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THE CONNES-HIGSON CONSTRUCTION IS AN ISOMORPHISM

VLADIMIR MANUILOV AND KLAUS THOMSEN

Abstract. Let A and B be separable C�-algebras, B stable. We show that the
Connes-Higson construction gives rise to an isomorphism between the group of
unitary equivalence classes of extensions of SA by B, modulo the extensions which
are asymptotically split, and the homotopy classes of asymptotic homomorphisms
from S2A to B.

1. Introduction

The fundamental homotopy functors on the category of separable C�-algebras are
all based on extensions - either a priori or a posteriori . So also the E-theory of
Connes and Higson; in the words of the founders: 'La E-theorie est ainsi le quotient
par homotopie de la th�eorie des extensions', cf. [CH]. The connection between the
asymptotic homomorphisms which feature explicitly in the de�nition of E-theory,
and C�-extensions, appears as a fundamental construction which associates an as-
ymptotic homomorphism SA! B to a given extension of A by B. While it is easy
to see that the homotopy class of the asymptotic homomorphism only depends on
the homotopy class of the extension it is not so easy to decide if the converse is also
true; if the extensions must be homotopic when the asymptotic homomorphisms
which they give rise to via the Connes-Higson construction are. A part of the main
result in the present paper asserts that this is the case when A is a suspension and
B is stable. Rather unexpectedly it turned out that the methods we developed for
this were also able to characterize E-theory as the quotient of all extensions of SA
by B by an algebraic relation which is very similar to the algebraic relation which
has been considered on the set of extensions since the way-breaking work of Brown,
Douglas and Fillmore, [BDF]. Recall that in the BDF-approach two C�-extensions
are identi�ed when they become unitarily equivalent after addition by extensions
which are split, meaning that the quotient map admits a �-homomorphism as a
right-inverse. In the algebraic relation, on the set of all C�-extensions of SA by B,
which we will show gives rise to E-theory, two extensions are identi�ed when they
become unitarily equivalent after addition by extensions which are asymptotically
split, where we call an extension

0 // B // E
p // A // 0

asymptotically split when there is an asymptotic homomorphism � = (�t)t2[1;1) :
A ! E such that p Æ �t = idA for all t. We emphasize that with this algebraic
relation all extensions of SA by B admit an inverse. In contrast, Kirchberg has
shown, [Ki], that there are C�-algebras A (e.g. A = C�r (SL2(Z))) for which the
unitary equivalence classes of SA by K, modulo the split extensions, do not form
a group. Since our results show that the algebraic relation we have just described
is the same as homotopy, our main result can also be considered as a result on
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2 VLADIMIR MANUILOV AND KLAUS THOMSEN

homotopy invariance and it is therefore noteworthy that the proof is self-contained,
and in particular does not depend on the homotopy invariance results of Kasparov.
Since there is also an equivariant version of E-theory, [GHT], which is being used

in connection with the Baum-Connes conjecture, we formulate and prove our results
in the equivariant case. With the present technology this does not require much
additional work, but since some of the material which we shall build on does not
explicitly consider the equivariant setting, notably [DL] and [H-LT], there are a few
places where we leave the reader to check that the results from these sources can be
adapted to the equivariant case.

2. An alternative to the BDF extension group

Let G be a locally compact, �-compact group, and let A and B be separable G-
algebras, i.e. separable C�-algebras with a pointwise norm-continuous action of G
by automorphisms. Assume also that B is weakly stable, i.e. that B is equivariantly
isomorphic to B 
 K where K denotes the compact operators of l2 with the trivial
G-action. Let M(B) denote the multiplier algebra of B, Q(B) = M(B)=B the
corresponding corona algebra and qB : M(B) ! Q(B) the quotient map. Then G
acts by automorphisms on both M(B) and Q(B)1. It follows from [Th1] that we
can identify the set of equivariant �-homomorphisms, HomG(A;Q(B)), from A to
Q(B) with the set of G-extensions of A by B. Two G-extensions ';  : A ! Q(B)
are unitarily equivalent when there is a unitary w 2 M(B) such that qB(w) 2
Q(B) is G-invariant and Ad qB(w) Æ ' =  . Since B is weakly stable the set of
unitary equivalence classes of extensions of A by B form a semi-group; the addition
is obtained by choosing two G-invariant isometries V1; V2 2M(B) such that V1V

�
1 +

V2V
�
2 = 1 and setting ' �  = qB(V1)'qB(V1)

� + qB(V2) qB(V2)
�. A G-extension

' : A ! Q(B) will be called asymptotically split when there is an asymptotic
homomorphism � = f�tgt2[1;1) : A ! M(B) such that qB Æ �t = ' for all t.
All asymptotic homomorphisms we consider in this paper will be assumed to be
equivariant in the sense that limt!1 g � �t(a)� �t(g � a) = 0 for all a 2 A and g 2 G.
As in [MT2] we say that a G-extension ' : A! Q(B) is semi-invertible when there
is a G-extension  2 HomG(A;Q(B)) such that '� : A! Q(B) is asymptotically
split. Two semi-invertible extensions, ';  , are called stably unitary equivalent when
they become unitarily equivalent after addition by asymptotically split extensions,
i.e. when there is an asymptotically split extension � such that ' � � is unitarily
equivalent to  � �. This is an equivalence relation on the subset of semi-invertible
extensions in HomG(A;Q(B)) and the corresponding equivalence classes form an
abelian group which we denote by Ext�1=2(A;B). For any locally compact space
X we consider C0(X) 
 A as a G-algebra with the trivial G-action on the tensor
factor C0(X). When X = ]0; 1] we denote C0]0; 1]
A by cone(A). Similarly, we set
SA = C0(0; 1)
 A.

Lemma 2.1. Let � : cone(A)! Q(B) be a G-extension. It follows that there is an
asymptotic homomorphism � = (�t)t2[1;1) : cone(A)!M2(M(B)) such that

qM2(B) Æ �t = ( � 0 )

for all t 2 [1;1).

1These actions are not pointwise normcontinuous in general.
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Proof. The proof is based on an idea of Voiculescu, cf. [V]. Let � : cone(A)!M(B)
be a continuous, self-adjoint and homogeneous lift of � such that k�(x)k � 2kxk for
all x 2 cone(A). � exists by the Bartle-Graves selection theorem, cf. [L]. De�ne 's :
cone(A) ! cone(A) such that 's(f)(t) = f((1� s)t); s 2 [0; 1]. Choose continuous
functions fi : [1;1)! [0; 1]; i = 0; 1; 2; � � � , such that

1) f0(t) = 0 for all t 2 [1;1),
2) fn � fn+1 for all n,
3) for each n 2 N , there is an mn 2 N such that fi(t) = 1 for all i � mn, and

all t 2 [1; n+ 1],
4) limt!1maxi jfi(t)� fi+1(t)j = 0.

Let F1 � F2 � F3 � � � � be an increasing sequence of �nite subsets with dense union
in cone(A). Write G =

S
nKn where K1 � K2 � K3 � � � � is a sequence of compact

subsets of G such that G =
S
nKn. For each n, choose mn 2 N as in 3). We may

assume that mn+1 > mn. By Lemma 1.4 of [K] we can choose elements

Xn
0 � Xn

1 � Xn
2 � � � �

in B such that 0 � Xn
i � 1 for all i and Xn

i = 0 for i � mn, and

1') Xn
i X

n
i+1 = Xn

i+1 for all i,
2') kXn

i b� bk � 1
n
for all i = 0; 1; 2; � � � ; mn � 1, and all b 2 Sn,

3') kXn
i y � yXn

i k � 1
n
for all i and all y 2 Ln,

4') kg �Xn
i �Xn

i k � 1
n
; g 2 Kn, for all i,

5') kXn
i (g � �(a)� �(g � a))� (g � �(a)� �(g � a))k � 1

n
; g 2 Kn; a 2 Fn, for all

i = 0; 1; 2; � � � ; mn � 1,

where Ln and Sn are the compact sets Ln = f�('s(a)) : s 2 [0; 1]; a 2 Fng and

Sn = f�('s(a)) + �('s(b))� �('s(a+ b)) : a; b 2 Fn; s 2 [0; 1]g
[ f�('s(ab))� �('s(a))�('s(b)) : a; b 2 Fn; s 2 [0; 1]g :

Since we choose the X's recursively we can arrange that Xn+1
i Xn

k = Xn
k for all k

and all i � mn+1. By connecting �rst Xn
0 to Xn+1

0 via the straight line between
them, then Xn

1 to Xn+1
1 via a straight line, then Xn

2 to Xn+1
2 etc., we obtain norm-

continuous pathes, X(t; i); t 2 [n; n + 1]; i = 0; 1; 2; 3; � � � , in B such X(n; i) =
Xn
i ; X(n+ 1; i) = Xn+1

i for all i and

a) X(t; i)X(t; i+ 1) = X(t; i+ 1); t 2 [n; n + 1], for all i,
b) kX(t; i)b� bk � 1

n
for all i = 0; 1; 2; � � � ; mn� 1; t 2 [n; n+1] and all b 2 Sn,

c) kX(t; i)y � yX(t; i)k � 1
n
for all i, all t 2 [n; n+ 1] and all y 2 Ln,

d) kg �X(t; i)�X(t; i)k � 1
n
; g 2 Kn; t 2 [n; n+ 1], for all i,

e) kX(t; i)(g � �(a)� �(g � a))� (g � �(a)� �(g � a))k � 1
n
; g 2 Kn; a 2 Fn; t 2

[n; n + 1], for all i = 0; 1; � � � ; mn � 1.

In addition, X(t; i) = 0; i � mn+1; t 2 [n; n + 1]. Let l2(B) denote the Hilbert
B-module of sequences (b1; b2; b3; � � � ) in B such that

P1
i=1 b

�
i bi converges in norm.

Writing an element (b1; b2; b3; � � � ) 2 l2(B) as the sum
P1

i=0 biei we de�ne a repre-
sentation V of G on l2(B) such that Vg(

P1
i=0 biei) =

P1
i=0(g � bi)ei. Then G acts

by automorphisms on L(l2(B)) ( = the adjoinable operators on l2(B)) such that
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g �m = VgmVg�1 . Set

Tt =

0
BBB@
p
1�X(t; 0)

p
X(t; 0)�X(t; 1)

p
X(t; 1)�X(t; 2) : : :

0 0 0 : : :
0 0 0 : : :
...

...
...

. . .

1
CCCA 2 L(l2(B)):

Then Pt = T �t Tt is a projection in L(l2(B)) since TtT
�
t clearly is. Note that Pt is

tri-diagonal because of condition a) above, and that the entries of Pt are all in B,
with the notable exception of the 1 � 1-entry which is equal to 1 modulo B. We
de�ne Æt : cone(A)! L(l2(B)) by

Æt(a)(
1X
i=0

biei) =
1X
i=0

�('fi(t)(a))biei:

Set �t(a) = PtÆt(a)Pt for a 2 cone(A) and t 2 [1;1). We assert that � = (�t)t2[1;1)

is an asymptotic homomorphism. Since the family of maps a 7! �t(a); t 2 [1;1), is
an equicontinuous family of self-adjoint and homogeneous maps, it suÆces to take
an n and elements a; b 2 Fn, g 2 Kn, and check that

lim
t!1

PtÆt(a)PtÆt(b)Pt � PtÆt(ab)Pt = 0;

lim
t!1

PtÆt(a+ b)Pt � PtÆt(a)Pt � PtÆt(b)Pt = 0;

and

lim
t!1

PtÆt(g � a)Pt � g � (PtÆt(a)Pt) = 0:

The �rst two limits are zero by 4), b) and c), the third by d) and e). For each
a; t, PtÆt(a)Pt = diag(�(a); 0; 0; � � � ) modulo K (l2(B)) ( = the ideal of 'compact'
operators on l2(B)). Since B is weakly stable there is an equivariant isomorphism
l2(B) ' B�B of Hilbert B-modules which leaves the �rst coordinate invariant. We
can therefore transfer � to an asymptotic homomorphism � = (�t)t2[1;1) : cone(A)!
L(B � B) =M2(M(B)) with the stated property.

�

Two G-extensions ';  2 HomG(A;Q(B)) are strongly homotopic when there is a
path �t 2 HomG(A;Q(B)); t 2 [0; 1], such that �0 = ';�1 =  and t 7! �t(a) is
continuous for all a 2 A.
Theorem 2.2. Let ' : A ! Q(B) be a G-extension which is strongly homotopic
to 0 in HomG(A;Q(B)). It follows that there is an asymptotic homomorphism � =
(�t)t2[1;1) : A!M2(M(B)) such that

qM2(B) Æ �t = ( ' 0 )

for all t 2 [1;1).

Proof. Since ' is strongly homotopic to 0 there is an equivariant �-homomorphism
� : A ! cone(D), where D � Q(B) is a separable G-algebra containing '(A), and
an equivariant �-homomorphism � : cone(D) ! Q(B) such that ' = � Æ �. Apply
Lemma 2.1 to �. �

Corollary 2.3. Every G-extension ' : SA! Q(B) is semi-invertible.
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Proof. Let � 2 AutSA be the automorphism of SA given by �(f)(t) = f(1 � t).
It is wellknown that ' � ' Æ � is strongly homotopic to 0. Hence ' � ' Æ � � 0 is
asymptotically split by Theorem 2.2. �

Because of Corollary 2.3 we drop the superscript �1=2 and write Ext(SA;B)
instead of Ext�1=2(SA;B).

Lemma 2.4. Let ';  : SA! Q(B) be two G-extensions which are strongly homo-
topic. It follows that ' and  are stably unitarily equivalent.

Proof. This follows straightforwardly from Theorem 2.2 and Corollary 2.3. �

Set IB = C[0; 1] 
 B and let et : IB ! B denote evaluation at t 2 [0; 1] and
note that et de�nes a equivariant �-homomorphismsM(IB)!M(B) and Q(IB)!
Q(B) which we again denote by et. Two G-extensions ';  2 HomG(A;Q(B)) are
homotopic when there is a G-extension � 2 HomG(A;Q(IB)) such that e0 Æ� = '
and e1 Æ� =  . As in [MT2] we denote the set of homotopy classes of G-extensions
by Ext(A;B)h. In general this is merely an abelian semigroup, but Ext(SA;B)h is
a group.
The Connes-Higson construction associates to anyG-extension ' 2 HomG(A;Q(B))

an asymptotic homomorphism CH(') : SA ! B in the following way, cf. [CH],
[GHT]: By use of Lemma 1.4 of [K] or Lemma 5.3 of [GHT] there is a norm-
continuous path futgt2[1;1) of elements in B such that 0 � ut � 1 for all t,
limt!1 kutb� bk = 0 for all b 2 B, limt!1 kutm�mutk = 0 for all m 2 q�1

B ('(A))
and limt!1 kg � ut � utk = 0 for all g 2 G. From these data CH(') is deter-
mined up to asymptotic equality as the equicontinuous2 asymptotic homomorphism
CH(') : SA! B which satis�es that

lim
t!1

CH(')t(f 
 a)� f(ut)x = 0; x 2 q�1
B ('(a));

for all f 2 C0(0; 1) and all a 2 A. Let [[SA;B]] denote the abelian group of homotopy
classes of asymptotic homomorphisms, SA ! B, cf. [CH], [GHT]. The Connes-
Higson construction de�nes in the obvious way a semi-group homomorphism CH :
Ext(A;B)h ! [[SA;B]]. Since there is a canonical (semi-group) homomorphism
Ext�1=2(A;B)! Ext(A;B)h we may also consider the Connes-Higson construction
as a homomorphism CH : Ext�1=2(A;B) ! [[SA;B]]. Notice that Ext(SA;B)
and Ext(SA;B)h are both abelian groups and the canonical map Ext(SA;B) !
Ext(SA;B)h is a surjective group homomorphism by Corollary 2.3.

3. On equivalence of asymptotic homomorphisms

Lemma 3.1. Let A and B be separable G-algebras, B weakly stable. Let ' =
('t)t2[1;1) : A ! B be an asymptotic homomorphism which is homotopic to 0. It
follows that there is an asymptotic homomorphism  = ( t)t2[1;1) : A ! B and a
norm-continuous path fWtgt2[1;1) of G-invariant unitaries in M(M2(B)) such that

lim
t!1

�
't(a)

 t(a)

�
�Wt

�
0
 t(a)

�
W �

t = 0

for all a 2 A.
2Equicontinuity of an asymptotic homomorphism � = (�t)t2[1;1) : A! B means that A�G 3

(a; g) 7! g � �t(a); t 2 [1;1), is an equicontinuous family of maps.
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Proof. Let � = (�t)t2[1;1) : A ! IB be an asymptotic homomorphism such that
e0 Æ�t(a) = 0; e1 Æ�t(a) = 't(a) for all t 2 [1;1); a 2 A. We may assume that both
' and � are equicontinuous, cf. Proposition 2.4 of [Th2]. Let F1 � F2 � F3 � � � �
be a sequence of �nite subsets with dense union in A. For each n there is Æn > 0
with the property that

kex Æ�t(a)� ey Æ�t(a)k < 1

n

when jx � yj < Æn; t 2 [1; n]; a 2 Fn. Choose then a sequence of functions fk :
[1;1) ! [0; 1] such that f1(t) = 1; fk � fk+1; jfk(t) � fk+1(t)j < Æn; t 2 [1; n]
for all k; n and such that fkj[1;n] = 0 for all but �nitely many k's for all n. Set

�nt (a) = efn(t) Æ�t(a) for all a 2 A; n 2 N ; t 2 [1;1). Note that k�it(a)� �i+1
t (a)k <

1
n
; a 2 Fn; t 2 [1; n], for all i and n. Then

�t(a) = diag('t(a); �
1
t (a); �

2
t (a); �

3
t (a); � � � ) 2 K (l2(B))

and

Æt(a) = diag(0; �1t (a); �
2
t (a); �

3
t (a); � � � ) 2 K (l2(B))

de�ne asymptotic homomorphisms �; Æ : A! K (l2(B)). By connecting appropriate
permutation unitaries, acting on l2(B) by permutations of B-coordinates, we get a
norm-continuous path of G-invariant unitaries fStgt2[1;1) � L(l2(B)) such that

StÆt(a)S
�
t = diag(�1t (a); �

2
t (a); �

3
t (a); � � � )

for all a; t. Then limt!1 �t(a)�StÆt(a)S�t = 0 for all a 2 A. Since B is weakly stable
there is an isomorphism l2(B) ! B � B of Hilbert B;G-algebras which �xes the
�rst coordinate. Applying this isomorphism in the obvious way and remembering
the identi�cations K (B �B) =M2(B) and L(B �B) =M(M2(B)) gives the result.

�

Theorem 3.2. Let A and B be separable G-algebras, B weakly stable. Assume that
[[A;B]] is a group. Let ' = ('t)t2[1;1);  = ( t)t2[1;1) : A ! B be asymptotic
homomorphisms which are homotopic. It follows that there is an asymptotic ho-
momorphism � = (�t)t2[1;1) : A ! B and a norm-continuous path fWtgt2[1;1) of
G-invariant unitaries in M(M2(B)) such that

lim
t!1

�
't(a)

�t(a)

�
�Wt

�
 t(a)

�t(a)

�
W �

t = 0

for all a 2 A.
Proof. This follows straightforwardly from Lemma 3.1.

�

Lemma 3.3. Let B be a weakly stable G-algebra and D0 a separable G-subalgebra
of Cb([1;1); B). Let V 2 M(B) be a G-invariant isometry. There is then a weakly
stable G-subalgebra D of Cb([1;1); B) such that V D [ V �D [D0 � D.

Proof. Since B is weakly stable we can write B = B 
 K with G acting trivially
on the tensor-factor K. We embed K into M(B 
 K) via x 7! 1B 
 x. Let ffng �
Cb([1;1); B 
 K) be a dense sequence in D0. For each n 2 N there is a function
gn 2 Cb([1;1);K) such that kgnfn� fnk < 1

n
. Let E00 be the C

�-algebra generated
by fgng1n=1. Then E00 � Cb([1;1);K) � Cb([1;1); B+ 
 K). Consider a positive
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element f 2 E00 and an � > 0. Set Vj =]j; j + 2[\[1;1[; j = 0; 1; 2; � � � . We can
then �nd a sequence p0 � p1 � p2 � � � � of projections in K such that

sup
x2Vj

kpjf(x)pj � f(x)k < �:

Let fhjg be a partition of unity in Cb[1;1) subordinate to the cover fVjg and set
g(t) =

P1
j=0 hj(t)pjf(t)pj. Then g 2 Cb([1;1);K), g � 0; kg � fk < �. For each

j we choose a partial isometry vj 2 K such that vjv
�
j = pj+2, v

�
jvjpj+2 = 0 and

v�jvjv
�
kvk = 0; k < j. Set h(t) =

P1
j=0

p
hj(t)vj. Then hh�g = g and h�hg = 0.

It follows that we can �nd a sequence E00 = X1 � X2 � X3 � � � � of separable
C�-subalgebras of Cb([1;1);K) and for each n have a dense sequence ff1; f2; � � � g in
the positive part of Xn and elements fv1; v2; � � � g in Xn+1 such that kfk� v�kvkk < 1

k
and v�kvkvkv

�
k = 0 for all k. It follows then from Proposition 2.2 and Theorem 2.1

of [HR] that E0 =
S
nXn is a separable stable C�-subalgebra of Cb([1;1);K) such

that E00 � E0. Note that E0 contains a sequence frng with the property that
limn!1 rnx = x for all x 2 D0 since E00 does. By repeating this argument with
D0 substituted be the G-algebra D1 generated by D0 [ V D0 [ V �D0 [ E0D0, we
get a stable C�-subalgebra E1 � Cb([1;1);K) which contains a sequence frng such
that limn!1 rny = y for all y 2 D1. It is clear from the construction that we can
arrange that E0 � E1. We can therefore continue this procedure to obtain sequences
of separable G-algebras,

D0 � D1 � D2 � D3 � � � �
in Cb([1;1); B 
K), and

E0 � E1 � E2 � E3 � � � �
in Cb([1;1);K) � Cb([1;1); B+ 
 K) such that each En is stable and contains a
sequence frkg such that limk!1 rkx = x; x 2 Dn, and such that Dn[V Dn[V �Dn[
EnDn � Dn+1 for all n. Set E1 =

S
nEn and D =

S
nDn. It follows from Corollary

4.1 of [HR] that E1 is stable. By construction V D [ V �D � D and E1D � D.
The last property ensures that D is an ideal in the G-algebra E generated by E1
and D. There is therefore a �-homomorphism � : E1 ! M(D). By construction
an approximate unit for E1 is also an approximate unit for D so � extends to a
�-homomorphism � :M(E1)!M(D) which is strictly continuous on the unit ball
of M(E1). Since E1 is stable there is a sequence Pi; i = 1; 2; � � � , of orthogonal
and Murray-von Neumann equivalent projections in M(E1) which sum to 1 in the
strict topology. Then Qi = �(Pi); i = 1; 2; � � � , is a sequence of orthogonal and
Murray-von Neumann equivalent projections in M(D) which sum to 1 in the strict
topology. Since E1 consists entirely of G-invariant elements it follows that all the
Qi's are G-invariant. Consequently D ' Q1DQ1
K as G-algebras, proving that D
is weakly stable.

�

Two asymptotic homomorphisms ' = ('t)t2[1;1);  = ( t)t2[1;1) : A! B will be
called equi-homotopic when there is a family �� = (��

t )t2[1;1) : A ! B; � 2 [0; 1],
of asymptotic homomorphisms such that the family of maps, [0; 1] 3 � 7! ��

t (a); t 2
[1;1), is equicontinuous for each a 2 A.
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Theorem 3.4. Let A and B be separable G-algebras, B weakly stable. Let ' =
('t)t2[1;1);  = ( t)t2[1;1) : SA ! B be asymptotic homomorphisms. Then the
following are equivalent:

1) ' and  are homotopic (i.e. ['] = [ ] in [[SA;B]]).
2) ' and  are equi-homotopic.
3) There is an asymptotic homomorphism � = (�t)t2[1;1) : SA ! B and a

norm-continuous path fWtgt2[1;1) of G-invariant unitaries in M(M2(B))
such that

lim
t!1

�
't(a)

�t(a)

�
�Wt

�
 t(a)

�t(a)

�
W �

t = 0

for all a 2 A.
Proof. The equivalence 1) , 3) follows from Theorem 3.2 and the implication 2)
) 1) is trivial, so we need only prove that 2) ) 1). To this end, let [[SA;B]]e

denote the set of equi-homotopy classes of asymptotic homomorphisms SA ! B.
Choose G-invariant isometries V1; V2 2M(B) such that V1V

�
1 +V2V

�
2 = 1 and de�ne

a composition in [[SA;B]]e by

['] + [ ] = [(V1'tV
�
1 + V2 tV

�
2 )t2[1;1)] :

It follows from Lemma 3.3 that [[SA;B]]e is a group. It suÆces therefore to show
that the natural map [[SA;B]]e ! [[SA;B]] has trivial kernel. If ' is an asymptotic
homomorphism representing an element in the kernel we conclude from Lemma 3.1
that there is a norm-continuous path Wt; t 2 [1;1), of G-invariant unitaries in
M2(M(B))) and an asymptotic homomorphism  such that

lim
t!1

�
't(a)

 t(a)
0
0

�
�
�
Wt

W �

t

�� 0
 t(a)

0
0

��
W �

t

Wt

�
= 0

for all a 2 SA. By a standard rotation argument we can remove the unitaries�
Wt

W �

t

�
via an equi-homotopy and we see in this way that ['] + [ ] = [ ] in

[[SA;B]]e. Hence ['] = 0 in [[SA;B]]e.
�

Simple examples show that the implications 1)) 2) and 1)) 3) of Theorem 3.4
generally fail in [[A;B]].

4. The main results

Let A and B be separable C�-algebras. Set

M(B)G = fx 2M(B) : G 3 g 7! g � x is norm-continuousg
and

Q(B)G = fx 2 Q(B) : G 3 g 7! g � x is norm-continuousg:
Then

0 // B // M(B)G // Q(B)G // 0 (4.1)

is a short exact sequence of G-algebras. (This is not trivial - the surjectivity of the
quotient map follows from Theorem 2.1 of [Th1].) We are going to construct a map
� : [[SA;Q(B)G 
 K]] ! Ext(SA;B 
 K)h. The key to this is another variant of
the Voiculescu's tri-diagonal projection trick from [V]. Let b be a strictly positive
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element of B
K, 0 � b � 1. A unit sequence in B
K is a sequence fung1n=0 � B
K
such that

0) there is a continuous function fn : [0; 1]! [0; 1] which is zero in a neighbour-
hood of 0 and un = fn(b),

1) 0 � un � 1 for all n = 0; 1; 2; 3; � � � ,
2) un+1un = un for all n,
3) limn!1 unx = x; x 2 B 
K,
4) limn!1 kg � un � unk = 0; g 2 G.

Let feijg1i;j=0 be the matrix units acting on l2(B 
 K) in the standard way.

Lemma 4.1. Let U = fung be a unit sequence in B 
K. Then

p
u0e00 +

1X
j=1

p
uj � uj�1e0j

converges in the strict topology to a partial isometry V in L(l2(B 
 K)) such that
V V � = e00.

Proof. Let b = (b0; b1; b2; � � � ) =
P1

i=0 biei 2 l2(B 
K). Then

k
mX
j=n

p
uj � uj�1e0j(b)k2 = k

mX
k;j=n

b�k
p
uk � uk�1

p
uj � uj�1bjk

= k
mX
k=n

b�k(uk � uk�1)bk +
m�1X
k=n

b�k
p
uk � uk�1

p
uk+1 � ukbk+1+

m�1X
k=n

b�k+1

p
uk+1 � uk

p
uk � uk�1bkk

� k
mX
k=n

b�kbkk+ 2

vuutkm�1X
k=n

b�kbkk
vuutk mX

k=n+1

b�kbkk

proving that
P1

j=1

p
uj � uj�1e0j(b) converges in l2(B 
 K). And

k(
mX
j=n

p
uj � uj�1e0j)

�(b)k2 = k
mX
j=n

b�0(uj � uj�1)b0k;

proving that also (
P1

j=1

p
uj � uj�1e0j)

�(b) converges in l2(B 
 K). It follows that

V =
p
u0e00 +

1X
j=1

p
uj � uj�1e0j

exist as a strict limit in L(l2(B 
 K)). It it then straightforward to check that
V V � = e00. �

Let PU = V �V and note that PU is tri-diagonal with respect to the matrix units
feijg. Fix now a continuous and homogeneous section � for the map qB 
 idK :
M(B)G
K ! Q(B)G
K. Consider an equicontinuous asymptotic homomorphism
' = ('t)t2[1;1) : A ! Q(B)G 
 K. Let F1 � F2 � F3 � � � � be a sequence of �nite
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sets with dense union in A and K1 � K2 � K3 � � � � a sequence of compact subsets
in G such that

S
nKn = G. It is easy to see that there is a unit sequence fung in

B 
K with the following properties :

5) kun�('t(a))� �('t(a))unk � 1
n
; a 2 Fn; t 2 [1; n+ 1],

6) k(1 � un)(�('t(ab)) � �('t(a))�('t(b)))k � k't(ab) � 't(a)'t(b)k + 1
n
; t 2

[1; n+ 1]; a; b 2 Fn,
7) k(1�un)(�('t(a+b))��('t(a))��('t(b)))k � k't(a+b)�'t(a)�'t(b)k+

1
n
; t 2 [1; n+ 1]; a; b 2 Fn,

8) k(1�un)(g ��('t(a))��('t(g �a)))k � kg �'t(a)�'t(g �a)k+ 1
n
; t 2 [1; n]; a 2

Fn; g 2 Kn.

Let f'tngn2N be a discretization of ', cf. Lemma 5.1 of [MT1], such that

9) tn � n for all n 2 N .

Set

e'(a) = PU(
1X
j=0

�('tj+1(a))ejj)PU :

Then e' : A! L(l2(B
K)) is an equivariant �-homomorphismmodulo K (l2(B
K)).
By identifying L(l2(B 
 K)) with M(B 
 K), K (l2(B 
 K)) with B 
 K and the
quotient L(l2(B 
 K))=K (l2(B 
 K)) with Q(B 
 K), we can consider e' as a mape' : A!M(B 
 K) with the property that qB
K Æ e' 2 HomG(A;Q(B 
K)).
Lemma 4.2. The class of qB
K Æ e' in Ext(A;B 
K)h is independent of the choice
of unit sequence, subject to the conditions 0)-8), and of the chosen discretization,
subject to condition 9), and depends only on the class ['] of ' in [[A;Q(B)G 
 K]].
Proof. Let fvng be another unit sequence satisfying 0)-8). There is then a unit
sequence fwng in B
K such that wnvn = vn; wnun = un for all n. Connect u0 to w0

by a straight line, then u1 to w1 by a straight line, etc. This gives a path fwtngt2[0;1[
of unit sequences. For each t 2 [0; 1[ we get then a map �t : A ! M(B 
 K) such
that qB
K Æ�t 2 HomG(A;Q(B
K)) and [qB
K Æ�0] = [qB
K Æ e'] in Ext(A;B
K).
Let Æ : A ! M(B 
 K) be the map obtained from ' as e' was, but by using fwng
instead of fung. Then limt!1 �t(a) = Æ(a) in the strict topology for all a 2 A, and

lim
t!1

�t(a)�t(b)� �t(ab) = Æ(a)Æ(b)� Æ(ab);

lim
t!1

�t(a+ �b)� �t(a)� ��t(b) = Æ(a + b)� Æ(a)� �Æ(b);

lim
t!1

�t(a
�)� �t(a)

� = Æ(a�)� Æ(a)�

lim
t!1

�t(g � a)� g � �t(a) = Æ(g � a)� g � Æ(a)
in norm for all a; b 2 A; � 2 C ; g 2 G. Hence [qB
KÆÆ] = [qB
KÆe'] in Ext(A;B
K)h.
The same argument with the unit sequence fung replaced by fvng shows that the
class of [qB
K Æ e'] in Ext(A;B 
 K)h is independent of the choice of unit sequence.
Once this is established it is clear that a homotopy of asymptotic homomorphisms
A! Q(B)G
K gives rise, by an appropriate choice of unit sequence, to a homotopy
which shows that [qB
K Æ e'] 2 Ext(A;B 
K)h only depends on the homotopy class
of '. That [qB
K Æ ~'] is also independent of the discretization and only depends on
the homotopy class of ' follows in the same way as in Lemma 5.3 and Lemma 5.4
of [MT1].

�



THE CONNES-HIGSON CONSTRUCTION IS AN ISOMORPHISM 11

It follows that we have the desired map � : [[A;Q(B)G 
 K]] ! Ext(A;B 
 K)h
which is easily seen to be a semi-group homomorphism.

Lemma 4.3. Let ' : SA ! Q(B) 
 K be an equivariant �-homomorphism which
we consider as a (constant) asymptotic homomorphism. Let X be a compact subset
with dense span in SA and choose a unit sequence U = fung in B 
 K such that

kpun � un�1�('(a))� �('(a))
p
un � un�1k < 2�n (4.2)

for all a 2 X and
1X
j=1

kg �puj � uj�1 �
p
uj � uj�1k2 <1 (4.3)

for all g 2 G. Then [qB
K Æ e'] = [� Æ'] in Ext(SA;B
K), where � : Q(B)G
K !
Q(B 
 K)G is the natural embedding.

Proof. e' has the form

e'(a) = PU(
1X
j=0

�('(a))ejj)PU :

Let V 2 L(l2(B
K)) be the partial isometry de�ning PU and note that g �V �V 2
K (l2(B 
 K)) for all g 2 G because of (4.3). Thus�

V 1� V V �

1� V �V �V �

�
is a unitary in M2(L(l2(B 
 K))) which is G-invariant modulo M2(K (l2(B 
 K)))
and satis�es that�

V 1� V V �

1� V �V �V �

��e' 0
0 0

��
V � 1� V �V

1� V V � �V
�
=

�
'0 0
0 0

�
;

where

'0(a) = (
p
u0�('(a))

p
u0 +

1X
j=1

p
uj � uj�1�('(a))

p
uj � uj�1)e00:

Thanks to (4.2) the have that

1X
j=1

kpuj � uj�1�('(a))
p
uj � uj�1 � (uj � uj�1)�('(a))k <1

for all a 2 X. Since
P1

j=1(uj � uj�1)�('(a)) + u0�('(a)) = �('(a)) (with conver-
gence in the strict topology) we �nd that '0(a) = �('(a))e00 modulo K (l2(B 
K))
for all a 2 X, and hence in fact for all a 2 SA. This proves the lemma.

�

Since A is separable, [[SA;X
K]] = lim�!D
[[SA;D
K]] for any G-algebraX, when

we take the limit over all separable G-subalgebras D of X. It follows from [DL] that
the suspension map S : [[SA;X
K]]! [[S2A; SX
K]] is an isomorphism.3 Hence

3Dadarlat and Loring did not consider the equivariant theory in [DL], but it is easy to check
that their arguments carry over unchanged.
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[[SA;� 
 K]] is a homotopy invariant and half-exact functor on the category of
G-algebras (and not only separable G-algebras). There is therefore a map

@ : [[SA; SQ(B)G 
 K]]! [[SA;B 
 K]]
arising as the boundary map coming from the extension (4.1), cf. e.g. [GHT]. Well-
known arguments from the K-theory of C�-algebras, cf. [Bl], show that [[SA; SM(B)G

K]] = [[SA;M(B)G
K]] = 0, so the six-terms exact sequence obtained by applying
[[SA;� 
 K]] to (4.1) shows that @ is an isomorphism. For any G-algebra D we
let s : D ! D 
 K be the stabilising �-homomorphism given by s(d) = d 
 e for
some minimal projection e 2 K. Since B is weakly stable there is an equivariant
�-homomorphism 0 : B
K ! B such that s Æ0 : B
K ! B
K is equivariantly
homotopic to idB
K. Let  : Q(B 
 K)G ! Q(B)G the �-isomorphism induced by
0.

Lemma 4.4. The composition of the maps

[[S2A;B 
 K]] @�1 // [[S2A; SQ(B)G 
 K]]

S�1 // [[SA;Q(B)G 
K]] � // Ext(SA;B 
 K)h CH // [[S2A;B 
 K]]
is the identity.

Proof. We are going to use Theorem 2.3 of [H-LT].4 Let x = s�([idSB]) 2 [[SB; SB

K]], where [idSB] 2 [[SB; SB]] is the element represented by the identity map of SB
and s : SB ! SB 
 K is the stabilising �-homomorphism. By Theorem 2.3 of
[H-LT] it suÆces to identify the image of x under the Bott-periodicity isomorphism
[[SB; SB 
 K]] ' [[S2B;B 
 K]] and show that the image of that element is not
changed under the map we are trying to prove is always the identity. This is what
we do. Under the isomorphism [[SB; SB 
 K]] ' [[S2B;B 
 K]], coming from
Bott-periodicity, the image of x is represented by the asymptotic homomorphism
S2B ! B 
 K arising by applying the Connes-Higson construction to the Toeplits
extension tensored with B :

0 // B 
 K // T0 
 B // SB // 0: (4.4)

In other words, if ' : SB ! Q(B 
 K) is the Busby invariant of (4.4) the image of
x in [[S2B;B
K]] is [CH(')]. For each separable G-subalgebra D � Q(B)G we let
�D : D ! Q(B)G denote the inclusion. Then the boundary map @ : [[S2B; SQ(B)G

K]]! [[S2B;B 
K]] is given by

@(z) = lim
D
[CH(�D)
 idK] � z;

where � denote the composition product in E-theory. Hence @�1[CH(')] is the
element z 2 [[S2B; SQ(B)G 
 K]] with the property that

lim
D
[CH(�D)
 idK] � z = [CH(')]

for all large enough D. Let � : Q(B)G
K ! Q(B
K)G be the natural embedding.
By the naturality of the Connes-Higson construction,

[CH(�D)
 idK] � S([s Æ  Æ ']) = [CH(� Æ s Æ  Æ ')]
4The equivariant theory was not explicitly considered in [H-LT], but all arguments carry over

unchanged.
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for all separable G-subalgebras D � Q(B)G which contains  Æ '(SB). Since s Æ 0
is equivariantly homotopic to the identity map, we have that

[CH(� Æ s Æ  Æ ')] = (s Æ 0)�[CH(')] = [CH(')];

so we conclude that @�1[CH(')] = S([s Æ  Æ ']). Hence � Æ S�1 Æ @�1[CH(')] =
[� Æ s Æ  Æ '] by Lemma 4.3. Thus the image of [CH(')] in [[S2B;B 
 K]] under
the composite map is CH[� Æ s Æ  Æ '] = (s Æ 0)�[CH(')] = [CH(')]. The proof is
complete. �

Lemma 4.5. Let � 2 Ext(SA;B 
 K). Then ' = s Æ  Æ � is an equivariant �-
homomorphism ' : SA! Q(B)G
K such that �['] = s�Æ�[�] in Ext(SA;B
K)h
and such that ['] = 0 in [[SA;Q(B)G
K]] implies that [�] = 0 in Ext(SA;B
K).
Proof. If ['] = 0 in [[SA;Q(B)G 
 K]], there is a path �s; s 2 [0; 1], of asymptotic
homomorphisms SA! Q(B)G
K such that �0 = ' and �1 = 0 and a unit sequence
U = fung in B 
 K such that

qB
K Æ e�s; s 2 [0; 1]; (4.5)

connects qB
K Æ e' to 0. By Theorem 3.4 we may assume that � is an equi-homotopy
and it is then easy to see that (4.5) is a strong homotopy. By Lemma 2.4 we
conclude from this that [qB
K Æ e'] = 0 in Ext(SA;B 
 K). But [qB
K Æ e'] = ['] in
Ext(SA;B 
 K) by Lemma 4.3. Hence �['] = s� Æ �[�] in Ext(SA;B 
 K)h and
['] = 0 ) s� Æ �[�] = 0 in Ext(SA;B 
 K). To complete the proof it suÆces to
show that s� Æ � : Ext(SA;B
K)! Ext(SA;B
K) is injective. However,  is an
equivariant �-homomorphism and therefore � is an isomorphism. The injectivity of
s� : Ext(SA;B)! Ext(SA;B 
 K) follows from the weak stability of B : There is
a G-invariant isometry V 2 M(B 
 K) such that x 7! V �s(x)V is an equivariant
�-automorphism B 
 K ! B 
 K and s(x) = AdV (V �s(x)V ). Since AdV induces
the identity map on Ext(SA;B
K) we see that s� : Ext(SA;B)! Ext(SA;B
K)
is an isomorphism.

�

Lemma 4.6. The map CH : Ext(SA;B)! [[S2A;B]] is injective.

Proof. Consider an extension � 2 Ext(SA;B 
K) and assume that [CH(�)] = 0 in
[[S2A;B 
 K]]. With the notation from Lemma 4.5 we �nd that

CH Æ �['] = CH[s Æ  Æ �] = s� Æ �[CH(�)] = 0:

But then Lemma 4.4 implies that ['] = 0 in [[SA;Q(B)G
K]]. By Lemma 4.5 this
yields the conclusion that [�] = 0 in Ext(SA;B
K). Thus CH : Ext(SA;B
K)!
[[S2A;B 
 K]] is injective. But B is weakly stable so the result follows. �

The surjectivity of CH : Ext(SA;B)! [[S2A;B]] follows from Lemma 4.4. Fur-
thermore, it follows from Lemma 4.6 that � is well-de�ned as a map � : [[SA;Q(B)G

K]]! Ext(SA;B 
 K) and then Lemma 4.4 tells us that

CH�1 = � Æ S�1 Æ @�1:

Another description of CH�1 can be obtained from [MT2]. The crucial construction
for this is the map E which was considered in [MT1] and [MT2], inspired by [MM]
and [MN]. However, in [MT1] and [MT2] we only de�ned E as a map into homotopy
classes of extensions, so to see that the E-construction can also invert the CH-map
of Lemma 4.6 we must show that it is well-de�ned as a map from homotopy classes
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of asymptotic homomorphisms to stable unitary equivalence classes of extensions.
Let us therefore review the construction.
Given an equicontinuous asymptotic homomorphism ' = f'tgt2[1;1) : A! B we

choose a discretization f'tigi2N such that limi!1 ti =1 and limi!1 supt2[ti;ti+1] k't(a)�
'ti(a)k = 0 for all a 2 A. Since G is �-compact (and ' equicontinuous) we can also
arrange that

lim
i!1

sup
t2[ti;ti+1]

sup
g2K

kg � 't(a)� 't(g � a)k = 0

for all a 2 A and all compact subsets K � G. To de�ne from such a discretization
a map � : A ! L(l2(Z)
 B) we introduce the standard matrix units eij; i; j 2 Z,
which act on the Hilbert B-module l2(Z)
 B in the obvious way. Then

�(a) =
X
i�1

'ti(a)eii

de�nes a map � : A ! L(l2(Z)
 B). As in the proof of Lemma 2.1 we can de�ne
a representation of G on l2(Z)
 B and in this way obtain a representation of G as
automorphisms of L(l2(Z)
 B). Since B is weakly stable we can identify B with
K (l2(Z)
 B)), the B-compact operators in L(l2(Z)
 B). Observe that � is then
an equivariant �-homomorphism modulo B. Furthermore, �(a) commutes modulo
B with the two-sided shift T =

P
j2Zej;j+1 which is G-invariant. So we get in this

way a G-extension

E(') : A! Q(B) = L(l2(Z)
 B)=K (l2(Z)
 B)

such that
E(')(f 
 a) = f(T )�(a)

for all f 2 C(T); a 2 A. Here and in the following we denote by S the image in
Q(B) = L(l2(Z)
 B)=K (l2(Z)
 B) of an element S 2 L(l2(Z)
 B).

Lemma 4.7. E(') is a semi-invertible G-extension, and up to stable unitary equiv-
alence it does not depend on the chosen discretization of '.

Proof. Consider another discretization ('si)i2N of ' and de�ne	 : A! L(l2(Z)
B)
by

	(a) =
X
i�0

's�i+1
(a)eii:

There is then a G-extension �E(') : C(T) 
A! L(l2(Z)
B)=K (l2(Z)
B) such
that �E(')(f 
 a) = f(T )	(a). It suÆces to show that �E(')�E(') is unitarily

equivalent to an asymptotically split G-extension. De�ne � : A ! L(l2(Z) 
 B)
such that

�(a) =
X
i�1

'ti(a)eii +
X
i�0

's�i+1
(a)eii:

There is then a G-extension �0 : C(T) 
 A ! L(l2(Z) 
 B)=K (l2(Z) 
 B) such
that �0(f 
 a) = f(T )�(a). �E(') � E(') is clearly unitarily equivalent (via a

G-invariant unitary) to �0 � 0, so it suÆces to show that �0 is asymptotically split.
For each n we de�ne �n : A! L(l2(Z)
 B) by

�n(a) =X
i>n

'ti(a)eii +
X

1�i�n

'tn(a)eii +
X

fi�0: s�i+1�tng

'tn(a)eii +
X

fi�0: s�i+1>tng

'si(a)eii:
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Then f�ngn2N is a discrete asymptotic homomorphism such that limn!1 k�n(a)�
�n+1(a)k = 0, limn!1 kg��n(a)��n(g�a)k = 0; g 2 G, limn!1 kT�n(a)��n(a)Tk =
0 and �n(a) = �(a) modulo K (l2(Z)
B). By convex interpolation and an obvious
application of the C�-algebra

ff 2 Cb([1;1);M(B)) : qB(f(t)) = qB(f(1)); t 2 [1;1)g=C0([1;1); B)

we get an asymptotic homomorphism (�t)t2[1;1) : C(T)
A !M(B) = L(l2(Z)
B)
such that �0 = qB Æ �t for all t.

�

Theorem 3.4 and Lemma 4.7 in combination show that there is group homo-
morphism E : [[SA;B]] ! Ext(C(T) 
 SA;B) such that E['] = [E(')] for any
equicontinuous asymptotic homomorphism ' : SA ! B. By pulling extensions
back along the inclusion S2A � C(T) 
 SA we can also consider E as a map
E : [[SA;B]]! Ext(S2A;B). Let � : SA! S3M2(A) be a �-homomorphism which
is invertible in KK-theory. By weak stability of B there is also an isomorphism
� : [[S2A;B]]! [[S2M2(A); B]]. Let � : S

2 ! K be the asymptotic homomorphism
which arises from the Connes-Higson construction applied to the Toeplits extension.
By changing � 'by a sign' we may assume that the composite map

[[S2A;B]]
� // [[S2M2(A); B]]

[']7![�
']
// [[S4M2(A); B]]

(S�)�
// [[S2A;B]]

is the identity. Consider the diagram

Ext(SA;B)

CH
��

Ext(S3M2(A); B)
��oo

CH
��

[[S2A;B]]

EÆ�
66lllllllllllll

[[S4M2(A); B]]:
(S�)�

oo

(4.6)

The square commutes by the naturality of the Connes-Higson construction, and it
follows from Lemma 2.3 of [MT2] (or Lemma 5.5 of [MT1]) that (S�)�ÆCH ÆEÆ� =
id. We conclude therefore that CH Æ �� Æ E Æ � = id. We have now obtained our
main results :

Theorem 4.8. Let A and B be separable G-algebras, B weakly stable. CH :
Ext(SA;B)! [[S2A;B]] is an isomorphism with inverse �� Æ E Æ �.

Theorem 4.9. Let A and B be separable G-algebras, B weakly stable, and let ';  :
SA! Q(B) be two G-extensions. The following conditions are equivalent :

1) ['] = [ ] in Ext(SA;B) (i.e. ' and  are stably unitarily equivalent).
2) There is an asymptotically split G-extension � 2 HomG(SA;Q(B)) such that

'� � is strongly homotopic to  � �.
3) ' and  are homotopic.

Proof. 1) ) 2) follows from Lemma 6.1 of [Th1]. 2) ) 3) follows from the easily
established fact that an asymptotically split G-extension is homotopic to zero. 3)
) 1) follows from Theorem 4.8. �
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It is not so clear how much of these results survive when the quotient C�-algebra is
not a suspension. It may be that CH : Ext�1=2(A;B)! [[SA;B]] is an isomorphism,
but if one wants to be able to handle all extensions it is necessary to work with a
suspended C�-algebra as the quotient algebra. Indeed, the construction of Anderson,
[A], of the �rst separable C�-algebra for which the approach of [BDF] does not give
a group can easily be seen to give an extension of a separable C�-algebra A by K
which is not semi-invertible.

Remark 4.10. Our results combine nicely with the work of Kirchberg from [Ki] to
shed new light on the relation between E-theory and KK-theory. Recall that Connes
and Higson constructed a natural transformation KK(A;B) ! E(A;B) which is
an isomorphism when A is nuclear. In [S] Skandalis demonstrated that the map can
fail to be injective by exhibiting a separable C�-algebra A for which E(A;A) = 0
while KK(A;A) 6= 0.
It follows from Theorem 4.8 that the natural transformationKK(A;B)! E(A;B)

of Connes and Higson can be identi�ed with the obvious map Ext�1(SA;B
K)!
Ext(SA;B 
 K). Hence the examples of Kirchberg, [Ki], show that KK(A; C ) !
E(A; C ) can fail to be surjective. Speci�cally, let G be a countable discrete and non-
amenable subgroup of a connected Lie-group. Kirchberg constructed in [Ki] an ex-
tension of SC�r (G) by K which is not semi-split. This means that Ext�1(SC�r (G);K)!
Ext(SC�r (G); K) is not surjective and hence KK(C�r (G); C ) ! E(C�r (G); C ) is not
surjective. It follows therefore that the functor KK(C�r (G);�) is not half-exact,
thus answering a question raised by Skandalis in [S].
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