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Twisted Verma modules

H. H. Andersen and N. Lauritzen

ABSTRACT Using principal series Harish-Chandra modules, local cohomology

with support in Schubert cells and twisting functors we construct certain modules

parametrized by the Weyl group and a highest weight in the subcategory O of

the category of representations of a complex semisimple Lie algebra. These are in

a sense modules between a Verma module and its dual. We prove that the three

di�erent approaches lead to the same modules. Moreover, we demonstrate that

they possess natural Jantzen type �ltrations with corresponding sum formulae.

Let g be a �nite dimensional complex semisimple Lie algebra with a
Cartan subalgebra h � g and Weyl group W . In this paper we consider
twisted Verma modules. These are in a sense representations between a
Verma module and its dual. Fix a highest weight � 2 h�. The twisted
Verma modules Mw(�) corresponding to � are parametrized by the Weyl
group W . They have the same formal character as the Verma moduleM(�)
(but in general not the same module structure). In the a�ne Kac-Moody
setting these modules (turning out to be Wakimoto modules) have been
studied by Feigin and Frenkel [6].
We give three rather di�erent ways of constructing twisted Verma mod-

ules. First we obtain them as images of principal series Harish-Chandra
modules (under the Bernstein-Gelfand-Joseph-Enright equivalence). In this
setting Irving [7] applied wall crossing functors to describe principal series
modules in a regular block inductively (Irving uses the term shu�ed Verma
module for a principal series module in a regular block). His inductive pro-
cedure inspired this work.
Let G be a complex semisimple algebraic group with Lie algebra g, B

a Borel subgroup in G, X = G=B� the 
ag manifold of G, where B� de-
notes the Borel subgroup opposite to B. Let w0 denote the longest word
and e the identity element in the Weyl group W of G. We let C(w) =
BwB�=B� � X denote the Schubert cell corresponding to w 2 W . Notice
that codimC(w) = `(w). It is known that the Verma module M(�) with
integral highest weight � can be realized as the top local cohomology group
H`(w0)
C(w0)

(X;L(w0 � �)) of the line bundle L(w0 � �) with support in the point

C(w0). The dual Verma module can be realized as the bottom local coho-
mology group H0

C(e)(X;L(�)) of the line bundle L(�) with support in the

big cell C(e). Our second construction of twisted Verma modules (which
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was the starting point of this work) are the intermediate local cohomology
groups of the line bundle L(w�1 ��) with support in an arbitrary Bruhat cell
C(w) | these are the modules in the global Grothendieck-Cousin complex

[12]. The intermediate local cohomology groups H`(w)
C(w)(X;L(�)) are isomor-

phic to dual Verma modules for dominant weights �. In this case the global
Grothendieck-Cousin complex is the dual BGG-resolution. Let us be more
precise about the link from local cohomology to principal series modules.
Fix a regular antidominant integral weight �. The principal series mod-
ules M(x; y) in the block O� (under the Bernstein-Gelfand-Joseph-Enright
equivalence) are parametrized by (x; y) 2 W �W . Let C(w) = Bwx0 � X.
Then our result says that

M(x; y) �= H
`(x)
C(x)(X;L(y � �))

as g-modules. Our isomorphism is constructed using wall translation func-
tors and gives a very explicit algorithm for obtaining the g-structure of
the intermediate local cohomology groups (starting from a Verma module).
Notice that the local cohomology approach only makes sense for integral
weights.
Following Arkhipov we may for each w 2 W de�ne twisting functors Tw

of O (by tensoring with the \semiregular" U(g)-bimodule Sw | see Sec-
tion 6.1). When applied to a Verma module, Tw produces a twisted Verma
module. Again it follows quite easily that the modules obtained in this
way satisfy Irving's inductive procedure. This setup is probably the most
powerful for studying twisted Verma modules and turns out to be the key
for showing that the three approaches are isomorphic: the derived functor
LTw is a self-equivalence of the bounded derived category Db(O). This im-
plies that twisted Vermamodules only have constant g-endomorphisms (and
therefore that they are indecomposable g-modules). This property allows
us to deduce the required isomorphisms between the three approaches.
The twisting functors also give the required deformation theory for con-

structing Jantzen �ltrations and proving sum formulas for twisted Verma
modules (which turn out to be twisted versions of the original Jantzen sum
formula). At the end of the paper we have used the sum formula to compute
the structure of all twisted Verma modules in the B2-case.

Acknowledgment.
We are grateful to S. Arkhipov for pointing out the paper [6] of Feigin

and Frenkel and for explaining twisting functors to us during his stay in
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1 Notation and preliminaries

Fix a complex semisimple Lie algebra g with a Cartan subalgebra h. Let
R � h� be the root system associated with (g; h) andZR the lattice of roots
in h�. Fix a basis S of simple roots and let R+ be the positive roots with
respect to S. Let n+ =

P
�>0 g�, n

� =
P

�>0 g��, b = h�n+ and � : g! g

the Chevalley automorphism of g. The positive roots give a partial order �
on h� de�ned by � � � if and only if ��� 2 NR+. The Weyl group W of R
acts naturally on h�. It is generated by simple re
ections (in the hyperplanes
corresponding to the simple roots S). Let `(w) denote the length function
of an element w 2 W . We let e and w0 denote the identity element and
the unique element of maximal length in W respectively. Fix a W -invariant
positive de�nite symmetric bilinear form (�; �) on h� and let �_ denote the
dual root of � 2 R with respect to (�; �). The dot action of W on h� is
given by w � � = w(� + �) � �, where 2� =

P
�>0 �. A fundamental region

for this action is the set C of antidominant weights translated by ��. Let
StabW (�) � W denote the stabilizer subgroup of � 2 h� with respect to the
dot-action. A weight � 2 h� is called regular if StabW (�) = feg and integral
if h�; �_i 2Zfor every � 2 S. We let C� denote the set of regular weights
in C. The enveloping algebra associated with a complex Lie algebra L is
denoted by U(L).

1.1 The category O

Let V be a (left) U(g)-module. For � 2 h�, we let V� = fm 2 M j hm =
�(h)m; for every h 2 hg � V denote the weight space of V corresponding
to �. If V = ��2h�V�, V is called h-diagonalizable.
A highest weight vector of weight � in V is a non-zero vector in V� an-

nihilated by U(n+). A highest weight module is a module generated by a
highest weight vector. We let O (see [4]) denote the full subcategory of the
category of left U(g)-modules consisting of modules V such that

� V is �nitely generated

� V is h-diagonalizable

� V is U(n+)-�nite

Any module in O has a �nite �ltration with highest weight modules as
subquotients. A highest weight module of weight � is a surjective image
of the Verma module M(�) = U(g) 
U(b) C � 2 O. Simple U(g)-modules
are parametrized by their highest weight. We let L(�) denote the simple
module corresponding to the highest weight � 2 h�. Suppose that M =
��2h�M� 2 O. Then the linear dual M� = HomC (M; C ) is not necessarily
h-diagonalizable. This is remedied by putting DM = U(h)-�nite elements
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in M�. In fact
DM = ��2h�M

�
� :

The g-module DM is an object of O after twisting its natural g-action with
�: Xf(m) = f(�(X)m), where X 2 g and f 2 DM . Notice that D then
becomes a duality of O �xing simple modules: DL(�) �= L(�) for � 2 h�.
We let chV =

P
�2h� dimV�e

� denote the formal character of an h-
diagonalizable g-module V with �nite dimensional weight spaces.

Example 1.1. Let V be an h-diagonalizabe g-module with �nite dimen-
sional weight spaces. If chV = chM for some M 2 O, then V 2 O.

Composition factors in Verma modules relate to the dot action by the
fundamental result (Harish-Chandra) that [M(�) : L(�)] 6= 0 implies that
� 2 W � �. The category O decomposes into blocks. We denote for � 2 h�

by O� the block consisting of those M 2 O whose composition factors have
the form L(w � �), where w 2 W . Then O = ��2CO�. We let pr� denote
the projection O ! O�, where � 2 h�. To a pair of weights �; � 2 C, where
� � � is integrable we have the translation functor T �� : O� ! O�. This
functor is de�ned by

T �� (M) = pr�(M 
E);M 2 O�;

where E is the simple �nite dimensional g-module with extremal (integral)
weight �� �. The functors T �� and T �� are adjoint.

De�nition 1.1. Let � 2 C�. Pick � 2 C such that � 2 � + ZR and
Stabw(�) = f1; sg. This de�nes the functor

�s = T �� � T
�

� : O� !O�

called wall translation (translation through the s-wall). Di�erent weights �
with the properties above de�ne naturally isomorphic functors. The mor-
phismM ! �s(M) corresponding to the identity 1 2 Hom(T �� (M); T �� (M))
under the adjunction isomorphism is called the adjunction morphism. We
let Cs(M) denote the cokernel of the adjunction morphism. Thus we have
a short exact sequence

M ! �s(M)! Cs(M)! 0:

Remark 1.1. The functor Cs is called the shu�ing functor in [7].

Remark 1.2. On the level of derived categories the shu�ing functor is a
shadow of the functor

~Cs : X 7! Con(X ! �s(X))

where X 2 Db(O�), Con refers to the mapping cone of a complex and �s is
extended to complexes in the natural way. If X is concentrated in degree
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zero and the adjunction morphism for X is injective, then ~Cs(X) �= Cs(X).
Using the fact that �2s

�= �s+ �s one may prove that ~Cs is a self-equivalence
of Db(O�). We owe this remark to R. Rouquier.

Remark 1.3. For ease of exposition we will restrict ourselves to only con-
sidering representations with integral weights until Section 5.

2 Formal properties of twisted Verma modules

In this section we formalize the properties of twisted Verma modules. We
write down a set of properties that characterize twisted Verma modules in
a block O� up to isomorphism.

2.1 Twisted Verma properties

A family of twisted Verma modules in O consists of twisted Verma modules
in every block O�, where � 2 C. A set of twisted Verma modules M�(x; y)
in O�, where x; y 2 W is subject to the following properties (by abuse of
notation we write M(x; y) for M�(x; y))

i. M(e; e) �=M(�).

ii. M(x; y) �=M(xs; sy) if xs > x and sy > y.

iii. If � 2 C� and ys > y, where s is a simple re
ection, then the adjunction
morphism on M(x; y) is injective and �ts the short exact sequence

0!M(x; y)! �sM(x; y)!M(x; ys)! 0

for every x 2 W .

iv. If � 2 C� and � 2 C, then

T ��M�(x; y) �=M�(x; y):

v. If � 2 C� then

�sM(x; y) �= �sM(x; ys)

if ys > y.

Lemma 2.1. Let M(x; y) be a set of twisted Verma modules in the block
O�, where x; y 2 W . Then M(x; e) �= M(x � �) for every x 2 W and
chM(x; y) = chM(xy � �) for all x; y 2 W .
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Proof. By Property iv) we may reduce to the case, where � 2 C0. By
Property i), M(e; e) �= M(�). Now suppose by induction on `(x) that
M(x; e) �=M(x ��). Pick a simple re
ection, such that xs > x. By Property
ii) it follows that M(xs; s) �= M(x; e). Also by Property v) one gets that
�sM(xs; e) �= �sM(xs; s). By Property iii) M(xs; e) is identi�ed with the
kernel of a non-zero homomorphism �sM(x��)!M(x��). This implies that
M(xs; e) �= M(xs � �) ([9], 2.17). The fact that chM(x; y) = chM(xy � �)
follows from Property iii) and an easy induction on `(y) (cf. loc. cit.).

Theorem 2.1. A family of twisted Verma modules is unique up to isomor-
phism.

Proof. By Property iv) it su�ces to prove uniqueness of a set of twisted
Verma modules in O�, where � 2 C�. Let y = s1 : : : sr be a reduced decom-
position of y 2 W , then

M(x; y) �= Csr : : : Cs1M(x � 0)

by Lemma 2.1 and Property iii).

Corollary 2.1. Let M(x; y) be a set of twisted Verma modules in a block
O�. Then DM(x; y) �=M(xw0; w0y).

Proof. We go through the properties for the modules DM(xw0; w0y). We
may assume that � 2 C0. Property ii) implies that M(w0; w0) �= M(e; e)
and hence that M(w0; w0) �= M(�) by Property i). But M(�) �= DM(�)
as M(�) is simple. To verify Property ii), assume that xs > x and sy >
y. Then write sw0 = w0t for a suitable simple re
ection t and therefore
DM(xsw0; w0sy) �= DM(xw0t; tw0y) �= DM(xw0; w0y). Suppose that ys >
y, then Property iii) follows from applying Property v) and dualizing the
short exact sequence

0!M(xw0; w0ys)! �sM(xw0; w0ys)!M(xw0; w0y)! 0:

Properties iv) and v) are immediate using that translation commutes with
duality D. By Theorem 2.1 we get that DM(x; y) �=M(xw0; w0y).

Lemma 2.2. Suppose that there exists a family of twisted Verma modules
in O admitting only constant g-endomorphisms. A family of modules sat-
isfying all properties of twisted Verma modules except that we only have a
short exact sequence

0!M(x; y)! �sM(x; y)!M(x; ys)! 0

in Property iii) (without any conditions on the morphisms involved) is a
family of twisted Verma modules.
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Proof. Let M 0(x; y) denote the modules in the family of twisted Verma
modules with only constant g-endomorphisms and M(x; y) the modules
in the other family in a regular block O�. We will prove that M 0(x; y) �=
M(x; y) by induction on `(y). As

Endg(M
0
�(x; y)) = Homg(T

�

�M
0
�(x; y); T

�

�M
0
�(x; y));

we get Homg(M 0
�(x; y); �s(M

0
�(x; y))) = C , so that the morphismM(x; y)!

�sM(x; y) in the relaxed Property iii) has to be a constant multiple of the
adjunction morphism. By the proof of Lemma 2.1, M1(x; e) �= M(x; e) �=
M(x � �) (the morphism M(x; e) ! �sM(x; e) in the relaxed Property iii)
has to be a constant multiple of the adjunction morphism). Now suppose
that M1(x; y) �=M(x; y) and let s be a simple re
ection with ys > y. Then

Homg(M(x; y); �sM(x; y)) �= Homg(M1(x; y); �sM1(x; y)) �= C

and we have a commutative diagram

0 ���! M1(x; y) ���! �sM1(x; y) ���! M1(x; ys) ���! 0


 



0 ���! M(x; y) ���! �sM(x; y) ���! M(x; ys) ���! 0

giving an isomorphismM1(x; ys) �=M(x; ys).

Remark 2.1. Using Remark 1.2 one may show that a twisted Verma mod-
ule in a regular block only has constant g-endomorphisms. We need this
result not only in regular blocks but in arbitrary blocks (or at least in
(semiregular) blocks O�, where � is stabilized by at most one simple re
ec-
tion ). This is where the twisting functor approach is very useful. In the
semiregular case C. Stroppel has proved that the principal series modules
admit only constant g-endomorphisms using results of Joseph on completion
functors.

3 Principal series Harish-Chandra modules

Here we recall basic properties of and results on Harish-Chandra modules
following [7] and [10]. The goal is to prove that principal series Harish-
Chandra modules when viewed in O through the categorical equivalence of
Bernstein et. al., form a family of twisted Verma modules. Basically this
has been done by Irving [7]. Here we reformulate his results in our setup.

3.1 De�nition

LetM be a g�g-module and viewM as a g-module through the embedding
X 7! (X;��X). We let

F (M) = fm 2 M j dimU(g)m <1g:
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This is a g � g-submodule of M . A g � g-module M is called a Harish-
Chandra module if F (M) = M . We let H denote the category of Harish-
Chandra modules.

3.2 Constructions

Let M and N be g-modules. Then HomC (M;N) and (M 
C N)� are g� g-
modules. We let

L(M;N) = F (HomC (M;N))

D(M;N) = F ((M 
C N)�)

If M 2 O, then D(M;N) = L(N;DM).

3.3 Principal series modules in O�

Let � 2 C and � a dominant regular weight such that � � � 2ZR. Then

M 7! L(M(�);M)

de�nes an equivalence of O� with a subcategory ~H of H. This result is due
to Bernstein-Gelfand, Joseph, Enright (see Chapter 6 in [10]). The principal
series modules in ~H are

M(x; y) = D(M(y � �);M(x�1 � �))

where x; y 2 W . Via the above equivalence these can be viewed as g-modules
in O�. To stress this we sometimes use the notation M�(x; y).

3.4 Twisted Verma properties

In the following example and propositions we show that principal series
modules satisfy the properties of twisted Verma modules.

Example 3.1. We have the following chain of isomorphisms (� and � as
above)

M(x; e) = D(M(�);M(x�1 � �)) = L(M(x�1 � �);DM(�))

= L(M(x�1 � �);M(�)) = L(M(�);M(x � �))

where the last equality follows from ([10], 7.23). This shows M�(x; e) =
M(x � �) and that Property i) holds for principal series modules.

Proposition 3.1. Suppose that �; �� 2 C. If � 2 C�, then

T
��
�M�(x; y) �=M��(x; y)

for every x; y 2 W .
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Proof. This follows from the corresponding property

T
��
�M(y � �) �=M(y � ��)

for Verma modules and the fact that the translation functor T
��
� becomes

left translation of Harish-Chandra modules under the equivalence M 7!
L(M(�);M) (see [10], 6.33).

This veri�es Property iv). The following proposition shows that Property
iii) holds.

Proposition 3.2. Let � 2 C�. If ys > y, then there is an exact sequence

0!M(x; y)! �sM(x; y)!M(x; ys)! 0;

in O�, where the �rst homomorphism is the adjunction map.

Proof. This is ([7], Theorem 2.1).

The following proposition is Property ii) verbatim.

Proposition 3.3. Let � 2 C�. Suppose that x < xs and sy > y. Then we
have an isomorphism M(x; y) �=M(xs; sy) in O�.

Proof. This is ([7], Theorem 4.4).

By verifying the �ve properties of x2.1 we have proved that the principal
series modules form a set of twisted Verma modules by Theorem 2.1.

4 Local cohomology

Let G be a complex semisimple algebraic group with Lie algebra g, T �
B � G a maximal torus and a Borel subgroup with Lie algebras h and b

respectively. Let X = G=B� be the 
ag manifold of G, where B� is the
Borel subgroup opposite to B and let C(w) denote the B-orbit BwB�=B�

in X. Notice that codimC(w) = `(w). A representation M of B� induces
a G-equivariant vector bundle L(M) on X. We let X(B�) = X(T ) denote
the 1-dimensional representations of B�. Notice that X(T ) can be identi�ed
with the integral weights in h�. In general a G-linearized sheaf F of OX-
modules is naturally a sheaf of Ĝ-modules (where Ĝ is the formal group of
G) ([12], Lemma 11.1) or equivalently a sheaf of Dist(G) �= U(g)-modules.
The local cohomology group Hi

C(X;F) has a natural U(g)-module structure
for any locally closed subset C � X, where i � 0 ([12], Lemma 11.1).
For a B�-representation M and a locally closed subset C � X, we let

Hi
C(M) denote the i-th local cohomology group of L(M) with support in
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C with its natural g-action. By ([12], Lemma 12.8) the local cohomology
groups are h-diagonalizable and

chH
`(w)
C(w)(�) = chM(w � �):

This implies by Example 1.1 that H`(w)
C(w)(�) 2 O (it belongs in fact to the

block O�).

4.1 Basic properties of local cohomology

Local cohomology exists only in one degree in the following sense.

Proposition 4.1. Let V be a vector bundle on X and C an irreducible
a�nely embedded locally closed subset of X of codimension `. Then

Hi
C(X;V ) = 0 if i 6= `:

Proof. On the level of sheaves Hi
C(V ) = 0 if i 6= `, since X is Cohen

Macaulay and C irreducible of codimension `. Now one uses the local to
global spectral sequence

Hp(X;Hq

C(V )) =) Hp+q
C (X;V )

and the higher cohomology vanishing Hp(X;Hq

C(V )) = 0; p > 0, which
follows from the assumption that C is a�nely embedded, to deduce the
result.

Proposition 4.2. Let V be a B� representation, C a locally closed sub-
set of X and E a �nite dimensional g-representation. Then there is an
isomorphism

Hi
C(V 
 E) �= Hi

C(V )
C E

of g-modules for i � 0.

Proof. We may lift E to a G-representation. On the level of G-sheaves
we have an isomorphism L(V 
C E) �= L(V ) 
C E. This extends to an
isomorphism of Ĝ-sheaves giving the desired result.

4.2 Principal series modules and local cohomology

We emphasize the following important lemma.

Lemma 4.1 (Kashiwara). Let � 2 S be a simple root, w 2 W and sup-
pose that � 2 X(T ) with h�; �_i � �1 and that ws� < w. Then there is an
isomorphism

H
`(w)
C(w)(�)

�= H
`(w)�1
C(ws�)

(s� � �)

of g-modules.
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Proof. This is Lemma 3.6.6 in [11].

Fix � 2 C� \ X(T ). We will prove that

H`(x)
C(x)(y � �)

satis�es the properties of twisted Verma modules, thereby showing the iso-
morphism

M(x; y) �= H
`(x)
C(x)(y � �)

between principal series modules in O� and local cohomology. Kashiwara's
lemma is the key input for proving Property ii). In the above notation it
states

Lemma 4.2 (Kashiwara'). Let � 2 S be a simple root and let x; y 2 W ,
such that x < xs� and s�y > y. Then there is an isomorphism

H`(x)
C(x)(y � �)

�= H`(x)+1
C(xs�)

(s�y � �)

of g-modules.

The above lemma is the content of Property ii) for local cohomology mod-
ules.

Proposition 4.3. There is an isomorphism

H0
C(e)(�)

�= DM(�)

of g-modules for any (integral) weight � 2 X(T ).

Proof. This is Proposition 3.6.2 in [11].

The above proposition shows that Property i) holds for local cohomology
modules.

4.3 Translation and local cohomology

Proposition 4.4. Let 0! K ! V ! L! 0 be an exact sequence of B�

modules. Then we get an exact sequence

0! Hi
C(w)(K)! Hi

C(w)(V )! Hi
C(w)(L)! 0

of g-modules for every i � 0 and w 2 W .

Proof. This follows from the long exact sequence and Proposition 4.1.

Let �(�) denote the weights in the �nite dimensional simple representation
with extremal (integral) weight �. We have the following special case of a
well known lemma due to Jantzen ([9], 2.9).
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Lemma 4.3. Let y 2 W and �; � 2 C, where � 2 C� and ��� is integral.
Then

W � � \ (y � �+�(�� �)) = fy � �g:

If StabW (�) = f1; sg, then

W � � \ (y � �+�(�� �)) = fy � �; ys � �g:

The following proposition shows that local cohomology modules satisfy
Properties iii) and iv) of twisted Verma modules with the exception that
one only has the short exact sequence in Property iii) (not knowing that the
injection is the adjunction morphism). This unpleasant feature is resolved
through Lemma 2.2 and the construction of twisted Verma modules using
twisting functors (see Sections 6.4 and 6.7).

Proposition 4.5. Suppose that y 2 W and �; � 2 C, where � 2 C�. Then

T ��H
i
C(w)(y � �) = Hi

C(w)(y � �):

If StabW (�) = f1; sg and ys �� > y ��, then we have a short exact sequence

0! Hi
C(w)(y � �)! T ��H

i
C(w)(y � �) ! Hi

C(w)(ys � �) ! 0

for every i � 0 and w 2 W .

Proof. We use Proposition 4.2:

T ��H
`(w)
C(w)(y � �) = pr�(H

`(w)
C(w)(y � �)
C E)

= pr�H
`(w)
C(w)(y � � 
E)

where E is the �nite dimensional simple module with extremal weight ���.
Observe that Hi

C(w)(�) 2 O� for arbitrary i � 0; w 2 W and � 2 X(T ).

Now take a B�-�ltration N = N0 � N1 � : : : of N = y � � 
 E, such
that Ni=Ni+1 = �i and i < j =) �i 6< �j . Then use Proposition 4.4 and
Lemma 4.3 to get the desired result.

Remark 4.1. Notice that we have proved the duality statement

DH`(w)
C(w)(X;L(�))

�= H`(ww0)
C(ww0)

(X;L(w0 � �))

of g-modules for arbitrary integral weights � and Schubert cells C(w). This
follows from Corollary 2.1.
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5 Reformulation of formal properties of twisted

Verma modules

In this section we reformulate the properties in Section 2 describing a family
of twisted Verma modules. This is partly because we want to introduce a
new notation which is more natural in the setup in the following sections
and partly because we want to generalize to the case of non-integral weights.
Of course, the principal series modules considered in Section 3 also exist
for non-integral weights (and in fact our de�nitions and results in Section
3 immediately generalize to this case, see [7]).
We �x an arbitrary weight �0 2 h� and set � = �0 +ZR 2 h�=ZR. Then

R(�0) = f� 2 R j h�0; �_i 2Zg is a root system with corresponding Weyl
group W (�0) = fw 2 W j w(�0) � � 2 ZRg. A weight � 2 � is called
dominant (respectively antidominant) if h� + �; �_i � 0 (respectively � 0)
for all � 2 R(�0) \R+.
We de�ne O� to be the subcategory of O consisting of those M whose

weights all belong to �.

De�nition 5.1. A family of twisted Verma modules in O� is a collection
of modules (Mw(�)) parametrized by � 2 � and w 2 W (�0) such that
Mw(�) 2 O�. It is required to have the following properties

i) M e(�0) =M(�0) for some regular antidominant weight �0 2 �.

ii) Let w; y; s 2 W (�0), where s is a simple re
ection. If ws > w and
w�1y < sw�1y then we have an isomorphismMw(y � �0) �= Mws(y � �0).

iii) Let w; y; s 2 W (�0), where s is a simple re
ection. If w�1y > w�1ys
then we have a short exact sequence

0!Mw(y � �0)! �sM
w(y � �0)!Mw(ys � �0)! 0:

iv) For every antidominant weight � 2 � we have T ��0M
w(�) =Mw(�) for

all w 2 W (�0); � 2 W (�0) � �
0.

In the next section we construct a family of twisted Verma modules and
prove that all its modules have 1-dimensional endomorphism rings. Just as
in Lemma 2.2 this shows that for any family of twisted Verma modules the
�rst homomorphism in the exact sequence appearing in Property iii) is (up
to a nonzero scalar) the adjunction morphism. As in Section 2 this leads to
the following results

Theorem 5.1. There is a unique family of twisted Verma modules in O�.

Corollary 5.1. If (Mw(�))�2�;w2W (�0) is a family of twisted Verma mod-
ules then DMw(�) =Mww0(�) for all � 2 �; w 2 W (�0).
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Remark 5.1. The correspondence between the above concept of a family
of twisted Verma modules and the previously considered one is given by

M(x; y) = DMx(xy � �0):

It is straightforward to get the properties of M(x; y) in 2.1 from the corre-
sponding properties above.

6 Twisting functors

In this section we consider the twisting functors introduced by Arkhipov
[2].

6.1 The semiregular modules

Let g = n� � h � n+ be the triangular decomposition of our semisimple
complex Lie algebra g as in Section 1. Recall that b = h � n+ is the Borel
subalgebra corresponding to R+. We shall write U = U(g), N = U(n�) and
B = U(b).
The natural ZR-grading on g (where elements in h have degree 0 and

elements in g� have degree �, � 2 R) gives rise to a grading on U ,

U �=
M
�2ZR

U�:

Let ht : ZR ! Zbe the Z-linear height function with ht(�) = 1 for all
simple roots �. Then we get a Z-grading U �= �n2ZUn, where

Un =
M

ht(�)=n

U�; n 2Z:

Note that the subalgebra N � U is negatively graded with N�
0 = C .

For w 2 W we consider the subalgebra nw = n� \ w�1(n+) of n�. The
corresponding enveloping algebra Nw = U(nw) is then a (negatively) graded
subalgebra of U with (Nw)0 = C . Note that Ne = C and Nw0 = N .
The (graded) dual of Nw is N�

w = �n�0HomC ((Nw)n; C ). This is a Z-
graded bimodule over Nw with (N�

w)n = HomC ((Nw)�n; C ); n 2Z. The left
action of Nw on N�

w is given by xf : n 7! f(nx); f 2 N�
w; x; n 2 Nw. The

right action is de�ned similarly.
Then we de�ne the corresponding semiregular module Sw by

Sw = U 
Nw N
�
w:

Clearly, Sw is a left U -module and a right Nw-module. It is a non-trivial
fact (see the theorem below) that Sw is in fact a U -bimodule. To state the
precise result which gives this we �rst need a little more notation.
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Let e 2 n� n f0g. Then we set U(e) = U 
C[e] C [e; e
�1]. In particular, we

shall consider the case where e is equal to the Chevalley generator e�� 2
g��, � a simple root. Using this notation we can state

Theorem 6.1. (Arkhipov [2])

i) For each 0 6= e 2 n� we have that U(e) is an associative algebra which
contains U as a subalgebra. We set Se = U(e)=U .

ii) For each simple root � with corresponding simple re
ection s 2 W we
have an isomorphism of left U-modules Ss ' Se� .

iii) Let w 2 W and choose a �ltration nw = F 0 � F 1 � � � � � F r � 0
consisting of ideals F p � n� of codimension p; p = 0; 1; � � � ; r = l(w).
If ep 2 F p�1 n F p then we have an isomorphism of U-bimodules

Sw ' Se1 
U � � � 
U Ser :

iv) (cf. Theorem 1.3 in [13]) For each w 2 W we have an isomorphism
of right U-modules Sw ' N�

w 
Nw U .

6.2 The twisting functors on O

Let �w 2 Aut(g) denote an automorphism corresponding to w 2 W . If M
is a g-module we can conjugate the action of g on M by �w. The module
obtained in this way we shall denote �w(M). Note that if � 2 h� then we
have �w(M)� =Mw(�).
Following Arkhipov [2] we de�ne now a twisting functor Tw on the cate-

gory of g-modules by
TwM = �w(Sw 
U M):

Remark 6.1. i) It is clear from the de�nition that Tw is a right exact
functor for all w 2 W .

ii) Theorem 6.1 iii) shows that we have Tws = Tw � Ts whenever s is a
simple re
ection for which ws > w.

We shall now consider the composite of the twisting functor with induc-
tion from the subalgebra B.
Let E be a left B-module and set TBw E = Tw(U 
B E). Using Theorem

6.1 iv) and the fact that U = N 
B we se that we may identify TBw E with
�w(N�

w
NwN
E) (as vector spaces and as h-modules). Here and elsewhere

 without a subscript denotes tensor product over C .

Proposition 6.1. Let w 2 W .

i) The functor TBw is exact.

ii) chTwM(�) = chTBw � = chM(w � �) for all � 2 h�.
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Proof. i) follows from the above by observing that N is free over Nw. Also
ii) follows from the above identi�cation via Theorem 6.1 i) and an easy
induction on w.

As an immediate consequence of Proposition 6.1 ii) we get

Corollary 6.1. The functor Tw restricts to a functor from O to O and it
preserves O� for all � 2 h�.

6.3 The tensor identity

The following tensor identity will be important in the following

Proposition 6.2. Let w 2 W and suppose M and V are U-modules with
V �nite dimensional. Then we have a natural isomorphism Tw(M 
 V ) '
(TwM) 
 V .
Likewise, if E is a B-module then TBw (E 
 V ) ' (TBw E)
 V .

Proof. Note that by Remark 6.1 ii) we may reduce to the case where w = s
for some simple re
ection s. Since �s(V ) ' V what we need to prove is
Ss 
U (M 
 V ) ' (Ss 
U M)
 V . But this is clear from Theorem 6.1 i).
The last statement follows from the �rst by noting that the tensor identity

for induction ensures that we have an isomorphism U 
B (E
V ) ' (U 
B

E)
 V .

Corollary 6.2. Let w 2 W and let �; � 2 C. Then Tw commutes with T �� .

Proof. LetM 2 O and writeM =
L

�
pr�M . Since Tw preservesO� (Corol-

lary 6.1) it follows that Tw(pr�M) = pr�(Tw(M)). Combining this with
Proposition 6.2 we get the statement.

6.4 Twisted Verma modules

Let � 2 h� and w 2 W . Then we de�ne the twisted Verma module Mw(�)
by

Mw(�) = TwM(w�1 � �) = TBw (w
�1 � �):

Theorem 6.2. Let � = �0 +ZR 2 h�=ZR. Then (Mw(�))�2�;w2W (�0) is a
family of twisted Verma modules (in the sense of De�nition 5.1).

Proof. Note that Mw(�) 2 O� by Corollary 6.1. We shall verify properties
i), iii) and iv) in De�nition 5.1 leaving ii) for later.
The above de�nition givesM e(�) =M(�) for all �. So property i) is cer-

tainly satis�ed. Via Corollary 6.2 we see that property iii) is a consequence
of the corresponding fact for ordinary Verma modules.
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Let now the notation and assumptions be as in De�nition 5.1 iv). The
well known e�ect of the wall crossing functor �s on ordinary Verma modules
gives the short exact sequence

0!M(w�1y � �0)! �sM(w�1y � �0)!M(w�1ys � �0)! 0:

Applying the twisting functor Tw to this sequence we get (using Corollary
6.2 on the middle term)

0 !Mw(y � �0)! �sM
w(y � �0)!Mw(ys � �0)! 0:

The exactness of this sequence comes from Proposition 6.1 i).

6.5 The sl2-case

Let g = sl2(C ) with the usual basis ff; h; eg. Then n� = C f; h = Ch and
b = h+C e. For � 2 h� = C the Verma moduleM(�) is simple unless � 2 N.
On the other hand, when � 2 N we have an exact sequence

0!M(�� � 2)!M(�)! L(�)! 0:

In this case there is only one non-trivial element s in W . It is easy to see
that M s(�) = DM(�). Hence M s(�) is simple for � =2 N and for � 2 N we
have an exact sequence

0! L(�)!M s(�)!M s(��� 2)! 0:

Combining the above two sequences we get the following four term exact
sequence (still assuming � 2 N)

0!M(�� � 2)!M(�) !M s(�)!M s(��� 2)! 0:

Note that M s(��� 2) = L(��� 2) =M(��� 2).

6.6 Twist and induction

Returning to the general case we pick � 2 h� and �x a simple root �. We
denote by p� the minimal parabolic subalgebra of g containing b corre-
sponding to �. Then the p�-Verma module with highest weight � is

M�(�) = U(p�)
B �:

In analogy with the above we can also de�ne an s�-twisted Verma module
for p� with highest weight �, namely

M s�
� (�) = �s�(U(p�)
Ns�

N�
s�

U(p�) M�(s� � �))

Note that Ns� = U(g��) = C [e�� ].
Considered as a module for the Levi subalgebra in p� we have thatM s�

� (�)
is dual to M�(�). In particular we get therefore as in the sl2-case:
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Lemma 6.1. i) If h� + �; �_i =2 N then we have an isomorphism of
p�-modules M�(�) 'M s�

� (�).

ii) If h� + �; �_i 2 N then we have an exact sequence of p�-modules

0!M�(s� � �)!M�(�)!M s�
� (�)!M s�

� (s� � �)! 0:

The two extreme terms in this sequence are isomorphic.

In the above notation we clearly have

M(�) = U 
U(p�) M�(�)

for all � 2 h�. We claim that we have a similar transitivity result for twisted
Verma modules, namely

M s�(�) = U 
U(p�) M
s�
� (�):

This follows directly from the de�nitions:M s�(�) = �s�(Ss�
UM(s� ��)) =
�s�(U
Ns�

N�
s�

U U
B s� ��)) = �s�(U 
U(p�)U(p�)
Ns�

N�
s�

B s� ��) =

U 
U(p�) �s�(U(p�)
Ns�
N�
s�

B s� � �) = U 
U(p�) M

s�
� (�):

When we combine this with the results Lemma 6.1 we get

Lemma 6.2. i) If h� + �; �_i =2 N then we have an isomorphism of
g-modules M(�) 'M s�(�).

ii) If h� + �; �_i 2 N then we have an exact sequence of g-modules

0!M(s� � �)!M(�)!M s�(�)!M s�(s� � �)! 0:

Finally, let w 2 W and suppose ws� > w. Then � = w(�) 2 R+. By
Remark 6.1 ii) we have Tws� = Tw � Ts� and hence by applying Tw the
results in the above lemma we �nd (replacing � by w�1 � �)

Proposition 6.3. i) If h� + �; �_i =2 N then Mw(�) 'Mws�(�).

ii) If h� + �; �_i 2 N then we have an exact sequence of g-modules

0!Mw(s� � �)!Mw(�)!Mws�(�) !Mws�(s� � �)! 0:

The fact that Tw preserves the exactness of the sequence in Lemma 6.2
is a consequence of Proposition 6.1 i).

Remark 6.2. i) Let the notation and assumptions be as in De�nition
5.1 ii) and let � be the simple root with re
ection s. Set � = w(�).
Then the assumption w�1y < sw�1y is equivalent to w�1y � �0 <
sw�1y ��0, i.e hy(�0+�); �_i = hw�1y(�0+�); �_i < 0. Hence i) in this
proposition gives Mw(y � �0) 'Mws�(y � �0). We have thus completed
the proof of Theorem 6.2.
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ii) It is possible to derive the four term exact sequence in this proposition
from the formal properties of a family of twisted Verma modules, see
[7]. Here we have taken the opportunity to derive it directly from the
sl2-case. The sequence is sometimes called the Zelebenko-Du
o-Joseph
sequence.

6.7 Endomorphisms

The twisting functor Tw on O extends to the functor LTw on the derived
category Db(O). A key property of this functor is

Proposition 6.4. (Arkhipov [3]) Let w 2 W . The derived functor LTw is
an autoequivalence on Db(O).

Corollary 6.3. Let � 2 � and w 2 W (�0). Then EndO(Mw(�)) = C .

Proof. The result is well known for ordinary Verma modules. It then fol-
lows for twisted Verma modules by the above proposition. In fact, we get
EndO(Mw(�)) = EndO(TwM(w�1 � �)) = EndDb(O)(LTwM(w�1 � �)) =
EndDb(O)(M(w�1 � �)) = EndO(M(w�1 � �)) = C .

Remark 6.3. This corollary is essential for our arguments in Section 2
proving the uniqueness of a family of twisted Verma modules, see Lemma
2.2 . More precisely, we need for � regular and s a simple re
ection that
Homg(Mw(�); �sMw(�)) = C . But this Hom-space equals

Endg(T
�

�M
w(�)) = Endg(M

w(�))

by property iv) in De�nition 5.1. In other words we need the corollary
for semi-regular weights. (In the Harish-Chandra module situation this is
exactly the case handled by C. Stroppel, see Remark 2.1).

7 Filtrations and sum formulae

In this section we shall show that the twisted Verma modules considered
in the previous sections have Jantzen type �ltrations and we shall give the
corresponding sum formulae.

7.1 Deformations

Let A = C [X](X) be the localization of the polynomial ring C [X] in the
maximal ideal generated by X. We shall then consider the Lie algebra
gA = g
C A over A. Similarly, we set hA = h
C A; bA = b
C A; etc.
If � 2 h�A = HomA(hA; A) ' h� 
C A we have a Verma module over A

MA(�) = UA 
BA � where UA = U(gA) and BA = U(bA). Note that MA(�)



20 H. H. Andersen and N. Lauritzen

is free over A and that if A! C is the specialization which takes X into 0
then we have MA(�) 
A C 'M(��). Here �� = � 
 1 2 h�A 
A C = h�.
The twisting functors Tw; w 2 W may also be de�ned over A. We

just extend scalars from C to A, i.e if M is a UA-module we set TwM =
�w(SAw 
UA M) with SAw = Sw 
C A.
In particular, this allows us to de�ne twisted Verma modules over A

Mw
A (�) = Tw(MA(w

�1 � �));

� 2 h�A; w 2 W . These modules specialize to the twisted Verma modules
Mw(��) considered in the previous section.

7.2 The sl2-case revisited

Consider again g = sl2(C ). Then the Verma moduleMA(�) for gA = sl2(A)
with highest weight � 2 h�A = A has basis fv0; v1; : : :g with v0 a generator
for MA(�)� and vi = f (i)v0; i � 0. Here f (i) = f i=i! 2 UA. The action of gA
on MA(�) is given by

hvi = (�� 2i)vi; fvi = (i+ 1)vi+1; evi = (� + 1� i)vi�1; i � 0:

for all i � 0 (we set v�1 = 0).
The twisted Verma module M s

A(�) is dual to MA(�). So if fv�0; v
�
1; : : :g

denotes the dual basis it is immediate to check that the linear map '� :
MA(�)!M s

A(�) given by

'�(vi) =

�
�

i

�
v�i ; i = 0; 1; : : :

is a gA-homomorphism which generates HomgA(MA(�);M s
a(�))

�= A.
Note that if � =2 N then the elements

�
�

i

�
2 A are units in A for all i.

Hence in this case '� is an isomorphism. De�ne now  � : M s(�) ! M(�)
to be the inverse of '� when � =2 N and

 �(v
�
i ) =

(
0; if i � �

(�1)i
�

i

i���1

�
vi; if i � � + 1

when � 2 N.
It is easy to check that  � is a generator of HomgA(M

s
A(�);MA(�)). When

we pass to the specialization A ! C we have of course still that  �� is an
isomorphism when the specialization �� of � is not in N. If �� 2 N we get in
analogy with the sequence involving '�� a four term exact sequence

0!M(��)=M(��� � 2)!M s(��)!M(��)!M(��)=M(��� � 2)! 0

where the middle homomorphism is  ��.
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Now we �x � 2 h� and look at the character � +X 2 h�A. Then we have
that

MA(� +X)
'�!M s

A(� +X)

is an isomorphism if � 62 N and �ts into the exact sequence

0!MA(� +X)
'�!M s

A(� +X)!M(��� 2)! 0:

if � 2 N.
In fact, the �rst claim is a special case of the situation dealt with above.

To verify the second statement we assume � 2 N. Then we see that
�
�+X
i

�
is

a unit in A only when 0 � i � � whereas
�
�+X
i

�
= uiX for some unit ui 2 A

when i > �. Moreover, we may identifyMA(���2+X)=XMA(���2+X)
withM(���2) and we get a surjectionM s

A(�+X)!M(���2) by sending
v�i 7! (�1)ivi���1, i > �, v�i 7! 0; i � �. It is now easy to check that this
leads to an exact sequence as claimed.
Similarly, just as over C we have for all � a natural homomorphism  � :

M s
A(� +X) ! MA(� +X). When � 62 N this is the inverse of '� and for

� 2 N we have the exact sequence

0!M s
A(�+X)

 �!M(� +X)!M(�)=M(�� � 2)! 0:

7.3 The general case

Consider now g general. For each simple root � the results above transform
easily into statements about p�-modules. So we may proceed exactly as in
Section 6 to obtain the following results.

Proposition 7.1. Let � 2 h� and consider � +X� 2 h�A. Suppose w 2 W
and � is a simple root with ws� > w. Set � = w(�). Then HomgA(M

w
A (�+

X�);Mws�
A (�+X�)) �= A �= HomgA(M

ws�
A (�+X�);Mw

A (�+X�)). Moreover,
if 'w� and  w� denote generators of these Hom-spaces. Then we have

i) If h� + �; �_i 62 N then 'w� and  w� are isomorphisms with 'w� =
( w� )

�1.

ii) If h� + �; �_i 2 N then 'w� and  w� �t into the exact sequences

0!Mw
A (� +X�)

'w
�!Mws�

A (�+X�) !Mw(s� � �)! 0

and

0!Mws�
A (�+X�)

 w�!Mw
A (�+X�)!Mw(�)=Mw(s� � �)! 0;

respectively.
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Fix now � 2 h� and w 2 W . Choose a reduced expression for w0,
w0 = s1s2 : : : sN such that w = snsn�1 : : : s1. Let �ij denote the simple
root corresponding to sj. Set

�j =

(
�ws1s2 : : : sj�1(�ij); if j � n

ws1s2 : : : sj�1(�ij ); if j > n

Then f�1; �2; : : : ; �Ng = R+. If we set R+(w) = f� 2 R+ j w�1(�) 2 R�g,
then f�1; �2; : : : ; �ng = R+(w). We shall also write R+(�) = f� 2 R+ j
h� + �; �_i 2 Ng.
Consider the composite �w(�)

Mw
A (�+X�) !Mws1

A (�+X�)!Mws1s2
A (�+X�)! � � � !Mww0

A (�+X�)

where for each j = 1; : : : ; N the homomorphismM
ws1s2:::sj�1
A (�+X�)

'wj (�)
!

M
ws1s2:::sj
A (� + X�) is a generator of its Hom-space (see Proposition 7.1).

Then we may de�ne the Jantzen �ltration of Mw
A (� +X�) by

Mw
A (� +X�)j = fm 2Mw

A (� +X�) j �w(�)(m) 2 XjMww0
A (�+X�)g:

Taking the images inMw(�) =Mw
A (�+X�)=XMw

A (�+X�) we obtain the
Jantzen �ltration Mw(�)0 �Mw(�)1 � : : : of Mw(�).
These �ltrations also �lter the weight spaces of Mw

A (�+X�) and M
w(�).

Note that for any � 2 h� the weight spaceMw
A (�)�+X� is a �nitely generated

free A-module (of rank equal to dimC Mw(�)� = dimC M(�)�). Standard
arguments (see e.g 5.1 in [9]) tell us thatX

j�1

dimMw(�)j� = �X(det(�
w(�)�)):

(Here and elsewhere the index � on a homomorphism means the restriction
of the homomorphism to the � + X� weight space and �X is the X-adic
valuation).
Clearly, the right hand side of this equation equals

nX
j=1

�X(det('
w
j (�)�)) =

nX
j=1

`X(Coker('
w
j (�)�))

where `X denotes length of a module. Observe that by Proposition 7.1 i)
we have that 'wj (�) is an isomorphism when �j 62 R+(�). By Proposition
7.1 ii) we have for �j 2 R+(�)

`X(Coker('
w
j (�)�)) =

(
dimM(�) � dimM(s�j � �)�; if j � n

dimM(s�j � �)�; if j > n:

Hence we have proved



1. Twisted Verma modules 23

Theorem 7.1. Let �;w be as above. Then Mw(�) has a Jantzen �ltration

Mw(�) =Mw(�)0 �Mw(�)1 � : : :

such that Mw(�)=Mw(�)1 �= Im�w(�) �Mww0(�) andX
j�1

chMw(�)j =
X

�2R+(�)\R+(w)

(chM(�) � chM(s� � �)) +

X
�2R+(�)nR+(w)

chM(s� � �):

Remark 7.1. i) For w = e we recover the usual Jantzen �ltration and
sum formula for the ordinary Verma module M e(�) = M(�) (Note
that in this case R+(w) = ;).

ii) When reformulated using the notation from Sections 2{4 for twisted
Verma modules the theorem reads as follows:

Let x; y 2 W . Then M(x; y) = M�(x; y) (with � a regular integral
and antidominant weight) has a Jantzen �ltration

M(x; y) =M(x; y)0 �M(x; y)1 � : : :

such that M(x; y)=M(x; y)1 �= Im(M(x; y)!M(xw0; w0y)) andX
j�1

chM(x; y)j =
X

�2R+(xy)nR+(x)

(chM(xy � �)� chM(s�xy � �)) +

X
�2R+(xy)\R+(x)

chM(s�xy � �):

7.4 The B2-case

Example 7.1. Below we have listed all the twisted Verma modules with
integral highest weights when the root system is B2 together with their
Jantzen �ltrations. Since this is a multiplicity free case the sum formula in
Theorem 7.1 completely determines the �ltration. A simple module listed
in the i-th row means that it occurs in the i-th layer of the �ltration. In
some cases a 0 occurs in the 0-th row. This means that the corresponding
layer is 0.
Choose an integral regular antidominant weight � and writeMw(y) short

forMw(y ��). Also write L(x) = L(x��). Let s (respectively t) be the simple
re
ections corresponding to the short (respectively long) simple root. Then
W = fe; s; t; st; ts; sts; tst;w0g.
Recall that Mw(y) = DMww0 (y) for all w; y 2 W . Therefore we have

only listed half the twisted Verma modules. The others (and their Jantzen
�ltrations) are then obtained by dualizing. In the list below the twisted
Verma modules are itemized according to their highest weight.
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�

Mw(e) = L(e)

s � �

M tst(s) =M ts(s) =M t(s) =M e(s) =
L(s)
L(e)

t � �

M tst(t) =M st(t) =M s(t) =M e(t) =
L(t)
L(e)

st � �

M ts(st) =M t(st) =M e(st) =
L(st)

L(s) L(t)
L(e)

M s(st) =
L(t)

L(e) L(st)
L(s)

ts � �

M st(ts) =M s(ts) =M e(ts) =
L(ts)

L(s) L(t)
L(e)

M t(ts) =
L(s)

L(e) L(ts)
L(t)
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sts � �

M t(sts) =M e(sts) =

L(sts)
L(st) L(ts)
L(s) L(t)
L(e)

M s(sts) =
L(ts)

L(s) L(t) L(sts)
L(e) L(st)

M st(sts) =

0
L(e) L(ts)

L(s) L(t) L(sts)
L(st)

tst � �

M s(tst) =M e(tst) =

L(tst)
L(st) L(ts)
L(s) L(t)
L(e)

M t(tst) =
L(st)

L(s) L(t) L(tst)
L(e) L(ts)

M ts(tst) =

0
L(e) L(st)

L(s) L(t) L(tst)
L(ts)
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w0 � �

M e(w0) =

L(w0)
L(sts) L(tst)
L(st) L(ts)
L(s) L(t)
L(e)

M s(w0) =

L(tst)
L(st) L(ts) L(w0)
L(s) L(t) L(sts)

L(e)

M t(w0) =

L(sts)
L(st) L(ts) L(w0)
L(s) L(t) L(tst)

L(e)

M st(w0) =

0
L(t) L(tst)

L(e) L(st) L(ts) L(w0)
L(s) L(sts)

Remark 7.2. Recall that the Jantzen �ltration of an ordinary Vermamod-
ule is its unique Loewy series, see [8]. In particular, the radical series of the
Verma modules can be read o� from the above list and we have therefore
a determination of all extensions between simple modules. Using this it is
easy to see that there are twisted Verma modules which do not have simple
heads. For instance, both L(e) and L(ts) are quotients of M st(sts). Like-
wise, both L(e) and L(sts) are submodules of M s(w0) (this example of a
non-rigid twisted Verma module was pointed out to us by C. Stroppel). It
is also seen that M st(w0) has non-simple head and socle.
The 0 occurring in the 0-th row for a module M in the list means

that the composite M ! DM (see 7.3) is zero. Nevertheless, the space
Homg(M;DM) may be non-zero. For instance, one may check that

Homg(M
st(w0);DM

st(w0))

is 2-dimensional.

Remark 7.3. Using that LTw is an autoequivalence of the bounded derived
category Db(O) one may prove that (similar to the proof of Corollary 6.3)

Homg(M
w(�);Mws(�)) = C
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where w < ws. Let ' be a generator of this Hom-space. It seems reasonable
to expect that ' is well behaved with respect to the Jantzen �ltration in
the sense that

'(Mw(�)j) �Mws(�)j+1:

One may prove that SocMw0s�(�) = L(s� � �), where � is a simple root
and h�+ �; �_i � 0. If ' respects the Jantzen �ltration as above this leads
to new and perhaps simpler proofs of non-vanishing Ext1-groups between
certain neighboring simple modules.
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