-stage formulation comes at the cost of an
increase in the computational complexity of the solution procedure. Still one should
keep in mind, though, that the scenarios are handled much more efficiently by the
solution procedure for the multi-stage problem than by that for the two-stage prob-
lem. When solving the multi-stage problem the scenarios are ordered in bundles of
indistinguishable scenarios in each period which means that the number of distinct
scenarios that are considered in early periods is very limited. When solving the two-
stage problem on the other hand, the scenarios are considered independently, hence
the actual number of distinct demand values in a given period is of no importance.

When studying tables 5 to 7 it seems that the efficiency obtained by collecting the
scenarios into bundles when solving the multi-stage problem is more than enough to
outweigh the increase in computational complexity. Thus we see that solution times
are actually shorter for the multi-stage problem than for the two-stage problem,
at least for the larger instances. In accordance with our previous discussion we see
that the time savings become more distinct when the number of periods is increased.
That is, when the number of periods is increased the difference between the number
of scenarios S and the number of distinct subscenarios in early periods also increases
and the effect of collecting the scenarios into bundles is intensified.

Apart from that, we note that the sensitivity of the solution procedure for the
multi-stage problem with respect to the parameters I, T and S is generally as ex-
pected. As for the two-stage problem the algorithm is highly sensitive to the number
of periods and somewhat sensitive to the number of scenarios. The number of dif-
ferent technologies once again has a modest effect on CPU-time, which is ascribed
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to the increased number of different solutions from the series of knapsack problems
when a larger number of technologies is available.

6. CONCLUSIONS

We have studied two different approaches for the multiperiod capacity expansion
problem with uncertain demand. In section 2 we considered a two-stage formula-
tion of the problem. An algorithm proposed by Laguna [11] was discussed and we
presented a new preprocessing rule which was shown to be very effective in sec-
tion 5. As argued in section 3, though, we think that a multi-stage formulation
is the most appropriate way to include uncertainty in the model, as it allows the
decision-maker to adapt his decisions to the development in demand. Usually multi-
stage stochastic integer programs are too hard to solve in practice. In this case,
however, the structure and simplicity of the problem allows us to solve it for the
multi-stage formulation by the recursive algorithm given in section 4. In addition
we saw that the time complexity of the recursive solution procedure for the multi-
stage formulation differed only by a factor of S from that of the two-stage algorithm.
In fact the numerical experiments reported in section 5 seem to indicate that the
multi-stage algorithm is even faster than the two-stage algorithm due to the more
efficient handling of the scenarios. Hence for this problem it may in fact be possible
to use the more appropriate multi-stage formulation in practice. The finding that
the multi-stage algorithm seemed to perform better than the two-stage algorithm
was a very interesting one. Thus it may be the case that modelling multi-period
problems as two-stage stochastic programs (as is often the practice, see e.g. Carge
et al. [5] or Dentcheva and Rémisch [10]) is in fact in some cases inefficient as well
as inappropriate.

As mentioned, the problem that we have discussed in this article is a very simple
one. In practice we would like to solve the capacity expansion problem for an entire
telecommunications network, taking into account the actual routing of calls between
OD-pairs instead of treating the demand for bandwith on a single connection as
exogenous. Still the problem of expanding the capacity of a single connection with
uncertain demand may indeed have some relevance, as it may appear as a subproblem
in such a capacity expansion problem for the entire network. Further research has
to be done to explore this possibility.
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