
PhD Thesis 2001

Department of Operations Research

University of Aarhus

Computation of policies

for inventory systems

Philip Melchiors





i

Preface

This thesis is the outcome of my 4 years of PhD studies at the Department of Operations

Research at the University of Aarhus. The thesis is built on seven scienti�c papers which

constitute the core of the thesis. The �rst part of the thesis is a general introduction

to the �eld of inventory control and a survey of the seven papers. The survey provides

the necessary background to understand the problems analysed, the main ideas behind

the methods used, and the main conclusions of the thesis. The second part is the seven

papers.
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Introduction 1

1 Introduction

Supply Chain Management deals with management of information and material 
ows be-

tween manufacturers, distributors and customers. EÆcient management of supply chains

requires close cooperation between the agents in the supply chain, advanced information

technology to provide instant and exact information of the 
ow of material, and �nally,

computerized decision support systems that, based on the information available, attempt

to optimize the supply chain performance. Increased competition have led supply chain

agents to engage in closer relationships with suppliers and vendors under banners like Cus-

tomer Relations Management and EÆcient Consumer Response. By sharing information

of demand and supply, the eÆciency of the entire supply chain can be improved to the

bene�t of all its agents. During the nineties there has been a tremendous development

of information technology, and today, most larger companies have an Enterprise Resource

Planning (ERP) system which coordinates and provides information on activities at all

levels of the supply chain. The development of Electronic Data Interchange (EDI) more-

over facilitates eÆcient seamless exchange of information between agents in the supply

chain. The increased availability of information allows more advanced decision support

systems. In fact, in order to fully utilize the bene�t of the information available, the de-

cision support systems need to be advanced. Advanced Planning and Scheduling systems

are examples of decision support systems that can be built on top of ERP systems.

The decision support system is based on a representation of the real system, a model.

The model represents the essential properties of the system, how demands occur, ordering

opportunities, transportation times, cost of di�erent actions, etc. Mathematical optimiza-

tion is then applied to the model, in order to �nd good or even optimal model decisions.

If the model captures the essential characteristics of the system, good model decisions will

also be good system decisions.

How well a real system can be modelled is determined by several factors. First of all

we need data information. If we do not have a forecast for the demand for a product,

how can we determine good levels of safety-stock. The higher the level of complexity, the

more computer power is needed to perform the numerical analysis. This used to be a

signi�cant restriction, but today we are much better o�, although computation power still

imposes certain limitations. The �nal limitation is the mathematical optimization. It is

of no use to have a good model representation, if we are not able to optimize it. Methods

for optimization of di�erent supply chain models have been developed throughout the

twentieth century. The �rst models were simple models, but based on these, techniques

for solving more advanced models have been developed.

This thesis is entitled \Computation of policies for inventory systems", and deals with

a number of di�erent inventory systems which can all be found at di�erent stages in

the supply chain. Supply chains come in di�erent structures and shapes, but although
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recent trends like the Just-in-Time philosophy focus on eliminating them, inventories are

important components of the supply chain. Inventories arise when demand and supply

are not perfectly matched. Typically, there are economies of scale by ordering a batch of

products, rather than ordering one unit for every demand. The supply may also be delayed

by production or transportation times, and therefore we need to maintain an inventory to

satisfy demands when they occur. In this thesis we show how di�erent inventory systems

can be modelled, and suggest and compute control policies for the systems. The methods

developed can be used in decision support systems, as described above. Our focus is on

the modelling and optimization of systems, rather than the actual implementation of the

control policies, and the thesis is therefore theoretical rather than practical. The thesis

is based on mathematical analysis, sometimes fairly complex and technical, sometimes

requiring signi�cant computer power. Although theoretical, all of our analyses is backed

by numerical examples. In these we illustrate the performance of the suggested policies.

One of the research objectives has been to keep the inventory policies suggested simple.

Simple policies are easier to understand and to implement, and in many cases the cost

di�erence between a simple policy and an optimal policy is small, this can be determined

by numerical examples only. For some systems the optimal policy is unknown, and instead,

heuristic policies have been developed. Again, numerical examples can be used to compare

new approaches with existing ones.

We do not attempt to model a full-scale supply chain, but focus on a few sub-systems

of the supply chain, where we �nd the control policies developed so far inadequate. The

following systems are analysed:

� An inventory system with several demand classes.

� A make-to-order system with several demand classes.

� A multiple-item, one-supplier inventory system.

� A two-echelon inventory system.

Before we explore these systems in more detail, let us describe the properties of a simple

inventory system.

We assume that the external source of supply for the inventory has in�nite capacity and

that orders can be placed at any review. Each replenishment arrives after a lead time

that can represent production times, setup times, transportation times, or inspection

times, or a sum of these. Lead times can be zero, constant, stochastic or variable. The

demand can either be stochastic or deterministic. In many cases demand is treated as

deterministic although it is stochastic, as an approximation. Sometimes deterministic

models can capture the essence of an inventory problem, but in many cases, the fact

that demand is stochastic is essential to the problem. This is the case for the inventory
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systems considered in this thesis. From an economic point of view, the level of the demand

is a function of the price, but from a logistic point of view, prices and thereby the level

of demand are typically considered �xed, and focus is on minimization of cost, rather

than maximization of pro�t. Typically, customers are regarded as a homogeneous group.

However, a signi�cant part of this thesis is devoted to modelling and optimization of

inventories with heterogeneous customers, with di�erent requirements of service.

Now, let us consider the cost parameters. As mentioned earlier, inventories exist where

supply and demand are not perfectly matched. Often there is a �xed ordering cost, which

means that there are economies of scale by buying more than one unit at a time. This

ordering cost includes cost of transportation, setup cost and handling cost. Normally, the

actual purchase cost of the products ordered is not included in the analysis. If we use

batch-ordering, some product are received before they are demanded. This a�ects our

costs in two ways: First of all capital which could have been invested elsewhere is tied up

as inventory. Secondly, there may be out-of-pocket cost of keeping products on storage.

These costs are altogether called holding costs. The second driver for inventory is lead

times in combination with stochastic demand. When demand cannot be predicted, we

must maintain a safety stock to prevent stockouts. Stockout costs may represent cost of

lost goodwill associated with not being able to satisfy a demand when it occurs. Such

demands are either put on backorder and satis�ed later, or are considered a lost sale.

There may be a �xed stockout cost for every demand not satis�ed immediately and,

if a demand is backordered, a cost for every unit of time the demand is backordered.

Sometimes a demand is expedited (i.e. satis�ed in another way), if it cannot be satis�ed

directly from stock. In this case the �xed stockout cost can be the additional cost incurred

by expediting the demand. If the demand is internal, the cost of goodwill may not be of

concern. However, there may still be cost associated with stockouts. If the product is a

critical spare part of a system, the stockout cost can represent the cost of not running the

system for the backorder period. Also, some logistic providers make contracts with their

customers, specifying a penalty fee to be paid in case of late deliveries.

The overall objective is to satisfy customer demands at the lowest expected long-run cost

possible. Before deciding when and how much to order, we need to decide how often the

inventory is reviewed. There are essentially two ways to monitor an inventory system.

Either by continuous review or by periodic review. Whichever is chosen depends on the

given situation. If the inventory is reviewed continuously, we know exactly when a demand

has occurred and can react promptly by placing an order if necessary. Periodic-review

policies have delayed reactions, but are on the other hand easier to implement and easier

to coordinate with other activities. Practitioners tend to prefer periodic-review models,

but many inventory models are continuous-review models, since they are often easier from

an analytical point of view. Within this thesis we analyse policies for both continuous and
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periodic review.

Inventory policies specify when and how much to order. When taking this decision, it is

important to focus on the inventory position rather than the on-hand inventory level. The

inventory position equals the on-hand inventory level minus backorders plus outstanding

replenishments. If the �xed cost of ordering is negligible or zero, we use a base-stock

policy. This policy speci�es a base-stock level, S, which will be the safety stock during the

lead time. If the inventory position is below S, an order is placed, raising the inventory

position to S. If the cost of ordering is positive, a base-stock policy may lead to very high

ordering cost and instead, a batch-order policy should be used. There are two slightly

di�erent types of batch-order policies: (s;Q) policies and (s; S) policies. For both, an

order is placed whenever the inventory position is below the reorder point s. Under an

(s; S) policy an order is placed to bring the inventory position up to the target-stock S.

An (s;Q) policy, on the other hand, just places an order of size Q. The advantage of the

(s; S) is that our inventory position after an order placement will always be the same,

while the order size may di�er from time to time. The (s;Q) policy has the opposite

properties. If demand is unit-sized and the inventory is reviewed continuously, the (s; S)

and the (s;Q) polices are identical.

By combining simple inventory systems we can represent more complex supply chains.

Consider for example, a supply chain where products are shipped from a manufacturer to

several regional distribution centers before they are distributed to local retailers. Invento-

ries are held at all installations in the supply chain. Inventory decisions taken at upstream

installations obviously in
uence the downstream installation, and therefore joint optimiza-

tion is important as argued earlier.

This thesis is based on seven scienti�c papers. In the following sections which constitute

the �rst part of the thesis, we provide a survey of our results for the four systems mentioned

above.

Section 2 deals with the management of inventory systems with more than one demand

class. When stocks are low, the on-hand inventory can be rationed in order to provide

better service for high-priority customers. We analyse both simple and optimal rationing

policies and perform numerical tests that illustrate the strength of the policies found. The

section is based on Melchiors, Dekker and Kleijn [37], Melchiors [35] and Melchiors [36].

In Section 3 we employ the principle of rationing to a make-to-order system. In a make-

to-order system products are tailored to the actual demand, and it is impossible to keep

inventory (and strictly speaking this system is therefore not an inventory system). The

asset to be managed is instead the production capacity. Due to the complexity of the

problem, computation power actually prevents the computation of optimal policies for

large systems. We therefore focus on simple policies which are compared with the optimal
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policy on smaller systems, where they are found to have a �ne performance. The section

is based on Melchiors [34].

The joint replenishment of several items with a common supplier is considered in Section 4,

based on the Melchiors [33] and Johansen & Melchiors [29]. The so-called can-order policy

is analysed in the context of a continuous-review model and in the context of a periodic-

review model. It seems to be generally believed that the can-order policy is dominated

by the periodic replenishment policies. However, we demonstrate that, measured in costs,

the can-order policy can be the best policy available today.

In Section 5 we discuss a two-echelon model where demand not satis�ed immediately is

lost, based on Andersson & Melchiors [2]. The prevalent assumption in multi-echelon

inventory literature is that demand not satis�ed immediately is backlogged rather than

lost, and in this section we demonstrate how to relax this assumption.

Finally we present our conclusions in Section 6.

In the second part of the thesis we present the seven papers in their full length.

2 Inventory rationing

2.1 Introduction

Traditional inventory literature deals with the problem of how to replenish an inventory

facing deterministic or stochastic demand. It is usually assumed that there is a cost of

holding inventory, a �xed ordering cost (perhaps zero) and either a service level constraint,

or a speci�cation of a stockout cost for unsatis�ed demand. In this section we will take

a closer look at the demand process and how it in
uences our inventory decisions. The

prevalent assumption in the inventory literature is that demand can be deterministic

or stochastic following some known or unknown distribution, but that the demand is

homogeneous. This means that, from a cost or service-level perspective, it is of no in
uence

which demands are satis�ed and which are not, in case of stockouts. A demand is a

demand. This assumption is in many cases a realistic one. However, companies are today

creating closer relationships with their suppliers, who in turn need to provide these key-

customers the service they require. Simultaneously, the supplier faces demand from regular

customers who may not be willing to pay for an increased level of service. In many cases

a company can therefore divide their customers into demand classes of di�erent priority.

Service can have several meanings depending on the actual situation. Good service may

be short lead times, access to EDI, 
exible ordering opportunities, etc. By service we

understand, within this thesis, the capability to satisfy a demand when it occurs, and

nothing more.

The inventory rationing problem arises when customers for a single product are divided

into classes of di�erent importance. Assume for example that customers are divided into
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high-priority and low-priority customers. In order to provide a high service level for high-

priority customers, the inventory manager must maintain a high safety stock to protect

the inventory from stockouts. By doing so, low-priority customers will receive the same,

unnecessarily high, service level. Alternatively, the inventory manager can ration his

inventory. This can for example be done by using a critical level policy. The critical level

policy, introduced by Nahmias & Demmy [39], speci�es a critical level for each demand

class. A demand is only satis�ed if the inventory level is above the critical level for the

demand class. In this way it is possible to reserve stock for possible future high-priority

demand. In this section we will analyse and optimize the critical level policy for an (s;Q)

inventory model with two demand classes.

This critical level policy is not the best rationing policy. For example, if it is known that

a replenishment is about to arrive, there is no need to reject a low-priority demand even if

the inventory level is below the critical level. We therefore analyse an inventory rationing

model and �nd the optimal policy, where actions are taken based on information about

both inventory level and elapsed lead time. We de�ne a simple policy to be a rationing

policy with constant critical levels, and a time-remembering policy to be a rationing policy

that allows the critical levels to depend on the time elapsed since the actual outstanding

order (if any) was issued.

The advantage of the optimal policy may also be its disadvantage. Since the critical levels

change over time it is only easily implemented in highly computerized implementations. In

other implementations a much more simple policy is needed. Finally, we therefore analyse

a restricted time-remembering policy that shares the simplicity of the simple policy and

has a performance close to that of the optimal rationing policy.

While the rationing policy can facilitate a reduction in safety stock, and still meet the

required service levels for all demand classes, there are some potential disadvantages.

While high-priority customers are only rejected if the inventory is empty, customers of

lower priority may experience to have their demand rejected when there is still stock on

hand, and observe other customers, arriving later, having their demand �lled. Firstly, the

situations where it is possible to divide customers into classes are mostly characterized by

a buying process where sales are not made over the shelf in a store, but rather by phone,

EDI, or via mail correspondence, which means that customers do not meet. Secondly,

many customers are aware of which class they belong to and accept the corresponding

service level.

We proceed as follows. First we give two examples where customers are divided into classes

of priority, whereupon we discuss the background of the rationing policies and the related

literature in Section 2.2. In Section 2.3 we discuss the underlying assumptions of the

models, and in Section 2.4 we analyse a critical level policy for a case with two demand

classes and constant lead times. The optimal time-remembering policy is analysed in
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Section 2.5, assuming several demand classes and stochastic lead times. Finally, in Section

2.6, we analyse the restricted time-remembering policy, followed by our conclusions in

Section 2.7. The content is based on Melchiors, Dekker & Kleijn [37], Melchiors [35] and

Melchiors [36], which are referred to for details of the analysis and the numerical results.

First, let us take a look at two practical examples where demand can be distinguished

based on priority.

Arla Foods

Arla Foods (www.arlafoods.com) is Europe's largest dairy group, manufacturing dairy

products like milk, cheese and yoghurt. They have divided their English customers (which

are the supermarket chains, not the consumers) into four classes of priority: A, B, C

and D. Class A consists of the major supermarkets chains that are the key customers of

Arla Foods. Class B consists of smaller supermarkets, while customer groups C and D,

typically, are kiosks and gas stations.

Arla Foods uses EDI to obtain information about demand from A-customers. While this

lay the basis for future forecasts, it can only indicate near-future demand. Short-term


uctuations in demand are primarily caused by changes in consumer behavior due to

competitor promotion campaigns which cannot be predicted by Arla Foods. Demand not

satis�ed immediately is either lost or backlogged: Customers that order just enough to

cover the demand for one or two days will typically not be interested in receiving the

replenishment two days later, since they cannot backlog unsatis�ed consumer demand.

However, customers that only order every second week will require to have their demand

backed up as soon as possible.

The dairy products manufactured by Arla Foods are perishable in the sense that the sales

manager has approximately one week to sell the products after they arrive at the ware-

house. Lead times are fairly long, which means that it is not possible to issue emergency

orders in order to cope with stockout situations. There are, therefore, only two ways Arla

Foods can protect itself from stockouts: By ordering enough to practically prevent stock-

outs, or by rationing the stock on hand. Due to the perishability of the dairy products,

all unsold products are lost by the end of the sales horizon, which makes overstocking ex-

pensive. Rationing is employed on a common-sense basis, but there is currently no formal

rationing policy in use.1

1Personal communication with Per Kristensen, Supply Manager, Arla Foods, July 2000
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Multipart

Multipart (www.multipart.com) encompasses product support, logistics, marketing and

after-demand services for their clients. On the logistics side they provide complete inven-

tory management service including capture of demand data, forecasting, inventory control,

placement and management of replenishment orders, and expediting. They have contracts

for providing spare part support to the following customers:

� Hyundai - motor cars in the UK.

� Leyland/DAF trucks, vans, buses.

� Other commercial vehicles and tractor spares.

� Ministry of Defence - Challenger II tanks.

The number of spare parts serviced totals around 300,000, a lot of these being slow movers.

The spare parts are generally not repairable. Multipart writes contracts with their cus-

tomers, committing Multipart to provide a given service level for a selection of spare parts.

These service levels depend on the customer's need. If an expensive truck is o� the road

and urgently needs a spare part before it can be road bound, this will require a higher

service level than if the truck owner could easily wait a few days. This is re
ected in

the price of the contract. Multipart considers to employ a rationing system that would

allow them to maintain service levels and reduce holding costs. The inventory holding

cost constitutes a signi�cant part of the total costs at Multipart, so even half a percentage

point reduction in inventory cost would have signi�cant impact on total pro�t. 2

2.2 Background

Despite their practical applicability the models of inventory rationing have not yet found

their way to textbooks and state-of-the-art overviews of inventory modelling. In recent

books by Graves et al. [19], Silver, Pyke and Peterson [49], Tayur et al. [51], Zipkin [63] and

Axs�ater [6] inventory rationing is not mentioned. There have, however, been several contri-

butions in the literature. The �rst contributions were periodic-review models. Veinott [56]

analyses a model with several demand classes and zero lead time, and introduces the con-

cept of critical levels. Topkis [54] proves the optimality of a time-remembering policy for

the same model in both the backorder and the lost sales case. He divides each period

into a �nite number of subintervals, and allows the critical levels to depend on the time

to the next review. The optimal policy is found by dynamic programming. More or less

simultaneously Kaplan [30] and Evans [14] derive essentially the same results for the case

2Personal communication with Dr Richard Marett, Research Controller, Multipart Distribution Ltd.,

January 2001
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with two demand classes. Cohen, Kleindorfer & Lee [12] consider a periodic-review (s; S)

policy where demands from two demand classes are collected during a period. By the end

of the period, the inventory is used to satisfy high-priority demand, after which remaining

inventory is used to satisfy low-priority demand. They do not consider a critical level

policy. Zhang and Sobel [61] consider a periodic-review model with two demand classes,

one stochastic and one deterministic. The deterministic demand has to be satis�ed, but

the stochastic demand can be backlogged. Demand is observed at the beginning of each

period, whereupon a replenishment order can be placed. It is assumed that orders arrive

instantaneously, so that the replenishment can be used to satisfy the observed demand.

Backlogging is only allowed if the inventory is empty, which means that it is not a rationing

model. Frank, Zhang and Duenyas [17] consider a modi�cation of the model, where the

stochastic demand can be rejected even if there is stock on hand, in which case the demand

is lost. However, since replenishments are instantaneous, the purpose of rationing is not

to save stock for future high-priority demand, but rather to postpone an order placement

for a period.

The literature on rationing policies in a continuous review setting deals with two types of

inventory policies; base-stock policies and (s;Q) policies. Ha [20] analyses a lot{for{lot

lost sales model with n demand classes and Poisson demand. He assumes exponentially

distributed lead times and models the system as a single{product M=M=1=S queue (Ti-

jms [53]) with state{dependent service times. This enables him to prove optimality of

the lot{for{lot critical level policy. The model is extended by Ha [21] to cover Erlang

distributed production times. Dekker, Hill & Kleijn [13] analyse the same model with

a general lead time distribution. They model the system as an M=M=S=S queue (Ti-

jms [53]) and develop eÆcient methods to determine the best policy. Since they do not

consider time-remembering policies, optimality cannot be guaranteed. Inspired by this

paper Axs�ater, Kleijn & De Kok [7] analyse a two-echelon system with one warehouse

and N retailers, with base-stock policies applied at all installations. Here, the warehouse

rations its stock in order to be able to provide a high service level to the retailers with

high costs of stockouts (or expediting).

Simple critical level policies for a continuous review (s;Q) inventory model are �rst anal-

ysed by Nahmias & Demmy [39] who �nd �ll rates for a model with two demand classes

and Poisson demand. This is done by conditioning on the so{called 'hitting time', the

time where the inventory level 'hits' the critical level. They do not consider optimization.

Moon and Kang [38] generalize their results and �nd optimal rationing levels for a model

with compound Poisson demand, deterministic demand and several demand classes. The

only paper considering time-remembering policies in a continuous review setting is that

of Teunter and Klein Haneveld [52], presenting simple methods for �nding good time-

remembering policies for an inventory model with two demand classes and backordering.
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Using marginal analysis they recursively determine values of the remaining lead time for

which it is optimal to reserve 1; 2; : : : units of stock for high-priority demand.

The theme of di�erent demand classes is subject to research in other settings as well.

Kleijn [31] considers a model where customers' demand is distinguished based on demand

sizes. A so-called break-quantity rule is applied to determine how to separate small de-

mands which are satis�ed from stock on hand and large demands which are satis�ed in an

alternative manner, e.g. directly from the supplier.

Closely related is also perishable asset revenue management (PARM, see Weatherford and

Bodily [59]), also known as yield management, which is mainly applied in the hotel in-

dustry and in particular in the airline industry. The essence of PARM is captured by

American Airlines [1], who in 1987 stated their objective as \selling the right seat to the

right customer at the right time". Inventory rationing is not classi�ed as perishable asset

revenue management, since we assume that products can be kept on stock for as long as

we like without perishing, in contrast to one of the fundamental characteristics of PARM.

In Section 3 we discuss, in more detail, the relation between PARM and the rationing of

a make-to-order system.

2.3 Notation and assumptions

In this section we focus on the computation of rationing policies in the context of an (s;Q)

policy. Since this is one of the most used policies in practice, it is of high relevance to

develop good rationing policies in this context. We will �rst state the assumptions made,

and then discuss some of them in more detail:

1. There are n demand classes. Class j has Poisson demand with arrival rate �j .

2. All demand not satis�ed immediately is assumed to be lost (or expedited).

3. The classes are distinguished only by their stockout cost �j . We rank the classes

such that 0 < �n < �n�1 < � � � < �1.

4. For each replenishment order there is a �xed ordering cost, K > 0, and a replen-

ishment lead time, which may be constant or stochastic. The unit holding cost per

unit time is h > 0.

5. Our objective is to minimize the long-run average cost of the system.

Assumption 1: In principle, each customer may be treated as one demand class. However,

many customers will have similar pro�les, and it seems reasonable, as an approximation,

to join them in order to reduce the number of demand classes. In practice we believe that

the number of demand classes should be between 1 and 5.
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Assumption 2: The assumption of lost sales as opposed to backordering is made primarily

in order to facilitate the analysis of the model. By restricting ourselves to a lost sales

environment, we do not have to keep track of a backorder list for each demand class,

which allows a smooth model formulation.

Assumption 3: If there were two demand classes with demand rates �i and �j with identical

stockcost � = �i = �j, we could join these into one class with demand rate �i + �j and

stockout �, since demand is Poisson. Although our analysis does not prohibit negative

stockout costs, we assume that the stockout costs are positive. Since a demand not satis�ed

immediately is lost and not backordered, there is no time dependent penalty cost.

The use of an (s;Q) ordering policy is justi�ed by the �xed positive ordering cost K. The

remaining assumptions are discussed in Section 1.

2.4 Inventory rationing with two demand classes

First let us consider the case where n = 2 and all lead times are constant. This section is

based on Melchiors, Dekker & Kleijn [37], which we refer to for a more detailed analysis

and extensive numerical results. First of all, this is a simple model from a computational

point of view and the advantage of the rationing policy compared to a non{rationing policy

is still considerable. Our analysis departs in the paper by Nahmias & Demmy [39]. By

the use of 'hitting' times we derive an expression for the long-run average cost of using a

simple critical level policy, which is minimized by a simple procedure.

2.4.1 The model

We analyse the rationing policy in the context of an (s;Q) policy with reorder point s and

order size Q, where Q > s. This condition and the lost sales assumption ensure that at

most one order is outstanding at any time. In principle, the critical level c is unbounded,

but for the model to be tractable we require that c < Q. The critical level policy is denoted

(s; c;Q). The inventory process can be split into independent and identically distributed

renewal cycles. Using the renewal{reward theorem (see e.g. Tijms [53]) we know that the

average cost per time unit equals the expected cost incurred during a cycle divided by the

expected length of a cycle. In case the inventory policy satis�es the condition c < s, we let

H be a random variable denoting the hitting time of the critical level, i.e. the time from

placing a replenishment order (or the time when the inventory level `hits' the reorder level

s) until the time where the inventory level `hits' the critical level c. Since the total demand

from both classes follows a Poisson distribution with parameter � := �1 + �2, it readily

follows that H is Erlang distributed with parameters s� c and �. Furthermore, we de�ne

R as the random variable denoting the inventory level just before a replenishment order

arrives. Figure 1 illustrates the inventory process over two cycles for a (c; s;Q) policy with

c < s.
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Q+R

s

c

time

L L

H H

Cycle 1 Cycle 2

Figure 1: The inventory process with c < s.

We can now derive an expression for the average cost in a (c; s;Q) inventory system. The

total cost consists of holding costs, shortage costs, and ordering costs. The approach we

follow is to derive �rst the expected cost during a cycle and then calculate the expected

cycle length. Using the renewal{reward theorem we obtain an expression for the average

cost. The expressions are found by conditioning on the values of H and R. The average

cost is denoted, respectively, TCs<c(c; s;Q) and TCs�c(c; s;Q) depending on whether

s < c or s � c.

2.4.2 Optimization

Due to the complexity of the average cost formula it has not been possible to derive an

explicit expression for the optimal policy. The optimization procedure is therefore based

on enumeration and bounding.

For a �xedQ we derive an upper bound on the optimal reorder point s. The bound is based

on the following conjecture that we have not been able to prove : \The optimal reorder

point s will be less than or equal to the optimal reorder level for the model without a

critical level". Now for all s between 0 and the upper bound we calculate the best value of

c. First we evaluate all critical levels between 0 and s� 1 using the average cost function

TCc<s(c; s;Q). The average cost function TCc�s(c; s;Q) is for �xed values of s and Q

either convex or concave in c, depending on the underlying model and the values of s and

Q. If the average cost function is convex, c is found in the global minimum, which can be

found explicitly. Otherwise the optimal value of c is found in either c = s or c = Q�1. The

best critical level for each s can then be speci�ed. This method will lead to the optimal

values of (c; s).
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In many practical situations the order size Q is prespeci�ed. However, if one also wants to

determine the optimal value of Q, one can use a local search algorithm with the Economic

Order Quantity as a starting solution. Numerical experiments have indicated that the

average cost function is quasi-convex in Q.

2.4.3 Numerical results

We compare the rationing policy with the best non-rationing policy for di�erent com-

binations of demand rate, lead times, stockout cost and order cost. In summary the

conclusions are: When the di�erence in stockout cost between the low-priority class and

the high-priority class is signi�cant, the cost reduction obtained by using a rationing pol-

icy is substantial. The in
uence of the demand rate is not that signi�cant but systems

where the majority of the demand is low{priority demand give the highest cost reductions.

Since demand is Poisson, increasing the lead time increases the variance of the lead time

demand and therefore the cost reduction increases with the lead time. For the majority

of the investigated problems the cost reduction is between 1% and 6% compared with the

best non{rationing policy.

To the best of our knowledge, we are the �rst to investigate rationing policies with a

critical level above the reorder point. These policies are optimal for models where the

stockout cost of the low{priority class is low compared to the holding cost and the order

cost. In such models we would like to satisfy some of the low{priority demand but not all

of it, since this would lead to very high holding or order costs. Huge cost reductions (up

to 40 %) can therefore be obtained in these cases.

We conclude that the rationing policy can have two di�erent e�ects on the optimal reorder

level and replenishment order size, depending on whether the critical level is below or above

the reorder level. In the �rst case, the critical level policy reduces the safety stock needed.

Signi�cant cost reductions can be obtained if the stockout cost of high{priority demand is

considerably larger than the stockout cost of low{priority demand. If the critical level is at

or above the reorder point, then the rationing policy will reduce the average holding cost,

by rejecting a great part of the low{priority demand. This is in particular advantageous

if the cost of rejecting low{priority demand is small (compared to the holding cost rate)

or if the �xed order cost is high.

2.5 Inventory rationing with several demand classes

We will now look at the case with several demand classes and stochastic lead times. The

analysis and the numerical results are based on Melchiors [35], to which we refer for

further details. When dealing with stochastic lead times, it often suÆces to focus on the

distribution of the lead time demand, rather than the lead time itself. For our purpose

this distribution is, however, not suÆcient. Whether a demand is satis�ed or not depends
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on when the demand occurs, and therefore we have to decompose the lead time demand

into two random variables: the lead time and the Poisson demand.

The approach used in the previous section is not suitable, since we would have to condition

on up to n�1 hitting times plus the length of the lead time to evaluate a given policy. This

can only be done by a numerical integration technique which would be very cumbersome.

Instead the problem is formulated as a Markov decision model where the decisions are

allowed to depend on the inventory level and, if the inventory level is below the reorder

level, the time since the replenishment order was issued. We show that the optimal policy

is a time-remembering policy and that the critical levels for the case of constant lead times

are decreasing in time. Since a time-remembering policy can be diÆcult to implement in

practice, we also show how to �nd a good simple critical level policy.

We note that stochastic lead times in a rationing environment are also considered by

Ha [20, 21], as mentioned earlier.

2.5.1 The model

As in the previous section we analyse the rationing policy in the setting of an (s;Q)

inventory policy, with s < Q, ensuring at most one outstanding order at a time. The

time when an order is outstanding is discretized to obtain a �nite number of time epochs,

each representing a small subinterval of length 1=N . The stochastic lead time is then

approximated by the probability mass function f(t), which is the probability of a lead

time of t subintervals. The true lead time may be continuous, but if N is high the error

incurred is negligible. We assume that there exists an integer M such that
PM

t=0 f(t) = 1

(for unbounded distributions we chooseM such that the probability of a lead time of more

than M subintervals is negligible). Based on f(t) we can calculate the lead time hazard

function H(t), that denotes the probability of an arrival just prior to subinterval t, given

that no order has arrived prior to subinterval t� 1.

H(t) =
f(t)PM
r=t f(r)

for t = 0; 1; : : : ;M � 1

and H(M) = 1.

Assuming that s and Q are �xed, we formulate a semi{Markov decision model with �nite

state space S0[S1. Let IN denote the set of non{negative integers. The set of states when

no order is outstanding is

S0 = fi 2 INj s < i � s+Qg

and the set of states when one order is outstanding is

S1 = f(i; t) 2 IN� INj 0 � i � s; 0 � t �Mg:

Here i denotes the inventory level and t denotes the number of subintervals elapsed since

the outstanding order was issued. There are two kinds of decision epochs: just after a
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demand has been satis�ed and no order is outstanding, and at the beginning of each

subinterval when one order is outstanding. At each decision epoch we choose an action.

An action prescribes the set of classes we are willing to satisfy until a new decision is

made. Let the action a 2 f0; 1; 2; : : : ; ng prescribe that we satisfy demand from classes

1 to a if a > 0, and that we reject demand from classes a + 1 to n. Let A be the set

of actions that can be represented in this way. Since we do not allow backlogging we set

a = 0 in states where the inventory level is zero.

The number N determines the length of each subinterval and is chosen such that the

probability of more than one demand in each subinterval is negligible. We can then

approximate the real demand process during the lead time (which is Poisson) by a Bernoulli

process (see e.g. C� inlar [11]). A Bernoulli process is a sequence of independent trials

with an outcome that is either zero or one. Each of the subintervals can be viewed as

a trial where the outcome is one, if a demand we are willing to satisfy occurs, and zero

otherwise. The assumption of at most one demand per subinterval is not restrictive. If the

policy is implemented in practice, it can handle more than one demand per subinterval.

The approximation considerably simpli�es further calculations, and we have veri�ed by

simulation that it has almost no in
uence on the obtained results as long as the subintervals

are small enough. The di�erence between N and M is subtle: N determines the length of

a subinterval, while M determines the maximum number of subintervals in a lead time.

We consider a policy described by the following parameters:

s Reorder point at which an order is placed

Q Order quantity, Q > s

k(i) When no order is outstanding and the inventory level is i, satisfy demand

from classes 1 to k(i)

l(i; t) When one order is outstanding, the inventory level is i and the time since the

replenishment order was placed is between t=N and (t+ 1)=N ,

satisfy demand from classes 1 to l(i; t).

The considered policy is not necessarily a critical level policy. To be a critical level policy

it must satisfy

l(i+ 1; t) � l(i; t) for i = 1; 2; : : : ; s� 1 and t = 0; 1; : : : ;M � 1 (1)

and

k(i+ 1) � k(i) for i > s: (2)

This means that, for each class j � 2 and for all t, there exists a unique critical level

cj(t) =maxfijl(i; t) < jg(= 0 if l(1; t) � j). This is the highest level of inventory where

we will not serve class j. Similarly let cj(�) be the highest inventory level above s where

class j will not be served. If k(s+1) � j we will always satisfy demand from class j when
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there is no order outstanding and cj(�) is not de�ned. Observe that, if l(i; t) is a constant

function of t for all i, then the policy is a simple critical level policy.

For a given policy we can specify the transition probabilities, the expected time between

two decision epochs and the expected one-step cost. Based on these, the long-run average

cost per unit time (henceforth referred to as cost for simplicity) of using such a policy is

found using the renewal-reward theorem (see e.g. Tijms [53]).

2.5.2 Optimization

We present two di�erent policies. An optimal time-remembering policy and a good sim-

ple policy. The optimal policy is found by solving the so{called average cost optimality

equations (see Tijms [53]). These are solved by a tailor-made policy-iteration algorithm,

that utilizes the structure of the Markov chain. Based on the average cost optimality

equations, we can derive the following theorem which considerably simpli�es the search

for the optimal policy.

Theorem. For an optimal rationing policy the following properties are true:

a The optimal action in each state belongs to A.

b The optimal rationing policy is a critical level policy.

c If the lead time is constant, then the critical levels are decreasing in the time t, i.e.

the optimal actions satisfy

l(i; t+ 1) � l(i; t) for i = 1; 2; : : : s; and t = 0; 1; : : : ;M � 1:

The policy-iteration algorithm does not consider optimization of the order size Q. How-

ever, all our numerical tests have indicated that the minimum cost is quasi{convex in Q,

and Q can therefore be found by neighbor search starting e.g. with the Economic Order

Quantity, computed by considering the deterministic version of the problem where all de-

mand classes are aggregated to one. For each value of Q, the optimal values of k(i), l(i; t)

and s are found by the policy-iteration algorithm. The optimization procedure has been

implemented in Pascal, and is very eÆcient.

Since the optimal policy can be diÆcult to implement in practice, it is relevant to �nd good

simple policies for the case of several demand classes as well. De�ne c = (c2; c3; : : : ; cn)

where cj denotes the critical level of demand class j. We denote the simple policy by

(c; s;Q).

For a �xed Q we enumerate all s in [0; Q�1]. For each s we �nd a 'good' vector of critical

levels by a method based on the method suggested by Dekker, Hill & Kleijn [13]. Let ej

be the vector consisting of zeroes at all entries except at the j'th entry where it equals
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one, and let ck be the c{vector considered in iteration k. If s = Q � 1 then start with

c
1 = (0; 0; : : : ; 0) otherwise let c1 be equal to the best c-vector found for (s + 1; Q). Let

j = n. Let c2 = c
1 + ej. If g(c

2; s;Q) < g(c1; s;Q) let j := j � 1 and continue like this

until g(ck+1; s;Q) > g(ck; s;Q) or j = 2. Now let j = n and start over improving the best

vector obtained so far, and continue until no further improvements can be made. Each

policy is evaluated by the method derived in the previous section.

The value of Q is determined by a neighbor search starting in the Economic Order Quan-

tity. As for the optimal policy the minimum costs have been quasi{convex in Q in all our

numerical tests.

2.5.3 Numerical results

Now let us illustrate the structure of the rationing policies by means of a numerical exam-

ple, and, furthermore, give some guidelines for when to use rationing policies. To illustrate

the optimal time-remembering policy consider the following example: n = 4, K = 100,

�1 = 1, �2 = 1, �3 = 2, �4 = 7 and �1 = 1000, �2 = 40, �3 = 12:5, �4 = 5. The lead time

is constant with length L = 1 time unit, and the holding cost is h = 1.

c4(t)

c3(t)

c2(t) c4
c3
c2

ss

sopt

L0
t

Figure 2: The critical levels of the optimal policy c2(t), c3(t) and c3(t) and the constant

critical levels of the simple policy c2, c3, c4 as function of the time t.

The reorder point of the optimal policy is found to be sopt = 11 and the order size is

Qopt = 48. The cost of the optimal policy is 50:72. The best simple policy is (c; ss; Qs) =

(1; 2; 3; 13; 48) with cost 51:79, which is a di�erence of 2:1%. Figure 2 shows the critical

levels of both the simple and the optimal policy and illustrates furthermore the advantage

of the optimal policy. In the beginning of the lead time the optimal policy rejects the de-

mand classes 2,3 and 4 at a higher level than the simple policy does, and by the very end

of the lead time, the optimal policy rejects no demand at all. That is, the optimal policy
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dominates the simple one in two situations: When demand is high in the beginning of the

lead time, and when low-priority demand appears by the end of the lead time. In most

cases the inventory level will not reach the critical level and the only di�erence between

the simple and the optimal policy will in these cases be the reorder level.

The inventory rationing policies can be applied to any inventory system with several

demand classes. However, some systems may bene�t more from rationing than others, and

therefore we try to give some guidelines as to when the rationing policies are particularly

bene�cial, based on the numerical examples by Melchiors [35]

As expected we �nd rationing to be particularly important when the stockout costs of the

di�erent demand classes di�er signi�cantly, i.e. more than a factor of 10. With respect to

the ordering cost, we �nd that rationing has the greatest impact when the ordering costs

are low. This is mainly because the measure of performance is cost per unit time, and it

is only during the lead time (except for the cases where the critical levels are above the

reorder point) that rationing is used. As the ordering cost increases, the length of the

inventory cycle increases, and thereby the cost di�erence per unit time decreases. The

structure of the demand also has an impact on the general performance. The highest

bene�ts are found when the majority of the demand is of low priority. When the majority

of the demand has high priority, rationing will only seldom be used and consequently the

relative bene�ts are smaller. As the general level of demand increases, the bene�ts of

rationing increase as well. Since demand is Poisson, a higher demand mean is equivalent

to a higher demand variance, and therefore the need for safety stock increases. Naturally,

the same e�ect occurs when we increase the variability of the lead time. When we are

uncertain about the delivery time of an order, the rationing policy reduces the need for

otherwise high safety stocks. For the investigated examples the cost reduction obtained

using the optimal policy rather than a non-rationing policy varies between 0 and 13%.

With respect to the di�erence between the simple and the time-remembering policy we

have found relative di�erences between 0-3%. In general, the di�erence between the two

policies is highest when the lead time is either constant or predictable in some sense. For

example, either 'normal' with high probability or long with a small probability. When

the lead time is predictable we can make full use of the information of time. Contrary

to this, in cases where the length of the lead time is very uncertain, the value of time

information is small. In these cases the optimal policy will do no better than a policy that

disregards information about time, and therefore the optimal policy approaches a simple

policy. Since the optimal policy is much more complicated to implement, we recommend

to use the simple policy in most cases. However, for the case of constant or predictable

lead times, the cost di�erence between the simple and the optimal policy is around 2-3%

and in some cases this may be signi�cant.
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2.6 Restricted time-remembering policies

So far, we have described two kinds of policies, i.e. simple critical level policies and time-

remembering policies. In practice a combination of the two could be more appealing. We

analyse a policy where the rationing decisions are only based on whether the remaining

lead time is say, short or long. We can thus improve the performance of the simple

policy by taking time into account, and still have a policy that is easy to implement in

practice. As illustrated the cost di�erence between simple and optimal rationing policies is

particularly high in cases with constant lead time. In those cases the value of information

of time is high compared to cases with stochastic lead times where a simple policy that

neglects information of time is almost as good as the optimal time-remembering policy.

Consequently, we focus only on the case with constant lead times. The section is based

on Melchiors [36].

De�ne a restricted time-remembering(RTR) policy to be a time-remembering policy where

the critical levels are restricted to be constant over intervals of the lead time. These

intervals are de�ned by the policy variables and must cover the entire lead time. The

number of intervals determines how simple the RTR policy is. If there is only one interval,

the RTR policy is identical to the simple critical level policy, and if there isM intervals, it

is identical to the optimal rationing policy. Obviously the performance of the RTR policy

increases when the number of intervals is increased.

Assume that we restrict the policy to be constant over m intervals of time, and let cj;�

denote the critical level of class j in interval number � for 1 � j � n and � = 1; 2; : : : ;m.

Interval � consists of the subintervals ft��1; t��1 + 1; : : : ; t� � 1g with 0 = t0 � t1 � � � � �

tm =M , with t1; t2; : : : ; tm�1 being decision variables.

Note that we require the set of intervals to be identical for all demand classes. A set of

critical levels uniquely de�nes all values of l(i; t):

l(i; t) = max
�
jjcj;� � i; t 2 ft��1; t��1 + 1; : : : ; t� � 1g

	

Furthermore we have the option of rejecting a demand even before an order is placed, as

speci�ed by k(i). Demands rejected before an order is placed, will not be satis�ed during

the lead time either, and we can therefore use the critical level of interval 1, to determine

the values of k(i):

k(i) = maxfjjcj;1 � ig

In this way we can evaluate any rationing policy by the method presented in Section 2.5.

However, we cannot use a policy-iteration algorithm or a value-iteration algorithm to �nd

the optimal RTR policy. Instead, we optimize the policy by a neighbor search based on

the following empirical observations:

a The optimal critical levels increase (or remain the same) as the reorder point de-

creases.
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b The optimal value of t� decreases (or remains the same) as s decreases for all � .

c The optimal critical levels cj;� , cj;�+1 increase (or remain the same) as t� decreases

for all � .

Although it appears diÆcult to prove these observations, all our computations support

them, and our optimization algorithm have found a policy equal to the optimal RTR policy

(determined by a full enumeration approach) in all our numerical tests. Observations 1

and 2 can be explained as follows: When we reduce the safety stock available during the

lead time we will (for �xed value of all t� ) on average hit the critical levels earlier. The

remaining stock (reserved for demand of higher priority) must therefore last for a longer

period. Consequently, the optimal critical levels increase (or remain the same). Since we

hit the new critical levels earlier, the optimal value of t� will decrease when the reorder

point decreases, since we are interested in choosing the value of t� close to the expected

hitting times. Observation 3 is illustrated in Figure 3. When the value of t� decreases,

the critical levels covering period � + 1 will increase since they must now also cover the

interval [tnew� ; told� ] where the remaining lead time is longer and therefore the safety-stock

needed will be higher. Similarly, the observation holds for interval � : Here the interval is

reduced and since we now do not have to cover the interval [tnew� ; told� ], we can increase our

critical levels to obtain a better coverage of the interval [t��1; t
new
� ].

0
t

tnew1 told1

cold
cnew

inventory level

Figure 3: Illustration of how the optimal restricted critical levels increase (for both inter-

vals) as the time t1 decreases from told1 to tnew1 .

Based on these observations we construct an algorithm for �nding the optimal RTR policy.

First, we investigate how to separate short and long lead times in general, or more precisely,

how to choose t1 in the case m = 2. We note that there is almost nothing gained by
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policies with low value of t1. In general, the need for critical levels is in the last part of

the lead time. This is where we are likely to run out of stock and therefore this is where

we can bene�t the most from di�erent critical levels. The best values are found around

t1 = 0:75M .

Next, we investigate how the choice of m in
uences the performance of the RTR policy.

Our results show that 51% of the gap between the simple policy (m = 1) and the optimal

policy (m =M) is covered by increasingm from 1 to 2. By increasingm from 2 to 3 we can

further narrow the gap by additional 20%, but the bene�ts of increasingm further are very

small. Thus by setting m = 2 (or 3) we can capture the essence of the time-remembering

policy and still have a policy that is fairly easy to operate in practice.

2.7 Conclusion

In this section we have shown how to �nd simple, restricted time-remembering and optimal

rationing policies for an (s;Q) inventory model with lost sales, and up-to several demand

classes. Compared with a non-rationing policy the use of a rationing policy can lead

to signi�cant cost reductions. Since the optimal policy can be diÆcult to implement

in practice, we have suggested the simple critical level policy and the restricted time-

remembering policy which are both easy to �nd and easy to implement in practice.

While the methods developed may not be directly applicable to practical cases like Arla

Foods or Multipart, the underlying ideas of the analysis and the structure of the policies

can form a solid foundation for tailor-made applications.

3 Capacity rationing

3.1 Introduction and Background

In this section we apply the rationing policies developed for the make-to-stock inven-

tory system to a make-to-order production system. Make-to-order systems are employed

when it is not possible (or cost eÆcient) to produce products before they are demanded.

Typically this applies to systems where each product is unique or requires signi�cant cus-

tomization. Rather than keeping products on inventory, such systems have a capacity to

produce which means that whenever a demand occurs, some of this capacity can be allo-

cated to satisfy the demand. Capacity may be an asset easily adjustable to meet demand,

but in many cases capacity is �xed, at least on a short term, and therefore the capacity on

hand is often not enough to meet demand. Whenever demand for capacity can be divided

into classes either due to priority, criticality or pro�tability, decisions on which demands

to accept and which to reject must be taken. It is particularly important to be able to

meet high priority/pro�tability demands when they occur, and therefore it can make good
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sense to ration the capacity on hand.

The importance of using admission control for make-to-order system to control the perfor-

mance of the system has been recognized by several authors. Hendry and Kingsman [23, 24]

build a hierarchical system to control lead times in make-to-order companies. This is

achieved by using a customer enquiry system based on the amount of the total backlog in

the system. If this amount exceeds a maximum limit determined by management, orders

are rejected or extra capacity is purchased. Balakrishnan, Sridharen and Patterson [8]

consider capacity rationing for a make-to-stock system with two demand classes. There is

a �xed amount of capacity to be allocated to demand during the selling season.

Essential to the problem characterization is the perishability of the capacity; unused ca-

pacity represents no value. On the other hand, it is also important not to allocate too

much capacity to demand classes with low pro�tability if this means that there will be no

capacity left for demand classes with high pro�tability. This aspect is central in the prob-

lem faced by airlines or hotels, known as perishable asset revenue management (PARM,

see Weatherford and Bodily [59]). The capacity held by airlines is the actual number of

seats on a given 
ight. Customers are typically divided into business and tourist class,

paying di�erent fares for essentially the same service. What distinguish PARM from the

make-to-order system is that customers who require a 
ight or a hotel room Saturday, will

(often) not accept a 
ight/room Friday or Sunday, whereas in the make-to-order system

we can use capacity of adjacent periods to satisfy demand and in that sense we can store

our capacity or put it on backorder.

We consider a make-to-order system with several job classes in a multi-period setting with

rolling horizon. Jobs arrive stochastically and must be either accepted or rejected upon

arrival. After acceptance we must decide in which periods to process the job. Every job

is described by the amount of capacity required, a due date and a pro�t per workload

unit, which are all known and deterministic. The modelling of di�erent demand classes is

central for the problem formulation. We assume that prices and due dates are �xed and

non-negotiable; instead, we allow rejection of arriving jobs. Another approach is suggested

by Johansen [27], who presents a job-shop model where, at every job arrival, a price is

calculated based on the current state of the system and the workload of the incoming

job. Our approach assumes that prices and capacity are �xed and focus on the short term

management of the congested system. The objective is therefore to maximize the expected

net pro�t, rather than to minimize the exptected costs, as in the remainder of the thesis.

We analyse two models: Model A is a simpli�ed model, where it does not matter when

a job is processed as long as it meets its due date. Model B is a more general model

we need not meet the required due date; instead, there are penalty costs per period late

and holding costs from the process has begun until the due date of the job. We present

a general framework that provides a decision tool for both models. The strength of the



Capacity rationing 23

framework lies in its coverage of a wide range of problems, and its capacity to solve these to

near-optimality. However, the requirement of computation time and memory is high and

increasing in the length of the planning horizon and with the number of di�erent job types.

For larger and more complex problems it seems unlikely that an optimal policy can be

found, due to \the curse of dimensionality". Our approach is therefore to design heuristic

policies that can be found even for complex real-life problems by the use of simulation.

These simple policies are benchmarked against the near-optimal policy on smaller problems

(where optimization is possible), and are shown to have a �ne performance. The section

is based on Melchiors [34].

3.2 Modelling

We consider a make-to-order system receiving jobs from a set of customers. Each job type

j is described by its workload Wj, a desired due date DDj, and the pro�t pj per unit

workload.

There is a holding cost hpj per unit workload per period from the day processing of a type

j job is begun until its due date. If processing is �nished after the due date a penalty cost

of �pj per unit workload per period late is incurred.

The time unit is a period (representing a day or a week for example) which is divided in T

sub-periods (hours of the day or weekdays). Incoming jobs can arrive in any sub-period,

but cannot begin processing before the next period. We let f(j; t) denote the probability

that job j arrives when there is t sub-periods remaining in a period. We assume that there

can arrive at most one job per sub-period.

We consider a rolling horizon with a length of N periods. The current period is period

0, and the �rst period a job can be processed in is period 1. The length of the planning

horizon is �xed, and we can only accept jobs that can be processed within this horizon.

When a job is received, it must either be accepted or rejected. We assume that all jobs

can be processed over several periods without additional costs (besides the holding costs).

The allocation of workload is done upon the acceptance of the job. It is not possible to

change this allocation. We assume that a minimum unit of workload exists. The capacity

of the system in each period is C workload units.

The problem is formulated as a Markov decision process. Let (t;x) = (t; x1; x2; : : : ; xN )

be the state of the system. Let t denote the remaining sub-periods of the period and xi

denote the free capacity in period i. The process ft;xgk; k = 1; 2; : : : is a discrete time

Markov chain with state space S = f0; 1; : : : ; Tg� f0; 1; : : : ; CgN . In all states (t;x) with

t > 0 we decide which jobs we will accept and how to allocate their workload. States

(0;x) are arti�cial states where no job can arrive, representing the end of a period. Let �

be a vector of components �n which is the workload allocated to period n for a job. An
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allocation for an accepted job with workload W must satisfy

0 � �n � xn for all n = 1; 2; : : : ; N

and
NX
n=1

�n =W:

We let the non-allocation with �n = 0 for all n denote a rejected job. Let A(x; j) denote

the set of feasible allocations, including the non-allocation, for job j in state (t;x).

The model is similar in structure to a vehicle insurance example given by Tijms [53], and

we can therefore use a similar analysis. We �nd the near-optimal policy, that maximizes

average pro�t per period by a value-iteration algorithm. Let c(�; j) be the net pro�t of

a job j with allocation �, and let vi(t;x) be the maximum value of the expected future

pro�t obtained i periods and t sub-periods from the end of the horizon in state (t;x).

vi(t;x) is found by the recursion

vi(t;x) =
X
j2J

f(j; t) max
�2A(t;x;j)

h
c(�; j) + vi(t� 1;x��)

i

for 1 � t � T;8x � 0;8i > 0 (3)

vi(0; x1; x2; : : : ; xN ) = vi�1(T; x2; x3; : : : ; xN ; C) 8 x1; x2; : : : ; xN � 0; 8i > 0

v0(T;x) = 0 8x � 0:

By solving this system, we can obtain a near-optimal policy specifying which jobs to accept

and how to allocate them, for any job j and any state (t;x).

The disadvantage of the near-optimal policy is that it is diÆcult to implement in prac-

tice, and even more important, for complex problems its computation is intractable. We

therefore suggest simple policies, characterized by a few policy variables which are easy to

implement in practice. For complex real-life problems these variables can be optimized by

simulation. The simple policies cannot be found directly by the value-iteration algorithm.

But the value-iteration algorithm can be used to evaluate the simple policies which, in

combination with a search mechanism, is used to �nd good simple policies.

In the two following sections we show how to �nd near-optimal policies and design simple

policies for Model A and Model B, respectively.

3.3 Model A

In this section we consider the special case of the general model where � =1 and h = 0.

The problem when a job arrives is whether it should be accepted or not and when to

process it. Here we are not in
uenced by holding and penalty costs forcing us to process

the job near the desired due date, we are free to process the job whenever we prefer, as

long as the due date is met.
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The net pro�t of a job of type j with feasible allocation � equals

c(�; j) = pjWj

if the job is accepted, and c(0; j) = 0 if the job is rejected. Instead of searching over all

possible allocations, we consider two allocation heuristics: The �rst algorithm, FIFO(�rst

in �rst out), allocates such that everything is processed as soon as possible. The sec-

ond algorithm, MI(marginal improvement), is a greedy near-optimal method, based on

marginal improvements of the expected pro�t function vi(t;x). Using the MI algorithm

we can solve (3) to �nd the near-optimal policy.

If we use the FIFO allocation method, we can reduce our mathematical model signi�cantly.

Instead of keeping track of available capacity for each day, we can keep track of the total

amount of accepted workload waiting to be processed. The state of the inventory is (t; x)

where t denotes remaining sub-periods of the period and x denotes, instead of a vector of

free capacity, the sum of all accepted workload not yet processed. The policy found by

this method is called rationing(FIFO).

We investigate three heuristics: a simple policy, a selective policy, and a non-rationing

policy. We divide the jobs into job classes based on the pro�t the jobs provide. Let ~pi

be the pro�t per workload unit of a job from class i. Let m be the number of job classes

and order the classes such that ~pi > ~pi+1 all i < m. The simple policy is based on the

reduced mathematical model. We assign a critical level ci to every job class i. A job j is

accepted only if the resulting accepted workload x+Wj does not exceed the critical level

of its class. If a job is accepted it is scheduled to be processed as soon as possible (FIFO).

We use a search routine similar to that of Melchiors [35] to �nd a good critical levels.

The selective policy accepts all jobs from class 1; 2; : : : ; i, and is thus a reduction in the

set of jobs classes, rather than a rationing policy. By evaluating the selective policy for

di�erent values of i, we can �nd the best selective policy. Finally, the non-rationing policy

accepts all jobs that can be processed within their due date.

We investigate several numerical examples. Our measure of performance is the net pro�t

obtained by the heuristics as percentage of the net-pro�t obtained by using the near-

optimal(MI) policy.

In general, the performance of the rationing(FIFO) policy is very good, indicating that the

bene�t of leaving idle periods for 
exibility is low. The simple policy is almost as good as

the rationing(FIFO) policy. The performance of the selective policy is found to be 95-96%

on average but for one case, as low as 83.8%. The non-rationing policy is in general very

poor, with an average performance around 90% and a worst performce of 42.5%.
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3.4 Model B

Now, let us consider the more general case where each job carries a positive holding cost

hpj per unit workload per period until its due date and a penalty cost �pj per unit

workload per period late. Typically, penalty cost must be paid for the entire workload

for every period the last unit of workload is late. Holding costs are charged for the entire

workload of the job from the period the job is begun until its due date. This corresponds

to a situation where the cost of materials needed to process the job constitutes the major

part of the value of the �nal product. Consider a job with j and an allocation �. Let

nmin = minfnj�n > 0g and nmax = maxfnj�n > 0g. The net pro�t earned by accepting

the job and choosing allocation � is the pro�t minus the holding and penalty costs:

c(�; j) = pjWj � hpjWj(DDj � nmin)
+ � �pjWj(nmax �DDj)

+

If the job is rejected, c(0; j) = 0.

As observed in Section 4, the bene�t of leaving idle capacity for future demand is only

marginal, and therefore, once a job has begun processing, we will �nish it as fast as

possible. We use an allocation algorithm called BSP (best starting period), where the

allocation for a job j has the following structure:

(0; : : : ; 0; �n; �n+1; : : : ; �n+�n ; 0; : : : ; 0)

with
Pn+�n

k=n �k = Wj , where �n denotes the number of periods needed to process the

workload when processing starts in period n. For every allocation we �nd c(�; j) + vi(t�

1;x � �) and choose the starting period n with the highest computed sum. In this way

the near-optimal policy is computed.

For Model B we consider a simple policy that works the following way: Each job class

is assigned a critical horizon, which is a period in the planning horizon. Whenever a job

arrives, it is accepted if there is suÆcient capacity to process it within the critical horizon of

the job class. The motivation for this criteria is to avoid using capacity on low-pro�t jobs,

as long as there is a reasonable probability that it can be used to satisfy high-pro�t jobs.

We consider two allocation methods, FIFO and minimum cost(MC). The MC allocation

is an allocation that minimizes holding and penalty costs, within the critical horizon.

The critical horizon policy is optimized in the same way as the critical level policy for

Model A. We also consider a selective policy and a non-rationing policy.

The performance of the heuristic policies are explored for small-scale numerical problems,

where the computation of the near-optimal policy(BSP) is possible.

In general the performance is good. The average pro�t for the simple policy (FIFO) is

98.2% with a worst case performance of 84.7%. The performance of the simple policy(MC)

is on average 94.2% with a worst case performance of 82.6%. The average performance of

the selective policy is 90.9% with a worst case performance of 72.9%, and �nally the average
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performance of the non-rationing policy is 81.9% with a worst case performance over the

investigated examples of 51.2%. The FIFO allocation dominates the MC allocation, on

average, even when holding cost is as high as 5% per period. Thus, the main objective is

to process everything as soon as possible in order to maximize throughput, regardless of

the holding costs.

3.5 Conclusion

In this section we have investigated a periodic make-to-order system with limited capacity

where jobs of di�erent pro�tability arrive in a stochastic manner. We focus on systems

where the average demand for capacity exceeds the available capacity which leads to

situations where jobs must be rejected. By using simple or near-optimal rationing policies

we can signi�cantly increase total expected pro�t compared with a non-rationing approach.

In our numerical tests we have found examples where pro�ts are almost doubled by the

use of rationing policies.

The derivation of the near-optimal policy is only computationally tractable for smaller

problems and therefore we consider simple policies whose performance is shown, numer-

ically, to be a few percent below the near-optimal policy. The examples investigated are

very small indeed, but we expect the simple policies to be good also for problems of a more

realistic size, where the computation of the near-optimal policy is intractable. The simple

policies are characterized by their simplicity and their small number of policy variables.

For larger problems we therefore suggest to use simulation for evaluation of policies and

then perform a local search to �nd good values of the policy variables.

4 The Joint Replenishment Problem

4.1 Introduction

In this section we study the stochastic joint replenishment problem, i.e. the problem of

coordinating an inventory system with several items, all replenished by the same supplier.

What characterizes the problem is that the cost of ordering consists of a major ordering

cost plus a minor ordering cost for every item participating in the order. The problem

can be found in many settings: Typically, a supplier o�ers a range of products which all

may come in several di�erent shapes, colors, sizes or con�gurations. For such situations,

the major ordering cost consists primarily of costs of administration and transportation,

while the minor ordering cost consists of handling costs associated with the delivery of a

speci�c item.

Another example described by the problem is the following: A company sells a product at

several locations, all replenished by the same supplier. The replenishment of the product
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at all locations can be coupled into one order that arrives at a transshipment center or

a break-bulb point, after which it is distributed to the respective locations. The major

ordering cost is the cost of transportation between the supplier and the transshipment

center, and the minor ordering cost is the cost of the last part of the transportation

to the speci�c locations. In both problems, the replenishment of the items should be

coordinated in order to utilize the economies of scope. The literature has suggested several

coordination policies, of which in particular two classes of policies, the can-order policy

(originally suggested by Balintfy [9]) and the periodic replenishment policy (introduced by

Atkins and Iyogun[3]), have received considerable attention. Under the regime of a can-

order policy all items follow an (s; c; S) policy: When the inventory position is below the

must-order level s, an order is placed to bring the inventory position up to S. Moreover,

every item has a can-order level c. Whenever another item has reached its must-order

level, any item with inventory position at or below its can-order level is included in the

order.

A good periodic replenishment policy is suggested by Viswanathan [57], who analyses a

periodic-review P (s; S) policy. The inventory system is reviewed with an interval of t time

units. At every review an (s; S) policy is applied to every item, such that any item with

inventory level below s is included in the order. The review interval t is a policy variable,

which must be the same for all items.

In accordance with the numerical results of Viswanathan [57], it seems to be generally

believed that the periodic replenishment policy performs better than the can-order policy,

as for example expressed in the well-known textbook by Silver, Pyke and Peterson [49].

In this section we demonstrate that this conclusion does not hold in general. First of all,

we suggest a new method for computing can-order policies, which improves the general

performance of the can-order policies. Secondly, we demonstrate that which of the two

classes to prefer, depends in particular on the underlying demand process. Inventory sys-

tems facing steady demand with small variation will do �ne with a periodic replenishment

policy, while systems characterized by more irregular demand sizes, are better controlled

by a can-order policy, which can react fast to sudden changes in the inventory position.

We proceed as follows: In the next section we provide a literature review and discuss the

traditional method for computing can-order policies. In Section 4.3 we present the method

for improving the can-order policy called the compensation approach. This method is

applied to a can-order policy for a continuous-review system in Section 4.4 and a can-

order policy for a periodic-review system in Section 4.5. Finally, in Section 4.6 we give

our conclusions. The content is based on Melchiors [33] and Johansen & Melchiors [29],

which are referred to for detailed analysis and numerical results.
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4.2 Background

We consider an inventory system with n items facing stochastic demand. Besides holding

and backorder costs there is a �xed cost of ordering, consisting of a major ordering cost

K, plus a minor ordering cost ki for every item i participating in the order. Since all

demands are backordered, and thus satis�ed eventually, the variable ordering cost is not

included in the model.

A way to model this problem is to formulate an n-dimensional Markov chain, and use a

value-iteration algorithm to �nd the optimal joint replenishment policy. Such an approach

is, however, computationally intractable even for small-scale problems, and, moreover, the

optimal policy has a non-simple structure (Ignall [26]), which means that the implemen-

tation of the policy will be very cumbersome. Ohno et al. [42, 41] present an improved

policy-iteration algorithm for �nding the optimal problem. While they succeed in �nding

the optimal policy, they do not overcome the \curse of dimensionality", and their approach

can, in reality, be used for systems with 2{4 items only.

Another approach is to solve n single-item problems independent of each other, neglecting

the correlation between the items. This approach works if the major cost K is very small

(and is indeed optimal if K = 0), but otherwise better methods are needed.

Silver [48] introduces the principle of decomposition to model the correlation between the

items. The idea is to decompose the original problem into n sub-problems, one for each

item. Item i has normal replenishment opportunities with major and minor ordering cost

K + ki occurring whenever the inventory level reaches s, and discount opportunities with

only minor ordering cost ki, whenever another item places a normal order. The process

of discount opportunities is in general very complicated and moreover, not independent of

the demand process for item i. Silver suggests to approximate this process by a Poisson

process with rate �i, which is assumed to be independent of item i. This facilitates a

simple analysis of the model. Moreover, Zheng [62] proves that the can-order policy is

optimal for a single-item inventory system with Markovian discount opportunities and

Poisson demand. The rate �i is calculated based on the rates, �j, of order placements

from other items. In each iteration of the optimization algorithm, all single-item problems

are solved, after which the rates �i are updated. This is repeated until the optimal policies

converge or start cycling.

Silver applies this to a continuous-review model with Poisson demand and uses a simple

method to determine the values of the policy variables. Federgruen, Groenevelt & Ti-

jms [15] also consider a continuous-review model but assume compound Poisson demand

and apply a policy-iteration algorithm to �nd better can-order policies. Both papers are

based on the same principle of decomposition.

Van Eijs [55] argues that the assumption of Poisson discount opportunities leads to poor

results, and suggests a can-order policy where the can-order level c is always equal to
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S � 1, for inventory systems where the major ordering cost is high, compared with the

average minor ordering costs. For such a policy, whenever an item places an order, all

other items join the order. He minimizes holding and ordering costs subject to a service

level constraint, and �nds the optimal (s; S�1; S) policy. A disadvantage of this approach

is that all items have to follow a (s; S � 1; S) policy, which means that it is not suitable

for problems where some items have high minor ordering cost and others have low minor

ordering cost.

Schultz & Johansen [46] show by simulation that the empirical waiting times between

successive discount opportunities do not appear to come from an exponential distribution.

They formulate a model where the time between two consecutive discount opportunities

for each item i is Erlang-r distributed, which appears to give a better �t. The shape

parameter r is found by simulation. Some of the discount opportunities refer to discount

opportunities generated by the item itself and are modelled as �ctitious. However, it is

evident that the �ctitious discount opportunities are not independent of item i as assumed.

The above mentioned references all assume that demands for di�erent items are indepen-

dent. Liu and Yuan [32] analyse a can-order policy for a system where the demand for

di�erent items are correlated.

Periodic-review policies were �rst analysed by Atkins & Iyogun [3], who suggest a modi�ed

periodic-review policy (MP) where each item i order up to Ri each time the inventory is

reviewed. The review interval Ti is restricted to be an integer multiple of a base period.

This policy is dominated by the P (s; S) policy of Viswanathan [57] mentioned in our

introduction. Pantumsinchai [43] analyses a QS policy (Originally suggested by Renberg

and Planche [45]) where an order is placed when the total system demand since the last

order placement exceeds Q. Item i orders up to Si. The performance of the QS policy

is comparable to that of the MP policy. Forsberg [16] considers a generalization of this

policy, where each item moreover has a must-order point, which can trigger an order.

Models where the joint replenishment problems is combined with routing/transportation

problems are considered by Viswanathan and Mathur [58] and Qu, Bookbinder and Iyo-

gun [44]. The deterministic joint replenishment problem has also received considerable at-

tention. Procedures for determining optimal and heuristic policies are described in Goyal

and Satir [18]. More recently, Wildeman, Frenk and Dekker [60] described an eÆcient

method for determining the optimal solution.

4.3 The compensation approach

In particular in systems with high major ordering cost, the can-order policy seems to

have a poor performance. A possible explanation for this is that the item considering

to place an order balances the sum of the major and the minor ordering cost with the

expected shortage cost for the item. Whenever an item places an order, other items
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receive a discount opportunity which may reduce their costs. However, in the original

decomposition, the item placing the order does not take this into consideration when

deciding whether to place an order or not. By calculating Æj , the average bene�t per

discount opportunity for all items j, we can compensate an item i placing an order by

only charging K ��i, where

�i =
X
j 6=i

Æj :

In this way, the implied e�ects of placing an order are included when deciding when to place

an order. This leaves the question of how to �nd Æj . The bene�t of a discount opportunity

changes with the inventory position of an item. If no demands have occurred since the last

replenishment, we are not interested in joining a order, and the value is zero. If we are just

about to place an order ourselves, the value of the discount opportunity is close to K��i.

We use the relative values of a policy to determine Æj . The relative value v(x) is the

di�erence in expected long-run total cost of having an inventory position of x rather than

the order-up-to level S. The relative values are typically used for optimization procedures,

but here we use them to obtain information about the value of a discount opportunity. In

s c S

ki

K + ki ��i

v(x)

x

Figure 4: The relative values v(x) as a function of the inventory position x for the optimal

policy.

Figure 4 we have depicted the relative values of an optimal policy. An item can bene�t

from discount opportunities occurring while its inventory position is below c. If a discount

opportunity occurs while the system is in state x, we will accept it (since x � c), and our

inventory position will rise to S. Since the relative value of state S (by de�nition) is 0, the

bene�t of the discount opportunity is the positive amount v(x)� k. The expected bene�t
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Æj is found by �nding the expected value of v(x)� k per generated discount opportunity.

In the next sections we apply this approach to a continuous-review and a periodic-review

can-order policy.

4.4 A continuous-review can-order policy

In this section we assume that demand is reviewed continuously and that orders can be

placed at any point in time. Other methods for computing can-order policies are based on

this assumption and this allows us to compare the compensation approach with these. We

use the principle of decomposition with compensation, and thus �rst show how to solve

a single-item problem with Markovian discount opportunities and derive Æj and �j , and

then show how to combine these in the decomposition algorithm.

4.4.1 Modelling

The inventory system consists of n items, where item i faces Poisson demand with rate �i.

Holding costs are charged at a rate hi > 0 per unit per unit time. Demand not satis�ed

immediately is backlogged and shortage costs are charged at a rate of pi per unit per unit

time. Each unit backlogged moreover incurs a time independent cost of �i. There is a

constant lead time of Li time units. The �xed ordering cost consists of a major cost K,

and a minor cost ki for each item i joining the order.

Let the decision epochs be the demand epochs and the arrivals of the discount oppor-

tunities. The state of the system at each decision epoch is described by the inventory

position x. Since we have two independent Poisson processes with rate �i and �i the

merged process is a Poisson process with rate �i+�i. The probability of a decision epoch

being generated by a demand [discount opportunity] is �i=(�i + �i) [ �i=(�i + �i)]. At

each decision epoch we can decide to place an order.

We can now �nd the transition probabilities and the expected cost charged to a decision

epoch (the lead time is incorporated by a shift in time).

Based on these we can �nd the long-run average cost per unit time of a given policy.

The inventory process is regenerative with regeneration point S. De�ne a cycle to be the

time between two regeneration epochs. By renewal-reward theory we can then �nd the

long-run average cost of a policy, by dividing the expected cost incurred in a cycle by the

expected cycle length (see e.g. Tijms [53]). Let z(x) be expected cost incurred up to the

next regeneration point starting in state x, and let y(x) be the expected time until we

reach the next regeneration point, starting in state x. The functions z(x) and y(x) are

easily computed by a recursion scheme. Let gi be the long-run average cost for item i of

using policy (s; c; S),

gi =
z(S)

y(S)
: (4)
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Next, we need to �nd the expected rate �i of order placements from item i. The proba-

bility that the item places an order in a cycle equals ( �i
�i+�i

)c�s, the probability of c � s

consecutive demands with no discount opportunity in between. To �nd the average num-

ber of orders placed by the item per unit time, we divide by the expected length of the

cycle

�i =
� �i
�i + �i

�c�s.
y(S): (5)

Now let us calculate the expected gain of a discount opportunity. Let

v(x) = z(x)� giy(x)

be the relative value of inventory position x, with gi being the cost of the policy found by

(4).

Let J be the random variable denoting the number of demands occurring from the time

when the can-order level is reached until the �rst discount opportunity occurs. The prob-

ability of J = j is the probability of j consecutive demands followed by a discount op-

portunity. The expected gain of the discount opportunity is found by conditioning on the

value of J .

V =
�i

�i + �i

c�s�1X
j=0

� �i
�i + �i

�j�
v(c � j)� ki

�
:

We can only bene�t from one discount opportunity per cycle and therefore, to �nd the

expected gain Æi of the discount opportunity per discount opportunity, we divide by the

expected number �y(S) of discount opportunities occurring in a cycle, i.e.

Æi =
V

�iy(S)
: (6)

Naturally, we are interested in optimizing the performance of the single-item system. We

can either use a policy-iteration algorithm to optimize the policy variables or use the

algorithm of Zheng [62] to �nd the optimal can-order policy with the major ordering cost

speci�ed as K ��i.

The decomposition procedure works as follows: We initialize by setting Æj = 0 and �j to

a small but positive amount for all j. In each iteration of the procedure, we solve the

single-item problem for each item i with values of �i and �i given by

�i =
X
j 6=i

Æj

and

�i =
X
j 6=i

�j :

After solving the problem for item i, the values of Æi and �i are updated by (6) and (5).

This iteration is repeated until the policy variables are either unchanged or start cycling
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between two or several solutions. This typically happens within 10-50 iterations. In the

event of cycling the best policy is found by evaluating the policies in the cycle and choosing

the one with the lowest cost. An estimate of the total system cost is found by
P

i gi. Since

the decomposition procedure is based on approximations, we also evaluate the optimal

policy by simulation, to give a fair comparison with other policies.

4.4.2 Numerical results

We �rst test the compensation can-order policy on a set of data provided by Atkins and

Iyogun [3]. The P (s; S) policy has lower cost when the major ordering cost is high, but

when K is low the compensation can-order policy is the policy with the lower cost. The

results show that the compensation can-order policy is in general better than the FGT

can-order policy. In 23 out of 25 investigated cases, the cost of the compensation can-

order policy is lower than those of the FGT can-order policy, in some cases by up to 25%.

Compared with the Erlang can-order policy (Schultz & Johansen [46]) the compensation

can-order policy is better in cases with a low major ordering cost, whereas the Erlang

can-order policy gives lower costs on examples with high major ordering cost. However,

these costs are still higher than those of the P (s; S) policy.

Secondly, we consider a set of examples, introduced by Viswanathan [57], where the holding

and penalty cost have been increased by a factor of 100. This corresponds to an increase

in the demand rate and thereby the demand variation by a factor of 100. Viswanathan [57]

concludes that even in these cases the P (s; S) policy dominates the FGT can-order policy.

We �nd that the compensation can-order is better than the P (s; S) policy in all of the

examples, including the examples where K is high. The average cost di�erence is only

0:75%, but the conclusion that the P (s; S) policy dominates the can-order policy for these

high variation examples is not true.

4.5 A periodic-review can-order policy

Next, we analyse a can-order policy for a periodic-review inventory system. The assump-

tion of continuous review can be justi�ed by the recent developments of access to point

of sale information and electronic data interchange (EDI). However, while the access to

information may be continuous, there is often only a limited number of replenishment op-

portunities, for example, once or maybe twice a day. For many systems a periodic-review

model will therefore provide a better representation.

4.5.1 Modelling

We assume a periodic system where every period typically may represent one day. We

assume that period demands are stochastic and stationary variables and let �i denote the
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probability of a positive demand, and �i(x) the probability mass function of the demand

size for item i in any period.

Demand not satis�ed immediately is backordered, incurring a �xed cost �i per unit back-

ordered. At the end of every period, a holding cost of hi per unit in stock and a time

dependent cost pi per unit backordered is incurred. There is a constant lead time of Li

periods for each item i. The �xed cost of ordering consists of a major cost K plus a minor

ordering cost ki for every item i participating in the order.

For the periodic model several items can trigger an order at the same time, and therefore

we need another approach to model the discount opportunities. We approximate the

process of discount opportunities by a Bernoulli process with outcome 1, if a discount order

opportunity occurs and 0 otherwise. Successive outcomes are assumed to be independent

of each other, which means that the probability of a discount opportunity does not depend

on discount opportunities of the past, and the process can therefore be seen as a discrete

version of the Poisson process.

We employ the principle of decomposition with compensation, and solve �rst the single-

item problem, similarly with the continuous-review case. Let �i be the probability that at

least one other item, but item i, places an order in a period, and let �i be the expected

value of other items' bene�t of an discount opportunity generated by item i.

Let the state, xn, of the system at the end of period n, be the inventory position. Under

the regime of a can-order policy fxngn�0 is a Markov chain with regeneration point S. Let

the inventory cycle be the time between two consecutive visits in the regeneration point.

As for the continuous-review policy, we can �nd the long-run average cost of a policy as

the expected cost incurred during a cycle divided by the expected length of a cycle.

Let us �rst state the transition probabilities and the expected cost function, excluding

costs of ordering. In any state x where we do not place an order, we jump to state

x� j with probability �(j) for all j � 0. However, if we place or join an order, we jump

immediately to state S.

The cost assigned to an inventory position x in period � , is the expected cost incurred in

period � + L+ 1, given that the inventory position is x by the end of period � . The �rst

period that can be in
uenced by our decision is period � + 1 if the lead time is zero and

period � +L+1 if the lead time is L. Consequently, this shift in time assigns the relevant

cost to each period. We �nd the expected cost by conditioning on the lead time demand

and on the one-period demand.

The cost of placing an order is determined in the following way. If s < x � c and a discount

opportunity has occurred, we can join this, incurring only the minor ordering cost ki. If

x � s and no other item is placing an order, the major ordering cost K ��i is incurred.

However, if several items are placing an order simultaneously, which is possible in the

periodic model, but not in the continuous model, they must share the major ordering cost
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K ��i. We model this by dividing the major ordering cost with the expected number of

items with inventory position below s.

Let z(x) be the expected cost incurring until we reach the regeneration point next time,

starting in state x. Similarly, let y(x) be the expected time until the regeneration point is

reached, starting in state x. We �nd z(x) and y(x) in a recursive manner, and obtain the

cost for item i as

gi =
z(S)

y(S)
:

The relative value of state v(x) is de�ned as for the continuous-review system and is given

by

v(x) = z(x)� giy(x)

We now derive �i, the average number of orders placed per period, and Æi, the expected

bene�t of a discount opportunity. Let m(x) denote the expected number of times we visit

a state x during an inventory cycle. We can enter a state x from state x+j after a demand

of j units, j > 0. However, after a period with zero demand, we will remain in state x,

which will count as an additional visit. The expected number of orders placed per period,

equals the expected number of times we visit a state x with x � s per cycle, divided by

the cycle length y(S).

�i = y(S)�1
sX

x=�1

m(x) (7)

Under the assumption that the discount opportunity process is independent of the item

under consideration, the expected bene�t per inventory cycle can be found by conditioning

on the inventory position x. The expected number of periods where we are in state x is

m(x) and therefore the expected gain per cycle is

V =

cX
x=s+1

m(x)(v(x) � k):

We can only bene�t from one discount opportunity per cycle, and, therefore, to �nd the

expected gain Æi of the discount opportunity per discount opportunity, we divide by �iy(S),

the expected number of discount opportunities occurring in a cycle, i.e.

Æi =
V

�iy(S)
: (8)

We apply a tailor-made policy-iteration algorithm to �nd a near-optimal can-order policy

for the single-item problem.

The decomposition procedure works as follows: Let (ski ; c
k
i ; S

k
i ) be the policy found for

item i in the k'th iteration of the decomposition algorithm. The algorithm is initialized

by setting Æi = 0 for all i. �i is set equal to a small but positive amount. In the k'th



Joint replenishnemt 37

iteration of the algorithm we perform the following for each item i: First, we compute �i

and �i by

�i =
X
j 6=i

Æj

and

�i = 1�
Y
j 6=i

(1� �j)

Then we solve the single-item problem based on these values and update the values of �i

and Æi by (7) and (8).

The algorithm terminates when (ski ; c
k
i ; S

k
i ) = (sk�1i ; ck�1i ; Sk�1i ), or when the algorithm

starts cycling between a set of policies. The algorithm terminates in approximately 20-40

iterations. Due to the approximate nature of our approach the computed cost given byP
i gi is only an approximation. In order to compare the policy with other policies we

simulate the found policy. This cost is denoted simulated cost. In case of cycling we

choose the policy with the lowest computed cost.

4.5.2 Numerical results

We test the performance of the can-order policy on a 12-item example, and investigate the

in
uence of di�erent lead times, ordering cost, holding costs and shortage costs. Moreover,

we investigate how the demand structure in
uences performance by considering two types

of demand structure: First, a system where demand is fairly irregular, being 0; 1, or 2, in

most periods, with occasional highs of 15 units every once in a while. And, in contrast

to this, a system with a more regular demand distribution with the demand size being

0,1, 2, or 3. In both systems all holding, penalty and minor ordering costs are equal for

all items, and so are the lead times. The examples can be thought of as systems with 12

fairly identical products, perhaps only di�ering in their color or their taste. What di�ers

is typically the demand rate. Some colors or variants may be more needed than others.

We have chosen an example where the probability of a positive demand �i varies from

0:15 to 0:7 over the 12 items.

We compare the can-order policy with the P (s; S) policy of Viswanathan [57] and with

a periodic can-order policy calculated by the original decomposition approach, i.e. with

compensation. This policy is denoted FGT.

The most important factor of in
uence is found to be the demand structure. The costs of

the P (s; s) policy is on average 10.3% higher than those of the compensation policy and

the FGT policy has cost 1.3% higher in 27 examples with irregular demand sizes. The

compensation policy has the lowest cost in all 27 examples. When demand is regular the

performance of the P (s; S) policy is much better. The two policies are equally good, while

the FGT policy on average has costs 3% above the costs of the can-order and the P (s; S)
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policy. The impact of the other factors are marginal for the examples with irregular

demand. For the regular demand examples, we �nd that the periodic P (s; S) policy is

best when the major ordering cost is high and the can-order policy is best when the major

ordering cost is low.

4.6 Conclusion

Our studies of the joint replenishment problem have revealed that the can-order policy

by no means can be regarded as inferior to the periodic ordering policies. The strongest

arguments for periodic ordering policies are that the assumption of continuous review is not

realistic in practice, and that the can-order policy is not as good as the periodic ordering

policies. We have shown that the can-order policy, if computed by the compensation

approach, is much better than its reputation. By the compensation approach is it possible

to obtain a much richer model formulation and the added complexity does not seem to

increase computation times.

Moreover, we have suggested a periodic-review can-order policy. For this policy we have

found that there can be signi�cant cost savings, in particular for systems with irregular

demand patterns.

5 Lost sales in multi{echelon inventory problems

5.1 Introduction

In the basic inventory model is it assumed that the demand and supply processes are

external processes which cannot be controlled. There are, however, systems where this as-

sumption is inadequate. Many retail chains consists of one (or several) central warehouses

each serving a set of retailers in their geographical region. The decisions at the warehouse

clearly in
uence the supply process at the retailers, and this should be taken into consid-

eration when deciding how to control the inventory at the warehouse. This system is a

two-stage or a two-echelon inventory system, but it is easy to imagine distribution systems

with several stages.

By optimizing the supply chain as a whole, it is possible to obtain an improved per-

formance compared with a system where each stage of the supply chain is optimized as

an independent single-stage system. This is the fundamental observation behind what

is known as Supply Chain Management. In an eÆcient supply chain, the parties share

information about demand, supply and even costs, in order to optimize the performance

of the supply chain.

Evaluation and optimization of control policies for such inventory systems have attracted

massive interest in the literature. See, for example, Axs�ater [4] for an overview. There are
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in principle two types of control policies: centralized policies and decentralized policies.

Both types of policies are computed using information of the entire supply chain. However,

under the regime of a decentralized policy, ordering decisions at an installation can depend

only on the inventory position at the local retailer, while a centralized policy can take

information of inventory positions at all installations into account. While the centralized

policies in general yield better results, the decentralized policies are easier to implement

in practise.

In this section we analyse a model for a one-warehouse, multiple-retailer inventory system.

Demand occurs only at the retailers and follows independent Poisson processes. The retail-

ers replenish their stocks from the central warehouse, which, in turn, replenishes its stock

from an outside supplier. All lead times are assumed to be constant. All installations use

decentralized (S�1; S)-policies with continuous review. It is assumed that backlogging of

customer demand is not allowed, which means that all demands not satis�ed immediately

are lost.

In the existing literature dealing with multi-echelon inventory control, the prevalent as-

sumption is that complete backlogging of orders is allowed in case of stockouts. For

example, Axs�ater [5] shows how to exactly evaluate the performance for di�erent (R;nQ)-

policies when the retailers face compound Poisson demand and inventories are continuously

reviewed. Cachon [10] gives an exact method for the periodic review case with identical

retailers.

In some situations the assumption of complete backlogging may not be so realistic. For

example, it may be more representative to model stockouts as lost sales when retailers are

in a competitive market and customers can easily turn to another �rm to purchase the

good. Supermarket and grocery chains are obvious examples of systems where customers

are lost rather than backlogged, if they cannot have their demand �lled immediately.

The only other paper, to our knowledge, considering lost sales in a multi{echelon envi-

ronment is Nahmias and Smith [40]. Their model di�ers from ours in several important

aspects. First, they consider periodic review batch order policies. The model considered

is more general since they consider partial lost sales. This means that, with probability u,

demand not satis�ed immediately, is lost, and with probability 1�u it is satis�ed later by

a special order. For the model to be tractable, they assume instantaneous deliveries from

the warehouse to the retailers.

For single-echelon inventory models the lost sales assumption is more common. The exact

cost for a single-level inventory system facing Poisson demand and �xed lead times was

�rst given by Hadley and Whitin [22]. Smith [50] demonstrates how to evaluate and

�nd optimal (S � 1; S)-polices for an inventory system with zero replenishment costs and

general distributed stochastic lead times. Hill [25] shows that for this model the (S�1; S)-

policy is not the optimal policy, and Johansen [28] suggests a modi�ed base-stock policy,
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which is better than the pure base-stock policy.

Our analysis departs in one of the most widely known multi-echelon inventory models, the

METRIC model developed by Sherbrooke [47]. In its original setting, it is assumed that

stockouts at the retailers are completely backlogged. We demonstrate how the METRIC

model can be modi�ed to handle the lost sales case. Our approach gives an approximate

model, which is quite simple and eÆcient from a computational point of view. Simulation

experiments indicate that the performance is very good. The section is based on Anders-

son and Melchiors [2] which are referred to for a detailed analysis and numerical results.

5.2 Modelling and optimization

The inventory system under consideration consists of one central warehouse and N re-

tailers, facing Poisson customer demand with rate �i. No backlogging is allowed at the

retailers. Consequently, a customer that arrives at a retailer out of stock, will be a lost

sale for the retailer. When stockouts occur at the warehouse, all demands from the re-

tailers are fully backlogged and the backorders are �lled according to a FIFO-policy. The

transportation time between the warehouse and a given retailer is assumed to be constant

as well as the transportation time from the external supplier to the warehouse. The cost

of a replenishment is assumed to be zero or negligible compared to the holding and stock-

out costs. The external supplier is assumed to have in�nite capacity, which means that

the replenishment lead time for the central warehouse is constant. All installations use

(S � 1; S) base-stock policies with continuous review, with S0 being the base-stock level

of the warehouse and Si the base-stock level of retailer i. Units held in stock at both the

warehouse and the retailers incur holding costs per unit and time unit. Moreover, a �xed

penalty cost per lost customer is incurred at the retailers.

We present a model for the considered inventory system which can be used to evaluate

the long-run average cost for di�erent policies within the class of (S � 1; S)-policies. The

objective is to �nd the policy that minimizes the long-run average cost.

For the backorder case the exact cost of such a system can be derived by observing that any

unit ordered by a retailer i, is used to ful�ll the Sith demand. The cost can then be derived

by conditioning on the arrival time of the Sith demand (which is Erlang distributed)

and the arrival of the ordered unit (see Axs�ater [4]). In a lost sales environment the

corresponding observation is that any unit ordered by a retailer i, is used to ful�ll the

Si + Xith demand, where Xi is a random variable denoting the number of lost sales

incurred at the retailer during the replenishment lead time. Xi is obviously very complex

and we therefore focus on a heuristics rather than on the exact solution.

The analysis of this system has many similarities with the analysis in Sherbrooke [47]. The

lost sale case is, however, more complicated. In the backorder case, all customers arriving
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at the retailers generate demands at the warehouse immediately at the arrival epoch, since

all retailers use continuous review (S � 1; S)-policies. Consequently, the warehouse faces

a Poisson process with intensity �0 = �1+�2+ � � �+�N . For the lost sales case this is not

true. When backordering is not allowed, customer demands can be lost due to stockouts at

the retailers. Therefore the demand at the warehouse is not a Poisson process. Moreover,

the demand rate and thereby the cost at the warehouse depend on the order-up-to levels

of the retailers.

We �rst show how to evaluate the costs at the retailers given a certain replenishment

lead time provided by the warehouse. We then show how to calculate the costs at the

warehouse given the demand intensity from the retailers. Finally, we introduce an iterative

procedure, from which we obtain the average costs of the inventory system.

Given a replenishment lead time, �L, the number of outstanding orders towards the central

warehouse at a retailer, is equal to the occupancy level in an M=G=S=S queue, with

S servers, each with general distributed service times and no queueing allowed. If the

service times are independent random variables with mean �L, we can �nd the steady-state

distribution for the occupancy level by Erlang's loss formula. The stochastic lead times

are evidently not independent in our case, but if we disregard this correlation we can

approximate the number of outstanding orders with a Poisson distribution. This is the

idea behind the METRIC approximation. Based on this, Smith [50] derives the exact

cost of a (S� 1; S) lost sales single-stage inventory system with generally distributed lead

times. He also shows that the cost is a convex function of the S and therefore the optimal

value of S can be found by local search.

For each retailer i and an order-up-to level Si, we let q
Si
i (Si) denote the probability that

a demand is lost and thereby not ordered at the warehouse. The demand rate at the

warehouse, given the order-up-to levels of the retailers, is therefore

� =
NX
i=1

�i(1� qSii (Si)) (9)

The demand process is not a Poisson process: If, for example, the base{stock level at a

retailer is one, the smallest interval between two successive demands from that retailer

will be the retailers lead time. We ignore this and approximate the demand process at

the warehouse with a Poisson process with mean �. The derivation of the cost at the

warehouse is identical to that for the pure backorder model. For an order-up-to level at

the warehouse we can moreover calculate the average delivery delay, due to stockouts at

the warehouse by Little's formula. This plus the �xed transportation time to a retailer,

gives the replenishment lead time, �L.

We can now establish the solution procedure. Let TC�(S0) be the minimal cost of the

inventory system given a value of S0. TC
�(S0) is not convex in S0 and therefore we perform
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TC�(S0)

TClb(S0)

minx�S0 TC
�(x)

S0Smax
0

Figure 5: Illustration of the abortion criteria. The search for the optimal S0 is aborted at

Smax
0 .

an enumeration over S0 starting with S0 = 0, bounded from above by an abortion criteria.

We show that TClb(S0) is a lower bound for TC�(S0) and that TClb(S0) furthermore is

convex in S0. The search for the optimal value of S0 is aborted when

min
x�S0

TC�(x) � TClb(S0)

as illustrated in Figure 5.

For each value of S0, we calculate the value of �Li and optimize the base-stock levels, Si,

for all retailers i. We now update the new value of � by (9) and repeat the calculations

until all values of Si are unchanged. This usually happens in 2 or 3 iterations.

5.3 Numerical results

Since our heuristic is based on approximations it is of interest to simulate the system to

see how good they are. We consider 36 di�erent test examples with �ve identical retailers.

The method performs rather well for all the considered problems. It seems that we mostly

tend to underestimate the total cost, especially in the problems with high stockout cost at

the retailers. This is due to the METRIC approximation, where the stochastic lead times

are replaced by their averages, when evaluating the costs for the retailers. On average the

method underestimates the total cost with 1.1 %.

Since the examples investigated have identical retailers we can �nd the optimal base-stock

policy for each example by extensive simulation. We can then compare the cost of the

optimal policy with the cost of the policy suggested by the heuristic. The increase in cost

by using the policies obtained by our method is only 0.40 %, on average. In 14 of the 36

examples the policy suggested by the heuristic is optimal. In 16 of the 22 problems where

we fail to �nd the true optimal policy the method merely underestimates the order-up-to

level at the warehouse by a single unit. In one problem the warehouse order-up-to level
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is underestimated by two units. In the other 5 problems where the optimal policy is not

found, the method tends to allocate more stock to the retailers and less stock to the ware-

house than it is optimal from a cost perspective.

5.4 Conclusion

In conclusion, the method developed is very eÆcient and simple. Numerical results also

indicate that the performance is quite good.

To the best of our knowledge, we are the �rst to deal with lost sales in a continuous review

multi-echelon inventory setting. Moreover, the original backorder METRIC-model [47] is

one of the most widely used multi-echelon inventory models. Our lost sales generalization

makes the policy evaluation a bit more complex, since we have to use an iterative procedure

to obtain the cost. Still, the model is rather simple and easy to implement. Moreover, in

many practical situations the lost sales assumption is a reasonable way to model stockouts.

Therefore our technique is also relevant for practitioners.

6 Conclusion

Mathematical models for inventory systems have been known for about a century. Earlier

models were limited by little data availability and only very little computer power, if any.

Today, there is easy access to data, and ample computer power. This means that we

can compute policies for much more complicated inventory systems, and thereby obtain

a better representation of the supply chain. This thesis consists of several small steps

towards eÆcient supply chain management. Let us shortly sum up the contributions: In

Melchiors, Dekker and Kleijn [37], Melchiors [35] and Melchiors [36] we analyse and discuss

rationing policies for inventory systems with several demand classes. This area has not

received much attention in the literature and since companies today are creating closer re-

lationships with their customers, eÆcient control policies are needed. In Melchiors [34] we

apply the rationing policies to a make-to-stock system with several demand classes. Mel-

chiors [33] and Johansen & Melchiors [29] present a new approach for computing can-order

policies for the joint replenishment problem which is applied to both a continuous-review

and a periodic-review inventory system. Our model gives a better system representation

which leads to lower system costs. In Andersson and Melchiors [2] we compute base-stock

policies for a two-echelon inventory system with lost sales. Most multi-echelon models are

based on the assumption of full backlogging, which is unrealistic in many settings.

As mentioned earlier our ambition has not been to provide a model for a full-scale supply

chain. We have rather chosen to focus on interesting sub-systems of the supply chain. We
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have attempted to focus on the essential characteristics of a system, but the methods will

typically need customization to �t a real system. In many cases our analysis will provide

a solid foundation for further analysis. If the deviation from our model is signi�cant,

our analysis may, however, not be applicable. But the structure of the policies suggested

will still be useful, as will our recommendations for when these policies should be preferred.

Today, the distance between what practitioners want and what research can provide is as

small as ever. However, the gap between the models that practitioners use and the models

researchers develop is still surprisingly signi�cant. To narrow this gap is an important

step towards eÆcient supply chain management, and the real challenge for practitioners

as well as researchers. We hope that this thesis is a step in this direction.
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Abstract

Whenever demand for a single item can be categorized into classes of di�erent

priority, an inventory rationing policy should be considered. In this paper we analyse

a continuous review (s;Q) model with lost sales and two demand classes. A so-called

critical level policy is applied to ration the inventory among the two demand classes.

With this policy, low{priority demand is rejected in anticipation of future high{priority

demand whenever the inventory level is at or below a prespeci�ed critical level. For

Poisson demand and deterministic lead times, we present an exact formulation of the

average inventory cost. A simple optimization procedure is presented, and in a numer-

ical study we compare the optimal rationing policy with a policy where no distinction

between the demand classes is made. The bene�t of the rationing policy is investi-

gated for various cases and the results show that signi�cant cost reductions can be

obtained.

Keywords: Inventory, rationing, lost sales, two demand classes.

1 Introduction

In most of the literature on inventory models it is assumed that all demand for a single item

is equally important. However, in practice, the demand for an item can often be categorized
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into classes of di�erent priority. Consider, for example, the spare parts inventory in the

airline industry. Most airlines have a contractual agreement with a company that supplies

them with spare parts whenever an aircraft is grounded at the airport due to failure of

some equipment. In the contractual agreement it is stated that the company promises e.g.

a 98% service level to the airline. Beside these key customers, the spare parts inventory

company may also satisfy demand from other airlines. These airlines are usually considered

to be of lower priority, and their orders will only be satis�ed if the inventory level is high

enough, so that the 98% service level for the key customers is not endangered. Another

situation where demand for a single item may have di�erent priorities occurs in multi-

echelon inventory systems with emergency orders (see e.g. Chiang & Gutierrez [1]). In

many of these systems emergency orders are placed at the lowest echelon whenever the

stock level is low or when customer demand is backordered. As a result, at the higher

echelon two types of demand are faced: emergency orders and normal replenishment

orders. Whenever the higher echelon has insuÆcient stock to meet both types of demand,

priority will be given to the emergency orders. Finally, we mention an example that can

be found in an assembly{to{order system, where a component may be used for several

end{products. If these end{products yield di�erent pro�ts to the �rm, then demand for

this component may be categorized into classes of di�erent priority.

A simple way of operating inventory systems with two demand classes is to use a rationing

policy that reserves part of the stock for high priority demand by rejecting low{priority

demand when stock is below a certain critical level. Henceforth, we refer to such a policy

as a critical level policy and we will restrict ourselves to policies where the critical level is

independent of the remaining lead time. However, such information, if available, could lead

to improved policies. For example, if the inventory manager knows that a replenishment

order will arrive soon, it may be optimal to satisfy low{priority demand even though the

inventory level is below the critical level. A disadvantage of operating a policy that takes

into account information about remaining lead times is that it is much more diÆcult to

implement in practice.

In this paper we will consider a critical level policy in the context of a continuous review

(s;Q) inventory model with lost sales. In some practical situations, a customer demand

is handled in another way, e.g. through another supplier, if it cannot be delivered from

stock on hand. Hence, at the inventory system, this demand may be viewed as a lost sale.

The stockout cost in this case represents the additional cost for expediting the customer

order. To the best of our knowledge, this model has not been analysed in the literature

so far. However, some closely related models have appeared and an overview of them is

presented in the next section. The two following sections deal with the derivation of the

average inventory cost in a continuous review (s;Q) inventory model with lost sales and

two demand classes. For Poisson demand and �xed lead times we derive an expression
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for the average inventory cost, including holding, shortage and ordering costs. In the

�fth section the optimization of the policy parameters is discussed, and the sixth section

illustrates the model by means of some numerical examples. The main conclusions are

presented in the last section of this paper.

2 Related literature

In this paper two areas in inventory control theory are combined, i.e. continuous review

(s;Q) inventory models with lost sales, and inventory rationing. In this section an overview

of related literature in both areas is presented.

The (s;Q) model with lost sales was �rst discussed by Hadley & Whitin [7]. They derived

an exact formulation of the average inventory cost for an (s;Q) policy with Poisson demand

and constant deterministic lead times, under the assumption that at most one order is

outstanding. They also presented an easy approximation of the average cost and developed

an iterative procedure to optimize the policy parameters, which has become the standard

textbook approach (see e.g. Silver and Peterson [12] and Tersine [13]). More recently,

Johansen & Thorstenson [8] formulated and solved the same model as a semi{Markov

decision model.

Inventory rationing was �rst introduced by Veinott [16], who proposed a critical{level

policy for a periodic review model with n demand classes and zero lead time in a backorder

environment. This model was also analysed by Topkis [15], and for two demand classes

by Kaplan [9] and Evans [5]. The �rst contribution in a continuous review inventory

model was made by Nahmias & Demmy [11]. They analysed an (s;Q) inventory model

with two demand classes, Poisson demand, backordering, a �xed lead time and a critical

level policy, under the assumption that there is at most one outstanding order. This

assumption implies that whenever a replenishment order is triggered, the net inventory

and the inventory position are identical. Their main contribution was the derivation of

approximate expressions for the �ll rates. In their analysis they used the notion of the

hitting time of the critical level, i.e. the time that the inventory level reaches the critical

level. Conditioning on this hitting time, it is possible to derive approximate expressions

for the service levels. Observe that the model presented by Nahmias & Demmy [11] is

the one most closely related to the model we present in this paper. However, we assume

lost sales and �nd expected holding, shortage and ordering costs, which enable us to

optimize the parameters of the policy such that the costs are minimized. Dekker, Kleijn

& De Rooij [4] considered a lot{for{lot inventory model with the same characteristics,

but without the assumption of at most one outstanding order. They discussed a case

study on the inventory control of slow moving spare parts in a large petrochemical plant,

where parts were installed in equipment of di�erent criticality. Their main result was
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the derivation of (approximate) expressions for the �ll rates for both demand classes. The

results of Nahmias & Demmy [11] were generalized by Moon & Kang [10]. They considered

an (s;Q) model with compound Poisson demand, and derived (approximate) expressions

for the �ll rates of the two demand classes.

Rationing policies in a lost sales environment have not received much attention. Cohen,

Kleindorfer & Lee [2] consider a periodic review (s; S) inventory system where all demands

in each period are collected, and by the end of each period the inventory is used to satisfy

high{priority demand �rst, and the remaining inventory is then made available for low{

priority demand. Hence, they did not consider a critical{level policy. Recently, Ha [6]

analysed a lot{for{lot lost sales model with n demand classes and Poisson demand. He

assumed exponentially distributed lead times and modelled the system as a single{product

M=M=1=S queue (Tijms [14]) with state{dependent service times. This enabled him to

prove optimality of the lot{for{lot critical{level policy. Dekker, Hill & Kleijn [3] analysed

the same model with a general lead time distribution. They modelled the system as an

M=M=S=S queue (Tijms [14]) and developed eÆcient methods to determine the optimal

policy. Since they restricted themselves to policies which are independent of the remaining

lead time, the optimality of the critical level policy could not be guaranteed for generally

distributed lead times.

3 Notation and preliminaries

In this section we introduce the notation that will be used throughout this paper. We

consider an inventory model with two demand classes, each with unit Poisson demand

with arrival rate �1 for high{priority demand and �2 for low{priority demand. The cost of

not satisfying a demand from demand class j is denoted by �j, j = 1; 2, with �1 > �2 > 0.

All demand not satis�ed immediately is assumed to be lost. The �xed ordering cost is

K and there is a �xed lead time of L time units. The unit holding cost per time unit is

denoted by h > 0.

The (s;Q) policy extended with a critical level is denoted as a (c; s;Q) policy, which oper-

ates as follows: whenever the inventory level drops to the reorder level s, a replenishment

order of size Q is placed which arrives after L time units. Demand from both classes is

satis�ed whenever the inventory level exceeds the critical level c, otherwise only high{

priority demand (class 1) is satis�ed from stock on hand and low{priority demand is lost.

Following Hadley & Whitin [7] and Nahmias & Demmy [11], we will restrict ourselves to

policies in which there is at most one outstanding order. In a lost sales environment, the

condition that s < Q is suÆcient to enforce that at most one order is outstanding. This

means that in contrast to Nahmias & Demmy [11] (where the assumption of only one

outstanding order is an approximation, due to the backorder environment) our results are
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exact. In principle, the critical level c is unbounded, but for the model to be tractable

we need to require that c < Q. Nahmias & Demmy [11] only consider policies where

the critical level is below the reorder point, and to our knowledge nobody has considered

the situation where c � s, although the bene�t of such policies, as we shall show later,

can be signi�cant. In order to be able to derive an expression for the average cost, we

need some additional notation. Let X(t) denote the physical inventory level at time t,

and let fX(t); t � 0g be the corresponding stochastic process. The restriction Q > s

ensures that fX(t); t � 0g is a regenerative process with regenerative epochs each time

the inventory level reaches the reorder level s and a replenishment order is placed. De�ne

a cycle as the time between two consecutive regenerative epochs. Then our process can

be split into independent and identically distributed renewal cycles. Using the renewal{

reward theorem (see e.g. Tijms [14]) we know that the average cost per time unit equals

the expected cost during a cycle divided by the expected length of a cycle. In case the

inventory policy satis�es the condition c < s, we let H be a random variable denoting the

hitting time of the critical level, i.e. the time from placing a replenishment order (or the

time when the inventory level `hits' the reorder level s) until the time where the inventory

level `hits' the critical level c. Since the total demand from both classes follows a Poisson

distribution with parameter � := �1 + �2, it readily follows that H is Erlang distributed

with parameters (s� c) and �. Figure 1 illustrates the inventory process over a cycle for

c

s

time

H

t1 t2 t3
L

Figure 1: The inventory process with c < s. At t1 an order is placed. At t2 the inventory

level 'hits' the critical level c and at t3 the order arrives.

a (c; s;Q) policy with c < s. Furthermore, we de�ne R as the random variable denoting

the inventory level just before a replenishment order arrives. Let Dj(t), j = 1; 2, be a

random variable denoting the demand from demand class j during t time units, and let

D(t) := D1(t) +D2(t) be the total demand from both classes during t time units. We can
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�nd the distribution of R as

IP(R = i) =

8><
>:

IP(D1(L�H) � c) for i = 0

IP(D1(L�H) = c� i) for 0 < i � c

IP(D(L) = s� i) for c < i � s

(1)

For a (c; s;Q) policy with c � s we reach the critical level before we place an order and

the hitting time H is therefore not de�ned. The distribution of R is then simply

IP(R = i) =

(
IP(D1(L) � s) for i = 0

IP(D1(L) = s� i) for 0 < i � s
(2)

We are now able to calculate the expected cost of a (c; s;Q) policy. This will be done in

the next section.

4 Deriving the average cost

In this section an expression for the average cost in a (c; s;Q) inventory system will be

derived. The total cost is composed of inventory holding and shortage costs, and ordering

costs. The approach we follow is to derive �rst the expected cost during a cycle and

then calculate the expected cycle length. Using the renewal{reward theorem we obtain an

expression for the average cost. We divide the analysis into two parts: �rst we consider

policies with c < s, thereafter we discuss the situation where c � s.

Average cost for c < s

We �rst consider the case where c < s, so that the inventory level hits the critical level

after a replenishment order is placed. In this case we introduce the hitting time H and we

may �nd the expected number of stockouts per cycle Bc<s
j for demand class j, j = 1; 2, by

conditioning on this hitting time. Given a hitting time t, the conditional value of Bc<s
2 is

simply equal to the expected value of the demand from class 2 until the next order arrives

(L�t) time units later. The conditional value of Bc<s
1 is equal to IED1(L�t)[D1(L�t)�c]

+,

which is the expected value of the demand from class 1 during (L � t) that exceeds the

stock c reserved for this class. To ease notation let IEDj(L�H);H [f(Dj(L � H);H)] be

the expected value of f where expectations are taken �rst with respect to the demand

Dj(L � t) given the event (H = t), and then with respect to H. We can now �nd the

unconditional values of Bc<s
j j = 1; 2.

Bc<s
1 = IED1(L�H);H [D1(L�H)� c]+ (3)

Bc<s
2 = IED2(L�H);H [D2(L�H)] (4)

Since the distributions ofD1, D2 andH have been determined it is not diÆcult to calculate

B1 and B2. In Appendix 1 we give the results.
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Our derivation of Bc<s
2 is identical to that of Nahmias & Demmy [11], whereas we present

a faster method for calculating Bc<s
1 .

The total expected shortage cost per cycle is given by

TSCc<s = �1B
c<s
1 + �2B

c<s
2

The holding cost incurred during a cycle is the sum of the holding cost incurred on each

inventory level visited during the cycle. The cost incurred on one inventory level i is simply

the number of units i times the unit holding cost per time unit, h, times the expected

time spent on the level. It is a well{known fact that (see e.g. Tijms [14], p. 24)

\given the occurrence of n arrivals in (0; t), the n arrival epochs are statistically

indistinguishable from n independent observations taken from the uniform dis-

tribution on (0; t)".

The expected time spent on each inventory level reached during a period of length t with

n demands is therefore t=(n + 1) if the time interval does not end with a demand (e.g.

when a replenishment arrives), and t=n if the time interval does end with a demand. We

will split the holding cost up in two parts. The holding cost HCc<s
1 incurred during the

lead time, and the holding cost HCc<s
2 incurred in the remaining part of the cycle. The

holding cost incurred in the lead time depends on whether we hit the critical level during

the lead time, and if so, whether the inventory is depleted during the remaining lead time.

If the total lead time demand D(L) is less than s� c then the holding cost incurred is

hIED(L)

2
4 sX
i=s�D(L)

i �
L

D(L) + 1

3
5 (5)

If we hit the critical level (i.e. D(L) � s � c), we divide the holding cost in the holding

cost before and after the hitting time H. The expected holding cost incurred before the

hitting time is

hIEH

"
sX

i=c+1

i �
H

s� c

#
(6)

If after the lead time the inventory is not depleted, that is D1(L�H) < c, the expected

holding cost incurred is

hIED1(L�H);H

2
4 cX
i=c�D1(L�H)

i �
L�H

D1(L�H) + 1

3
5 (7)

If the inventory is depleted during the remaining part of the lead time, the expected arrival

time of the last demand satis�ed is c
D1(L�H)+1 (L �H) time units after the hitting time.
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The expected holding cost incurred is therefore

hIED1(L�H);H

"
cX

i=1

i �
(L�H)c=(D1(L�H) + 1)

c

#
(8)

We have now described the holding cost incurred during the lead time as a function of

the random variables H, D(L) and D1(L �H). Since their distributions are known, we

can determine the expected holding cost incurred during the lead time. In Appendix 1 a

complete derivation of the expected holding cost HCc<s
1 , suitable for implementation, is

presented.

We will now �nd the expected holding cost HCc<s
2 incurred in the remaining part of the

cycle. Observe that after a replenishment order arrives, the inventory level is R + Q.

The expected holding cost incurred while the inventory level drops to s is the sum of the

holding cost incurred on each level, and since we have unit demand the expected time

spent on each level is 1=�. Taking expectations with respect to R yields

HCc<s
2 = hIER

h Q+RX
i=s+1

i �
1

�

i

The total expected holding cost is

THCc<s = HCc<s
1 +HCc<s

2

All we need now to derive an expression for the average inventory cost is the expected

length of a cycle, which is the lead time plus the expected length of the period where the

inventory is reduced from R+Q to s. Hence the expected length is given by

LoCc<s = L+
Q+ IE[R]� s

�

and the average cost of a (c; s;Q) policy with c < s is given by

TCc<s(c; s;Q) =
TSCc<s + THCc<s +K

LoCc<s

4.1 Average cost for c � s

In the model developed above only rationing policies with c < s were considered. In

this section we will �nd the expected cost of a policy with c � s. For such policies we

will start rejecting demand from demand class 2 before we place an order. The analysis

is similar to the one in the previous section and we will adopt the same notation. Let

� := infft � 0 : D1(t) � c� sg denote the time between the start of rejecting low{priority

demand and placing a replenishment order. See Figure 2.
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c

s

timet1 t2 t3 t4
L

�

Figure 2: The inventory process with c � s. At t1 the inventory 'hits' the critical level.

At t2 the order is placed. The inventory is depleted at t3 and at t4 the order arrives.

The expected number of stockouts for demand class 1 and 2 is

Bc�s
1 = IED1(L)[D1(L)� s]+

Bc�s
2 = IED2(L+�);� [D2(L+ �)]

By observing that IE� = (c� s)=�1 we obtain by the memoryless property of the Poisson

process that Bc�s
2 = �2(L+ (c� s)=�1). The calculation of Bc�s

1 is straightforward.

The expected total stockout cost per cycle is

TSCc�s = �1B
c�s
1 + �2B

c�s
2

To calculate the expected holding cost during a cycle, we divide the holding cost in three

parts. The expected holding cost incurred is found by the same principles used in the

previous section. Let HCc�s
3 be the expected holding cost that incur as the inventory

level drops from Q + R to c and let HCc�s
2 be the expected holding cost incurred while

the inventory level drops from c to s.

HCc�s
3 = hIER

h Q+RX
i=c+1

i �
1

�

i

HCc�s
2 = h

cX
i=s+1

i �
1

�1

Finally let HCc�s
1 be the expected holding incurred during the lead time. By conditioning

on whether the inventory is depleted or not and using the same reasoning as in (8) we
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obtain

HCc�s
1 = hIED1(L)

�
1fD1(L)<sg

sX
i=s�D1(L)

i �
L

D1(L) + 1

+1fD1(L)�sg

sX
i=1

i �
Ls=(D1(L) + 1)

s

�

The total expected holding cost is now given by

THCc�s = HCc�s
1 +HCc�s

2 +HCc�s
3

It is easy to calculate the total expected holding cost (see Appendix 2).

The expected length of a cycle is

LoCc�s = L+
Q+ IE[R]� c

�
+
c� s

�1

Hence, the total cost of a (c; s;Q) policy with c � s is given by

TCc�s(c; s;Q) =
TSCc�s + THCc�s +K

LoCc�s

We have now concluded the analytic derivations of the expected cost of the rationing

policies. Using the results presented in Section 4.1 and 4.2, we obtain that the average

cost TC(c; s;Q) of a (c; s;Q) inventory policy is given by

TC(c; s;Q) =

(
TCc<s(c; s;Q) if c < s

TCc�s(c; s;Q) if c � s

5 Optimization

Due to the complexity of the average cost formula it has not been possible to derive an

explicit expression for the optimal policy. The optimization procedure is therefore based

on enumeration and bounding.

Assume that the order size Q is given, and denote the associated optimal values of c and

s by c�(Q) and s�(Q). To obtain an upper bound on the value of s�(Q) we conjecture

that s�(Q) will be less than or equal to the optimal reorder level for the model without a

critical level (which is equivalent to our model with c = 0).

Although we cannot give a formal proof of this, we give an intuitive explanation. When

the critical level is positive, the average demand rate during the lead time will decrease.

Since the main purpose of using a reorder level is to cover the lead time demand, and the

optimal reorder level is increasing with the total lead time demand, we conjecture that

the optimal reorder level s�(Q) is decreasing with the critical level c. We note that all our

numerical experiments supported this conjecture.
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The inventory model without a critical level is identical to a simple lost sales (s;Q) model

with demand rate � := �1 + �2 and lost sales cost � := (�1�1 + �2�2)=�. Instead of

determining the optimal reorder point for this model we will use the reorder point following

from the Hadley{Whitin heuristic which is an upper bound on s�(Q), as shown in the

following lemma.

Lemma 1. Let ~s(Q) be the reorder point obtained by using the Hadley-Whitin heuristic

and let �s(Q) be the optimal reorder point in the simple lost sales model. For a �xed value

of Q it follows that ~s(Q) � �s(Q). Furthermore, ~s(Q) is found as the solution to

~s(Q) = min fs � 0 : IP(D(L) � s+ 1) �
h

h+ ��=Q
g

Proof. The average cost of the simple (s;Q) policy is given by (see Hadley & Whitin [7])

TC0(s;Q) =
[K�=Q+ h[(Q+ 1)=2 + s� �L] + (h+ ��

Q
)IE[D(L)� s]+]

(Q+ IE[D(L)� s]+)=�

Since Q is �xed we can write this as

TC0(s;Q) =
f(s)

Q=�+ g(s)
where g(s) � 0

Following the heuristic we approximate the average cycle length by Q=�, as if there were

no stockouts, and obtain

~TC0(s;Q) =
f(s)

Q=�

The reorder level ~s(Q) that minimizes ~TC0(s;Q) surely minimizes f(s) too. Thus for any

y > 0 we have

TC0(~s(Q) + y;Q) �
f(~s(Q))

Q=�+ g(~s(Q)) + y)

�
f(~s(Q))

Q=�+ g(~s(Q))

= TC0(~s(Q); Q)

establishing the upper bound. Observe that the second inequality is a result of g(s) being

decreasing. The reorder level ~s(Q) is found as (see Hadley & Whitin [7])

~s(Q) = minfs � 0 : IP(D(L) � s+ 1) �
h

h+ ��=Q
g

By Lemma 1 and our previous conjecture, we obtain that ~s(Q) is an upper bound on

the optimal reorder level s�(Q). In our computational experiments we experienced that
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it is possible to end up in local minima when searching for s�(Q). Hence, we suggest

enumeration over all values between 0 and ~s(Q).

We also suggest enumeration to determine the optimal critical level. Given the reorder

level s, we evaluate all critical levels between 0 and s� 1 using the average cost function

TCc<s(c; s;Q). Let c0 be the value which gives the minimum cost, i.e.

c0 = argmin fTCc<s(c; s;Q) : 0 � c < sg

Regarding c � s it can easily be proved that for �xed values of s and Q, the average

cost function is either convex or concave in c, depending on the underlying model and the

values of s and Q. The critical level that minimizes the average cost function for c � s is

denoted by

c00 = argmin fTCc�s(c; s;Q) : s � c < Qg

If the average cost function is convex, c00 is found in the global minimum, which can be

found explicitly. If the average cost function is concave, let c00 = s if TCc�s(s; s;Q) <

TCc�s(Q� 1; s;Q). Otherwise let c00 = Q� 1. Finally, let the optimal critical level given

the reorder level s and the order size Q be given by

c =

(
c0 if TCc<s(c0; s;Q) < TCc�s(c00; s;Q)

c00 if TCc<s(c0; s;Q) � TCc�s(c00; s;Q)

In many practical situations the order size Q is prespeci�ed. However, if one also wants to

determine the optimal value of Q, one can use a local search algorithm with the economic

order quantity as a starting solution. Numerical experiments have indicated that the

average cost function is unimodal in Q.

6 Numerical results

In this section we will investigate the performance of the rationing policy discussed in the

previous sections. As a performance measure we will use the cost reduction CR of using

the optimal (c; s;Q) rationing policy compared to the best possible (s;Q) policy. Hence,

CR is de�ned as

CR :=
minfTC0(s;Q) : s � 0; Q > sg �minfTC(c; s;Q) : Q > c � 0; Q > s � 0g

minfTC0(s;Q) : s � 0; Q > sg

To determine minfTC0(s;Q) : s � 0; Q > sg we used an enumeration approach similar to

the one described in the previous section. Alternatively, one may use the method described

in Johansen & Thorstenson [8].

From computational experiments it appeared that the critical level may in
uence the

optimal reorder level s and the replenishment order size Q in two ways: if c < s the main



Paper I 61

e�ect of the critical level is a reduction of the optimal reorder level s, whereas if c � s the

main e�ect lies in the reduction of the optimal order size Q. In this section we will consider

examples that lead to both types of rationing policies, and at the end of the section, try

to describe what determines the structure of the optimal policy.

Example 1

In the �rst example, we consider an inventory system with the following characteristics:

L = 1, h = 1, K = 100, �1 = 1, �2 = 10, �1 = 1000, and �2 = 10. In Table 1 we have

calculated the optimal critical level policy and the optimal non-rationing (s;Q) policy

for Example 1. Observe that all costs are average cost per time unit. We see that a cost

Policy (c; s;Q) = (2; 14; 48) (s;Q) = (17; 48)

Total cost 52.49 54.96

Holding cost 27.87 30.52

Shortage cost 2.09 1.55

Ordering cost 22.54 22.88

Cycle length 4.44 4.37

Number of Stockouts Class 1 0.000058 0.00032

Number of Stockouts Class 2 0.041 0.0032

Table 1: Comparison of the optimal (c; s;Q) policy and the optimal (s;Q) policy.

reduction of 4.5% is obtained when a critical level policy is applied. As expected, the e�ect

of the rationing policy is a reduced reorder level, leading to a lower average holding cost.

The average stockout cost increases, but is more than compensated by the decrease in the

holding cost. The expected ordering cost decreases due to the increase in the expected

length of a cycle. We can also observe that the rationing policy has a dramatic e�ect on

the expected number of stockouts for demand class 2, which increases by 1200%, whereas

the number of stockouts for demand class 1 is reduced with 80%.

We have performed some variations of this example to show how the optimal policy is

in
uenced by changes in the parameter values, and to investigate under which conditions

the gain of rationing is most signi�cant. The results are presented in Table 2.

In Table 2 we see what happens when we change the stockout cost of demand class

1. For small values of �1 the cost reduction is negligible, whereas for larger values of �1

the cost reduction is quite signi�cant. The opposite is true if we change the value of �2.

Hence, it seems reasonable to conclude that the greater the di�erence between �1 and �2,

the greater the cost reduction obtained by applying a critical level policy. When �2 = 1

an interesting phenomenon occurs, i.e. the structure of the policy changes. From Table 2
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�1 100 500 1000 5000 10000 100000

(c; s;Q) ( 1,12,49) ( 1,14,48) ( 2,14,48) ( 2,15,48) (3,15,48) (4,16,48)

(s;Q) (13,49) (16,48) (17,48) (19,49) (20,49) (23,49)

CR 0.0062 0.0305 0.0449 0.0700 0.0819 0.1086

�2 1 5 10 25 50 100

(c; s;Q) (16,4,24) ( 3,11,48) ( 2,14,48) ( 1,16,48) ( 1,17,48) ( 0,18,48)

(s;Q) (17,48) (17,48) (17,48) (17,49) (17,49) (18,48)

CR 0.4973 0.0698 0.0449 0.0217 0.0106 0.0000

K 25 50 100 200 500 1000

(c; s;Q) ( 2,15,25) ( 2,15,35) ( 2,14,48) ( 2,13,67) ( 2,11,106) ( 24, 3,132)

(s;Q) (18,25) (18,34) (17,48) (16,68) (15,107) (15,150)

CR 0.0625 0.0548 0.0449 0.0374 0.0296 0.1268

L 0.5 1 1.5 2 2.5 3

(c; s;Q) ( 1, 8,48) ( 2,14,48) ( 2,20,48) ( 2,26,49) ( 2,31,50) ( 3,37,49)

(s;Q) (10,48) (17,48) (24,48) (30,49) (37,49) (43,49)

CR 0.0289 0.0449 0.0569 0.0650 0.0717 0.0788

Table 2: Cost reductions for variations of Example 1.

one can observe that for �2 � 5 the optimal policies satisfy c < s, whereas for �2 = 1

we obtain an optimal critical level policy with c � s. A similar observation can be made

with respect to the �xed order cost K. If we increase K the cost reduction decreases

because the average ordering cost constitutes a larger part of the total cost. Moreover,

the optimal order size Q increases and the reorder level s decreases. For all K � 500 the

optimal critical level is equal to 2. However, for K = 1000 the structure of the optimal

policy changes and we get an optimal critical level of c = 24. Increasing the lead time L

is, to some extent, equivalent to increasing �1 and �2 simultaneously. As L increases the

cost reduction increases as well. Note that for this example it has not been possible to

investigate problems with L > 3. In these cases it would be optimal to have s > Q, which

is not covered by our analysis.

In Figure 3 we study in more detail the change in structure of the policy, or 'bang{bang'

e�ect, for varying values of �2 and K. We have calculated the optimal policy with respect

to two di�erent restrictions. The solid lines represent policies where c � s and the dashed

lines policies with c < s. For small values of K the restriction c � s leads to policies

that perform worse than the optimal (s;Q) policy. But as K increases, the optimal order

size is increased too, and the cost of carrying inventory increases. When the �xed order
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Optimal policy with c < s Optimal policy with c � s

250 500 750 1000 K
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10%

15%
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Figure 3: Cost reductions for policies with c < s and policies with c � s (Example 1).

cost exceeds a certain value (approximately 600 in this example) the cost of carrying

inventory gets so high that it is optimal to reject some low{priority demand in order to

reduce demand and thereby the holding cost. Another 'bang{bang' e�ect is found when

we change the cost of rejecting low{priority demand. As seen in Table 2 the cost reduction

increases as �2 decreases, and Figure 3 illustrates that as the cost of rejecting low{priority

demand gets low enough, the cost reduction of using policies with c � s increases rapidly,

and the structure of the optimal policy changes. In Example 2 we will discuss policies

with c � s in more detail.

To investigate the e�ect of changing the demand rates we have calculated the cost reduction

for 400 combinations of �1 and �2 with all other parameters �xed (see Figure 4). The

�1

�20 1 2 3 4 5 6 7 8 9 10

0.5

1.0

1.5

2.0

0%� 3%

3%� 4%

4%� 4:75%

4:75%�

Figure 4: Cost reduction for Example 1 obtained by rationing for di�erent values of �1

and �2.
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classi�cation is chosen in order to equalize the size of the areas. No rigorous conclusion is

possible, but it seems clear that the cost reduction is strongly connected to the demand

ratio �1=�2. If this ratio is greater than one, that is the majority of the demand is

considered to be of high priority, the cost reduction is very small. This is also the case

if the demand ratio is smaller than 1/20. In between it appears that the largest cost

reduction is obtained for demand ratios between 1=4 and 1=10. This observation di�ers

from the observations made by Ha [6], who concluded that the greatest cost reduction, in

an (S � 1; S) model, is obtained for demand ratios around one.

Example 2

In this example, we will turn our attention to rationing policies with c � s. There is

no way to guarantee that the optimal rationing policy has c � s. However, in order to

favour the policies with c � s we can increase the �xed order cost and the unit holding

cost, or lower the stockout cost of demand class 2. For the second example the following

parameter values are used: L = 1, h = 2, K = 200, �1 = 1, �2 = 5, �1 = 500, and �2 = 6.

The optimal critical level policy, the optimal (s;Q) policy, and the corresponding costs for

Example 2 are reported in Table 3. Again, all costs are average cost per time unit.

Policy (c; s;Q) = (12; 3; 28) (s;Q) = (9; 36)

Total cost 60.76 78.68

Holding cost 21.41 43.13

Shortage cost 23.97 2.36

Ordering cost 15.38 33.18

Cycle length 13.00 6.03

Number of stockouts class 1 0.0018 0.0045

Number of stockouts class 2 3.85 0.13

Table 3: Comparison of the optimal (c; s;Q) policy and the optimal (s;Q) policy.

We see that a considerable cost reduction of 22.8% is obtained. It is very interesting to

see that the cost allocation in the optimal critical level policy is very di�erent from the

allocation in the standard (s;Q) policy. The average holding and ordering costs are both

reduced with about 50% while the average shortage cost has increased with a factor 10.

This is caused by the fact that the expected cycle length is doubled because we reject

on average 3.85 demands from demand class 2 per time unit. The expected holding and

ordering cost per cycle is more or less unchanged, so the reduction per time unit is mainly

due to the longer expected cycle length. The expected number of stockouts per cycle for

demand from demand class 1 hardly changes. However, since the cycle length is doubled,
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the average stockout cost per time unit for demand class 1 is reduced.

Also for Example 2 we have analysed the e�ect of variations in the parameter values on

the optimal policy and the cost reduction. The results are shown in Table 4.

�1 40 100 500 1000 5000 10000

(c; s;Q) (10, 0,28) (11, 1,28) (12, 3,28) (12, 3,28) (13, 4,28) (14, 5,28)

(s;Q) ( 0,35) ( 5,36) ( 9,36) (10,36) (12,36) (13,35)

CR 0.1896 0.2046 0.2278 0.2344 0.2470 0.2470

�2 2 4 6 10 25 50

(c; s;Q) (15, 3,19) (14, 3,24) (12, 3,28) ( 6, 3,34) ( 1, 8,36) ( 1, 9,36)

(s;Q) (9,36) (9,36) (9,36) (9,36) (9,36) (9,36)

CR 0.4439 0.3307 0.2278 0.0664 0.0203 0.0073

K 50 100 200 400 1000 1500

(c; s;Q) (2,7,18) ( 3, 7,23) (12, 3,28) (18, 3,34) (30, 2,47) (37, 2,54)

(s;Q) (10,18) (9,26) (9,36) (8,50) (7,79) (7,96)

CR 0.0978 0.1364 0.2278 0.3108 0.4038 0.4353

Table 4: Cost reductions for variations of Example 2.

By changing the value of the parameters �1, �2 and K, we see that high cost reductions

can be obtained by applying a critical level policy. The cost reduction CR increases when

�1 increases, but the optimal policies remain more or less the same. As �2 gets very small,

the advantage of using the rationing policy increases rapidly. Note that while the optimal

(s;Q) policy does not change at all, the (c; s;Q) policy is sensitive to changes in �2. The

'bang{bang' e�ect that occurs is similar to the one observed in Example 1 (see Figure 3).

If the �xed order cost K increases, the optimal replenishment order size Q increases as

well, both for the (s;Q) policy and the (c; s;Q) policy. However, for the latter policy this

increase is limited due to the increasing level of c, thus part of the holding cost is replaced

by additional stockout cost.

In Figure 5 we observe that there is no clear relation between the cost reduction CR and

the demand ratio �1=�2, as was the case for Example 1. It seems like CR decreases as

�1 increases. When the share of high{priority demand in the total demand increases, the

in
uence of the rationing policy declines, which explains the dependence of the cost reduc-

tion with �1. The dependence with �2 is more complicated. The largest cost reductions

are found for values of �2 between 2 and 6. It is obvious that when the demand rate

approaches zero there will be no gain of rationing. On the other hand, if the demand rate

gets very high, the cost of rejecting demand will increase so that it is not pro�table to
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Figure 5: Cost reduction for Example 2 obtained by rationing for di�erent values of �1

and �2.

exchange holding cost for stockout cost. Finally, we observe that for all combinations of

�1 and �2, the cost reduction is substantial.

We will conclude this section by investigating what determines the structure of the optimal

policy. We have previously seen that the values of the �xed order cost and the stockout cost

for demand class 2 have great in
uence on the structure of the optimal policy. To obtain

further insight we have determined the structure of the optimal policy for a number of

di�erent parameter values. The e�ect of changing the demand rate or the stockout cost of

demand class 1 turned out to be negligible. More interesting is the e�ect of the parameter

values connected with demand class 2 with respect to the structure of the optimal policy.

Figure 6 shows how the structure of the optimal policy depends on the values of K, �2

and �2. Observe that the area above the curve corresponds to optimal policies satisfying

c � s, whereas the area below is associated with optimal policies satisfying c < s.

The e�ect of K and �2 on the structure of the optimal policy are as expected: ifK is small

and �2 is large then the optimal policy will satisfy c < s. We also see that the demand

rate of demand class 2 signi�cantly in
uences the structure of the optimal policy. If the

demand rate for class 2 is relatively low, then the optimal policy is more likely to satisfy

c � s. This can be explained by observing that a policy with c � s implies that most

demand from class 2 is lost which does not lead to high lost sales cost if �2 is small.

7 Conclusions and further research

In this paper we have discussed an (s;Q) inventory model with lost sales and two demand

classes. We have introduced a lead time independent rationing policy, i.e. the (c; s;Q)
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Figure 6: The structure of the optimal policy.

policy. This so-called critical level policy reserves part of the inventory for high-priority

demand, i.e. if the inventory level is at or below the critical level c, low-priority demand

is rejected in anticipation of future high{priority demand. We have derived an exact

expression for the average cost of (c; s;Q) policies, that satisfy 0 � c < s < Q or 0 �

s � c < Q. We have shown that this rationing policy can have two di�erent e�ects on

the optimal reorder level and replenishment order size, depending on whether the critical

level is below or above the reorder level. In cases where the optimal policy has c � s

the rationing policy will in general reduce the average holding cost by rejecting a great

part of the low{priority demand. This type of policy is usually optimal if the cost of

rejecting low{priority demand is small (compared to the holding cost rate), or if the �xed

order cost is high. The cost reduction obtained by using a rationing policy in these cases

is in general higher than it is for cases, where a policy with a critical level below the

reorder point is optimal. In our examples cost reductions up to 50 % were recorded. In

cases where the optimal policy has c < s, the critical level policy reduces the safety stock

needed. Signi�cant cost reductions can be obtained if the stockout cost of high{priority

demand is considerably larger than the stockout cost of low{priority demand. However,

the maximum cost reduction we observed was 10% which was observed in a situation

where the stockout costs di�ered by a factor of 10000.

Although the lead time independent (c; s;Q) policy is easy to understand and implement in

practice, it may be cost e�ective to consider a lead time dependent policy. If the inventory

level is below the critical level, and a low{priority customer arrives, it may be optimal to

deliver this demand anyway given that a replenishment order will arrive soon.
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We are currently investigating a model with several demand classes, where the rationing

decision is allowed to depend on both the inventory level and, during the lead time, the

time since the replenishment order was placed.

Appendix 1: Derivation of average cost for c < s

To simplify the notation let

pj(i) = IP(Dj(L) = i) for j = 1; 2 and i = 0; 1; 2; : : :

p(i) = IP(D(L) = i) for i = 0; 1; 2; : : :

Moreover let fH(t) denote the pdf of the hitting time H. It is easy to �nd an expression

for Bc<s
2 , i.e.

Bc<s
2 = IED2(L�H);H [D2(L�H)]

=

Z L

0
fH(t)�2(L� t)dt

=

Z L

0
e��t�s�c

ts�c�1

(s� c� 1)!
(L� t)�2 dt

=
�2
�
(�L� s+ c)

h
1�

s�c�1X
j=0

p(j)
i
+
�2
�

e�L�(�L)s�c

(s� c� 1)!

which is equivalent to the result obtained by Nahmias & Demmy [11].

To �nd Bc<s
1 we need the distribution of D1(L�H). By conditioning on the hitting time

and using the binomial expansion for (L� t)i we obtain

IP(D1(L�H) = i) =

Z L

0
fH(t) � P (D1(L� t) = i)dt

=

Z L

0
e��t�s�c

ts�c�1

(s� c� 1)!
e��1(L�t)�i1

(L� t)i

i!
dt

=
iX

k=0

e��1LLi�k(�1)k

(i� k)!k!

(k + s� c� 1)!

(s� c� 1)!

�s�c�i1
�k+s�c2

h
1�

k+s�c�1X
j=0

p2(j)
i

=

iX
k=0

(�1)kA(i; k)
h
1�

k+s�c�1X
j=0

p2(j)
i

with

A(i; 0) :=
e��1LLi�s�c�i1

i!�s�c2

A(i; k) := A(i; k � 1) �
(k + s� c� 1) � (i� k + 1)

L � k � �2
(9)
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Hence, we �nd

Bc<s
1 = IED1(L�H);H [D1(L�H)� c]+

=
1X

i=c+1

IP(D1(L�H) = i) (i� c)

Nahmias & Demmy [11] suggest that the integral is solved using numerical integration.

However, this is a slow procedure, whereas the expression developed above is exact and

fast.

The holding cost incurred during the lead time has previously been found as a function of

the random variables H, D(L) and D1(L�H). We will now �nd the expected holding cost

HCc<s
1 incurred during the lead time, by conditioning on these variables. For D(L) < s�c

we apply (5), for D(L) � s � c (which is equivalent with 0 < H < L) we apply (6) and

either (7) or (8).

HC1c<s = h

s�c�1X
j=0

p(j)

� sX
i=s�j

i �
L

j + 1

�

+h

Z L

0
fH(t)

"
sX

i=c+1

i �
t

s� c

+
cX

j=0

IP(D1(L� t) = j)

� cX
i=c�j

i �
L� t

j + 1

�

+

1X
j=c+1

IP(D1(L� t) = j)

� cX
i=1

i �
(L� t)c=(j + 1)

c

�#
dt
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Exploiting the properties of
Pb

i=a i yields

HCc<s
1 = h

s�c�1X
j=0

p(j)(s� j=2)L + h

Z L

0
fH(t)

c+ 1 + s

2
t dt

+h

Z L

0
fH(t)

cX
i=0

IP(D1(L� t) = i)(c � i=2)(L � t)dt

+h

Z L

0
fH(t)

1X
i=c+1

IP(D1(L� t) = i)
c+ 1

2
� (L� t)

c

i+ 1
dt

= h

s�c�1X
j=0

p(j)(s� j=2)L

+h
s2 � c2 + s� c

2�

h
1�

s�cX
i=0

p(i)
i

+h

cX
j=0

(c� j=2)

j+1X
k=0

(�1)kB(k; j)
h
1�

s�c�1+kX
i=0

p2(i)
i

+h

1X
j=c+1

c+ 1

2

c

j + 1

j+1X
k=0

(�1)kB(k; j)
h
1�

s�c�1+kX
i=0

p2(i)
i

with

B(j; 0) := e��1L
Lj+1�s�c�j1
j!�s�c2

(10)

B(j; k) := B(j; k � 1) �
(s� c� 1 + k) � (j + 2� k)

L � �2 � k

The expected holding cost incurred in the remaining part of the cycle is easily found, i.e.

HCc<s
2 = hIER

h Q+RX
i=s+1

i �
1

�

i

= hIER

hQ+R+ s+ 1

2
�
Q+R� s

�

i
= h

Q2 + 2QIE[R] + IE[R2] +Q+ IE[R]� s� s2

2�

The �rst two moments of the random variable R are easily found from (1). The total

expected holding cost is

THCc<s = HCc<s
1 +HCc<s

2

The expressions developed in this appendix are valid for all combinations of parameters.

However, during implementation, numerical problems can arise when evaluating IP(D1(L�

H)) and Hc<s
1 . If �2 < �1 the terms in(9) and (10) get very big, causing representation

problems, and the integrals should be solved using numerical integration.
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Appendix 2: Derivation of the expected holding cost for c � s

The expected holding cost is divided in three parts.

HCc�s
3 = hIER

h Q+RX
i=c+1

i �
1

�

i

= h
Q2 + 2QE[R] +E[R2] +Q+E[R]� c� c2

2�

HCc�s
2 = h

cX
i=s+1

i �
1

�1

= h
c+ s+ 1

2

c� s

�1

For HCc�s
1 we condition on whether the inventory is depleted or not.

HCc�s
1 = hIED1(L)

"
1fD1(L)<sg

sX
i=s�D1(L)

i �
L

D1(L) + 1

+1fD1(L)�sg

sX
i=1

i �
Ls=(D1(L) + 1)

s

#

= h

s�1X
i=0

p1(i)L(s� i=2) + h

1X
i=s

p1(i)
s+ 1

i+ 1

s

2
L

Hence, we have

THCc�s = HCc�s
1 +HCc�s

2 +HCc�s
3
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Abstract

In this paper we analyse an (s;Q) inventory model with unit Poisson demand,

several demand classes, lost sales and stochastic lead times. When dealing with di�er-

ent demand classes the usual approach is to control the inventory by critical levels at

which stock is reserved for demand of high priority. We present two di�erent rationing

policies, a simple critical level policy where the critical levels are constant, and an op-

timal policy where the critical levels are allowed to depend on the time elapsed since

the actual outstanding order (if any) was issued. As the simple policy is much easier

to implement in practice, we investigate the cost di�erence of using the simple policy

instead of the optimal policy in a numerical study. We also compare the two rationing

policies with the best non-rationing policy. In general the performance of the simple

policy is almost as good as that of the optimal policy. Depending on the underlying

parameters of the model, the cost reduction compared with a non-rationing policy is

typically 5-10%.

Keywords: Inventory, rationing, Markov processes, several demand classes, stochastic

lead times.

1 Introduction

In this paper we consider an inventory system with several demand classes. Usually it is

assumed that all customers are equally important, but in practice this is rarely the case.

As an example consider a spare part inventory company in the airline industry. Keeping

an airplane grounded can be very expensive, and the cost of not being able to satisfy

demand from an airline can therefore be very high. These costs are usually speci�ed in

a contractual agreement. However, di�erent airlines may value the cost of a grounded

73
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airplane di�erently, and the company may reject demand from some airlines in order to

be able to satisfy airlines with higher priority. Another example is given by Axs�ater,

Kleijn and de Kok [1], who analyse a two{echelon inventory model, where the warehouse

faces demand from several retailers. If the warehouse cannot satisfy a retailer demand

immediately, the demand is expedited and satis�ed by an emergency order directly from

the outside supplier. Since the costs of expedition and backordering are di�erent from

retailer to retailer, the warehouse are rationed to minimize costs.

The inventory system considered is controlled by a rationing policy speci�ed by critical

levels. For each demand class, except the one with the highest priority, demand is rejected

when the actual inventory level is at or below the critical level assigned to the class. In this

way it is possible to save stock for possible future high{priority demand. A simple policy

has constant critical levels, whereas a time-remembering policy allows the critical levels to

depend on the time elapsed since the actual, outstanding order (if any) was issued.

The �rst contributions in the area of rationing policies are periodic review models.

Veinott [17] analyses a model with several demand classes and zero lead time, and intro-

duces the concept of critical levels. Topkis [16] proves the optimality of a time-remembering

policy for the same model in both the backorder and the lost sales case. He divides each

period into a �nite number of subintervals, and allows the critical levels to depend on the

time till the next review. Recently, Frank, Zhang and Duenyas [4] considered a periodic

review model with two demand classes, one stochastic and one deterministic. The deter-

ministic demand has to be satis�ed, but the stochastic demand can be rejected. Demand

is observed at the beginning of each period, after which a replenishment order can be

placed. It is assumed that orders arrive instantaneously, so that the replenishment can

be used to satisfy the observed demand. The purpose of rationing is therefore not to save

stock for high-priority demand, but rather to postpone an order placement for one period.

They show that the optimal rationing policy either satis�es all the stochastic demand or

results in a remaining inventory which is an integer multiple of the deterministic demand

per period.

The literature on rationing policies in a continuous-review setting deals with two types

of inventory policies, base-stock policies and (s;Q) policies. Dekker, Hill and Kleijn [3]

consider a lot-for-lot inventory system with several demand classes, and �nd good simple

critical level policies for the case of generally distributed lead times. Since they do not

consider time-remembering policies, they cannot guarantee optimality. Simple critical level

policies for an (s;Q) inventory model are �rst analysed by Nahmias and Demmy [12], who

�nd �ll rates for a model with two demand classes and Poisson demand. This is done by

conditioning on the so{called 'hitting time', the time where the inventory level 'hits' the

critical level. They do not consider optimization. Moon and Kang [11] generalize their

results to a model with compound Poisson demand, and �nd optimal rationing levels in the
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case of deterministic demand and several demand classes. The paper most closely related

to the present one is that of Melchiors, Dekker and Kleijn [9], which presents a method

for �nding an optimal simple policy for the (s;Q) inventory model with two demand

classes and lost sales. They �nd the exact cost of a simple critical level policy and in a

numerical study they compare the critical level policy with the best non{rationing policy.

The only paper considering time-remembering policies in a continuous-review setting is

that of Teunter and Klein Haneveld [14], presenting simple methods for �nding good time-

remembering policies for an inventory model with two demand classes and backordering.

Using marginal analysis they recursively determine values of the remaining lead time for

which it is optimal to reserve 1; 2; : : : units of stock for high-priority demand. Stochastic

lead times in a rationing environment are considered by Ha [5, 6], who analyses an (S�1; S)

inventory/production model where the production times are assumed to be exponential

and Erlang distributed, respectively. These assumptions facilitate an analysis based on

queuing theory, but may appear unrealistic in many cases.

Typically, it is not the lead time itself but the lead time demand that is of interest.

Many inventory systems are analysed based on the distribution of the lead time demand.

For our purpose this distribution is not suÆcient. Whether a demand is satis�ed or not

depends on when the demand occurs, and therefore we have to decompose the lead time

demand into two random variables: the lead time and the Poisson demand.

We analyse the (s;Q) inventory model with several demand classes, lost sales and

stochastic lead times, and by the use of the Markov decision theory, we �nd an optimal

time-remembering policy. Our decisions are allowed to depend on the inventory level and,

if the inventory level is below the reorder level, the time since the order was placed. We

show that this policy is a critical level policy and, in the case of constant lead times,

that the critical levels are decreasing in time. Since a time-remembering policy can be

diÆcult to implement in practice, we also show how to �nd a good simple critical level

policy, and in a numerical study we compare the two policies with each other and with

the best non-rationing policy. The performance of the simple policy is very good, and the

di�erence in cost between the simple and the optimal policy is, only in a few cases, higher

than 2 percent.

The time-remembering policy allows actions to depend on the time elapsed since the

order was placed, which is a continuous variable. To obtain a �nite state space, we therefore

discretize the lead time. The demand is essentially Poisson. However, during lead time we

approximate the demand with a Bernoulli process, such that the demand at every time

epoch, is either one or zero. This approximation is good, as long as distance between the

time epochs is small. A similar approach is used by Johansen and Thorstenson [8] to �nd

optimal emergency order policies.

We do not restrict the lead time to follow a phase-type distribution or a parametric
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distribution. The discretized lead time allows us to describe the stochastic lead time by

a probability mass function. This function can, e.g., be found by empirical observations.

If the number of observations is small, one can apply a kernel density approximation to

smooth out the observations (see Strijbosch and Heuts [13], who also argue that this gives

better results than �tting a parametric function to the observations). Stochastic lead

times for a similar model without rationing are treated by several authors, e.g. Mohebbi

and Posner [10] who evaluate an (s; nQ) inventory system with continuous review and lost

sales, where lead times follow phase type distributions.

Our paper distinguishes itself by considering multiple demand classes, stochastic lead

times and time-remembering policies. Although we, in most cases, will recommend the

use of simple rationing policies, it is the analysis of the time-remembering policies that

facilitates evaluation of the simple rationing policy with multiple demand classes and

stochastic lead times. Moreover, the optimal policy serves as a benchmark for the simple

policy.

The paper is organized as follows: In Section 2 we introduce the necessary notation

and specify the average cost of a rationing policy. Section 3 focuses on the optimal time-

remembering policy, and in Section 4 we present a heuristic for �nding good simple policies.

In Section 5 we investigate the performance of the rationing policies by means of some

numerical examples and, �nally, some concluding remarks are given in Section 6.

2 The model

We now introduce the assumptions and notation used throughout the paper. We consider

an inventory model with n demand classes. Class j has Poisson demand with rate �j.

All demand not satis�ed immediately is assumed to be lost (or expedited). The classes

are distinguished by their stockout cost �j, and we rank the classes such that 0 < �n <

�n�1 < � � � < �1. Let �i =
Pi

j=1 �j be the demand rate from customers of classes 1 to i.

The ranking ensures that �i is the demand rate from customers with a stockout cost of at

least �i. Let �(i) be the expected stockout cost incurred per unit time by not satisfying

demand from customers of the classes i + 1 to n, i.e. �(i) =
Pn

j=i+1 �j�j for 0 � i < n

and �(n) = 0. For each replenishment there is a �xed ordering cost K. The unit holding

cost per time unit is h > 0.

The time when an order is outstanding is discretized to obtain a �nite number of time

epochs, each representing a small subinterval of length 1=N . The stochastic lead time is

then approximated by the probability mass function f(t), which is the probability of a

lead time of t subintervals. The true lead time is continuous, but if N is high this error

is negligible. We assume that there exists an integer M such that
PM

t=0 f(t) = 1 (for

unbounded distributions we choose M such that the probability of a lead time of more
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than M subintervals is negligible). Based on f(t) we can calculate the lead time hazard

function H(t) that denotes the probability of an arrival just prior to subinterval t, given

that no order has arrived prior to subinterval t� 1.

H(t) =
f(t)PM
r=t f(r)

for t = 0; 1; : : : ;M � 1

and H(M) = 1.

We analyse the rationing policy in the context of an (s;Q) policy with reorder point s

and order size Q where Q > s. This condition and the lost sales assumption ensure that

at most one order is outstanding at any time (in the analysis in Nahmias and Demmy [12]

the assumption of only one outstanding order is an approximation, due to the backorder

environment). Assuming that s andQ are �xed, we shall formulate a semi{Markov decision

model with �nite state space S0 [S1. Let IN denote the set of non{negative integers. The

set of states when no order is outstanding is

S0 = fi 2 INj s < i � s+Qg

and the set of states when one order is outstanding is

S1 = f(i; t) 2 IN� INj 0 � i � s; 0 � t �Mg:

Here i denotes the inventory level and t denotes the number of subintervals elapsed since

the outstanding order was issued. There are two kinds of decision epochs: just after a

demand has been satis�ed when no order is outstanding and at the beginning of each

subinterval when one order is outstanding. At each decision epoch we choose an action.

An action prescribes the set of classes we are willing to satisfy until a new decision is made.

Let the action a 2 f0; 1; 2; : : : ; ng prescribe that we satisfy demand from classes 1 to a if

a > 0, and that we reject demand from classes a+1 to n. Let A be the set of actions that

can be represented in this way. We shall later show that the optimal action in each state

belongs to A. The rate of demand that we are willing to satisfy when choosing action a

is �a. Since we do not allow backlogging we set a = 0 in states where the inventory level

is zero.

The number N determines the length of each subinterval and is chosen such that

the probability of more than one demand in each subinterval is negligible. We can then

approximate the real demand process during the lead time (which is Poisson) by a Bernoulli

process (see e.g. C� inlar [2]). A Bernoulli process is a sequence of independent trials with an

outcome that is either one or zero. Each of the subintervals can be viewed as a trial where

the outcome is one if a demand that we are willing to satisfy occurs, and zero otherwise.

The probability of outcome one depends on the chosen action and is p1(a) = �a=N . Also

let p0(a) = 1� p1(a) denote the probability of outcome zero. The assumption of at most
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one demand per subinterval has only to do with the analysis. If the policy is implemented

in practice, it can handle more than one demand per subinterval, and the assumption

of at most one demand per subinterval is therefore not restrictive. The approximation

considerably simpli�es further calculations, and we have veri�ed by simulation that it has

almost no in
uence on the obtained results as long as the subintervals are small enough.

The system evolves as follows: When there is no order outstanding we jump from state

i 2 S0 to state i� 1 2 S0 if i > s+ 1, since all demand has unit size. When a demand is

satis�ed in state s+ 1 2 S0, an order is placed and we jump to state (s; 0) 2 S1. During

the lead time in states (i; t) 2 S1 with i > 0, we can jump to three di�erent states. With

probability H(t) an order arrives and we jump to state i + Q 2 S0. With probability

(1�H(t))p0(a) we jump to state (i; t+ 1) and with probability (1�H(t))p1(a) we jump

to state (i� 1; t+ 1). In states (0; t) 2 S1 we jump either to state Q or to state (0; t+ 1)

since backlogging is not allowed.

The expected time between two decision epochs when choosing action a, and no order

is outstanding, is

�i(a) = 1=�a for i 2 S0:

During the lead time the expected time between two decision epochs is

�i;t = 1=N for (i; t) 2 S1;

independently of the chosen action. Now let us consider the expected one{step cost. The

expected one{step cost incurred in state i, when no order is outstanding and action a is

chosen, is

Ci(a) = �i(a)
�
hi+�(a)

�
for i 2 S0:

During the lead time the one{step cost incurred in state (i; t) when choosing action a is

Ci;t(a) = �i;t

�
hi+�(a)

�
for (i; t) 2 S1:

Note that we make a small numerical error by assigning holding costs based on the stock

in the beginning of each subinterval, but when N is large this error is negligible. Finally,

we have to add the order cost K in each order cycle. The timing of the allocation of the

order cost does not in
uence the analysis, so for convenience we will add it when the state

Q 2 S0 occurs. We will consider a policy described by the following parameters:

s Reorder point at which an order is placed

Q Order quantity, Q > s

k(i) When no order is outstanding and the inventory level is i, satisfy demand

from classes 1 to k(i)

l(i; t) When one order is outstanding, the inventory level is i and the time since the

replenishment order was placed is between t=N and (t+ 1)=N ,

satisfy demand from classes 1 to l(i; t).
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The considered policy is not necessarily a critical level policy. To be a critical level policy

it must satisfy

l(i+ 1; t) � l(i; t) for i = 1; 2; : : : ; s� 1 and t = 0; 1; : : : ;M � 1 (1)

and

k(i+ 1) � k(i) for i > s: (2)

This means that, for each class j � 2 and for all t, there exists a unique critical level

cj(t) =maxfijl(i; t) < jg (= 0 if l(1; t) � j). This is the highest level of inventory where

we will not serve class j. Similarly let cj(�) be the highest inventory level above s at

which we will not satisfy demand class j. If k(s + 1) � j we will always satisfy demand

from class j when there is no order outstanding and cj(�) is not de�ned. Policies with a

critical level above the reorder point were introduced by Melchiors, Dekker and Kleijn [9],

who also describe when this type of policies is optimal. Observe that, if l(i; t) is a constant

function of t for all i, then the policy is a simple critical level policy.

We will now specify the long{run average cost per unit time (henceforth referred to

as cost for simplicity) of using the considered policy. Note that the inventory process is

regenerative with regeneration points when the state Q 2 S0 occurs, and de�ne a cycle as

the time between two consecutive regeneration points. We then have from the renewal{

reward theorem (see e.g. Tijms [15]) that the cost of the policy is the expected cost of one

cycle divided by the expected length of one cycle.

We compute the expected cost and length of a cycle by a backwards recursive procedure

starting at the regeneration point. Let Z(i) be the expected cost incurred until we reach

the next regeneration point starting in state i 2 S0. Let Y (i) be the expected time until

we reach the next regeneration point starting in state i 2 S0. Note that Z(i) and Y (i)

can be found by the recursive formulas

Z(i) = Ci(k(i)) + Z(i� 1) for i 2 S0 (3)

and

Y (i) = �i(k(i)) + Y (i� 1) for i 2 S0: (4)

The recursion is initialized with Z(Q) = K and Y (Q) = 0. Since the inventory level

cannot be higher than s+Q, we compute Z(i) and Y (i) for i = Q;Q+ 1; : : : ; s+Q. We

can now jump to the situation just before the order arrives. Let z(i; t) be the expected

cost incurred until we reach the regeneration point starting in state (i; t). Also let y(i; t)

be the expected time until we reach the next regeneration point starting in state (i; t).
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Initialize with z(i;M) = Z(i+Q) and y(i;M) = Y (i+Q) for 0 � i � s. Now

z(i; t) = (1�H(t))
�
Ci;t(l(i; t)) + p0(l(i; t))z(i; t + 1)

+p1(l(i; t))z(i � 1; t+ 1)
�
+H(t)Z(i+Q) for 0 < i � s and 0 � t < M

z(0; t) = (1�H(t))
�
�(0) + z(0; t+ 1)

�
+H(t)Z(Q)

and

y(i; t) = (1�H(t))
�
�i;t + p0(l(i; t))y(i; t + 1)

+p1(l(i; t))y(i � 1; t+ 1)
�
+H(t)Y (i+Q) for 0 < i � s and 0 � t < M

y(0; t) = (1�H(t))
�
�i;t + y(0; t+ 1)

�
+H(t)Y (Q)

can be found by recursion for t = M � 1;M � 2; : : : ; 0 and i = 0; 1; : : : ; s. Finally,

let Z(s) = z(s; 0) and Y (s) = y(s; 0) and compute Z(i) and Y (i) by (3) and (4) for

i = s+ 1; s+ 2; : : : ; Q. The cost of the policy is

g =
Z(Q)

Y (Q)
:

3 The optimal policy

The optimization procedure in this section is based on the semi-Markov decision theory

(see e.g. Tijms [15]). We will �nd the optimal policy within the class of policies discussed

in Section 2. We assume that the order size Q is �xed, and use a tailor-made policy-

iteration algorithm, described in the Appendix, to �nd optimal values of k(i), l(i; t) and s.

The algorithm is designed such that the policy found satis�es the average cost optimality

equations for the semi{Markov decision model, which means that the policy is optimal.

In the following theorem we characterize the structure of the optimal policy. The three

statements are all based on the average cost optimality equations. The theorem is proved

in the appendix.

Theorem. For an optimal rationing policy the following properties are true:

a The optimal action in each state belongs to A.

b The optimal rationing policy is a critical level policy.

c If the lead time is constant, then the critical levels are decreasing in the time t, i.e.

the optimal actions satisfy

l(i; t+ 1) � l(i; t) for i = 1; 2; : : : s; and t = 0; 1; : : : ;M � 1:
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The theorem considerably simpli�es the search for the optimal policy. The policy-iteration

algorithm does not consider optimization of the order size Q. However, all our numerical

tests have indicated that the minimum cost is quasi{convex in Q, and Q can therefore be

found by neighborhood search starting e.g. with the Economic Order Quantity, computed

by considering the deterministic version of the problem where all demand classes are

aggregated to one. For each value of Q, the optimal values of k(i), l(i; t) and s are found

by the policy-iteration algorithm. The optimal policy is denoted Ropt. The optimization

procedure has been implemented in Pascal, and is very eÆcient.

4 The simple policy

The optimal policy can be diÆcult to implement in practice. In this section we shall

therefore describe how to �nd good simple policies with constant critical levels that do

not depend on the time t. De�ne c = (c2; c3; : : : ; cn) where cj denotes the critical level of

demand class j. We denote the simple policy by (c; s;Q). This policy can obviously be

evaluated by the method presented in Section 2, by letting

k(i) = maxfjjcj < ig for i 2 S0

and

l(i; t) = maxfjjcj < ig for (i; t) 2 S1:

Let g(c; s;Q) denote the cost of the simple policy (c; s;Q). The order size Q is found by

neighborhood search starting with the Economic Order Quantity. For each Q, we search

for the optimal value of s by enumeration from Q � 1 to 0. For given values of s and Q

we �nd a good c{vector by an algorithm similar to the one suggested by Dekker, Hill and

Kleijn [3]. Let ej be the vector consisting of zeroes at all entries except at the j'th entry

where it equals one, and let ck be the c-vector considered in iteration k. If s = Q � 1

then start with c
1 = (0; 0; : : : ; 0) otherwise let c1 be equal to the best c-vector found for

(s + 1; Q). Let j = n and k = 1. Let ck+1 = c
k + ej. If g(ck+1; s;Q) < g(ck; s;Q) set

j := j � 1 and k := k + 1, and continue like this until g(ck+1; s;Q) > g(ck; s;Q) or j = 2.

Now let j = n and start over improving the best vector obtained sofar, and continue until

no further improvements can be made.

The backwards enumeration over s is chosen because we have observed that the best

c{vector increases as s decreases, which means that we can use the best c{vector for

(s+ 1; Q) as a start vector when searching for the best c{vector for (s;Q). We note that

the procedure is not guaranteed to �nd the optimal c{vector. In particular when there

are critical levels above the reorder point, we have found that the search method may

fail to �nd the best policy. In those cases we therefore calculate an alternative solution

initialized by the critical levels from the optimal solution where de�ned, instead of the
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vector of zeroes, i.e. c
1 = (c2(�); c3(�); : : : ; cn(�)). The simple policy is then found as

the policy with the lower cost of the two.

The policies described in this and the previous section are applicable to inventories

with n equal to the number m of di�erent demand classes, but in practice it might be too

confusing if m is large. Typically one would then try to aggregate the m customers into

a small number, n, of demand classes. The problem of �nding n optimal partitions of m

demand classes is very complicated, but it should be possible to �nd sound partitions by

aggregating similar demand classes according to their stockout costs.

5 Numerical Results

In this section we illustrate the properties of the policies introduced in the previous sec-

tions. We shall �rst investigate an example described by Melchiors, Dekker and Kleijn [9],

and then compare the simple and the optimal policy with each other and with the best

non-rationing policy on a larger set of data.

Our results obviously depend on the choice of N . Using high values of N when com-

puting the policies will lead to a more precise representation of the Poisson process, and

the policies found will be better than those found with lower values of N . In a numerical

study we have found that the di�erence in cost between evaluating using N = 10000 and

N = 100000 is within 0:004%. We do not, however, use N = 10000 when we �nd the

optimal and the simple policies. We have experienced that using N = 500 gives solutions

where the costs are within 0.002 % of that of the policy found using N = 10000. The poli-

cies in this section are all found using N = 500. Thereafter, the found policy is evaluated

using N = 10000. The cost of a policy R is denoted 
(R).

Let Rnon be the best non-rationing policy. To �nd Rnon, we aggregate all demand

classes into one and let

�non =
nX
i=1

�i and �non =
nX
i=1

�i�i=�n:

We can then �nd the best simple policy for the one demand class problem. Let 
(Rnon)

be the cost of the best non-rationing policy. De�ne the (relative) cost reduction of using

the simple rationing policy instead of the non-rationing policy as

CRs =

(Rnon)� 
(Rs)


(Rnon)

and the (relative) cost reduction of using the optimal rationing policy instead of the non-

rationing policy as

CRopt =

(Rnon)� 
(Ropt)


(Rnon)
:

In all our numerical test we let h = 1 de�ne the monetary unit and let the mean lead time

E(L) = 1 de�ne the time unit.
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Example 1

In the �rst example, we consider an inventory system with two demand classes and the

following characteristics: A constant lead time, L = 1, K = 100, �1 = 1, �2 = 10,

�1 = 1000, and �2 = 10. The optimal policy has sopt = 13 and Qopt = 48, and the

best simple policy is (c; ss; Qs) = (2; 14; 48). In Figure 1, the critical level c2(t) of the

ss
sopt

inventory level

L0
t

c2(t)

c2

Figure 1: The critical levels c2(t) of the optimal policy and c2 of the simple policy for

Example 1 (n=2).

optimal policy is depicted together with the critical level of the best simple policy. The

critical level of the optimal policy is decreasing in time, illustrating the theorem. The

�gure illustrates the advantage of the optimal policy. In the beginning of the lead time

we will reject demand class 2 at a higher level, and at the end of the lead time we will

not reject demand class 2 at all. That is, the optimal policy dominates the simple policy

in two situations: when the demand in the beginning of the lead time is high, and when

demand from class 2 appears at the end of the lead time. In most cases the inventory

level will not reach the critical level and the only di�erence between the simple and the

optimal policy will be the reorder level. The cost of the two policies are 
(Ropt) = 51:84

and 
(Rs) = 52:49, respectively, a di�erence of 1:25%.

In order to illustrate the rationing policy with several demand classes, we will change

the example slightly, by dividing demand class 2 into 3 di�erent demand classes, with

�2 = 1, �3 = 2, �4 = 7 and �2 = 40, �3 = 12:5, �4 = 5. The optimal policy has sopt = 11

and Qopt = 48 with 
(Ropt) = 50:72, and the simple policy is (c; ss; Qs) = (1; 2; 3; 13; 48)

with 
(Rs) = 51:79, a di�erence of 2:1%. The critical levels are shown in Figure 2. The

structure is basically the same as in the original example. The way the two examples
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c4(t)

c3(t)

c2(t) c4
c3
c2

ss

sopt

inventory level

L0
t

Figure 2: The critical levels of the optimal and the simple policies for Example 1 (n=4).

are constructed allows us to compare the cost of the original example with the cost of

the modi�ed example, to see what di�erence it makes when three very similar demand

classes (2,3 and 4 in the modi�ed example) are joined into one (class 2 in the original

example), as mentioned in the discussion at the end of Section 4. For the optimal policies

the increase in cost incurred by aggregating the three demand classes is 2.2 %, and for

the simple policy the increase in cost is 1.3 % compared with the cost of the unaggregated

problems.

Example 2

We now investigate the in
uence of the underlying parameters and di�erent lead time dis-

tributions. We consider two types of lead time distributions: a cut-o� normal distribution,

truncated at zero, and a discrete two-point distribution with a 95% probability of a lead

time close to the mean (L1), and a 5% probability of a high lead time (L2). Let F (t) be

the distribution function of a normal distribution with mean � and variance �2. Since our

time is discrete, we set

f(t) =
F (t)� F (t� 1)

1� F (0)
for 0 � t �M

for the cut-o� normal distribution. The distribution is truncated at 0 to avoid negative

lead times. The mode of the lead time, �, is adjusted to ensure that the mean remains 1,

for all values of lead time variation.

For the two-point distribution we choose L1, and L2 such that the mean lead time

remains 1 as well. The lead time variance is denoted V (L)
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We let the arrival rates �i be composed of two parameters. A general level of demand,

r, and a class dependent arrival rate ~�i, such that �i = r ~�i. Similarly we let �i be composed

of a general level of stockout cost and a class dependent cost. We consider the following

base case: K = 200, ( ~�1; ~�2; ~�3; ~�4) = (1; 1; 2; 6). (�1; �2; �3; �4) = (300; 90; 30; 9), r = 1:5.

The lead time is cut-o� normal with V (L) = 0:64.

Tables 1, 2 and 3 show a number of variations over this base case. For every case we

(�1; �2; �3; �4) (c2; c3; c4; s;Q)s (s;Q)non CRs(%) CRopt(%)

(5,4,3,2) (17,23,33; 1, 63) (1,73) 13.24 13.25

(100,30,10,3) (2,8,44;16, 80) (25,86) 10.30 10.38

(1000,200,40,10) (3,10,23;34, 85) (47,86) 9.97 10.01

(15,12,9,6) (0,1,6; 9, 83) (10,83) 0.67 0.70

(300,90,30,9) (2,7,19;28, 86) (37,87) 6.97 7.01

(3000,600,120,30) (3,9,20;45, 86) (57,85) 8.01 8.06

(25,20,15,10) (0,2,6;17, 84) (17,86) 0.60 0.61

(500,150,50,15) (2,7,18;34, 86) (42,87) 6.20 6.23

(5000,1000,200,50) (2,8,19;50, 86) (61,85) 7.32 7.38

K (c2; c3; c4; s;Q)s (s;Q)non CRs(%) CRopt(%)

50 (2,7,17;35, 48) (43,48) 9.26 9.30

100 (2,7,18;32, 63) (40,64) 8.17 8.21

200 (2,7,19;28, 86) (37,87) 6.97 7.01

300 (2,8,20;26,102) (35,104) 6.28 6.31

500 (2,8,21;23,129) (33,131) 5.44 5.46

Table 1: Cost reductions for di�erent stockout and ordering costs.

report the best simple policy, the best non-rationing policy, the cost reduction obtained

by using the simple policy, and �nally the cost reduction obtained by using the optimal

policy.

In Table 1 we �rst investigate three di�erent levels of stockout cost and three di�erent

class dependent levels. In this way we represent a fair range di�erent stockout costs

combinations. Somewhat against intuition the bene�ts of rationing are decreasing as the

level of the stockout costs increase. For the lowest values of stockout cost we see a high

cost reduction of 13 %. In this example the critical levels are above the reorder point,

i.e. we start to reject demand before we place an order. Thus the lowest demand class

only serves to reduce inventories to avoid high holding cost in the beginning of an order

cycle. The bene�ts of this can be quite signi�cant. This is investigated more thoroughly

in Melchiors, Dekker and Kleijn [9]. For higher values of stockout cost this phenomenon

does not occur, because the cost of rejecting the demand exceeds the potential bene�t.
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For those examples we can also observe that a higher spread in stockout costs leads to

higher bene�t of rationing.

( ~�1; ~�2; ~�3; ~�4) (c2; c3; c4; s;Q)s (s;Q)non CRs(%) CRopt(%)

(1,1,2,6) (1,4,11;20, 84) (31,87) 8.87 8.89

(4,1,1,4) (4,11,21;30, 85) (41,87) 8.52 8.56

(2,2,3,3) (2,7,19;28, 86) (37,87) 6.97 7.01

(3,3,2,2) (3,11,24;33, 86) (41,86) 5.54 5.57

(6,2,1,1) (6,16,31;41, 85) (45,86) 3.45 3.48

r (c2; c3; c4; s;Q)s (s;Q)non CRs(%) CRopt(%)

0.25 (0,2,12; 4, 32) ( 5,34) 4.39 4.41

1.00 (2,5,13;18, 69) (24,69) 6.06 6.11

1.50 (2,7,19;28, 86) (37,87) 6.97 7.01

2.00 (3,9,24;39,100) (51,101) 7.61 7.64

3.00 (4,14,35;62,126) (79,127) 8.49 8.52

Table 2: Cost reductions for di�erent class allocations and demand levels r

With respect to the ordering cost it appears that rationing has the greatest impact

when the ordering costs are low. This is because the measure of performance is cost per

unit time, and it is only during the lead time (except for the cases where the critical

levels are above the reorder point) that rationing is used. As the ordering cost increases,

the length of the inventory cycle increases and thereby the cost di�erence per unit time

decreases.

In Table 2 we look at the impact of di�erent demand structures. First we see that

rationing has the greatest impact when the majority of the demand has low priority. When

the majority of the demand has high priority, rationing will only seldom be used and the

relative bene�ts are therefore smaller. As the general level of demand r increases the

bene�ts of rationing increase as well. Since demand is Poisson, a higher demand mean is

equivalent to a higher demand variance, and therefore the need for safety stock increases.

In Table 3 we see the impact of the lead time distribution. In general, rationing is more

important when the lead time variance is high, which is what we would expect. When we

are uncertain about the delivery time of an order, the rationing policy reduces the need

for otherwise high safety stocks. For the two-point distribution a strange phenomenon

occurs: as the lead time variance increases, the found reorder point of the non-rationing

policy decreases and ends up being 33% lower than that of the simple policy. The best

explanation for this is that it is better to be well o� in 95% of the order cycles and then

have serious stockouts in the remaining 5%, than having too much stock in 95% of the

cycles and still face some stockouts in the remaining 5%. Instead, an increase in the order
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V (L) (c2; c3; c4; s;Q)s (s;Q)non CRs(%) CRopt(%)

0 (0,2,4;20,79) ( 21,80) 1.29 2.59

0.21 (1,4,10;24, 82) (28,82) 3.52 3.72

0.48 (2,6,16;27, 84) (34,85) 5.70 5.78

0.64 (2,7,19;28, 85) (37,87) 6.97 7.01

0.74 (2,8,21;29, 86) (39,88) 7.69 7.73

0.81 (3,9,21;29, 87) (39,90) 8.16 8.17

L1 L2 V (L) (c2; c3; c4; s;Q)s (s;Q)non CRs(%) CRopt(%)

0.95 2.0 0.05 (1,4,7;21,82) (23,83) 3.45 4.75

0.89 3.0 0.21 (5,7,10;23,86) (21,95) 6.66 8.61

0.84 4.0 0.47 (8,10,13;25,90) (20,105) 8.58 10.66

0.82 4.5 0.64 (10,12,15;27,91) (19,110) 9.21 11.31

0.79 5.0 0.84 (11,13,16;27,94) (18,115) 9.73 11.80

Table 3: Cost reductions for cut-o� normal distributed and two-point distributed lead

times for di�erent values of lead time variance.

size is experienced.

For all examined examples, except the one with constant lead time and the ones with

two-point distributed lead times, the di�erence between the optimal and the simple policy

is very small. This is because the value of the time information depends on the distribution

of the lead time. When lead times are deterministic we can make full use of the information.

Although the two-point distribution is not deterministic the information of time is still

very important, which is why the di�erence between the simple and the optimal policy

increases as the variance increases. However, in the cut-o� normal lead time cases where

the lead time variance is high, the value of time information is very small. In these cases the

optimal policy will do no better than a policy that disregards information about time, and

therefore, as the variance of the cut-o� normal distributed lead time increases, the optimal

policy approaches the simple policy. Since the optimal policy is much more complicated

to implement, we therefore recommend to use the simple policy in most cases. However,

for the case of constant lead times and two point distributed lead times the cost di�erence

between the simple and the optimal policy is 1-3% and in these cases in particular the

optimal rationing policy should be considered.

6 Conclusions

In this paper we have shown how to �nd simple and optimal rationing policies for an (s;Q)

inventory model with lost sales, stochastic lead times and several demand classes. Using
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Markov decision theory, we have found the optimal rationing policy and shown that it is a

critical level policy. Moreover, we have constructed an algorithm for �nding a good simple

policy. The simple policy is easy to implement and in many cases the cost di�erence

of using the simple policy instead of the optimal is very small. Compared to a non-

rationing policy, it is possible to obtain signi�cant cost reductions. The disadvantage of

rationing is the potential loss of goodwill incurred when unsatis�ed customers realize that

later-arriving customers may have their demands ful�lled. However, in most situations

customers are aware of which class they belong to and accept the corresponding service

level. Moreover, the situations where it is possible to divide customers into classes, are

mostly characterized by a buying process where sales are made over the phone, by EDI or

via mail correspondence, and the risk of di�erent customers meeting each other is therefore

very small.

Appendix

The tailor-made policy-iteration algorithm

Suppose that the order size Q is �xed. For a policy with cost g, the relative values are

de�ned as

w(i) = Z(i)� gY (i) for i 2 S0

v(i; t) = z(i; t) � gy(i; t) for (i; t) 2 S1

The relative value of each state can be interpreted as the di�erence in expected long{run

total cost of starting in this state rather than in the regeneration state Q 2 S0. The semi{

Markov version of Theorem 3.2.1 in Tijms [15] tells that an optimal policy, i.e. one that

minimizes the cost of running the system, can be found by solving the following equations

with respect to v(i; t), w(i) and g.

w(i) = mina

8<
:Ci(a)� g�i(a) +

X
j2S0

P(i);(j)(a)w(j) +
X

(j;r)2S1

P(i);(j;r)(a)v(j; r)

9=
; (5)

for i 2 S0

v(i; t) = mina

8<
:Ci;t(a)� g�i;t +

X
(j;r)2S1

P(i;t);(j;r)(a)v(j; r) +
X
j2S0

P(i;t);(j)(a)w(j)

9=
;(6)

for (i; t) 2 S1

Here P(�);(�) are the transition probabilities of which most are zero. When a solution to

these equations is found, the optimal policy is speci�ed by the actions minimizing the

right hand side of the equations. The cost of this policy is g. We solve the equations by

a policy-iteration algorithm. Initially, g is computed as the cost of some easily evaluated
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policy with cost g < �(0). In each iteration g is given and we solve the equations with

respect to v(i; t) and w(i). Let g0 be the cost of the new policy speci�ed by the actions

minimizing (5) and (6). If g0 = g, we have solved (5) and (6) and thereby found the

optimal policy. If g0 � �(0), it is optimal to reject all demand and hold no inventory.

Otherwise we set g := g0 and perform another iteration based on the new value of g.

We will now describe how to solve the equations in more detail. Let g be the cost of

the previously found policy. Due to the structure of the Markov chain, we can write (5)

for i > Q as w(i) = minafJ(i; a)g with

J(i; a) = Ci(a)� g=�a + w(i� 1) for i > Q:

Initialize the recursion scheme by letting w(Q) = K and compute the values of the states

i = Q+1; Q+2; : : : ; 2Q�1 recursively (recall that the reorder point can be at most Q�1).

It is easy to show that J(i; a) convex in a and that its minimum is found as the highest

value of a that satis�es

hi+�(a) + �a�a � g: (7)

From part b) of the theorem we get that k(i) � k(i � 1), and we can therefore use the

following algorithm to �nd k(i). If k(i � 1) = n or if a = k(i � 1) + 1 does not satisfy

(7), then set k(i) = k(i� 1). Otherwise increase a by one until (7) is not satis�ed and set

k(i) = a� 1.

Now consider the situation just before the order arrives. Initialize with v(i;M) =

w(i + Q) for i = 0; 1; : : : ; Q � 1. For i = 0 and t = M � 1;M � 2; : : : ; 0, the values are

easily found since we can only choose a = 0,

v(0; t) = �(0) �
g

N
+ (1�H(t))v(0; t + 1) +H(t)w(Q):

For i = 1; 2; : : : ; Q� 1 and t =M � 1;M � 2; : : : ; 0, the values are given by

v(i; t) = min
a

�
(1�H(t))(Ci;t(a)� g�i;t + p0(a)v(i; t + 1)

+p1(a)v(i � 1; t+ 1)) +H(t)w(Q+ i)
o

= (1�H(t))min
a

n
Gt(i; a)

o
+H(t)w(Q + i)

where Gt(i; a) = Ci;t(a) � g�i;t + p0(a)v(i; t + 1) + p1(a)v(i � 1; t + 1). It is easy to show

that Gt(i; a) is convex in a. Moreover, the action a that minimizes Gt(i; a) is the highest

value of a that satis�es

v(i � 1; t+ 1)� v(i; t + 1) � �a: (8)

To �nd this a, we use part b) of the theorem, by setting ~a = l(i � 1; t). If the lead time

is constant we can furthermore use part c) by setting ~a = maxfl(i � 1; t); l(i; t + 1)g . If

~a = n or if a = ~a + 1 does not satisfy (8), then l(i; t) = ~a. Otherwise increase a by one

until (8) is not satis�ed and set l(i; t) = a� 1.
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All we need now is to compute the values w(i) for i � Q. At this point we have to

choose the reorder point s. The average cost optimality equation with respect to ordering

is

w(i) = min

8<
:v(i; 0);mina

8<
:Ci(a)� g(R)�i(a) +

X
j2S0

P(i);(j)(a)w(j)

9=
;

9=
; for i 2 S0:

Since we have to place an order when i = 0, set w(0) = v(0; 0). Now, if

v(i; 0) < mina fj(i; a)g ; (9)

we will place an order in state i 2 S0 and set w(i) = v(i; 0). Otherwise we set

w(i) = mina fj(i; a)g :

This minimization is identical to that for values w(i) with i > Q. Compute in this way the

values w(i) for i = 1; 2; : : : ; Q. We have not been able to prove that if (9) is not satis�ed

for i, then it will not be satis�ed for i + 1 either. Therefore, to ensure global optimality

we investigate all i < Q. The reorder point s is found as the highest i 2 S0 that satis�es

(9).

We have now described how to �nd the decisions that lead to the minimum value of

all w(i) and v(i; t). For these decisions, compute Y (i) and y(i; t) as described in Section

2. We can then �nd the cost of the new improved policy g0 = g + w(Q)=Y (Q). If

w(Q)=Y (Q) = 0 we have found a solution (g; fw(i)gi2S0 ; fv(i; t)g(i;t)2S1 ) to the average

optimal cost equations and the algorithm terminates with the optimal policy speci�ed by

the reorder point s and fl(i; t)g(i;t)2S1 andfk(i)gi2S0 . Otherwise we repeat the iteration

with g equal to g0.

The algorithm converges in a �nite and small number of iterations (typically 4-6).

Proof of part a) of the theorem

Let B =2 A be a set of classes. For n < 3 the proof is trivial. We therefore assume n � 3.

By de�nition there must exist a; b; c 2 IR with a < b < c such that a; c 2 B and b =2 B.

We will prove that the action B is dominated by either Ba = B n fcg or Babc = B [ fbg.

For a set of classes A,

Gt(i; A) =
1

N
(hi� g +

X
j2A

�j�j + (
X
j2A

�j)v(i � 1; t+ 1) + (N �
X
j2A

�j)v(i; t + 1)):

Recall that the optimal action in state (i; t) is the set of classes that minimizes Gt(i; A).

Thus for B to dominate Ba and Babc in state (i; t) 2 S1

Gt(i; Babc)�Gt(i; B) =
�b
N

[v(i� 1; t+ 1)� v(i; t+ 1)� �b]
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and

Gt(i; Ba)�Gt(i; B) =
�c
N

[v(i; t+ 1)� v(i� 1; t+ 1) + �c]

must both be positive. This cannot happen since the classes are ordered such that �b > �c,

and the action B is therefore either dominated by Ba or Babc. By a similar argument we

can prove that B is dominated by Ba or Babc in states i 2 S0 as well. Now repeat the

procedure on the dominating action, until the action belongs to A.

Proof of part b) of the theorem

First we will prove that the optimal policy satis�es (1). By (8) this is the case if for all t

v(i + 1; t) � v(i; t) � v(i; t) � v(i� 1; t) for i = 1; 2; : : : ; Q� 2: (10)

Note that this is the condition for convexity in i. We will prove (10) by induction on t.

Recall that k(i) =arg mina j(i; a). When t =M we have

v(i+ 1;M)� 2v(i;M) + v(i� 1;M)

= w(i +Q+ 1)� 2w(i +Q) + w(i+Q� 1)

= J(i+Q+ 1; k(i +Q+ 1)� w(i +Q)� J(i+Q; k(i+Q) + w(i +Q� 1) (11)

� J(i+Q+ 1; k(i +Q+ 1)� w(i +Q)� J(i+Q; k(i+Q+ 1) + w(i+Q� 1)

= c(i +Q+ 1; k(i+Q+ 1)) � g=�k(i+Q+1) � (c(i +Q; k(i+Q+ 1)) + g=�k(i+Q+1))

� 0

Now suppose inductively that (10) is true for t = M;M � 1; : : : ; r + 1. Recall that

l(i; t) =arg minafGt(i; a)g. Now

v(i+ 1; r)� 2v(i; r) + v(i � 1; r)

= (1�H(r))
�
Gr(i+ 1; l(i + 1; r))�Gr(i; l(i; r)) �Gr(i; l(i; r)) +Gr(i� 1; l(i � 1; r))

�

+H(r)
�
w(i+Q+ 1)� 2w(i +Q) + w(i+Q� 1)

�

Since H(r) must be between zero and one, (1�H(r)) and H(r) are greater than or equal

to zero, and by (11) the sum of the three last terms is positive as well. We therefore only

need to show that

Gr(i+ 1; l(i+ 1; r))�Gr(i; l(i + 1; r))�Gr(i; l(i � 1; r)) +Gr(i� 1; l(i � 1; r))
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is positive. By the de�nition of l(i; t) we get

Gr(i+ 1; l(i+ 1; r))�Gr(i; l(i; r)) �Gr(i; l(i; r)) +Gr(i� 1; l(i � 1; r))

� Gr(i+ 1; l(i + 1; r))�Gr(i; l(i+ 1; r)) �Gr(i; l(i � 1; r)) +Gr(i� 1; l(i � 1; r)):

and since the holding and the penalty costs cancel out together with g=N , this equals

p0(l(i+ 1; r))[v(i + 1; r + 1)� v(i; r + 1)] + (1� p0(l(i+ 1; r)))[v(i; r + 1)� v(i � 1; r + 1)]

+(1� p1(l(i� 1; r)))[v(i � 1; r + 1)� v(i; r + 1)]

+p1(l(i� 1; r))[v(i � 2; r + 1)� v(i� 1; r + 1)]

= p0(l(i+ 1; r))[v(i + 1; r + 1)� v(i; r + 1)� v(i; r + 1) + v(i� 1; r + 1)]

+p1(l(i� 1; r))[v(i; r + 1)� v(i � 1; r + 1)� v(i� 1; r + 1) + v(i � 2; r + 1)]

+v(i; r + 1)� v(i� 1; r + 1) + v(i � 1; r + 1)� v(i; r + 1)

� 0:

The last inequality follows from the induction hypothesis, completing the induction.

To conclude that the optimal policy is a critical level policy we only need to prove (2),

which follows directly from (7).

Proof of part c) of the theorem

We will now prove that l(i; t+1) � l(i; t) for all t by induction on t for the case of constant

lead times. This means that H(t) = 0 for all t < M and H(M) = 1. By (8) this is the

equivalent to

v(i+ 1; t+ 1)� v(i; t+ 1) � v(i + 1; t) � v(i; t) for i = 1; 2; : : : ; Q� 2 (12)

for all t. We note that (12) is equivalent to the de�nition of a two-dimensional supermod-

ular function (see e.g. Heyman and Sobel [7]). First we need to prove

v(i+ 1;M)� v(i;M) � v(i+ 1;M � 1) + v(i;M � 1) � 0:

It is easy to show that l(i;M � 1) = k(i+Q).

Now insert

w(i + 1)� w(i) =
h(i + 1) + �(k(i + 1))� g

�k(i+1)
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and p1(a) = �a=N and we �nd

v(i+ 1;M)� v(i;M) � v(i+ 1;M � 1) + v(i;M � 1)

= w(i + 1 +Q)� w(i+Q)�GM�1(i+ 1; l(i+ 1;M � 1)) +GM�1(i; l(i;M � 1))

= w(i + 1 +Q)� w(i+Q)�
1

N
[h(i + 1) +�(k(i + 1 +Q))� g]

�p1(k(i + 1 +Q))[w(i +Q)� w(i+ 1 +Q)]� w(i+ 1 +Q)

+
1

N
[h(i) + �(k(i+Q))� g] + p1(k(i+Q))[w(i � 1 +Q)�w(i +Q)]� w(i +Q)

= �
1

N
[h(i+ 1) + �(k(i + 1 +Q))� g � �k(i+1+Q)[w(i + 1 +Q)� w(i+Q)]]

+
1

N
[h(i) + �(k(i+Q))� g � �k(i+Q)[w(i+Q)� w(i� 1 +Q)]]

= �
1

N
[h(i+ 1) + �(k(i + 1 +Q))� g � h(i+ 1 +Q)��(k(i+ 1 +Q)) + g]

+
1

N
[h(i) + �(k(i+Q))� g � h(i+Q)��(k(i +Q)) + g]

= 0:

Suppose inductively that (12) is true for t =M;M � 1; : : : ; r + 1. Now

v(i+ 1; r)� v(i; r)� v(i+ 1; r � 1) + v(i; r � 1)

= Gr(i+ 1; l(i+ 1; r))�Gr(i; l(i; r)) �Gr�1(i+ 1; l(i+ 1; r � 1)) +Gr�1(i; l(i; r � 1))

� Gr(i+ 1; l(i+ 1; r))�Gr�1(i+ 1; l(i+ 1; r)) �Gr(i; l(i; r � 1)) +Gr�1(i; l(i; r � 1))

= p0(l(i+ 1; r))[v(i + 1; r + 1)� v(i; r + 1)� v(i + 1; r) + v(i; r)] + v(i; r + 1)� v(i; r)

+p1(l(i; r � 1))[�v(i � 1; r + 1) + v(i; r + 1) + v(i� 1; r)� v(i; r)] � v(i; r + 1)� v(i; r)

� 0

by (12) and the induction is complete.
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Abstract

We analyse an (s,Q) inventory model with unit Poisson demand, several demand

classes and lost sales. When dealing with di�erent demand classes the usual approach

is to control the inventory by critical levels at which stock is reserved for demand of

higher priority. We focus on time-remembering policies where the critical levels are

allowed to depend on the time since the actual outstanding order (if any) was issued.

In particular we introduce a new class of policies called restricted time-remembering

(RTR) policies. We divide the lead time in m intervals of time and restrict the critical

levels of the RTR policy to be constant over each interval of time. This policy is much

easier to implement than the optimal rationing policy, where the critical levels can

change continuously over time, and in a numerical study we show that the performance

of the RTR policy is close to that of the optimal policy, even when the number of

intervals is 2 or 3.

Keywords: Inventory, rationing, Markov processes, lost sales, several demand classes.

1 Introduction

Traditional inventory literature deals with the problem of how to replenish an inventory

facing deterministic or stochastic demand. It is usually assumed that there is a cost of

holding inventory, a �xed ordering cost (perhaps zero) and a requirement of a certain

service level, or a speci�cation of a stockout cost for unsatis�ed demand. In this paper

we will take a closer look at the demand process and how it in
uences our inventory

decisions. The prevalent assumption in the inventory literature is that demand may be

deterministic or stochastic following some known or unknown distribution, but the demand

is homogeneous. This means that, from a cost or service-level perspective it is of no

95
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in
uence which demand is satis�ed and which is not, in case of stockouts. This assumption

is in many cases a good one. However, today companies are creating closer relationships

with their suppliers who in turn need to provide these key-customers with the service they

require. Simultaneously, the supplier faces demand from regular customers who may not

be willing to pay for an increased level of service. In many cases a company can therefore

divide their customers into demand classes of di�erent priority.

There does not exist much literature on inventory control with several demand classes.

In the recent textbooks of Silver, Pyke & Petersen [7] and Zipkin [11] the topic is not even

mentioned.

In this paper we will discuss an extension of the inventory rationing problem presented

in Melchiors [4]. The inventory rationing problem arises when customers for a single

product can be divided into several classes of di�erent importance. Assume for example

that customers can be divided into high-priority and low-priority customers. In order

to provide a high service level for high-priority customers, the inventory manager must

maintain a high safety stock to protect the inventory from stockouts. However, by doing so,

low-priority customers will receive the same, unnecessarily high service level. Alternatively,

the inventory manager could ration his inventory. This could for example be done by

using a critical level policy. The critical level policy introduced by Nahmias & Demmy [6],

speci�es a critical level for each demand class. A demand is only satis�ed whenever the

inventory level is above the critical level for the demand class. In this way it is possible to

reserve stock for possible future high-priority demand. Melchiors, Dekker and Kleijn [5]

analyse a critical level policy for an (s;Q) policy with two demand classes. The critical

level policy is, however, not the optimal rationing policy. For example if it is known that

a replenishment is about to arrive, there is no need to reject a low priority demand even

if the inventory level is below the critical level. Melchiors [4] analyses an (s;Q) inventory

rationing model with several demand classes and stochastic lead time, where actions can be

taken based on information about both inventory level and elapsed lead time. The optimal

policy, a so-called time-remembering policy, is indeed a critical level policy. For the case

of constant lead times, the critical levels can be shown to be decreasing in time. The

advantage of the optimal policy is, however, also its disadvantage. Since the critical levels

change over time, it is only easily implementable in highly computerized implementations.

In other applications a much more simple policy is needed.

In this paper we analyse a policy where the rationing decisions are based only on

whether the remaining lead time is, say, short or long. In this way we can improve our

performance by taking time into account, and still have a policy that is easy to operate

in practice. Melchiors [4] illustrates that the cost di�erence between simple and optimal

rationing policies is particularly high in cases with constant lead time. In those cases

the value of information of time is high compared with cases with stochastic lead times
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where a simple policy that neglects information of time is almost as good as the optimal

time-remembering policy. Consequently, we will in this paper focus only on the case with

constant lead times.

For other references that discuss modelling of several demand classes we refer to Top-

kis [10], Teunter and Klein Haneveld [8], Dekker, Hill and Kleijn [2] and Ha [3].

In the next section we introduce a class of rationing policies called restricted time-

remembering policies, and present the method for evaluating rationing policies given by

Melchiors [4]. In Section 3 we present the optimization algorithm and conclude the paper

with some numerical results in Section 4, and some concluding remarks in Section 5.

2 Evaluating rationing policies

We consider a continuous-review inventory model with n demand classes. Class j faces

unit Poisson demand with rate �j . All demand not satis�ed immediately is assumed to

be lost. The classes are distinguished by their stockout cost �j , and we rank the classes

such that 0 < �n < �n�1 < � � � < �1.

For each replenishment order there is a �xed ordering cost K, and a constant lead

time of L time units. The unit holding cost per time unit is h > 0. We will analyse

the rationing policy in the context of an (s;Q) policy where Q > s. This condition and

the lost sales assumption ensure that at most one order is outstanding at any time. The

rationing policy is evaluated by the method developed in Melchiors [4] which we include

here, adjusted to the case of constant lead times.

Assuming that s and Q are �xed, the problem is formulated a semi{Markov decision

model with �nite state space S0 [ S1. Let IN denote the set of non{negative integers, and

suppose that the constant lead time consists of N subintervals each of length L=N . The

set of states when no order is outstanding is

S0 = fi 2 INj s < i � s+Qg

and the set of states when one order is outstanding is

S1 = f(i; t) 2 IN� INj 0 � i � s; 0 � t � Ng:

Here i denotes the inventory level and t denotes the number of subintervals elapsed since

the outstanding order was issued. There are two kinds of decision epochs: just after

a demand has been satis�ed when no order is outstanding and the beginning of each

subinterval when one order is outstanding. In each decision epoch we choose an action.

An action prescribes the set of classes we are willing to satisfy until a new decision is

made. Let the action a 2 f0; 1; 2; : : : ; ng prescribe that we satisfy demand from classes 1

to a and that we reject demand from classes a+1 to n. Since we do not allow backlogging,

we set a = 0 in states where the inventory level is zero.
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The number N of subintervals is chosen such that the probability of more than one

demand in each subinterval is negligible. We can then approximate the real demand

process during the lead time (which is Poisson) by a Bernoulli process (see e.g. C� inlar [1]).

A Bernoulli process is a sequence of independent trials with outcome either one or zero.

Each of the subintervals can be viewed as such a trial where the outcome is one if a

demand that we are willing to satisfy occurs, and zero otherwise. The success probability

in each subinterval, i.e. the probability of outcome one, depends on the chosen action

and is p1(a) =
L
N

Pa
j=1 �j . Also let p0(a) = 1 � p1(a) denote the probability of outcome

zero. The approximation considerably simpli�es the further calculations and we have

veri�ed by simulation that it has almost no in
uence on the obtained results as long as

the subintervals are small enough. In our numerical results, we have used N = 500 which

ensures that all values of p1(a) are less than or equal to 0:03.

The system evolves as follows: When there is no order outstanding, we jump from

state i 2 S0 to state i�1 2 S0 if i > s+1, since all demand has unit size. When a demand

is satis�ed in state s+1 2 S0, an order is placed and we jump to state (s; 0) 2 S1. During

the lead time in states (i; t) 2 S1 with i > 0 and t < N , we can jump to two di�erent

states. With probability p0(a) we jump to state (i; t + 1) and with probability p1(a) we

jump to state (i� 1; t+1). In states (0; t) 2 S1 we jump to state (0; t+1) since we do not

allow backlogging. When the replenishment arrives in state (i;N) 2 S1 we jump to state

i+Q 2 S0.

Now, let us consider the expected one{step cost. The expected one{step cost incurred

in state i, when no order is outstanding and the action a is chosen, is

Ci(a) =
1Pa

j=1 �j
[hi +

nX

j=a+1

�j�j] for i 2 S0:

During the lead time the one{step cost incurred in state (i; t) when choosing action a is

Ci;t(a) =
L

N
[hi+

nX

j=a+1

�j�j ] for (i; t) 2 S1:

Note that 1Pa
j=1 �j

and L
N
are the expected time between two decisions epochs when there

is no and one order outstanding, respectively. Finally, we have to add the order cost K

in each order cycle. The timing of the allocation of the order cost does not in
uence the

analysis, so for convenience we will add it when the state Q 2 S0 occurs. The rationing

policy is described by k(i) and l(i; t). Let k(i) denote the action taken in states i 2 S0

and l(i; t) denote the action taken in states (i; t) 2 S1.

We will now specify the long{run average cost per unit time (henceforth referred to

as cost for simplicity) of using the considered policy. Note that the inventory process is

regenerative with regeneration points when the state Q 2 S0 occurs, and de�ne a cycle as
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the time between two consecutive regeneration points. We then have from the renewal{

reward theorem (see e.g. Tijms [9]) that the cost of the policy is the expected cost of one

cycle divided by the expected length of one cycle.

We compute the expected cost and length of a cycle by a backwards recursive procedure

starting in the regeneration point. Let Z(i) be the expected cost incurred until we reach

the next regeneration point starting in state i 2 S0. Let Y (i) be the expected time until

we reach the next regeneration point starting in state i 2 S0. Note that Z(i) and Y (i)

can be found by the recursive formulae

Z(i) = Ci(k(i)) + Z(i� 1) for i 2 S0 (1)

and

Y (i) =
1

Pk(i)
j=1 �j

+ Y (i� 1) for i 2 S0: (2)

The recursion is initialized with Z(Q) = K and Y (Q) = 0. Since the inventory level cannot

be higher than s+Q, we compute Z(i) and Y (i) for i = Q;Q+1; : : : ; s+Q. We can now

consider the states (i; t) 2 S1. Let z(i; t) be the expected cost incurred until we reach the

regeneration point starting in state (i; t). Also let y(i; t) be the expected time until we

reach the next regeneration point starting in state (i; t). Initialize with z(i;N) = Z(i+Q)

and y(i;N) = Y (i+Q) for 0 � i � s. Now

z(i; t) = Ci;t(l(i; t)) + p0(l(i; t))z(i; t + 1)

+p1(l(i; t))z(i � 1; t+ 1) for 0 < i � s

z(0; t) =
L

N

nX

j=1

�j�j + z(0; t+ 1)

and

y(i; t) =
L

N
+ p0(l(i; t))y(i; t + 1)

+p1(l(i; t))y(i � 1; t+ 1) for 0 < i � s

y(0; t) =
L

N
+ y(0; t+ 1)

can be found by recursion for t = N � 1; N � 2; : : : ; 0 and i = 0; 1; : : : ; s. Finally, let

Z(s) = z(s; 0) and Y (s) = y(s; 0) and compute Z(i) and Y (i) by (1) and (2) for i =

s+ 1; s+ 2; : : : ; Q. The cost of the policy is

g =
Z(Q)

Y (Q)
:
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3 Restricted time-remembering policies

So far, the literature has described two kinds of policies, i.e. simple critical level policies and

time-remembering policies. In practice a combination of the two could be more appealing.

De�ne a restricted time-remembering(RTR) policy to be a time-remembering policy

where the critical levels are restricted to be constant over intervals of the lead time. These

intervals are de�ned by the policy variables and must cover the entire lead time. The

number of intervals determines how simple the RTR policy is. If there is only one interval,

the RTR policy is identical to the simple critical level policy, and if there is N intervals,

it is identical with the optimal rationing policy. Obviously the performance of the RTR

policy increases when the number of intervals are increased.

We assume that customers are divided into n demand classes and that the lead time

can be divided in m intervals of time. Let cj;� denote the critical level of class j in interval

number � for 1 � j � n and � = 1; 2; : : : ;m. Interval � consists of the subintervals

ft��1; t��1 + 1; : : : ; t� � 1g with 0 = t0 � t1 � � � � � tm = N , with t1; t2; : : : ; tm�1 being

decision variables.

We restrict the set of intervals to be identical for all demand classes. A set of critical

levels uniquely de�nes all values of l(i; t):

l(i; t) = max
�
jjcj;� � i; t 2 ft��1; t��1 + 1; : : : ; t� � 1g

	

We have furthermore the option of rejecting a demand even before an order is placed, as

speci�ed by k(i). Demands rejected before an order is placed, will not be satis�ed during

the lead time either, and we can therefore use the critical level of interval 1, to determine

the values of k(i):

k(i) = maxfjjcj;1 � ig

In this way we can evaluate any rationing policy by the method presented in Section

2. However, we cannot use a policy-iteration algorithm or a value iteration algorithm to

�nd the optimal RTR policy. Instead, we optimize the policy by a neighbor search based

on the following empirical observations.

1. The optimal critical levels increase (or remain the same) as the reorder point de-

creases.

2. The optimal value of t� decreases (or remains the same) as the reorder point decreases

for all � .

3. The optimal critical levels cj;� , cj;�+1 increase (or remain the same) as t� decreases

for all � .

Although it appears diÆcult to prove these observations, all our computations support

them, and our optimization algorithm has found a policy equal to the optimal RTR policy
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(determined by a full enumeration approach) in all our numerical tests. Observations 1

and 2 can be explained as follows: When we reduce the safety stock available during the

lead time, we will (for �xed value of all t� ) on average hit the critical levels earlier. The

remaining stock (reserved for demand of higher priority) must therefore last for a longer

period. Consequently, the optimal critical levels increase (or remain the same). Since we

hit the new critical levels earlier, the optimal value of t� will decrease when the reorder

point decreases, since we are interested in choosing the value of t� close to the expected

hitting times. Observation 3 is illustrated in Figure 1. When the value of t� decreases, the

critical levels covering period � + 1 will increase, since they must now also cover a period

of time [tnew� ; told� ] where the remaining lead time is longer and therefore the safety-stock

needed will be higher. Similarly, the observation holds for period � : Here the interval is

reduced and since we now do not have to cover the period [tnew� ; told� ], we can increase our

critical levels to obtain a better coverage of the period [t��1; t
new
� ].

0
t

tnew1 told1

cold
cnew

inventory level

Figure 1: Illustration of how the optimal restricted critical levels increase (for both inter-

vals) as the time t1 decreases from told1 to tnew1 .

Based on these observations we can construct an algorithm, similar with that of

Melchiors[4], for �nding the optimal RTR policy. The algorithm is based on a improve-

ment procedure increase c, which we describe �rst :

increase c: For a �xed value of Q, s and (t1; t2; : : : ; tm�1) we �nd the best critical level

vector by successive increments. Let j = n. In each iteration, �rst increase cj;m by one,

then increase cj;m�1 by one, etc., until either cj;1 has been increased or the costs have

increased. Now, reduce j by one and repeat this iteration until either j = 2 or the costs

have increased. At each step we only increase cj;� if cj;� < cj+1;� . Moreover, if the incre-
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ment of cj;� has led to an increase in costs, we reduce cj;� by one before we continue. The

algorithm is repeated until all critical levels are unchanged.

The algorithm for �nding the optimal RTR policy performs a neighbor search in the

order size Q, starting with an order size found either by adopting the EOQ formula or by

using that of the optimal rationing policy (by the method of Melchiors[4]). Let � be the

stepsize used for the search of optimal values of (t1; t2; : : : ; tm�1). For each Q we initialize

by setting all cj;� = 0 and all t� = N for all � = 1; 2; : : : ;m� 1. We search for the optimal

value of s in the interval [0; Q � 1]. Initially, we set s = Q� 1, after which we reduce the

reorder level one by one.

For each reorder level s, we improve the time separators (t1; t2; : : : ; tm�1) and the

critical levels for s + 1, using the observation that the optimal time separators decrease

and the optimal critical levels increase. First we reduce t1 with �, and apply increase c.

If costs are reduced, we reduce t2 with � and apply increase c etc. until tm�1 has

been reduced or costs have increased. We only reduce t� if t� > t��1 + �, and increase

t� with �, if the reduction of t� have led to increased costs. This is repeated until all

(t1; t2; : : : ; tm�1) are unchanged. In this way the critical levels are increased little by little

as s decreases and the values of (t1; t2; : : : ; tm�1) decrease. The optimal RTR policy is

given by the value of Q and s that gives the lowest cost and the corresponding values of

(t1; t2 : : : ; tm�1) and cj;� for all j; � .

When N is high (representing a �ne approximation of the Poisson process), we can

reduce computation time by using a stepsize greater than 1, while searching for the best

values of (t1; t2; : : : ; tm). In this paper we have used a stepsize of � = 0:05N which is

equal to 25 subintervals. The increase in cost, by doing so, is found to be negligible.

4 Numerical results

In this section we investigate the performance of the restricted time-remembering policy.

Our performance measure is the relative cost di�erence between the optimal rationing pol-

icy, as calculated by Melchiors [4], and the restricted time-remembering policy, sometimes

measured by the percentage of the gap between the simple and the true optimal policy

covered by the RTR policy. First, we investigate how to separate short and long lead times

in general, or more precisely how to choose t1 in the case m = 2 for the set of problem

parameters described below. In Figure 2 we have depicted the average percentage of gap

�lled by using an RTR policy where the value of t1 is considered to be given, rather than

a policy variable, for varying values of t1. We note that there is almost nothing gained by

policies with low value of t1. In general, the need for critical levels is in the last part of the

lead time. This is where we are likely to run out of stock and therefore this is where we
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75%

50%

25%

0%

0 N=2 N
t1

Figure 2: Percentage of gap �lled (average over 27 examples), when t1 is not a policy

parameter.

can bene�t the most from di�erent critical levels. From the �gure we can see that the best

values are found around t1 = 0:75N . However, the policies where we can incorporate a

'just before replenishment arrives change' corresponding to high values of t1, also perform

rather well.

Next, we look at the performance of the RTR policies when we optimize all parameters.

We consider a base case with n = 4 demand classes. All examples have h = 1 and L = 1,

de�ning the unit time and the monetary unit, respectively. Furthermore, all examples

have K = 100. We consider three di�erent levels of demand. High demand (
P

j �j = 15),

medium demand (
P

j �j = 10) and low demand (
P

j �j = 5). For each of these we consider

three di�erent demand allocations. �1 = (1=2; 1=4; 1=8; 1=8), �2 = (1=4; 1=4; 1=4; 1=4),

�
3 = (1=8; 1=8; 1=4; 1=2). Where for example �3 refers to an allocation where 50% of the

demand is from class 4, 25% of the demand from class 3, and classes 1 and 2 represent

12.5% of the demand each. Stockout costs for the four classes are �1 = (100; 50; 25; 10),

�
2 = (1000; 500; 100; 10), �3 = (10000; 1000; 100; 10).

First, we investigate how the choice of m in
uences the performance of the RTR policy.

The results are found in Table 1. The case m = 1 is identical to a simple critical level

policy. From the results we see that 51% of the gap is covered when we increase m from 1

to 2. By increasing m from 2 to 3 we can further narrow the gap by additional 20%, but

the bene�ts of increasing m further are very small. Thus, by setting m = 2 (or 3), we can

capture the essence of the time-remembering policy and still have a policy that is fairly

easy to operate in practice.
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m CD bridged gap

1 1.4% 0%

2 0.70 % 51%

3 0.41 % 71%

4 0.29 % 79%

5 0.27 % 80%

Table 1: The performance of the RTR policy for di�erent values of m. Average over 27

examples.

In Table 2 we report the best policy and the (relative) cost di�erence CD between the

policy and the optimal rationing policy for the simple policy and the RTR policy with

m = 2. We have also reported the gap bridged by using the RTR policy.

For the investigated examples we observe that the structure of the policies satis�es

cj;1 � csimple
j � cj;2 as expected. With repects to costs, it appears that the CD of the

simple and the RTR policy is lowest when demand is low. Since demand is Poisson, a low

demand rate is equivalent to a low demand variance, which means that we rarely end up

in the extreme situations covered by the optimal policy. The bridged gap also appears

to be lower when the demand rate is low. The allocation of the demand does not appear

to have much in
uence on the performance, but it seems like the bridged gap is slightly

higher for demand allocation �3

As � increases we see that the cost di�erences increase, since the importance of using

the optimal policy instead of a heuristic increases. This does not seem to in
uence the

bridged gap.

5 Conclusion

We have introduced a new class of policies for the inventory rationing problem, the so-

called restricted time-remembering policies. Although much more simple in structure, we

have found that the performance of the policies is quite good compared with the optimal

rationing policy, even when the number of intervals where the critical levels must be

constant are low. We can therefore enjoy the bene�t of a time-remembering policy and

still have a policy that is easy to implement in practice.
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Simple RTR(m=2) Bridged

demand � � (c1; c2; c3; c4); s;Q CD (c
�;1)(c�;2); t1; s;Q CD gap

�
1 (0,0,1,3), 8,32 0.38 (0,1,2,4)(0,0,1,2),0:7N , 8,32 0.17 0.55

�
1

�
2 (0,0,0,2), 7,33 0.67 (0,0,1,3)(0,0,0,1),0:75N , 7,33 0.25 0.63

�
3 (0,0,0,1), 6,33 0.84 (0,0,1,3)(0,0,0,1),0:7N , 6,33 0.27 0.68

�
1 (0,0,2,5),10,33 0.79 (0,1,3,7)(0,0,1,3),0:7N ,10,33 0.34 0.57

Low �
2

�
2 (0,0,1,5), 9,33 1.24 (0,1,3,6)(0,0,1,3),0:6N , 9,33 0.49 0.60

�
3 (0,0,1,3), 8,33 1.37 (0,0,1,4)(0,0,0,2),0:75N , 8,33 0.62 0.54

�
1 (0,1,3,7),12,32 0.87 (0,2,5,8)(0,1,2,4),0:65N ,12,32 0.39 0.55

�
3

�
2 (0,1,2,5),11,32 1.69 (0,2,4,7)(0,1,2,4),0:65N ,10,33 1.04 0.38

�
3 (0,0,2,4), 9,33 1.97 (0,1,3,5)(0,0,1,3),0:7N , 9,32 0.85 058

�
1 (0,0,1,3),15,46 0.80 (0,2,3,5)(0,0,1,2),0:75N ,14,46 0.39 0.51

�
1

�
2 (0,0,1,2),14,47 0.97 (0,1,3,6)(0,0,1,2),0:7N ,13,46 0.51 0.47

�
3 (0,0,0,2),12,47 1.10 (0,0,1,3)(0,0,0,1),0:8N ,12,46 0.38 0.65

�
1 (0,0,2,6),18,46 1.02 (0,2,5,10)(0,0,2,5),0:7N ,17,46 0.65 0.36

Medium �
2

�
2 (0,0,1,5),17,46 1.57 (0,1,4,8)(0,0,1,4),0:7N ,16,46 0.69 0.56

�
3 (0,0,1,4),15,46 1.81 (0,0,2,6)(0,0,1,3),0:7N ,14,46 0.88 0.51

�
1 (0,1,4,8),20,46 1.53 (0,4,7,12)(0,1,4,6),0:75N ,19,46 0.97 0.36

�
3

�
2 (0,1,3,7),18,46 2.08 (0,2,5,8)(0,1,2,4),0:75N ,18,46 1.22 0.41

�
3 (0,0,2,5),16,46 2.42 (0,1,3,7)(0,0,1,3),0:8N ,15,46 1.26 0.48

�
1 (0,0,2,4),21,57 0.80 (0,2,4,7)(0,0,1,2),0:8N ,21,56 0.45 0.44

�
1

�
2 (0,0,1,3),20,56 1.00 (0,1,3,6)(0,0,1,2),0:8N ,19,57 0.56 0.44

�
3 (0,0,0,2),19,56 1.07 (0,0,2,4)(0,0,0,1),0:85N ,18,57 0.48 0.55

�
1 (0,0,2,7),25,56 1.24 (0,3,7,12)(0,0,2,6),0:75N ,24,56 0.69 0.44

High �
2

�
2 (0,0,2,6),23,56 1.83 (0,1,4,9)(0,0,1,4),0:8N ,23,56 1.00 0.44

�
3 (0,0,1,4),21,57 2.08 (0,0,3,7)(0,0,1,3),0:75N ,20,57 1.02 0.51

�
1 (0,2,5,10),27,56 1.61 (0,4,8,13)(0,1,4,6),0:75N ,26,57 0.96 0.40

�
3

�
2 (0,1,3,8),25,56 2.42 (0,3,6,10)(0,1,3,5),0:75N ,24,56 1.35 0.44

�
3 (0,1,2,5),23,56 2.67 (0,2,4,8)(0,0,2,4),0:8N ,21,57 1.31 0.51

Table 2: For each set of parameters we report the best simple policy, the best RTR

policy(m=2), the cost di�erence CD = (cost
�

costoptimal)=costoptimal and the gap bridged

by the RTR policy =(costRTR � costoptimal)=(costsimple � costoptimal)
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Abstract

We analyse a make-to-order system with jobs arriving in a stochastic manner. We

assume a periodic model where there is a �xed amount of capacity available in each

period. There are holding costs for jobs in process and penalty costs for jobs �nished

after their due date. Jobs have di�erent pro�tability. The objective is to maximize

the long-run average pro�t minus holding and penalty costs.

We present a near-optimal rationing policy where jobs are accepted or rejected

based on the properties of the job and the current state of the system. The compu-

tation of the near-optimal policy is intractable for realistically sized problems. We

therefore suggest two simple policies which are easy to �nd and easy to implement in

practice. The simple policies are benchmarked against the near-optimal policy on low

dimensional problems in a numerical study and are shown to have a �ne performance.

Keywords: Capacity rationing, Markov processes, job classes, scheduling.

1 Introduction

Management of capacity is an important issue in almost every imaginable setting and to-

day's labour scarcity has made its mathematical modelling a pertinent challenge attracting

widespread interest. An individual's capacity, conceived as a 24-hour span, must be man-

aged to satisfy the needs of professional and private life. The capacity of a consultancy

group can be measured by daily working hours, and that of a manufacturing tool by the

number of products produced weekly. Capacity may be an asset easily adjustable to meet

demand (e.g. by buying another machine or hiring an extra working group), but in many

cases capacity is �xed, at least on a short term, and therefore the capacity on hand is

often not enough to meet demand. Consequently, all demands cannot be met. When-

ever demand for capacity can be divided into classes either due to priority, criticality or

pro�tability, decisions on which demands to accept and which to reject must be taken.

107
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An important aspect when managing capacity is time. Some jobs need to be processed

immediately, while others may not be due earlier than a few days or even weeks from the

time where we need to accept or reject the job. By postponing the processing of a job until

it is due, we can obtain 
exibility to accept incoming jobs that require prompt attention.

Also, jobs produced early take up space (in case of physical products), or may become

outdated. On the other hand, currently available capacity, if not used today, will be lost

tomorrow. When to process an accepted job is consequently not straightforward.

Mathematical modelling of such problems is in general very complicated. To obtain

optimal decision rules is virtually impossible from a computational point of view and,

moreover, the structure of the optimal policy would be very complex, thus making it

diÆcult to implement in practice. It is therefore of great importance to construct simple,

tractable models that capture essential system properties, and simple policies for accepting,

rejecting and allocating demand for capacity.

This paper considers a make-to-order system with several job classes in a multi-period

setting with a rolling horizon. Jobs arrive stochastically and must be either accepted or

rejected upon arrival. After acceptance we must decide in which periods to process the

job. Every job is described by the amount of capacity required, a due date and a pro�t

per workload unit, which are all known and deterministic. We assume that the average

demand for capacity exceeds the capacity on hand. On a longer term, strategic decisions

to increase capacity or increase prices to make demand match capacity, should be taken.

Our approach assumes that prices and capacity are �xed and focuses on the short term

management of the congested system. We divide every period into sub-periods in which

there can be at most one demand. In this way every decision regarding acceptance and

allocation of a job, can be done with respect to the properties of the one job on hand

and the current state of the system. The latter is represented by the unused capacity in

every period in the planning horizon. After job acceptance and allocation we reduce the

unused capacity according to the chosen allocation. Keeping track of the list of accepted

jobs hence becomes super
uous, which signi�cantly simpli�es the model.

We analyse two models: Model A is a simpli�ed model, where it does not matter

when a job is processed as long as it meets its due date. Model B is a more general

model where we do not need to meet the required due date; instead, there are penalty

costs per period the job is late and holding costs from the processing has begun until

the due date of the job. We present a general framework that provides a decision tool

for both models. The strength of the framework lies in its coverage of a wide range of

problems, and its capacity to solve these to near-optimality. However, the requirement

of computation time and memory is high, and increasing in the length of the planning

horizon and the number of di�erent job types. For more complex problems it therefore

seems unlikely that an optimal policy can be found, due to \the curse of dimensionality".



Paper IV 109

Model A is evidently more simple to analyse, and by restricting ourselves to a simple

decision policy, we are able to represent the system by a much more simple mathematical

model. This facilitates fast optimization, also for problems of higher dimension. We also

consider the use of two heuristic policies and compare them with the near-optimal policy.

For Model B, it is diÆcult to reduce the model, and computation times are therefore

longer. We design heuristic policies that can be found even for complex real-life problems

by the use of simulation. These simple policies are benchmarked against the near-optimal

policy on smaller problems (where optimization is possible), and are shown to have a �ne

performance.

In Section 2 we provide a literature review of related research and in Section 3 we

describe the general framework in detail. In Section 4 and 5 we show how to solve Model

A and B, respectively. Numerical results are provided in both sections to illustrate the

performance of the di�erent policies. All policies are also compared with a non-rationing

policy where all jobs are accepted if possible. Concluding remarks are given in Section 6.

2 Literature review

The importance of using admission control for make-to-order systems to control the perfor-

mance of the system has been recognized by several authors. Hendry and Kingsman [8, 9]

build a hierarchical system to control lead times in make-to-order companies. This is

achieved by using a customer enquiry system based on the amount of the total backlog in

the system. If this amount exceeds a maximum limit determined by management, orders

are rejected or extra capacity is purchased. Once accepted, the jobs enter the job-pool

and are later released to the shop 
oor. The released backlog length is controllable, and

the authors show the relation between this length and the shop 
oor throughput time,

which is the measure of performance. An option for high-priority jobs which are allowed

to skip queues, is included in the analysis, but demand di�erentiation is not their pri-

mary concern. Balakrishnan, Sridharen and Patterson [2] consider capacity rationing for

a make-to-stock system with two demand classes. There is a �xed amount of capacity to

be allocated to demand during the selling season. By a decision-theory-based approach

they calculate, at any given time during the season, how much capacity to reserve for fu-

ture high-priority demand. Remaining unused capacity can be used to satisfy low-priority

demand. The performance of the decision tool is evaluated by simulation. Being a one-

period model it does not include the option of allocating demand for capacity to di�erent

periods, and only two di�erent demand classes are considered. Balakrishnan, Sridharen

and Patterson [1, 15] make further investigations of capacity rationing. Common for all

three papers is, however, that they use a non-rationing policy that accepts all demand

as the only benchmark for the rationing policy. In the highly congested systems they
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consider, we conjecture that a simple policy that rejects all low-pro�t jobs, would have a

performance close to that of the optimal policy.

Essential to the problem characterization is the perishability of the capacity; unused

capacity of yesterday represents no value today. On the other hand, it is also important

not to allocate too much capacity to demand classes with low pro�tability if this means

that there will be no capacity left for demand classes with high pro�tability. This aspect

is central in the problem faced by airlines or hotels, known as perishable asset revenue

management (PARM, see Weatherford and Bodily [17]). The capacity held by airlines

is the actual number of seats on a given 
ight. Customers are typically divided into

business and tourist class, paying di�erent fares for essentially the same service. Bitran

and Mondschein [3] consider an application to the hotel industry with several classes of

customers and rooms, allowing upgrading and requests for multiple nights. The decision

tool is based on a linear maximization program where the stochastic customer arrivals are

replaced with their expected values. They compare the heuristic with an upper bound,

found by assuming full information about future demand and �nd that the heuristic lies

within 2% of the upper bound. What distinguishes PARM from the make-to-order system

is that customers who require a 
ight or a hotel room Saturday, will (often) not accept a


ight/room Friday or Sunday, whereas in the make-to-order system we can use capacity

of adjacent periods to satisfy demand and in that sense we can store our capacity or put

it on backorder.

The issue of several demand classes is treated in other settings than PARM. For make-

to-stock or inventory systems, demand classes are distinguished by their stockout cost,

and the objective is to minimize holding and penalty cost rather than maximize pro�t.

A stream of research deals with rationing in a batch ordering environment: Nahmias

and Demmy [14] analyse a simple critical level policy in a continuous review setting with

Poisson demand and two demand classes. Whenever the inventory level is below the

critical level, only high-priority demand is satis�ed. In this way low-priority demand

is rejected in order to meet possible future high-priority demand. Melchiors, Dekker and

Kleijn [13] show how to optimize such a system under the assumption of lost sales. Optimal

time-remembering policies and the extension to several demand classes is considered by

Melchiors [12], who allows rationing decisions to depend both on the inventory level and on

the time elapsed since the outstanding order (if any) was issued. For systems where the cost

of ordering is small or negligible, a base-stock policy is often used instead of batch-ordering.

Ha [6, 7] analyses base-stock policies with rationing in a production environment under the

assumption of exponential and Erlang distributed production times, respectively. In this

paper we apply the ideas for constructing simple critical level policies to the make-to-order

problem.

The modelling of di�erent demand classes is central for the problem formulation. We
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assume that prices and due dates are �xed and non-negotiable; instead, we allow rejection

of arriving jobs. Johansen [10] presents a job-shop model where, at every job arrival,

a price is calculated based on the current state of the system and the workload of the

incoming job. If this price is less than the reservation price of the customer, the job is

accepted, otherwise the job is lost. The state space of this model is the amount of accepted

workload waiting to be processed, similarly to the model presented in Section 4 of this

paper. Simple pricing strategies where only the size of the job determines the price are also

considered. ElHafsi [5] provides a decision tool for a manufacturing system to quote lead

times and prices for incoming orders, based on the actual congestion level of the system

and the expected operating cost.

The make-to-order problem is naturally related to queuing theory. Both are character-

ized by the arrival of a job, a potential waiting time, followed by a service time. However,

our model assumes that service times vary, but are known at the arrival of the job, while

most queuing models assume that the variability is due to a stochastic service time, which

is �rst revealed when the service is completed. Consequently, it cannot be taken into con-

sideration when deciding whether to accept or reject a job. It also seems that an analysis

of the multi-period make-to-order system based on queuing theory would be very diÆcult.

3 The general model

We consider a make-to-order system receiving jobs from a set of customers. Each job type

j is described by its workload Wj, a desired due date DDj, and the pro�t pj per unit

workload. The pro�t equals the price minus all costs of labor and materials necessary

to process the job, but does not include holding and penalty costs. The arrival of jobs

follows a stochastic process, which we will specify later. We let J denote a set of job

types. Eventually some job is rejected, either because of insuÆcient capacity or due to a

rationing decision. We assume that the cost of rejecting a customer (loss of goodwill etc.)

is zero. A positive rejection cost can easily be incorporated by adding it to the pro�t of

an accepted job, instead of adding a negative pro�t when a job is rejected.

There is a holding cost hpj per unit workload per period from the day processing of a

type j job is begun until its due date. If processing is �nished after the due date a penalty

cost of �pj per unit workload per period late is incurred. We note that there are other

ways in which these cost could have been speci�ed. If the penalty costs are a result of

overtime production, these costs are typically not dependent of the pro�t of the job. If,

however, the penalty cost is based on a contractual agreement it seems reasonable that

a high-pro�t job has a high penalty for late delivery. Also, in many situations customers

will be more than happy to have their job �nished early. This is analysed as a special

case in Section 4. However, it is easy to imagine situations where customers do not want
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their products before they need them. Indeed, this is one of the key elements of the

Just-In-Time philosophy.

The time unit is a period (representing a day or a week for example) which is divided in

T sub-periods (hours of the day or weekdays). Incoming jobs can arrive in any sub-period,

but cannot begin processing before the next period. We consider a rolling horizon with

a length of N periods. The current period is period 0, and the �rst period a job can be

processed in is period 1. The length of the planning horizon is �xed, and we can only

accept jobs that can be processed within this horizon.

When a job is received, it must either be accepted or rejected. We assume that all

jobs can be processed over several periods without additional costs (besides the holding

costs). The allocation of workload is done upon the acceptance of the job. We assume

that it is not possible to change this allocation. Our reason for this, albeit, restrictive

assumption, is the modelling of our state-space. By postponing the allocation or allowing

reallocation (which is the same) we have to keep track of the list of accepted jobs and their

properties. By allocating the workload of a job upon its arrival, we only need to keep track

of the available capacity in the system. Speci�cation of decision policies is much easier to

formulate based on available system capacity, than on a list of jobs waiting to be allocated.

There is, however, no doubt that the system that allows postponing of allocation, will have

a better performance than the system we analyse, simply because we can wait until last

minute before deciding what to process in the following period, and never make allocation

plans for more than the �rst period in the planning horizon. A study that explores the

cost of not being able to reallocate would be very interesting, but is beyond the scope of

this paper. In practice, if the scheduled date where processing begins is near, orders for

materials are placed and setup of machines may have begun, and consequently rescheduling

will be very expensive, which must also be taken into consideration.

We assume that there exists a minimum unit of workload. This unit may represent

one hour or one day, either for a person or for a work group. The capacity of the system in

each period is C workload units. Furthermore, we assume that the workload of each job

can be expressed as an integral multiple of this unit. We investigate two di�erent models:

� MODEL A : � = 1 and h = 0. This is a simpli�ed situation, where it is irrelevant

when a job is processed as long as it meets the required due date.

� MODEL B : The general model as described above with � <1 and h > 0.

A job that can be processed within the planning horizon, or if � = 1 before its due

date, is called a feasible job. Naturally, we can only accept feasible jobs. However, as

discussed earlier there are circumstances under which we would be better o� by rejecting

a feasible job. We use one of the following policies to specify whether arriving jobs should

be accepted or rejected.
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� Non-rationing policy: Accept all feasible jobs.

� Selective policy: Accept all feasible jobs if their pro�t per unit workload exceeds a

�xed policy-speci�c value. Acceptance does not depend on the actual state of the

system.

� Simple rationing policy: Acceptance is based on the actual state of the system and

the properties of the incoming job. However, the decision criteria must be a simple

one. We suggest two di�erent simple policies for Model A and B, respectively.

� Near-optimal rationing policy: Jobs are accepted based on their properties and the

actual state of the system.

The problem is formulated as a Markov decision process. Let t denote the number

of remaining sub-periods of period 0 and let xi denote the unused capacity in period i.

The state of the system is then described by (t;x), where x = (x1; x2; : : : ; xN ). Moreover,

the process ft;xgk; k = 1; 2; : : : is a discrete time Markov chain with state space S =

f0; 1; : : : ; Tg � f0; 1; : : : ; CgN . In all states (t;x) with t > 0 we decide which jobs we can

accept and how to allocate their workload. States (0;x) are arti�cial states where no job

can arrive, representing the end of a period. Let � be a vector of components �n, which

is the workload allocated to period n for a job. An allocation for an accepted job with

workload W must satisfy

0 � �n � xn for all n = 1; 2; : : : ; N

and
NX
n=1

�n =W:

We let the non-allocation with �n = 0 for all n denote a rejected job. Let A(x; j)

denote the set of feasible allocations, including the non-allocation, for job j in state

(t;x). From all states (t; x1; x2; : : : ; xN ) with 0 < t � T and all jobs j with alloca-

tion (�1; �2 : : : ; �N ) we jump to state (t� 1; x1 ��1; x2 ��2; : : : ; xN ��N ). In the states

(0; x1; x2; : : : ; xn), there are no jobarrivals and we jump to the beginning of the next period,

to state (T; x2; x3; : : : ; xn; C). Remaining unused capacity in period one is lost.

Let f(j; t) denote the probability that job j arrives in state (t;x). We assume that

there can only arrive one job per sub-period. If the arrival process is a Poisson process we

can approximate the real arrival process by a Bernoulli process, by choosing the number

of sub-periods such that the probability of more than one incoming job per sub-period

is negligible (see e.g. C� inlar [4]). The situation where no job arrives is represented by

j = 0, included in J . Consequently,
P

j2J f(j; t) = 1 for all t. For technical reasons, we

furthermore assume that f(0; t) > 0 for all t. Let c(�; j) be the pro�t minus the holding
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and penalty cost for a job j and an allocation �. The net pro�t functions for models A

and B are speci�ed in Sections 4 and 5.

Our model is similar to the vehicle insurance example given by Tijms [16]. He considers

a model where accidents occur during the months of a year. If the motorist has made no

claims by the end of the year, he is rewarded with a lower premium the following year.

The premium is assumed only to depend on the number of claims made during the year

and the premium of the previous year. The decision of whether to claim an accident or

not, will then depend on the size of the claim, the claim history of the current year and

the premium of the previous year. A value-iteration algorithm is used to �nd optimal

no-claim limits for the example. The model is similar to ours in the sense that accidents

(demands) occur during the months (the sub-periods) and claims (acceptance) must be

made when the accidents occur. By the end of the year (period) the consequences of the

actions taken occur. The motorist �nds himself with a lower premium if he has made no

claims, and similarly our make-to-stock system will have more free capacity, if we have

rejected jobs during the sub-periods. The vehicle insurance model balances the cost of an

un-claimed accident with the bene�t of a lower premium in the following year, while our

model balances the loss in pro�t by rejecting a job with the bene�t of more free capacity

in the following periods.

We �nd a policy, that gives the maximal average net pro�t per period by a value-

iteration algorithm (see Tijms [16]). Let vi(t;x) be the maximum expected future net

pro�t obtained i periods and t sub-periods from the end of the horizon in state (t;x).

vi(t;x) is found by the recursion

vi(t;x) =
X
j2J

f(j; t) max
�2A(x;j)

h
c(�; j) + vi(t� 1;x��)

i

for 1 � t � T;8x � 0;8i > 0 (1)

vi(0; x1; x2; : : : ; xN ) = vi�1(T; x2; x3; : : : ; xN ; C) 8 x1; x2; : : : ; xN � 0; 8i > 0

v0(T;x) = 0 8x � 0:

How to solve the maximization problem is model speci�c and will be discussed in the

following sections.

The Markov chain is obviously periodic. But as for the vehicle insurance example, we

can convert it into a aperiodic model by only considering the states (T;x). In this way

we regard what happens during the sub-periods as a black box, and focus on the system

only in the beginning of a period, in the states (T;x) for all x. In line with this, we have

chosen to index the value functions only by the subscript i, instead of the strictly speaking

more correct iT + t. The di�erence lies in the notation only, and therefore we have chosen

to use the simpler of the two.
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De�ne mi and Mi by

mi = min
x

(vi(T;x)� vi�1(T;x))

and

Mi = max
x

(vi(T;x)� vi�1(T;x)) :

The Markov chain is aperiodic and since f(0; t) > 0, the Markov Chain cannot have two

disjoint closed sets. By Theorems 3.4.1 and 3.4.2 of Tijms [16] we then obtain that the

maximal long-run average net pro�t g per period satis�es mi � g �Mi for all i � 1, and

furthermore, there exist �nite constants � > 0 and 0 < � < 1 such that jMi �mij � ��i.

In each iteration i of the algorithm, for all states (t;x), we need to solve the maxi-

mization problem for all jobs j 2 J n f0g. In this way we make a list of how to treat an

incoming job j in state (t;x). For every job j in every state (t;x) we use an algorithm to

�nd a near-optimal allocation � of the job (under the assumption that it will be accepted).

This algorithm seeks to maximize c(�; j) + vi(t� 1;x��) subject to � 2 A(x; j). If the

largest computed sum is greater than vi(t � 1;x), the job is accepted and otherwise the

job is rejected. The search algorithm is described for each model in the following sections.

A(x; j) consists of the empty allocation, representing the rejection of a job, and the set

of allocations that can be found by the search algorithm. Due to the size of the decision

space we cannot in general guarantee to �nd the optimal allocation, and therefore we refer

to our policy as a near-optimal policy.

In iteration i, i > 1, after all values vi(t;x) are calculated, we compute mi and Mi.

If (Mi � mi)=mi < �, where � is a small positive number, the algorithm terminates,

otherwise another iteration is performed. The expected pro�t is found as (mi +Mi)=2.

For the computations in this paper we have used � = 0:0001.

A disadvantage of the near-optimal policy is that it is diÆcult to implement in prac-

tice. A simple policy for example specifying that jobs are only accepted if they can meet

their due date, or if their pro�t is higher than a certain amount, would be much easier to

implement. The value-iteration algorithm cannot be used directly to �nd simple policies.

Under the regime of a simple policy, the decisions are bound by the parameters of the

simple policy, and we cannot therefore maximize the expected net pro�t vi(t;x) inde-

pendently in each state. The algorithm can, however, be used to evaluate any speci�ed

policy. Given a policy that, for any state of the system (t;x) and any incoming job j,

speci�es an allocation �(x; j), we simply set A(x; j) = f�(x; j)g, such that there is only

one element in A(x; j). In this way we can evaluate simple policies. To �nd good simple

policies we therefore �rst design the structure of the simple policy (e.g. only allow jobs

with a pro�t above some minimum level). The value-iteration algorithm does not perform

any maximization since there is only one prespeci�ed action in A(x; j); it only evaluates
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a given policy. Therefore we apply a local search algorithm to determine the best value of

the policy variables.

In the two following sections we show how to �nd near-optimal policies and design

simple policies for Model A and Model B.

4 Model A

In this section we consider the special case of the general model where � =1 and h = 0.

The problem when a job arrives is whether it should be accepted or not and when to

process it. Here we are not in
uenced by holding and penalty costs forcing us to process

the job near the desired due date, i.e. we are free to process the job whenever we prefer,

as long as the due date is met.

The net pro�t of a job of type j with feasable allocation � equals

c(�; j) = pjWj

if the job is accepted, and c(0; j) = 0 if the job is rejected. Now, we consider how to

solve the maximization problem (1) by �nding the best allocation of workload. Consider

the maximization problem in iteration i in state (t;x), where we are to allocate a feasible

job with workload W and due date DD. If the job is infeasible, we choose the non-

allocation. If there is no limitation on capacity, the number of ways to allocate W units

of workload to DD periods is equal to the number of ways to place DD � 1 separators,

in a string consisting of W units of workload and DD � 1 separators which is given by

the binomial
�
W+DD�1
DD�1

�
. With W = 10 and DD = 5 this gives 1001 combinations and

if both the number of periods and the number of workload units is 10, there is 92387

possible combinations. In practice many of these would not be feasible due to limited

capacity, and most of them would be far from optimal. Instead of searching among all

possible allocations we therefore consider two allocation heuristics: The �rst algorithm,

FIFO(�rst in �rst out), allocates such that everything is processed as soon as possible.

Let �FIFO(x; j) be the FIFO allocation for job j given a vector of free capacity x.

The second algorithm, MI(marginal improvement), is a greedy near-optimal method

based on marginal improvements of the expected pro�t function vi(t;x). Let y = x and

let en be a vector of zeroes except for the n'th entry which is 1. In each iteration of the

algorithm we allocate a unit of workload to the period n (yn > 0), with the highest value

of vi(t � 1;y � en), and let y := y � en. This iteration is repeated until all workload is

allocated. The near-optimal allocation is given by � = x� y. Since we cannot guarantee

that we �nd the optimal allocation (this would require vi(t;x) being a concave function),

we call the policy found when using the MI allocation a near-optimal policy.

The MI algorithm is constructed with the purpose of having the option of leaving idle

periods to increase 
exibility. The bene�t of leaving idle periods for future high-pro�t
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demand, may not o�set the loss in pro�t incurred when the idle periods remain idle and

capacity is lost. In that case the performance of the FIFO allocation would be just as

good. To prove this theoretically we would have to show that

vi(t; : : : ; xn � 1; : : : ; xm; : : : ) > vi(t; : : : ; xn; : : : ; xm � 1; : : : )

for all n 6= m with xn; xm > 0 and for all i > 0; 1 � t � T . Or in words: The expected

future pro�t is highest if a unit of workload is allocated to the �rst period with available

capacity. As we shall see in our numerical results, this is not true in general.

If we use the FIFO allocation method, we can reduce our mathematical model sig-

ni�cantly. Instead of keeping track of available capacity for each day, it suÆces to keep

track of the total amount of accepted workload waiting to be processed. The state of

this system is (t; x), where t denotes remaining sub-periods of period 0 and x denotes,

instead of a vector of unused capacity, the sum of all accepted workload not yet pro-

cessed. The process ft; xgk, k = 1; 2; : : : is a discrete Markov chain with state space

f0; 1; : : : ; Tg � f0; 1; : : : ; C � Ng, since we can at most accept C units of workload per

period in the planning horizon. In states (t; x) with t > 0, if a job j is accepted we jump

to state (t� 1; x+Wj), and if no jobs are accepted we jump to state (t� 1; x). In states

(0; x) we jump to (T; (x � C)+). (x � C)+ equals x � C, if x � C is positive, and zero

otherwise. A job j is feasible only if x+Wj � C �DDj .

The model is solved by a value-iteration algorithm. Let wi(t; x) be the maximum

expected net pro�t obtained i periods and t sub-periods from the end of the horizon in

state (t; x). Let a be the decision variable, beingWj if a job j is accepted and 0 otherwise.

wi(t; x) =
X
j2J

f(j; t) max
a2f0;Wjg

h
pja+ wi(t� 1; x+ a)jx+ a � C �DDj

�

for 0 < t � T; 0 � x � C �N and 8i > 0 (2)

wi(0; x) = wi�1(T; (x� C)+) for 0 � x � C �N and 8i > 0

w0(T; x) = 0 8x

If we consider only states (T; x) the Markov chain is aperiodic as argued in Section 3. The

convergence properties therefore also apply to this model as well. Due to the reduced state

space, the computation time of this model is much smaller. The optimal policy found by

this reduced model is called rationing(FIFO) and is identical to the policy found using the

FIFO alloaction in the full-dimensional model.

Regardless of which model is used, the found policy may be diÆcult to implement in

practice since the rationing decision depends on which sub-period the system is in when

a job arrives. For practical implementations this may not be desirable, and consequently

we consider how to design and optimize simple policies.
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4.1 Heuristic policies

We investigate two heuristics: A simple policy and a selective policy. When analysing

these policies we will use the FIFO allocation rather than the MI allocation, since a

simple policy cannot be based on the vi(t;x) function. Moreover, this allows the use of

the reduced state-space model. We divide the job types into job classes based on the pro�t

the jobs provide. Let Ji be the set of job types in class i, and let ~pi be the pro�t of a job

from class i. Let m be the number of job classes and order the classes such that ~pi > ~pi+1

for all i < m: We investigate a critical level policy, where a critical level ci is assigned to

every job class i. A job type j is accepted only if the resulting accepted workload x+Wj

does not exceed the critical level of its class. If a job is accepted, it is scheduled to be

processed as soon as possible. In this way we obtain a controlled backlog length similar

to that of Hendry and Kingsman [9].

The value-iteration algorithm is used to evaluate a given policy as described in the

previous section. We use a search routine similar to that of Melchiors [12] to �nd a good

simple policy. Let c = (c2; c3; : : : ; cm) be a vector of critical levels. Initialize by setting

cj = C � N for 2 � j � m, which corresponds to a situation with no rationing (since we

can only accept jobs that can be processed within our planning horizon). Let k = m. In

each iteration of the algorithm we reduce ck by one and evaluate the new policy. If the net

pro�t increases, we let k := k � 1. This is repeated until the net pro�t decreases or until

k = 2 (we will not reject a feasible class 1 job). Set c equal to the best of the critical level

vectors evaluated so far and repeat the process with k = m again, until no improvement

can be found.

While searching we can make use of the upper bound Mi on the pro�t function in the

i'th iteration when evaluating a policy. Let g0 denote the net pro�t of the best policy

found so far. If in any iteration i of the value-iteration algorithm, Mi < g0, the evaluation

can be abandoned, since the pro�t of the policy under evaluation is at most Mi.

We also consider the use of an even simpler policy: a selective policy. Since we mainly

are concerned with congested make-to-order systems, a good heuristic would be to be more

selective when accepting jobs, and only accept jobs of certain job classes, or in other words

reduce the set of job types. This would mean that fewer high-pro�t jobs would be rejected.

If a job from class i is accepted, so should a job from class i� 1, and we can therefore by

a simple search, using the evaluation method described previously, determine from which

classes to accept jobs. The selective policy is not a real rationing policy, but simply a

reduction of the set of job types, where after all remaining feasible jobs are accepted. It

is possible to extend this class of policies by allowing randomized policies, such that a job

is accepted only with a certain class dependent probability. This is, however, not studied

in this paper. Finally, we also consider the use of non-rationing policies for comparison.

The non-rationing policy speci�es to accept every job that can be processed within its
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due date, regardless of the pro�t it provides. Accepted jobs are allocated by the FIFO

principle.

4.2 Numerical results

In this section we analyse the performance of the di�erent rationing and allocation policies.

Our measure of performance is the average pro�t obtained by either the rationing(FIFO),

the simple, the selective or the non-rationing policy compared with the pro�t obtained by

using the near-optimal policy found using the MI allocation. Let E(W ) be the expected

demand per period.

E(W ) =
TX
t=1

X
j2J

f(j; t)Wj

The availability of capacity � de�ned as the ratio of total capacity per period to the

expected demand is

� = C=E(W )

We consider a range from � = 0:4, representing systems where the availability of capacity

is low, to � = 1 representing systems where the capacity equals the expected demand.

When the capacity of the system exceeds the expected demand, almost all jobs should be

accepted and as � increases, the bene�t of rationing policies becomes marginal.

Naturally, the pro�t obtained from the di�erent job classes is important for the per-

formance of the system; if all jobs provide the same pro�t, rationing cannot improve the

performance of the system. Another factor that in
uences the performance of the system,

is the fraction of total workload demand with high pro�t. Let


i = E(Wi)=E(W );

denote the fraction of class i demand, where E(Wi) =
PT

t=1

P
j2Ji

f(j; t)Wj is the expected

demand from class i per period.

In this section we will investigate �ve examples all with three job classes, described

in Table 1. Example A1 corresponds to a situation where customers that require a small

lead time pay more than customers accepting a longer lead time. In example A2, class

one and three have been interchanged, and in examples A3, A4 and A5 the workload of

the jobs are low with a loose due date, low and with a tight due date or high with a loose

due date, respectively. In each example there are 5 di�erent job types.

The capacity per period is C = 3, the length of the planning horizon is N = 5 periods,

and every period is divided in T = 8 sub-periods. The availability of capacity � is set to

0.4, 0.55, 0.7, 0.85 and 1. We consider �ve di�erent sets of pro�ts, such that

(~p1; ~p2; ~p3) 2 f(1:6; 1:2; 1); (2:2; 1:4; 1); (2:8; 1:6; 1); (3:4; 1:8; 1); (4; 2; 1)g
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A1 A2 A3 A4 A5

j Wj; DDj ; JCj Wj;DDj ; JCj Wj; DDj ; JCj Wj;DDj ; JCj Wj;DDj ; JCj

1 1,1,1 3,4,1 1,5,1 1,1,1 4,5,1

2 2,3,2 4,5,1 2,5,1 2,2,1 5,5,1

3 3,4,2 2,3,2 2,5,2 2,2,2 4,5,2

4 3,4,3 3,4,2 1,5,3 1,1,3 4,5,3

5 4,5,3 1,1,3 2,5,3 2,2,3 5,5,4

Table 1: Description of job workload(Wj), duedate(DDj) and jobclass(JCj) for examples

A1, A2, A3, A4 and A5

Finally, we investigate �ve di�erent distributions of demand, covering situations where

jobs have primarily low pro�t to situations where jobs have primarily high pro�t.

(
1; 
2; 
3) 2 f(0:1; 0:3; 0:6); (0:2; 0:3; 0:5); (0:3; 0:4; 0:3); (0:5; 0:3; 0:2); (0:6; 0:3; 0:1)g

This gives a total of 5 � 5 � 5 = 125 di�erent cases for each example. We assume

that all jobs types in a job class i have uniform probability, such that f(j; t) = f(k; t) for

all job types k; j 2 Ji. Moreover, we let the demand be stationary during every period,

i.e. f(j; t) = f(j; s) for all j 2 J and for all t; s. The equations de�ning �; 
;E(Wi)

and E(W ) then determine unique values of f(j; t) for all t and all j 2 J . In Table 2

A1 A2 A3 A4 A5

rationing(FIFO) 97.1 (91.8)% 99.3 (96.9)% 100 (100)% 99.9 (99.6)% 100 (100)%

simple 96.0 (90.9)% 99.1 (96.9)% 99.9 (99.7)% 98.5 (92.3)% 99.8 (99.4)%

selective 94.7 (83.8)% 98.6 (94.8)% 96.0 (85.6)% 96.7 (86.9)% 96.3 (84.7)%

non-rationing 80.7 (42.5)% 98.3 (91.0)% 89.1 (69.2)% 93.1 (73.8)% 91.7 (72.5)%

Table 2: Average net pro�t for each heuristic as percentage of the near-optimal net pro�t

found by the MI allocation for 5 examples of job type combinations described in Table

1. The worst case performance found in the 125 cases is reported in parenthesis for each

heuristic.

we report the pro�t obtained for each example for each heuristic, as percentage of the

pro�t of the near-optimal policy as found by the MI allocation. The value reported is

the average performance over the 125 di�erent combinations of capacity availability, pro�t

and workload distribution. We moreover report the worst performance found. Except for

Example A2 the results show that rationing in general is very useful compared with a

non-rationing approach. The di�erence between the near-optimal policy and the selective
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policy is 4-5 % on average but can be as high as 16.2%. The non-rationing policy is in

general very poor, with an average performance around 90% and a worst performance of

42.5%. In general the performance of the rationing(FIFO) policy is very good, indicating

that the bene�t of leaving idle periods for 
exibility is low. The performance of the

simple policy is almost equally good. Except for example A1, the simple policy is very

close to the near-optimal policy, and due to its simplicity it is well-suited for practical

implementation. In example A1 the properties of the jobs are such that it is important

to reserve idle capacity in period 1 in order to meet the pro�table class one jobs. This is

expensive if we restrict ourselves to the simple policy, where we cannot reject demand for

period 1 capacity in the early sub-periods of period 0, and accept similar demands by the

end of period 0, if no class one demands have occurred.

The reason behind the relative poor bene�t of rationing in example A2, is the high


exibility of the class one customers, which means that there almost always is available

capacity for class one jobs,

The impacts of the di�erent underlying factors are reported in Table 3 for example

A1 as average values over all cases. The rationing(FIFO) policy is best when available

� 0.4 0.55 0.70 0.85 1

Rationing(FIFO) 99.0 % 98.0 % 97.1 % 96.1 % 95.3 %

Simple 97.5 % 96.5 % 95.9 % 95.3 % 94.8 %

Selective 96.6 % 95.1 % 94.1 % 93.7 % 93.9 %

Non-rationing 63.2 % 74.7 % 84.0 % 89.5 % 92.0 %

(~p1; ~p2; ~p3) (1.6,1.2,1) (2.2,1.4,1) (2.8,1.6,1) (3.4,1.8,1) (4,2,1)

Rationing(FIFO) 97.3 % 97.0 % 97.0 % 97.0 % 97.1%

Simple 96.6 % 96.0 % 95.8 % 95.7 % 95.8 %

Selective 95.7 % 94.5 % 94.3 % 94.4 % 94.5 %

Non-rationing 90.7 % 84.2 % 79.4 % 75.9 % 73.2 %

(
1; 
2; 
3) (0.1,0.3,0.6) (0.2,0.3,0.5) (0.3,0.4,0.3) (0.5,0.3,0.2) (0.6,0.3,0.1)

Rationing(FIFO) 94.6 % 95.5 % 97.0 % 98.9 % 99.4 %

Simple 93.5 % 93.8 % 95.6 % 98.2 % 98.8 %

Selective 90.6 % 92.0 % 94.5 % 97.8 % 98.5 %

Non-rationing 81.4 % 75.9 % 77.4 % 82.0 % 86.8 %

Table 3: Example A1: Average net pro�t as percentage of the near-optimal net pro�t for

the rationing(FIFO), the simple, the selective and the non-rationing policy, as function of

available capacity �, pro�ts (~p1; ~p2; ~p3) and distribution of demand (
1; 
2; 
3).

capacity is low and when most jobs have high pro�ts. When demand signi�cantly exceeds



122 Capacity rationing

the capacity, it is too expensive to reserve idle periods, which means that the FIFO

allocation is a good choice.

Let us now compare the rationing policies with the non-rationing policy and the selec-

tive policy. As expected, the bene�t of rationing compared with non-rationing is higher

when there is less capacity available; when capacity is plenty, we should accept most jobs.

As the di�erence in pro�t increases, so does the the bene�t of rationing compared with

the non-rationing policy, which seems very intuitive. With respect to the distribution

of demand, rationing compared to non-rationing seems equally important regardless of

whether the majority of the jobs have high or low pro�t. Compared with the selective

policy, however, rationing is particularly important when the demand primarily consists

of low-pro�t jobs. This corresponds to a situation where high pro�t jobs occur only once

in a while. A selective policy will either only accept these jobs and shut down low-pro�t

production or accept all jobs, while a rationing policy would be able to accept most low-

pro�t jobs, while reserving a fraction of the capacity for possible future high-pro�t jobs. It

is therefore in particular in those situations that the use of rationing policies is important.

5 Model B

In this section we consider the more general case where each job carries a positive holding

cost hpj per unit workload per period until its due date, and a penalty cost �pj per unit

workload per period late.

Every state is represented by the vector (t; x1; x2; : : : ; xN ). Typically, penalty cost must

be paid for the entire workload for every period the last unit of workload is late. According

to the speci�c situation the holding cost can be speci�ed in di�erent ways. Here, holding

costs are charged for the entire workload of the job from the period the job is begun until

its due date. This corresponds to a situation where the cost of materials needed to process

the job constitutes the major part of the value of the �nal product. Consider a job with

j and an allocation �. Let nmin = minfnj�n > 0g and nmax = maxfnj�n > 0g. The

net pro�t earned by accepting the job and choosing allocation � is the pro�t minus the

holding and penalty costs:

c(�; j) = pjWj � hpjWj(DDj � nmin)
+ � �pjWj(nmax �DDj)

+

If the job is rejected, c(0; j) = 0. Our framework allows us to calculate near-optimal poli-

cies which are, however, diÆcult to implement in practice and, moreover, computationally

demanding if not intractable for larger problems. These are therefore primarily used as

a benchmark to heuristic policies that are found easily, even for larger problems, and are

much easier to implement in practice.

Let us brie
y discuss the allocation methods of Section 4. The FIFO allocation neglects

the holding cost, but is besides that expected to perform fairly well. The MI allocation
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has a drawback since it is based on local neighbor search. Consider a case where W = 3,

DD = 4 and x = (0; 0; 0; 2; 5). Initially MI would most likely allocate 2 units to period 4

in order to avoid penalty costs. However, we cannot avoid processing the third unit late.

In step 2 of the algorithm we would try to re-allocate one of the two units to period 5.

This will not lead to a reduction in holding and penalty costs, and depending on the values

vi(t; 0; 0; 0; 0; 5) and vi(t; 0; 0; 0; 1; 4), we will not move further in this direction. However,

knowing that the job cannot be processed in due time, we can reduce our holding cost by

assigning the entire workload to period 5, without increasing the penalty costs.

We therefore use another allocation algorithm BSP (best starting period). As observed

in Section 4, the bene�t of leaving idle capacity for future demand is only marginal, and

therefore once a job has begun processing, we will �nish it as fast as possible.

An allocation for a job j will then be on the form

(0; : : : ; 0; �n; �n+1; : : : ; �n+�n ; 0; : : : ; 0)

with
Pn+�n

k=n �k = Wj, where �n denotes the number of periods needed to process the

workload when processing starts in period n. For each value of n we will consider two

allocations: one where �k = xk for k = n; n + 1; : : : ; n + �n � 1, and �n+�n = Wj �Pn+�n�1
k=n xk, and one where �k = xk for k = n + 1; n + 2; : : : ; n + �n and �n = Wj �Pn+�n
k=n+1 xk. The two combinations are checked for all values of n with n + �n � N .

A(x; j) thus consists of these two combinations for all values of n with n + �n � N

plus the non-allocation, corresponding to a rejected job . For every allocation we �nd

c(�; j) + vi(t� 1;x��) and choose the allocation with the highest expected net pro�t.

When applying the value-iteration algorithm we �nd that the algorithm needs a con-

siderable number of iterations to converge. Typically, 50-75 iterations are needed.

5.1 Heuristic policies

The complexity of the optimal policy and the high computation times and memory re-

quirements lead us to consider a simple policy which may not be optimal, but instead both

simpler to use and easier to �nd. We consider the use of a policy that works the following

way: Each job class is assigned a critical horizon which is a period in the planning horizon.

We accept an arriving job, if there is suÆcient capacity to process it within the critical

horizon of the class to which the job belongs to. The motivation for this criteria is to

avoid using capacity on low-pro�t jobs, as long as there is a reasonable probability that

it can be used to satisfy high-pro�t jobs. If we neglect the in
uence of holding costs, the

critical horizon should therefore be chosen as the period in which the expected pro�t from

future high-pro�t jobs (i.e. the pro�t multiplied with the probability of the arrival of at

least one high-pro�t job before the beginning of a period), equals the pro�t of the job on

hand. The optimal critical horizon can be calculated every time a job was on hand, taken
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all available information into account, but then our requirements of a simple policy will

not be met. Instead we will, for each class, compute the �xed value of the critical horizon,

that maximize the long-run average net pro�t per time unit. Then the current state of

the system is not used to determine the value of the critical horizons, but to determine

whether there is suÆcient capacity within the critical horizon to accept the job on hand.

The critical horizon policy is in structure very similar to the simple policy suggested for

Model A. For that policy, since all accepted jobs are processed as soon as possible by the

FIFO allocation, the state of the system is fully described by the amount of unprocessed

workload. When jobs are not processed as soon as possible, we cannot tell, based on the

amount of accepted workload only, whether we should accept a low-pro�t job or not. If

there is available capacity in the beginning of the horizon the probability that the capacity

can be used to satisfy high-pro�t job is low, and if the available capacity is at the end of

the horizon, the probability is high. This aspect is captured by the critical horizon policy.

Having decided whether or not to accept an incoming job, we need to allocate the

accepted workload. Scheduling of accepted jobs is among others treated by Lee and

Choi [11] who analyse a deterministic job scheduling problem, where a set of jobs are

scheduled in order to minimize early-tardy penalty costs, relative to a job speci�c due

date. Their problem is that of sequencing several jobs; in our model we only need to

schedule one job, which is much easier.

Here we consider two allocation algorithms: MC (Minimum cost) and FIFO. The MC

algorithm �nds the allocation that minimizes the holding and penalty costs, under the

restriction that every job must be processed within its critical horizon. Once we begin

processing a job, we must continue until it is �nished. Idle periods can only lead to

increased holding or penalty costs.

If it is possible to process the job in due time, we initially choose the allocation that

starts as close to the due date as possible and still �nishes in time. If the job cannot be

�nished in due time, we initially choose the allocation that �nishes as close to the due

date as possible. We may improve the initial allocation by postponing the processing,

if the reduction in holding cost can o�set the increase in penalty cost. For example

if the allocation of a job with workload 2 and due date 6 is (1; 0; 0; 0; 0; 1; 0), it may

be worthwhile choosing (0; 0; 0; 0; 0; 1; 1) even though the job will be late. We therefore

successively postpone processing within the critical horizon, and pick the allocation with

the lowest cost.

Since the MC allocation policy neglects the perishability of capacity, we also consider

the use of a FIFO allocation. We note that when using the FIFO allocation, we could

just as well have chosen the critical level policy of the previous section, rather than the

critical horizon policy, since the state of the system is then fully described by the amount

of accepted unprocessed workload.
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The critical horizon policy is optimized in the same way as the critical level policy of

Section 4. Initially, the critical horizon is set to N for all job classes. In each iteration,

the critical horizon for class m is reduced by one, then that of class m� 1 is reduced by

one, etc., until the net pro�t decreases, or the critical horizon of class 2 has been reduced.

This iteration is repeated until no improvements can be found.

During the search for the critical horizon policy, we evaluate several di�erent policies.

The evaluation of a policy can, as discussed in the previous section, be abandoned in

iteration i of the value-iteration algorithm, if the upper bound Mi of the net pro�t of the

policy is below the net pro�t of the so far best found policy. In this way we reduce the

computation time of the simple policy.

For Model B we also consider a non-rationing policy and a selective policy where only

jobs with a pro�t above some minimum level are accepted. As in Section 4 we apply a

local search to �nd the best selection of classes to satisfy.

5.2 Numerical results

We analyse an example with 3 job classes and 9 job types. The capacity per period, is

j Wj DDj JCj

1 1 2 1

2 2 6 1

3 4 4 1

4 1 1 2

5 2 3 2

6 4 5 2

7 1 4 3

8 2 2 3

9 4 7 3

Table 4: Description of workload(Wj), due date(DDj) and jobclass (JCj) for jobtype j

in the numerical example of Model B.

C = 2, the length of the planning horizon is N = 8 periods, and every period is divided

in T = 8 sub-periods.

The tightness of capacity � are set to 0.4, 0.55, 0.7, 0.85 and 1. The pro�ts are

(~p1; ~p2; ~p3) 2 f(1:6; 1:2; 1); (2:2; 1:4; 1); (2:8; 1:6; 1)(3:4; 1:8; 1); (4; 2; 1)g

and the demand distributions are

(
1; 
2; 
3) 2 f(0:1; 0:3; 0:6); (0:2; 0:3; 0:5); (0:3; 0:4; 0:3); (0:5; 0:3; 0:2); (0:6; 0:3; 0:1)g:
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Furthermore, we consider 5 di�erent combinations of holding and penalty costs:

(h; �) 2 f(0:005; 0:05); (0:01; 0:05); (0:01; 0:05); (0:05; 0:10); (0:05; 0:15)g

Each parameter value is represented in 125 di�erent cases for which the average value

of the pro�t over near-optimal pro�t, as found by the BSP allocation, is found for each

heuristic. These average values are reported in Table 5, where Simple(FIFO) refers to

the critical horizon policy computed using FIFO allocation, and Simple(MC) refers to the

critical horizon policy computed with the minimum cost algorithm. The MC allocation

algorithm is in general not as good as the FIFO allocation, and for the selective policy and

the non-rationing policy, we have therefore reported the results for the FIFO allocation

only. The average net pro�t for the simple policy (FIFO) is 98.2% with a worst case

� 0.4 0.55 0.70 0.85 1

Simple(FIFO) 96.7 % 98.2 % 98.6 % 98.7 % 98.6 %

Simple(MC) 93.0 % 93.9 % 94.3 % 94.6 % 95.1 %

Selective 88.7 % 88.4 % 89.4 % 92.7 % 95.5 %

Non-rationing 66.7 % 74.6 % 82.9 % 90.3 % 95.0 %

(h; �) (0.005,0.05) (0.01,0.05) (0.01,0.10) (0.05,0.10) (0.05,0.15)

Simple(FIFO) 99.3 % 99.4 % 98.1 % 97.7 % 96.4 %

Simple(MC) 94.7 % 95.3 % 91.9 % 95.7 % 93.2 %

Selective 93.0 % 93.5 % 89.3 % 91.7 % 87.2 %

Non-rationing 85.2 % 86.2 % 77.1 % 85.2 % 75.7 %

(~p1; ~p2; ~p3) (1.6,1.2,1) (2.2,1.4,1) (2.8,1.6,1) (3.4,1.8,1) (4,2,1)

Simple(FIFO) 97.9 % 98.2 % 98.3 % 98.3 % 98.3 %

Simple(MC) 93.9 % 94.1 % 94.2 % 94.3 % 94.4 %

Selective 90.8 % 90.8 % 90.8 % 91.0 % 91.2 %

Non-rationing 86.1 % 83.4 % 81.4 % 79.9 % 78.7 %

(
1; 
2; 
3) (0.1,0.3,0.6) (0.2,0.3,0.5) (0.3,0.4,0.3) (0.5,0.3,0.2) (0.6,0.3,0.1)

Simple(FIFO) 98.6 % 98.6 % 98.7 % 98.1 % 97.0 %

Simple(MC) 94.2 % 94.4 % 94.7 % 94.2 % 93.4 %

Selective 87.9 % 90.2 % 90.4 % 93.0 % 93.2 %

Non-rationing 82.8 % 81.3 % 81.0 % 81.5 % 82.8 %

Table 5: Average net pro�t for as percentage of the near-optimal net pro�t for the simple

(FIFO), the simple (MC), the selective and the non-rationing policy as function of available

capacity �, pro�ts (~p1; ~p2; ~p3) and the distribution of demand (
1; 
2; 
3).

performance of 84.7%. The performance of the simple policy(MC) is on average 94.2%
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with a worst case performance of 82.6%. The average performance of the selective policy

is 90.9% with a worst case performance of 72.9%, and �nally the average performance

of the non-rationing policy is 81.9% with a worst case performance over the investigated

examples of 51.2%. That is, in one of the investigated cases the pro�t can be almost

doubled by using the near-optimal rationing policy rather than the non-rationing policy.

Although the average performance of the simple policy is good, a worst case performance

of 84.7% is not satisfactory. The impacts of the di�erent factors are similar to those found

for Model A in Section 4: When dealing with congested systems it is of high importance to

employ a rationing policy of some kind, the loss in pro�t by using a non-rationing policy

can be very high. Secondly, when dealing with such systems, the main objective is to avoid

rejecting jobs, by simply processing as soon as possible by the FIFO principle, neglecting

the holding cost incurred. Even when holding cost is as high as 5% per period it is better

on average to use a FIFO allocation.

6 Conclusion

In this paper we have investigated a periodic make-to-order system with limited capacity,

where jobs of di�erent pro�tability arrive in a stochastic manner. We focus on systems

where the average demand for capacity exceeds the available capacity which leads to sit-

uations where jobs must be rejected. By using simple or near-optimal rationing policies

we can signi�cantly increase the expected net pro�t, compared with a non-rationing ap-

proach. In our numerical tests we have found examples where pro�ts are almost doubled

by the use of rationing policies.

The derivation of the near-optimal policy is only computationally tractable for smaller

problems and therefore we consider simple policies whose performance is shown, numer-

ically, to be a few percent below the near-optimal policy. The examples investigated are

very small indeed, but we conjecture that the simple policies will have a good performance

also for problems of a realistic size, where the computation of the near-optimal policy is

intractable. The simple policies are characterized by their simplicity and their small num-

ber of policy variables. For larger problems we therefore suggest to use simulation for

evaluation of policies and then perform a local search to �nd good values of the policy

variables.

Although, the simple policies suggested in this papers have a �ne average performance,

there is still room for improvement. In particular, future research should be focused on

�nding better allocation policies, perhaps including options for re-allocation, which seems

reasonable in many settings.
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Abstract

In this paper we consider the stochastic joint replenishment problem. We coordinate

the replenishment of an inventory with several items, where the �xed cost of a replenish-

ment consists of a major order cost for each order and a minor order cost for each item

participating in the order. The literature has focused on two kinds of policies: can-order

policies and periodic replenishment policies. Generally speaking the can-order policy per-

forms better when the major ordering cost is relative low, and the periodic replenishment

policies better when the major ordering cost is relative high. We present a new method for

calculating can-order policies, which dominates existing methods on examples where the

can-order policy performs better than the periodic replenishment policies. The method is

based on a compensation approach, where an item placing an order receives a compensa-

tion from other items bene�tting from the order opportunity.

Keywords : inventory, Markov decision processes, joint replenishment problem, can-order

policy

1 Introduction

We consider an inventory system with several di�erent items facing Poisson demands. The

items are reviewed continuously and are replenished by the same supplier. The �xed cost

of a replenishment consists of a major order cost and an item-dependent minor order cost

for each item participating in the replenishment. For such an inventory system it is obvious

that some kind of coordination should be used. The optimal joint replenishment policy can,

theoretically, be found by solving a huge Markov decision model, but since the size of the

state and the decision space grow exponentially with the number of di�erent items, it seems

intractable to solve the model for more than, say, 5 di�erent items, even on computers of

today. Ignall [4] solves the problem for two items, and �nds that the optimal policy is in
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general unfortunately not a simple policy (i.e. one that can be described by a few variables

per item). Instead of focusing on the optimal policy the literature has been analyzing simple

policies with good performance, in particular the continuous-review can-order policy and the

periodic replenishment policy.

Under the regime of a can-order policy, each item is controlled by three variables s, c and

S. When the inventory position of item i reaches the must-order level si, a replenishment

order is placed. At the same time any item j, with inventory position at or below its can-order

level cj , is included in the order. Si is the order-up-to level of item i. Finding the optimal

can-order policy seems intractable, but there have been several ways suggested for computing

good can-order policies, the most famous being the one proposed by Federgruen, Groenevelt

& Tijms [3].

In this paper we suggest a new way of calculating the variables of the can-order policy.

Our policy does not dominate all other can-order policies on all problems examined. It does

however dominate all other can-order policies on problems where the can-order policy is better

than the periodic replenishment policy, which is the main conclusion of the paper.

In the next section the background of the can-order policy is discussed and we perform a

small simulation study to illustrate that the can-order policy of Federgruen, Groenevelt & Ti-

jms [3] can be far from optimal. In Section 3 the new method for calculating the can-order pol-

icy is described, after which we compare its performance with other can-order polices and the

periodic replenishment policy on the examples of Atkins & Iyogun [1] and Viswanathan [10].

2 Background

Let us �rst describe the inventory control problem known as the stochastic joint replenishment

problem. The inventory system consists of n items, where item i faces Poisson demand with

rate �i. Holding costs are charged at a rate hi > 0 per unit per unit time. Demand not

satis�ed immediately is backlogged and shortage costs are charged at a rate of pi per unit

per unit time. Each unit backlogged moreover incurs a time independent cost of �i. There

is a constant lead time of Li time units. The �xed ordering cost consists of a major cost

K, and a minor cost ki for each item i joining the order. Since all demands have to be

satis�ed eventually, the variable order costs (or purchasing costs) are not included in the

model formulation. Note that although two items i; j place a joint order and share the major

ordering cost K, their replenishments do not arrive simultaneously if Li 6= Lj .

The can-order policy was �rst introduced by Balintfy [2]. Assuming no lead time and iden-

tical items he calculates a good can-order policy. Silver [7] relaxes these restrictive assumptions

and introduces the principle of decomposition: from time to time an item i is faced with an

opportunity of a discount replenishment, namely when another item reaches its must-order

level and places an order. Assuming this process of discount opportunities is independent of

item i, the multi-item inventory problem can be decomposed into several single-item inven-

tory problems, each with occasional opportunities for discount replenishments, and solved by
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successive iterations. For item i the discount opportunity process is generated by the order

placements of all items but item i. Federgruen, Groenevelt & Tijms [3] �nd a can-order pol-

icy for such a system (generalized to compound Poisson demand) by solving the single-item

problem with a policy-iteration algorithm, assuming that the discount opportunity process

is Poisson. This is obviously an approximation, but it simpli�es the analysis considerably.

Moreover, Zheng [11], in a theoretical paper, proves that if the discount opportunity process

is Poisson then the can-order policy is optimal. After the single-item problems for each item

have been solved, the rate at which discount opportunities are generated is calculated and

used in the next iteration. The procedure stops when the optimal policies are unchanged.

Van Eijs [9] argues that the assumption of Poisson discount opportunities leads to poor

results, and suggests a can-order policy where the can-order level c is always equal to S � 1,

for inventory systems where the major ordering cost is high compared with the average of the

minor ordering costs. For such a policy, whenever an item places an order, all other items

join the order. He minimizes holding and ordering costs subject to a service level constraint

and �nds the optimal (s; S � 1; S) policy. A disadvantage of this approach is that all items

have to follow the (s; S� 1; S) policy, which means that it is not suitable for problems where

some items have high minor ordering cost and others have low minor ordering cost.

Schultz & Johansen [6] show by simulation (for a 12-item example introduced by Atkins

& Iyogun [1]) that the empirical waiting times between successive discount opportunities do

not appear to come from an exponential distribution. They formulate a model where the

time between two consecutive discount opportunities for each item i is Erlang-r distributed,

which appears to give a better �t. The shape parameter r is found by simulation. Some of

the discount opportunities refer to discount opportunities generated by the item itself and

are modelled as �ctitious. However, it is evident that the �ctitious discount opportunities are

not independent of item i as assumed. Still, they �nd a can-order policy that in most cases

outperforms the can-order policy of Federgruen, Groenevelt & Tijms [3], but only in few cases

is better than the periodic replenishment policies.

Periodic replenishment policies were �rst analyzed by Atkins & Iyogun [1], who suggest

a modi�ed periodic review policy (MP) where each item i orders up to Ri each time the

inventory is reviewed. The review interval Ti is restricted to be an integer multiple of a base

period. Viswanathan [10] suggests a P (s; S) policy, which dominates the MP policy, where a

periodic (si; Si) policy is used for item i. The review interval t is a policy variable and must

be the same for all items. Pantumsinchai [5] analyzes a QS policy where an order is placed

when the total system demand since the last order placement exceeds Q. Item i orders up to

Si. The performance of the QS policy is comparable to that of the MP policy.

Generally speaking the can-order policy performs better when the major ordering cost is

relatively low, and the periodic replenishment policies better when the major ordering cost

is relatively high. Since the can-order policy is a continuous-review replenishment policy and

therefore can react faster to new information than the periodic replenishment policies, the

can-order policy should intuitively perform better than the periodic replenishment policies.
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There are two possible explanations of why this is not so: either the can-order policy is

too simple or it is not the can-order policy itself but rather the way the policy variables is

computed that leads to the poor performance.

To investigate this we consider an example with 12 identical items facing Poisson de-

mand (see Table 1). We have in each of 6 cases computed the optimal can-order policy by

Can-order policies

Optimal FGT Compensation Periodic P (s; S)

s; c; S cost s; c; S cost s; c; S cost t; s; S cost

K = 500 k = 10 7,27,28 1405 -7,33,39 1935 5,23,30 1428 1.37,24,27 1404

K = 500 k = 50 5,26,31 1698 -7,29,42 2074 4,21,34 1750 1.87,25,31 1691

K = 150 k = 10 8,23,24 1102 5,22,29 1196 8,19,25 1106 0.93,20,23 1101

K = 150 k = 50 6,26,29 1477 5,20,33 1544 8,17,30 1514 1.56,21,28 1472

K = 50 k = 10 10,18,23 981 9,18,24 988 10,16,23 987 0.75,18,22 984

K = 50 k = 50 9,15,27 1377 8,16,29 1387 9,15,28 1378 1.40,20,27 1408

Table 1: The policy variables and the average costs for the three can-order policies and the

P (s; S) policy. n = 12, hi = h = 6, �i = � = 30, Li = L = 1 and �i = � = 10. pi = p = 10 in

the two �rst examples, and pi = p = 0 in the remaining four.

simulation over a wide range of variables. FGT denotes the can-order policy suggested by

Federgruen, Groenevelt & Tijms [3], Compensation denotes the new can-order policy com-

puted as suggested in Section 3 of this paper, and P (s; S) denotes the policy suggested by

Viswanathan [10]. For each can-order policy we report the variables s; c; S and the average

cost computed by simulation. For the P (s; S) policy we report the optimal value of t; s; S and

the associated cost. The lowest costs are typed in boldface.

As Viswanathan [10], we observe that the FGT can-order policy has a poor performance

for examples with high major ordering cost. However, the results show that in cases with a

low value of K (K = 50) the optimal can-order policy is better than the periodic replenish-

ment policy, and for moderate and high values of K (K = 150 and K = 500) the P (s; S)

policy gives the lowest cost, but the di�erence is very small. The example clearly illustrates

that the FGT can-order policy can be far from the optimal can-order policy. Whether the

can-order policy is too simple is a little bit more ambiguous. At least it cannot outperform

the P (s; S) policy. In the cases with high values of K=k we note that the optimal policy is of

the (s; S � 1; S) type, as suggested by van Eijs [9].
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3 The compensation approach

In the cases with high major ordering cost, the suggested must-order points for the FGT can-

order policies in Table 1 are very low. This is because the item considering placing an order

balances the sum of the major and the minor ordering cost with the expected shortage cost

for the item. In reality other items will bene�t from the replenishment too, but this aspect

has not previously been included in the decomposition principle. To include this we extend

the decomposition principle by compensating the item i placing the order with an amount

�i, representing the expected value of other items' bene�t from the discount opportunity,

generated by the order placement. This means that when we consider the single-item problem

i, the inputs are the process of discount opportunities generated by other items and the

compensation amount �i. We maintain the assumption of Poisson discount opportunities

viewed from item i, and denote the rate of arrivals by �i

We �rst describe the the single-item model and show how to compute the compensation

amount �i. Afterwards we describe the decomposition procedure in its new form.

3.1 The single-item model

To ease notation we omit the index i in this section. We look at a single-item inventory system

with Poisson discount opportunities. Since the demand also is Poisson, the problem can be

formulated as a semi{Markov decision process.

Let the decision epochs be the demand epochs and the arrivals of the discount opportu-

nities. The state of the system at each decision epoch is described by the inventory position

x. Since we have two independent Poisson processes with rate � and � the merged process

is a Poisson process with rate �+ �. The probability of a decision epoch being generated by

a demand [discount opportunity] is �=(� + �) [ �=(� + �)]. At each decision epoch we can

decide to place an order. Zheng [11] proves that the can-order policy is optimal for such a

system and we therefore only need to consider policies of the can-order type. For such an

(s; c; S) policy the corresponding actions are to place an order of size S � x when x � s, in

decision epochs generated by a demand, and to place an order of size S � x when x � c, in

decision epochs generated by a discount opportunity. In all other states no order is placed.

We can now specify the transition probabilities of the system. In states x > c, we do not

need to register the discount opportunities, and we jump to state x� 1 with probability one.

In states x, with s < x � c, we jump to state x� 1 with probability �=(�+ �), and to state S

with probability �=(�+ �). In states x, with x � s, we jump to state S with probability one.

The expected time between two decision epochs is 1=� in states x > c, 1=(�+ �) in states

s < x � c, and 0 in states x � s.

The lead time is incorporated by a standard shift in time (see e.g. Federgruen, Groenevelt
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& Tijms[3]). The expected cost charged to a decision epoch when x > c is

C(x) =
xX

j=�1

IP(D = x� j) �
�
1j>0[hj=�] + 1j�0[�pj=�+ �]

�

where IP(D = x � j) denotes the probability of a lead time demand of x � j units and 1j>0

denotes the indicator function, which is one when j > 0 and zero otherwise. The expected cost

charged to a decision epoch when s < x � c is �=(�+ �)C(x). The adjustment of the holding

rate and the backorder rate is due to the change in expected time to next decision epoch.

The stockout cost � is also adjusted, since for x � c it is only with probability �=(�+ �) that

another demand is backordered before the next decision epoch. Finally we have to add the

minor ordering cost k, if a discount opportunity occur in states s < x � c, and the major and

the minor ordering cost K ��+ k in states x � s.

Based on this we can �nd the long{run average cost per unit time of a given policy. The

inventory process is regenerative with regeneration point S. De�ne a cycle to be the time

between two regeneration epochs. By renewal{reward theory we can then �nd the average

cost of a policy by dividing the expected cost incurred in a cycle by the expected cycle length

(see e.g. Tijms [8]). Let z(x) be expected cost incurred up to the next regeneration point

starting in state x, and let y(x) be the expected time until we reach the next regeneration

point, starting in state x. Note that z(s) = K ��+ k and

z(x) =
�

�+ �
[C(x) + z(x� 1)] +

�

�+ �
k for s < x � c:

Hence, it is easy to �nd z(x) recursively for x = s+ 1; s+ 2; : : : ; c. For x = c+ 1; c+ 2; : : : ; S

we �nd z(x) by

z(x) = C(x) + z(x� 1):

The y(x) values are calculated similarly,

y(x) = 1=(�+ �) +
�

�+ �
y(x� 1) for s < x � c;

initialized with y(s) = 0. The remaining values are found by

y(x) = 1=�+ y(x� 1) for c < x � S:

Let g be the average cost of using policy (s; c; S),

g =
z(S)

y(S)
: (1)

Next, we need to �nd the expected rate �i of order placements from item i. The probability

that the item places an order in a cycle equals ( �
�+�

)c�s, which is the probability of c � s
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consecutive demands with no discount opportunity in between. To �nd the average number

of orders placed by the item per unit time, we divide by the expected length of the cycle

�i =
� �

�+ �

�c�s.
y(S): (2)

Now let us calculate the expected gain of a discount opportunity. Let

v(x) = z(x)� gy(x)

be the relative value of inventory position x, with g being the cost of the policy found by (1).

The relative value v(x) is the di�erence in expected long-run total cost of having an inventory

position of x rather than the order-up-to level S. The relative values are typically used for

optimization procedures, but here we use them to obtain information about the value of a

discount opportunity.

s c S

k

K + k ��

v(x)

x

Figure 1: The relative values v(x) as a function of the inventory position x for the optimal

policy.

In Figure 1 we have depicted the relative values of the optimal policy. An item can bene�t

from discount opportunities occurring while its inventory position is below c. The relative

value of being in state x is v(x). If a discount opportunity occurs while the system is in state

x, we will accept it (since x � c), and our inventory position will rise to S. Since the relative

value of state S (by de�nition) is 0, the bene�t of the discount opportunity is the positive

amount v(x)� k.

Let J be the random variable denoting the number of demands occurring from the time

when the can-order level is reached until the �rst discount opportunity occurs. The probability

of J = j is the probability of j consecutive demands followed by a discount opportunity. The
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expected gain of the discount opportunity is found by conditioning on the value of J .

V =
�

�+ �

c�s�1X
j=0

� �

�+ �

�j�
v(c� j)� k

�
:

We can only bene�t from one discount per cycle and therefore, to �nd the expected gain �i of

the discount opportunity per discount opportunity, we divide by the expected number �y(S)

of discount opportunities occurring in a cycle, i.e.

�i =
V

�y(S)
: (3)

This can be done for any can-order policy. Naturally we are interested in optimizing

the performance of the system and therefore we use the algorithm of Zheng [11] to �nd the

optimal can-order policy (under the assumption of Poisson discount opportunities) with the

major ordering cost speci�ed as K ��. We then use (2) and (3) to �nd �i and �i, which are

used in the decomposition procedure.

3.2 The decomposition procedure

To �nd the variables of the can-order policy for all items, we use the following decomposition

procedure. The procedure is initialized by setting �i = 0 and �i to a small but positive

amount for all i.

In each iteration of the procedure we solve the single-item problem for each item i with

values of �i and �i given by

�i =
X
j 6=i

�j

and

�i =
X
j 6=i

�j :

After solving the problem for item i the values of �i and �i are updated by (2) and (3). This

iteration is repeated until the policy variables values either are unchanged or start cycling

between two or several solutions. This typically happens within 10-50 iterations. In the event

of cycling the best policy is found by evaluating the policies in the cycle and choosing the one

with the lowest cost. The introduction of the �i-values does not lead to a signi�cantly higher

number of iterations compared with the traditional iteration scheme without compensation.

An estimate of the total system cost is found by
P

i gi. Since the decomposition procedure

is based on approximations we also evaluate the optimal policy by simulation. We have found

that the estimate can di�er by up to 10% from the cost found by simulation and therefore we

will in general only report the cost found by simulating the optimal policy.
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P (s; S) Erlang FGT Compensation

i ki Li �i si; Si si; ci; Si si; ci; Si si; ci; Si �i

1 10 0.2 40 33,37 10,35,40 8,34,46 9,26,38 10.90

2 10 0.5 35 40,45 20,42,48 17,43,54 19,36,47 9.98

3 20 0.2 40 31,37 10,33,41 8,34,49 9,24,41 9.05

4 20 0.1 40 27,33 5,28,36 4,27,44 5,19,36 8.51

5 40 0.2 40 29,37 9,30,40 8,29,53 9,22,46 6.86

6 20 1.5 20 43,50 31,45,51 23,46,58 28,42,55 6.73

7 40 1.0 20 31,46 20,33,48 14,33,50 18,30,47 5.75

8 40 1.0 20 31,46 20,33,48 14,33,50 18,30,47 5.75

9 60 1.0 28 42,65 30,46,66 25,44,69 27,40,64 6.46

10 60 1.0 20 30,48 20,32,50 13,32,53 18,29,50 4.97

11 80 1.0 20 29,50 20,32,55 12,31,55 17,28,52 5.07

12 80 1.0 20 29,50 20,32,55 12,31,55 17,28,52 5.07

Computed Cost 2267 2377 2620 2268

Simulated Cost 2288.7 �0:6 2365.5 �1:2 2313.0 �0:8

Table 2: Base-case example. Data as well as optimal policies, computed costs and simulated

costs are reported. The simulated costs are found by simulating the policies found by the

respective methods. Other data are : K = 150, p = 0, � = 30. For the P (s; S) policy

t = 0:557.

3.3 Numerical results

Reverting to Table 1, we see that, by using the compensation method, we obtain the result

that the costs of the can-order policies lie closer to those of the optimal can-order policies.

The P (s; S) policy dominates the compensation can-order policy in most of the cases but the

di�erence between the costs of the two policies is less than 2% on average for the 5 cases

where the P (s; S) policy dominates. For comparison the di�erence in average cost between

the FGT policy and the P (s; S) policy is on average 15%.

The following numerical results are variations of a 12-item base-case introduced by Atkins

and Iyogyn [1]. In Table 2 we report the parameters of the 12 items together with the policy

variables found for the P (s; S) policy and for the can-order policy using the Erlang, FGT and

compensation method, respectively. For the compensation policy we also report the optimal

values of �i for each item i. For the base-case the P (s; S) policy has the best performance

followed by the Erlang, compensation and the FGT can-order policy. As we can see the

computed cost of the compensation can-order policy is closer to the simulated cost, compared

with the FGT can-order policy, however the di�erence is not negligible and therefore for, all

our numerical results, we only report the cost obtained by simulation of the found policy.

Besides the base-case we have also compared the compensation can-order policy with the
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P (s; S) policy on some of the examples presented by Viswanathan [10]. These experiments

are reported in Tables 3 and 4. The values of ki, �i and Li are as in Table 2 for all examples,

except for the 5 problems with only 8 items in Table 3. The costs of the MP policy and the

P (s; S) policy are obtained from Viswanathan [10] where possible. The costs of the Erlang

policy are obtained from Schultz & Johansen [6]. For the 25 examples with relatively low

values of h and p (Table 3) the P (s; S) policy is in general the best policy. The can-order

policy is better in 5 examples, all characterized by a low value of K.

The results show that the compensation can-order policy is in general better than the

FGT can-order policy. In all cases but two, the cost of the compensation can-order policy is

lower than those of the FGT can-order policy, in some cases by up to 25%. Compared with

the Erlang can-order policy the compensation can-order policy is better in cases with a low

major ordering cost, whereas the Erlang can-order policy gives lower costs on examples with

a high major ordering cost. However, these costs are still higher than those of the P (s; S)

policy.

In Table 4 we report a set of examples, introduced by Viswanathan [10], where h and

p have been increased by a factor of 100. This corresponds to an increase in the demand

rate and thereby the demand variation by a factor of 100. Viswanathan [10] concludes that

even in these cases the P (s; S) policy dominates the FGT can-order policy. In the table we

report the cost of the P (s; S) policy and the compensation can-order policy, respectively, for

36 examples. The compensation can-order policy is better than the P (s; S) policy in all of the

examples, including the examples where K is high. The average cost di�erence is only 0:75%,

but the conclusion that the P (s; S) policy still dominates the can-order policy for these high

variation examples is not true.

Our conclusion is therefore that the P (s; S) policy should be used on problems where it

turns out that the ordering process for the best can-order policy follows a regular pattern, e.g.

because the demand variation is low. In these cases we can be better o� using a real periodic

policy, since we eliminate the uncertainty of not knowing exactly when the next order will be

placed. This will reduce the holding cost, which o�sets the cost of having a longer reaction

time (which is small when demand variability is low).

For problems where the time between two consecutive replenishments is more unpre-

dictable the loss in reaction time is much more signi�cant and we would be better o� using

the can-order policy computed by the compensation approach.

References

[1] D. Atkins and P.O. Iyogun. Periodic versus `can{order' policies for coordinated multi{

item inventory systems. Management Science, 34:791{796, 1988.

[2] J.L. Balintfy. On a basic class of multi-items inventory problems. Management Science,

10(2):287{297, 1964.



Paper V 141

Problem parameters (R; T ) P (s; S) Erlang FGT Compensation

K = 20 1094 1066 1034 1031 1029

� = 30 K = 50 1135 1121 1125 1122 1109

p = 0 K = 100 1198 1185 1197 1236 1211

h = 2 K = 150 1244 1241 1253 1322 1289

K = 200 1289 1285 1307 1395 1355

K = 250 1330 1327 � 1467 1410

K = 20 907 886 878 873 872

� = 0 K = 50 944 934 957 957 944

p = 30 K = 100 1005 992 1023 1058 1034

h = 2 K = 150 1046 1043 1068 1134 1106

K = 200 1088 1085 1113 1205 1159

� = 0 K = 50 1570 1530 1540 1558 1542

p = 30 K = 100 1676 1623 1632 1694 1660

h = 6 K = 150 1733 1706 1725 1821 1747

K = 200 1803 1778 1810 1926 1821

8-Item Exp. 1 1559 1559 * 1625 1637

Problem Exp. 2 1615 1615 * 1678 1683

Table 5 of Exp. 3 1664 1664 * 1873 1794

Atkins & Exp. 4 1544 1542 * 1611 1579

Iyogun [1] Exp. 5 1264 1264 * 1267 1234

K = 20 2564 2325 * 2320 2314

K = 50 2626 2427 * 2462 2434

� = 0 K = 100 2811 2562 * 2687 2571

p = 30 K = 150 2872 2684 * 2887 2702

h = 20 K = 200 2985 2792 * 3047 2820

* Observations not reported

Table 3: Costs for the (R; T ) policy, the P (s; S) policy, the Erlang, the FGT and the Com-

pensation can-order policy for the Atkins & Iyogun data set



142 Joint Replenishment

Problem parameters K = 20 K = 100 K = 500

P (s; S) Compen- P (s; S) Compen- P (s; S) Compen-

sation sation sation

p = 1000, h = 200 18689 18532 19675 19523 22317 22224

p = 1000, h = 600 34210 33991 35597 35373 39124 39009

p = 1000, h = 1000 43461 43241 44976 44749 48959 48822

p = 5000, h = 200 26468 26216 27787 27433 30971 30592

p = 5000, h = 600 57738 57374 59467 59098 64277 63778

p = 5000, h = 1000 81101 80597 83199 82619 88770 88060

p = 10000, h = 200 29538 29284 30908 30553 34312 33849

p = 10000, h = 600 67589 67106 69445 68866 74634 73959

p = 10000, h = 1000 97756 97052 100053 99350 106153 105157

p = 20000, h = 200 32428 32136 33866 33398 37463 36885

p = 20000, h = 600 76918 76216 78922 78333 84265 83323

p = 20000, h = 1000 113698 112947 116194 115345 122725 121596

Table 4: Costs for the P (s; S) policy and the compensation can-order policy for the data set

of Viswanathan [10] with high values of penalty and holding cost rates.

[3] A. Federgruen, H. Groenevelt, and H.C. Tijms. Coordinated replenishments in a multi{

item inventory system with compound Poisson demands. Management Science, 30:344{

357, 1984.

[4] E. Ignall. Optimal continuous review policies for two product inventory systems with

joint setup costs. Management Science, 15:278{283, 1969.

[5] P. Pantumsinchai. A comparison of three joint ordering inventory policies. Decision

Science, 23:111{127, 1992.

[6] H. Schultz and S.G. Johansen. Can-order policies for coordinated inventory replenish-

ment with Erlang distributed times between ordering. European Journal of Operational

Research, 113:30{41, 1999.

[7] E.A. Silver. A control system for coordinated inventory replenishment. Int. J. Prod.

Res., 12:647{670, 1974.

[8] H.C. Tijms. Stochastic Models: An Algorithmic Approach. Wiley, New York, 1994.

[9] M.J.G. van Eijs. On the determination of the control parameters of the optimal can{order

policy. Mathematical Methods of Operations Research, 39:289{304, 1994.

[10] S. Viswanathan. Periodic review (s; S) policies for joint replenishment inventory systems.

Management Science, 43(10):1447{1454, 1997.



Paper V 143

[11] Y.S. Zheng. Optimal control policy for stochastic inventory systems with Markovian

discount opportunities. Operations Research, 42(4):721{738, 1994.



144 Joint Replenishment



The can-order policy for the periodic-review joint

replenishment problem

S�ren Glud Johansen� and Philip Melchiors

Department of Operations Research, University of Aarhus,

Ny Munkegade, Building 530, 8000 Aarhus C, Denmark.

June 2001

Abstract

In this paper we study the stochastic joint replenishment problem. In contrast to

what appears to be the general belief, we show that the class of periodic replenishment

policies does not outperform the class of can-order policies for this problem.

We present a method, based on Markov decision theory, to calculate near-optimal

can-order policies for a periodic-review inventory system. Our numerical study shows

that the can-order policy behaves as good as, if not better than, the periodic replen-

ishment policies. In particular, for examples where the demand is irregular, we �nd

cost di�erences up to 15% in favor of the can-order policy.

Keywords : inventory, joint replenishment problem, can-order policy, Markov decision

process

1 Introduction

In this paper we study the stochastic joint replenishment problem, i.e. the problem of

coordinating an inventory system with several items, all replenished by the same supplier.

The literature has suggested several coordination policies, of which in particular two classes

of policies, the can-order policy (originally suggested by Balintfy [2]) and the periodic

replenishment policy (introduced by Atkins and Iyogun [1]), have received considerable

attention. Under the regime of a can-order policy all items follow an (s; c; S)-policy: When

the inventory level is below the must-order level s, an order is placed to bring the inventory

position up to S. Moreover, every item has a can-order level c. Whenever another item

has reached its must-order level, any item with inventory position at or below its can-

order level is included in the order. A good periodic replenishment policy is suggested
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by Viswanathan [12], who analyses a periodic-review P (s; S) policy, with t units of time

between each review. At every review an (s; S) policy is applied to each item, such that

any item with inventory level below s is included in the order. The review interval t is a

policy variable, which must be the same for all items.

In accordance with the numerical results of Viswanathan [12], it seems to be generally

believed that the periodic replenishment policy performs better than the can-order policy,

as for example expressed in the well-known textbook by Silver, Pyke and Peterson [10].

In this paper we demonstrate that for problems with little demand variation, the

periodic replenishment policy has a �ne performance, but it does not outperform the can-

order policy. For problems with high demand variation, we �nd that the can-order policy

is a much better choice, achieving cost reductions up to 15% compared with the periodic

replenishment policy.

We analyse a can-order policy for a periodic-review inventory system. In the exist-

ing literature, the can-order policy has been studied under the assumption of continuous

review, which can be justi�ed by the recent developments of access to point of sale infor-

mation and Electronic Data Interchange. However, while the access to information may be

continuous, there is often only a limited number of replenishment opportunities, say, once

or maybe twice a day. For many systems a periodic-review model will therefore provide a

better representation.

We apply the ideas normally used for the optimization of continuous-review can-order

policies to the periodic-review model and use Markov decision theory to �nd good can-

order policies. In our numerical studies we investigate the performance of the can-order

policy and �nd that in many cases the can-order policy is signi�cantly better than the

P (s; S) policy, primarily the situations with high demand variation, whereas in situations

with low demand variation the two policies are equally good.

The paper proceeds as follows: In Section 2 we �rst introduce the underlying assump-

tions and notation and relate the periodic-review can-order policy to the continuous-review

can-order policy. Then the joint replenishment problem is decomposed into several single-

item problems, which are used in the decomposition algorithm. We show how to construct

this algorithm and how to solve the single-item problems. Finally, in Section 3 we provide

some numerical results and, in Section 4, our conclusions.

2 Modelling

2.1 Notation and background

We consider an inventory system with n items. We assume a periodic model where every

period typically represents one day. We assume that period demands are stochastic and

stationary variables and let �i(x) be the probability mass function of the demand for item
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i in any period. Let �ti(x) be the t-fold convolution of �i(x). Let Di and LTDi denote

demand per period and demand during lead time, respectively.

Demand not satis�ed immediately is backordered, incurring a �xed cost �i per unit

backordered. At the end of every period, a holding cost of hi per unit in stock and a

time dependent cost pi per unit backordered is incurred. There is a constant lead time of

Li periods for each item i. The �xed cost of ordering consists of a major cost K plus a

minor ordering cost ki for every item i participating in the order. Since all demands are

backordered, and thus satis�ed eventually, the variable ordering cost is not included in the

model.

A way to model this problem is to formulate it as an n-dimensional Markov chain,

and use a value iteration algorithm to �nd the optimal joint replenishment policy. Such

an approach is computationally intractable even for small-scale problems, and moreover,

the optimal policy has a non-simple structure (Ignall [4]), which means that the imple-

mentation of the policy will be very cumbersome. Ohno et al. [6, 7] present an improved

policy-iteration algorithm for �nding the optimal problem. While they succeed in �nding

the optimal policy, they do not overcome the \curse of dimensionality", and their approach

can in reality be used for systems with 2{4 items only.

Another approach is to solve n single-item problems independent of each other, ne-

glecting the correlation between the items. This approach works if the major cost K is

very small (and is indeed optimal if K = 0), but otherwise better methods are needed.

Silver [9] introduces the principle of decomposition to model the interaction between

the items. The idea is to decompose the original problem into n sub-problems, one for each

item. Item i has normal replenishment opportunities with major and minor ordering cost

K + ki occurring whenever the inventory level reaches s, and discount opportunities with

only minor ordering cost ki, whenever another item places a normal order. The process of

discount order opportunities is in general very complicated and moreover, not independent

of the demand process for item i. Silver suggests to approximate this process by a Poisson

process with rate �i, which is assumed to be independent of item i. This facilitates a simple

analysis of the model. Moreover, Zheng [13] proves that the can-order policy is optimal

for a single-item inventory system with Markovian discount opportunities and Poisson

demand. The rate �i is calculated based on the rates, �j , of order placements from other

items. For the continuous-review model the superposition of the n� 1 Poisson processes

is also a Poisson process with rate �i =
P

j 6=i �j . In each iteration of the optimization

algorithm, the single-item problem is solved, after which the rates �i are updated. This

is repeated until the rates �i converge or start cycling.

Silver applies this to a continuous-review model with Poisson demand and uses a simple

method to determine the values of the policy variables. Federgruen, Groenevelt & Tijms [3]

also consider a continuous-review model but assume compound Poisson demand and apply
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a policy-iteration algorithm to �nd better can-order policies. Both papers are based on

the same principle of decomposition. Schultz & Johansen [8] show that the decomposition

approach can be improved by assuming Erlang distributed inter-arrival times between the

discount opportunities.

Another way to improve the principle of decomposition is suggested by Melchiors [5] for

a can-order policy with continuous review. Whenever an item places an order, other items

receive a discount opportunity which may reduce their cost. However, in the original

decomposition, the item placing the order does not take this into consideration when

deciding whether to place an order or not. By calculating the average bene�t per discount

opportunity Æj for all items j, we can compensate an item i placing an order by only

charging K ��i, where

�i =
X
j 6=i

Æj : (1)

In this way, the implied e�ects of placing an order is included when deciding when to place

an order.

In this paper we use the extended decomposition principle introduced by Melchiors [5]

to solve the periodic-review joint replenishment problem. Let us �rst look at the implica-

tions of using a periodic-review model. The continuous-review model enjoys the property

that there can be only one event occurring at a time. Once an item hits its must-order

level, it is therefore the only item below its must-order level. For the periodic model several

items can trigger an order at the same time, and therefore we need another approach to

model the discount opportunities. We approximate the process of discount opportunities

by a Bernoulli process with outcome 1, if a discount order opportunity occurs and 0 oth-

erwise. Successive outcomes are assumed to be independent of each other, which means

that the probability of a discount opportunity does not depend on discount opportunities

of the past, and the process can therefore be seen as a discrete version of the Poisson

process.

Let �j be the fraction of time, where item j has an inventory position below sj. We

assume (as an approximation) that the ordering process of item i is independent of the

ordering process of item j for all j 6= i. Let  i be the random variable denoting the

number of items, not counting item i, with inventory position below their must-order

point. Viewed from item i, we can then �nd the probability that at least one item, besides

item i, places an order:

�i = IP( i > 0) = 1� IP( i = 0)

= 1�
Y
j 6=i

(1� �j) (2)

We can also derive the expected number of items placing an order in a period, given that
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at least one item places an order:

E( ij i > 0) =
E( i)

IP( i > 0)

=
1

�i

X
j 6=i

�j (3)

We �rst show how to solve the periodic-review single-item model for item i given a value

of compensation �i, under the assumption of Bernoulli generated discount opportunities

with rate �i. We also show how to derive Æi and �i given a can-order policy. We then use

these in the decomposition algorithm to solve the joint replenishment problem.

2.2 The single-item model

Let us �rst describe the sequence of events in a period. At the beginning of the period

outstanding orders arrive. Demands occur during the period, and demands that cannot be

satis�ed immediately are backlogged. At the end of the period, costs are assigned based

on the amount of physical inventory, the number of shortages in the current period, and

the current amount of backlogged demands. An order can then be placed or, if another

item is placing an order, we can join this order. Orders with zero lead time arrive instantly

and can be used in the following period.

For convenience we omit the index i in the remainder of this subsection. Let the

state, xn, of the system at the end of period n, be the inventory position. Under the

regime of a can-order policy fxngn�0 is a Markov chain with regeneration point S. Let

the inventory cycle be the time between two consecutive visits in the regeneration point.

Using results from Markov decision theory, we can �nd the average long-run cost of a

policy as the expected cost incurred during a cycle divided by the expected length of a

cycle (see Tijms [11]). Let us �rst state the transition probabilities and the expected cost

function, excluding costs of ordering.

In any state x where we do not place an order, we jump to state x� j with probability

�(j) for all j � 0. However, if we place or join an order, we jump immediately to state S.

Let C(x) be the expected cost incurred in period � + L+ 1 if the state in period � is

x. The �rst period that can be in
uenced by our decision is period � + 1 if the lead time

is zero, and period � +L+1 if the lead time is L. Consequently, this shift in time assigns

the relevant cost to each period. To �nd the expected cost we condition on the lead time

demand, which has probability mass function �L(j):

C(x) =
xX

d=0

�L(d)

0
@x�dX

j=0

�(j)h(x � d� j) +
1X

j=x�d+1

�(j)(j� � p(x� d� j))

1
A

+

1X
d=x+1

�L(d)

1X
j=0

�(j)(j� � p(x� d� j)) for x > 0
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and C(x) = E(D)� � p(x � E(LTD) � E(D)) for x � 0. By the end of a period we

have three options. We can either place an order, join an order (if possible), or decide to

leave the inventory position unchanged. With probability �, another item has placed an

order which we will join if s < x � c. Otherwise, if x � s and no discount opportunity is

available, we place an order and if x > s, no order is placed. Whenever we join an order,

our ordering cost is k, and whenever we place an order, our ordering cost is K��+k. In

both cases we order up to inventory position S, and, consequently, we jump immediately

to state S, and assign the cost C(S).

All we need now is to specify what happens when x � s and another item places an

order. Since another item is placing an order we could join this order and only assign

the minor ordering cost k. However, consider a situation where two items simultaneously

place an order. Both items use the discount opportunity and consequently none of them is

assigned the major ordering cost K ��. Instead, the items placing an order should share

the major ordering cost. On average, the number of items that will share the ordering

cost if an order is placed, is E( j > 0) + 1, since we know that at least one other item

has placed an order. The resulting ordering cost can therefore be approximated with

k + (K ��)=(E( j > 0) + 1):

The minor (item speci�c) ordering cost is not shared, but the compensation � is. We

can �nd the expected ordering cost when x < s, by conditioning on whether  is zero or

positive:

IP( > 0)

�
k +

K ��

(E( j > 0) + 1)

�
+ (1� IP( > 0)) (k +K ��)

= k + (K ��)�

with

� = 1� IP( > 0)
E( )

E( ) + IP( > 0)
: (4)

Consider an example where IP( > 0) � 1 and E( ) = 5. If an item is placing an order,

the cost will then be the minor ordering cost plus a share � � 1=6 of the major ordering

cost, which seems reasonable.

Let z(x) be the expected cost incurring until we reach the regeneration point next

time, starting in state x. Similarly, let y(x) be the expected time until the regeneration

point is reached, starting in state x. We can �nd z(x) and y(x) in a recursive manner by

the following formulas:

z(x) =

8>><
>>:

C(x) +
P1

j=0 �(j)z(x � j) c < x

�k + (1� �)
�
C(x) +

P1
j=0 �(j)z(x � j)

�
s < x � c

k + (K ��)� x � s

(5)
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y(x) =

8>><
>>:

1 +
P1

j=0 �(j)y(x � j) c < x

(1� �)
�
1 +
P1

j=0 �(j)y(x � j)
�

s < x � c

0 x � s

(6)

Note that we jump immediately to state S without assigning cost when an order is

placed. Using the renewal{reward theorem, the average cost of a policy (s; c; S) is then

given by

g =
z(S)

y(S)
: (7)

The values z(x) and y(x) can be found recursively, by setting z(x) = k + �(K ��) and

y(x) = 0 for all x � s, and then compute z(s + 1); z(s + 2); : : : ; z(S) and y(s + 1); y(s +

2); : : : ; y(S) by (5) and (6).

We apply a tailor-made policy-iteration algorithm to �nd a near-optimal can-order

policy. Let

v(x) = z(x)� gy(x)

be the relative value of an inventory position x, with g being the cost of the policy found

by (7). The relative value v(x) is the di�erence in expected long-run total cost of having

an inventory position of x rather than the order-up-to level S.

The semi{Markov version of Theorem 3.2.1 in Tijms [11] tells that an optimal policy,

i.e. one that minimizes the cost of running the system, can be found by solving the so{

called average cost optimality equations

v(x) = minfv1(x); v2(x); v3(x)g for all x (8)

with

v1(x) = �(K ��) + k + v(S)

v2(x) = (1� �)

0
@C(x)� g +

1X
j=0

�(j)v(x � j)

1
A+ �(k + v(S))

v3(x) = C(x)� g +

1X
j=0

�(j)v(x � j));

in the unknowns v(x), g and S. The three functions represent the three actions: Place an

order, do not place an order but accept discount opportunities, and neither place an order

nor accept discount opportunities.

For a single-item inventory system with Markovian discount opportunities and Pois-

son demand a policy of the can-order type is optimal (Zheng [13]). When demands are
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compound this is not necessarily true. We will, however, restrict our search for policies to

policies of the can-order type. The must-order level, s, is determined such that s+1 is the

lowest inventory position, where we do not want to place an order. The can-order level,

c, is determined such that c+ 1 is the lowest inventory position, where we do not wish to

join a discount opportunity. This means that our policy is not necessarily optimal, and

therefore we refer to it as a near-optimal policy.

We solve the set of equations by a policy-iteration algorithm. The initial value of g can

be found by evaluating an arbitrary policy. In each iteration we use g to �nd an improved

policy by solving the equations with respect to v(x) and S (as explained below). Let g0 be

the cost of the new policy found by the minimizing actions. If g0 = g, we have solved (8)

and thereby found the near-optimal policy. Otherwise, we set g equal to g0 and perform

another iteration with the new value of g. The iteration scheme converges within a �nite

(and small) number of iterations.

Consider an iteration where we want to solve (8) for a given scalar g. Let v(S) = 0

and consider the must-order point s. For very small x it will always be optimal to place

an order, so we are looking for the lowest x where we do not want to place an order in

state x+ 1. The must-order point is found by

s = minfxjv1(x+ 1) > v2(x+ 1)g; (9)

using that v(x) = v1(x) for all x � s. Let v(s) = �(K ��) + k. Set x = s and increase x

while computing the values v(x) by

v(x) = v2(x):

We are looking for the �rst inventory position where we do not want to use a discount

opportunity if we had one, i.e.

c = minfx � sjv2(x+ 1) > v3(x+ 1)g: (10)

It is easy to show that by this de�nition, v(x) � k for all x � c. For x > c we do not use

the discount opportunity, and therefore the relative values are given by

v(x) = v3(x)

for all x > c. We now consider choosing the optimal order{up{to level S. Since we

want to minimize the relative values of each state, we must chose S such that v(S) is

minimized. For the continuous-review Poisson demand model, C(x) is quasi-convex and

therefore the minimization can be done by a neighbor search. This cannot be guaranteed

for the compound demand case and therefore we use enumeration to �nd the value of S

that minimizes v(S).

S = argminfv(x)jx > cg (11)
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Now, compute the values y(x) using (6) for the found policy and we can �nd the cost g0.

g0 =
v(S) + gy(S)

y(S)
=
v(S)

y(S)
+ g

If v(S) = 0 then g0 = g and we have solved (8), with the near-optimal policy being speci-

�ed by (9), (10) and (11). Otherwise, g0 < g and we have found an improved policy and

another iteration is performed using the new value g := g0.

In Figure 1 we show the relative values for the optimal solution to a single-item problem

(item 12 in Example A in Section 3). The �gure furthermore illustrates how the policy

variables s, c and S are determined.

k

k + �(K ��)

v(x)

(s; c; S) = (3; 13; 23)

g = 37:2

k = 80, K = 300

� = 85:2, � = 0:92, � = 0:15

s c S

Figure 1: The relative values v(x) and the optimal values of s, c and S for item 12 of

Example A.

Given a can-order policy, we can derive �, the expected number of orders placed

per period, and Æ, the expected bene�t of a discount opportunity. Let m(x) denote the

expected number of times we visit a state x during an inventory cycle. We can enter a

state x from state x + j after a demand of j units, j > 0. However, after a period with

zero demand, we will remain in state x, which will count as an additional visit. We �nd

m(x) by the use of renewal theory (see e.g. Tijms [11]). Naturally, m(S) = 1=(1 � �(0)),

since every inventory cycle begins in state S. For x = S � 1; S � 2; : : : ; c+1, m(x) can be

found by the recursion

m(x) = (1� �(0))�1
S�xX
j=1

�(j)m(x + j):
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For x = c; c� 1; : : : ; s+ 1,

m(x) = (1� �(0)(1 � �))�1

0
@c�xX

j=1

(1� �)�(j)m(x + j) +

S�xX
j=c+1�x

�(j)m(x + j)

1
A ;

and, �nally, for x � s

m(x) =
c�xX

j=s+1�x

(1� �)�(j)m(x + j) +
S�xX

j=c+1�x

�(j)m(x + j)):

LetM =
PS

x=�1m(x), i.e.M is the average number of visits into some state per inventory

cycle. Since we spend one period per visit, except the visit into the state in which we place

an order, which is exactly once every inventory cycle,M is equal to y(S)+1. The expected

number of orders placed per period, equals the expected number of times we visit a state

x with x � s per cycle, divided by the cycle length y(S).

� = y(S)�1
sX

x=�1

m(x) (12)

An item bene�ts from discount opportunities occurring while its inventory position is

below c. The relative value of being in state x is v(x). If a discount opportunity occurs

while the system is in state x, we will accept it when x � c, and our inventory position will

rise to S. Since the relative value of state S is 0, the bene�t of the discount opportunity

is the positive amount v(x) � k, as illustrated in Figure 1. If x > c, we do not join the

order and consequently the bene�t is zero.

Under the assumption that the discount opportunity process is independent of the item

under consideration, the expected bene�t per inventory cycle can be found by conditioning

on the inventory position, x. The number of periods where we are in state x is m(x), and

therefore the expected gain per cycle is

V =
cX

x=s+1

m(x)(v(x) � k):

Note that we can only bene�t from one discount opportunity per cycle, and, therefore, to

�nd the expected gain Æ of the discount opportunity per discount opportunity, we divide

with �y(S), the expected number of discount opportunities occurring in a cycle, i.e.

Æ =
V

�y(S)
: (13)

2.3 The decomposition algorithm

Based on the method for the single-item problem, we construct an algorithm for solving

the joint replenishment problem. The idea of the algorithm is to successively solve the
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single-item problems, and update the rate of orders placed �i for all items, until the

found can-order policies converge. As demonstrated by Schultz & Johansen [8], there

is a non-trivial risk that the algorithm starts cycling between di�erent policies, rather

than converging to a single one, and there seems to be no way to ensure convergence.

Let (ski ; c
k
i ; S

k
i ) be the policy found for item i in the k'th iteration of the decomposition

algorithm. The algorithm is initialized by setting Æi = 0 for all i. �i is set equal to a small

but positive amount, in this paper �i = 0:02 is used for all i. Also, in the �rst iteration

we evaluate an arbitrary policy, (s0i ; c
0
i ; S

0
i ), to �nd an initial g for the policy-iteration

algorithm. In the k'th iteration of the algorithm we perform the following for each item i:

� First, we compute �i by (1) , �i by (2), and �i by (3) and (4).

� Then we solve the single-item problem based on these values and update the values

of Æi and �i by (12) and (13).

As initialization for the policy-iteration algorithm we evaluate the policy (sk�1i ; ck�1i ; Sk�1
i )

with the new values of �i and �i to �nd the initial gi. The algorithm terminates when

(ski ; c
k
i ; S

k
i ) = (sk�1i ; ck�1i ; Sk�1

i ), or when the algorithm starts cycling between a set of

policies. The algorithm terminates in approximately 20-40 iterations. Due to the approx-

imate nature of our approach, the cost given by
P

i gi is only an approximation. In order

to compare the policy with other policies, we simulate the found policy. Its cost is denoted

the simulated cost. In case of cycling we choose the policy with the lowest computed cost.

3 Numerical results

In this section we compare the periodic can-order policy with the P (s; S) policy suggested

by Viswanathan [12]. The P (s; S) policy for the periodic model is computed by restricting

the search for the review interval t to an integral number of periods. For the continuous

model there are no restrictions on t. We use a neighbor search to determine the optimal

value of t, initialized by t = 1. The computation times of the can-order policy and the

P (s; S) policy are comparable, with the can-order policy being the faster when the optimal

value of t is high. The cost computed as suggested by Viswanathan [12] provides an upper

bound for the total costs, and in order to make a fair comparison the optimal P (s; S)

policy is simulated as well as the can-order policies. In order to reduce variance, the same

stream of random numbers is used to generate demand data for all policies. We simulate

10 batches, each consisting of 100000 periods.

We also investigate the e�ect of using the compensation policy derived in this paper,

compared with a policy in line with that of Federgruen, Groenevelt & Tijms [3], where

the rate of order opportunities is the only input to the single-item model. This policy is

found by setting �i equal to zero for all i in all iterations of the decomposition algorithm.
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Compensation FGT P (s; S) (t = 7)

i ki Li �i Æi s; c; S s; c; S s; S

1 10 2 0.8 16.70 1,16,20 1,17,21 15,19

2 10 5 0.7 16.20 3,19,23 3,20,24 18,22

3 20 2 0.8 11.74 1,15,21 1,16,22 12,20

4 20 1 0.8 11.48 0,11,19 0,14,20 9,18

5 40 2 0.8 9.10 1,12,22 1,14,22 10,21

6 20 15 0.4 4.08 7,20,26 6,21,26 20,25

7 40 10 0.4 2.60 4,13,22 3,14,23 13,22

8 40 10 0.4 2.69 4,13,22 3,14,23 13,22

9 60 10 0.56 5.47 6,19,28 6,20,28 18,27

10 60 10 0.4 2.46 3,13,23 3,13,23 12,22

11 80 10 0.4 2.57 3,13,23 3,13,24 11,23

12 80 10 0.4 2.58 3,13,23 3,13,24 11,23

Computed cost 448.9 462.8 459.3

Simulated cost 427.8 �0:5 432.2 �0:5 457:7 � 0:7

Table 1: Example A. Data as well as optimal policies for the 12 items,plus computed and

simulated cost (with 95% con�dence intervals) for the compensation, FGT and P (s; S)

policy.

The resulting policy is denoted FGT. In all numerical experiments, the lowest cost of the

three policies is typed in boldface.

We investigate three examples with 12 items. Example A is based on the standard

example introduced by Atkins & Iyogun [1]. The example is modi�ed in order to �t

the periodic model in the following way: The Poisson demand is replaced by a Bernoulli

demand process, where the probability �i of a positive demand from item i in each period

is proportional to the arrival rate of item i in the standard example. In our modi�cation,

the demand sizes are either 1,2 or 15, while the standard example assumes unit sized

demands. The probability mass function is �i(0) = 1 � �i, �i(1) = 0:8�i, �i(2) = 0:18�i

and �i(15) = 0:02�i for all i. We set K = 300, and for all items i, hi = 2, pi = 20

and �i = 30. The lead time is converted into periods by dividing the time unit of the

standard example into 10 periods. The values of �i, Li and the minor ordering cost ki are

given in Table 1 for all items i, together with the compensation policy, the FGT policy

and the P (s; S) policy. For the compensation policy we have reported the found values

of Æi for illustration. We also report the computed cost, and the simulated cost with 95%

con�dence intervals, for the three policies.

For the example the simulated cost of the P (s; S) policy is 7% above the simulated
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cost of the compensation policy. The FGT and the compensation policy are almost iden-

tical for this example and so are their costs. We observe that the computed cost di�ers

signi�cantly from the simulated cost for the two can-order policies, whereas the upper

bound of Viswanathan [12] in this example is very tight.

In Table 2 we have reported a set of variations over this example. More speci�cally

we have examined di�erent values of ordering cost K 2 f100; 300; 500g and for all items

i, di�erent values of pi 2 f10; 20; 30g and hi 2 f1; 2; 3g. Among the 27 examples, the

compensation policy is best in all but one. On average, the simulated cost of the FGT

policy is 1.2 % higher than and the simulated cost of the P (s; S) policy is 5.7% higher than

the simulated cost of the compensation policy. There appears to be no systematic e�ect

of the underlying model parameters K, h and p. Intuitively, the can-order policies should

perform better when K is low, since we then approach the system with independent items,

while the P (s; S) policy should be better when K is high, as observed for the continuous

models (Viswanathan [12] and Melchiors [5]). This is not the case in this example.

Next, we analyse Examples B and C to obtain further insight. Example B is a system

where the demand is fairly irregular, being 0; 1, or 2 in most periods with occasional highs

of 15 units every once in a while, as in Example A. The probability of a positive demand

in a period is �i = 0:1+0:05i. The probability mass functions of the demand size is given

by �i(0) = 1 � �i, �i(1) = 0:8�i, �i(2) = 0:18�i and �i(15) = 0:02�i for all i. Example C

has a more regular demand distribution with �i(0) = 1��i, �i(1) = 0:65�i, �i(2) = 0:25�i

and �i(3) = 0:1�i and the same rate of demand �i as Example B. The average demand

size is 1.46 and 1.45 in the two examples, respectively. The examples can be thought of

as systems with 12 fairly identical products, perhaps only di�ering in their color or their

taste. Holding and penalty costs are therefore identical for all items and so are the minor

ordering costs and the lead times. What di�ers is typically the demand rate. Some colors

or variants may be more needed than others. We have chosen an example with demand

rates from 0:15 to 0:7 for the 12 items. In contrast to Example A we �x the penalty

costs and consider di�erent values of the lead time instead. The remaining parameters

are K 2 f100; 300; 500g and for all items, k = 25, p = 20, � = 30, L 2 f2; 4; 6g and

h 2 f1; 2; 3g.

In Example B, the simulated costs of the P (s; s) policy is on average 10.3% higher than

those of the compensation policy. The performance of the FGT policy is better, having

only 1.3% higher costs than the compensation can-order policy on average. In all 27 cases

the compensation policy has the lowest cost. As in Example A, there seems to be no clear

relation between the ordering cost K and the cost ratio. With respect to the lead time, it

seems like the performance of the P (s; S) improves as the lead time increases. Typically,

the bene�t of the can-order policies is that they are able to react faster to demand, and
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Compensation FGT P(s,S) P (s; S)=Compensation

p = 10 233.7 235.5 246.6 1.06

h = 1 p = 20 257.7 259.2 270.5 1.05

p = 30 271.1 273.6 284.5 1.05

p = 10 330.2 330.6 349.8 1.06

K = 100 h = 2 p = 20 393.1 393.5 415.9 1.06

p = 30 428.2 427.8 452.6 1.06

p = 10 386.2 388.1 404.7 1.05

h = 3 p = 20 478.4 480.1 508.6 1.06

p = 30 541.8 542.3 575.9 1.06

p = 10 260.1 263.2 273.9 1.05

h = 1 p = 20 281.7 285.5 297.9 1.06

p = 30 297.2 300.9 313.1 1.05

p = 10 375.5 381.6 392.0 1.04

K = 300 h = 2 p = 20 427.8 432.2 457.7 1.07

p = 30 459.5 463.7 490.6 1.07

p = 10 432.7 440.9 451.8 1.04

h = 3 p = 20 523.9 528.7 564.2 1.08

p = 30 584.1 588.4 631.3 1.08

p = 10 279.8 285.0 291.9 1.04

h = 1 p = 20 301.7 307.3 317.5 1.05

p = 30 316.6 324.2 335.5 1.06

p = 10 407.4 413.5 419.0 1.03

K = 500 h = 2 p = 20 456.0 462.4 485.1 1.06

p = 30 485.5 491.8 516.6 1.06

p = 10 472.5 492.6 484.2 1.02

h = 3 p = 20 566.0 575.7 601.3 1.06

p = 30 617.6 624.8 665.2 1.08

Table 2: Example A. Simulated costs for the investigated policies for various values of

ordering cost K, holding cost h and backorder cost p. We also report the cost ratio

between the P (s; S) policy and the compensation policy.
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Compensation FGT P(s,S) P (s; S)=Compensation

L = 2 186.0 186.9 207.4 1.11

h = 1 L = 4 207.7 208.7 225.5 1.09

L = 6 223.0 223.6 237.5 1.07

L = 2 250.8 252.2 278.8 1.11

K = 100 h = 2 L = 4 294.3 295.8 320.0 1.09

L = 6 328.2 329.1 352.3 1.07

L = 2 291.7 292.9 319.3 1.09

h = 3 L = 4 345.6 347.1 373.5 1.08

L = 6 393.5 394.3 420.0 1.07

L = 2 211.7 214.5 243.3 1.15

h = 1 L = 4 229.0 232.4 254.0 1.11

L = 6 243.7 247.3 262.8 1.08

L = 2 292.1 294.9 330.4 1.13

K = 300 h = 2 L = 4 328.4 331.7 366.9 1.12

L = 6 357.7 360.8 391.8 1.10

L = 2 334.9 339.9 377.8 1.13

h = 3 L = 4 384.8 391.2 427.8 1.11

L = 6 429.7 434.3 469.4 1.09

L = 2 232.7 238.3 262.9 1.13

h = 1 L = 4 248.0 252.6 272.2 1.10

L = 6 260.8 265.3 281.0 1.08

L = 2 321.6 330.8 365.7 1.14

K = 500 h = 2 L = 4 355.2 362.2 396.2 1.12

L = 6 381.1 386.8 418.0 1.10

L = 2 369.5 382.2 417.1 1.13

h = 3 L = 4 418.6 428.7 464.9 1.11

L = 6 459.6 467.7 503.3 1.09

Table 3: Example B. Simulated costs for the investigated policies for various values of

ordering cost K, holding cost h and lead time L. We also report the cost ratio between

the P (s; S) policy and the compensation policy.
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Compensation FGT P(s,S) P (s; S)=Compensation

L = 2 122.3 123.6 124.8 1.02

h = 1 L = 4 127.9 128.5 130.6 1.02

L = 6 133.4 134.9 135.4 1.01

L = 2 176.6 179.0 178.6 1.01

K = 100 h = 2 L = 4 187.6 191.4 189.8 1.01

L = 6 199.2 200.9 200.3 1.01

L = 2 217.3 219.9 219.5 1.01

h = 3 L = 4 234.3 237.9 236.9 1.01

L = 6 249.2 252.6 251.1 1.01

L = 2 147.7 150.0 147.2 1.00

h = 1 L = 4 153.0 158.2 151.9 0.99

L = 6 157.4 162.2 156.2 0.99

L = 2 210.8 217.3 209.7 0.99

K = 300 h = 2 L = 4 220.2 227.7 219.4 1.00

L = 6 228.6 236.1 228.3 1.00

L = 2 258.8 267.3 257.3 0.99

h = 3 L = 4 272.4 282.3 271.2 1.00

L = 6 284.2 293.2 284.1 1.00

L = 2 164.5 171.7 163.6 0.99

h = 1 L = 4 170.6 178.6 168.2 0.99

L = 6 174.3 182.1 172.2 0.99

L = 2 235.0 247.2 232.9 0.99

K = 500 h = 2 L = 4 244.4 255.7 241.8 0.99

L = 6 251.6 263.4 249.7 0.99

L = 2 287.0 302.5 284.2 0.99

h = 3 L = 4 301.4 313.7 297.3 0.99

L = 6 311.0 327.3 308.9 0.99

Table 4: Example C. Simulated costs for the investigated policies for various values of

ordering cost K, holding cost h and lead time L. We also report the cost ratio between

the P (s; S) policy and the compensation policy.
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thereby reduce the number of periods without stock. When lead times are short, orders

are often triggered by a high demand leaving the inventory depleted or with very little

stock. In these situations the can-order policies are superior to the periodic replenishment

policies. When lead times are longer the triggering of an order is determined by the size

of expected lead time demand, and consequently the e�ect of a fast reaction is relatively

smaller.

In Example C, the demand variation is very small and the performance of the P (s; S)

policy is much better. The average cost ratio is 1.00 while the cost ratio of the FGT policy

to the compensation policy is 1.03. For this low-variance example the P (s; S) policy has

an acceptable performance, and we observe that it is better than the can-order policy on

problems with high ordering cost.

4 Conclusion

In this paper we have demonstrated how to calculate can-order policies for a periodic

model with stochastic demand. Contrary to the general belief as expressed for example

in the textbook of Silver, Pyke and Petersen [10], the can-order policy seems to perform

very well and our results show that it is not outperformed by the periodic replenishment

policies. Indeed, on examples with irregular demand patterns, we have recorded cost

di�erences up to 15% in favour of the can-order policy.
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Abstract

Almost all multi-echelon inventory models assume that demand not satis�ed imme-

diately can be backordered. In some situations this assumption may not be realistic.

For example, it may be more representative to model stockouts as lost sales when

the retailers are in a competitive market and customers can easily turn to another

�rm when purchasing the good. Assuming lost sales at the retailers, we consider a

one warehouse several retailers inventory system. Using the well-known METRIC-

approximation as a framework, we present a heuristic for �nding cost e�ective base-

stock policies. In a numerical study we �nd that the cost of the policies suggested by

the heuristic is on average 0.40% above the cost of the (S � 1; S)-optimal policy.

Keywords : Inventory, Multi-echelon, Lost sales, METRIC

1 Introduction

Consider a two-echelon inventory system with one central warehouse and an arbitrary

number of retailers. See Figure 1. The retailers face customer demand and replenish their

stocks from the central warehouse. The warehouse, in turn, replenishes its stock from

an outside supplier. Evaluation and optimization of control policies for such inventory

systems have attracted massive interest in the literature. See, for example, Axs�ater [3]

�Corresponding author. Tel.:+45-89 42 35 36; fax: +45-86 13 17 69; e-mail: philip@imf.au.dk

163



164 Multi-echelon

Retailers

Warehouse

Figure 1: Multi-echelon inventory system

for an overview. In the existing literature dealing with multi-echelon inventory control

the prevalent assumption is that complete backlogging of orders is allowed in case of

stockouts. For example, Axs�ater [4] shows how to exactly evaluate the performance for

di�erent (R;nQ)-polices when the retailers face compound Poisson demand and inventories

are continuously reviewed. Cachon [5] gives an exact method for the periodic review case

with identical retailers.

In some situations the assumption of complete backlogging may not be so realistic. For

example, it may be more representative to model stockouts as lost sales when the retailers

are in a competitive market and customers can easily turn to another �rm when purchasing

the good. The research dealing with multi-echelon inventory models has focused mainly

on the backorder case, and the number of models dealing with lost sales is rather limited.

The main reason for this is the added complexity of the lost sales case. Sherbrooke ( [11]

also argues that in system approaches where focus is on the simultaneous availability of

several items (e.g. at least one of each spare part for an airplane), the assumption of

lost sales does not make sense. However, Anupindi and Bassok [1] consider a periodic

review two-echelon inventory system where a part of the unsatis�ed sales at the retailers

is lost. Since the transportation time between the manufacturer and the retailers is zero,

the optimal order policy at each retailer is a base-stock policy. The manufacturer carries

linear production cost and no holding cost. The retailers can agree to centralize their

stocks and the problem considered is whether or not this will lead to an increase in total

expected sales at the manufacturer. Nahmias and Smith [8] also consider lost sales in a

multi-echelon environment in a paper more closely related to this paper. However, their

model di�ers from ours in several important aspects. First, they consider periodic review

batch order policies. The model is more general since they deal with partial lost sales.

This means that, with probability u, demand not satis�ed immediately, is lost, and with

probability 1 � u, it is satis�ed later by a special order. Moreover, for the model to be
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tractable they assume instantaneous deliveries from the warehouse to the retailers.

For single-echelon inventory models the lost sales assumption is more common. The

exact cost for a single level inventory system facing Poisson demand and �xed leadtimes

was �rst given by Hadley and Whitin [6]. Smith [12] demonstrates how to evaluate and

�nd optimal (S� 1; S)-policies for an inventory system with zero replenishment costs and

generally distributed stochastic leadtimes. Recently Hill [7] showed that for the lost sales

case the (S � 1; S)-policy is not necessarily optimal.

In this paper we analyze a model for a one warehouse, multiple retailer inventory

system. Demand occurs only at the retailers and follows independent Poisson processes.

All leadtimes are assumed to be constant. All installations use (S � 1; S)-policies with

continuous review. It is assumed that backlogging of customer demand is not allowed.

The analysis departs in one of the most widely known multi-echelon inventory models, the

METRIC-model developed by Sherbrooke [10]. In its original setting, it is assumed that

stockouts at the retailers are completely backlogged. We demonstrate how the METRIC-

model can be modi�ed to handle the lost sales case. Our approach gives an approximate

model which is quite simple and eÆcient from a computational point of view. Simulation

experiments indicate that the performance is very good.

The outline of this paper is as follows: In Section 2 we give a detailed problem formu-

lation and pose all assumptions. Section 3 gives the solution procedure. The numerical

results are given in Section 4, and in Section 5 we give some conclusions and point out

some possible directions for future research.

2 Problem Formulation

The inventory system under consideration consists of one central warehouse and an arbi-

trary number of retailers. The retailers face Poisson customer demand. No backlogging is

allowed at the retailers. Consequently, the customers that arrive to a retailer that is out

of stock will become lost sales for the retailer. When stockouts occur at the warehouse,

all demands from the retailers are fully backlogged and the backorders are �lled according

to a FIFO-policy. The transportation time between the warehouse and a given retailer is

assumed to be constant as well as the transportation time from the external supplier to the

warehouse. The cost of a replenishment is assumed to be zero or negligible compared to

the holding and stockout costs. The external supplier is assumed to have in�nite capacity,

which means that the replenishment leadtime for the central warehouse is constant. All

installations use (S � 1; S)-policies with continuous review. Units held in stock both at

the warehouse and at the retailers incur holding costs per unit and time unit. Moreover,

a �xed penalty cost per lost customer is incurred at the retailers. In this paper we present

a model for the considered inventory system, which can be used to evaluate the long-run
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average cost for di�erent policies within the class of (S � 1; S)-policies. The objective is

to �nd the policy that minimizes the long-run average cost for the inventory system. Let

us introduce the following notation:

N = the number of retailers,

�i = demand intensity at retailer i, i = 1; 2; : : : ; N ,

Li = transportation time for the deliveries from the warehouse to retailer i, i = 1; 2; : : : ; N ,

L0 =transportation time for the deliveries from the external supplier to the warehouse,

S0 = order-up-to level at the warehouse,

Si = order-up-to level at retailer i, i = 1; 2; : : : ; N ,

h0 = holding cost rate at the warehouse,

hi = holding cost rate at retailer i, i = 1; 2; : : : ; N ,

�i = penalty cost for a lost sale at retailer i, i = 1; 2; : : : ; N .

We want to determine the total cost for the inventory system in steady state. De�ne

TC = total cost for the inventory system per time unit in steady state,

C0 = cost per time unit for the warehouse in steady state,

Ci = cost per time unit for retailer i in steady state, i = 1; 2; : : : ; N .

Obviously,

TC = C0 +

NX
i=0

Ci: (1)

Our objective is to determine a control policy, S0; S1; ::; SN that minimizes the total cost,

TC.

3 Solution Procedure

In this section we �rst demonstrate how the total cost for di�erent control policies can

be evaluated. For the backorder case the exact cost of the system can be derived by

observing that any unit ordered by retailer i is used to ful�ll the Sith demand. The cost

can then be derived by conditioning on the arrival time of the Sith demand (which is

Erlang distributed) and the arrival of the ordered unit (see Axs�ater [3]). In a lost sales

environment the corresponding observation is that any unit ordered by retailer i is used

to ful�ll the Si + Xith demand, where Xi is a random variable denoting the number of

lost sales incurred at the retailer during the replenishment lead time. Xi is obviously very

hard to characterize and we have therefore chosen to focus on a heuristic rather than on

the exact solution.

The analysis has many similarities with the analysis in Sherbrooke [10]. However, our

assumption of lost sales at the retailers destroys some of the nice properties valid for the
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backorder model. The analysis of the warehouse, e.g., becomes more complex for the lost

sales case. In the backorder case, all customers arriving at the retailers generate demands

at the warehouse immediately at the arrival epoch, since all retailers use continuous review

(S � 1; S)-policies. Consequently, the warehouse faces a Poisson process with intensity

�0 = �1 + �2 + � � � + �N . For the lost sales case this is not true. When backordering is

not allowed, customer demands can be lost due to stockouts at the retailers. Therefore

the demand at the warehouse is not Poisson process anymore.

Another important di�erence compared with the backorder case is that the order-up-

to level Si at retailer i, a�ects the costs at all retailers and at the warehouse. In the

backorder case Si only a�ects the local cost at retailer i, since the warehouse demand

process is una�ected by the order-up-to levels at the retailers. For the lost sales case the

order-up-to level a�ects the number of lost sales and consequently, the demand process at

the warehouse is not independent of the policies at the retailers. Therefore the order-up-to

level at a certain retailer a�ects the costs at all installations in the inventory system.

We will �rst show how to evaluate the costs at the retailers given a certain replenish-

ment leadtime provided by the warehouse. We then show how to calculate the cost at the

warehouse given the demand intensity from the retailers. Finally we introduce an iterative

procedure from which we obtain the total cost for the inventory system.

3.1 Approximate retailer cost

As Sherbrooke [10] we use a queueing system analogy when evaluating the costs for the

retailers. For a retailer where backlogging is allowed, the number of outstanding orders

towards the central warehouse is the same as the occupancy level in an M=G=1 queue.

Recall that the customer demand is Poisson and the replenishment leadtimes are stochas-

tic, since orders can be delayed due to stockouts at the central warehouse. For this type

of queue a famous theorem by Palm [9] states that the steady state occupancy level is

Poisson distributed with mean �L, where � is the arrival rate and L is the mean service

time. Palm's theorem holds for i.i.d. service times. The stochastic leadtimes in our case

are evidently not independent, but if we disregard this correlation we can approximate

the number of outstanding orders with a Poisson distribution. This is the idea behind the

METRIC-approximation.

When demand is lost, the queueing system of interest is an M=G=S=S queue, with

S servers, each with generally distributed service times and no queueing allowed. If the

service times are independent random variables with mean �L, Erlang's loss formula states

the steady-state distribution for the occupancy level as

qS(j) =
(��L)j=j!PS
n=0(�

�L)n=n!
for 0 � j � S
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where qS(j) = the probability that j servers (out of S) are occupied in steady state. Fol-

lowing METRIC we approximate the number of outstanding orders with this distribution.

Suppose that the mean leadtime for retailer i is �Li and let qSi

i (j) be the steady state

probability of j outstanding orders given a desired base-stock level Si. The expected

number of lost sales per time unit is clearly �iq
Si

i (Si) and the expected number of units

in stock is
SiX
j=0

(Si � j)qSi

i (j) = Si � [1� qSi

i (Si)]�i �Li: (2)

The total relevant cost for retailer i is therefore

Ci(Si; �Li) = �i�iq
Si

i (Si) + hi

�
Si � [1� qSi

i (Si)]�i �Li

�

and the rate of demand from retailer i which is not lost is (1� qSi

i (Si))�i.

The derivation of the exact cost of a (S� 1; S) lost sales single stage inventory system

with generally distributed leadtimes was �rst presented by Smith [12]. He also proves that

Ci(Si; �Li) is convex in Si for �xed �Li, which means that the optimal value can be found

by a local search routine.

3.2 Approximate warehouse cost

In the backorder case the demand process at the warehouse is a Poisson process. In the

lost sales case this is not the case. If, for example, the base-stock level at a retailer is one,

the smallest interval between two successive demands from that retailer will be the retailer

leadtime. We will ignore this and approximate the demand process at the warehouse with

a Poisson process with mean �. � depends on how much demand is lost at the retailers

and is determined as

� =

NX
i=1

�i(1� qSi

i (Si)) (3)

Since we have a �xed deterministic leadtime L0, we can �nd the average holding cost

incurred at the warehouse as a function of � and S0.

C0(S0;�) = h0

S0X
j=0

(S0 � j)
(�L0)

j

j!
exp(��L0)

We can also derive the mean delay due to stockouts at the warehouse by �rst calculating

B0, the average number of backorders at the warehouse.

B0 =
1X

j=S0+1

(j � S0)
(�L0)

j

j!
exp(��L0); (4)
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We then apply Little's formula to obtain the average delivery delay, B0=�. The mean

leadtime for retailer i is then
�Li = Li +B0=� (5)

Finally, we obtain the total cost from (1).

3.3 Overall solution procedure

We can now establish the solution procedure. The procedure enumerates over S0. It can

be shown that for a cost minimizing solution, S0 can not be negative. See, for example,

Axs�ater [2]. Consequently our procedure starts with S0=0. Moreover, S0 is bounded from

above by an abortion criteria. We need the following new notation:

Cmin
i = minSi

Ci(Si; Li) = minimum cost per time unit for retailer i in steady state

when the leadtime, �Li, is equal to the transportation time, Li, i = 1; 2; : : : ; N .

Si(k) = order-up-to level at retailer i in iteration k.

TC�(S0) = minimum value of TC given a �xed value of S0.

Let us �rst consider two simple lemmas. The proofs can be found in the Appendix.

The �rst lemma gives a lower bound for the retailer costs, and the second establishes two

important properties for the warehouse cost.

Lemma 1. Cmin
i is a lower bound for the retailer cost, Ci(Si; �Li) for all Si and any

�Li > Li.

Lemma 2. C0(S0; �0) � C0(S0;�), for all S0 and all � � �0. Moreover, C0(S0; �0) is

convex in S0.

To construct an abortion criteria for the procedure, consider the cost function

TClb(S0) = C0(S0; �0) +

NX
i=0

Cmin
i :

By Lemma 1 and Lemma 2, TClb(S0) is a lower bound for the cost function, TC�(S0).

Moreover, since the cost function TClb(S0) is convex in S0 the search over S0 can be

aborted when S0 satis�es

min
x�S0

TC�(x) � TClb(S0):

The abortion criteria is illustrated in Figure 2.
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TC�(S0)

TClb(S0)

minx�S0 TC
�(x)

S0Smax
0

Figure 2: Illustration of the abortion criteria. The search for the optimal S0 is aborted at

Smax
0 .

The solution procedure can now be established as:

STEP 0: Set S0 = 0 and TCmin =1.

STEP 1: Set k = 0 and � = �0.

STEP 2: For each i = 1; 2; : : : ; N calculate �Li by (4) and (5)

and set Si(k) = argminS(Ci(S; �Li)).

STEP 3: If k > 0 and Si(k) = Si(k � 1) for all i = 1; 2; : : : ; N then goto STEP 4,

else calculate � by (3), set k := k + 1 and goto STEP 2.

STEP 4: Set TC�(S0) = C0(S0;�) +
Pn

i=1 Ci(Si(k); �Li).

If TC�(S0) < TCmin then set TCmin = TC�(S0)

and let Sopt
0 = S0 and S

opt
i = Si(k) for i = 1; 2; : : : ; N .

If TCmin < TClb(S0) then STOP, else set S0 = S0 + 1 and goto STEP 1.

To show that Si(k) converges for �xed S0 we conjecture that the optimal order-up-

to level at the retailer either increases or remains the same when the expected leadtime

between the warehouse and the retailer increases. The conjecture is very intuitive, and

is supported by all our numerical tests. However, as of yet we have not been able to

prove it formally. For each S0 we initialize the procedure with � = �0. It is easy to show

that a lower demand rate at the warehouse leads to a shorter expected leadtime from the

warehouse to the retailers (remember S0 is �xed). It now follows that Si(k + 1) � Si(k)

for all i; k establishing the convergence since Si � 0.

4 Numerical Results

In order to examine the e�ectiveness of the presented methodology we have performed a

small numerical study. In total we consider 36 di�erent test problems with �ve identical

retailers. For each test problem we �nd the best order-up-to levels according to our

method. We also obtain the approximate total holding and stock out costs for the inventory
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system. The accuracy of these results are then evaluated by simulation. Each simulation

consists of 10 runs, each with a run length of 100 000 time units. The result is a con�dence

interval for the exact cost. We express the con�dence limits on a 95% signi�cance level.

A comparison between the total cost given by our method and the total cost for the

simulation gives an indication of how accurate our method is when estimating the total

cost for the inventory system.

We also use simulation to determine the optimal policy for the system. The cost for

this policy can then be compared with the cost for the policy determined by our technique,

to obtain an estimate for the performance of the method when optimizing the ordering

policies. The policy that we report as the optimal policy is the policy with the lowest

average simulated cost, which is obtained by enumeration over combinations of S0 and Si

(we only search within policies where the order-up-to levels are identical for the retailers).

However, this policy does not necessarily dominate all the other policies when taking

con�dence intervals into consideration.

The problem data and results can be found in Table 1. We only report the optimal

policy when it is di�erent from the one obtained from our algorithm. From Table 1 we can

see that our method performs rather well for all the considered problems. It seems that we

mostly tend to underestimate the total cost, especially in the problems with high stockout

costs at the retailers. This is due to the METRIC-approximation, where the stochastic

leadtimes are replaced by their averages when evaluating the costs for the retailers. On

average the method underestimates the costs with 1.1 %.

In 13 problems we can observe (on a signi�cance level of 95%) that the method fails

to �nd the optimal policy. In 9 more problems the policy suggested by our method does

not have the lowest average cost according to the simulation runs. However, in these cases

the deviations are not signi�cant on a 95% con�dence level. In comparison to the optimal

policies obtained by simulation, the increase in costs by using the policies obtained by our

method is only 0.40 %, on average. In 16 of the 22 problems where we fail to �nd the true

optimal policy, the method merely underestimates the order-up-to level at the warehouse

by a single unit. In one problem the warehouse order-up-to level is underestimated by two

units. In the other 5 problems where the optimal policy is not found, the method tends to

allocate more stock to the retailers and less stock to the warehouse than what is optimal

from a cost perspective.

Finally it seems that our methodology performs better if the warehouse leadtime is

small compared to the transportation time from the warehouse to the retailers. In the 12

problem instances with Li = 1:5 the average cost increase, SC/CC is only 0.07%, whereas

in the problems with Li = 0:5, the corresponding �gure is considerable higher, 0.67%.

This behavior is due to the METRIC-approximation, where the stochastic replenishment

leadtime facing a retailer is replaced by its mean value. If the constant transportation
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time to the retailers is large compared to the warehouse leadtime, the stochastic delivery

delays tend to have less relative variation and consequently the impact of the METRIC-

approximation will be smaller.

5 Conclusions and directions for future research

This paper presents a heuristic method for evaluation and optimization of (S�1; S)-policies

for a one warehouse, multiple retailers inventory system. The evaluation technique uses

the well-known METRIC-approximation as a framework. From a computational point of

view the presented technique is very eÆcient and simple. Numerical results also indicate

that the performance is quite good.

Up to our knowledge, no paper is yet published, which deals with lost sales in a contin-

uous review multi-echelon inventory setting. Moreover, the original backorder METRIC-

model [10] is one of the most widely used multi-echelon inventory models. Our lost sales

generalization makes the policy evaluation a bit more complex, since we have to use an

iterative procedure to obtain the cost. Still, the model is rather simple and easy to im-

plement. Moreover, in many practical situations lost sales is a reasonable way to model

stockouts. Therefore our technique is also relevant for practitioners.

In a research perspective our model can form a framework in which di�erent gener-

alizations can be considered as options for future research. For example, batch ordering

policies and more general demand processes may be analyzed, still using the ideas pre-

sented in this paper. Generalizations to periodic review policies is also important. We are

also interested in �nding a formal proof of the conjecture in section 3. The derivation of

an exact evaluation of costs seems to be a very diÆcult problem to solve. This is a real

challenge for future research.

Appendix

Proof for Lemma 1

We need to show that

min
Si

Ci(Si; Li) � min
Si

Ci(Si; �Li) for Li � �Li: (6)

Let li be an arbitrarily chosen leadtime, where Li � li � �Li. Consider the cost Ci(Si; li),

where Si is set to its optimal value for each li. Obviously, Ci(Si; li) � Ci(Si � 1; li) for

each li such that Li � li � �Li. Start with li = �Li and let li be continuously lowered

until we reach li=Li, while Si is set to its optimal value for each li. Since Ci(Si; li) is

a continuous function of li for �xed Si, it also is a continuous function of li when Si is



Paper VII 173

optimally chosen. Moreover, the fact that Si minimizes the cost Ci(Si; li), implies that

Ci(Si; li) � Ci(Si � 1; li). Consequently, (6) follows if

Ci(Si; li) � Ci(Si � 1; li))
@Ci(Si; li)

@li
� 0 for Li � li � �Li: (7)

For notational reasons we omit the index i from all variables. It can be shown that

@C(S; l)

@l
= �h�(1� qS(S)) + �(h�l + ��)(qS(S � 1)� qS(S) + qS(S)2): (8)

Moreover, C(S; l) � C(S � 1; l) implies that

h

h�l + ��
� qS�1(S � 1)� qS(S) (9)

Let

A =
1

�(h�l + ��)

@Ci(S; l)

@l
: (10)

From (8) we have that

A =
h

h�l + ��

�
qS(S)� 1

�
+ qS(S � 1)� qS(S) + qS(S)2): (11)

(9) and (11) now give (recall that qS(S) < 1)

A � (qS�1(S � 1)� qS(S))(qS(S)� 1) + qS(S � 1)� qS(S) +
�
qS(S)

�2
= qS�1(S � 1)qS(S)� qS�1(S � 1) + qS(S � 1)

= qS�1(S � 1)qS(S)� (qS�1(S � 1)qS(S))

= 0:

Note that qS(S) � 1. Consequently, A � 0 and therefore (7) holds and the proof is

complete.

Proof for Lemma 2

Since � � �0, we only need to show that @C0(S0;�)
@� � 0. The convexity of C0(S0; �0) in S0

follows, for example, from Axs�ater [3].

@C0(S0;�)

@�
= �h0L0 exp(��L0)

0
@S0 + S0X

j=1

(S0 � j) �

 
(�L0)

j

j!
�
(�L0)

(j�1)

(j � 1)!

!1A

= �h0L0 exp(��L0)

S0�1X
j=0

(�L0)
j

j!

� 0:
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�i �i Li S Calc cost Sim cost Spread Opt pol Cost Spread Cost dev

1 1 5 0.5 4,2 10.82 10.74 0.01

2 1 5 1.0 2,3 11.99 12.03 0.02

3 1 5 1.5 3,3 12.51 12.46 0.01

4 1 25 0.5 5,3 15.86 16.15 0.03

5 1 25 1.0 4,4 18.18 18.43 0.04 5,4 18.41 0.03 0.1%

6 1 25 1.5 3,5 19.94 20.16 0.06 4,5 20.12 0.04 0.2%

7 1 125 0.5 5,4 20.27 21.27 0.05 6,4 20.90 0.06 1.7%

8 1 125 1.0 5,5 23.64 24.16 0.06 6,5 24.09 0.06 0.3%

9 1 125 1.5 5,6 26.15 26.45 0.08

10 2 5 0.5 8,3 15.43 15.41 0.02 9,3 15.33 0.02 0.5%

11 2 5 1.0 6,5 17.11 17.27 0.02 8,4 17.16 0.02 0.6%

12 2 5 1.5 5,6 18.23 18.34 0.02 7,5 18.29 0.03 0.3%

13 2 25 0.5 8,5 21.56 22.52 0.04 9,5 22.30 0.04 1.0%

14 2 25 1.0 9,6 24.96 25.35 0.06 10,6 25.33 0.05 0.1%

15 2 25 1.5 7,8 27.49 27.92 0.08 8,9 27.90 0.04 0.1%

16 2 125 0.5 9,6 26.82 28.56 0.12 10,6 28.15 0.07 1.5%

17 2 125 1.0 9,8 31.84 32.75 0.08

18 2 125 1.5 10,9 35.49 36.07 0.11

19 1 5 0.5 4,1 16.96 16.41 0.02

20 1 5 1.0 2,2 17.55 17.51 0.02

21 1 5 1.5 2,2 18.14 18.04 0.03

22 1 25 0.5 4,3 27.50 27.99 0.03 5,3 27.96 0.02 0.1%

23 1 25 1.0 5,3 30.81 30.72 0.06 6,3 30.65 0.05 0.2%

24 1 25 1.5 4,4 33.07 33.11 0.05

25 1 125 0.5 7,3 36.86 37.21 0.12 8,3 36.92 0.08 0.8%

26 1 125 1.0 4,5 42.75 43.64 0.14 7,4 43.19 0.17 1.1%

27 1 125 1.5 6,5 46.83 46.92 0.10

28 2 5 0.5 6,3 24.21 24.42 0.02 8,2 24.14 0.03 1.2%

29 2 5 1.0 5,4 26.48 26.60 0.02 7,3 26.18 0.03 1.6%

30 2 5 1.5 6,4 27.61 27.43 0.02

31 2 25 0.5 10,4 36.44 37.10 0.06 11,4 36.95 0.05 0.4%

32 2 25 1.0 10,5 42.85 42.91 0.12 11,5 42.85 0.07 0.1%

33 2 25 1.5 8,7 46.74 47.11 0.08

34 2 125 0.5 11,5 47.24 48.92 0.08 13,5 48.21 0.12 1.5%

35 2 125 1.0 10,7 56.53 57.73 0.16 11,7 57.37 0.11 0.6%

36 2 125 1.5 11,8 63.77 64.19 0.19 12.8 64.05 0.10 0.2%

Table 1: Numerical results. The optimal policy is only reported when it is di�erent than

the policy suggested by our algorithm.
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Summary

This thesis deals with computation of control policies for a number of di�erent inventory

systems. Inventories arise when demand and supply are not perfectly matched. Typically,

there are economies of scale by ordering a batch of products, rather than ordering one

unit for every demand. The supply may also be delayed by production or transportation

times, and therefore we need to maintain an inventory to satisfy demands when they occur.

Inventories are costly and therefore eÆcient control policies specifying how the inventory

should be replenished, are needed.

In this thesis we show how di�erent inventory systems can be modelled, and compute

control policies for these systems. The focus is on the modelling and optimization of

systems based on mathematical analysis, rather than the actual implementation of the

control policies, and the thesis is therefore theoretical rather than practical. Although

theoretical, all of our analyses is backed by numerical examples, where we illustrate the

performance of the suggested policies. One of the research objectives has been to keep

the suggested inventory policies simple. Simple policies are easier to understand and to

implement, and in many cases the cost di�erence between a simple policy and an optimal

policy is small. This can be veri�ed by numerical examples.

We do not attempt to model a full-scale supply chain, but focus on a few sub-systems

of the supply chain, where we �nd the available methods developed so far inadequate. The

following systems are analysed:

� An inventory system with several demand classes.

� A make-to-order system with several demand classes.

� A multiple-item, single-supplier inventory system.

� A two-echelon inventory system.

This thesis consists of a survey of the results obtained, and seven scienti�c papers, which

are described here:

Inventory rationing in an (s,Q) inventory model with lost sales and two demand classes.

In this paper, which is the �rst in a series of three, we deal with the management of

inventory systems with two demand classes. We suggest a critical-level policy which besides

the reorder point s and the order size Q consists of a critical level c. Demands from the

low-priority class are satis�ed only if the inventory level is above c. In this way it is possible

to reserve stock for future high-priority demand. We illustrate, by numerical examples,

that costs may be reduced with up to 10%, compared with a non-rationing approach.

Rationing policies for an inventory model with several demand classes and stochas-

tic lead times. We extend the analysis to cover several demand classes and stochastic
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lead times, and we moreover generalize the class of policies to include the optimal time-

remembering policies. Simple critical level policies have constant critical levels while the

critical levels of the time-remembering policy are allowed to vary over time. The analysis

is based on Markov decision theory and in a numerical study we analyze the di�erence

between the simple critical level policy and the optimal policy and �nd di�erences between

0-3%.

Restricted time-remembering policies for the inventory rationing problem. We investi-

gate a class of time-remembering policies which are restricted to be constant over intervals

of time. These policies are simpler from a practical point of view. A neighbor search based

on properties of the policy variables facilitates fast optimization and numerical results show

that the policies perform well.

Rationing of a congested multi-period make-to-order system. In this paper we apply the

rationing policies to a congested make-to-order system with several demand classes. In a

make-to-order system products are tailored to the actual order or job, and it is impossible

to keep inventory. The asset to be managed is instead the production capacity. Incoming

jobs must be either accepted or rejected upon arrival, after which the workload of the job

is allocated to the periods in the planning horizon. Simple and near-optimal policies are

discussed and evaluated in a numerical study.

Calculating can-order policies for the joint replenishment problem by the compensation

approach. We study the problem of coordinating an inventory system with several items

with the same supplier. When an item places an order other items can join this order

and thereby obtain a reduced cost of ordering. We introduce the compensation approach,

in which the bene�t of the discount opportunity of other items, is taken into account,

when an item considers to place an order. The new method is used to compute improved

so-called can-order policies for the joint replenishment problem.

The can-order policy for the periodic-review joint replenishment problem. The compen-

sation approach is, in this paper, applied to a periodic-review can-order policy. We focus

on examples with irregular demand, and show that the can-order policy, in opposition

to the general belief, has a strong performance, often better than the periodic-ordering

policies.

A two-echelon inventory model with lost sale. In the �nal paper of the thesis we discuss

a system consisting of one warehouse and several retailers. The prevalent assumption for

such systems is that demands not satis�ed immediately are backordered, since this leads

to a much easier analysis. However, in competitive markets, such demands may very well

be lost, and we therefore develop an iterative algorithm which computes near-optimal

base-stock policies for the system with lost sales.


