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Abstract

In this paper we propose a new method to solve biobjective combinatorial optimization
problems of the max-ordering type. The method is based on the two-phases method
and ranking algorithms to eÆciently construct K best solutions for the underlying
(single objective) combinatorial problem. We show that the method overcomes some
of the diÆculties of procedures proposed earlier. We illustrate this by an example and
discuss the diÆculties in extending it to more than two objectives.
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1 Introduction

Max-ordering (MO) problems are multicriteria optimization problems in which the goal is

to minimize the worst of several objective functions. They can be formulated as follows.

min
x2S

max
i=1;:::;Q

fi(x); (1)

where fi(x) denotes the objective functions of the problem. The problem is denoted max-

ordering instead of min-max in order not to confuse terminology with single objective

problems, i.e. minx2S maxe2xwe, which �nds solutions where the largest weight is minimal,

e.g. the path where the largest edge-weight is minimal. Max-ordering problems arise in

various applications, see Rana and Vickson [23] or Warburton [29], and as subproblems

in interactive methods for the solution of multicriteria optimization problems such as the
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GUESS method (Buchanan [3]), STEM (Benayoun et al. [2]), and the interactive weighted

Tchebyche� method (Steuer and Choo [25]).

In this paper we consider max-ordering problems in a combinatorial context, i.e. we assume

that S is a �nite set, e.g. the set of paths between two nodes of a network, or the set of

spanning trees of a graph.

There is a number of previous research papers on this topic (Ehrgott [5], Hamacher and

Ruhe [15], Murthy and Her [21], Ehrgott et al. [9]). See also Ehrgott and Gandibleux

[8] for more references. Various authors observed that, even in the bicriteria case, max-

ordering problems are usually NP-complete. The methods proposed for their solution

include branch and bound (Rana and Vickson [23]), labeling algorithms (for shortest path

problems, Murthy and Her [21]) and ranking methods (Ehrgott [5], Hamacher and Ruhe

[15]), that is the application of algorithms to �nd K best solutions of (single objective)

combinatorial problems.

We also propose methods involving ranking algorithms actually overcoming the main prob-

lem of the method proposed in Hamacher and Ruhe [15], at least for the case of two objec-

tives, see the discussion after Algorithm 1. Our method also overcomes a weakness of the

method proposed in Murthy and Her [21], see Section 4. We combine the ranking method

with the two-phases method originally developed for the determination of all Pareto opti-

mal solutions of bicriteria combinatorial optimization problems, Ulungu and Teghem [27],

and so far, successfully applied to a number of such problems. We mention Ehrgott [6],

Lee and Pulat [18] for network 
ow, Ulungu and Teghem [26] and Vis�ee et al. [28] for

knapsack, Ulungu and Teghem [27] for assignment, and Ramos et al. [22] for spanning

tree problems.

2 Basic Results

In this section we introduce some notation for multicriteria (combinatorial) optimization

and we prove some basic results which will justify the correctness of our method.

Consider a multicriteria optimization problem

min
x2S

ff1(x); : : : ; fQ(x)g:

We use the notation f(x) = (f1(x); : : : ; fQ(x)) for the vector of objective functions. A

feasible solution x� is called Pareto optimal, if there is no x 2 S such that f(x) � f(x�)

and f(x) 6= f(x�), where � is understood component-wise. The set of Pareto optimal

solutions of S is denoted Par(S). If x� is Pareto optimal, f(x�) is called eÆcient.
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In multiobjective combinatorial optimization, Pareto optimal solutions can be classi�ed

into supported and unsupported Pareto optimal solutions. The former are those x� for

which there exists a weighting vector � = (�1; : : : ; �Q) such that

f(x�) = min
x2S

QX
i=1

�ifi(x):

The existence of unsupported Pareto optimal solutions is a characteristic property of

multiobjective combinatorial optimization problems.

We shall also use the notation g(x) = maxi=1;:::;Q fi(x) for the max-ordering objective

value of a feasible solution x 2 S. With these de�nitions we are ready to prove some basic

results. The �rst one is wellknown, see e.g. Hamacher and Ruhe [15]. We state the proof

for completeness.

Lemma 1 There is at least one optimal solution of the max-ordering problem minx2S g(x)

which is Pareto optimal.

Proof : Suppose x� is an optimal solution of the max-ordering problem, but is not Pareto

optimal. Since S is �nite, there must then exist a feasible solution x 2 S dominating

x�, i.e. such that fi(x) � fi(x
�) for i = 1; : : : ; Q with one strict inequality. Because

g(x) � g(x�), it follows that x also solves the max-ordering problem optimally.

The next Lemma is speci�cally stated for two objectives. It formalizes the argument that

the maximum of two functions is minimal, if the objective values are as equal as possible.

Its proof is immediate from the de�nition of the max-ordering problem and Lemma 1.

Lemma 2 Let Par(S) = fx1; : : : ; xpg be the set of Pareto optimal solutions of a bicriteria

combinatorial optimization problem. Assume that f1(xi) � f1(xi+1) and f2(xi) � f2(xi+1)

for 1 = 1; : : : ; p� 1 and de�ne K := minfi : f2(xi) < f1(xi)g. Then the following hold.

1. If K = 1; x1 solves the max-ordering problem.

2. If K =1; xp solves the max-ordering problem.

3. Otherwise xK or xK�1 (or both) solve the max-ordering problem.

A special case occurs if there is a Pareto optimal solution with both objectives equal.

Lemma 3 If there is a Pareto optimal solution such that f1(x) = f2(x) then x also

minimizes g(x).
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These three lemmas state that we can restrict our search for a solution for a minimizer of

g(x) to Pareto optimal solutions, with their two objectives as equal as possible. In other

words, Pareto optimal max-ordering solutions will be located close to the halving line

f1 = f2 in criterion space. Lemma 2 suggests to rank Pareto optimal solutions according

to increasing values of f1 (or f2). This strategy would, however, imply the generation of

supported and unsupported Pareto optimal solutions. And with the desired max-ordering

solutions expected to be centrally located in the Pareto set, we would expect to enumerate

half of all Pareto optimal solutions, involving excessive computational e�ort. Taking the

diÆculty of generating unsupported solutions into account (see Ehrgott [7]), we propose

a di�erent approach.

Our algorithm makes use of the information of Lemmas 1 to 3 in a more intelligent way

and proceeds in two phases.

3 The Algorithm

First, we look for the two supported Pareto optimal solutions for which f1(xi) � f2(xi) and

f1(xj) > f2(xj); j > i; according to the order of Lemma 2. We shall call them x1 and x2

in the algorithm. To do so, we start with solutions x1 and x2 minimizing objectives f1 and

f2, respectively. We then proceed to solutions where the di�erence of objective values is

smaller. When this is no longer possible, we will either have one supported Pareto optimal

solution with f1(x) = f2(x), or we end up with two neighboring supported Pareto optimal

solutions, say x1 and x2 such that f1(x1) < f2(x1) and f1(x2) > f2(x2). According to

Lemma 3, the �rst case solves minx2S g(x), and any other Pareto optimal solution must

have one objective value smaller and one bigger than x. Of course, it may happen that one

of the objectives dominates the other completely, i.e. minx2S f1(x) � maxx2Par(S) f2(x)

(cases 1 or 2 in Lemma 2). In this case the problem is trivial, and we can easily detect it

when computing x1 and x2 for the �rst time.

Should we terminate Phase 1 with two solutions, we will have to investigate unsupported

solutions in the right-angled triangle de�ned by the hyperplane through the point f(x�)

with normal � and (g(x�); g(x�)), where x� is the current best solution, see Figure 2. For

this we use the ranking algorithm. In fact, f(x1) and f(x2) uniquely de�ne weights �1; �2

such that both x1and x2 are optimal solutions of

min
x2S

�1f1(x) + �2f2(x):

We can now apply a ranking algorithm to �nd second, third, ... best solutions for this

problem, in order to �nd unsupported solutions in the identi�ed triangle. A similar pro-
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cedure was proposed for the identi�cation of all unsupported Pareto optimal solutions in

Coutinho-Rodrigues et al. [4].

The algorithm will stop if we encounter a solution x with f1(x) = f2(x), as this must be

the optimal solution we are looking for, or �1f1(x)+�2f2(x) � g(x�); because any further

solutions will no longer be in the triangle and therefore no longer a candidate for a MO

optimal solution. In the latter case, the currently best solution is the optimal solution of

the max-ordering problem.

Algorithm - Phase 1

1. Solve minx2S f1(x), let x1 be the optimal solution and let f11 := f1(x1); f
1
2 = f2(x1).

2. If f11 � f12 STOP, x� = x1 is an optimal solution.

3. Solve minx2S f2(x), let x2 be the optimal solution and let f21 := f1(x2); f
2
2 = f2(x2).

4. If f22 � f21 STOP, x� = x2 is an optimal solution.

5. If f(x1) = f(x2) STOP, x
� = x1 (or x2) is an optimal solution.

6. Let x� := argminfg(x1); g(x2)g be the currently best solution.

7. Let �1 := f12 � f22 ; �2 := f21 � f11 .

8. Solve minx2S �1f1(x) + �2f2(x), let x3 be the optimal solution and let f31 := f1(x3);

f32 = f2(x3).

9. If f31 = f32 STOP, x� = x3 is an optimal solution.

10. If x3 = x2 or x3 = x1 call Phase 2(�1; �2).

11. If f31 < f32 then x1 = x3; f
1
1 = f31 ; f

1
2 = f32 .

12. If f31 > f32 then x2 = x3; f
2
1 = f31 ; f

2
2 = f32 .

13. Go to 6.

The idea of the �rst phase is illustrated in Figure 1. With solutions x1 and x2 we compute

the normal to the line connecting (f11 ; f
1
2 ) and (f21 ; f

2
2 ). This normal serves as a weighting

vector for combining the two objectives, and its negative is the direction in which we

search for a new supported Pareto optimal solution which is eventually found at x3 with

objective values (f31 ; f
3
2 ).
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f2

f1

n = (f12 � f22 ; f
2
1 � f11 )

(f11 ; f
1
2 )

(f21 ; f
2
2 )

(f31 ; f
3
2 )

Figure 1: Illustration of Search Direction in Phase 1

We remark that the values �1; �2, identi�ed at the end of Phase 1, are the best choice of �

in the method proposed by Hamacher and Ruhe [15] and will overcome the problem that

for an unfortunate choice of �, that method turns out to be complete enumeration of all

feasible solutions.

Algorithm - Phase 2

1. K := 3.

2. Use a K-best algorithm to �nd the K-best solution of minx2S �1f1(x) + �2f2(x).

Denote this solution xK.

3. If �1f1(x
K) + �2f2(x

K) � g(x�) STOP, x� is an optimal solution.

4. If f1(x
K) = f2(x

K) STOP, x� = xK is an optimal solution.

5. If f1(x
K) > f21 then K := K + 1, go to 2.
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6. If f2(x
K) > f12 then K := K + 1, go to 2.

7. K := K + 1, If g(xK) < g(x�) then x� := xK, go to 2.

We illustrate the algorithm on an example. In Figure 2 we show the objective values of 6

feasible points indexed in the order of their generation.

f2

f1

f(x1)

f(x2)

f(x3)

f(x4)
f(x5)

f(x6)

Figure 2: Illustrative Example

In Phase 1, x1 and x2 will be generated �rst. Weights �1 and �2 are computed corre-

sponding to the normal to a line connecting f(x1) and f(x2) and x� = x2. Solution of

the weighted sum problem in Step 8 results in x3. Since f1(x3) < f2(x3); f
1
1 and f21 are

replaced by the objective values of x3. The current best x
� is updated to x3. The second

weighted sum problem uses updated �'s corresponding to the normal to the line connect-

ing f(x2) and f(x3). Assume x3 is returned as optimal solution. Thus no new supported

Pareto optimal solution is found, and we continue with Phase 2 to investigate the earlier

de�ned triangle. Note that the supported solution x4 is not generated in Phase 1.

We know that x3 and x2 are �rst and second best solutions of the weighted sum problem,
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therefore we are searching for the third best by searching in direction �. This turns out to

be x4, which is discarded as not being in the triangle (f2(x4) > f2(x3) = g(x�)). So we set

K = 4, identify x5 as the next solution, which passes all tests. In our example x5 replaces

x3 as the current best solution and K is set to 5. The next solution is x6, the combined

objective value of which is larger than that of the third corner point of the triangle. We

will therefore �nd no further points in the triangle and stop with the optimal solution

x� = x5.

Remark 1 In Phase 2 the following situation might occur: The solution of the weighted

sum problem is another supported Pareto optimal solution which is, as x1 and x2, optimal

for the weighted sum problem. Its objective function vector lies on the line between f(x1)

and f(x2). In this case, this point creates two new and smaller triangles. We can restrict

search to the one which is intersected by the halving line f1 = f2.

4 Lagrange Relaxation of Max-Ordering Problems

In this section we describe why Lagrange relaxation of max-ordering problems with linear

objective functions does not work. This approach has earlier been suggested as a pruning

method for a label correcting approach in Murthy and Her [21].

Consider the usual reformulation of (1)

min z

s.t. z � fi(x) 8 i = 1; : : : ; Q
x 2 S

z 2 IR:

(2)

A Lagrange relaxation of the �rst set of constraints in (2) is an appealing thing to do,

as it simpli�es the constraints to the original ones. This leads to the following problem,

where � is the vector of Lagrange multipliers:

min z +
PQ

i=1 �i(fi(x)� z)
s.t. x 2 S

� � 0:

Rearranging the objective function leads to

min
x2S

 
1�

X
i

�i

!
z +

QX
i=1

�ifi(x);

where
P

i �i = 1 to avoid an unbounded problem (since z 2 IR). We thus end up with the
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following simple problem

min
PQ

i=1 �ifi(x)
s.t. x 2 S

� � 0PQ
i=1 �i = 1:

(3)

The multipliers are determined in the Lagrangian dual of (2), which has the objective

function

max
�

min
x2S

QX
i=1

�ifi(x); (4)

where the multipliers still have to ful�ll the convexity constraints. (4) is easily solved by

minimizing fi(x) for all i, and then setting �i = 1 for the largest fi(x).

We conclude that this approach will in fact return the worst possible Pareto optimal

solution to our original problem (1) in the bicriteria case. With more than two objectives,

worse solutions may exist.

5 K-best Algorithms

As we propose the use of ranking algorithms, our method is obviously restricted to such

combinatorial optimization problems for which eÆcient methods for �nding K-best solu-

tions are available. We brie
y review some of these here.

The largest amount of research on ranking solutions is available for the shortest path

problem. Algorithms developed by Azevedo et al. [1], Martins et al. [19] or Eppstein [11]

are very eÆcient. The best complexity known is O(m+n logn+K) by Eppstein's method.

However, numerical experiments reported by Martins et al. [20] show their algorithm to

be very competitive. Its complexity is O(m+Kn logn).

The second problem for which several methods are known, is the minimum spanning tree

problem. We mention papers by Gabow [12] and Katoh et al. [16]. The best known

complexity is O(Km+min(n2;m log log n)).

In the seventies and eighties some general schemes for ranking solutions of combina-

torial optimization problems have been developed by Lawler [17] and Hamacher and

Queyranne [14]. The application of the latter led to algorithms for matroids (Hamacher

and Queyranne [14]), with the special case of uniform matroids discussed in Ehrgott [5].

The complexity of the latter is O(K(n+m)+minfn logn; nmg). Finally, an algorithm to

rank (integer) network 
ows was presented in Hamacher [13]. Its complexity is O(Knm2):

We note that only algorithms allowing the construction of solutions with the same objective

function values are applicable in our method. This is evident from the fact that at the

9



beginning of Phase 2, we have x1 and x2 as optimal, i.e. �rst and second best solutions of

the weighted sums problem.

6 Discussion

The algorithm we propose solves the max-ordering problem for two criteria. It works

eÆciently, as it restricts search (in general) to a small subset of feasible solutions, where

max-ordering solutions can be found. As it starts its search from supported Pareto optimal

solutions which are much easier to generate than unsupported ones, it will in general

enumerate only few solutions. It thereby resolves the diÆculties of the ranking method

proposed by Hamacher and Ruhe [15] in which the construction of an appropriate � was

an open question.

In addition, for large scale problems, when even the intelligent search applied in our

algorithm might result in the enumeration of many feasible solutions (after all the problem

is NP-complete), the algorithm can be stopped at any time with the current best as an

approximate solution. By computing g(x�)�gLB , where gLB is a lower bound on g, we even

have a bound on the distance from the real optimal solution. gLB can easily be calculated

and updated in Phase 1 in a straightforward manner. Initially, gLB = maxff11 ; f
2
2 g with

updates occurring whenever x1 or x2 is updated.

A natural question is the extension of the algorithm to more than two objectives. With

such an endeavor we encounter two major diÆculties. The �rst one is that problems with

at least three objectives cannot be reduced to subproblems with two objectives only. Thus,

in the multicriteria case all criteria have to be considered simultaneously.

Example 1 Consider a combinatorial problem with three objectives and the following set

of eÆcient vectors (objective vectors of Pareto optimal solutions)

8<
:
0
@ 7

5
3

1
A ;

0
@ 6

4
8

1
A ;

0
@ 9

4
2

1
A ;

0
@ 6

8
2

1
A
9=
;

The unique max-ordering solution is the �rst one, with g(x) = 7. However, looking at only

two of the objectives at a time, we obtain the following. For f1; f2 only, the minimal value

of g(x) is attained at the second solution, for f2; f3 it is the third, and for f1; f3 it is the

fourth. Thus none of the bicriteria subproblems yields the true optimal solution.

The second major diÆculty is in the generalization of Phase 1. This problem has been

observed by many researchers applying the method for the generation of all Pareto optimal
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solutions. In contrast to the bicriteria case, there may exist supported eÆcient points,

which lie above (rather than below) a previously constructed hyperplane. For a discussion

see Solanki et al. [24]. This kind of problem is very similar to the problem encountered

in computing Nadir points for problems with at least three objectives see Ehrgott and

Tenfelde [10] for a recent discussion. Further work is required to generalize our method

in order to develop at least a heuristic to �nd a good � in Phase 1 that will enable an

eÆcient application of the ranking algorithms in Phase 2.
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