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Abstract

In this paper we present a logical interpretation of all the facets of the set packing
polytope. The approach is based on results obtained in probabilistic logic (probabilis-
tic satis�ability) and reveals an interesting connection between probabilistic logic and
integer linear programming.
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1 Introduction

The aim of this paper is to give a logical interpretation of all the facets of the set packing
polytope. Our interpretation explains why all the particular facets are necessary in the
description of the set packing polytope. To the best of our knowledge such an explanation
has not been given before. Most of the literature on the set packing polytope has concen-
trated on deriving facets of the polytope in an algebraic way, see for example Balas and
Zemel [7] and Padberg [13], but none of these papers gives a logical explanation on why
the facets are necessary in the description of the set packing polytope.

There are examples in integer linear programming where it is possible to give an explicit
description of all the facets of the convex hull of the feasible set (i.e. the convex hull of a
set of integral points), and furthermore, a logical interpretation of the facets can be given.
Probably the best known example is the matching polytope which we will brie
y review.
Let G = (V ; E) be a simple undirected graph with verticeset V = f1; 2; : : : ; ng and edgeset
E = fe1; e2; : : : ; emg. A matching M� E is a subset of edges such that each node in the
subgraph G(M) = (V ;M) is met by at most one edge. We need some more notation:

� Let v 2 V . De�ne �(fvg) = fe 2 Eje is incident to vg.

� Let U � V . De�ne E(U) = fe 2 Ejboth ends of e are in Ug. So E(V) = E .
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� Let U � V . Then U is an odd set of vertices if the cardinality jU j of U is odd and
at least 3.

� Bm is the set of binary m-vectors.

The matching polytope is de�ned as the convex hull of the constraints (1):

P
e2�(fvg) xe � 1; 8v 2 V

x 2 Bm:
(1)

It is well-known that the convex hull of the constraints (1) is given by the constraints (2):

P
e2�(fvg) xe � 1; 8v 2 V

P
e2E(U) xe � (jU j � 1)=2; for all odd sets U � V

x 2 IRm
+ :

(2)

We now see that it is possible to give a logical explanation of all the facets of the matching
polytope. The �rst set of constraints expresses the fact that in a matching M each node
is met by at most one edge, whereas the second set of constraints expresses the fact that
a matching M can have at most (jU j � 1)=2 edges with both ends inside an odd set of
vertices U (so, say, inside a set of 5 vertices there can be at most two edges).

With the matching polytope as a motivating example we will show how to give a logical
interpretation of all the facets of the set packing polytope. It turns out that the theory of
probabilistic logic provides us with the tools to do so.

Probabilistic logic originally dates 150 years back to Boole [10] but was reinvented by
Nilsson [12]. In the past 15 years probabilistic logic has been an interesting research topic,
and many new results have been obtained, see Andersen [1, 2], Andersen and Hooker
[3, 4, 5], Andersen and Pretolani [6], Chandru and Hooker [8], Georgakopoulus et al. [9],
and Hansen et al. [11]. A short review of probabilistic logic is given in Section 2.

The results obtained in Andersen [1] are the ones used in this paper to obtain a logical
interpretation of the facets for the set packing polytope. For any digraph the paper
describes a set of logical sentences (propositional formulas) which can be represented
by that particular digraph. It is assumed that each sentence is true with some �xed
probability (which might be one). The probabilistic satis�ability problem (PSAT) is to
determine whether or not the assignment of probabilities to the sentences is consistent.
In the paper a complete characterization of the probabilities which can consistently be
assigned to the sentences is given in terms of a set covering polytope. This set covering
polytope is de�ned as the convex hull of binary solutions to a set of linear constraints with
coe�cients 0 and 1 and with exactly two entries di�erent from 0 in each row. This is the
key observation in order to obtain a logical interpretation of the facets of the set packing
polytope. To elaborate a bit on this, a constraint in the set covering problem has the form
x1 + x2 � 1, where x1 and x2 are binary variables. Using the complementary variables
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�x1 � 1� x1 and �x2 � 1� x2 we obtain a constraint in a set packing problem �x1 + �x2 � 1.
Furthermore, any set packing problem can be expressed using inequalities with exactly
two entries di�erent from zero in each row. This gives the connection between any set
packing problem and set covering problem with exactly two 1's in each row. This will be
explained in detail in Section 4.

The logical interpretation of the facets of the set packing polytope will follow the lines:

� Given any set packing polytope it is possible to associate a set of logical sentences
with it.

� Each point in the set packing polytope represents an assignment of probabilities
which can consistently be assigned to the logical sentences. Any point outside the
set packing polytope is not a consistent assignment of probabilities to the sentences.

� Therefore each facet of the set packing polytope can be given the logical interpreta-
tion that it gives a necessary condition on the probabilities which can consistently
be assigned to the sentences. The set of facets of the set packing polytope describes
the necessary and su�cient conditions that a consistent assignment of probabilities
to the sentences should ful�l.

The results obtained in this paper reveal a surprising and interesting connection between
integer linear programming and probabilistic logic. Integer linear programming typically
concerns the description of the convex hull of integral points satisfying a set of linear
constraints, whereas probabilistic logic (probabilistic satis�ability) aims to describe the
set of probabilities which can consistently be assigned to some set of logical sentences. It
is very interesting to note that two seemingly distinct disciplines such as integer linear
programming and probabilistic satis�ability do in fact have something to contribute to
each other.

The remaining parts of the paper is organized as follows. In Section 2 we give a short
introduction to consistency in probabilistic logic. In Section 3 we review some results
obtained in Andersen [1] on logical sentences represented by digraphs. The section contains
a complete characterization of the probabilistic satis�ability problem (PSAT) for sentences
represented by digraphs. Section 4 shows how to give a logical interpretation of all the
facets of a set packing problem. Finally, Section 5 contains the conclusions.

2 Consistency in probabilistic logic

In this section we give a short introduction to consistency in probabilistic logic. For a
comprehensive introduction to probabilistic logic we refer to Chandru and Hooker [8].

The problem of consistency in probabilistic logic, also called probabilistic satis�ability or
PSAT for short, is de�ned as follows:

Let S = fS1; : : : ; Smg be a set of m logical sentences de�ned on a set of n
propositional variables X = fx1; : : : ; xng with the usual connectives _ (dis-
junction), ^ (conjunction), and : (negation). Denote by � = (�1; : : : ; �mg a

3



probability vector such that �i = Pr(Si is true), i = 1; : : : ; m, where Pr is short
for probability. Determine whether or not this assignment of probabilities to
the sentences is a consistent assignment.

To answer this question we need to understand what is meant by the probability of a
logical sentence. Let a possible world be an assignment of values true or false to the n

propositional variables. There are N = 2n possible worlds. Let p = (p1; : : : ; pN)
t be a

probability distribution over the set of possible worlds. Then we say that the probability
of a logical sentence is the sum of the probabilities of the possible worlds in which the
sentence is true.

Let A be an m�N matrix such that aij = 1 if sentence Si is true in possible world j, and
aij = 0, otherwise. Let e be an N -vector of ones. Then PSAT asks if there is a probability
distribution p such that the system (3) has a solution:

Ap = �
etp = 1
p � 0:

(3)

Notice that � is a consistent assignment of probabilities to the logical sentences in question
if and only if � can be written as a convex combination of the columns of A. Clearly, it is
su�cient to consider the distinct columns of A.

Example 1

Suppose we have four logical sentences S1; S2; S3 and S4 de�ned on four propositional
variables x1; x2; x3 and x4:

S1 : x1
S2 : x1 ! x2
S3 : (x1 ^ x2)! x3
S4 : (x2 ^ x3)! x4:

For convenience we have used the connective ! (implies). This connective can be ex-
pressed using the usual connectives as follows: S1 ! S2 () :S1 _ S2.

Suppose the possible worlds are ordered (x1; x2; x3; x4) = (0; 0; 0; 0); (x1; x2; x3; x4) =
(0; 0; 0; 1); (x1; x2; x3; x4) = (0; 0; 1; 0); : : : ; (x1; x2; x3; x4) = (1; 1; 1; 1). Then A is given
by:

A =

8>><
>>:

0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 0 0 0 0 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1
1 1 1 1 1 1 0 1 1 1 1 1 1 1 0 1

9>>=
>>;

Assign probabilities � = (�1; �2; �3; �4) to the four logical sentences, where �i = Pr(Si
is true), i = 1; : : : ; 4. Then � is a consistent assignment of probabilities to the four logical
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sentences if and only if there is a probability distribution p = (p1; : : : ; p16)
t, such that

Ap = � has a solution.
2

Our intention is to �nd a set of necessary and su�cient conditions on the probability vector
� which ensures that PSAT has an a�rmative answer. To do that, PSAT is expressed in
a slightly di�erent way:

min 0 � p
s.t.

Ap = �
etp = 1
p � 0:

(4)

Then PSAT has a positive answer if and only if the optimal value of (4) is equal to zero.
The dual of (4) is:

max y0 + �ty

s.t.
e � y0 + yA � 0:

(5)

This leads to the following theorem

Theorem 1 ([11]) PSAT has an a�rmative answer if and only if the inequality
(1; �)t � (y0; y) � 0 holds for all extreme rays (y0; y) of (5).

3 Logical sentences represented by digraphs

In this section we review some of the results in Andersen [1]. Let D = (V ;A) be a directed
simple graph with verticeset V = f1; : : : ; ng and arc-set A. We let this digraph represent
n logical sentences de�ned on n propositional variables x1; x2; : : : ; xn as follows:

� If a node, say node j, has no incoming arcs then it represents the logical sentence
Sj de�ned by: Sj � xj .

� If node r has several incoming arcs, for instance arcs from nodes i1; i2; : : : ; it, then
node r represents the logical sentence Sr de�ned by: Sr � (xi1 ^ xi2 : : :^ xit)! xr.

Notice that, given a possible world (x1; x2; : : : ; xn), the corresponding column in A is the
truth values of the n logical sentences. So what we are looking for is a set of probability
vectors � such that � can be written as a convex combination of the columns of A, i.e. a
convex combination of truth values of the n logical sentences. Therefore, let us also de�ne
yj = v(Sj); j = 1; : : : ; n to be the truth value of sentence Sj . So given any possible world
(x1; x2; : : : ; xn) we can evaluate the truth values v(Sj); j = 1; 2; : : : ; n. The corresponding
column in A is given by (y1; y2; : : : ; yn).

Example 2

Consider the directed graph below
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Figure 1.

We associate propositional variables x1; x2; x3 and x4 with the four nodes in the digraph.
The digraph represents the set of logical sentences:

S1 : x1
S2 : x1 ! x2
S3 : (x1 ^ x2)! x3
S4 : (x2 ^ x3)! x4:

which happens to be exactly the sentences used in example 1.

To each of the four nodes we assign a y-variable. The y's have the interpretation that they
are the truth values of the logical sentences corresponding to the four nodes, i.e.

y1 = v(S1); y2 = v(S2); y3 = v(S3); y4 = v(S4):

In this tiny example it turns out that the distinct columns of A are exactly the set of 0�1
solutions to the following set of inequalities:

y1 + y2 � 1
y1 + y3 � 1
y2 + y3 � 1
y2 + y4 � 1
y3 + y4 � 1:

These equations can be rewritten as: fy 2 B4 j Ey � 1g where E is the edge-node
incidence matrix for the underlying (undirected) graph of the digraph, B4 is the set of
4-dimensional f0; 1g- vectors and 1 is a column vector of 1's of appropriate dimension
(equal to the number of arcs in the digraph).

2

In Example 2 the set of distinct columns of A could be characterized using the edge-node
incidence matrix for the underlying (undirected) graph of the digraph. This property
holds true in general.
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Theorem 2 ([1]) Suppose we have a set of logical formulas represented by a digraph. Then
the distinct columns of A is exactly the set of solutions to the system fy 2 BnjEy � 1g

where E is the edge-node incidence matrix for the underlying graph of the digraph.

Theorem 2 gives rise to a characterization of the probability vectors � which can consis-
tently be assigned to a set of logical sentences represented by a digraph. This theorem is
the one giving rise to the interpretation presented in this paper.

Theorem 3 ([1]) Suppose we have a set of logical formulas represented by a digraph.
Then � is a consistent assignment of probabilities to the logical sentences if and only if
� 2 convfy 2 BnjEy � 1g where E is the edge-node incidence matrix for the underlying
graph of the digraph and conv is short for convex hull.

Combining Theorems 1 and 3 we obtain the following result.

Theorem 4 Suppose we have a set of logical formulas represented by a digraph. Let E
denote the edge-node incidence matrix for the underlying graph of the digraph.
Then convf� 2 BnjE� � 1g is given by the following set of linear inequalities:
(1; �)t � (y0; y) � 0, where (y0; y) is an extreme ray of (5).

Actually, the result given in Theorem 4 is rather evident (and well-known). It holds true
for all matrices E. For arbitrary matrices E the matrix A in the system (5) should have
a column for every binary solution to E� � 1.

4 A logical interpretation of the facets of the set packing

polytope

In this section we use the results described in section 3 to obtain a logical interpretation
of all the facets of the set packing polytope.

Let E be an m � n matrix with entries 0 or 1. The set packing polytope is de�ned as
convf�� 2 BnjE�� � 1g.

Remark: It may seem a bit odd that we use the variables �� in the de�nition of the set
packing polytope instead of the usual variables x. The reason for this choice is that it will
make the presentation of the results in this section more easy to understand.

Consider an equation ��1+ ��2+ : : :+ ��r � 1. The set of binary solutions to this inequality
can be expressed equivalently as the set of binary solutions to the set of inequalities
��i + ��j � 1; 1 � i < j � r. In particular it can be assumed that E has exactly two
positive entries (1's) in each row (the case with less than two positive entries in a row is
not interesting).

The procedure to obtain a complete logical interpretation of the facets of the set packing
polytope is outlined below:

1. Formulate the set packing polytope as the convex hull convf�� 2 BnjE�� � 1g where
E is an m� n 0� 1 matrix with exactly two positive entries in each row.
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2. By complementing variables (�j � 1 � ��j ; j = 1; : : : ; n), transform the problem
into the problem of determining the convex hull of a set covering problem convf� 2
BnjE� � 1g.

3. E is the edge-node incidence matrix for a graph G. Give the edges in G arbitrary ori-
entations. The resulting digraph represents a set of logical sentences S1; S2; : : : ; Sn.
Determine the A matrix for these sentences as described in Section 2, where aij is
the truth value of sentence Si in possible world j. Duplicate columns in A should
be removed.

4. Using Theorem 4 a complete description of the convex hull of the set covering prob-
lem can be obtained:

convf� 2 BnjE� � 1g is given by the following set of linear inequalities: (1; �)t �
(y0; y) � 0, where (y0; y) is an extreme ray of f(y0; y)je � y0 + yA � 0g.

We can give a logical interpretation of the facets of the set-covering problem given
above:

Consider one of the facets, say �1 + �2 + � � �+ �t � b, of the set covering
polytope convf� 2 BnjE� � 1g. This inequality states that the sum of
the probabilities of the �rst t sentences S1; S2; : : : ; St represented by the
digraph should be at least b, because otherwise �1; : : : ; �n is not a consis-
tent assignment of probabilities to the logical sentences S1; S2; : : : ; Sn.

5. Complementing variables again, a complete description of the convex hull of the set
packing polytope convf�� 2 BnjE�� � 1g is obtained.

We can give a logical interpretation of the facets of the set packing problem given
above:

First notice that if �j is the probability that sentence Sj is true, then
��j = 1� �j is the probability that the complementary sentence �Sj � :Sj
to sentence Sj is true. A constraint in the set packing polytope is obtained
by complementing the variables in the set covering polytope. Therefore,
if �1 + �2 + � � �+ �t � b is a constraint in the set covering polytope, then
��1 + ��2 + � � � + ��t � t � b is a constraint in the set packing polytope
(and vice versa). The logical interpretation of this constraint is that the
sum of probabilities assigned to sentences �S1; �S2; : : : ; �St should be at
most t � b because otherwise ��1; : : : ; ��n it is not a consistent assignment
of probabilities to the logical sentences �S1; �S2; : : : ; �Sn:

The above procedure shows that given any set packing problem convf�� 2 BnjE�� � 1g

where E is an m�n 0�1 matrix, it is possible to de�ne a set of logical sentences �S1; : : : ; �Sn
such that the facets of the set packing polytope describes exactly what a consistent as-
signment of probabilities to the logical sentences should ful�l. This is the main result in
this paper and is given in Theorem 5.
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Theorem 5 Given a set packing polytope it is possible to give a logical interpretation of
all the facets of the polytope.

Further notice, that solving the probabilistic satis�ability problem for the set of formulas
represented by digraphs has exactly the same complexity as �nding the convex hull of a
set packing problem.

Example 3

In this example we will demonstrate how to give a logical interpretation of the facets of
the set packing polytope de�ned by (6):

��1 + ��2 + ��3 � 1
��2 + ��4 � 1

��3 + ��4 � 1
��j 2 f0; 1g; j = 1; : : : ; 4:

(6)

First the set of constraints (6) is expressed equivalently as:

��1 + ��2 � 1
��1 + ��3 � 1
��2 + ��3 � 1
��2 + ��4 � 1
��3 + ��4 � 1
��j 2 f0; 1g; j = 1; : : : ; 4:

(7)

Complementing variables ��j = 1� �j j = 1; : : : ; 4, we obtain:

�1 + �2 � 1
�1 + �3 � 1
�2 + �3 � 1
�2 + �4 � 1
�3 + �4 � 1
�j 2 f0; 1g; j = 1; : : : ; 4:

(8)

The constraint matrix in (8) is the edge-node incidence matrix for the graph shown in
Figure 2:
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Figure 2.

Now assign arbitrary orientations to the edges in the graph in Figure 2. Suppose we obtain
the directed graph shown in Figure 1. As shown earlier this digraph represents the set of
logical sentences:

S1 : x1
S2 : x1 ! x2
S3 : (x1 ^ x2)! x3
S4 : (x2 ^ x3)! x4:

As shown in Example 2 we can determine the A matrix for this particular set of sentences,
as well as the set of linear constraints that the truth values of the sentences should ful�l.
This linear system is exactly the system (8).

Using Theorem 4 we can �nd the convex hull of (8) by �nding the extreme rays of the
following set of constraints:

y0 + y2 + y3 + y4 � 0
y0 + y2 + y3 � 0
y0 + y1 + y3 + y4 � 0
y0 + y1 + y2 + y4 � 0
y0 + y1 + y2 + y3 � 0
y0 + y1 + y2 + y3 + y4 � 0

yj free; j = 0; : : : ; 4:

(9)

The extreme rays (y0; y) of (9) is given by:

(2;�1;�1;�1; 0); (2; 0;�1;�1;�1); (�1; 1; 0; 0; 0); (�1; 0; 1; 0; 0); (�1; 0; 0; 1; 0), and
(�1; 0; 0; 0; 1).

Using (1; �)t � (y0; y) � 0, the convex hull of (8) is determined by the set of constraints
(10):

� �1 � �2 � �3 � �2
� �2 � �3 � �4 � �2
�j � 1; j = 1; : : : ; 4:

(10)
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We can give a logical explanation of the two constraints in (10):

Suppose we assign probabilities � = (�1; �2; �3; �4) to the four sentences S1; � � � ; S4,
where �i is the probability that sentence Si is true.

The �rst constraint in (10) states that the sum of probabilities assigned to
sentences S1; S2 and S3 should be at least 2. If this is not so, the assignment
of probabilities to the sentences is not a consistent assignment.

The second constraint in (10) states that the sum of probabilities assigned to
sentences S2; S3 and S4 should be at least 2. If this is not so, the assignment
of probabilities to the sentences is not a consistent assignment.

Complementing variables we obtain the convex hull to the system (7) (and (6)).

��1 + ��2 + ��3 � 1
��2 + ��3 + ��4 � 1

��j � 0; j = 1; : : : ; 4:
(11)

We are now in a position to give a logical interpretation of the constraints in (11):

Recall that if �j is the probability that sentence Sj is true, then 1� �j is the probability
that the complementary sentence �Sj to sentence Sj is true. The complementary sentences
is shown below:

�S1 : :x1
�S2 : x1 ^ :x2
�S3 : x1 ^ x2 ^ :x3
�S4 : x2 ^ x3 ^ :x4:

The �rst constraint in (11) states that the sum of probabilities assigned to
sentences �S1; �S2 and �S3 should be at most 1. If this is not so, the assignment
of probabilities to the sentences is not a consistent assignment.

The second constraint in (11) states that the sum of probabilities assigned to
sentences �S2; �S3 and �S4 should be at most 1. If this is not so, the assignment
of probabilities to the sentences is not a consistent assignment.

In this particular example the logical interpretation of the two facets is rather intuitive.
For example, consider the �rst facet corresponding to the three sentences �S1; �S2 and
�S3. If any one of these sentences is true, then the other two are false. For instance,
suppose sentence �S2 is true. Then the propositional variable x1 is true and the variable
x2 is false. In particular sentences �S1 and �S3 are false. It follows that the sum of a
consistent assignment of probabilities to sentences �S1; �S2 and �S3 can be at most one
(because otherwise there will be a possible world with at least two of the three sentences
true, and this is not possible).

2
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5 Conclusions

In this paper we have shown that it is possible to give a logical explanation as to why all
the facets of the set packing polytope are in fact necessary and su�cient in the description
of the polytope. Associated with any set packing polytope is a set of logical sentences.
Any of these sentences are assumed to be true with some probability. It turns out that a
facet of the set packing polytope is necessary in the description of the polytope because
the facet gives a necessary condition on the consistency of the probabilities assigned to
the sentences.
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