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Preface

Preface

The following collection of papers constitutes my Ph.D. Thesis submitted to
the Faculty of Science, University of Aarhus on August 17th 2001. The work
has been done under supervision of Professor Eva B. Vedel Jensen.

The first paper is an introductory review where I try to give an overview
of the seven accompanying, independently written papers. The papers intro-
duce and treat two spatial point process models allowing for inhomogeneity
and interaction. In the review, these two models are informally compared
with two other models.

Five of the papers have been published in, submitted to, or will be sub-
mitted to scientific journals. The papers have been written in collaboration
with Eva, Dr. Ute Hahn and Dr. Marie-Colette van Lishout, who have all
given their consent to the inclusion of the papers in the thesis.

During my studies, for one year beginning April 1999, I visited the Uni-
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and the others in the dynamic and diverse group around him, for making my
stay very enjoyable and scientifically fruitful.

Dr. Ute Hahn was a member of Adrian’s group during my stay in Aus-
tralia. Later, she joined Eva and me for nine months in Aarhus where she
was the main driver of the development of the local scaling model. I really
enjoyed and learned a lot from working together with Ute, who is a person
sharing my special way of thinking. She has become a dear friend, and was
a valuable support who always had time for me.

If not for my supervisor Eva and her constant encouragement and support,
scientifically as well as personal, this thesis would not have been possible. She
always had time, ideas, advice, and patience to give me in amounts reaching
far beyond what is expected of a supervisor.

I am also very grateful to the other staff and guests at the Statistical
Department at University of Aarhus. They all contributed to making my
daily life very pleasant.

Last but not least, I would like to thank my friends and my family for
being there for me, believing in me, and encouraging me. Especially Klaus
who kept me company during my stay in Australia and is the main reason
that I myself believe in what I am doing.
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Summary

Summary

Data sets consisting of positions in the plane or in space (point patterns) can
be modelled using spatial point processes. Often the points show dependence
in form of inhibition or clustering (interaction), and in addition a trend in
the intensity of the points (inhomogeneity) is often observed. My thesis
concerns the study of point process models that can describe interaction as
well as inhomogeneity.

The behaviour of a point process is usually measured relative to the ho-
mogeneous Poisson point process. Under this model the points are indepen-
dently distributed and the number of points in an area is proportional to
the size of the area. Inhomogeneous Poisson point processes can be used to
model point patterns where there is a trend but no interaction. The impor-
tant class of Markov point processes is very useful for describing interaction.
However, statistical tools developed for Markov point processes models have
mainly concerned homogeneous models.

The first part of the thesis is a review briefly describing four model classes
capable of modelling interaction as well as inhomogeneity. The models all
build on a homogeneous Markov model which is modified in order to in-
troduce a trend. For all models, the inhomogeneous Poisson point process
plays an important role. The most basic way to obtain a trend is to change
the reference process from a homogeneous Poisson point process to an inho-
mogeneous Poisson point process. In the first type of models, the trend is
obtained in this way. In the three other model classes, the trend is obtained
by position dependent thinning, transformation, and local scaling, respec-
tively. These models can also be defined with the inhomogeneous Poisson
point process as reference measure. The resulting point process models are
essential different. The review concludes with an informal comparison of the
models where their differences and individual strengths are emphasized, and
suitable fields of applications are suggested. However, when the interaction
is weak or the trend is small, then the differences between the four models
fade, and they might serve as alternatives of each other.

Two of the model classes considered in the review are the transforma-
tion models and the local scaling models. The main part of my thesis has
concerned the development of these two model classes and a study of the
statistical properties of the transformation models. The work on the trans-
formation models has been performed together with my supervisor, professor
Eva B. Vedel Jensen. The local scaling models have been developed together
with her, Dr. Ute Hahn (Institute of Mathematics, Augsburg University),
and Dr. Marie-Colette van Lieshout (Centre for Mathematics and Computer
Science, Amsterdam).
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Summary

The main contributions to the thesis are 5 papers written for journal
publishing. Three of these are on the transformation model, one on the local
scaling model, and one is a review paper that presents and compares the
statistical properties of the transformation models and the two model classes
for inhomogeneity and interaction also described in the review section of the
thesis.

A transformation model is a model for interaction and inhomogeneity
that differs from earlier suggested existing models, since the interaction is
position dependent. In one of the papers we argue that using the transfor-
mation model, the trend in a point pattern can be estimated without taking
the interaction into account. Since the trend is introduced into the model by
a transformation, it is therefore possible to transform the observed inhomo-
geneous point pattern into a homogeneous point pattern. Then well-known
analysis tools for homogeneous point patterns can be utilized to describe the
interaction.

A technical report is also attached to the thesis. The computational
challenges, involved in analysing a particular planar point pattern using the
transformation model, is described in details.

Since the trend is introduced into the transformation model by a deforma-
tion of a homogeneous point process, the interaction is of anisotropic nature.
Interaction of this type is appealing if the point pattern has been formed by
physical deformation, for instance under a growth process or under stretch-
ing/compression of the material containing the points. In other situations it
is of interest to describe interaction that looks similar in different areas, but
at different scale. This could be plants where the environmental conditions
causes some areas to be sparsely covered and other areas more densely. In
dense areas the plants stand closer than in sparse areas, so the point pattern
looks locally like a scaled version of a regular homogeneous point pattern.
The local scaling models are able to handle interaction of such type. As for
the other three mentioned models for inhomogeneity and interaction, local
scaling models are also obtained by modifying a homogeneous Markov point
process in order to obtain the trend. However, rather than deforming the
space where the points are living, (as is done for the transformation mod-
els), local scaling models are constructed by changing the measures by which
distances, areas, and volumes are are calculated. Thus, the usual volume
measures are replaced by locally scaled measures, obtained by using a scal-
ing function. We prove that in areas where the scaling function is constant,
the local scaling coincides with global scaling. Statistical properties of this
model still need to be investigated. However, we have reasons to believe that
non-parametric kernel estimation of the intensity can be used to estimate the
scaling function.
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Introduction

My Ph.D. studies have been devoted to the study of point process models al-
lowing for inhomogeneity and interaction. During my Master Thesis, Eva B.
Vedel Jensen and I developed the TIM models (inhomogeneous Markov point
processes by transformation). The papers [A], [B], and [D], the technical re-
port [F], and the manuscript [G] introduce and explore the TIM models. In
the paper [C], the TIM models and two other model classes allowing for in-
homogeneity and interaction are compared. During the last year, Ute Hahn,
Eva B. Vedel Jensen, Marie-Colette van Lieshout, and I, have worked on
developing yet a fourth such model class, which is introduced in [E]. Thus,
we have the following four model classes that can handle inhomogeneity as
well as interaction (numbered as in [C]),

I: 1st order

II:  thinning

III:  transformation/TIM
IV: local scaling

In this review we concentrate on presenting and comparing these four model
classes. The statistical properties of models of type I, I, and III, were studied
and compared in [C]. Type IV models have just recently been introduced, and
statistical inference need to be developed. The main focus of this review will
therefore be on studying the four model classes with emphasis on their diffe-
rences, similarities, individual strengths and possible fields of applications. In
particular we examine the shape of the influence zones (neighbourhoods) of
points, since the shape has directly influence on the nature of the interaction
between points in the patterns, and therefore also on the fields of application.

In Chapter 1 some basic concepts for point processes are presented. Next,
type I and IT models are shortly introduced. In Chapter 2, the type III mod-
els are presented and we motivate why we found it necessary to develop a
new model class. In Chapter 3, the type IV models are defined and we con-
sider some models with similar properties that came before the local scaling
models. Finally, Chapter 4 summarizes the important features of the four

1



Introduction

model classes and compare them in an informal way with a view towards
data analysis.

The appendix contains a proof and two examples. Only the most persis-
tent reader is advised to read the appendix. The subjects considered here are
of a technical nature and the results are solely presented for completeness.



Chapter 1

Type I and 11

Point patterns with inter-point relations and position dependent features can
be modelled using point processes. Inhomogeneous Poisson point processes
are capable of modelling a trend in a point pattern, but given the number
of points in the process, the points are independently distributed. Markov
point processes are powerful when the aim is to model interaction between
points. Homogeneous Markov point processes have been thoroughly studied
over the years, see e.g. Ripley and Kelly (1977), Baddeley and Mgller (1989),
Geyer (1999), and van Lieshout (2000). This thesis explores four model
classes that are able to describe both inhomogeneity and interaction in a
point pattern. The four model classes all take their point of origin in the
homogeneous Markov point process models, and modify them in different
ways to introduce inhomogeneity. For all the models, the inhomogeneous
Poisson point process plays an important role.

In this chapter we introduce the class of Markov point process models and
the concept of homogeneity. A necessary condition that ensures homogeneity
of a Markov point process is also given. Furthermore, we shortly present the
inhomogeneous models of type I and II.

1.1 Homogeneity and Markov point processes

Let X C R™ be a full-dimensional bounded set and let \,, be the Lebesgue
measure in R™. The state space for a finite point process on X is {2y, the set
of finite subsets of X. We will assume that a point process has a density with
respect to the Poisson process on X with intensity measure A,. In Mgller
(1999) or van Lieshout (2000) a detailed description of point processes can
be found.

Notice that in [A] and [C] X C R™ is a k—dimensional manifold equipped

3



Chapter 1. Type I and II

with the Hausdorff measure, ¥ < m. In many situations it is possible to
extend to this set—up, but for simplicity we concentrate on full-dimensional
sets in this review.

Typically a point process defined on the whole R™ is called homogeneous
or stationary if its distribution is invariant under translation, cf. Stoyan et al.
(1995) and van Lieshout (2000). In [D, Definition 2.1] an equivalent definition
is given for a point process X on a bounded full-dimensional set having a
density f. According to this definition, X is homogeneous if f is of the form

flz) =1(z € Qx)g(z), (1.1)

where ¢ is translation invariant and defined for all z € Qgm.

If X is a k—dimensional manifold in R™ with k£ < m, then (1.1) need to
be modified. As an example, point processes on the unit sphere are studied
in [A] and [C]. Translating points on the unit sphere correspond to rotating
the sphere. For more complicated manifolds, there might also be straight
forward modifications.

A Markov point process on X has a density of the form

f@) =]]ek), =€, (1.2)

zCx

cf. e.g. Ripley and Kelly (1977). Here ¢ is a clique interaction function with
respect to a reflexive and symmetric relation ~ between points in X'. We call
z € Qx a clique if all points in z are related by ~. An interaction function
has the property, that if ¢(z) # 1 then z is a clique.

The following proposition expresses homogeneity of a Markov point pro-
cess in terms of the interaction function. The proof of the proposition can
be found in Section A.1 of the appendix.

Proposition 1.1 Suppose X is a Markov point process on X .
Then X is homogeneous in the sense of [D, Definition 1], if and only if
there exists an interaction function for X of the form

p(z) = 1(z € Qx)po(x),
where @o(z) is translation invariant and defined for all x € Qgm.

The neighbourhood of a point n € X with respect to the relation ~ is
defined as the set of points in A that are related to 7,

N(n)={{eX:&~n} (1.3)

4



Chapter 1. Type I and II

If ~ is defined for all pairs of points in R™ and is translation invariant,
ne~é<s=n+c~E+ce, VceceR”,

then the neighbourhood of a point is the same no matter the location of the
point, N(n+c¢) = N(n)-+c. This property seems to be a natural requirement
for a homogeneous Markov point process, but is not necessarily fulfilled. A
simple counter example is the interaction function defined by ¢({n}) = a and
¢(z) = 1 for n(z) > 2. This is a translation invariant interaction function
with respect to any reflexive relation. Thus, a Markov point process with
this interaction function is homogeneous according to Proposition 1.1, but
the relation can be of any form and is therefore not necessarily translation
invariant. However, notice that the interaction in this particular example
does not play any role (the process is a homogeneous Poisson point process).

Henceforth we will only consider homogeneous Markov point processes
with translation invariant neighbourhood-relation. Notice that the most
commonly used relation, the distance relation,

ne~ & lln=£ll <,

r > 0, is a translation invariant, reflexive, and symmetric relation defined on
whole R™.

The following simple condition on two point sets {n,£} € Qrm ensures
that ~ is translation invariant if X is homogeneous,

o({n,&}) #1=n~¢

Notice that the implication from left to right is always fulfilled.

In what follows, we distinguish between first order interaction terms
©(n) = ¢({n}) and the higher order terms, ¢(z) where n(z) > 2. Since
the relation is reflexive, one point sets are cliques and the density contains a
first order term for each point in the process. The density f(z) of a homo-
geneous Markov point process therefore contains the term ™® say, where
8> 0.

1.2 Inhomogeneous Poisson reference process

Typically densities of point processes are defined with respect to the unit
rate Poisson point process, the Poisson process with intensity measure A,,.
The unit rate Poisson point process is thereby used as reference process and
inhomogeneity and interaction of a given point process is measured relative



Chapter 1. Type I and II

to the unit rate Poisson. Dealing with inhomogeneous models, it might be
more obvious to use an inhomogeneous Poisson point process as reference.

In order to introduce inhomogeneity into a homogeneous model X, one
option is therefore to replace the unit rate Poisson reference point process
with an inhomogeneous Poisson point process. Suppose that X is a homoge-
neous point process on X with density f(z) = 1(x € Qx)g(z) with respect
to the unit rate Poisson point process. Here, following the notation of [E],
the superscript refers to the reference process. Then, for any measurable
function A : X — R, we can define an inhomogeneous point process Y on X
by the density

) =1y € Qux)g(y), (1.4)

which is the density of X but now with respect to the inhomogeneous Poisson
point process with intensity measure ,

H(A) = / A Anldn), A € By,

or equivalently, the inhomogeneous Poisson point process with intensity func-
tion A. In the above formula, B,, denotes the Borel sets in R™.
The inhomogeneous Poisson point process with intensity function A has

density
e~ Jx(A(n)—1)dn H (),
ney
with respect to the unit rate Poisson point process. Here dn is short for

Am(dn). The density of Y can then be formulated with respect to the unit
rate Poisson point process as follows,

fiy) = e SO0 TT A 1(y € Qx)g(y)- (1.5)

The considerations above will turn out useful when the connection be-
tween the models for inhomogeneity are discussed. We return to this in
Chapter 4 after having presented and discussed the models I through IV one
by one.

1.3 Type I: First order term

Let X be a homogeneous Markov point process with interaction function ¢.
The process Y defined by (1.4) then has density, cf. (1.5),

fr) =allGrm) [ e, yean, (1.6)

ney 2Cyn(z)>2
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Chapter 1. Type I and II

where « is the normalising constant and 5 = ¢(n). This is a Markov point
process with position dependent first order terms 1(n) = BA(n), and trans-
lation invariant higher order terms 9(z) = ¢(z). Models of this type have
been studied by Ogata and Tanemura (1986) and Stoyan and Stoyan (1998).

The neighbourhood relation between the points in X, and thereby also in
Y, is translation invariant. The intensity of the points varies over location.
Such models may be natural for inhomogeneous structures where the inter-
point relation does not depend on the position. This could for example be
equally sized cells with a trend in the intensity. A hard-core model with
constant interaction range but a position dependent term might be a good
description in this particular situation.

If the density of type I models is expressed relative to the inhomogeneous
Poisson point process with intensity function A, then it equals the density
of the homogeneous template Markov model. This means, that the inhomo-
geneity enters through the reference measure. However, it should be noted
that the intensity in a type I inhomogeneous point pattern is not represented
by A. Thus, forcing more points into a type I point pattern with inhibition
between the points will result in a more homogeneous point pattern since
it is 'cheaper’ (meaning that the density is higher) to have extra points in
sparse regions where there are more room left for points than in dense re-
gions. Thus, with sufficiently high point intensity, a type I model will appear
homogeneous. This of course depends on the strength of the inhibition.

1.4 Type II: Thinning

Type II inhomogeneity is obtained by thinning a homogeneous Markov point
process with a non-constant thinning function. Points are thereby deleted
with a position dependent probability. This model class was introduced and
studied by Baddeley et al. (2000).

Formally, let p : X — [0;1] be a thinning function and let X be a homo-
geneous Markov point process. Then the process defined by

V={neX:U,<pn)}

is an inhomogeneous point process of type II. Here U, € [0,1], n € X, are
independent and uniformly distributed random variables, generated indepen-
dently of X.

A very appealing property of this model is that the intensity of YV is of
the form

Ay (n) = Ax(n)p(n), (1.7)

7



Chapter 1. Type I and II

where the intensity Ax of X is approximately constant. Thus, in contrast to
type I models, type II models do therefore not become homogeneous when
the overall point intensity increases, since the trend is determined by p only.

The property (1.7) means that non-parametric statistical methods can be
used to estimate the thinning probability in the model for a given observed
point pattern, see e.g. Silverman (1986). A version of the K-function for
type II inhomogeneous point patterns can also be constructed. See Baddeley
et al. (2000) for more details.

The thinned point process Y is not Markov, but this might not be im-
portant.

Type II models can be used for modelling of patterns where a recent and
natural thinning has occurred. This could be death in patterns consisting of
animals or plants. Thus, consider an old forest of trees with equal environ-
mental conditions all over. A homogeneous hard core model could describe
this. Suppose now that a chemical factory outside the forest emits poisonous
gases. The concentration of gases in the air rarefies as the distance to the
factory increases. Trees are therefore more likely to die because of pollution
the closer they are situated to the factory.



Chapter 2

Type 111

The neighbourhoods of a type I process are the same no matter the location.
However, the interaction structure changes with location, since the proba-
bility of finding another point in a neighbourhood is smaller in sparse areas
simply because there are fewer points. Therefore points will interact more in
areas with high point intensity than in areas with low point intensity. The
same phenomenon is present in type II models, since in areas where many
points are deleted, the interaction will weaken more than in areas where only
few points are deleted.

Thus, the interaction structure of type I and II models is location depen-
dent. However, many point patterns with inhomogeneity and interaction are
not well described by type I and II. Environmental differences such as varying
access to water and nutrition might cause plants to stand closer where the
conditions are good. This suggests a model where the inter-point relation
and thereby the neighbourhoods of the points are position dependent. In
this chapter we will consider the type III model, which is an example of a
model with this feature.

2.1 Type III: Transformation (TIM)

Inhomogeneous point processes by transformation was introduced in [A].
Such a process is obtained by applying a 1-1 transformation on a homo-
geneous point process. Let X be a homogeneous point process and let
h : X — Y be a bijective differential mapping with non-constant Jacobian.
Here both X and Y are full-dimensional subsets of R™. Then Y = h(X) is
an inhomogeneous point process.

If X is Markov with respect to the relation ~, then Y is Markov with
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respect to the induced relation
na &= h7(n) ~h7 (). (2.1)

Notice that this relation is position dependent if A is non-linear. Transfor-
mation inhomogeneous Markov models are also called TIM models, cf. [D],
and in this review they are referred to as type III models.

The density of the type III model becomes

fily) = e BT ODETTgp ) [T e 1(2), v e Qy,

ney 2Cy

Here, Jh~! is the Jacobian of the inverse transformation hA1.

Notice that the transformation model can also be defined by the corre-
sponding homogeneous density but now with respect to the inhomogeneous
Poisson point process with intensity function Jh~! and with z exchanged
with A7t (y), see (1.5).

2.2 Features of type III models

The strength of the transformation models, in our opinion, lies in the fact that
the inhomogeneity is obtained by a transformation; For an inhomogeneous
point pattern y in ), suppose that we can find a transformation h: X — Y
such that z = h~'(y) is a homogeneous point pattern. Well-known non-
parametric and parametric analysis tools of homogeneous processes can then
be utilized to model the interaction in x.

The challenge is to find such a transformation. The Papangelou condi-
tional intensity, cf. e.g. van Lieshout (2000), of the transformed point process
Y takes the form

Ay (m59) = Jh™ () Ao (™' (0); R 7H(y)), me Y,y € Qy,

where A\pom is the Papangelou conditional intensity of the corresponding ho-
mogeneous model. Thus, there are reasons to believe that the intensity func-
tion of Y is approximately proportional to the inverse Jacobian,

Ay (n) o Jh™(n).

Non-parametric methods can be used to estimate the intensity function of Y.
Then finding the transformation is reduced to solving a differential equation.
In essence, the interaction is ignored and the point pattern is treated as an
inhomogeneous Poisson point pattern in order to estimate the trend. Such

10



Chapter 2. Type III

a procedure is common practice in the analysis of point patterns, cf. e.g.
Baddeley et al. (2000).

In [D] this approach has been examined in a parametric likelihood set-
ting. It is argued that the estimation of the transformation parameter
can be based on the inhomogeneous Poisson reference process with intensity
function A\p = Jh, ! Formally, suppose that the density of the corresponding
homogeneous model is parametrized by ¥ € ¥ and the transformation is
parametrized by # € ©. Then the likelihood function for (,) decomposes
as follows,

LO,v%;9) = Lo(0;y) Liom(¥; by 1 (),

where Ly(6;y) is the likelihood function for the inhomogeneous Poisson ref-
erence process with intensity function Jh,"' and Lyom(¢; ) is the likelihood
function for X when z is observed. This decomposition has important con-
sequences for the statistical inference.

In [D] we restrict attention to the important class of exponential type I1I
models where ) = X and the inverse Jacobian of the transformation is of
exponential form

Thy'(n) = BOD, pe X.

Here 7: X — R and # € © C R'. The partial likelihood L, takes the form
Lo(0;y) = B(6)" e,

where ¢(y) = >_ ., 7(n). The estimator of 0 based on Lg is denoted 0o. Tt is

argued in [D] that fy can be used as estimate of the inhomogeneity parameter
0. It is easy and fast to compute 6. Next, ¢ can be estimated using the
homogeneous likelihood Lyem (+; hefol (v)).

The type IIT models are somewhat restrictive since both the inhomoge-
neous intensity and the inhomogeneous relation are determined by the trans-
formation. Furthermore, the transformation is usually only defined on X.
Extending the space means therefore to change the transformation. This is
of no importance if the observed point pattern lives on X only, but if X is
an observation window of a larger space, then the restriction may seem awk-
ward. For simple transformations this problem has, however, a satisfactory
solution.

11



Chapter 2. Type III

2.3 The shape of the neighbourhoods

The neighbourhoods of the induced relation are the original neighbourhoods
transformed,

N(pm)={&:Exny={:h71(E) ~ b (n)}
={h(&):E~h )} =h({E:E~RTH)}) =R (N(RT (n);~)) -

The induced neighbourhoods are usually anisotropic, i.e. non-spherical. As
an example, in Figure 2.1 (a) a realization of a type III model with inhibi-
tion between the points and exponential increasing trend along the vertical
axis has been plotted together with the induced neighbourhoods. Notice the
anisotropic nature of the neighbourhoods. The neighbourhoods of the origi-
nal homogeneous point pattern were all balls of the same size. The neighbour-
hoods are deformed in the following way. On horizontal lines, the intensity
is constant. The first coordinates of the points are not transformed, and the
widths of the neighbourhoods are therefore maintained and all identical. The
trend is in the vertical direction and the heights of the neighbourhoods are
therefore changed. In dense areas, the heights have been compressed whereas
they have been elongated in sparse areas.

Neighbourhoods of this type are appealing if the point pattern has been

(a) Unit square (b) Unit disc

Figure 2.1: Type III point patterns plotted together with their neighbourhoods. The first
point pattern is taken from [C, Figure 5 (b) and (c)]. The point pattern is here plotted
together with its neighbourhoods and the pattern has been rotated 90 degrees. The point
pattern in (b) is from the same type III model as the point pattern in [C, Figure 1 (b)].
The parameters are (8,~,r,6) = (500,0.01,0.15, —3).

12



Chapter 2. Type III

formed by deformation, for instance under a growth process or under stretch-
ing/compression of the material containing the points. (In such a setting,
it is also natural that the space is bounded). An example, from Geology,
is a layer of soil containing some particles. It is reasonable to assume that
the degree of particle compression increases with depth, and that there is
no trend parallel to the layer. Thus, the trend is perpendicular to the layer
where there are natural boundaries. Since there is no trend parallel to the
layer, it makes no difference if the space is bounded in this direction, and a
part of the space can therefore be considered. Another example, from Biol-
ogy, is surface covering layers, such as skin, membranes, and cartilage. Here,
there is usually a trend perpendicular to the surface and none parallel to
the surface (personal discussion with Hans Jgrgen G. Gundersen, see also
[B, Figure 1] where a data set of such type is shown). Thus, the space is
bounded in the direction of the trend.

The neighbourhoods of the point pattern shown in Figure 2.1 (a) have
shapes that are very different depending on the second coordinate. For other
data sets, we may need a model where the variation in shape is more mod-
erate. Consider the point pattern in Figure 2.1 (b). This is a realization of
a type III model where the inhomogeneity is in the distance to the centre of
the disc. Such models were studied in [A] and [C].

Let us compare the neighbourhoods of the two point patterns in Fig-
ure 2.1. In both examples let the height of a neighbourhood be measured
in the direction of the trend and the widths be measured in the direction
where the trend is constant. Thus, for the point pattern in the unit square,
the heights are measured in the second coordinate direction and the widths
in the first coordinate direction. For the point pattern on the unit disc, the
heights are measured on the lines through the centre and the widths are mea-
sured on circles. In both point patterns the heights increases in the distance
from the second axis and the centre, respectively. In the unit square, the
widths are unchanged and therefore constant. On the unit disc, the widths
are also increasing in the distance from the centre. Thus, the point pattern
on the unit disc have neighbourhoods of more similar shapes than the point
pattern in the unit square.

The reason for this difference is very simple. Transformations move the
points. In the unit square, the points are moved from one horizontal line to
another. On the disc, the points are moved from one circle to another. The
lines in the unit square all have length 1. The circles have different radii.
Thus, on the disc the points, and thereby the neighbourhoods, have to spread
out when the points are moved to a circle with larger radius and contract
when the new radius is smaller.

Notice that the neighbourhoods of the point pattern in the disc are still
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Chapter 2. Type III

anisotropic. Furthermore, the local structure of a neighbourhood depend on
global features. The behaviour described above, where the heights as well
as the widths increase, depend on the transformation. If instead we would
have increasing intensity in the distance from the centre, then the heights
would decrease and the widths increase. This may be attractive for certain
data sets, but a model where the shapes of the neighbourhoods depend on
local factors and the neighbourhoods are of similar shape would be desir-
able in other situations. Thus, the type III model class can model position
dependent interaction structure but does not cover all types of position de-
pendent interaction structure. Other models for such interaction structures
are therefore needed.

14
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Type IV

In this chapter, we discuss inhomogeneous point process models where the
trend is arbitrary and the shape of the neighbourhoods depends only on
local factors. The variation in shape is therefore more moderate. The main
example is the class of type IV models, the local scaling models. Furthermore,
we will consider some of the models that came before the type IV models.

3.1 Type IV: Local scaling

In the following we will give a short introduction to the type IV models,
the local scaling models. For more details the reader is asked to consult [E],
where local scaling is studied. A locally scaled point process has the property
that the process locally looks like a scaled version of a homogeneous template
process.

One of the concepts that plays a crucial role in the definition of these
models is scale-invariance. A function ¢(-; v*) defined on Qgm, depending on

a set of measures v* = (19, ..., ™), is called scale-invariant if for all z € Qgm
and all ¢ > 0,

glez;vy) = g(a;v7), (3.1)
where v = (12,...,v™) and v is the scaled version of %, v4(A) = vi(c™A)

for any set A€ Byand d=0,...,m.

This concept is interesting because most homogeneous point processes
have a density f(-) which is the restriction to 2y of a scale-invariant function
g(;v*), depending on v*, where v? is the d-dimensional Hausdorff measure
in R™, d =0,...,m. Notice that then v™ = \,,.

A locally scaled process is obtained by modifying a homogeneous template
process X by replacing global scaling (3.1) by a scaling function ¢ : R™ — R,

15
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and globally scaled Hausdorff measures by locally scaled versions

vi(A) = / ()~ (du),

for any set A € Bgand d =0,...,m. A locally scaled process X, on ) with
template process X has density of the form, cf. [E, Definition 3.3,

) gy v)), yeQ,

m

where \(n) = ¢(n)~™.

One of the motivations for introducing the definition is that in case ¢
is constant, then f)’\(c is actually the density of the globally scaled process
X.=cX on Y = cX. Note that global scaling can be obtained as a trans-
formation n — cn, whereas local scaling in general does not correspond to a
transformation.

In [E], local scaling of two central Markov model classes, the distance-
interaction processes and the shot noise processes, are discussed. It is shown
that the Papangelou conditional intensity of the locally scaled process satis-

" Ax.(nz) = Ax (%n) %77)) , n¢az,

if c(€) = ¢(n) for all n € b(n, c(n)r). Here r > 0 is the interaction distance for
X which, in both examples, is Markov with respect to the distance relation

n~¢&e=ving)<r (3.2)

Here [n, ] denotes the line segment between the two points and v' is the
length measure, v'([n,£]) = ||n — &||- The locally scaled processes thereby
behave locally like a scaled version of the template process X.

Notice that type IV also covers non-Markovian point processes. However,
in order to model interaction, we concentrate on the case where the template
process is Markov. In [E, Appendix] it is shown, that then the locally scaled
process is also Markov. In the general case, the relation appears very com-
plicated. However, for the two mentioned model classes above, the relation
becomes very nice as we will see in the following two sections where these
two classes are studied.

3.1.1 Distance-interaction processes

A very useful class of homogeneous Markov point processes are the distance-
interaction processes, characterized by the density

fx@) o @ I (D), =€, (3.3)

2Cx,n(z)>2
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where

D(z) = {v'([n.€)) : {n, €} C 2},
is the set of pairwise distances between points in z. Notice that ° is the
counting measure, v°(z) = n(z). The class of distance-interaction models
cover the pairwise interaction models and the triplets process, cf. Baddeley
and Turner (2000) or van Lieshout (2000), and Geyer (1999).

The right hand-side of (3.3) is of the form g(x;v*), which a is scale in-
variant function depending on the 0— and 1-dimensional Hausdorff measures.
Accordingly, the locally scaled distance-interaction process has density of the
form

fr@) ocgly;vl) =879 [ @De2), ye,

2Cy,n(y)>2
where 12(-) = n(-) and
Dc(z) = {ve(n.€]) : {n, €} C 2}

is the set of pairwise distances measured with the locally scaled length mea-
sure

v ([, €]) = /[ el =yl / cnrtE—n)d.  (34)

Since X is Markov with respect to the distance relation (3.2), then the
locally scaled process is Markov with respect to the scaled relation

N~ &= () <r (3:5)

3.1.2 Shot noise processes

A homogeneous shot noise process is Markov with respect to the relation
1 1

Notice that this relation is the distance relation (3.2). The locally scaled
shot noise process is Markov with respect to the relation

ne~§ < bc(nv %T) N bc(§a %T) i @,

which is of similar form as the homogeneous relation, but where the balls are
replaced by scaled balls

be(n,d) = {€ € R™ : v, ([¢, n]) < d},

The shape of the scaled balls depend of course on the scaling function, but
the balls are always star-shaped with respect to the centre-point. See [E] for
more details.
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3.1.3 Approximation of local scaling

Evaluating the function g(z;v}) often involves computation of complicated
integrals. As an example, for the class of distance-interaction processes we
need to compute the scaled lengths of line segments, that is integrals of the
form (3.4). If ¢ is of complicated form, then an approximation is useful.
In [E, Section 6], approximations of the locally scaled distance-interaction
processes and the shot noise processes are suggested. In [E, Figure 5] neigh-
bourhoods corresponding to the relation (3.5) are plotted, and in [E, Figure
6] approximations of the same neighbourhoods are plotted. The approxima-
tion is in this case very close. For a given point configuration, the difference
is hardly noticeable.

In the following two sections we run through other models which also
have neighbourhoods of similar shape.

3.2 Type III related model

Consider the homogeneous pairwise interaction process with density
@)y I8 TT eln-élD.
ney  {n&}Cy
The corresponding type III model has density
Ry I8 I elinm) —r @, (3.6)
ney  {n&}Cy

where A = Jh~L.

In [C] the so-called type III related models were proposed, where the
expression h™(n) — h™*(€) in (3.6) is replaced by Jh™'(n)4Jh™ (€)% (n — &),
g > 0. With this modification it is no longer needed to find a transformation
satisfying the differential equation

A(n) = Jh™!(n)

where A is known.

A type III related model is not a type III model. For ¢ = 1/(2m) it
is however an approximation of a locally scaled pairwise interaction process
with ¢(-) = [Jh~1(-)]7*/™. Thus the integral in (3.4) is approximated by

1 1
[ et tie=n) = [+ ote =)
= thl(n)l/(Qm)thl(f)l/@m).
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Figure 3.1: Type III related point pattern from [C, Figure 5 (b) and (c)]. The point pattern
is plotted together with the neighbourhoods and have been rotated 90 degrees.

The point pattern in [C, Figure 5 (c)], shown in this review as Figure 3.1
with neighbourhoods, is a type III related Strauss model with ¢ = 1/(2m) =
1/4. Notice that the neighbourhoods are of similar shape but different sizes.
Compare with the corresponding type III model shown in Figure 2.1 (b).

3.3 Relation-inhomogeneity

Inspired by the way the inhomogeneity enters into a type III model, an early
attempt to make a new model for inhomogeneous point processes with inter-
action, was based on modifying a homogeneous Markov point process with
a density that only depends on the points through a translation invariant
relation ~. Examples are the Strauss process, see (A.4) in the appendix,
and the triplets process. An inhomogeneous model is obtained by replacing
~ with a position dependent relation ~ and change the reference measure
to the distribution of an inhomogeneous Poisson point process with inten-
sity function A. We called such models relation-inhomogeneous. Obviously
type III models are relation-inhomogeneous with A = Jh~! and < as the
induced relation (2.1). Thus, in order to create models with neighbourhoods
that do not vary too much in shape, the challenge was to create suitable
inhomogeneous relations.

In the following we consider two examples of position dependent relations
that produces neighbourhoods that are roughly of similar shape. The first
example was discussed in [G] and concerns the construction of an inhomoge-
neous point process with decreasing intensity in the distance from a planar
curve ¢ = ¢(t), t € (0,1). Such a trend was obtained for type III processes,
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Figure 3.2: The set (3.7) with c(t) = (t,v/) and a = 0.25. The relation is given in Section
A.2.1. Here R=0.005 and #=10. To the left, a realization is shown where the model is
a Strauss model with respect to the inhomogeneous relation. Here v=0.05 and we have
conditioned on the number of points, n=300. To the right, the indicated areas are the
neighbourhoods of points in X for the indicated points. The dotted line illustrates the
symmetry of the relation.

see [G, Figure 1]. The processes are defined on the set
X={neR :d(nc)<al, (3.7)

where d(7, ¢) is the perpendicular distance from 7 to ¢, and a > 0, see [G]. The
type III induced neighbourhoods are comparable to those in Figure 2.1 (b).
Thus, when the heights of the neighbourhoods increase, then the widths
are almost unchanged. As in Section 2.3, the height of a neighbourhood is
measured in the direction of the trend (lines perpendicular to ¢), and the
width is measured in the direction where there is no trend (curves in fixed
perpendicular distance to c).

The point pattern shown in Figure 3.2 is a realization of a relation-
inhomogeneous Strauss point process on X. The neighbourhood relation
on this set is created such that the neighbourhoods are convex sets and such
that the distance from a point 7 to a point on the border of its neighbourhood
& € ON(n) is increasing in d(£,c). In this way we obtain decreasing point
intensity in the perpendicular distance to the curve. Furthermore, this fea-
ture implies that the heights and the widths of the neighbourhoods increase
similarly, see right hand-side of Figure 3.2. In Section A.2.1 of the appendix,
the explicit form of the relation is given.

A more direct approach to obtain neighbourhoods of similar shape is to
define the neighbourhoods and then define the relation via the neighbour-
hoods. Suppose that for each point 7 € R™, a bounded set N(n) is defined
satisfying

n€N(n) and ne N(§) £ N(n).
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(a) N(n) (b) Boundary points (c) Scaling

Figure 3.3: Circular neighbourhoods. In (a) a single neighbourhood is shown. In (b) and
(c) neighbourhoods of different location have the same shape but different sizes. In (b) it
is shown that points on the border determines other neighbourhoods successively. In (c)
it is illustrated that the neighbourhoods give rise to a horizontal trend.

Then
n~ €<= neN©).
is a reflexive and symmetric relation with neighbourhoods N(-).
It is easy to control the shape of the neighbourhoods when they are defined
directly. One option is to let the neighbourhoods be scaled versions of each

other,
N(n) =c(n)N(0) +n for allnp € X. (3.8)

Notice that this implies that ¢(0) = 0. It seems natural to assume that the
neighbourhoods fulfil
n € ON(&) <= £ € IN(n), (3.9)

see Figure 3.3 (b). Then the function ¢ in (3.8) is uniquely defined. This can
be seen using (3.9) and induction; For £ € ON(0) we have that 0 € ON(n).
Knowing one point on dN(n), the set N(n) is known because its shape is
known.

In Figure 3.3, the neighbourhoods are discs,

N(O) = b((GaO,O),aO), ag >0, —-1<6<I1.

Notice that the point is not the centre of the disc, but is moved a fraction
f away from the point along the first axis, see Figure 3.3 (a). The case § =
0 corresponds to the homogeneous distance relation. The neighbourhoods
defined by (3.9) and (3.8) are uniquely determined by

N(n) = b(n + (Ba(m),0), a(m))- (3.10)
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where a(0) = ao and

26
a(u) = mu#— ap, u€ER

The neighbourhoods have increasing size in the first coordinate direction and
constant size in the second order direction. Thus, this model give rise to a
trend in the first coordinate direction, see Figure 3.3 (c). Notice that the
larger the 6, the more inhomogeneity. The point pattern in Figure 2.1 (b)
has a similar trend. The difference between these two models is quite obvious.
The new model has neighbourhoods of the same shape.

It is interesting to notice that this example is a special case of the type III
related model. The neighbourhood relation corresponding to (3.10) becomes

naE = (0,8 < Mao(m)*Nga (1) (3.11)

where

Ao,a(v) = a(u)V1 — 02

The type III related model has relation
N~ €<= Jh () TR E) In - €l <, (3.12)
see Section 3.2. Thus, the relation (3.11) is of form (3.12) with
r=1, ¢=1/2 and Jh'(n) = Aggo(m) ™.

Consequently, the circular neighbourhoods is an approximation of local scal-
ing. A result like this is expected since the neighbourhoods actually are
scaled version of each other. In Section A.2.2 of the appendix an extension
of this example can be found.

22



Chapter 4

Informal comparison
of type I, 11, III, and IV

The order in which the four models have been numbered and presented is
historical. Models of type I have been around longest. Type II and III were
developed simultaneously. Type IV is brand-new. In type II models, the local
intensity is proportional to the thinning probability. Type III introduced po-
sition dependent neighbourhoods which could not be modelled using neither
type I nor type II. Type IV introduced neighbourhoods only depending on
local factors. This feature could not be modelled using type III. It is impor-
tant to realize, that this does not mean that the model classes have become
more and more general and therefore include each other successively. As an
example, a point pattern with identical neighbourhoods can be modelled by
type I but neither by type III nor type IV, since identical neighbourhoods in
these two model classes imply no trend, hence homogeneity.

When the homogeneous template model is Poisson, then the four model
classes coincide. Suppose that X is a homogeneous Poisson point process
with intensity 3. Then type I through IV models are all inhomogeneous
Poisson process models with intensity functions

I BAn)
I Bp(n)
1. gJh™'(n)
IV: Be(n) ™.

Let us compare the three Markov model classes, type I, III, and IV. They
can all be thought of as having first order terms 3 and densities with respect
to the inhomogeneous Poisson point process with intensity function \, Jh™!,
and ¢™™, respectively. Restrict attention to the distance-interaction models,
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see Section 3.1.1 of this review. Then the densities of type I, I, and IV are
all of the form
) o @ T #(D(2),
2Cy;n(2)>2
where D(z) = {d(n,€) : {n,&} C z} is the set of pair-wise modified distances,
and,

L p= d(n, &) = |ln —¢||
UL p=Jh™",  dn,&=|h"(n)—h " E)|

1
V: w=c™ dm€) =l €| / o(n + t(€ — ) \dt.

For type III or IV to coincide with type I, we have h is the identity or ¢ = 1,
respectively. Thus, the homogeneous model.
For type III and IV to coincide, we must have

1B ) — B = I — €] / (Th"(n + t(€ — )™ dt.

This is fulfilled if m = 1, but not in general for m > 2. It might be a good
approximation for some choices of h. However, it emphasizes that the type
III models are not a subclass of the type IV models.

4.1 Differences

To get a better intuitive understanding of the differences between the four
model classes, it is useful to consider a simple example; Let the homogeneous
template model be the hard-core model with respect to the distance relation.
Thus, realizations of this model are patterns consisting of equally sized non-
overlapping balls and the number of ball centres in an area is proportional
to the size of the area.

Modifying such a process using the type I approach, the shapes and sizes
of the balls are maintained but the number of balls now changes with lo-
cation. Thus, realizations of the type I hard-core model are patterns with
equally sized non-overlapping balls with a trend. Forcing many balls into
the pattern (high intensity of the template process) the pattern will appear
more homogeneous.

In type II, balls in the template process are deleted with a position de-
pendent probability. As for type I, we get patterns with non-overlapping
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balls of equal sizes and a trend. Forcing more points into the pattern, has
a constant effect on the intensity since the trend is solely determined by the
thinning probability.

The type III models is a deformation of the matrix containing the balls. In
some areas the matrix is stretched. The balls are stretched correspondingly
and the intensity of balls decreases since the size of the area increases but
the number of balls is maintained. In other places the matrix is compressed,
and here the balls are compressed and the intensity increases. We get point
patterns with deformed balls and corresponding intensity.

For the type IV model, we scale the template locally with some scaling
function. In areas with constant scaling factor, we therefore again find balls,
but now with scaled radius. If ¢ < 1, then the radii are smaller than in
the template, and the intensity will correspondingly be higher for the same
reason as in type IIL. If ¢ > 1, the radii are larger and the intensity lower.
In areas with non-constant scaling factor, the balls are deformed. Thus, as
for type III point patterns, type IV point patterns consist of deformed balls
with intensity changing correspondingly.

The difference between the type III and the type IV deformation becomes
clearer if we let X be the unit square. Type III deforms X with the restriction
of keeping the image deformation of X in the plane. Thus, a transformation
works globally since if some areas are blown up, then other areas have to
shrink in order to remain in the plane.

Type IV works as a local deformation. The difference to the type III is
that we do not actually transform the points, instead we locally change the
measures by which the geometry is measured. This can loosely be explained
as follows. Divide the unit square into non-overlapping covering areas of
infinitesimal sizes. The scaling function ¢(-) is approximately constant in
each of these areas. Local scaling then corresponds to global scaling of each
little area with local factor ¢;. Thinking of this as a physical deformation of
the unit square, then the image will in general no longer be contained in the
plane, since the blowing up and shrinking does not necessarily fit together as
for type II1. However, rather than to consider the locally scaled process as an
image of a homogeneous process where each area has been locally scaled, then
the measure by which the geometry is measured, is locally changed. Thus,
rather than to scale each little region with local factor ¢; and use the same
ruler to measure length, then we have a ruler in each of the regions, which
is a scaled version of the template ruler with factor ¢;. Thus, in areas with
a small ruler, ¢;, neighbours are obtained at much smaller physical distance
(the length measured with the template ruler) than in areas where the ruler is
large, ¢o > ¢;. However, the length measured with the local ruler is identical
in the two areas.
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Let us shortly summarize the nature of the four models.

I: Objects of same size are placed in X' according to .

II:  In a point pattern with equally sized objects and constant intensity
objects are removed with local probability 1 — p.

ITI:  Matrix containing objects of equal size and constant intensity is de-
formed globally.

IV:  Objects of different sizes are placed according to an intensity inverse
proportional to their sizes.

4.2 Choosing between the models

The four models have their individual strengths in describing the following
situations:

I: The occurrence of points varies over location but the influence zone
of a point does not depend on the other points.
II: A natural thinning has occurred.

ITI: A physical deformation has occurred.

IV: The influence zones of the points have similar shape but different
sizes. The intensity of the points is inversely proportional to the size
of the influence zones.

In an ideal modelling situation one should therefore consider carefully what
theoretically arguments lie behind the inhomogeneity. Does the inhomogene-
ity affect the intensity only or also the interaction? Is the inhomogeneity
caused by a natural thinning or maybe a transformation? Is it reasonable
that the geometry is identical at different scale as in type IV models? We
might find point patterns that are not covered by any of the four model
classes but maybe by a mixture. There might be one type of inhomogeneity
in the interaction and another, completely different, in the intensity.

Considering point patterns where an actual neighbourhood is available,
such as point patterns consisting of cells, balls, particles, and other physical
objects, it seems natural to choose a model such that the neighbourhoods of
the model coincide with the observed neighbourhoods. Typically such point
patterns require a hard-core model or similar, since the observed objects most
often do not intersect. Consider the point pattern in [E, Figure 1] consisting
of particles in a metal sinter filter. Here a type IV model seems to be most
attractive, since there is a trend in intensity as well as in size of the particles,
and all particles are of similar shape.

If there are no physical neighbourhoods available, explanatory variables
connected with the observed point pattern might be used as a guideline. As
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an example, for a point pattern consisting of trees, information of sunlight,
water supply, and nutrition at each position might be used in the construction
of local neighbourhoods.

However, it is also important to realize that the models might serve as
approximations of each other in particular cases. An example is the point
pattern in [B, Figure 1] consisting of cells in a membrane. This point pattern
was modelled using a type III model. The estimated model is almost hard-
core. Since the sizes of the cells are small relative to the number of cells and
relative to the trend, models of type I, II, or IV would probably be good
models as well. In this situation, it is hard to distinguish between the four
model types because the neighbourhoods are very small.

In order to describe the differences between the models, we have mostly
considered the hard-core model or models with very strong interaction (see
Figure 2.1, 3.1, 3.2, and [E, Figure 2 and 3]). In order to model a point
pattern where no physical neighbourhoods are available, weaker interaction
might be needed. The weaker the interaction is, or the smaller the interaction
range is, the more difficult it becomes to distinguish between the four models.
In the Poisson case, which is the case where the interaction is weakest (there
is none), or equivalently, the interaction range is smallest (equal to 0), then
the four models coincide.

Thus, in point patterns where the interaction is weak or the trend is
not very pronounced, the four models might be alternatives of each other.
Therefore the choice of model should fall on the one that serves the purpose
best for the particular point pattern and problem in question. Type I is
convenient because the density is of exponential family form if the trend is
exponential. Type II can easily be analyzed using non-parametric statistics.
Type 11l is convenient since an observed inhomogeneous point pattern can
be transformed into a homogeneous point pattern and the tools for such
patterns can therefore be utilized. Type I, II, and IV allow modelling of an
arbitrary trend. Statistical inference for type IV models has not yet been
studied, but we have reasons to believe that this model, like type II, can be
analyzed using non-parametric statistics, see [E, Discussion].

4.3 Subjects of future interest

There are still a lot of interesting issues that need to be investigated for the
four models. First of all, statistical inference for the type IV model class
need to be developed. Another subject of interest is to explore how close
type I and II models are in non-extreme cases. Type Il is particularly good
for non-parametric inference and type I is suitable for parametric inference.
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Hence, if the models are close, then an analysis of a point pattern could be
based on both model classes. Type II could be used to form a non-parametric
estimate of the trend and to determine the structure of the interaction. Then
type I could be used to estimate a parametric model.

For the type III models, we have showed that the estimate 6, based on
the inhomogeneous Poisson reference process is a moment estimator of 6.
Further investigations of the variance and consistency of the estimator needs
to be performed.

Doing statistical inference for spatial point processes in practice is still far
away from being routine investigations. The density of a point process is not
known explicitly due to the intractable normalising constant, and therefore
iterative methods such as Markov chain Monte Carlo methods are needed.
Performing an actual data analysis require a lot of programming and CPU
time, see e.g. [F], where the maximum likelihood estimation of the parame-
ters in a type III model is documented in details for a particular data point
pattern. A lot of work is being done in order to implement methods for statis-
tical inference for spatial point patterns, see e.g. Geyer (1999) and Venables
and Ripley (1994).

A different approach is to base the inference on already existing methods
from other areas of Statistics, and thereby use existing and reliable software.
This idea seems appealing from a practical point of view. Berman and Turner
(1992) and Baddeley and Turner (2000) use generalized linear models to do
pseudo-likelihood analysis. Survival analysis can be utilized to deal with
edge-effects in order to calculate non-parametric second order statistics, cf.
Baddeley (1999). Similar methods might be used for the type III and type
IV model classes. In both model classes, the point intensity is inversely
proportional to the sizes of the neighbourhoods. Thus, in order to model the
trend, non— and semi-parametric methods based on the first as well as higher
order interactions could be useful. As an example, generalized linear models
with position and nearest neighbour distances as input and response might
be used to estimate the Jacobian and the scaling function, respectively.
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A.1 Proof of Proposition 1.1

In this appendix it is shown that a Markov point process X in a full-
dimensional bounded set X C R™ is homogeneous in the sense of [D, Defini-
tion 1] if and only if there exists an interaction function for X of the form

p(z) = Lz € Qx)po(x), (A1)

where g (z) is translation invariant and defined for all z € Qrm.

Suppose X has interaction function of the form (A.1). Then the density of

X is
f@) =] 1z € Qr)po(2) = 1(z € ) [ ] vo(2), (A.2)

z2Cx 2Cx

which is of the form (1.1) and thereby X is homogeneous as defined in [D].
On the other hand, suppose that X is homogeneous. Let g be a function
that fulfils (1.1). Now define ¢, recursively,

x € Qy,

)
pole) = { 0@ /[Les0o(z), o € i\

Here, -/0 = 0. Clearly ¢(z) = 1(z € Qx)po(z) is an interaction function for
X since p(z) = ¢(z) for € Qy.

Now it remains to show that ¢, is translation invariant.

Let z € Qx. Then, since z € Qy for all z C z,

e ¥() _ g()
Lo v(d) ~ [Levols)

Thus, ¢ is of similar form for all z € Qgm.
The translation invariance is shown using induction in n(z). For n(z) = 0,
z =0 € Qy. Thus, @o(0) = ¢(0), which is trivially translation invariant.

() =
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Suppose that n(z) > 1 and that ¢y(z) is translation invariant for all z C z.
Let c € R™. Then

g+ g9(z) __ 9@
Pt = o~ Lee 0 Lew - P

Notice that this also holds if the denominator is 0. Suppose that ¢g(z9) = 0
for a set zp C x. Because ¢y is defined recursively, we have that there
exists a set yo C zp such that g(yo) = 0. Thus, g(yo + ¢) = 0 and thereby
©vo(yo + ¢) = 0. Now, since yy C zp, we get that ¢g(z9 +¢) = 0. O

A.2 Two inhomogeneous relations

In the following, we consider two examples of inhomogeneous relations, and
examine their neighbourhoods. Both examples were inspired by the distance
relation.

A.2.1 Curve set with exponential inhomogeneity

Let ¢ = ¢(t), t € (0,1) be a continuous planar curve and let d(n,c) be the
perpendicular distance from 7 to ¢, see [G]. The curve set is defined by

X ={neR :d(nc)<a}.

For things to behave properly, we consider only sets such that for each n € X
there exists one and only one point on ¢ which is closest. This regularity
condition restricts the choice of curve and the choice of a.

Now, define a mapping dy : X x X — R, by

e If 7, and 7, lie on the same side of ¢, then

d0(771, 772) — eée(dz(m ;ﬂz)—d(nhc)—d(ﬂz,c))la—l(d2 (771’ 772)), (A.3)
where )
e’m—1
It =
0 (77) a’ega _ 1:

e Otherwise,
d@(nlv 772) = d9(7717 m) + d0(772; m)7

where m is the point on c that crosses the line between 7; and 7.
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Then a reflexive and symmetric relation on X" is defined by
n A f — d@(naf) <r,

where 7 > 0. The parameter # € R is an inhomogeneity parameter. The
function ly is borrowed from type III models, see [D, Example 3.1]. However,
the relations do not coincide in the case where the curve is one of the axis.
The neighbourhoods defined by this relation are of similar shapes.

In Figure 3.2, ¢(t) = (t,4/t). The point pattern is a realization of the
relation-inhomogeneous Strauss process which has density

fy) o POy W for y € Qx, (A.4)

where
s*(y) =D Lm ~my),
1<J
is the number of neighbours in y with respect to the inhomogeneous relation.
For the point pattern in Figure 3.2, A = 1.

The relation depends only on the distances to ¢ and inner-point distances.
The situation is therefore equivalent when the local conditions are equivalent
which ensures local behaviour. It can be shown that the regularity condition
ensures that the neighbourhoods with respect to ~ are bounded and that
the distance from n € X to £ € ON(n) is increasing in d(7, ¢). Together with
the regularity condition, we then have that the neighbourhoods are convex.

In [G] we constructed transformations for the curve set with the property
that the intensity is constant on curves in fixed perpendicular distance to
the main curve c¢. This is only approximate the case for processes based on
dg and it depends on the curvature of ¢. The shape of the neighbourhoods
depend on ¢ and therefore the intensity does also.

The above example can be generalized. Let d* : R x R — R, be a
mapping with d*(n,n) = 0 and d*(n,§) = d*(n,&). Then

N~ €= d*n,&) <, (A.5)

where r > (, defines a reflexive and symmetric relation on R™. The usual
distance relation (3.2) is of this form with d*(n,&) = v!([n,€]). Based on
a homogeneous distance-interaction Markov process, the type III induced
relation is of above form with d*(n, &) = ||h=1(n) — h=1(£)]|, and the type IV
distance-interaction relation (3.4) is of this form with d*(n, &) = v!([n, £]).

The relation (A.5) does not in general produce shape-homogeneous neigh-
bourhoods.
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A.2.2 Elliptic neighbourhood

Let us consider some extensions of the circular neighbourhood example in-
troduced in Section 3.3. Let again N(0) be a disc, but now with centre
(0109, 02a0). Then there is inhomogeneity along both coordinate axis.

The circular neighbourhood example can also easily — T g
be extended to ellipses. One way to do this is simply to // }bo \\
rescale one of the axis by a constant. ( o j

In the circular case, the distance from 0 to & € 0N (0) \ ‘ //
is not increasing in the first coordinate unless § = 0 ~— i
which is the homogeneous case. For the example in Sec-
tion A.2.1, the equivalent distance was increasing, and
this might be a natural requirement. We have an option to ensure that for
the elliptic neighbourhood. Suppose that

—

Figure A 7 Elliptic
neighbourhood

0<b0§a0 and 0S0<1,

where ay and by are the dimensions of first and second axis of the ellipse,
respectively, and the centre of the ellipse is (fag,0), see Figure A.1. Then
the distance from 0 to & € JN(0) is increasing in & iff

bo Zao\/l—e.

Notice that by = a9 <= € = 0. Thus, if the neighbourhood is a disc, then
only the homogeneous case fulfils the requirement.
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Abstract

In the present paper, we construct parametrized models for point pro-
cesses, allowing for both inhomogeneity and interaction. The inho-
mogeneity is obtained by applying parametrized transformations to
homogeneous Markov point processes. An interesting model class,
which can be constructed by this transformation approach, is that of
exponential inhomogeneous Markov point processes. Statistical infer-
ence for such processes is discussed in some detail.

Keywords: Coarea formula; Hammersley-Clifford theorem; Hausdorff mea-
sure; Inhomogeneity; Interaction; Manifolds; Markov chain Monte Carlo;
Markov point processes; Maximum likelihood estimation; Relation; Strauss
process; Testing

1. Introduction

Models for spatial point processes, describing inhomogeneity as well as
interaction between the points, have recently attracted considerable atten-
tion, cf. Baddeley and Turner (2000), Baddeley et al. (2000), Brix and Mgller
(1998) and Stoyan and Stoyan (1998). This appears to be a very natural step
towards more realistic modelling, where both first and second order proper-
ties of the point pattern (like mean and variance in a univariate setting) are
taken into account.

1To whom correspondence should be addressed.
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At least two of these model classes can be derived from homogeneous
Markov point processes. (In the present paper, we will add another of this
type.) According to the Hammersley-Clifford theorem, cf. Ripley and Kelly
(1977), such a process has a density with respect to a Poisson point process
of the form

fl@) =TT e,

yCx

where x = {z1,...,2,}, z; € S and S is a bounded Borel subset of R™, say.
The integer n may be 0 to allow for z = (). The function ¢ is an interac-
tion function, i.e. ¢(y) = 1, unless all pairs of points in y are neighbours.
The Markov point process is called homogeneous if ¢ is constant on all sets
consisting of 1 point, cf. e.g. Ogata and Tanemura (1986) and Stoyan and
Stoyan (1998).

The first type of models relates directly to the Hammersley-Clifford de-
composition of the density and has been suggested among others by Ogata
and Tanemura (1986). The idea is here to let the main effects in the decom-
position (the interaction of 1-point sets) be non-constant. Under regularity
conditions, an approximation to the likelihood function can be derived using
methods from statistical physics. Stoyan and Stoyan (1998) have recently
discussed this model in a forestry setting. See also Ripley (1990) and Mgller
et al. (1998).

Another type of models is constructed by using an independent thinning
of a homogeneous Markov point process, cf. Baddeley et al. (2000). This
is a well-known procedure for generating an inhomogeneous Poisson point
process from a homogeneous one, cf. e.g. Stoyan et al. (1995). In Baddeley
et al. (2000), semi-parametric inference of the thinned Markov point process
is discussed.

In the present paper, yet another construction is suggested. The basic
idea here is to introduce the inhomogeneity by applying a transformation to a
homogeneous Markov point process. Inhomogeneous Poisson point processes
as well as homogeneous Markov point processes can be included in such a
model. The transformed point process is still a Markov point process with
respect to the induced relation. This approach yields not only inhomogeneity
in the intensity of the point process, but also inhomogeneity in the strengths
of interactions among events. In particular, interactions are weaker among
events in regions of high intensity than in regions of low intensity. This is
appealing from an ecological perspective since competition among plants is
weaker in regions where resources are abundant as compared to regions where
resources are limited.

One of the useful properties of our model class is that the inhomogeneity



and interaction can be separated. The statistical inference is based on the
estimation of the transformation which can remove the inhomogeneity. After
application of this transformation we are left with a homogeneous point pat-
tern which can be analyzed by known tools, cf. e.g. Geyer (1999) and Mgller
(1999).

The idea of modelling inhomogeneity by transformations has been applied
in other areas of spatial statistics; for instance for modelling the covariance
structure of a non-stationary spatial process, cf. Sampson and Guttorp (1992)
and Smith (1997). Related work can also be found in Monestiez et al. (1993),
Meiring (1995), Perrin (1997) and references therein.

In Section 2, the basic concepts relating to Markov point processes are
outlined. In Section 3, transformations of point processes are introduced and
studied for Markov models. Parametrized transformations are considered in
Section 4, resulting in models for point processes allowing for both inhomo-
geneity and interaction. An important particular case is that of the expo-
nential inhomogeneous Markov point processes for which explicit expressions
for the parametrized transformation can be found in the unit cube in R™
and on the unit sphere in R3. In Section 5, maximum likelihood estimation
for the models described in Section 4 is discussed and the actual estimation
procedure is applied to a simulated inhomogeneous point pattern on the unit
sphere. In this section, tests for simple hypotheses are also derived. The
final Section 6 discusses open questions and future work.

2. Markov point processes

In this section, we summarize some of the basic terminology for Markov
point processes. A more detailed account of the notation and set-up can be
found in Baddeley and Mgller (1989) and Mgller (1999).

Let (S, B, i) be a measure space where 0 < u(S) < oo and B is separable
and contains all singletons. Let {2 be the set of finite subsets of S, equipped
with the o—field F, as defined in Mgller (1999). Then, a finite point process
X is a measurable mapping defined on some probability space and taking
values in (2, F). In what follows, it will be assumed that X has a density f
with respect to the Poisson point process on & with intensity measure pu.

In order to define a Markov point process, we need a reflexive and sym-
metric relation ~ on §. Two points £, € S are called neighbours, if £ ~ 7.
For n € §, the neighbourhood of 7 is the following set

on={£€8S:{~n}

A finite subset x of § is called a clique if all points in x are neighbours. A



Jensen & Nielsen (2000)

singleton is a clique by the requirement that ~ is reflexive. By convention,
the empty set is a clique. The set of cliques is denoted C.

A finite point process X is said to be a Markov point process if, cf. Ripley
and Kelly (1977),

(M1) f(x) >0= f(y)>0forally Cz, z €

(M2) if f(z) > 0, then

Amyz) = flzu{n})/f(z), neS, reQ, né¢x

depends only on n and On N z.

Note that A(n;z) can be regarded as the conditional ’intensity’ of adding an
extra point 7 to the point configuration z.

One way of introducing inhomogeneity into the model is to use a non-
homogeneous intensity measure p of the reference Poisson point process.
This is equivalent to use a non-constant interaction function on singletons,
but a homogeneous (Lebesgue, Hausdorff) intensity measure pu.

The Hammersley—Clifford theorem gives a factorization of a Markov den-
sity in terms of interactions which are only allowed between points in cliques.

Theorem 2.1 (Hammersley—Clifford) A density f defines a Markov point
process with respect to ~ if and only if there exists a function ¢ : Q — [0, 00),
such that p(y) # 1 implies that y € C, and such that

f@) =]]ew

yCzx
for all x € Q. The function ¢ is called the clique interaction function.

In the present paper, a Markov point process is called inhomogeneous if
¢ is non—constant on sets consisting of 1 point. Other definitions of inho-
mogeneity are of course possible, cf. Stoyan et al. (1995), but the definition
given here suffices the purposes of our studies.

One of the most well-known homogeneous Markov point processes is the
Strauss process, cf. Strauss (1975). If we let n(z) be the number of elements
in z, this process is characterized by the clique interaction function

a ifn(x)=0

) B ifn(x)=1
P#) =13 5 itn) =2 zec

1 otherwise,

4



such that
f(z) = af™@y @z eQ,

where s(z) is the number of neighbour pairs in z,

s(x)=> 1ln(z) =2,z €C].

2Cx

Note that o = «(3,7) is a function of 3,7 > 0. Usually, it is also assumed
that v < 1.

3. Transformations of point processes

In this section, the attention is restricted to the case where § is a k-
dimensional differentiable manifold X C R™ and p is the k-dimensional
Hausdorff measure Ak in R™ cf. e.g. Jensen (1998, Chapter 2) for a formal
definition of Hausdorff measures. Intuitively, A\¥, measures k—dimensional
volume in R™. We will study smooth transformations of a point process X
on X. In Figure 1, an example of such a transformation is shown.

Figure 1: Adding inhomogeneity through transformation. The original point process is
a conditional Strauss process on [0,1]?> with 100 points and v = 0.01. Two points are
neighbours if their mutual distance is less than R = 0.05.

If it is important to emphasize the containing space X', the set of finite
subsets of X is from now on denoted 2y and the associated o-field Fy.
Likewise for other manifolds appearing below.

The coarea formula gives a useful transformation result for a mapping
between two manifolds, cf. Jensen (1998, Theorem 2.1).

Lemma 3.1 (coarea formula) Let X C R™ and Y C R? be differentiable
manifolds of dimension k. Let h : X — Y be a 1-1 differentiable mapping
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of X onto Y. Then, there exists a function Jh : X — [0,00), called the
Jacobian, such that for any non—negative measurable function g on X

/X o(@) Th(z)ds* = [ g0 (0))ayt,

y
where dz* and dy* are short notations for Ak (dx) and N\E(dy), respectively.

Below, the coarea formula is used to find the density of a transformed
point process h(X) = {h(§) : € € X}.

Proposition 3.2 Let X, Y and h be as in Lemma 3.1. Furthermore, suppose
that X is a point process on X with density fx with respect to the Poisson
point process on X with intensity measure \X. Then, h(X) is the point
process on Y with density, with respect to the Poisson point process on Y
with intensity measure N, of the form

o () = fx (B () X2 T TR (), y € Qy.

ney

Proof. Let F' € Fy. Using the well-known expansion of the distribution
of the Poisson point process, cf. e.g. Mgller (1999, Section 2), we get

P(h(X) € F)
/ LA, -, h(za)} € F]
Xfx({z1,..., 2, })da¥ - - daF

Qi / /1[{y1,...,yn}€F]

xfx({h (), b () }) H Jh (yi)dys - - - dyp.

At (x), the coarea formula has been used on h~'. For the term indexed by n,
the formula has been used n times. The result now follows immediately. [l

Next, the attention will be restricted to transformations of a point process
X, which is Markov with respect to a relation ~ on X. In the corollary below
it is shown that the transformed process is again Markov with respect to the
induced relation. As will be apparent later in this paper, it is very important
from a technical point of view to use the induced relation. It is also in
many cases very natural, for instance in ecological applications, because the
criterion for being neighbours in the transformed point pattern is more strict
in regions where the transformation has attracted the points.

6



Corollary 3.3 Let X,Y and h be as in Lemma 3.1. Furthermore, suppose
that X is a Markov point process with respect to ~ such that

fx(z) = Hﬁp(y), T € Qg,

yCx

where ¢ is a clique interaction function. Then, Y = h(X) is a Markov point
process on Y with respect to the induced relation =, defined for ny,ns € Y by

m = <= h'(m) ~h ().

Furthermore, the density of Y s of the form

fr(y) = H¢(Z)a y €y,

z2Cy

where 1 s the following clique interaction function

(D) ifn(z) = 0

P(z) =9 o(h=*m)Jh~ (n) i n(z) =1, z2={n}
o(h=(2)) otherwise.

For the transformed point pattern it is worthwhile to notice that, except
for the fact that all interactions are evaluated on the inversely transformed
point pattern, only the main effects of the interaction function change. Fur-
thermore, these values change with the same factor, as if a single point is
transformed from one manifold to another.

Proof of Corollary 3.3. Most of the results of the corollary follows from
Proposition 3.2. It only remains to verify that v is a clique interaction
function with respect to . Thus, let us suppose that ¢(z) # 1. We want to
show that z is a clique with respect to &. Since every set with 0 and 1 points is
a clique by convention, it suffices to consider the case where n(z) > 2. Then,
¥(2) = p(h~(z) and h~!(z) is a clique with respect to ~. Accordingly, z is
a clique with respect to ~. (Il

4. Exponential inhomogeneous Markov point processes

The transformation result from the previous section can be used to de-
velop a new approach to inhomogeneity. Transforming homogeneous Markov
point processes by a suitable bijective mapping, Markov point processes al-
lowing for both interaction and inhomogeneity can be constructed. In what

7
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follows, we will restrict attention to the case where the transformation A
maps X onto itself, that is Y = X.

Let X be a Markov point process on X with respect to a relation ~ and
with clique interaction function ¢. Furthermore, let gy : X — [0;00) be a
parametrized model of the inhomogeneity where # € © C R'. Suppose that
we can find, for each # € O, a differentiable 1-1 transformation hy of X onto
X such that

Jhy'(n) = go(n), me€EX. (1)

Corollary 3.3 now gives that Y = hy(X) is a Markov point process on X with
respect to the induced relation ~ and with density

w0 =]Jom [ #k), vea (2)

ey 2Chy ' (y)

Notice that the inhomogeneity has been introduced by the transformation
while the interaction has been inherited from the original homogeneous Markov
point process. This has important consequences for the statistical inference,
as shown in the next section.

Using the coarea formula, it is easily seen that (1) implies that

/ go(mdn* = N (X), forall § € ©. (3)
X

Therefore, {gs : # € ©} can be regarded as a parametrized class of densities
on X with respect to the uniform distribution on X (density dn*/\k (X)). A
natural and useful choice is an exponential family model of the inhomogeneity

g0(1) = B(9)e” ™™, (4)

where - indicates inner product in R' and 7 : X — R'. Note that (3) then
implies that

B(6) = A%, (X)) /X ST g

A Markov point process with density (2) and gy given in (4) is called an
exponential inhomogeneous Markov point process. Such a process has density

fr(y;0) = BO)"We™® T (), ye, (5)

2Chy ' (y)

where t(y) = Y ney 7(n).
The problem left is to find a bijective mapping hy that has inverse Jaco-

bian gg. This problem is equivalent to that of solving a differential equation,

8



0.6
0.4
0.2 ™

(a) v=10.01 (byy=1 (c) Jacobian

Figure 2: Conditional simulations of the exponential inhomogeneous Strauss process on
[0,1]? with 100 points, R=0.05 and v as indicated. The inhomogeneity is introduced by
the transformation (7) with m = 2 and (61,602) = (—1,—3). The Jacobian of the inverse
transformation is shown to the right. Another realization of the process with parameters
as in (a) is shown in the right part of Figure 1.

which is not always an easy task. However, considering simple but still
flexible types of inhomogeneity, it is possible to solve the equation. In the
following, two such examples will be studied. Both examples are exponential
inhomogeneous Markov point processes.

Example 4.1 (The unit cube in R™)
Let X = [0,1]™. Suppose that we are interested in adding independent
exponential inhomogeneity on each axis. That is, for § € R™, we consider

g96(n) = B(O)e™=10mlm) e 0, 1]™,

where 7; : R — R and 7; is the 7’th coordinate of 7. For this choice of gy,
there is a unique solution Ay to (1) among differentiable transformations of
the form

ho(n) = (he1(m), - -, hom(Mm)), 1 € [0,1]™,

where hy; is an increasing function of [0,1] onto itself. The uniqueness can
be seen, using that then h;l is of a similar form and

"~ Oh,?
=1 a,’h

For any # € R™, the unique solution to (1) is given by

hyt(n) = (ﬂl(el) /0 " Iy, Br(6m) /0 " eame(”)du), n € 1[0,1]™,
(6)
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where )

1
Bi(0;) = (/ eam(“)du> , 1=1,...,m,
0

and §(0) = [[-, Bi(0;). Note that for § = (0,...,0), hy is the identity
mapping.

In particular, if 7;(u) = u for all 4, the integrals in (6) can be calculated
explicitly and

halo) = ( gog(1-+ (€ = D). g-og(1 + (e = 1)) € [0.1]"
7

In Figure 2, some simulated realizations of the exponential inhomogeneous
Strauss process are shown. O

Example 4.2 (The unit sphere in R?)

Let X = S2, the unit sphere in R?, and let us consider exponential inhomo-
geneity which depends on m-n where m € S? is fixed. So the aim is for § € R
to find a differentiable 1-1 mapping hg of S? onto S? with inverse Jacobian

Thy'(n) = B0, e S, (8)

where 7 : R — R. Note that for 7(u) = u, (8) is the density of the Fisher
distribution in directional statistics whereas for 7(u) = u?, (8) is the density
of the Dimroth-Watson distribution, cf. Mardia (1972).

Let us choose a coordinate system in R? such that m = (0,0, 1). In the ap-
pendix, it is shown that there is a unique solution to (8) among differentiable
1-1 mappings hg of S? onto S? of the form

ha(m,m,ng):(“H “H o, 7 a(n3>>, (9)

where 7y is an increasing differentiable bijection on [-1,1]. Note that such
a transformation only changes the angle between n = (1, 72,73) and m =
(0,0,1).

The solution is most easily expressed in terms of the inverse. We find,
cf. the appendix, that the unique solution to (8) is given by

h(;l(ﬂl,nmns) = (\/i/_lg_ﬂ)’ 1 \/i/_l—%}n?’) 772,90(773)> )

where

1
u)=1 —/ B0 Wdy, —1<u<1,

10



(a) ¥y =10.02 (b)y=1

Figure 3: Conditional simulations of the exponential inhomogeneous Strauss process on
S? with 200 points, R = 0.02 and v as indicated. The inhomogeneity is introduced by the
transformation (9) with = 3 and r¢ given in (10).

and
2

- f—ll ef7(v) oy '

Note that for # = 0, hy is the identity mapping.
For 7 equal to the identity mapping,

p(0)

ga(u)=1+@(e9“—e9), -1<u<l,
and 00
B0) = Y —
Hence,
1 u—1 9 _ -0 9
rg(u)zglog 5 (" —e)+e" ), —-1<u<l. (10)

In Figure 3, conditional simulations of the exponential inhomogeneous
Strauss process are shown with 7(u) = v and m = (0,0,1). The relation for
the untransformed process is given by

n~&<=ds(n,€) <R, (11)

where dj is the spatial distance. Note that the spatial distance is proportional
to the geodesic distance.

In Figure 4, a realization of the continuum random cluster process with
tendency of clustering, cf. Mgller (1999), is transformed with three different
transformation parameters. The original untransformed process is shown in
Figure 4 (a). The relation is the one from (11). O

11
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Figure 4: Conditional simulations of the exponential inhomogeneous continuum random
cluster process on S? with 200 points, R=0.05 and v = 1000. As in Figure 3, the inhomo-
geneity is introduced by the transformation (9), here with 6 as indicated.

5. Statistical inference for exponential inhomogeneous Markov point
processes

An exponential inhomogeneous Markov point process has a density of the
form (5). Note that the Jacobian part

B(0)"W) W)

of (5) is the density of hy(X) when X is a homogeneous Poisson point process
on X with intensity measure \¥,.

We will mainly discuss statistical inference conditional on n(Y) = n, the
observed number of points. Using that hy is 1-1 so that n(Y) = n(hy(X)) =
n(X), it is easy to see that the conditional density of ¥ given n(Y) = n is of
the form

foly:6) = O™ [ (), nly)=n,

2Chy ' (y)

where

¥(z) = 0 :
P(n((p)(()):n) if n(2)

{ v(2) if n(z) >0
0.

Let us suppose that the interaction function ? can be parametrized by
some parameter v € I' C RP. Let L(6,7;y) be the conditional likelihood
function based on the inhomogeneous data y. Furthermore, let

Lo(0;y) = B(6)me"*)

12



be the conditional likelihood function of € based on y, when disregarding the
interaction, and let

Li(y;z) = [ [ v(z)

be the likelihood of v, when observing z in the homogeneous model. Then,

L(0,v;y) = Lo(0; ) L1 (v; by * ()

This decomposition of the likelihood function has important consequences
for the statistical inference. In particular, for each fixed 6, the maximum of
L with respect to v can be found, using an algorithm developed for the
homogeneous case with data hj;'(y). Further results concerning estimation
can be obtained if we choose a specific model for the interaction.

Let us assume that

Li(y;z) = an(’y)fy“(””), n(z) =n, v >0, (12)

such that the interaction model is a regular exponential family of order 1,
cf. Barndorff-Nielsen (1978). There are three interesting special cases of this
model:

e Strauss model (Strauss (1975))

u(z) =s(z) =Y 1(n(z) =2,z €C)

2Cx

e Continuum random cluster model (Mgller (1999))
u(r) = —c(z)
where ¢(z) is the number of path-connected components in z.
e Area—interaction model (Baddeley and van Lieshout (1995))
w(x) = —Ap(Upes B(n, R))

where B(n, R)) C R™ is a ball with centre  and radius R, and A, = A"
is the Lebesgue measure in R™.

The reason for using a minus in the two latter models is that then the in-
teraction parameter v has the same qualitative interpretation in all three
models: v < 1 corresponds to inhibition, ¥ = 1 to independence and v > 1
to clustering.

13
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The continuum random cluster model is not a Markov model in Ripley-
Kelly sense, but a nearest-neighbour Markov model, cf. Baddeley and Mgller
(1989), but this distinction is not important here when discussing likelihood
inference.

If a maximum likelihood estimate (6, %) exists of (0,7) under the inter-
action model (12), then u(hgl(y)) € int C where C is the convex support
of u(X), cf. Barndorff-Nielsen (1978, p. 151). It therefore suffices to restrict
attention to transformations in

0" ={0 €0 :u(hy'(y)) €intC}.

For § € ©*, there is a unique v = () for which L(6,-;y) attains its maxi-
mum, viz. the unique solution of

Eyou(X) = u(hy ' (y),

cf. Barndorff-Nielsen (1978, p. 152). This solution can be found using Markov
chain Monte Carlo simulations, cf. e.g. Geyer (1999) and Mgller (1999). An
example is given later in this section.

The next step is to evaluate the partially maximized likelihood function
for 6 € ©*,

L(6;y) = maxL(6,7;y) = Lo(6; y)on(v(O)y(0)" @ (13)

This step also requires Markov chain Monte Carlo simulation since the nor-
malizing constant «,(y(#)) is not known explicitly. In order to get a stable
calculation, it is very important to evaluate a ratio of likelihoods instead of
a likelihood directly, cf. e.g. Geyer (1999). Typically, we want to determine,
up to a constant, L(0;y) at a grid of §-values. For this purpose, it suffices,
since Ly(0;y) can be calculated directly, to calculate for pairs of neighbour
grid points 6,0 € ©*,

L(0;y)/Lo(0; y)
¢ (f(é; y)/Lo(0; y)> (14

) (6) w(X)—u(hy ' (y))
= (u(hy" @) - u(h3' (1)) 10 7(6) + log Exgo (T) -

The mean-value at the right hand side of this formula can be evaluated using
Markov chain Monte Carlo simulations.

Being able to calculate the partially maximized likelihood function L, a
maximum of L can be searched for. Note that if L(-;y) is maximal at é, then

~

L(-,-;y) is maximal at (6, y(f)).

14



For the Strauss model and the continuum random cluster model, u(X)
is discrete and the function § — ~(#) is actually a step function. Let the
support of u(X) be

S={u_,u_+1,...,u4}

such that int C = int[u_,uy] = (u_,uy) and let for s € S
0; = {0 € © :u(h,'(y)) = i}

Then,

uy—1

or= |J e,

i—u—_—+1

and for 0 € ©;, y(f) = ;, say. The partially maximized likelihood function
becomes

Z(@, y) = LO(G; y)an(%)'yf, 0 € O,

i=u_+1,...,uy — 1. Accordingly, in the subregion ©;, L(6;y) will be a
rescaling of Lo (6;y) with factor o, (;)7:. Therefore, L(-;y) is not continuous
at 6 € 00;N00;, i # ', and traditional iterative procedures such as Newton—
Raphson do not seem to be appropriate for seeking a maximum of L. Instead,
tabulating L in a reduced parameter set O,oq C O, is a better idea, when
u(X) is discrete. In order to be able to disregard parameter values outside
Ored, this reduced set should have the property that for any € ©*\O,eq
there exists 6’ € O,q such that

L(6;y) < L(0';y).

The first procedure for reducing the parameter set is based on the pro-
portionality of L and Ly in the subregions ©,. Note that ©; does not need
to be connected. Since Lg(-;y) is the likelihood function for an exponential
family model, it is log—concave and thereby unimodal. Let 0y be the max-
imum likelihood estimate of § based on Ly(-;y). (If Lg is the likelihood for
a regular exponential family, then 0, exists and is unique if and only if t(y)
lies in the interior of its convex support). If 6 is one-dimensional, all points
in ©; can be excluded except for points in the two sets

0,_ = {max{f € ©;: 0 < 6,}}
and

Oy = {min{f € ©;: 0 > 6y} }.

15
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- - >

o s : i’
g
6 000y,

Figure 5: The partial log-likelihood function log L. The parallel curves are translations of
log Lo(6;y). The intervals marked horizontally constitute ©; for the value of ¢ correspond-
ing to the second curve from the top.

Each of these two sets consists of at most one point. See also the illustration
in Figure 5 where ©;_ = {6;,_} and ©,; = {6;,}. So as ©q, any set including

u+—1

U 0;— U O,

i=u_+1
can be used. Note that ©;_ and ©;, can be found by tabulating the function
0 — u(hy'(y))

and using the determined value of 0.

Similar procedures must be possible if the dimension of # is larger than
1.

The second procedure for reducing the parameter set requires that the
only interaction considered is inhibition, i.e. v < 1. Such a restriction may
be quite natural, however, since we expect that it is going to be difficult to
distinguish between inhomogeneity and clustering. For 6 € 0%, let 7(6) be
the unique v € (0, 1] maximizing L(0, -; y). Note that

~ (0) ~(0) <1
7(0) = { RO Sy

Furthermore, let Z(O; y) = m(%}i]L(G,v; y). Then, we have
€0,

16



Proposition 5.1 Let 0o be the mazimum likelihood estimate of 6 based on
Ly. Suppose that 0y € ©*. Then, for any 6 € ©F,

u(hy' (9)) > ulhy ! (v) = L0;y) < L(0o:y).

Proof. Since 6, is the maximum likelihood estimate of f based on Lo(+5y),
B0 < B(f)elo @)

1 u(h;?
Therefore, since y%hs ®)) < 4 "0 @) for v<1,

LB, v;y) < LBy, v;9), <1,

and accordingly, the corresponding relation holds for the partially maximized
likelihood function L. U

According to Proposition 5.1, when seeking a maximum of Z, it is enough
to search in

{0 €0 u(hy () < ulh;' ()}
As will be seen in the example below, this may result in a drastic reduction
in the number of #—values at which L has to be evaluated.

Example 5.2 (An application of the estimation procedure)

In this example we will show how the estimation procedure can be carried
out, using a simulated point pattern y which is a realization of an exponen-
tial inhomogeneous Strauss process on the unit sphere, cf. the right part of
Figure 6. The density is given by

n
n -1
Fnly) = (%) of s via gy, () y e W), (15)

where y = {y1,...,yn} and y; = (yi1, Yi2, ¥i3), ¢ = 1,...,n. The transforma-
tion hy is given in (9) and (10) and the relation ~ is given in (11).

The aim is to estimate (6, ) on the basis of the inhomogeneous data set
y. We will assume that v < 1. As suggested earlier in this section, the
estimation is based on a tabulation of the partially maximized likelihood
function L(#;y) in a reduced region ©,,q which is known to contain 0.

In order to construct O, we first determine éo. For the example, éo =
5.24 whereas the true value is # = 5. Secondly, the mapping 6 — s(h; "' (y))
is tabulated, cf. Figure 7, and using this information we find

{02 s(hy () < s(h; ' ()}
= {0:s(hy'(y)) € {110,111,112,113}}
C [4.45,5.50]

17
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Then, according to Proposition 5.1, 6 € [4.45,5.50]. Furthermore, we know
that 0—values with the same value of s(h,'(y)) lie in the same ©;region
and here we can restrict attention to 6—values closest to 90. In the example,
this means that § € {5.02,5.06,5.08,5.24,5.27,5.30}, cf. Figure 7. As Oyeq,
we can take any set containing these 6 values. Since E(Q; y) is evaluated bZ

calculating ratios at pairs of close §-values, cf. (14) with L replaced by L
and y(6) by 7(0), we take

Ored = {5.02,5.03,...,5.30}.

The next step is to determine § — (). Using Markov chain Monte Carlo
simulations (MCMC), the mapping

v — E,s(X) (16)

is tabulated on a coarse grid of y-values in (0, 1]. The mean-value in (16) is
calculated in the homogeneous model. The function (16) is tabulated once
more on a finer reduced grid I'\eg C (0, 1] of y—values. This reduced set is
chosen such that

{s(hy" () : 0 € Orea} € {Ey(s(X)) : 7 € Trea},

as we are only interested in these particular values of neighbour pairs.
Regression analysis gives the relation

log(E,(s(X))) = a+ Blog(y), 7 € I'red,

and replacing E, (s(X)) with s(h,'(y)) we get the following approximation

log(s(hy " (y)) —
B

5(6) = exp (

a) ) 0 e Gred-

Figure 6: Transformation into the particular realization of the exponential inhomogeneous
Strauss process studied in Example 5.2. Here n = 400, v = 0.5, R = 0.1 and 8 = 5.
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117
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115 *

114
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112
111
110

4'24/44'64'8 5 5254565.8 0
0o

Figure 7: The number of neighbours in the inversely transformed process and the likelihood

functions with and without the information about the interaction.

In the studied example, o = 5.254 and § = 0.751. Note that ~(f) only
depends on s(h;, ' (y)) which is discrete and constant in ©;-regions. Therefore,
these two functions jump at the same time.

Now we are ready to find the partially maximized likelihood function. If
we let

@red = {007 91, ey Hd}:

E(H; Y), 0 € Opeq, can be determined up to a constant by using the recursive
formula

L(6;y)/Lo(8:; ) l L(8;y)/Lo(6};)
log | = = log | = ;
g(L(eo;y)/Lo(eo;y)) 2 g(L(oj_l;m/Lo(oj_l;y))

i=1

for { =1,...,d. The terms in the sum can be found by MCMC, using (14).
Denoting the above expression by A;, we have that

log Z(@l; y) =log Ly(0;; y) + A; + constant.

Note that A; is constant on ©;.
In Figure 7, log L(0;y) is shown for a larger range of #—values than O,eq,
in order to get a general impression of the function. Note that this function

is in fact the same as the one shown in Figure 5. We find (9,4) = (0, y(d)) =
(5.02,0.48). O

Let us finally discuss two types of tests. Let us first consider the hypothesis
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of no interaction Hy : v = -y, where g = 1. Since L;(7;-) = 1, we find

Q= L(Bo, v0; ) _ Lo(By; y) L1 (03 b7 ' (0))
LO,%y)  Lo(Biy) Li(¥:hy' ()

:QO‘Qla

where Q, represents a comparison between f, and é, while Q, is a test for

7 = 7y on the basis of z = hgl(y). Note that

u(X)—u(z)] 7L
Ql = [E‘r (@) ]
5

and can be calculated, using Markov chain Monte Carlo simulation.

It is also of interest to test for homogeneity. Let us suppose that this
corresponds to Hy : § = 0y, where 6y = 0 and hy, is the identity. Furthermore,
let 49 be the estimate of v under homogeneity. Then,

Q _ L(0o, Y03 y) _ Lo(0o;y)  L1(F03¥)
LO,%y)  Lo(;y) Li(3:h;" (1))
Lo(0;y) Li(3hy (1)) La(B0s byt (y))
~ o~ u(y)-ulhy'(y)
= Qo Q1% ’ ]
say. The intermediate ratio Ql can be calculated using Markov chain Monte
Carlo.

Large values of the test statistics Q are critical. Since their distributions
are not known under the respective null hypotheses, simulations are needed
in order to evaluate the observed values.

6. Remarks, open questions and related work

The basic idea of the present paper is that of introducing inhomogeneity
by transformation. Observing an inhomogeneous point pattern, the problem
is then to construct the inverse transformation which can compensate for the
inhomogeneity. Similar approaches can be found in a number of related areas.
In addition to the examples presented in the introduction, one could mention
that Baddeley and van Lieshout (1995, p. 605) discuss the possibility to let
the balls, appearing in the area-interaction model, depend on a parameter 6.

Note that our model may be extended, such that densities of the following
form are considered

Fr({ons - umd) o ] [ o) [ ok, (9 0) - -+

1<j
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(Personal communication with Jesper Mgller.) The approach by Ogata and
Tanemura (1986) is then obtained by letting hy, be the identity, while our
transformation approach corresponds to hy, = hy, and

¥(2) = ¢(2)/ Th(2)-

Note also that the model suggested by Ogata and Tanemura (1986) can be
used to describe a system of hard discs of fixed diameters with location de-
pendent intensity. Such a system cannot be described by the transformation
set—up discussed in the present paper.

The differential equation (1) makes some restrictions on the kind of inho-
mogeneity which can be described by the transformation approach. It will be
of interest to characterize the class of point processes that can be described
by this approach.

From a practical point of view, it is going to be important to use con-
comitant environmental variables to explain the inhomogeneity. In fact, the
exponential inhomogeneity as described by (4) is identical to the one consid-
ered in Rathbun (1996) if

() = (n(n),...,n(n))

is a vector of explanatory variables evaluated at . Rathbun (1996) considers,
however, only the Poisson case. It is included in our future plans to analyze
concrete data sets of this type where also the interaction is taken into account.

The estimation procedure developed in Section 5 worked surprisingly well
on the simulated example in Example 5.2. The main reason was that the
mapping 6 — s(h, ' (y)) was first essentially decreasing and then essentially
increasing with a minimum near fo. Whether this is true in more generality
needs to be investigated.

Maximum likelihood estimation is somewhat involved and it is therefore
of interest to investigate alternative procedures such as pseudo-likelihood es-
timation. See Baddeley and Turner (2000) for its implementation in cases
where both inhomogeneity and interaction is present. An even simpler pro-
cedure would be to use , as estimate of the inhomogeneity parameter. In
the example, this appeared to work well. Such a procedure would be justi-
fied if the distribution of ¢(Y") does not depend very much on 6. If so, the
extensive work on estimating intensity functions in inhomogeneous Poisson
models could then also be applied. These estimation problems are currently
under investigation, cf. Nielsen and Jensen (2001).

On the theoretical side it still remains to find conditions that ensure the
existence and uniqueness of the maximum likelihood estimates and to develop
an asymptotic distribution theory for the maximum likelihood estimators as
well as for the likelihood ratio tests.
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Appendix
In this appendix, we show that for 8 € R
Thyt(n) = BO)" ™, ne S? (A-1)

has a unique solution among mappings of the form

V11— ge)(77:«x)2771 V1- 99(773)2772 W
Vi-ng 0 i-n

where gy is an increasing differentiable function of [-1,1] onto [-1,1]. This
result is used in Example 4.2.
Let

byt (m, M2, M) = ( (773)> , (A-2)

p:[0,7) % [0,27) — S?
(w1,wy) — (sin(wy) cos(ws), sin(w; ) sin(wy), cos(wy)).

be the polar coordinate mapping. Functions of the form (A-2) can then
equivalently be described as

hyt =pokgop™, (A-3)

where kg(w1,ws) = (lg(w1),ws) and 1y is an increasing differentiable bijection
on the interval [0, 7). Here o denotes the composition of mappings.
Below, we show the following result

. |
Th (w1, w)) = Thowr, o) S0 _

sin lg(w1)
sin w; sinw;

(A-4)

In order to prove the first equality, we use the coarea formula and get for
an arbitrary function f on S? that

. £ (ho(n))dn?
= /52 flpoky ' op™(n)dn®
= /W /27r f(poky ' (wr,ws)) sinwdwsdw,
0 0

:/07"/0 ”f(P(wth))Jkg(wl,wg) Sin(la(w1))dw2dw1

sin((kg o p~(n))1)

s i(m))

=/, F(m)Jks(p~"(n))
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From these results, the first equality of (A-4) follows. The next equality
follows from the fact that kg is a bijection on a subset of R? of full dimension

and ’
0
Dk@(wl,(UQ) = [ 0(8)1) 1 :| .
Combining (A-1) and (A-4), we find

BO)Een) = ) TR)
or
(coslg(wy)) = —B() sin(w; )efTcoswn),
This equation has the unique solution, among increasing bijections on [0, 7),

1

coslg(wy) =1— / B(0)e’™ ™ du = gy(cosw,),

cos(w1)

say, where
2

T gy
QL
Therefore, according to (A-3), h, ' is of the form stated in (A-2).

p(9)

Acknowledgement

This work was supported in part by MaPhySto, funded by a grant from
the Danish National Research Foundation.

References

Baddeley, A., Mgller, J., and Waagepetersen, R. (2000). Non- and semi-
parametric estimation of interaction in inhomogeneous point patterns. Sta-
tistica Neerlandica, 54:329-350.

Baddeley, A. and Turner, R. (2000). Practical maximum pseudolikelihood for
spatial point patterns (with discussion). Aust. N. Z. J. Statist., 42(3):283—
322.

Baddeley, A. J. and Mgller, J. (1989). Nearest-neighbour Markov point pro-
cesses and random sets. Int. Statist. Rev., 57:89-121.

Baddeley, A. J. and van Lieshout, M. N. M. (1995). Area-interaction point
processes. Ann. Inst. Statist. Math., 47:601-619.

23



Jensen & Nielsen (2000)

Barndorff-Nielsen, O. E. (1978). Information and Ezponential Families in
Statistical Theory. Wiley, Chichester.

Brix, A. and Mgller, J. (1998). Space-time multitype log Gaussian Cox
processes with a view to modelling weed data. Research Report R-98-2012,
Department of Mathematical Sciences, Aalborg University. To appear in
Scand. J. Statist., 2001.

Geyer, C. J. (1999). Likelihood inference for spatial point processes. In
Barndorff-Nielsen, O. E., Kendall, W. S., and van Lieshout, M. N. M., ed-
itors, Stochastic Geometry: Likelihood and Computation, chapter 3, pages
79-140. Chapman and Hall/CRC, London.

Jensen, E. B. V. (1998). Local Stereology. World Scientific, Singapore.

Mardia, K. V. (1972). Statistics of Directional Data. Academic Press, Lon-
don.

Meiring, W. (1995). Estimation of Heterogeneous Space-Time Covariance.
PhD thesis, University of Washington.

Mgller, J. (1999). Markov chain Monte Carlo and spatial point processes. In
Barndorff-Nielsen, O. E., Kendall, W. S., and van Lieshout, M. N. M., ed-
itors, Stochastic Geometry: Likelihood and Computation, chapter 4, pages
79-140. Chapman and Hall/CRC, London.

Mgller, J., Syversveen, A. R., and Waagepetersen, R. (1998). Log Gaussian
Cox processes. Scand. J. Statist., 25:451-482.

Monestiez, P., Sampson, P. D., and Guttorp, P. (1993). Modelling of hetero-
geneous spatial correlation structure by spatial deformation. Cahiers de
Géostatistique, 3:1-12.

Nielsen, L. S. and Jensen, E. B. V. (2001). Statistical inference for trans-
formation inhomogeneous point processes. Research Report 12, Laboratory
for Computational Stochastics, University of Aarhus. Submitted.

Ogata, Y. and Tanemura, M. (1986). Likelihood estimation of interaction
potentials and external fields of inhomogeneous spatial point patterns. In
Francis, I. S., Manly, B. F. J., and Lam, F. C., editors, Proc. Pacific
Statistical Congress — 1985, pages 150-154, Amsterdam. Elsevier.

Perrin, O. (1997). Modéle de Covariance d’un Processus Non-Stationaire par
Déformation de I’Espace et Statistique. PhD thesis, Université de Paris I
Panthéon-Sorbonne.

24



Rathbun, S. L. (1996). Estimation of poisson intensity using partially ob-
served concomitant variables. Biometrics, 52:226—242.

Ripley, B. D. (1990). Gibbsian interaction models. In Spatial Statistics: Past,
Present and Future, pages 3—28. Image, New York.

Ripley, B. D. and Kelly, F. P. (1977). Markov point processes. J. London
Math. Soc., 15:188—-192.

Sampson, P. D. and Guttorp, P. (1992). Nonparametric estimation of nonsta-
tionary spatial covariance structure. J. Amer. Statist. Assoc., 87:108-119.

Smith, R. L. (1997). Detecting signals in climatological data. Proceedings
of 51st Session of the International Statistical Institute, Book 1, pages
211-214.

Stoyan, D., Kendall, W. S., and Mecke, J. (1995). Stochastic geometry and
its Applications. Wiley, 2nd edition, Chichester.

Stoyan, D. and Stoyan, H. (1998). Non-homogeneous Gibbs process models
for Forestry — A case study. Biometrical Journal, 40:521-531.

Strauss, D. J. (1975). A model for clustering. Biometrika, 62:467-475.

25






Nielsen L. S. (2000).

Modelling the position of cell profiles allowing for
both inhomogeneity and interaction. Image Analysis
and Stereology, 19(3): 183-187






MODELLING THE POSITION OF CELL PROFILES
ALLOWING FOR BOTH INHOMOGENEITY AND INTERACTION

LINDA STOUGAARD NIELSEN

Laboratoryfor ComputationaStochasticsDepartmenbf MathematicaScienceslUniversityof Aarhus,

Denmark.Email; lins@imf.au.dk.
(AcceptedOctober6, 2000)

ABSTRACT

It is of interestto considermodelsfor point processeshat allow for interactionbetweerthe points
aswell asfor inhomogeneityin the intensity of the points. Markov point procesanodelsare very
usefulto describepointinteractionandcanalsobe usedto describeénhomogeneityA particulartype
of inhomogeneouMarkov point processesbtainedby transforminga homogeneouMarkov point
processwill beconsideredThe positionof cell profilesin a 2D sectionof the mucousmembranen
thestomachof aratwill be examinedusingthis model.

Keywords: Inhomogeneity Interaction, Likelihood, Markov point process,Poissonpoint process,

Strausgointprocess.

INTRODUCTION

The positionof the centresof cellsin tissuecanbe
describedby a spatial point processwhereeach
cell centreis representedoy a point. A point
processs astochastienodelfor point patternghat
describeshepropertiesf the point pattern:Trend
in the intensity of the points (inhomogeneity)and
interactionbetweerthe points.

In surface covering layers (epithelium) such
as skin, mucous membranesand cartilage, a
gradientcanusually be obsenedin the direction
perpendiculato the surface. In planesparallelto
the surfacehomogeneitycanbe assumedThus, it
is of interestto considemodelsfor pointprocesses
thatallow for inhomogeneityin a givendirection.
Furthermoresuchmodelsmustbeableto describe
interaction between points. Between the cell
centresthereis a natural inhibition since a cell
hasan extendandtwo cell centresthereforehave
to be a certaindistanceapart. Consideringcell
division, inhibition on a smallscaleandclustering
onalargerscalemightbeobsened.

Typically we do not obsere the full 3
dimensionabdatabut only a 2 dimensionakection
wherethetrendis alongoneof thetwo dimensions.
In this paperwe will considera 2 dimensional
sectionof epitheliumand model the position of
cell profilesusingapointprocessvith adirectional
gradientandsmallscaleinhibition.

Markov point process models are flexible
and tractable models for describinginteraction.
HomogeneoudMarkov point processesare well
studied and tools for statistical inference well
developed,seee.g. Diggle (1983), Geyer (1999)
andBaddele and Turner(2000). Inhomogeneous
Markov point processeshave been much less
considered.

The model proposedby Jensenand Nielsen
(2000)is aninhomogeneouMarkov pointprocess
model, where the inhomogeneityis obtainedby
applying a bijective differentiable mapping to
a homogeneousMarkov point process. The
interactionis theninheritedfrom thehomogeneous
Markov model. In casef inhibition betweerthe
points thereis strongexperimentalevidencethat
the statisticalinferencecan be separatednto the
statisticalinferencefor ainhomogeneou®oisson
point process(model with no interaction)and a
homogeneoudarkov point process,cf. Jensen
andNielsen(2000).However, thisissuestill needs
athoroughinvestigation.In this paperwe will use
this type of statisticalinferenceandwill seethatit
givesagooddescriptionof the epitheliumdata.

MATERIAL AND METHODS

The imagein Figure 1 was suppliedby Thomas
F. Bendtsen. The image shawvs a 2D sectionof
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themucousmembranef the stomachof a healthy
rat, where the darker spotsare the cell profiles.
In the top of theimagewe have the cavity of the
stomachandin thebottomof theimagethemuscle
tissuebegins. In this paperthe profilesonly in the
marked region are studied. In right hand-sideof
Figure 1 the position of the nucleiin this region
areshown. For corveniencethewindow is scaled
into the window [0,893 x [0,1]. In whatfollows,
we find amodelthatdescribethis point pattern.

As mentionedin the introduction there is
an obvious directional trend in the point pattern
and small scaleinhibition sincetwo cells cannot
overlap. In the remainsof this paper the point
patternwill beanalyzedisingthe classof Markov
point processedy transformationwhich will be
introducedbelow.

Let X denotea 2 dimensionalhomogeneous
Markov point processandlet y be the parameter
that describesthe point interaction. In Markov
point processes,interactions are only allowed
betweenneighbourpoints. A typical example
of a Markov point processis the Strausspoint
processcf. Strausg1975), wheretwo pointsare
neighboursif their distanceis less than some
constantR > 0. The probability density of the
point processis controlledby y*¥, wheres(x) is
the numberof neighboursn a given point pattern

X. Then,if 0 < y < 1, the tendeng of points
rejectingeachotherincreaseshe smallery is. A
valueof y equalto O is the hard-coremodelwhere
no pair of points have distancelessthan R, and
y = 1 is the Poissonmodel, the model with no
interactionatall.

Let hy(n,&) = (n,1,(&)) be a differentiable
bijective parametrizednapping. Then,according
to Jensenand Nielsen (2000), Y = hy(X) is
a Markov point process,inhomogeneousn the
direction of the second coordinate, and with
density

n(y)

fx(hg*(¥)) H('El)'(yiz),

(1)

where fy is the density of X, vy, is the second
coordinate of the i'th point y; of y and n(y)

is the number of pointsin y. As fy controls
the interactionbetweenthe points, the interaction
betweenpoints in the transformedpoint process
Y is inherited from the homogeneousmodel
X.  The differential term (Iz1)’ controls the
inhomogeneity For more detail, seeJenserand
Nielsen(2000). Note thatthe first coordinatesare
not transformedandthereforethe model (1) only

describesnhomogeneityin the secondcoordinate
direction.

Figurel: Image by Thomad. Bendtsershowinga 2D sectionof themucousmembanein the stomad of a healthy
rat. To theright, the positionsof the nucleiof the cell profilesin the markedregion of theimage are plotted. Thisis

thepoint patternconsideedin the presentpaper



In applicationssuchasthe point patternfrom
Figurel, we have aninhomogeneoupoint pattern
which we want to describeby a point process
model. Using the transformationapproach,we
assumethat the point patternin question,sayy,

order to find the characteristicof the particular
point patternsuchthata suitableparametrianodel
canbe proposedseee.g.Diggle (1983). Thenthe
parametersn the proposedMarkov point process
model are estimatedusing likelihood or pseudo-

is arealizationof atransformation-inhomogeneous likelihoodtheory seeGeyer (1999)and Baddely

point processY. The aim is then to find a
transformation such that the back-transformed
point pattern x = hg'(y) is a homogeneous
point pattern. Finally, well-known theory for
homogeneougoint patternscan be applied in
orderto find amodel X describingx.

The problem of finding a suitable
transformationis not simple. The density(1) can
be split into the densityfor a homogeneougpoint
processand that of an inhomogeneoud?oisson
point process. However, the inhomogeneity
parameter 8 enters into both parts, and so
maximumlikelihood estimationof 6 is not based
on the inhomogeneoud?oissonpart alone. In
practicenhowever (simulationstudies)the estimate
8, basedon the inhomogeneousPoissonpoint
processseemsto be very good to describethe
inhomogeneity Thus, 8, will herebe usedasan
estimateof 6.

In order to analyze a homogeneouspoint
pattern we first consider summary statisticsin

(a) Centresof cell profiles

andTurner(2000). Noticethatit is alsopossibleto
uselikelihoodandpseudo-likelihoodtheoryin the
full inhomogeneoumodel. This is hawever much
morecomplicatedseeJenserandNielsen(2000).

RESULTS

To describe the inhomogeneityin the second
coordinate direction of the point pattern
from Figure 1, we will consider exponential
inhomogeneityi.e.

(IgY'(n) O €.
The following mappingl, : [0,1] — [0,1] hasthe
above property

lg(n) = %Iog(n(ee—l)ﬂ)-

In Figure 2 (b) the back-transformedlata point
pattern is showvn, where the inhomogeneity
parameter used in the transformation is

(b) Back-transformedentres

Figure 2: Point patterny from Figure 1 of cell profile centes (a) and the correspondingoadk-transformedpoint
patternx = hgl(y) (b). Thetransformationparameteris the maximumlikelihood estimatein the inhomaeneous

Poissonpoint processnodel,§, = 1.3043
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Figure 3: EmptyspacefunctionF and nearestneighbourfunctionG for the back-transformediata point pattern
versusthe Poissonpoint procesga) andthe Strausspoint processwith parametes 3 = 760, y = 0.09andR = 0.007
(b). Envelopesare the pointwisemaximaand minimaof 39 simulatedprocesses.

the maximum likelihood estimate éo in the
inhomogeneou®oissonmodel. Notice that this
point patternappear¢o behomogeneous.

To determinethe interaction structure of a
homogeneoupoint pattern,we comparethe point
patternwith ahomogeneouBoissorpointprocess.
This is typically doneby comparingthe F, G, J,
K and pair-correlationfunctions. Seee.g.Diggle
(1983), Stoyan et al. (1995) and van Lieshout
and Baddelg (1996) for more details on these
functions.In whatfollows, | have considerednly
theF andG functions,but the conclusionsvould
be the sameusingary of the otherfunctions. In
thefirst plot of Figure 3 (a) the F functionfor the
back-transformedlata and for the homogeneous

Poissompoint processareplotted. The F-function
canbe thoughtof asa statisticthat measureshe
amountof empty spacein the point pattern. As

seen,the back-transformegboint patternhasthe
sameamountof emptyspaceasthe Poissorpoint
process.In the secondplot of Figure3 (a), the G

functionis shavn. This functionis the probability
functionfor the nearesheighbourdistancesn the

point pattern.As seentheback-transformegoint

pattern has less of the small nearestneighbour
distanceghanthe Poissorpoint processwhich is

a sign of small scaleinhibition. This is of course
dueto thefactthatwe only considerthe centresof

thecell profiles.

A Strausspoint processs a usefulmodelfor



(a) Data

(b) Transformedsimulationsof regular Strausgoint processes

Figure4: Plot of thedatapoints(a) andfour simulationsromthe exponentiainhomaeneousStrausspoint process

(b).

describinginhibition. In Figure 3 (b) the data
is comparedwith a Strausspoint processwith
parameters3 = 760, y = 0.09 and R = 0.007.
Due to the very small distanceR, the amount
of empty spaceis close to that of the Poisson
point process. The amountof very small nearest
neighboumdistancess reduced Fromthetwo plots
we concludethat the back-transformediatapoint
patterncan be assumedo be a realizationof the
Strausspoint processwith parametersas above.
Hence, the data point pattern can be regarded
a realization of the exponentialinhomogeneous
Strausgoint proceswith density

n(y) n(y)

rl e, (2)

fy(y) = a(B,y)B M)y ) (%)

where 8 = 1.3043,3 = 760, y = 0.09 andR =
0.007.In Figure4 thedatais plottedtogethemith
four simulationsfrom this point process.

Notethat, exceptfor the smallscaleinhibition
causedby non-overlappingcells, the data point
patternis very closeto being an inhomogeneous
Poissomointprocessgf. Figure3 (a). Therebythe
estimate6, basedon the inhomogeneou®oisson
modelis avery accurateestimate.

DISCUSSION

It appearsasif thereis alsoa gradientin the first
coordinateof thedatapointpattern.Themaximum
likelihood estimatebasedon the inhomogeneous
Poissonpoint processis 6,, = —0.27159. The
estimateis very small andit could be interesting

to perform a statistical test: 6, = 0. More

interestingwould be to comparegradientswithin

varioussectionsfrom the samerat. Probablythe
gradientin the first coordinatecan be explained
as variation, while the gradientin the second
directionis significant.It couldalsobeinteresting
to comparedifferentrats andto comparehealthy
ratswith ratstreatedwith anti-aciddrugs.

Furthermore] have notdistinguishedetween
thetypeof cellsin themucousmembraneThereis
muchinterestin a particulartype of cells,the ECL
cells, and it could be interestingto test whether
thesecellsareuniformly distributedamongall the
cells. This s the caseif the gradientfor the ECL
cellsis the sameasthe gradientfor all thecells.

Notethat,in this papemwe have modelleda 2D
sectionof a 3D structure.Supposinghatwe have
thefull 3D dataset,the samemodelcouldbeused
wherenow X is a 3D homogeneoupoint process,
the transformationis hy(n,&,v) = (n,14(¢),v)
andtheinhomogeneousodelis still of the form
(1). However, we do not have informationabout
thethird dimensionandthis will mostoftenbethe
situationin reality. Conclusionsaboutthe model
for the3D databasednthemodelobtainedrom a
2D sectionis notstraightforvard. Methodsusedin
Stereologymaybeuseful. SeeStoyanetal. (1995,
Sectionll.6.2)andHahnetal. (1999).

Finally, it should be noticed that the
transformationmodel only describeghe position
of the cell profile centresand not the whole
image. Transforming the image would
give homogeneous distributed positions but
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inhomogeneoudistributed profile sizes. The
image should be describedby a marked point
processseee.g.Baddelg andMgller (1989),with
profile positions modelledby (2) and marks of
the points being the sizesand shapesof the cell
profiles.

A preliminary report was presentedat the
Xth International Congress for Stereology
Melbourne Australia,1-4 November1999.

ACKNOWLEDGEMENTS

I would like to thank ThomasF. Bendtsenfor

letting me use his data and Hans Jggen G.

Gundersenfor bringing data to my attention.
Furthermore, | thank both Thomas and Hans
Jogen for their effort in making me understand
someof the biology behindtheimage.

| amalsovery gratefulto my supervisoiEvaB.
VedelJensento Ute Hahnandto the anorymous
refereefor correcting errors and improving the
paper

REFERENCES

Baddelg A, Turner R (2000). Practical maximum
pseudolilelihood for spatial point patterns(with

discussion) AustN Z J Statist42:283-322.

Baddelg AJ, Mgller J (1989). Nearest-neighbour
Markov point processes and random sets.
Int StatistRev 57:89-121.

Diggle PJ(1983). Statisticalanalysisof spatialpoint
patterns AcademicPress.

Geyer CJ (1999). Likelihood inferencefor spatial
processesin: Barndorf-NielsenOE, KendallWs,
van Lieshout MNM, eds. StochasticGeometry
Likelihood and Computation. Chapman and
Hall/lCRC:BocaRaton.

HahnU, Micheletti A, PohlinkR, Stoyan D, Wendrock
H (1999). Stereologicahnalysisandmodelling of
gradientstructures.J Microsc195:113-124.

JensenEBYV, Nielsen LS (2000). Inhomogeneous
Markov point processes by transformation.
Bernoulli6:761-782.

Stoyan D, Kendall WS, Mecke J (1995). Stochastic
geometryandits Applications. Chichester:Wiley
& sons22ndedition.

Straus<DJ (1975). A modelfor clustering.Biometrika
62:467-475.

van Lieshout MNM, Baddely AJ (1996). A
nonparametricmeasureof spatial interaction in
point patterns.StatisticaNeerlandicéb0:344—-361.



Jensen, E. B. V. and Nielsen L.S. (2001).

A review on inhomogeneous spatial point processes.
In Basawa, I. V., Heyde, C. C. and Taylor, R. L., Selected
Proceedings of the Symposium on Inference for Stochastic
Processes. IMS Lecture Notes, volume 37: 297-318.






Institute of Mathematical Statistics

LECTURE NOTES — MONOGRAPH SERIES

A review on inhomogeneous Markov point processes

Eva B. Vedel Jensen and Linda Stougaard Nielsen
Laboratory for Computational Stochastics
University of Aarhus

ABSTRACT

Recent models for inhomogeneous spatial point processes with interac-
tion are reviewed. The focus is on models derived from homogeneous Markov
point processes. For some of the models, the interaction is location depen-
dent. A new type of transformation related model with this property is also
suggested. The statistical inference based on likelihood and pseudolikeli-
hood is discussed for the different models. In particular, it is shown that for
transformation models, the pseudolikelihood function can be decomposed in
a similar fashion as the likelihood function.

Keywords: Cox point processes, Gibbs point processes, inhomogeneity,
interaction, likelihood, Markov point processes, Papangelou conditional in-
tensity, Poisson point processes, pseudolikelihood, thinning, transformation

1 Introduction

In recent years, models for inhomogeneous point processes with interaction
have been suggested by several authors. We will in the present paper con-
centrate on three ways of introducing inhomogeneity into a Markov model,
i.e. inhomogeneity induced by a non-constant first-order interaction (Stoyan
and Stoyan (1998); see also Ogata and Tanemura (1986)), by thinning of a
homogeneous Markov point process (Baddeley et al. (2000)) and by transfor-
mation of a homogeneous Markov point process (Jensen and Nielsen (2000)).
The aim is to give a unified exposition of these models in order to be able
to assess their relative merits and point to research problems that remain to
be solved in this area.

We restrict attention to finite point processes. For any of the three point
process models to be considered, the inhomogeneity may be described by
a function A\ defined on the same set as the points. In the case where the
inhomogeneous point process is Poisson, A is the ordinary intensity function.
In addition to the point pattern, explanatory variables may be observed at
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each point, for the purpose of explaining the inhomogeneity. Such informa-
tion may be included in any of the models. The interaction specified in the
models may or may not be location dependent.

In Section 2, inhomogeneous Poisson and Cox point processes are con-
sidered. In Section 3.1, a short summary of homogeneous Markov point
processes is given, followed in Section 3.2 by a formal description of the
three types of inhomogeneous point processes derived from homogeneous
Markov point processes. In Section 3.3, parametric specification of the inho-
mogeneity is discussed, while in Section 3.4 parametric statistical inference
is outlined for each of the three model types. Section 4 contains a discussion
and some considerations concerning future research.

2 Poisson and related point processes

We will throughout the paper consider point processes on a k—dimensional
manifold X in R™. Often, X will be full-dimensional such that k& = m.
(Formally, we will call X full-dimensional if X is a regular compact, that is a
non-empty compact subset of R™ which is the closure of its interior.) But X
may for instance also be a planar curve or a spatial surface. We will assume
that 0 < Ak (X) < oo where A\f, is the k—dimensional volume measure in
R™ (Hausdorff measure). We let By be the bounded Borel subsets of X.

It is easy to introduce inhomogeneity within the class of Poisson point
processes. Let y be a locally finite, non-atomic measure on X with density
X with respect to A\¥, and let n(-) be the number of elements in -. A point
process X on X (a random finite subset of X) is then said to be a Poisson
point process with intensity function A if

e VA€ By:n(XNA)~ Po(f, \Nu)du*)
o VAi,...,A; € By disjoint : n(XNA1),...,n(XNAs) independent

We have here used the short notation du* for Ak (du). Tt can be shown that
the first requirement is enough, cf. e.g. Stoyan et al. (1995).

If X is constant the Poisson point process is said to be homogeneous, oth-
erwise the process is inhomogeneous. A homogeneous Poisson point process
is often used as a reference (null) model. The reason is the following result

. Let X be a homogeneous Poisson point process on X and let
A € By. Then, given n(X N A) = n,X N A is a binomial pro-
cess with n points, i.e. X N A is distributed as {Xi,...,Xp}
where X1, ..., X,, are independent and identically uniformly dis-
tributed on A.



(a) Poisson (b) Strauss

Figure 1: Realizations of inhomogeneous point processes in the unit circular
disc with inhomogeneity function A(n) oc e?4(M where dc(n) is the distance
from 7 to C, the centre of the disc. The point pattern to the left is inho-
mogeneous Poisson, i.e. no interaction between points, whereas the point
pattern to the right is inhomogeneous Strauss with v = 0.01 and therefore
shows inhibition between points. For details, see Section 3.3 and Appendix
II1. The number of points in the Poisson process have been chosen to equal
the number of points in the Strauss process. For both processes, the distri-
bution of the points in the shaded sampling window 7' remains the same if
T is rotated around C.

The independence property of the homogeneous Poisson point process en-
sures that there is no interaction in the process, the uniformity means that
the process is homogeneous.

The inhomogeneity of a point process may depend on explanatory vari-
ables. One simple geometric example is an intensity function of the form

A(n) =g(dc(n), ne&X,

where d¢(n) is the distance from 7 to a reference structure C. For m = k = 2,
the reference structure may be a point or a planar curve. In Figure 1, C
is a point (centre of a circle) while, in Figure 2, C is a straight line (centre
of a linear band). For m = k = 3, the reference structure may be a point,
a spatial curve or a spatial surface. See also Berman (1986) and references
therein. Points lying on curves in two or three dimensions or points lying
on spatial surfaces may also show inhomogeneity. In Figure 3 and 4, point
processes on the unit circle S and unit sphere S? are shown. (Points are
represented as directions in Figure 3.) In any of the Figures 1 to 4, Poisson
point processes are shown to the left while corresponding processes with
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(a) Poisson (b) Strauss

Figure 2: Realizations of inhomogeneous point processes in the unit band
{n € R? : dc(n) < 1}, where d(n) is the distance from 7 to C, the full-drawn
horizontal line. The inhomogeneity function is as in Figure 1 and likewise
the right hand-side point pattern is inhomogeneous Strauss and the left is
inhomogeneous Poisson with the same number of points. The distribution of
points in the shaded sampling window 7" remains the same under horizontal
translations of 7.

inhibition between points are shown to the right (for details, see Section 3.3).

Statistical inference for inhomogeneous Poisson processes with a para-
metrically specified intensity function can be performed as follows. Let X
be an inhomogeneous Poisson point process with intensity function A\g,0 €
© C R!. Then, the likelihood function of 6 with respect to the homogeneous
Poisson point process with intensity 1 takes the form

Lo(8; 2) = exp(~ /X Do(w) — 1]du®) TT 2on). 1)

nex

We use index 0 in this likelihood because later it enters into more complicated
likelihoods. In Berman and Turner (1992), log-linear models for Ay are
discussed,

Mo(m) o ™™™, e X,

where 7(n) = (11(n),...,7(n)) is a list of explanatory variables evaluated
at n and - indicates Euclidean inner product. After approximation of the
integral by a finite sum, the likelihood takes the same analytical form as the
likelihood of a generalized linear model with Poisson responses and standard
software can be used to analyze the model. See also Rathbun (1996).

Alternatively, the intensity function can be estimated non-parametrically,
using kernel estimation (Silverman (1986)) or a Bayesian method (Heikkinen
and Arjas (1998)).



(a) Poisson (b) Strauss

Figure 3: Realizations of inhomogeneous point processes on the unit circle
S1. The situation is the same as in Figure 1 except that dc(n) is the distance
along the circle from 7 to the point C' = (cos(27/3),sin(27/3)) marked with
an arrow. The points are shown as directions.

(a) Poisson (b) Strauss

Figure 4: Realizations of inhomogeneous point processes on the unit sphere
S2. The situation is the same as in Figure 1 except that d¢(n) is the geodesic
distance from 7 to C' which is the north pole.
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As a generalization one may consider inhomogeneous Cox processes, i.e.
inhomogeneous doubly stochastic Poisson point processes. The definition of
a Cox process is as follows. Let A be a random intensity function on X.
Then, X is a Cox process if, given A = A\, X is a Poisson point process with
intensity function A, cf. Stoyan et al. (1995, p. 154).

In Mgller et al. (1998) and Brix and Mgller (1998), log Gaussian Cox
processes are discussed, i.e. Cox processes for which A = e¥ and Y = {Y; },cx
is a Gaussian field. Inhomogeneity is introduced by letting the mean-value
of Y; depend on s, see also Mgller (1999a). Clustered inhomogeneous point
patterns may be modelled by this process and this appears to be a natural
model if the aggregation is due to stochastic environmental heterogeneity.
This type of model has in Brix and Mgller (1998) been used to describe the
spatio-temporal development of two types of weeds in an organic barley field.

3 Markov point processes

If one wants to describe inhibition in addition to clustering then the class
of Markov point processes is useful, cf. Ripley and Kelly (1977), Baddeley
and Mgller (1989), the recent monograph van Lieshout (2000) and refer-
ences therein. Let us start by recalling a few preliminaries for Markov point
processes.

3.1 Homogeneous Markov point processes

Let ~ be a reflexive and symmetric relation on X. Two points &, € X' are
called neighbours if £ ~ 7. A finite subset z of X is called a cligue if all
points of z are neighbours. By convention, sets of 0 and 1 points are cliques.
The set of cliques is denoted C.

If X C R™ is full-dimensional then the relation induced by Euclidean
distance is often used. If X is a planar curve, distances along the curve may
be more natural. If X is the unit sphere S™!, such that the observed points
in fact are directions, then geodesic distance is natural.

Markov point processes are characterized by the Hammersley-Clifford
theorem, cf. Ripley and Kelly (1977). This theorem states that a point
process X on X, with density f with respect to the homogeneous Poisson
point process with intensity 1, is a Markov point process iff

f@) =] o), (2)

where ¢ > 0 is an interaction function with respect to ~, i.e. ¢(z) = 1 unless
z € C. Note that then the Papangelou conditional intensity

—iEEﬂL neX\z,
A



depends only on those points in « which are neighbours of . Here, z U7 is
short for z U {n}.

Let ¢ be the restriction of ¢ to subsets consisting of k£ points. A pairwise
interaction process is then a process for which ¢, = 1 for k£ > 2. The famous
Strauss process (Strauss (1975) and Kelly and Ripley (1976)) is the pairwise
interaction process with

a k=0
or(z) =4 B k=1
v k=2, z€C.

The density of the Strauss process becomes, cf. (2),

f(z) = af@ @),

where s(z) is the number of neighbour pairs in z. If || - || denotes the usual
Euclidean distance and the neighbourhood relation is given by

n~&<|ln—¢&|| <R,

then the process is called a Strauss process with interaction radius R.

If X C R™ is full-dimensional, a Markov point process X on X is said
to be homogeneous if ¢ is translation invariant, cf. e.g. Stoyan and Stoyan
(1998) and Baddeley et al. (2000). (We assume that ¢ is defined on all finite
subsets of R™.) Other definitions of homogeneity are of course possible, cf.
Jensen and Nielsen (2000). Note that translation invariance implies that ¢;
is constant and for k > 1, ¢k (y) only depends on the relative positions of
the k points in y. A homogeneous pairwise interaction process has a density

of the form
£

f@)=ap™® [ ul-9), (3)
{n€}Ca
where # indicates that n and £ are different. For lower dimensional manifolds
X, homogeneity may be defined in terms of invariance under other types of
transformations. For instance, for X = S™ ! a natural set of transforma-
tions are the rotations. Recall that the group O(m) of rotations consists of
m X m real matrices

O(m) = {A|JAAT = ATA =1,,}.
A homogeneous, with respect to this choice, pairwise interaction process on
S™=1 has a density of the form

£
fl@)=ap™ [ u@-&).
{n,€}Cx

Recall that n - & = cos 6, where 0 is the angle between 7 and &.
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3.2 Introducing inhomogeneity

Throughout this section, X is a homogeneous Markov point process with
respect to ~ on X and density

fx(@) =] o) (4)

yCx

Note that ¢ is then constant. Below, we describe three ways of introducing
inhomogeneity into the model. The resulting inhomogeneous point process
is denoted by Y and is a point process on a k—dimensional manifold ) in R?,
say. For the first two ways of constructing inhomogeneity, J = X, i.e. the
homogeneous process and the associated inhomogeneous process are defined
on the same space.

The inhomogeneity is described by a function A(n), n € Y, which we will
call the inhomogeneity function. Common to each of the three constructions
is the feature that if X is a homogeneous Poisson point process, then the
associated inhomogeneous point process Y is Poisson with intensity function
proportional to A. The three inhomogeneous models are therefore extensions
of the inhomogeneous Poisson model.

An obvious way of introducing inhomogeneity is by making the first-
order interaction non-constant. We will call this type I inhomogeneity. The
associated inhomogeneous Markov point process has then a density of the

form
fr() o [TA@) I #(2). (5)

ney 2Cy

This type of model is natural if the interaction does not depend on the
local intensity of points. This set-up has been studied in Ogata and Tane-
mura (1986), Stoyan and Stoyan (1998) and Baddeley and Turner (2000),
among others. In Ogata and Tanemura (1986), log A(n) is a polynomium
in Cartesian coordinates, while in Stoyan and Stoyan (1998), a piecewise
(region-wise) constant function is studied. It is also interesting to note that
in the hierarchical point process models described in Hogmander and Sarkka
(1999), densities of the form (5) appear.

Type II inhomogeneity is obtained by using an independent inhomoge-
neous thinning of the homogeneous Markov point process. Let us suppose
that the inhomogeneity function A(n), n € Y, is bounded by Apax, and let
p(n) = A(1n)/Amax, 1 € Y. The inhomogeneous process is then obtained by
thinning with p,

Y ={z; € X:U; < p(z)},

where {U;} is a sequence of independent and identically uniformly dis-
tributed random variables in [0,1], independent of X. In Baddeley et al.
(2000), this approach is suggested and studied in detail. According to them



this model is natural if p can be interpreted as the probability of survival of
a plant or the probability of observing an animal in a wildlife population.
A possibly less appealing property of the thinned Markov process is that it
is non-Markovian except if X is Poisson. However, this does not complicate
the likelihood inference, and an extension of Ripley’s K —function applies,
cf. Baddeley et al. (2000).

A third way of introducing inhomogeneity is by applying a 1-1 trans-
formation on a homogeneous Markov point process, cf. Jensen and Nielsen
(2000). This is type III inhomogeneity. The idea of using transformations
to introduce inhomogeneity has also been used for the modelling of the co-
variance structure of a non-stationary spatial process, cf. Perrin (1997) and
references therein.

Let h : X — Y be a 1-1 differentiable mapping. We consider on ) the
induced relation

m e <> b7 (m) ~h7 (n2), mme €.

Using the induced relation, interactions become location dependent. Note
that we in this case have inhomogeneity both in the intensity and the
strength of the interaction. The transformation approach may be extended
by using a series of transformations.

It can be shown, cf. Jensen and Nielsen (2000, Corollary 3.3), that

hX) ={h(¢) : £ € X}

is Markov with respect to ~ on ) and has the density

fr(y) = exp(— /yP\(n) = 1dn*) [TA0) [T e (2)), (6)

ne€y 2Cy

where A(n) = Jh~!(n), the Jacobian of the inverse transformation h~!.
This transformation result can be proved by the coarea formula in geometric
measure theory, cf. Jensen (1998).

Note that if X is Poisson, then the last product in (6) is of the form

exp(—(B — 1)AE, (X)) "),

and therefore Y is an inhomogeneous Poisson point process with intensity
function BA(-).

It is not always easy to find an appropriate transformation which intro-
duces an inhomogeneity of a given form. (The problem to be solved is to
find h such that Jh~! = X where ) is a given inhomogeneity function.) It
is therefore useful to construct approximate transformation models with the
same qualitative properties as the original transformation models. Let us
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suppose that d = m = k, i.e. the manifolds X and ) are full-dimensional.
Furthermore, suppose that the original process is a homogeneous pairwise in-
teraction process, cf. (3). Then, the density of the transformed point process
is, cf. (6),

#
@) o O T A0 [T wh™m) — 1)
ney {n.€}Cy

Recalling that for a transformation model Jh~! = )\, an obvious way of
avoiding to construct the transformation is to replace

h™H(n) = h™H(€) (7)
by an expression of the form
Am)” - A&)" (n = &), (8)

where v > 0 is some suitably chosen power. The density of the transforma-
tion related model becomes

#
fr) o PO T Am [T wOm) A©)” (- ). (9)
ney {n,€}Cy

This type of model has also been considered in Baddeley and Turner
(2000). Note that for point processes on the real line (k = 1), (8) can for
n and € close be regarded as an approximation to (7), if v = 1/2. This will
generally not be the case for k > 1.

3.3 Exponential inhomogeneity

The inhomogeneity function may be modelled parametrically or non-parame-
trically or both. If no prior knowledge is available about the inhomogeneity,
non-parametric modelling may be useful, at least initially. With knowledge
of the inhomogeneity (e.g. monotone decreasing in a known direction) then it
can be worthwhile to consider parametrically modelled inhomogeneity such
as that of exponential form

Mo(n) = a(0)" ™™, ey,

where # € © C R! and 7(n) € R.

Let us concentrate on a comparison between type I and type III expo-
nential inhomogeneity. If the inhomogeneity is of type I, then the density of
the inhomogeneous point process takes the form, cf. (5),

Py (:0) o a0)" e T o(2), (10)

z2Cy
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where t(y) = >, , 7(n). Note that if the homogeneous Markov point process
is an exponential family model then the associated inhomogeneous model is
too. In particular, if the homogeneous model is a Strauss model then

Fr(;0,8,7) o ¥ (a(0)B)" W) y* W), (11)

This is a nice three parameter exponential family model.
If instead the transformation approach is used, we need to find a parame-
trized class of transformations hy, 0 € © such that

Jhe_l(n) =a(0)e?™ ™ pey. (12)

Let us give a fairly general geometric example where this problem has a
simple solution.

Example 3.1 The example concerns inhomogeneity for point patterns in
RY which depends on the distance d¢ to a p—dimensional linear subspace C
in RY, p=0,1,...,d—1. We will define the transformation hg on the whole
set {n € RY:dc(n) < 1} and let 7(n) only depend on the distance of 7 to
C, ie. 7(n) = 7(dc(n)), say. The cases (d,p) = (2,0) and (2,1) with 7 the
identity are illustrated in Figure 1 and 2, respectively.

Then, (12) has a unique solution among transformations of the form

n —pc(n)
dc(n)

where pc(n) is the orthogonal projection onto C and gy is an increasing
function of [0, 1] onto itself. The solution is given by, cf. Appendix I,

ho(n) = pc(n) + go(dc(n)) (13)

(;" ud—p—leﬂ-?(u) du

fol wud—p—1a0-7(u) dq;

(14)

1/(d-p)
gy (1) = ]

It follows also from Appendix I that for hy defined by (13) and (14),
Thy(n) = a(6)e? (%),

where .

o(6) = [(d _p) /0 1 ud—p—le(’ﬂu)du]

For p > 0, this model may be used locally also in the case where C is
curved. 0

Likewise, it is possible to construct transformations on S or S? for the
case of exponential inhomogeneity with 7(n) = d¢(n), where C is a point
on S' or S? and d¢ is the geodesic distance to C, cf. Jensen and Nielsen

11
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(2000). Illustrations are given in Figure 3 and 4. For general functions 7,
the construction of an appropriate set of transformations may be difficult.
An example is the inhomogeneity of the hickory tree data from Stoyan and
Stoyan (1998, Figure 1).
The density of a type III exponential inhomogeneous point process be-
comes
Fy(y:0) o a8y @ T] o(hy (2)),

2Cy

compare with (10). In particular, if the homogeneous model is a Strauss
model then

(50, 8,7) o< @19 (a(0) )W)y W), (15)

Note that in contrast to type I inhomogeneity, # enters as a nuisance param-
eter in an exponential family density.

The simulations in Figure 1 to 4, right-hand sides, are from (15). Pa-
rameter values and other details of the simulations are given in Appendix
I1T.

The transformation related approach yields densities of the form

#
fr(y;0) o< @ (a(0)p)"®  J[ w(e(6)? e’ "M@ — g)).
{n.€}Cy

In particular, in the Strauss case we get

Fr(y;0,B,7) o ) (a(6) B)" W)y ®), (16)

where sy(y) is the number of ~y —neighbours of y. If two points n,{ are
related in the homogeneous Strauss process when ||n — £|| < R, then the
relation ~y is defined by

n ~g € & a()? e THTEN Iy —¢|| < R.

The three models (11), (15) and (16) are compared by simulation in Figure 5.
Note that the type I process appears somewhat more homogeneous than
the other processes, because the relation is for this process not location
dependent. This feature becomes more pronounced if more points are forced
into the point patterns by increasing (.

Furthermore, the intensity in the type I point process appears to be lower
than the intensity in the other two point processes. These two are, however,
similar both regarding the relation and the point intensity. Thus, the in-
homogeneity function and the parameters from the associated homogeneous
process play a quite different role in the actual point intensity and point in-
teraction in the different types of inhomogeneous models. These issues have
of course to be examined in more detail.

12



(a) Type I (b) Type III (c) Type III related

Figure 5: Realizations of inhomogeneous point processes on the unit square.
The densities used are, from left to right, (11), (15) and (16), respectively,
all with 7(n1,72) = n1. The parameter values used are 5 = 200, v = 0.01,
R(interaction radius)= 0.05 and # = —3. In (16), the exponent is v = 1/4.
The number of observed points are, from left to right, n(y) = 87,95 and 93,
respectively.

3.4 Parametric statistical inference
3.4.1 Likelihood inference

If a Markov point process is observed in a sampling window T' C X, cf.
Figure 1 and 2, the conditional density of the point pattern observed in T,
given the remaining points, may be used for inference. As in Baddeley et al.
(2000), let for disjoint point patterns y and x

xylz)= [ ) (17)

2CyUz:2Ny#D

For a homogeneous Markov point process with density (4), the conditional
density, with respect to the homogeneous Poisson point process on 17" with
intensity 1, is then of the form, cf. e.g. Mgller (1999b, formula (14)),

[z | z7e) o< x(27 | TaT),

where z7 = 2z NT, T¢ is the complement of T' and 0T = {£ € T¢|In € T :
n ~ £&}. Note that this density depends on zpe only via zgr.

Let us suppose that the interaction function ¢ can be parametrized by
1) € W. Then, the likelihood function based on observation of the homoge-
neous process in 1" becomes

Lr(v;z) = cr(¥; zar)x(zT;9 | aT), (18)

13
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where cr(1; zor) is a normalizing constant and x(-;1|-) is defined as in (17)
with ¢ parametrized by .
In the Strauss case, we get

Ly (B, 7;2) = cr(B,y; war) ")y (er)tslerszor), (19)

where for disjoint point patterns z and y

s(ziy) =) Y 1 ~¢l.

nex (cy

Likelihood inference based on these likelihood functions requires Markov
chain Monte Carlo (MCMC) approximations, since the normalizing constant
is not known explicitly, cf. Geyer (1999) and Mgller (1999b).

Let us now compare likelihood inference for the two Markovian inho-
mogeneous processes, viz. type I and III. Likelihood inference for the type
IT case, based on MCMC techniques for missing data problems, has been
discussed in detail in Baddeley et al. (2000).

For type I inhomogeneity, the conditional density is given by

fr(yr Lyre) o< [T A() - x(ur | yor),
neyr

where y refers to the homogeneous process. If Ag(n) = a(0)e? ™ and ¢ is
parametrized by 1, we get

Lr(0,43 ) = ér(0, ¥ yor)e” ) x(yr; 4 | yor).
In particular, if the homogeneous process is a Strauss process we have
Lr(9, 8,7 y) = &0 (0, B,; yor)e’ 1 Wr) grr)yswr)tsturivor),

Again, MCMC is required for the analysis.
Statistical inference in the case of type III inhomogeneity is based on the
following conditional density, derived from (6),

Fr(yr Lyre) o< T M) - x(B ™ (yr) | A~ (yar))-
neyr

If hy is chosen such that J h;l = Xy and ¢ is parametrized by 1, we get, cf.
Appendix II,

Ly (0, 5) = Lo(0;yr) L1y (%3 5y (), (20)

where Ly(-;yr) is the likelihood (1) of an inhomogeneous Poisson point
process with intensity function Ay and Lhe—l (T)(-;he_l(y)) is the likelihood

14



function (18) for the homogeneous Markov point process with observation
h;'(y), observed in hy ' (T). Recall that (18) reduces to (19) in the Strauss
case. Note that for the transformations derived in Example 3.1 and win-
dows T' as shown in Figure 1 and 2, h;l(T) does not depend on 6. In fact,
ho(T)=T.

Likelihood inference is simpler for type I than for type IIT models since
the inhomogeneity parameter is a nuisance parameter in an exponential fam-
ily model in the latter case. However, simulation studies indicate that the
estimate 0y of @ based on Lo(-;yr), cf. (20), is close to 0. In that case, the
interaction parameter 1 can be estimated on the basis of

thfol (5 hy ()

and the analysis will be no more complicated than the analysis of a homo-
geneous Markov point process.

3.4.2 Pseudolikelihood inference

A less demanding inference procedure is based on the pseudolikelihood func-
tion which is the likelihood function for a Poisson point process with inten-
sity function equal to the Papangelou conditional intensity of the process, cf.
e.g. Besag (1975) and Jensen and Mgller (1991). Recently, pseudolikelihood
inference has been discussed by Baddeley and Turner (2000).

If the homogeneous process is parametrized by ¥ the pseudolikelihood
function based on observation in 7" becomes

PLy(t;2) = exp(— /T Do (52) — ) [T Ao 2\0)]

nexr

where z \ 7 means z \ {n} and

= Bl

If the homogeneous process is a Strauss process, then

n ¢z

Aﬁ,’y(nax) = IB’YS(n;x)a 77 ¢ "Ea

and
PLr(B,7; ) = exp(— / [By*(#5%) — 1]du*) grier)y?s(en)tstarizor),
T
Compared to likelihood inference the ‘normalizing’ constant is much simpler.
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Let us now look at pseudolikelihood inference for the two Markovian
inhomogeneous processes. For type I inhomogeneity of exponential form,
the pseudolikelihood function takes the form

PL7(0,4;y) = exp(— /T ¥ 7Ny (u; ) — 1)du® ) @I TT Ay (ms9\m)].

neyr

In the Strauss case, we get

PL7(0,8,7;y) = exp(— /T [Be? 7@ ystuy) — 1] duk)

Xea't(yT)ﬂn(yT)nys(yT)'i's(yT?yaT)_

Note that for fixed # and v the maximum pseudolikehood estimate of [
is known explicitly. This is an example where the Papangelou conditional
intensity is of log-linear form and the analysis suggested by Baddeley and
Turner (2000) can therefore be used. Using the approximations described
in Berman and Turner (1992) and Baddeley and Turner (2000) one should,
however, be careful when choosing the dummy points involved in the ap-
proximation.
In the case of type III inhomogeneity, it can be shown, cf. the Appendix
I,
PL7(8,%;y) = Lo(0;yr)PLy-1 ¢y (43 by ' (3).- (21)

The pseudolikelihood function thus decomposes as the likelihood function,
cf. (20). Pseudolikelihood inference for type III processes appears to be more
complicated but again it is expected that the inference can be split into two
parts.

4 Discussion

In the present paper, we have discussed three types of inhomogeneous point
processes, derived from homogeneous Markov point processes. It is of course
also of interest to study how inhomogeneity can be introduced into other
of the classical classes of point processes. For instance, one may consider
inhomogeneous Neyman-Scott point processes (the Poisson point process of
the mothers is inhomogeneous), inhomogeneous Matérn hard-core processes
(the unthinned Poisson point process is inhomogeneous), inhomogeneous
simple sequential inhibition point processes (the size of the circular region
around each point depends on the position of the point) and inhomogeneous
Gibbs processes (e.g. transformations of homogeneous Gibbs processes). See
Clausen et al. (2000).

The emphasis has in the present paper been on parametrically modelled
inhomogeneity. This is a new approach for type II processes. Dually, it will
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also be of interest to study non-parametric estimation of the transformation
involved in type III models.

Summary statistics like the K—, F— and G—functions have been devel-
oped for the initial study of the interaction in homogeneous point processes
and for checking of models for homogeneous point processes, cf. Stoyan et al.
(1995). In Baddeley et al. (2000), an analogue of the K —function is sug-
gested for the inhomogeneous case. For a type II process, this analogue has
the nice property of being identical to the K —function of the unthinned pro-
cess. It still remains, however, to find versions of the F'— and G—functions
that can be used in the inhomogeneous case. For type III processes, an
alternative is to estimate the transformation, either parametrically or non-
parametrically, and then use the traditional summary statistics for the ho-
mogeneous case on the inversely transformed point pattern.

Type III processes have the special feature that the neighbourhood re-
lation induced by the transformation is location dependent. The relation
is generally not isotropic in the sense that relationship only depends on the
distance between the points. Another quite promising idea is to introduce in-
homogeneity in Markov point processes by location dependent scaling. This
is a topic for future research.
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Appendix I

Let us start by finding J hg_1 in the case p = 0 where (13) reduces to

ho(n) = ga(llnll)ﬁ-

Let By(O,1) be the unit ball in R%. Using polar decomposition twice we get
for an arbitrary function f on By(O, 1),

/ | Juta)an’
/ / W)t Ldtdw? !
-/ / )4 (g5 1) () dudr!

/ 7 (0l g5 ™Y (i) |~

Therefore,

Thy () = (g5 ()" (g™ (DIl =) for p =0, (22)
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This result can now be used to find J h;l for general p. Let
T4(0,1) = {n € R*: do(n) < 1}.

For an arbitrary function f on Ty(O,1) we then get

/ £ (ho(n))dn®
Td(O,l)

= [ [ s+ aollal)Eondlol < ety
crJe Bl
- /c /cf (z + ) 1{llyll < (g Nyl (g9 ) Uyl gl =@ P~V dy?

= [ rtey o) gy (delm)de () Dy,
Td(oal)
where we at the second equality sign have used (22). It follows that

Thy (n) = (95" (Ao ()" (g5") (do(m)de (n) =470,

Since we also have
Thy ' (n) = a(6)e? T,

gp must satisfy

Tl @) = a@ut ST w01, (@)

Since gy is increasing 1-1 of [0,1] onto itself, the unique solution of (23) is
(14).

Appendix II

In order to derive (20), we need to find the constant cr(6,;ysr) in the
expression for the conditional density

Fr (yr; 0,9lyre) = er (0, s yor)[ [ [ Aomx(hg ' (yr); lhg " (yor))-

neyr

Since this is a density with respect to the Poisson point process on 1" with
intensity measure A5 we get, using that A\g(n) = Jh, ' (1) and the well-known
expansion of the distribution of the Poisson point process, cf. Mgller (1999b,
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Section 2),
cr (0, 9;yar) "
o 1 n
:e_)‘S(T) —/ / Jh_l ’yz
r;n' T Tg 0 ( )
x<x({hg (1), -, hy “(yn) b 9|y (yor))dyf - - - dyk
<1
— oMy L / e [ i 6y (o) ok - o
,Zgn! hyt(ry  Jnyi)
= e_AZ(T)eAI’C"(h"_I(T))Cna‘l(T) (¥ hy  (yor)) ™

The result now follows by noting that

A (hg (1)) = /h . d¢* = /T Thyt (n)dn* = /T g (n)dn".

0

The proof of (21) is obtained as follows. The Papangelou conditional
intensity of the transformed process becomes, cf. (6),

fr(yUn;6,9)
fy(y;0,4)
where )y is the Papangelou conditional intensity of the untransformed pro-

cess. The pseudolikelihood function of the transformed process therefore
becomes

= Xg(m Ay (hy ' (m); By (v),m & v,

17LT(9V¢;y)
— exp(— /T Do(w g (b (w); by () — L)du¥)

x T DomAy(hg () kg (y \ m))]

neyr

= [T] M) exp(~ /T Dho(u) — 1]du)

neyr

exp(— [ M)y (0 g™ 1) — 1)

x TT Xeolhg )ik (y \ )

neyr

The result is now obtained by noting that

/TAQ(’“)[WJ Hu)ihy ' (y)) — 1du® = /

_ Dylvshg(y) — Lav*.
hg " (T)

21



Jensen & Nielsen (2001)

Appendix III

Simulations from the inhomogeneous Strauss point process (15) are shown
in the right hand-sides of Figure 1 to 4. In Table 1 the model parameters
and the resulting number of points in the simulated point patterns are given.
Note, however, that the number of points in Figure 2, n(z) = 355, is for a
33% wider rectangle. A larger area was used to avoid edge problems.

The point patterns shown in Figure 1 to 4, right, and the three point
patterns in Figure 5 have been simulated using Metropolis-Hastings birth-
death algorithm with 500000 iterations, cf. e.g. Mgller (1999b).

Figure | S 0% R || n(y) | 0

1 1000 0.01 0.1 163 || -3
2 400 0.01 0.1 355 || -3
3 70 0.01 0.1 40 || -1
4 100 0.01 0.2 143 || -2

Table 1: Parameters used for simulation and the resulting number of points
for the point patterns in the right-hand sides of Figure 1 to 4.
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Abstract

Statistical inference for exponential inhomogeneous Markov point pro-
cesses by transformation is discussed. It is argued that the inhomo-
geneity parameter can be estimated, using a partial likelihood based
on an inhomogeneous Poisson point process. The inhomogeneity pa-
rameter can thereby be estimated without taking the interaction into
account, which simplifies the statistical analysis considerably. Fur-
thermore, an easily computable test for homogeneity is presented.
Analysis of two data sets and simulation experiments support the
results.

1. Introduction

Various point process models allowing for both interaction and inhomogene-
ity have recently been suggested, cf. Baddeley et al. (2000), Brix and Mgller
(1998), Hahn et al. (2001), Jensen and Nielsen (2000, 2001) and Stoyan and
Stoyan (1998). See also Ogata and Tanemura (1986). A majority of these
model classes uses a homogeneous point process as starting point. The in-
homogeneity is introduced by letting the first order interaction be location
dependent or by applying a thinning, a transformation or a local scaling
of the homogeneous process. The target is modelling of data such as the
cell point pattern shown in Figure 1(a) and the longleaf point pattern in
Figure 2 (a). Both point patterns clearly have a trend along the first axis.
Furthermore, there might be small-scale inhibition in the cell point pattern
and clustering in the longleaf point pattern.

In the present paper we focus on parametric likelihood inference for inho-
mogeneous Markov point processes by transformation. This model class was
introduced in Jensen and Nielsen (2000) and will henceforth be denoted TIM
models (Transformation, Inhomogeneous, Markov). A parametrized TIM
model is obtained by applying parametrized transformations {hg : 0 € ©} to
a homogeneous Markov point process with density parametrized by ¢ € U,
say. The inhomogeneity is introduced through the transformation while the
interaction originates from the underlying homogeneous model. Accordingly,
1 is called the interaction parameter while # is called the inhomogeneity
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(a) Cell profile centres (b) Back-transf. cells

Figure 1: Point pattern y of cell profile centres (a) and the corresponding back-transformed
point pattern 2 = h; ' (y) (b). The transformation only affects the first coordinates of the
points. The transformation parameter 8 is the maximum likelihood estimate, b = 1.3043,
under an inhomogeneous Poisson point process model. For details, see Section 3.4.

(a) Pine trees (b) Back-transf. pines

Figure 2: Point pattern y of positions of adult longleaf pine trees in a forest (a) and
the corresponding back-transformed point pattern z = h;'(y) (b). The transformation
parameter # is the maximum likelihood estimate, 6o = —1.38663, under an inhomogeneous
Poisson point process model.
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parameter. However, in the transformed process both 1 and 6 control the
interaction. The transformed process is inhomogeneous in the intensity of
the points as well as in the strength of the interactions among the points. In
particular, the interaction range is shorter in areas where the concentration
of points is high.

For any of the inhomogeneous models to be considered, there exists a
subset Vo C W in which the model is Poisson. The transformation model with
parameter space ¥y X O is a subclass consisting of inhomogeneous Poisson
point processes, called the corresponding inhomogeneous Poisson model.

Likelihood inference for # and 1 cannot be separated. Furthermore, for
the important class of exponential inhomogeneous transformation models,
the parameter # appears as a nuisance parameter in an exponential family
likelihood function, cf. Jensen and Nielsen (2000). Since the number of cal-
culations involved in maximum likelihood estimation increases exponentially
in the dimension of the nuisance parameters and maximum likelihood esti-
mation is already quite involved in the homogeneous case, it is desirable to
find an alternative estimate of 6.

In Figure 1 (b) and 2 (b) the cell and the longleaf point patterns have been
transformed with an inverse transformation ha_l, which is of simple exponen-
tial form and only affects the first coordinates of the points. The value of
the inhomogeneity parameter 6 is fo, the estimate based on the correspond-
ing inhomogeneous Poisson model. Note that 6, is calculated under a model
where the interaction is disregarded and only the inhomogeneity is taken into
account. Motivated by the homogeneous appearance of these point patterns,
the present paper is devoted to the study of the statistical properties of 6.
In particular, it will be shown that 6y can be regarded as a moment estimator
in the class of exponential inhomogeneous transformation models.

With this simplified estimation of the inhomogeneity parameter 6, the
analysis of an exponential transformation model can be performed as follows.
First 0 is computed, which is easy and very fast to do in practice. Next, ¢
is estimated under the assumption that € is known and equals 6. Using this
two-step estimation procedure, we can first concentrate on finding the appro-
priate transformation without taking the interaction into account. Secondly,
we can try to find a homogeneous model, using the back-transformed data
hafol (y) where y is the original inhomogeneous point pattern. For this pur-
pose, well-studied tools can be used such as second order statistics F, G, J, K
and the pair correlation function, see e.g. Diggle (1983), van Lieshout and
Baddeley (1996) and Stoyan et al. (1995). The analysis of homogeneous
Markov point process models is also a very thoroughly studied field, see e.g.
Geyer (1999) and Baddeley and Turner (2000).

3
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The rest of the paper is organised as follows. Basic terminology for point
processes is given in Section 2. In Section 3 we briefly introduce the transfor-
mation models and the class of exponential transformations. In Section 4 we
discuss full likelihood inference in transformation models. In Section 5 we in-
vestigate the statistical properties of fy. A simple test for homogeneity based
on the Poisson model is given in Section 6. The focus is in Sections 3 to 6 on
the class of exponential transformations, but it is pointed out when results
apply to point processes in general. At the end of each of Sections 3 to 6, the
results are illustrated by analysis of the cell or the longleaf point patterns.
A supplementary simulation study is presented in Section 7. In Section 8,
open questions and future work are discussed. The Appendix contains some
prerequisite results for point processes with periodic boundary.

2. Point processes

2.1. Homogeneous point processes

In the present paper we consider finite point processes defined on a full-
dimensional bounded subset X of R™. Below, we summarize the notation
and concepts needed for such processes. A more detailed account can be
found in Mgller (1999) or van Lieshout (2000).

The state space for a finite point process on X is {2y, the set of finite
subsets of X'. In what follows, we only consider point processes which have a
density with respect to the Poisson point process on X with intensity measure
Am, the Lebesgue measure in R™.

A point process defined on R™ is called homogeneous (or stationary) if its
distribution is invariant under translation, cf. e.g. Stoyan et al. (1995) or van
Lieshout (2000). For a point process defined on a bounded set, this concept
can be modified as follows.

Definition 2.1 Let X be a point process on a full-dimensional bounded set
X C R™ with density f with respect to the Poisson point process on X with
intensity measure \,,. We call X homogeneous if f is the restriction to Qx of
a function g defined on Qrm which is translation invariant, i.e. g(x+c) = g(z)
for all c € R™ and z € Qgm. Here, t+c={n+c:n € z}.

2.2. Markov point processes

The class of Markov point processes, see Ripley and Kelly (1977), will be
used for modelling the interaction in a point pattern. Let ~ be a reflexive
and symmetric relation on X'. A point process is Markov w.r.t. ~ if and only

4
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if
f@)=]leGk), @€, (1)
2Cx
where ¢ is a clique interaction function w.r.t. ~. This means that if ¢(z) #
1 then all pairs of points in the subset z are related with respect to ~.
Often, it is possible to extend the definition of ¢ to {2gm. In that case, X is
homogeneous if ¢ is translation invariant, cf. Definition 2.1.

Example 2.2 (Strauss process) A simple example of a homogeneous Mar-
kov point process is the Strauss process with density, cf. Strauss (1975),

fla) = e(B,7,7) 5D, @€ O,

where n(x) is the number of points in z, s,(z) is the number of point pairs
in z with distance less than r, and ¢(8,7,7)™" is the normalising constant.
The parameters fulfil 5> 0,0 <y <1, and r > 0.

The Strauss process is Markov w.r.t. the distance relation

n~E=|n=¢|l <. (2)

2.8. Processes with periodic boundary

For a homogeneous point process defined on a bounded set, the distribution
of the points at the boundary of X is typically slightly different from the
distribution elsewhere. This phenomenon is known as edge effects. In the
theoretical developments presented in Section 5 below, it is important to
remove these edge effects. One way is to restrict attention to a set X which
can tile R™ and modify the density of a homogeneous process such that it
becomes X-periodic.

Definition 2.3 A bounded set X C R™ is a fundamental region if there
exists a sequence {z;} C R™ such that

U]' (X‘{’Z]):Rm
(X +2j,)N (X +2z,) =0 when j1 # jo

{=2i} =1{z}

Example 2.4 Let X =[ay,b;) X - -+ X [am, by) be a rectangular box in R™.
Then X is a fundamental region and the series

{(]1 (bl - al)a e a]m(bm - CLM))}(jln--,jm)EZX'"XZ

fulfils the requirements in Definition 2.3.
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Definition 2.5 Let X' be a fundamental region and let {z;} be a sequence
fulfilling the requirements in Definition 2.8. A function g : Qrm — R is
X -periodic if for all © and j

g({xla ey X1, Xy Ry g1, - ;xn}) = g({xla sy Li—15, Ly Lit1y - - - 7xn})

If X is an interval, one may imagine wrapping X around a circle, combining
the two ends of the interval. A function ¢ defined on all finite subsets of
R is then X—periodic if the values of ¢ only depend on the wrapped point
configuration. If the function g associated with a homogeneous process, cf.
Definition 2.1, is X—periodic, then X will be called circular. If X is a rect-
angle in R?, X—periodicity involves folding X into a torus.

Using X-periodicity, we can remove the edge effects, as shown in the
proposition below. The proof of the proposition is deferred to the Appendix.

Proposition 2.6 Let X C R™ be a fundamental region and let X be a ho-
mogeneous point process on X as in Definition 2.1, where the function g is
X —periodic, cf. Definition 2.5. Furthermore, let us assume that n(X) > 0
almost surely.

Then, a point Z chosen uniformly among the points in X, is uniformly
distributed in X.

As a consequence of Proposition 2.6, the mean value of averages over
points in the homogeneous point process X does not depend on the interac-
tion structure.

Corollary 2.7 Let the situation be as in Proposition 2.6. Furthermore, let
g: X = R and let U denote a uniform random variable in X. Then,

E (@ Zq(n)> = Eq().

nex

Proof. Let Z be chosen uniformly among the points in X. Then,

E(q(2)X) = o ().




Figure 3: Realizations of the Strauss process on the unit square. To the left, the relation
is the distance relation. To the right, the relation is the distance relation modified to
be X-periodic. To illustrate the periodicity, the point pattern has been translated with
{(4,5)} i,j)ez xz and the nearest neighbourhood is plotted in grey. In both point patterns,
v=0.01, 8 =500 and r = 0.1.

At the last equality sign we have used that Z is uniformly distributed in X
as shown in Proposition 2.6. O

In the right hand-side of Figure 3, an X—periodic version of the Strauss
process is shown where X is the unit square. Instead of using the ordinary
relation ~, defined in (2), a modified relation is used

nep &= dji,020 Ntz ~E+ 2. (3)

For comparison, a realization of the ordinary Strauss process is shown in the
left hand-side of Figure 3. Notice that the edge-effects are removed when the
relation is modified.

3. Inhomogeneous point processes by transformation

In this section, we summarize the important concepts from the theory of
inhomogeneous point processes by transformation. For more details, see
Jensen and Nielsen (2000).

3.1. Transformation of point processes

Let h : X — Y be a differentiable and bijective mapping between two full-
dimensional bounded subsets of R”, and let X be a point process on X with
density fx. Then the transformed point process Y = h(X) has density

fr(y) = fx (B ()OO TT IR (), y € Qy, (4)

ney
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see Jensen and Nielsen (2000, Proposition 3.2). Here, Jh™! is the Jacobian
of the inverse transformation h~!.

If Jh~! is non-constant and X is a homogeneous point process, it follows
that Y is an inhomogeneous point process, cf. Definition 2.1. Such processes
are called transformation inhomogeneous.

Let X be the homogeneous Poisson point process with intensity measure
cAm wWhere ¢ > 0. Then Y has density

fY(y) — e_(c_l))‘m(X)C”(y)e)\m(y)—)\m()()Hjh—l(n)

ney

&) o= fyle T m)—1)dn H (c Jh_l(n)) )

ney

—~

which is the density of an inhomogeneous Poisson point process with intensity
function ¢ Jh1(n). At () we have used the fact that

/y Th (0)dn = Am(X). (5)

3.2. TIM models

The transformation result from the previous section can be used to develop
models for inhomogeneous point processes Y on Y. Let X be a homoge-
neous Markov point process with respect to a relation ~ and with density f
parametrized by ¢ € ¥. Furthermore, let gs : Y — [0, 00) be a parametrized
model of the inhomogeneity where # € © C R'. Suppose that we can find for
each 0 a differentiable and bijective transformation hy : X — ) such that

The* (1) = go(n), €. 6)

Then, Y = hy(X) is a Markov point process with respect to the induced
relation ~ given by

n~ €<= hy'(n) ~ hy (), (7)

cf. Jensen and Nielsen (2000, Corollary 3.3). We can think of ~ as an inho-
mogeneous version of ~.

The model for Y is called a TIM (transformation inhomogeneous Markov)
model. The inhomogeneity in the model is induced by {gs; 0 € ©}. The first
order terms in the density of Y are non-constant and proportional to gy(n),
cf. (4) and (6), and the relation is inhomogeneous and determined by the
solution to the differential equation (6), cf. (7).

8
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3.3. FExzponential transformations

Let us restrict attention to the case where Y = X. We will call a transfor-
mation hy : X — X exponential when its inverse Jacobian is of exponential
form

Thy'(n) = B(0)"™™, e X, 8)
where 7: X - R and # € © C R'. Using (5) we get,
B(0) = An(X)a(0), where «(f) '= / Ty, (9)
x

Notice that # = 0 is the case of the identity transformation, ho(n) = n.
By combining (1), (4), and (8), we get in the particular case where X is
a Markov point process,

fr(y;0) = B(O)"WeV) H p(z), where t(y)=> ().

2Chy ' (y) ney

The model for Y is called an exponential inhomogeneous Markov model.

Example 3.1 (1-dimensional exponential transformations)
Let I C R be a bounded interval. There exists a unique differentiable and
increasing mapping hy of I onto itself, # € R', such that
d
du

In particular, when 7(u) = u and I = (0;a) we obtain the simple exponential
transformation given by

byt (w) oc W),

e’ —1

hyt(u) = a———

0 ( ) eHa _ ]_’
0 € R. Another example is the symmetric exponential transformation with
7(u) = |u| and I = (—a;a). It is closely related to the simple transformation

and takes the form
eflul —1

hy'(u) = sign(u) a a1
Since —a — —a, a — a and d/du h;"'(a) = d/du h;'(—a), we can think of
this transformation as a differentiable mapping of a circle into itself. In Fig-
ure 4 we have used this transformation on the circular Strauss point process
on (—m;m) with modified relation (3) where ~ is the usual distance relation.
To emphasize the periodicity, the point patterns are plotted on the unit circle
where the points —7 and 7 are identified. This example will be used in all
the simulation experiments we will present in this paper and the process will
be denoted symmetric exponential inhomogeneous circular Strauss.
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Figure 4: Symmetric exponential inhomogeneous circular Strauss. Fixed number of points
n = 100. Circular distance relation with r = 0.05, and v as indicated. Symmetric
exponential transformation with § = 1, the mark on the bottom indicates the points
- = .

3.4. Data analysis, part 1

The cell data shown in Figure 1 (a) is from a tissue section of the mucous
membrane in the stomach of a healthy rat. The data have earlier been ana-
lysed in Nielsen (2000). The original image of the section has been converted
into points marking the centres of the cell profiles. It is known that the
variation in size is small for these cells. We only consider a small window of
the original data and scale it such that X = [0, 1] x [0, 0.89]. There is a trend
in the cell intensity perpendicular to the stomach wall, and the section has
been taken along this trend. In Figure 1 (a), the trend is along the first axis.

In Figure 2 (a) the points mark 271 adult longleaf pine trees observed in
a 200 x 200m? area of a forest, which for convenience is rescaled to the unit
square. The data set was first studied in Platt et al. (1988).

One possible model for the data sets is a transformation model with
coordinate-wise transformation hg(n1,12) = (he, (1), he,(n2)) where hy, is a
simple exponential transformation parametrized by #; € R, cf. Example 3.1,
and hg, is chosen as the identity. If the underlying homogeneous process is
Poisson, the point patterns are regarded as realizations from inhomogeneous
Poisson point processes. As mentioned in the introduction, the maximum
likelihood estimate of # under this model is very easy to calculate and will
be denoted . See also Section 5.1 below.

In Figure 1(b) and 2 (b) the two data sets have been back-transformed
using h . Both data sets appear to be homogeneous. Summary statistics
calculated for the back-transformed data sets show that the pine data is
almost Poisson with a small tendency of clustering. The cell data show
significant small scale inhibition. In Nielsen (2000) a TIM model with the

10
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Strauss process as underlying homogeneous interaction model was used with
success. We might also choose to model the clustering in the pine data. One
of the models introduced by Geyer (1999) might be applicable.

In the sections to follow we will discuss likelihood inference for transfor-
mation models and only use the cell data for illustrations.

4. Full likelihood inference

Let hy : X — Y be a differentiable and bijective mapping parametrized
by 0 € ©. Let X be a homogeneous point process with density fx(-;t)
parametrized by ¢ € W. Let Y = hy(X) and let y be an observed point
pattern. We want to estimate # and 1 in the transformation model class for
Y.

The likelihood function for (0, ) decomposes as follows, cf. (4),
L(0,%5y) = Lo(0;y) Luom(¥; hy ' (), (10)

where Ly (6;y) is the likelihood function for the inhomogeneous Poisson point
process with intensity function equal to Jh,"' and Lyowm(¢; ) = fx(x;1) is
the likelihood function for the corresponding homogeneous model when z is
observed.

Since the inhomogeneity parameter 6 enters into both parts of the like-
lihood decomposition (10), traditional likelihood inference on # cannot be
restricted to L.

4.1. Ezxponential family densities and profile likelihood

Likelihood inference for point processes is tractable when the density is of
exponential family form, see e.g. Geyer (1999). However, most homogeneous
point process models studied do not have density of exponential form, but
have the property that the parameter 1 can be split into two components
(11, 12) such that the density is of exponential form for fixed 1)y,

Fx(@; (1, 02)) = iy, thg) ~1ePW M) g e Q. (11)

An example is the Strauss process with distance relation determined by

r where ¢y = (8,7), Y2 = r, #(8,7) = (log(p),log(7)) and t(z;r) =

(n(x), s, (x)), see also Example 2.2.
If X has density of the form (11), then the density of Y contains the term

P (V1) thg Wi2)

which is not an exponential family term unless 1, as well as 0 are fixed. It
does not make sense to introduce new homogeneous models such that 6 enters

11
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into the density of Y as an exponential family parameter. The reason is, that
the very idea of the transformation models is to create inhomogeneous models
based on the homogeneous models broadly studied, and to take advantage
of the already well developed tools for statistical inference for homogeneous
models.

However, the properties of exponential families can still be utilized in the
analysis of a transformation model. When X has density of the form (11),
the profile likelihood with nuisance parameter (6,1,) becomes

f(ﬁ, ¢2; y) = Lo(e, y) Hllﬁ?x Lhom(wla ¢2; ha_l(y)):

where Lyom (11,%2; hy ' (y)) is of exponential family form for fixed (6, ).

4.2. Data analysis, part 2
Let us illustrate the problems involved in full likelihood inference by the
cell data. We use the Strauss process as the underlying homogeneous pro-
cess. The inhomogeneity is described by a coordinate-wise transformation
ho(ni,m2) = (he, (M), ho,(12)), 6 = (01, 02) € R?, where both coordinate map-
pings are simple exponential, cf. Example 3.1. The nuisance parameter (6, r)
is 3—dimensional. In Jensen and Nielsen (2000, Example 5.2), a simpler ex-
ample based on simulated data was studied. Here the nuisance parameter
was 1-dimensional.

For fixed 0 and 7, Lyom(83,7,7; hy ' (y)) is of exponential family form and
its maximum with respect to (/,) is attained as the unique solution to the
likelihood equations

Egyrn(X) = n(y)
Egyrsr(X) = Sr(hg_l(y)), (12)

where X is a Strauss process with parameters (3,7, 7). The solution is de-
noted (8(0,7),%4(0,7)). The profile likelihood with nuisance parameter (6, r)
becomes

L(0,75y) = Lo(05y) Liom (B0, 7),57(0,7), 75 by () (13)

Hence, for values of (#,7) in a grid we solve the equations (12) and compute
(13) up to a constant. The grid value maximising the profile likelihood will
be denoted (9, 7) and the maximum likelihood estimate is then 0,7,8,7) =
0,7, B0, 7),7(0,7)).
The set of #—values to be considered can be reduced quite drastically. If
for k=0,1,...
Ok(r) = {0 € O : 5:(hy " (y)) = k},

12
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Figure 5: Illustration of T'(r) for the cell data with » = 0.0087. The tabbing between
grid points is 0.01 and 0.001 in the left and right figure, respectively. The grey values
correspond to the different O (r) regions, the lighter the grey value the smaller the k. The
curves are level curves of L.

then, according to Jensen and Nielsen (2000, Proposition 5.1), L(f,r;y) at-
tains its maximum for fixed r for # € T'(r) where

so(r)
T(r) = | J{0 € Ok(r) : Lo(6;y) > Lo(6%;y), for all 0" € O4(r)},
k=0
and so(r) = sr(hefo1 (y)). The set T'(r) is a finite set with at most so(r) + 1
elements. An illustration is shown for the cell data in Figure 5.
It therefore suffices to tabulate the profile likelihood function L(#,r;y) in

{0,r):0€T(r), re R},

where R is the chosen grid of r—values. This can be done using multiple
bridge sampling, cf. Gelman and Meng (1998). Details are provided in the
technical report Nielsen (2001). In Figure 6, the profile log-likelihood func-
tion log L(r; y) is plotted for the cell data where

L(r;y) = Jnax L0,r;y)

and
R = {0.00500, 0.00505, . ..,0.01000}.

13
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Figure 6: The profile log-likelihood function log L(r;y) is plotted (in full) for the cell data.
The stippled line is the partial profile log-likelihood when 6 = 6, is fixed. For details, see
the text.

Notice that L(-;y) is multi-modal. For 7 € R the maximum likelihood esti-
mates are

(61,05, 7, 3,7) = (1.304, —0.275, 0.0072, 767.6, 0.08149)

The choice of the grid R has been based on analysis of the J—function
and the profile pseudo-likelihood of the back-transformed data set from Fig-
ure 1 (b) which appears homogeneous, cf. van Lieshout and Baddeley (1996)
and Baddeley and Turner (2000). These analyses point to a value of r about
ro = 0.007. The nearest neighbour distances are very small in the back-
transformed cell point pattern. The smallest observed nearest neighbour
distance is 0.00539. The 25%, 50%, 75%, and 100% quantiles are 0.01370,
0.01869, 0.02463, and 0.04806, respectively.

To be precise, the profile log-likelihood function plotted in Figure 6 is

T T(D z(émray) z
log L(r;y) —log L(6y, 70; y) = log ———— + max log ———. (14
(r3) (Bo:7033) L(0o,ro;y) €T L(6o,75y) ()

The first term on the right hand-side of (14) is a partial profile log-likelihood
for § = 6, fixed. The partial likelihood is increasing in intervals between the
inner-point distances in the back-transformed point pattern and has down-
wards jumps at the inner-point distances. These distances are marked as
vertical lines in Figure 6 and the partial likelihood is the stippled line. The
full and the partial log-likelihood are identical below the smallest inner-point
distance 0.00539, since T(r) = {6y} for < 0.00539. Therefore, in order
to find the maximum of L(-;y), the partial log-likelihood need only to be
evaluated in the largest r grid value below the smallest inner-point distance.
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5. Partial likelihood inference for 60

In this section we investigate the statistical properties of the estimator 0o
obtained by maximising the Poisson likelihood Ly in (10). We restrict at-
tention to exponential transformations as introduced in Section 3.3 and we
assume that Y = X.

b.1. Existence and uniqueness of éo
The inhomogeneous Poisson likelihood takes the form

t(y n(y)
Lo(0; 5) = An(X)"Pa(0)" D0 = ), (2)"D (a(0)e )

see (8) and (9). Recall that t(y) = > ., 7(n). lf n(y) > 0, then the likelihood
equation for # based on L is

Existence and uniqueness of 0, follow from the theory of exponential families,
cf. e.g. Barndorff-Nielsen (1978, Corollary 9.6). The results are formulated
in the proposition below.

Proposition 5.1 Let X be a homogeneous point process on a bounded set
X C R™ and suppose that n(X) > 0 almost surely. Let Y = hy(X) where
hg, 0 € O, is an exponential transformation. Suppose that the densities
{a(0)&70) 1 0 € O} constitute a reqular exponential family. Then, if C is
the convex support of the family, then m is a bijection of © onto intC. For
t(y)/nly) € intC, Oy exists and is given by

o =m~! <@> . (15)

n(y)

Note that m can be calculated as

(16)

5.2. Statistical properties of 6,

Below, we show under regularity conditions that éo is a moment estimator
of 6 based on t(Y)/n(Y).

15
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Proposition 5.2 Let the situation be as in Proposition 5.1. Furthermore,
let X CR™ be a fundamental region, cf. Definition 2.3, and let X be homo-
geneous as in Definition 2.1 where the function g is X —periodic, cf. Defini-
tion 2.5. Let the density be parametrized by ) € V.

Then,
o (253 ) = ml0)

For t(y)/n(y) € intC, the estimator By is the unique 0, satisfying
B, (1) - 10

9 = )

n(Y))  n(y)

where y 1s the observed point pattern and Egy indicates mean value under
(0,%) for an arbitrary 1.

Proof. We use Corollary 2.7 with ¢ = 7 o hy, and let again U denote a
uniformly distributed random variable in X'. Then,

@ = L T =Er =T U du
o () = Baw— 3= wlhta) =57 () [ o) 12
= [ 7(u)Jh; (u du = [ 7(w)a(0)e’ Wdy =m
= [ g w5 = [ 7@ du = m(o).
We have used (8), (9) and (16). The conclusion follows from (15). O

If the variance of t(Y')/n(Y’) is not too large then m~" will appear linear
and 6, is approximately unbiased, since, cf. (15),

Suppose that # is 1-dimensional and that m is concave. Then m™" is
convex, and from Jensens inequality we get,

Eoplo = Egym™ (m(8)) > m™" (Egym(fo)) = m™ (m(0)) = 0. (17)

Thus, 90 is a positively biased estimator of # under this condition. The size
of the bias depends, of course, on the variance of ¢(Y)/n(Y).

Example 5.3 For both transformations introduced in Example 3.1, we get,
using e.g. (16),

ele 1
- —. 18
eda—1 6 (18)

This function is concave for § > 0, see Figure 7.

m(f) =a

16
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Figure 7: The function m given in (18).

5.3. Data analysis, part 3
The cell data set is just a small window of the original data set, which is
a long band stretching far along the second coordinate over and under the
observation window. Thus, there are no edge effects in the lower and upper
part of the cell data set. In the left and right hand-sides of the window,
there might be some edge-effects. However, since the interaction range is
very small, we can safely ignore this.

Thereby we can assume that the conditions in Proposition 5.2 are fulfilled,
and 6 can be regarded as a moment estimator of §. We get,

A

0y = (1.304, —0.272).

The estimates of (r, 3,7) based on Lyom(3,7, r; hgol(y)) becomes

(o, Bo, 40) = (0.00715,766.0,0.08398).

Notice that the determination of this maximum likelihood estimate only in-
volves techniques from the analysis of a homogeneous process.

The estimate obtained under the partial analysis based on the moment
estimator is very close to that obtained using the full likelihood, cf. Sec-
tion 4.2. In Figure 6 the full profile log-likelihood is plotted as a full line and
the stippled line is the partial profile log-likelihood

10g Luom (73 y) — 10g Liom (T0; ¥) = log =———",
where
log Lhom(’r; y) = lOg Lhom(/B(007 T)a &(0()’ T)a T, hgol (y))

is the homogeneous profile log-likelihood for § = 0, fixed. The partial profile
log-likelihood is calculated as a part of the full profile loglikelihood, see (14).
The two functions have parallel behaviour.
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6. Testing hypotheses on ¢

Suppose that we want to test the hypothesis § € Oy C ©. A simple example
is a test for homogeneity in the class of exponential transformations where
©y = {0} since hg is the identity, see also Jensen and Nielsen (2000). Let
(0, vy) and (8, v) be the maximum likelihood estimates under the hypoth-
esis and the model, respectively. Then, the likelihood ratio test for H takes
the form

LOu,uiy)  Lo(usy) Luom(bm by (1))
Q== o ~ Ldm - =Q-Q, (19
L(0,;y) Lo(0;y)  Lnom(?; hafl(y)) 0l (19)

say. The ratio () is explicitly known and therefore easy to calculate, whereas
(21 has to be calculated using MCMC.

The distribution of ) under H is usually not known. One option is to
simulate the distribution of ). But, as we have seen in Section 4, calculating
just one value of the maximum likelihood estimate under the full model is
rather time consuming and therefore the simulation of, say, 1000 values of )
may be an overwhelming task.

Another option is to evaluate @ in a x?(d) distribution where d is the
difference between the dimensions of © and ©y. However, we do not have
theoretical support for this procedure.

6.1. Poisson based test statistic
A simple alternative to the test statistic (19) is to use the likelihood ratio
test statistic under the corresponding Poisson model,

o = Lal0Ew)

’ Lo (003 y) ’

where 6 and 6 are the maximum likelihood estimates based on Lg(6; )
under the hypothesis and the model, respectively. Compare with (g in (19).
This suggestion is motivated by the encouraging results concerning the esti-
mation of the inhomogeneity parameter  without taking the interaction into
account.

In particular, let X = I; x I, be the product set of two intervals and
consider the coordinate-wise transformation hg(m1,m2) = (he, (M), he,(12)),
where both coordinate mappings are 1-dimensional exponential, cf. Exam-
ple 3.1. Then a test for homogeneity of the second coordinates is a test of
the hypothesis © = R x {0}. Under the Poisson assumption, the estimate
of 6, is the same under H as under the general model. Thereby the Poisson

18



based test statistic becomes

Lo((001,0);y)
Lo((0o1,002); v)
t2(y)

= 2n(y [10 (L) —lo /6902'T<U)du+é ==, (20
(y) |log A1(12) g . 02 n(y) (20)

where t5(y) denotes the sum of the second coordinates of the data set y.
Notice that the first coordinates and é01 do not enter into the test statistic.

The distribution of @)j can easily be simulated. The simulations can be
made under the homogeneous interaction model with parameter 1o, which is
the maximum likelihood estimate of ¢ based on h@,, )(y). Notice that the

—2log Qg =

value of g, plays an indirect role.

6.2. Data analysis, part /

In the cell data, it is of interest to test for homogeneity in the second coor-
dinates. The Poisson based test statistic (20) is —2log Qf = 3.02. The max-
imum likelihood estimate of the interaction parameter based on hg,, ¢ (y) is
(8,7, R) = (765.1,0.10969, 0.0072) and the exact (simulated) test probability
becomes 5.65%. This is based on 2000 realizations from the homogeneous
Strauss process. For comparison, the test probability based on 2000 homoge-
neous Poisson processes is 7.4% and the test probability based on the x*(1)
distribution is 8.22%. A similar test for homogeneity in the first coordinates
gives —2log Q5 = 83.9 corresponding to test probability 0.

It is also possible to calculate the value of the test statistic (19) for homo-
geneity in the second coordinates, based on the full likelihood function. We
get —2log @ = 7.23. Evaluating in a x?(1) distribution, the test probability
becomes 0.72% and is thereby somewhat smaller than the one obtained using
(20). Notice that also (20) gives a small test probability although we expect
homogeneity in the second coordinates. This is probably due to the large
number (617) of points in the cell data.

For comparison, testing for homogeneity in the second coordinates of
the pine data from Figure 2 (271 points), we get Qf = 0.6337 with exact
(simulated Poisson) and x?(1) test probabilities of 42.67% and 42.60%, re-
spectively.

7. Simulation experiments

In this section we will present some simulation experiments that illustrate the
theory in the previous sections and point to some interesting results regarding
the variance of 6.
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The simulation experiments concern the TIM model from Example 3.1,
illustrated in Figure 4, where the underlying homogeneous process is the
circular Strauss process on (—m; 7). The transformation is symmetric expo-
nential. Furthermore, we have conditioned on n(z) = 100 and supposed that
r is known and equal to the true value. The inhomogeneity parameter 6 as
well as the interaction parameter v is 1-dimensional, ) = v € (0; 1]. Recall
that v = 1 is the Poisson point process, the process without interaction, and
as 7y decreases, the degree of inhibition increases until the hard core process
is reached for v = 0 where no points can lie closer than r apart. Notice that
when v =1, 0, is the ordinary maximum likelihood estimate.

7.1. Distribution of t(Y)/n(Y)

First, we have examined the mean and standard deviation of ¢(Y)/n(Y).
These quantities have been approximated by the sample mean and sample
standard deviation over 2000 realizations from the model.

In the upper plot of Figure 8, the sample mean is plotted for # = 1 and
v =0.01,0.02,...,1.00. In the lower plot, the sample standard deviation is
shown. The four curves represent 4 different values of the transformation
parameter 0 = 0.5,1, 2, 3.

In the upper plot, we recognize the result from Proposition 5.2: the mean
of t(Y)/n(Y) is constant and equal to m(f). The fluctuations come from
the approximation. The lower plots indicate that the standard deviation in-
creases with . Hence, the more inhibition, the smaller standard deviation.
But that also corresponds with the fact, that the more inhibition, the more a
small change in the transformation parameter will influence the relative num-
ber of neighbours. And therefore the estimated transformation parameter is

5, (39)
. Y \ n(Y

2.284 v /\/\/\V/\,\/\ A\ /\/\/\-ﬁl\/\r\/\/\f\/\/\/\/\ PV m(1)
2.282 \/V\/ W/ VOV \f V=1

2.280

0.08

0.06

0.04

0.02

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10 7%

Figure 8: Simulation experiment examining the mean and standard deviation of t((}{,)) for
varying 7, and 6 as indicated.
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not allowed to vary very much. The same is the case when 6 increases.

7.2. Distribution of 0o

Next, we study the distribution of f;. As known from (17), 0 overestimates
f since m is concave, see Figure 7. This is also found in the upper plot
in Figure 9 where the sample mean of 6 is plotted for v between 0 and
1. However, considering the scale on the second axis the bias is very small.
As before, the fluctuations in the mean are most likely to come from the
random approximation of the mean. Still we can see an increase of the bias
with increasing vy, compare with the variance of ¢(Y") /n(Y") shown in Figure 8.
In the middle plot of Figure 9, the mean and 95% envelopes are plotted for
the 2000 samples of éo. The envelopes are the stippled lines. Notice that the
values of 6y in 95% of the cases fall in the interval [0.75; 1.25]. From Figure 7
we see that in this interval m can be approximated by a straight line. Using
(15), we then expect that the variance of f, can be approximated by

A 1 t(Y)
/Y —= . 21
Varg,y; (6o) m,(e)QVafo,w (n(Y)> (21)
In the lower plot of Figure 9 both the left-hand side and the right-hand
side of (21) are plotted, and we see that the approximation is very good
especially for small v for which the envelopes are more narrow and the linear
approximation therefore is better.

1.010

1.005

1.000

1.2

1.0

0.8

0.14
0.12

0.10
0.08

/Varf,
-------- Var(e(V)/n(V))/m! (1)
0.8

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.9 1.0~

0.06

Figure 9: Simulation experiment examining the mean and standard deviation of 6o for
varying v, and = 1. In the middle plot the mean is plotted together with 95% envelopes.
In the lower plot the approximation (21) is examined.
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_ Finally, note that both the bias and the variance of fo decrease with v 80
0y has better statistical properties for small ~y

7.8. Comparison of 0y and
Finally, we will study the simultaneous distribution of (6, ) where 6 is the
maximum likelihood estimator based on the full likelihood (10).

In the eight plots in Figure 10, the interaction parameter ~y varies between
0 and 1. In each plot we have simulated 50 point patterns from the model and
plotted (fy,#). The true value of 0 is 1, which is marked by the horizontal
and perpendicular lines. The diagonal hnes correspond to 6y = 6.

First notice that 6y and § are very similar. This is more pronounced for
v close to 1, where fo is the true maximum likelihood estimate. The more
interaction, the more information is lost. Secondly, the variance of 0y and 6
increases with . This is intuitively clear, since the smaller the ~y, the less
variation in the position of the points. Thirdly, for v very close to 0, (00, 0)
satisfies

0o >0>0 or 6<6<,,

i.e. 0 is closer to the true value than éo. The effect is however not that
impressive for larger values of v. It is important to remember that the
parameters are estimated under the true model with r fixed to the true
value. This is an artificial restriction which never occurs with a real data set,
and of course 6 gains from this.

0

147~ = 0.001 v=0.1 v=0.3 v =05

1.2 . |
1.0 o bt - :,c,".'::' . "‘ ) .‘; l{
0.8 .

06 |

1.4 v =0.7 . ~v=0.9 ~v=0.99 =1

1.2+

1.0+

0.8

061,

@
o

@ o ~ < o o < @ o ~ < o o
o - - H - - |—| o - - H - -

1.4-
>
o

Lo @ w Lo @
c (=] (<] c o

Figure 10: Comparison of 6 and 6. Simulation experiment with v as indicated in each of
the eight plots, and 6 = 1.
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Thus, these simulation studies indicate that 0, is close to 6. Furthermore,
the statistical properties of both estimators seem to be better the smaller the

Y-

8. Discussion

The present paper concerns statistical inference for transformation inhomo-
geneous point processes. The idea of modelling inhomogeneity by trans-
formation has also been applied in other areas of spatial statistics, cf. e.g.
Perrin (1997). Transformation models for point processes yield not only in-
homogeneity in the intensity of points but also in the strengths of interactions
among points. For point processes defined in R™,m > 2, the neighbourhoods
induced by the transformation will, except in trivial cases, be anisotropic
(non-circular). This might just be what one wants if the point pattern has
actually been formed by deformation. Otherwise transformation models may
be used as approximations in cases where a precise model of the neighbour-
hoods is not important. In particular, we stress that the analysis of the cell
data by a transformation model has been included in the paper for illustrative
purposes. If it is important to use isotropic neighbourhoods then the inho-
mogeneous Markov point processes by location dependent scaling, presented
in Hahn et al. (2001), may be a good alternative. For circular point processes
on R, anisotropy is not a question at all and the transformation models may
generally be very useful models for describing correlated directions.

In the present paper it is argued that the inhomogeneity parameter 6
can be estimated, using the partial likelihood L, based on an inhomoge-
neous Poisson point process. The statistical analysis can thereby be simpli-
fied. Most importantly, the analysis can be made into a two-step procedure
where first the inhomogeneity parameter is estimated and then the back-
transformed point pattern is analysed as a homogeneous point process. The
likelihood analysis of a homogeneous process is already time-consuming, es-
pecially if the estimation of the interaction range r is taken into account. In
our analysis this step was the real time-killer.

It is expected that Proposition 5.2 can be used to prove a consistency
result for f,. Let us suppose that 6 is a 1-dimensional parameter. Then,
from (15) it follows that

=0+ m,l(g) (% - m(o)) :

where | §—0 |<| f,—0 |. Proposition 5.2 implies that m(6) is the mean value
of t(Y)/n(Y). Thus, if Varg,t(Y)/n(Y) tends to 0 when X is expanding to
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R™, then 6 will converge in probability to . The details of this reasoning
have still to be fully investigated.

9. Appendix: Proof of Proposition 2.6

Let X C R™ be a fundamental region (Definition 2.3). Let X be a homo-
geneous point process in X' (Definition 2.1) with density fx which is the
restriction to Qx of a translation invariant and X-periodic (Definition 2.5)
function gx defined on Qgm. Suppose also that n(X) > 0 almost surely.
Under these conditions we will in this appendix show that a point Z chosen
uniformly among the points in X is uniformly distributed in X.

First we derive a formula for the density of Z. Let F' be a measurable
subset of X, and let Il be the distribution of the unit rate Poisson point
process on R™. Using fx(#) = 0, and the well-known expansion of the
distribution of the Poisson point process, see e.g. Mgller (1999, Section 2),
we get

P(Z € F)
_ /Q P(Z € FIX = x) fx(2)TI(dz)

- /QX %x) Z 1(n € F) fx ()M(dz)
ie’\mw)%/ / %il(wz € P)fx({x1,...,zp})dz, - - - dxy
e Am(¥ / / (x1 € F)fx({z1,...,2n})dxy, - -

/ (Ze_wx n'/ / Ix({z, 29, w0} )day - )dz

n=1

A
O I

In (a) we have interchanged the inner sum and the integrals and used that
all the terms in the new inner sum is equal to, say, the first one.
The density of Z is the expression in brackets which can be rewritten as

Frlz) = 1(z6X) e—An (¥ / /gX (2,20 20} ) - -

Denote the sum gz(z). The function gz is defined on R™.
In order to show that Z is uniformly distributed in X', we show that
gz is constant, i.e. that gz(z + ¢) = gz(z) for any ¢ € R™. This is done
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by showing that all terms in the sum are constant. For n = 1, the term
is exp(—Am(X))gx ({z}), which is constant since gx is translation invariant.
For n > 2,

/ /gX (4 ¢, 5. 20} ) -

= / / gx({z+c zo,...,x,})dy, -
X+c X+c

= /---/gX({z—i—c,:Ug—i—c,...,a:n+c})dxn---da:2
x x

/.../gx({z,.l'z,...,xn})dajn...de
X X

In (b) we have used that gx is translation invariant. Now it only remains to
show (a). Since the order of the integrals can be interchanged, similar results
are to be shown for each integral. For the i’th integral, 2 < i < n, we have,

—~
o
=

/ gX({Z+Ca x?a"'axi—laxiaxi-i-la"'axn})dxi
X+c

- Z/ gx({z+C,$2,.--,$i71,$i,$i+1,---,.'L'n})dxi
~ Jxronxez)

= E/ x({z+c, 2o, ., xim1, i+ 2, Tiga, .., Tn })d;
X+c—zj)N

(d)

= E x({z+ ¢, Tay .o i1, Ty Tig1y - - -, T })d;
(X+c—2z;)N

= / gx({z+e,zay o Tim1, Tiy Ti1y - - -, Tn })d;.

x
At (c¢) we have used that X is a fundamental region and at (d) we have used
that gx is A-periodic. Finally, at (e) we have used that U;(X +c—z;) = R™.
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Inhomogeneous spatial point processes
by location dependent scaling
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Abstract

A new class of models for inhomogeneous spatial point processes is
introduced. A locally scaled point process is a modification of a ho-
mogeneous point process, obtained by replacing volume measures with
local analogues defined by a scaling function. If the scaling function is
constant, then local scaling coincides with global scaling. The new ap-
proach is particularly appealing for modelling inhomogeneous Markov
point processes. We show that locally the Papangelou conditional in-
tensity of the new process behaves as that of a global scaling of the
homogeneous process. The classes of distance-interaction and shot
noise Markov point processes are discussed in detail. Approximations
are suggested that simplify calculation of the density e.g. in simula-
tion.

1. Introduction

Point patterns with non homogeneous intensity are observed quite frequently
in nature and technology. For example, the number of trees per unit area
in a forest depends on environmental conditions and therefore maps showing
location of trees usually look inhomogeneous. In plant and animal tissue,
cell size and, correspondingly, cell number often depend on the distance to
the boundary of an organ. Many modern materials are designed with struc-
tural inhomogeneity, imitating natural structures in order to improve func-
tional properties. An example is the bronze sinter filter shown in Figure 1.
It consists of almost spherical bronze particles, the diameters of which de-
crease along an axis that marks the filtering direction. Since the particles
are densely packed, the number of particles per unit volume increases as the
diameters decrease. This is also observable on sections parallel to the direc-
tions of inhomogeneity: The centres of the particle section profiles form an
inhomogeneous point pattern.

Laboratory for Computational Stochastics, University of Aarhus
2Centre for Mathematics and Computer Science, Amsterdam
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Figure 1: Left part: Section of a bronze sinter filter with a gradient in particle size and
number. Right part: Centres of the particle profiles. Two enlargements from top and
bottom part, containing about the same number of points, show similar geometry.

While it is easy to model inhomogeneous point patterns with indepen-
dently positioned points by inhomogeneous Poisson point processes, situ-
ations as shown in Figure 1 require more sophisticated approaches. This
pattern is characterized by repulsive interaction between the points due to
the fact that it results from a packing of spheres. The packing is of similar
volume fraction, and similar geometry in regions with larger and with smaller
sphere diameters. Therefore, regions with large sphere diameters look like
scaled versions of regions with small diameters and vice versa. A similar ef-
fect can often be observed in nature, e.g. in plant communities where number
density is governed by environmental conditions. For example desert plants
tend to form regular patterns with varying scale, such that distances between
plants are smaller in densely covered regions. Such point patterns shall be
called homogeneous up to a local scale factor.

In recent years, various models have been suggested for inhomogeneous
point processes with interaction. Since Markov point processes are very pop-
ular for modelling interaction in homogeneous point patterns it is natural that
they are used as starting points for inhomogeneous models. The survey by
Jensen and Nielsen (2001) discusses three ways of introducing inhomogeneity
into a Markov model. As explained in Section 2, homogeneous Markov point
processes are defined by a density with respect to the unit rate Poisson pro-
cess. A straightforward idea is therefore to define an inhomogeneous process
by the same density (up to a constant factor) but with respect to an inho-
mogeneous Poisson process (Stoyan and Stoyan, 1998; Ogata and Tanemura,

2



Figure 2: Inhomogeneous hard core point patterns obtained by a) defining the density as
with respect to an inhomogeneous Poisson point process, b) inhomogeneous independent
thinning, ¢) transformation of coordinates. Note that dense and sparse regions differ in
geometry.

1986). Inhomogeneity can also be obtained by location dependent thinning
(Baddeley et al., 2000), or by transformation of a homogeneous Markov point
process (Jensen and Nielsen, 2000).

In all three cases, local geometry of the point pattern changes with in-
tensity. This is illustrated in Figure 2, which shows realizations of inhomo-
geneous hard core point processes obtained by the three methods. In order
to obtain patterns that are homogeneous up to a scale factor, interaction has
to be adapted to intensity. However this is not the case in the first approach
where interaction does not depend on the location, cf. Figure 2 (a). Thin-
ning on the other hand destroys interaction structure in regions with small
number of points. This leads to a Poisson like appearance of sparse regions,
see Figure 2 (b). Transformation of coordinates finally not only introduces
inhomogeneity but also local anisotropy, as shown in Figure 2 (c). Therefore
these three approaches are not suitable for modelling situations as given in
Figure 1.

In the present paper we propose a model for point processes that are ho-
mogeneous up to a local scale factor. As in the previous three approaches,
the inhomogeneous model is obtained by modifying a homogeneous “tem-
plate” process that yields the interaction. The idea is that inhomogeneity is
obtained by scaling the template process with a location dependent scaling
factor. A large scaling factor hereby results in low intensity and large interac-
tion distances, whereas a small scaling factor yields high intensity and small

3
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Figure 3: Homogeneous template hard core process (left part) and inhomogeneous process
obtained by local scaling. Enlargements from dense and sparse regions of the inhomoge-
neous pattern look similar to the template pattern.

interaction range. In regions with constant scaling factor the point process
should locally behave like a scaled version of the template, see Figure 3.

The method and results presented in this paper are applicable to prac-
tically any template process that is given by a density with respect to a
homogeneous Poisson point process; however the main emphasis will be on
Markov point processes. The definition of Markov point processes and other
prerequisites are recalled in Section 2.

The local scaling model is introduced in Section 3. Calculating the density
function of a point process for a given point pattern usually implies evaluating
distances, areas, etc. The proposed local scaling model changes the way such
quantities are measured according to a location dependent scaling function.

Sections 4 and 5 give a closer look on the important classes of distance-
interaction and shot noise processes. In particular we show that locally scaled
Markov point processes are again Markov. Some useful approximations of
local scaling, which simplify the calculations (e.g. in simulation) are presented
in Section 6.

The paper concludes with a critical discussion.

2. Prerequisites

Let K denote the set of all full-dimensional bounded subsets of R¥. We
consider finite point processes X on sets X € K. A point process X on
X is a random variable taking values in (y, the set of all finite subsets

4



x ={z, - ,x,} of X.

We will concentrate on point processes X that have a density fx with
respect to the restriction of the unit rate Poisson point process II to X.
Following Nielsen and Jensen (2001, Definition 2.1), a point process X on X
is called homogeneous if fx is the restriction to X’ of a translation invariant
function defined on all finite subsets of R¥.

Markov point processes in the sense of Ripley and Kelly (1977) are partic-
ularly useful for modelling point patterns with interaction. They are defined
with respect to a symmetric and reflexive relation ~ on X. Two points
x1,Te € X are said to be neighbours if z; ~ x5, and a finite subset x C X is
called a clique if all points in x are neighbours. Note that sets consisting of
0 or 1 points are cliques.

Following the Hammersley-Clifford theorem, a Ripley-Kelly Markov point
process X has a density fx with respect to the unit rate Poisson point process
of the form

fX(X): HQO(Y)a XEQX’ (1)

y<x

where ¢ is an interaction function, i.e. ¢(y) = 1 when the set y is not a
clique. We will assume that the interaction function ¢ is defined on all finite
subsets of R¥. A Markov point process X is thereby homogeneous if ¢ is
translation invariant.

For a Markov point process, the Papangelou conditional intensity

fx(xU{z})
0 otherwise,

depends only on those points in x which are neighbours of z. If we let dz
be an infinitesimal region around z and v*(dz) the k-dimensional volume
(Lebesgue measure) of dz, then \(z|x)v*(dz) can be interpreted as the
conditional probability of finding a point from the process in dz given the
configuration elsewhere is x, cf. e.g. van Lieshout (2000).

Before defining local scaling of point processes let us consider global scal-
ing as a transformation of coordinates. Global scaling with a constant factor
¢ > 0 maps a point process X on X' to a process X, = cX on

X.o=cX={x:2/ce X}.

The unit rate Poisson point process IT on X with intensity measure v* is
transformed into a Poisson point process II, on X, with intensity measure

ckUk.
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Let fx be the density of the original process with respect to II. Then the
scaled process X, has density

FO(x) = fx(x/c) (2)

with respect to I, cf. e.g. Hoffmann-Jgrgensen (1994, p. 171). (The super-

)

script (¢) in )((CC is used to indicate that the density is with respect to II..)

The conditional intensity associated with f )((cc) is

2@ = A(E ‘ E)_ 3
O = (2] Q
The density of X, with respect to II is

fx. (X) _ e(l—c—k)yk(;\(c)c—kn(x)f)((cc) (X),

where n(x) is the number of points in x.

3. Local scaling of homogeneous point processes

In this section, we give a general definition of a locally scaled version of a
homogeneous template process.

The concept of scale invariance plays a crucial role in the definition. This
concept relates to global scaling with a constant factor ¢ > 0. Note that
under scaling with factor ¢, a measure p on (RF, By) is transformed into p,
where p.(A) = p(ctA), A € Bg.

Definition 1 Let g(x; u*) be a real-valued measurable function defined on
Ok, depending on a set u* = (u',---,u™) of measures on (R¥ By). The
function g is called scale invariant if for all x € Qe and all ¢ > 0

glex; py) = g(x; p*), (4)

where pg = (pg, -+, 1)

As will be apparent from the sections to follow, most homogeneous point
processes defined in the literature have a density which is the restriction to
Qx of a scale-invariant function g(-,v*), where v* = (1°,--- ,v%) and % is
d-dimensional volume (Hausdorff) measure in R¥, d = 0,1,---,k. Recall
that 0 is the counting measure, and v' the length measure in R¥. Note also
that v4(A) = v¥(ctA) = c4(A), A € By.

Under local scaling, the constant scaling factor ¢ is replaced by a non
constant location dependent scaling function ¢ : R — R,. The globally
scaled measures v¢ can easily be extended to this case.

6



Definition 2 Let ¢ be a positive and Borel measurable function on R¥. Then
the (locally) scaled d-dimensional volume measure v¢ is defined by

vA(A) = / e(u)~ 4 (du), (5)

for all A € B

In the following, we will assume that c is bounded from below and above,
i.e. there exist 0 < ¢ < ¢ < oo such that

c<c(u)<e uecR.

This assumption implies in particular that v?(A) < oo whenever v%(A) < oco.
We can now present the definition of locally scaled point processes.

Definition 3 Let X be a homogeneous point process on X, with density fx
with respect to 11 of the form

fx(x) < g(x;v7), x € Qa,

where g s scale tnvariant. Let 11, be the Poisson point process with the
locally scaled volume measure vE as intensity measure. Let ) be arbitrary
and suppose that g(-;v}) is integrable on 0y with respect to Il.. A locally
scaled point process X. on YV with template X s defined by the following

density with respect to 11,

f)((cc)(x) x g(x;v2), x€ Qy, (6)
where v} is the set of locally scaled volume measures.

If c : R¥ — R, is constant, c(u) = ¢, say, then the density with respect
to II. of the scaled process on )V = ¢X’ becomes

f)((cc)(x) x g(x;vF) = g(c'x; %), x € Qy.
Local scaling with a constant scaling function is thereby equivalent to global
scaling. In the general case where c is non constant, local scaling does not
necessarily correspond to a mapping. Therefore there is no natural choice of
Y which is related to X', and the set ) can be arbitrary. In particular, we
may choose YV = X. Note that the density of the locally scaled process X,
with respect to the unit rate Poisson point process 1I is,

Fxo () oc [ el@)™ - 1O x). (7)

TEX
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In Sections 4 and 5 below we discuss local scaling of two general Markov
model classes, distance-interaction processes and shot noise processes. Con-

ditions on the scaling function which ensure integrability of g(-,v}) will be

r7e
given. The locally scaled processes are Markov with respect to a suitably
chosen relation ~, see also the Appendix. Finally, it will be shown that the

Papangelou conditional intensity of the locally scaled process,

1 (x U {a})
Mz | x) = F9(x)
0 otherwise,

Q)
’ f C(X) > O’ (8)

satisfies a local analogue of (3),
NG a2 ‘ X
@ ]x) (c(a:) c(x) ) ’ 9)

if ¢ is constant in a ~neighbourhood of . The locally scaled processes
thereby behave locally like a scaled version of the template process.

4. Distance-interaction processes

Consider the important class of distance-interaction processes X with densi-

ties of the form
fxx) =[] (D)), (10)

y<x
where D(y) =y if n(y) < 2, and for n(y) > 2

D(y) = {v"([u,v]) : {u,v} Cy, u#v}

denotes the set of all pairwise distances of points in y. Here [u,v] is the
line segment between the two points and ! is the usual distance measure.
Notice also that 2/° is the counting measure, 1°(y) = n(y) = v%(y). Examples
of distance-interaction processes are pairwise interaction processes and the
triplets process (Geyer, 1999).

We will assume that ¢({z}) = 8 and that ¢(D(y)) =1 for n(y) > 2 un-
less v ([u,v]) < r for all {u,v} Cy. The process X is thereby homogeneous

and Markov with respect to the relation
un~v = v (u]) <r
According to (10),
fx(x) x g(x;v%), x € Qy,

8



where

g(x;v) = g’ H e({v'([u,v]) : {u,v} Cy,u#v})

yCox

and y C, x is short for {y C x: %(y) > 2}. The function g is clearly scale
invariant since for any constant ¢ > 0

IT e(veu, o)) : {u,v} € ¥3)

=TI e(v'e uc o) : {u,0} C y})
= T o({v'([w,v]) : {u, v} C ¥}).

If ¢(D(y)) <1 for n(y) > 2, then X is repulsive since each clique y C x
contributes a penalty ¢(D(y)) to the density. In this case,

g(x;v7) < "%,
c:RF — R,. Hence, g(-;v}) is integrable on Qy for any V € K, and locally
scaled versions of such processes do exist. Otherwise, integrability has to
be proofed case by case and may require certain restrictions on the scaling

function c¢. The locally scaled process has a density of the form

) o " I (D)), x €y,

yCox

where
De(y) = {v.([u,v]) : {u,v} Cy u#v}.

Example 1 (Strauss process). A Strauss process X on X C R* with
intensity parameter 3 > 0, interaction parameter v € [0, 1] and interaction
distance r has density

£
fx(x) ox grys&) - g(x) = Z 1 (Vl([u,v]) < 7") , X € Qy,

{u,w}Cx

where s(x) is the number of r-close pairs in x (Strauss, 1975). (The super-
script # in the summation indicates that u and v are different.) For v =0
we obtain the hard core process, for v = 1 the Poisson process with intensity
(. The locally scaled Strauss process has density

9
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Figure 4: Left: Homogeneous template Strauss process X on X' = [—1,1]? with parameters
B = 200,y = 0.1, R = 0.1. Right: Inhomogeneous Strauss process X. on ) = [-1,1]?
obtained by local scaling of X with c(u) = 0.1 + ||Jul|?.

#
f(cc)(x) o Ign(x),YsC(X)’ Se(x) = Z 1 (Vcl([u,v]) < 7-) . x€eNy.
{u,w}Cx
Figure 4 shows a realization; for details see the figure caption. O

The locally scaled process is Markov with respect to the relation
u~ v = v, ([u,v]) <7

While the neighbourhood 9(x) of a point in the homogeneous and isotropic
template X is naturally ball shaped,

o(z) = {y : v'([z,y]) < r} =b(=,r)
the shape of the neighbourhood
0c(z) = {y : v ([z,9]) < 1} = be(w,7)

in the locally scaled process depends on the scaling function c¢. It is not
necessarily convex but always star-shaped, cf. Figure 5. A neighbourhood
O.(u) is called star-shaped if it is star-shaped with respect to u, which means
that v € 0.(u) = [v, u] C 0.(u).

In regions where c is constant, the neighbourhood 0,(x) is similar to the
neighbourhood in the template, cf. Figure 5. More precisely, we have

Proposition 1 If c¢(u) = ¢(z) for all u € b(x, c(x)r), then

be(z,7) = b(x, c(x)r).

10



Figure 5: Neighbourhoods of four points in a locally scaled distance-interaction process,
with scale factor ¢ = 1 in the left half and ¢ = 2 in the right half of the domain.

Proof: It is straightforward to show that v € b(z, c(z)r) = v € b.(z,r) and
v &€ b(z,c(z)r) = v & b.(z,7). O

Locally scaled distance-interaction processes have the desired property
that in regions where c is constant the process behaves like a scaled version
of the template process.

Proposition 2 Suppose c(u) = c¢(x) for all u € b(x,c(x)r). Then

e =35 )

Proof: First notice that the assumption implies that b(z, c(x)r) = b.(x, r).
The conditional intensity of the locally scaled process is of the form

O|x)=8[] ¢ (Delyuz)),

yCix

where y C; x is short for {y C x: n(y) > 1}. Let y C; x, and suppose first
that y C b(x, c(z)r). Then

() = o) (o) = (|5 25 )

for any u,v € y Uz, and therefore
x
D.(yUz)=D <LU—> :
c(zr)  c(x

11
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On the other hand, suppose that there exists u € y such that u ¢ b(z, c(x)r).
Thus, v} ([u,z]) > 7, and therefore

ea(Dc(yUx))=1=e0<D (J—x)ucén—x)))

It follows that

o= I (7 (V) = )

yCix

5. Shot noise processes

Shot noise processes, such as the area-interaction process, are based on geo-
metric quantities other than pairwise distances. Write

u) =Y 1(u€b(z,r))

for the template coverage function, then a shot noise weighted point process
with potential function p(-) is defined by

where v > 0 and p is a measurable function on the non-negative integers N
with p(0) = 0. Area interaction corresponds to p(n) =1 (n > 1).
The interaction functions of a shot noise process are

e(y) =By, n(y) =1,
e(y) =", n(y)>1,

where
=+ () f (") cvrer-tua,

Compare with Theorem 3.3 in van Lieshout and Molchanov (1998). The
homogeneous shot noise processes are Markov with respect to the overlapping
relation

u~v <= blu,r)Nbv,r) #0 <= |lu—v| <2r

12



Thus, the neighbourhood of a point is a ball with radius R = 2r.
It is straightforward to show that

9(x; 1) = B0y S (Taex 1 () <r) ) v (aw)

is scale invariant. The locally scaled shot noise process has density
90 x glax,v7) = Fry IPCaxE @ x ey (12)

with scaled coverage function

Cex(u) = Z 1(u € b.(z,7)).

rEX

Van Lieshout and Molchanov (1998) show that (11) is integrable if there exits
some constant 0 < C' < co with

Ip(n)| < Cn VneN. (13)

*

*) is integrable on Qy for any
Y € K and hence the locally scaled process defined by (12) does exist.

Proposition 3 Under condition (13), g(-;v,

Proof: We show that there exists 0 < M < oo such that
g(x;v)) < M™¥ | x € Q.

This is fulfilled if
| [ p(Centw)bian) | < Mnix) (14)

for some 0 < M’ < oo and all x € Qy,.
Let Sc(x) denote the support of C.x. As C.x(u) < n(x), we have

[ p(Contu)e(an) | < Ol (Sc(x)
with C' as in (13). Since

Sc(x) = U be(z,7) CY @ b(0,cr),

TEX

where @ denotes Minkowski addition, (14) holds with

M =Cc* /(Y eab,er)).

13
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The locally scaled shot noise process has interaction functions

pe(y) = By™), n(y) =1,
Pe(y) =™, n(y) > 1,

where
) = (0t f ("),

It follows that X, is Markov with respect to the relation

ur~ev = b(u,m)Nb(v,7) £
<~  Fw: v (u,w]) <rAVH([w,v]) <.

(15)
The neighbourhood of a point u is

o(w)=|J be(w,r), (16)

wEbe(u,r)

which in general is not ball shaped. As the triangular inequality does not
necessarily hold for scaled distances defined by v/, it is possible that two
points are neighbours in X, although their scaled distance may be larger
than 2r. However, in analogy with the results obtained for the distance
interaction processes, the following proposition holds.

Proposition 4 For a shot noise process,
cluy=¢Vueb(x2er) = 0.x)=>0b(x,2¢r).

Proof: Consider w € b.(z,7). Then b(w,ér) C b(z,2¢r) and thus c(u) = ¢
for all u € b(w, ér). Therefore Proposition 1 yields

b.(z,7) = b(z,ér) and b.(w,r) = b(w, ér),

hence

0.z)= |J be(w,r)= |J bw,ér)=b(z,20r).

webe(z,r) web(z,cr)
]

If the scaling function is constant in a neighbourhood of a point z, the
conditional intensity of a locally scaled shot noise process again behaves like
under global scaling.

14



Proposition 5 If c¢(u) = c¢(z) for all u € b(x,2¢c(x)r), then
(c) VN
Al (@) = /\(c(a:) ‘ c(a:))

Proof: Since the conditional intensity can be written as a product of inter-
actions, A(z |x) = [[ycxna@) ©(¥ U {z}), we only need to show that

[I elyuish= IIzv{Q%g)

yCxNo.(z) Y C-XE-No(E~

This is fulfilled if

ey U {ah) =m (

y U{z}

c(x)

) for finite y C 0.(z), y # 0,

ie., if

yf( N bc(z,r)):uk( N b(z,r)). (17)

2€(yU{z})Nde () se (s noe(s)

By the assumption and with similar arguments as in the proof of Proposition
L,
be(z,7) N O.(x) = b(z, c(x)r) N O.(x) for any z € 0.(x),

and thus
be(z,7) Nbe(x,7) = bz, c(x)r) N b(x, c(x)r).

Therefore,
U b= U beeen= U @b,
z€(yUz)Noe(x) z€(yUz)No:(x) z€ (wac)(f;?c(w)
which immediately leads to (17) O

6. Approximation of local scaling

For simulation of locally scaled Markov point processes using e.g. the Metro-
polis-Hastings algorithm, one has to evaluate expressions of the form g(x; v/}).
This usually involves integration with respect to scaled d-dimensional volume
measures v4. In locally scaled distance-interaction processes introduced in

Section 4, for example, we deal with scaled distances

vl ([u,v]) = /[ ]c(w)ldw = ||u — v||/0 c(u+tv—u))~ " dt. (18)

i
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The function ¢='(u,v) is the integral mean of the inverse scaling function
w — 1/c(w) on the segment [u, v].

For certain scaling functions ¢, such integrals can be expressed explic-
itly. However, if one strives to design programs that handle arbitrary scaling
functions, one would have to resort to numeric algorithms. Time consuming
calculations can be avoided by defining approximately scaled processes that
require only pointwise evaluation of the scaling function.

Markov point processes comprise a large variety of models that are essen-
tially different to each other e.g. with respect to the order of interaction, or
to the dimensionality of volume measures involved in the definition of their
density. There is no best recipe for approximate local scaling of all possible
models. However we can cover a large range of models with the approaches
proposed below for distance-interaction processes, finite order interaction
processes, and shot noise processes.

6.1. Local scaling by c-averaging for distance-interaction processes

Locally scaled distance-interaction processes are based on the neighbour re-
lation u ~, v <= v}([u,v]) < r. They require only the calculation of scaled
pairwise distances

v ([u,v]) = [lu = vlle™(u, v),

cf. (18). A natural idea is to replace the integral mean ¢ 1(u,v) by a simpler

mean c/\—l(u, v) of the inverse scaling factors c(u)™' and c(v)~'. We propose
to use the harmonic mean

which leads to the approximated neighbour relation

1
ur~ev = |u—v| < i(c(u) + c(v))r. (19)
This relation allows for a nice geometric interpretation. Two points u, v are
neighbours iff the balls b(u, z¢(u)r) and b(v, c(v)r) overlap. Note that (19)
actually means that the scaling function c itself is locally replaced by the
arithmetic mean $ (c(u) + ¢(v)). Therefore we call this approach local scaling
by c-averaging.

In proper locally scaled distance-interaction processes, neighbourhoods
are always star shaped, i.e.

u~ev = u~(1—thu+tv  forallt €|0,1]. (20)
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Figure 6: Neighbourhoods of four points in an approximately locally scaled distance-
interaction process, obtained by c-averaging with scale factor ¢ = 1 in the left half and ¢ = 2
in the right half of the domain. Compare with Figure 5, where the true neighbourhoods
of the same four points are shown.

Conversely, neighbourhoods in distance-interaction processes obtained by c-
averaging are not necessarily star shaped, as the following example shows.

Example 2. Consider a distance-interaction process on [0, 1]?, obtained by
c-averaging with c(u) = 1 for u € (—00,0.5] x R and otherwise, c(u) = 2,
which is the same situation as in Figure 5. However now, the neighbourhood
of a point u € (0.5 — R,0.5] x R is no longer star shaped, see Figure 6. [

A relatively weak Lipschitz condition on the scaling function ensures that
the inhomogeneous point process has star shaped neighbourhoods.

Proposition 6 Let X, be an inhomogeneous distance-interaction process on
Y obtained by local c-averaging from a homogeneous process with interaction
distance r using the scaling function c¢. Then X, has star shaped neighbour-
hoods if

le(u) — ¢(v)] < %Hu —o|  for all u,v € Y. (21)

Proof: Let u,v € Y be related with respect to the approximated relation,
u ~g u, and let w € [u, v] be any point on the line segment between u and v.
Then we need to show that u ~; w under the Lipschitz condition (21). This
is trivially fulfilled if c¢(w) > ¢(v). Otherwise, by (21),

o(v) = clw) < 2[lv = w|

17
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Recall that under c-averaging,
2
u~ev <= |lu—o| < (c(u) + c(v))r < c(u) + c(v) > ;||u —||.
Subtracting the two inequalities, we find that
2 2
o) +e(w) 2 ~(flu = vll = [lv = wl]) = — [lu - wl.

Thus u ~; w. [l

6.2. Local scaling by p-averaging for finite-order interaction processes

The ideas presented above are not directly applicable in cases where the den-
sity function involves more complicated features than just pairwise distances.
In order to restrict the evaluation of ¢ nevertheless to the points in the pat-
tern x = {z1,---,x,}, one could resort to interpreting local scaling as an
average of global scalings, with scaling factors c(z1), -, c¢(z,), i.e. defining

©(x) = Average (fx (x/c(x1)), -+ , fx(x/c(za))).

This would however invalidate the paradigm of locally defined interaction,
since interaction in a subset y C x would then also be modified by scale
factors taken from points outside y, in x \ y.

In cases where the homogeneous process is Markov with interactions of
finite order k, i.e. where ¢(y) = 1 if n(y) > k, a feasible concept of local
averaging is therefore based on averaging interaction functions. We propose
to define m-th order interaction by the geometric mean

1/m
Pe(y) = (H SD(Y/C(:U))) , n(y)=m2>2. (22)

Yyey

Thus we obtain the density ch by local p-averaging as
) o< [T ¢e),
y&x

or

Fex) =T e@ ™[] ¢

TEX yCx

Using the geometric mean in (22) is motivated by the fact that interaction
functions are usually of the form

o(y) = exp(p(y)),

18



where p(-) is the so-called potential function. This notion stems from sta-
tistical physics, where Markov point processes were first described as Gibbs
processes. Taking the geometric mean of ¢ means taking the arithmetic mean
of the potential function,

Pe(y) = exp (% Zp(y/dy))) . nly)=m>2.

yey

Of course, this concept can also be applied to distance-interaction processes.
The following example illustrates the difference between c-averaging and -
averaging in local scaling of a Strauss process.

Example 1 (Strauss process, continued, continued). The density of
an approximately locally scaled Strauss process takes the form

ch (x) x (e(x) _kﬂ)"(w)véc(X) ’

where the definition of §.(x) depends on the type of approximation used.
For local scaling by c-averaging, §.(x) is the number of neighbour pairs
in x defined by the relation

U= |lu—v| < %(c(u) + c(v))r.

For local scaling by p-averaging, §.(x) is calculated from the number of
directed neighbours given by the relation

U~ v <= ||lu—v| < c(u)r.

Here,
71
S.(x) = Z 5(1 (u~v)+1 (v~ u))
{uw}Cx
is the number of directed neighbours divided by two. 0

6.3. Local scaling by influence zones for shot noise processes
Shot noise processes as defined in Section 5 require the evaluation of the
coverage function
Cex(u) = Z 1(u € be(z,7))
TEX
which gives the number of “influence zones” b.(x,r) covering a point u. In
Proposition 1 we saw that b.(xz,r) = b(z,ér) if c(u) = é = c¢(z) for all
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u € b(x,er) = b(x,c(x)r). Assuming that ¢ does not vary very much in
b(z, c(x)r), we can use this result to approximate the influence zones by

be(z,7) =~ b(z, c(x)r)

and thus obtain the coverage function

CA'c,x(u) = Z 1 (u € b(z,c(x)r)) .

TEX

Calculating the density function

JE) (o) o g0y Gt

still requires integration with respect to the locally scaled measure v*. But
even when dealing with homogeneous processes, the integral [ p(C.x(u))du

is usually approximated by grid methods. Once the coverage function C. x(-)
is known, evaluating

[ pContw)ibian) = [ pContw)etu) s (an)

Rk Rk

is therefore no bigger a problem than evaluating the corresponding integral
in a homogeneous (template) setting.

7. Discussion

Inhomogeneity in natural structures may be caused by very different mecha-
nisms. Correspondingly, there is a myriad of ways to define inhomogeneous
models. Therefore some restrictions have to be introduced that replace the
usual homogeneity condition. The four models for inhomogeneous point pro-
cesses described in the introduction stand for four different situations. In the
first model, the interaction between points is independent of location. In the
second model, inhomogeneity results from a (physical) location dependent
thinning, and in the third from (physical) deformation of the matrix. In this
paper we have presented a new approach to constructing models for pat-
terns that are homogeneous up to a local scale factor. Such point processes
may describe packings of spheres with diameters that vary with location, cf.
Figure 1, or situations where both intensity and interaction are governed by
the same external factor, such as desert plant communities that are ruled by
water supply.

When it comes to choosing an appropriate model for a given situation,
there will sometimes be prior information about the physical genesis of the
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patterns that strongly suggests one of the approaches. In general however
it will be necessary to define criteria for the best choice which then can be
used to develop model tests. A test on the local scaling assumption could
exploit scale invariant local geometric properties, as e.g. shape factors of
corresponding Voronoi cells.

The (local) intensity A.(x) of a globally scaled point process is propor-
tional to the intensity \ of the template, A\.(x) = ¢ *\(z/c) ~ ¢ ¥, since the
intensity of a homogeneous template is approximately constant. Analogously,
the intensity of a locally scaled process is (approximately)

Ae() = c(x)7FA. (23)

This allows firstly to model practically any inhomogeneous intensity and,
secondly, to retrieve the scaling function (up to a proportionality constant)
from a given or estimated density. In this aspect the scaling function plays
a similar role as the survival probability of the thinning model.

Once the scaling function has been estimated, it can be used to sub-
sequently fit the parameters of the template process and thus to complete
the model specification. A similar approach has been followed by Nielsen
and Jensen (2001) for fitting the transformation model. Furthermore possi-
ble empirical relations between estimated scaling function and explanatory
variables such as water supply in the desert vegetation case can be used for
prediction purposes.

Future work will concentrate on validating the approximation (23) as well
as on development of model tests and other statistical methods.

Appendix: Local scaling of Markov point processes, general case

It is easy to show that a homogeneous Markov point process X with scale
invariant density function has scale invariant interaction functions p(y) =
h(y;v*). Then a locally scaled version X, on Y has interaction function

@c(y) = h(y; 7). (24)

It is indeed possible to define a neighbour relation ~, such that ¢, is a proper
interaction function. Hence the locally scaled process is Markov, too. The
following definition which may look a little awkward at the first glance is in
fact consistent with the simple neighbour relations derived earlier for locally
scaled distance-interaction and shot noise processes.

Definition 4 Consider a function ¢. on Qy as given by (24). Two points u
and v are called neighbours with respect to the scaled relation ~., iff there
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exists a finite point configuration y € €2y such that

ey U{u,v}) # 1.

Proposition 7 Let X, be a locally scaled point process with density

£ ) =[] ¢ely)-

yCx

Then X. is Markov with respect to the neighbour relation ~. given in Defi-
nition 4.

Proof: The proposition follows from the Hammersley-Clifford theorem, if
the function ¢, is a proper interaction function with respect to the relation
~e, Le. if @.(y) # 1 implies that y is a ~. clique. To see this, consider a
set y with n(y) > 2 and ¢.(y) # 1. Then, by definition, any two points u
and v in y are neighbours with respect to ~., as ¢.(y* U {u,v}) # 1 with

v =y \{u,v} € Qy. O
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On statistical inference in TIM models
- a study of the cell data

LINDA STOUGAARD NIELSEN
Laboratory for Computational Stochastics
University of Aarhus

This report can be considered as a supplement to the paper Nielsen and
Jensen (2001). All methods regarding MLE for the cell data will be docu-
mented in details.

The report falls in two parts. In Section 1 the data and the model is
introduced and the techniques used to analyse the model are presented. At
the end of Section 1 an overview of an algorithm for MLE is given.

Section 2 deals with the analysis of the data set and the particular results
and experiences achieved. We use the methods described in Section 1 along
with standard statistical methods. Furthermore, various tests are presented.

1 Background: The data and the model
1.1. The data

The cell data set is a map of the cells in a 2 dimensional section of the
mucous membrane in the stomach of a healthy rat. There is a trend in the
cell intensity, and the section is taken such that the trend follows the first
axis. The original image of cells has been converted into points marking
the centres of the cells sections. See Nielsen (2000) and Nielsen and Jensen
(2001) for more detail.

In the following we let X = [0; 1] x [0; 0.89] denote the observation window
and €2 be the set of all finite point patterns in X'. The observed point pattern
will be denoted y. We will model the point pattern using a point process
allowing for inhomogeneity as well as interaction in the form of inhibition.

1.2. The model

The point pattern is analyzed using a TIM model, see Jensen and Nielsen
(2000) and Nielsen and Jensen (2001). In short, let X be a homogeneous
Markov point process in X parametrized by v € W and hy : X — X a
differentiable and bijective mapping parametrized by § € ©. Then YV =

1
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he(X) is an inhomogeneous point process model, a TIM model, and the
likelihood function for (¢, #) decomposes as follows,

L(¥,0;y) = Lo(0;y) Lhom(¥; by ' (v)), (1)

where Lo(#;y) is the likelihood function for the inhomogeneous Poisson point
process with intensity function equal to Jhy " and Lyom(¢; z) is the likelihood
function for the corresponding homogeneous model when z is observed.

The Strauss point process is useful to describe inhibition in a point pattern
and is used as the underlying homogeneous point process X for the cell data.
Thus, ¥ = (8,7,7), ¥ = B x G x R = (0;00) x [0;1] x (0;00) and

Lhom(ﬁ, Y, T .T) = C(ﬂ, v, T)_I/Bn(w),ysr(w),

where ¢(8,7,7) = [, Br@) s (@) (dx) is the normalising constant, n(z) is the
number of points in z and s,(z) is the number of point pairs with distance
less than r. Notice that v = 0 is the hard-core model.

From the sampling we know that there is a trend in the first coordinate
direction. There should be none in the second. However initially we will
allow for inhomogeneity along both axis and use a coordinate-wise trans-
formation, where the coordinates are transformed independently using the
simple transformation, cf. Nielsen and Jensen (2001). Thus

01 (1,02 n(y) ezney 0-n
el —1e2 —1 '

Lo(0;y) = <

Here a = 0.893175, 0 = (6y,6,) € © = R?\0. If §; = 0 then the corresponding
part of Ly becomes 1. Note that this is the case of homogeneity along the i’th
axis. Consequently the ¢’th coordinates do not enter into Ly. The inverse
transformation is of the form

O1u1 Oous
_ e —1 e —1
ho(ur,ug) ™! = ( o —1 %t 1 ) o (o w) € 4.

for all 8 € © except 6; = 0, ¢ = 1, 2, in which case the i’th coordinate of hy
is the identity mapping.

1.3. MLE

Exponential family theory can be used in the maximization of the likelihood
function (1). For fixed (r,0) the function Lyom (8,7, 7;h; "' (y)) is of exponen-
tial family form. The likelihood equations are

Egqrrn(X) = n(z) = n(y) (2)
Eppyrse(X) = si(z) = se(hy'(y)),

2



where X is a homogeneous Strauss point process. The solution is denoted

(B(r,0),4(r, ).

The profile likelihood with nuisance parameter (r, ) becomes
L(r,6:y) = Lo(8;y) max Luom(8,7,7: hy" (3))
= Lo(6;9) Luom(B(r, 0),4(r, 0), 75 hy " (v))- (3)

Hence, for values of (r,0) in a grid we solve the equations (2) and compute

(3) up to a constant. The grid value maximising the profile likelihood will
be denoted (7,) and the MLE is then (3,7, 7,0) = (3(%,0),4(%,0),#,0).

1.4. Finding T'(r), a reduced set of #-values for each r € R

First we show a general result that quite drastically reduces the set of #-values
to be considered.

Corollary 1 Givenr € R. Let O, = {0 € © : 5,(h, "' (y)) = k} for all k > 0
and so(r) = Sr(hé_ol (v)).
Then,

so(r)
= | J{0 € O} : Lo(6;9) > Lo(0%;y), for all 0* € O},
k=0

is a finite set with at most so(r) + 1 elements and

belJT(r)

Proof. To show the last part of the corollary, we show that for fixed r, L is
maximized for § € T(r). Then consequently, the MLE @ is contained in the
union of T'(r).

Thus, fix r € R. Suppose that 0,0* € O} for some k£ > 0. Then

(5(8,7),7(8,7)) = (B(8",7), 76", 7)),
see (2). From (3) we now get,
Lo(6;y) < Lo(6%;y) = L(r,0;y) < L(r, 0" y).
Since © = U 0%, L is then maximized in the set U Ay, where

A :={0 €6} : Ly(0;y) > Lo(0%;y), for all 6" € O}}.

3
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Now we need to find an upper limit for the union. In Jensen and Nielsen
(2000, Proposition 5.1) it is shown, that

sr(hg ' () > s0(hy ' (¥)) = L(B, 7,7, 0;9) < L(B, 7,7, 003 9)-

Hence, we only need to look for the maximum in the sets Oy, ..., O;,), and
therefore L is maximized in T'(r).

Now it only remains to show that 7°(r) has at most so(r) + 1 elements.
This is straightforward since @] = ) = A, = 0. If O} # 0, then Ay
will with probability 1 contain exactly one element because Ly is strictly
monotone. U

Figure 1 illustrates the result in Corollary 1. The point pattern is a sim-
ulated realization from the exponential inhomogeneous Strauss point process
with parameters (8,~,r,61,6:) = (700,0.1,0.05,1,0). In the plot, r = 0.05,
the true value. The plot shows the regions ©j, in different grey tones. Level
curves of Ly are also plotted and from the corollary we know that we are
only interested in one @ value in each of the areas O}, namely the one with
highest L, value. These values will always lie on the edge of the ©j, regions,
and with probability 1 there will be only one value in each ©}, with maximal
Ly. The set T'(r) is shown as dots.

0.4
.

0.2
.

0.0
|

-0.2
.

-0.4
\

T T T T T T T T T
0.6 0.8 1.0 12 14 0.7 0.8 0.9 1.0

(a) Coarse #-grid (b) Fine 6-grid

Figure 1: Ilustration of T'(r) for a simulated exponential inhomogeneous Strauss point
pattern with 7 = 0.05, the true value. The colours correspond to different ©}, regions, the
lighter the colour the smaller the k. The curves are contours of Lo. The true 8 = (1,0) is
plotted as a plus. The tabbing between grid points is 0.01 and 0.001 in the left and right
picture, respectively.



1.5. Calculating the profile likelihood

Because of the intractable normalising constant, the likelihood function is not
known explicitly. Therefore we have to estimate the values up to a constant
and use importance sampling for this purpose.

Following Geyer (1999), let X be a point process with density

fl@)=c(¥)gylz), z€Q,

with respect to the unit rate Poisson point process II. Here gy, is the explicitly
known part of the density, and c(¢)) = [, gy(2)II(dz) is the normalising

constant. Then, ) x)
(Yo . Gupo (X
o= (05 “

This mean can be approximated by the sample mean over realizations from
the process with parameter ) which is called importance sampling. However,
such an estimate is only good when 1 is sufficiently close to .

We want to compute

log _L(T, 9A; y) (5)
L(ro,005y)

for r € R and 6 € T(r). We cannot trust that (5(r,0),%(r,0),r,0) is close
enough to (8(ro, 00), (70, 60), 7o, bp) for using importance sampling. There-
fore the ratio will be calculated in terms. Make a path,

(7“1', Q(t)) — (’f‘z‘, G(t_l)) — = (7“1', 0(0)) — (ri_l,O(o)) — = (7‘0, 0(0)),

- 7 - 7
-~ -~

inner-plane path between-planes path

where (r;,0®)) = (r,0) and 6 = f,. As indicated, the paths are called the
inner-plane and the between-planes path. The background for this notation
is that it makes sense to first investigate what is going on in the ©-plane
since we have a reduced T'(r) for each r € R. See also Figure 2.

Suppose that the path is constructed such that two consecutive param-
eters (including the (3, ~y)-estimate) in the path are close enough to make
importance sampling. Then (5) can be computed as follows,

inner-plane ratio between-planes ratio

In the next two sections we will consider the between-planes and the inner-
plane ratios, respectively, and see how the corresponding paths can be con-
structed to ensure that consecutive parameters are sufficiently close.

5
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T mt Tomiyl To T1 Ty Tit1 Tme—1 Tmue

Figure 2: Illustration of the successive calculation of the loglikelihood ratio (6): First
calculate the inner-plane ratio from (®,r;) to (6‘°),r;). Then calculate the between-
planes ratio from (89, r;) to (89, rg).

1.6. The between-planes ratio

Fix #. The between-planes ratio then takes the form

L(Ta 0; y) _ IOg Zhorn(r)

L(TO> 9; y) Zhom("‘O)

where Lyon(r) = Lhom(ﬁA(r, 0),4(r,0),7;hy ' (y)), is the homogeneous profile
likelihood.

Let dy < dy < -+ < dp, m=n(z)(n(zx) —1)/2, be the distances between
pairs of points in z = h; ' (y). Then

R= (0, dl] U (dl; d2] J---u (dm, OO),

is a partition of R = (0; 00) into disjoint intervals. Let dy = 0 and d,,,+1 = 0.
For r € (d;;d;iy1], @ € {0,...,m}, we have that s,(x) = i.

Let (8,7) be fixed. The homogeneous likelihood function Lyom (53,7, -5 x)

is continuous and increasing on intervals (d;; d;y1]. For ry < ry, where ry,ry €
(di; diy1] we then have,

A A

Zhom(’rl) = Lhom(ﬁ(Tl,0),;)\/(7'1,(9),7'1;%) S Lhom(ﬁ(rlae)a’?(rlae)arﬁx)
< Lhom(ﬂ(rb0)5&(7‘2,0),7‘2;33) = Lhom(r2)-

Thus, Lpom(), and thereby also the between-planes ratio, is continuous and
increasing on the intervals (d;; d;+1]. Furthermore,

li_{% zhom(di + 6) = ’AY(di)zhom(di)a
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for i = 2,3,...,m. Consequently the function log Lyom(-) have negative
jumps in {ds, ..., dy} of size log(¥(d;))- In d; there is also a negative jump.

Let

GT = {T,ml, " migly--5T—1,70,715- - - Tpue—1, rm“}a

be a grid of close and increasing values of » € R. Between two grid-values, the
corresponding number of neighbours are either equal or increases by 1. Thus,
it is reasonable to believe that also the corresponding (- and vy-estimates are
close and use of importance sampling can be justified.

The between-planes ratio are computed as in (6) where the sum is changed
to — Z?:z’-{—l if 2 < 0. We need to compute ratios of the form

Liom (75
A(j,j—1) =log Lnom(r;)

hom(rjfl)

Introduce the notation,

%6:@(”’9)’ ﬂg:B(rj’e)’ and Sg:srj(h‘;l(y))'

Let rp be the smallest grid value above d;, and suppose that 7y is chosen
such that sg > 0. Thus, £ < 0. To compute the between-planes ratio in r;,
the procedure is as follows.

For ¢ > 0: Compute A(j,j—1) for j =1,...,1.
Note that s¢ > s9_, > 0.

For i = 0: The between-planes ratio is 0.

For k <i<0: Compute A(j,j—1)for j=1+1,...,0.
Note that s? > s?_l > 0.

Fori=k —1: Asfor k <i<0. Compute in addition A(k, k — 1).
Note that s > 0 but s¢_, = 0.

The between-planes ratios for ¢« < £ — 1 need not to be computed since we
are only searching for the maximum of the profile log-likelihood. The reason
is that s/ = 0 and therefore T(r) contains only one point. Consequently
the inner-plane ratio is 0, which implies that the profile log-likelihood equals
the between-planes ratio, cf. (6). Recall that the between-planes ratio is
increasing in (0; d;].

If S?fl > 0, then,

A(j,j—1) = (s§ - s7_1)log(7?)

j—1

n(X)—617 ) _ 40
logE 5] (7)>rs 05
- Og ﬂ;?,l a')/?,l;"'j—l [’] (
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Ifsj 1—Oands > 0, then,
.. 0 9
A(j,7—1)= S IOg(’Yj)

; (X)—617
+ IOgEﬁJoj ’7?’” 1 (Srj_l(X) = 0) (é—;l) (,y]@)—srj (X)
J

Notice that in both cases, the simulations are performed under the Strauss
model. Furthermore the formulas are constructed such that the means are
close to 1. This makes the simulation of the means more stable.

1.7. The inner-plane ratio

Fix, r € R. We only need to consider # € T(r). First notice that 6, € T(r)
with highest number of neighbours. Now order 7'(r) and fill up empty holes
such that we get a set 7*(r) = {0, ..., 0™} > T(r) that fulfills

sSGN=50 411 i=1,...,m, (7)
where s@ = s(h_ (y)).

For the Strauss process, the inner-plane ratio is,

t
69y
Z T—)) = 0y +log Lo(0"); y) — log Lo (87 y),

where
op=0 and o;=0,1+A(,j—-1), j=1,..,m,

and A(j,j — 1) is calculated as follows. Let

Y= 4(r,09), B =4r,09), and si=s.(h(y)) = s9.

Then, if s/ > 0, we also have that sZ~! > 0 and

A(,j—1) = (si—si ") log(vl ™)

_ IOgEﬁi‘l,ﬂ‘l,r ((

If s7 =0, then s~ > 0 and

A(j,j—1) = si7'log(™h)

ﬂ] n(X)—617
_lOgEﬁi—l’,ﬂfl,r ((ﬂj > 1 (ST(X) = 0)) .
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Notice that in both situations the simulations are performed under a Strauss
model.

Importance sampling is used to estimate A(j,j — 1). We have made
sure that s/ and s/~' are as close as possible, namely to differ by exactly 1.
Thereby the estimates (57,77) and (27',777!) also are as close as possible
since they only depend on s/ and s/ !, respectively, cf. (2).

The actual values of #%) and #U~Y do not enter into A(j,j — 1), they
only enter through s/ and s/~'. Thereby it does not make sense to make a
finer grid of #-values on the path to calculate the inner-plane ratios, since
A(j,7 —1) is only positive when s/ # s/~!. Furthermore it doesn’t make any
impact whether the #-values on the path are infinitely close or far apart as
long as the corresponding s values differ by exactly 1.

1.8. Algorithm for MLE in the full TIM model

Step 0: Make a grid G, x G; x Gy of the nuisance parameter (r,6;,0s).
Step 1: Find T'(r) for each r € G,.

Now we have reduced the number of grid points for the nuisance parameters
to only consider the set

G={(r,0):r€ G, and 0 € T(r)}. (8)

Thus, the dimension of the grids G; was only important in step number 1.
Therefore these grids can be as fine and large as we have energy for, as they
are only used this once.

The next two steps deal with estimating 3 and v for each (r,0) € G.

Step 2: Find a (f,v)-grid in which to simulate En(X) and Es, (X). This
grid has to change in r. We find a way to move the grids and make the
simulations in each grid point.

~

Step 3: Estimate (8(r,0),%(r,6)) using multivariate regression based on
the simulations from step 2.

Step 4: Fix r € G,.. Calculate the inner-plane ratio.

We keep only the value (r) € T(r) that maximizes the inner-plane ratio
since they are all to be added to the same between-planes ratio to get the
corresponding profile likelihood ratio. Thus, we restrict attention to the set

G? = {(r,0(r)) : r € G, }. (9)
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Step 5: Fix 0 = éo. Calculate the between-planes ratio.

Step 6: The final maximization.

2. Analysis of the cell data

Step 0: Grid for the nuisance parameter

First we make a fine grid for the nuisance parameters. The grids need to
be around the true values of the parameters. Let 0, be the MLE based on
Lo(0:y), Oy = (1.304,—0.272). We know that 6, is close to 6 and therefore
the grids G; and Gy are centered around 0, with 400 grid values to each side
and step size 0.001.

In Nielsen (2000), we supposed that 7 = 0.007. This estimate was based
on the J—function and on profile pseudo-likelihood analysis for the point
pattern hgol(y), see the Appendix. Here we have chosen the r-grid to

G, = {0.00500, 0.00505, . ..,0.01000}.

Step 1: Finding 7T'(r) for each r € G,

In Figure 3 we have plotted the regions ©} and the set T'(r) for » = 0.0087.
See Section 1.4 and Figure 1 for details. Let

S(r) = {sr(hgl(y)) :0eT(r)}.

There is a 1 to 1 correspondence between the elements in S(r) and the
elements in T'(r). Furthermore, S(r) C {0,1,2,...}.

In Figure 4 the sets S(r) are plotted for the cell data for each value of
r € G,. We see that the number of elements in each set is very small, at most
6. The nuisance parameter grid G, x G; X Gy contains 101 x 801 * 801 grid
points. Henceforth we only need to consider the set G given in (8), which
contains only 271 elements. Thus, we see that the dimension of G; x Go
is indeed not very critical. The dimension of G, is on the other hand very
critical since this set will not be reduced and therefore effects the run-time
of all the following steps.

Step 2: Finding a (f,v)-grid in which to simulate En(X) and Es, (X)

Next step of the estimation procedure is to find B(r, ) and A(r,0) for each
of the 271 values of (r,0) € G. Thus we need to estimate Ez,,n(X) and

10
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Figure 3: Illustration of T'(r) for the cell data with » = 0.0087. The tabbing between grid
points is 0.01 and 0.001 in the left and right picture, respectively.
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r

Figure 4: The sets S(r) plotted for each value of r in the grid.

Eg,-5-(X) and solve the likelihood equations (2) with n(zr) = 617 and
s(xz) € S(r), r € G,.

As usual we approximate the means by the sample means,

Eﬁ,%rn(X) ~ % Z:il n(mz) = EATI, (10)
Egpyrsr(X) = % S se(z;) = Es,
where zq,...,z,, are realizations from the Strauss process with parameters

(B,7,7).
Fix r € G, and let G x G, be a grid of (8, y) values in which to simulate

11
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the mean number of points and neighbours. We let G x G, vary in r such

that the corresponding values of (En,Es) are around the values (617, s),
s € S(r). The goal of step 2 is therefore to find values (5.(r),v.(r)) that can
be used as centres in the grids Gj x G.

By trial and error we found usable centres, see also Figure 5,

—0.19 + 40 * r, r € [0.0055, 0.007]
Y(r) = { —0.8883333 + 140 1, r € [0.007,0.008]

—0.4282802 + 83.22355 + r, r € [0.008,0.01] "
11
642.5 4 17500 * , r € [0.0055, 0.007]
B.(r) = <{ 730.1667 + 5000 x r, r € [0.007, 0.008]

693.6249 + 9613.009 * r, r € [0.008, 0.01]

The size of G x G, were small since the centres (11) are very good. In
Figure 6 the simulations for six different values of r are shown. The grid
points of G x G, are shown as dots. For 3 we used 5 grid points to each
side of B.(r) with equal spacing 5. For v we used 6 grid points to each side
of . The grid was not rectangular since we tried to keep En close to 617,
meaning that there was no reason to simulate the cases when (3 and vy were
both small or large simultaneously. For small values of ~.(r), the grid evenly
covered the interval (0;7.(r)), see e.g. Figure 6 (b). For larger values, the
step size was 0.001. For r = 0.0059,...,0.0062 we had some problems with
Es not being large enough, so we used 10 grid points above 7.(r) instead,
see Figure 6 (b).

The plots in Figure 6 also show the results of the simulations. In each
grid point we calculated En and Es using (10). A local regression model
were fitted for both the mean number of points and the mean number of
neighbours using the Splus commando loess. In each of the plots, the dotted
curve is the level curve for the local regression model for En corresponding to
En = 617 and the full curves are level curves corresponding to Es = s, where
s are integers as indicated on the plots. For each r, the intersections between
the dotted curve and the full curves cover the set {(617,s):s € S(r)}.

0.4

) / oo | Oe(r) -

" / 760 1
0.1 — 750
0.0 A r 740 1 r

0.006 0.007 0.008 0.009 0.010 0.006 0.007 0.008 0.009 0.010

Figure 5: Grid midpoints of v and 3 for each r € R.
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(a) r = 0.00550 (b) 7 = 0.00600 (c) r = 0.007

0.30

0.36 0.38

018 020 022 024 026 028
034 036 038 040 042 044 0.46

026 028 030 032 034

2&12 3 - -

T T T T T
770 780 790 800 810

7‘50 7é0 7%0 7‘80 7éO 7é0 77‘0 7é0 7‘90 860
(d) r =0.008 (e) r = 0.009 (f) r = 0.010

Figure 6: In each plot, r is fixed as indicated. The dots are grid points (8,7) centered
around the value given in (11). EnX and EsX have been evaluated in each grid point
and two surfaces, 7 and §, have been estimated. The dotted curve is the level curve
n(B3,7v) = 617 and the full curves are level curves §(83,7) = s, s € Z.

~

Step 3: Estimating (3(r,0),7(r,0))

~

In this step we find (3(r,0),7(r,0)) and check that the likelihood equations
(2) are solved satisfactory.

We use the estimations (En, Es) from step number 2, shown in Figure 6.
The intersections of the curves could be used as estimates for (3(r, 8), 4(r, 0)).
However, dealing with random estimates, we choose not to trust the estimates
to much. Instead we use a linear regression model, and find the intersections

of the level lines. The model is
Y=XB+U,

where X is the input, a m x 3 matrix with rows (f5;,7;,1) for each of the
m grid points of Gz x GJ. Y is the response, a m X 2 matrix with rows

13
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(En;,Es;). The matrix B with dimensions 3 x 2 is the unknown regression
parameters. The matrix U is the stochastic error.

From Mardia et al. (1994, Chapter 6) we find the MLE of B, based on
normal distributed error,

B=(X'X)"'X',
which gives,
En = By, *ﬁ‘f‘Bm *7“‘331
Es =B12*ﬁ+B22*’Y+B32a

where B = {Bm} The level lines En = 617 and Es = s are linear,

B(s) =ag+bsgxv(s), and ~(s)=a,+b,*s (12)
where
617 — Bgl BZI
ag = ————, bg = ——=
By By
1 R R
a b,y = —(bﬂ * B12 —+ ng) * oy

T Blg*bﬂ+322’

For each » € R we have a regression model as described above. Then,
for each s € S(r) with corresponding 0 € T(r) we use (12) to compute

4(r,0) = ~(s) and B(r,0) = B(s).

&7 0.10
4+ X
. . 0.05 -
2 - ;
.
0 0.0 N o
T e LS R S 005 IR
al . . S .
-0.10
-6 -
0005 0006 0007 0008 0009 0.010 0005 0006 0007 0008 0.009 0.010
(a) EnX — 617 (b) (EsX —s)/s

Figure 7: For each s € S(r) we have found (8,4). Here we have calculated En and Es
based on each of these estimates and plotted the indicated residuals against the corre-
sponding r.
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In Figure 7 we have checked that the estimates of 5 and v actually solves
the likelihood equations (2). For each (r,s), s € S(r), r € G,, we have simu-
lated the mean number of points and neighbours using (10) with parameters
(r, B(s),7(s)). Then we have plotted En — 617 and (Es — s)/s to show the
(relative) deviation. We see, that both plots spread around 0. For small
values of r we see larger deviation of the mean number of points, which is
expected since s is very small. Still, the deviation is less than 15 percent.
All in all, the estimates are reliable. We have also tried to log-transform
the input and response, but the untransformed data gave the finest overall
result.

Step 4: The inner-plane ratio

For the cell data, (7) is fulfilled, see Figure 4, so T*(r) = T'(r) for all r € G,..

For each r € G,, the inner-plane ratios for the data has been calculated
for each @ € T'(r). As explained earlier, attention can now be restricted to
the set (9) since only that value 6(r) € T'(r) which maximizes the inner-plane
ratio is a possible candidate for the MLE. In Figure 8 (a) we see a plot of
the maximal inner-plane ratios joined by full lines. The dotted lines is a
plot of the corresponding ratios log(Lo(r, 0(r))/Lo(r, 0y)). Notice that the
two curves are ( only simultaneously and this is in the cases when 0, is the
maximum: Given r € G,. Then,

A A Lo(f L(r,0
0(r) = 0y < log of (Ar)’y) =0<= log _(T’ @’y) =0
Lo(6o; ) L(r, ;)
A Lo(0(r); L(r,0
O(r) # 6y < log ol ET)’y) <0< log _(r’ @’y) >0
Lo (603 y) L(r, 6o; )
Step 5: The between-planes ratio
Let 7o = 0.007 and
Gy = {r—40,7-39,. .., T—1,70,T1,. .-, 759,760} -

For any r;, i > 0 and any §®) € T(r;), we compute the profile likelihood ratio
using (6). If 4 < 0, the second sum in (6) is changed to — Z?:H—l‘

In Figure 8 (b) the between-planes ratios are plotted as the dotted lines.
The profile likelihood ratio in (r,d(r)) is then the sum of the inner-plane and
between-planes ratios, see (6). The profile likelihood ratios are plotted as full

lines in Figure 8 (b).
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(a) Inner-plane (—) and log Ly (- -) (b) Full (—) and partial (--)

Figure 8: For each r € G,, the indicated loglikelihood ratios have been evaluated, see (6).
Only the maximal inner-plane ratios are plotted in (a) and the dotted lines are the ratios
log(Lo(r,8)/Lo(r, o)) for the corresponding value of #. Note that the between-planes ratio
equals the partial likelihood.

The vertical lines marks the inter-point distances {di, ds, ..., d,}. Note
that the between-planes ratio is increasing (and continuous) between two
such values and have a down-wards jump crossing the lines, see Section 1.6.

Furthermore, notice that in the interval (0;d;] up to the first line mark-
ing dy, only the last between-planes ratios has been calculated. The other
between-planes ratios in this interval are all smaller, and so are the profile
log-likelihood ratios since the inner-plane ratios are all 0.

Step 6: The final maximization

The profile likelihood (3) is maximized in 7 = 0.0072. Thereby the full MLE
is

(3,4, 7,01,05) = (767.6,0.08149, 0.00720, 1.304, —0.275)

Since 60 = éo, we also have the partial profile likelihood where 8 is fixed
to #p. This is namely the between-planes ratios. Thus, the partial MLE is

(3,4, 7,001, 002) = (766.0,0.08398,0.00715, 1.304, —0.272).
The between-planes ratio, is increasing on intervals (d;; d;41]. Thus, the MLE
for the partial analysis is explicitly known, 7 = d; = 0.00719678, since this is

the only d; between 0.00715 and the next grid-point 0.00720.
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Test for homogeneity

From the way data is sampled, we believe that 6, = 0, and will now test this.
The test statistic can be calculated as 2(A — B — C), where

A = log _L(T’ (Aela 0?)1 y)
L(To, (9015902);19)
L(TO, (901; 0);y)

z(7“0, (ém, é02)§ ZU)

We have A=1.97957. This is the maximum value of the full profile like-
lihood from Figure 8 (b). To get the value B, we make the full analysis for
0y = 0 fixed. In Figure 9 the resulting likelihood ratios are plotted. The full
MLE becomes

L(r, (9:1, 0);y)
L(ro, (601,0);y)

, B=log ,

C=lo

(B,’Ay,f, 91) = (767.0,0.10895, 0.00725, 1.315)
and the partial MLE
(Ba Y T, éOl) = (765.1,0.10969, 0.00720, 1.304).

Again we can find the exact partial MLE as the smallest inter-point distance
for the point pattern hg,, o)(y) larger than 0.00720. We get 7 = 0.00724218.
Furthermore, B=2.08809.

8 2

6 0+

4 -2+

0+ o e e -6

N ol

4 ‘ ‘ ‘ ‘ ‘ 10 ‘ ‘ ‘ ‘
0005 0006 0007 0008 0009 0.010 0005 0006 0007 0008 0009 0.010
(a) Inner-plane (—) and log Lg (- -) (b) Full (—) and partial (--)

Figure 9: The analysis where 6, = 0. In (a) we have L, ratios and the inner-plane ratios.
In (b) the profile likelihood ratios for the full analysis and the partial analysis §; = o1
are plotted. See Figure 8 for more detail.
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The value of C can be calculated as an inner-plane ratio, r = ry, with
only one term in the sum since s,,(h3,' (v)) = 3 and s, (hg,.0(y)) = 4. We
get C= —3.72176.

Thus, the test statistic is 2(A—B—C) = 7.23. Evaluating the test statistic
in a x?(1) distribution, the test probability is 0.72%. From a theoretically
point of view we had expected that the tests for #; = 0 could be accepted.
The reason we get such a low test probability probably because the number
of data points is very large.

Remarks on the practical part

Technical details

All programs are coded in C++ using GNU CC version 2.96 compiler. The
runtimes (elapsed times) mentioned below are CPU times measured on a
machine equipped with a 1.2 GHz AMD Athlon Thunderbird processor and
256 Mb RAM running under Red Hat Linux 7.1.

Step 1 (1276 minutes ~ 21 hours)

For each grid point (r, 6, 6,) € G, x G; x Gy we had to calculate s, (h, ' (y)),
the number of neighbours in the back-transformed cell point pattern. Here
the size of GG, made almost no impact, since the number of neighbours could
be counted simultaneously for all ». For each # we computed the distance
d between every pair of points in the back-transformed point pattern. Then
if r > d, the corresponding r € G, were counted 1 up. Thus, the run-time
was proportional to the dimension of the grid G; x Gy. We chose however
to make this grid very fine, as this grid was to be used in this step only. The
dimension of the grid was 801 x 801. In average it took 0.12 second per 6
grid point.

One value of (En,Es)
In steps 2-5 the computer intensive work concerned estimating means either
to solve the likelihood equations (2) or to compute normalising constants
(4). The estimation of means are based on sample averages, see e.g. (10).
We used m = 200, and simulated the point patterns using a Metropolis-
Hastings birth-death algorithm. The point patterns were sampled from the
same Markov chain with spacing 1000 and initial burn-in 10000, see e.g.
Geyer (1999) and Mgller (1999). One such mean estimation will henceforth
be called a run.

Every run take more or less same time for varying parameter values, since
the point patterns all contain around 617 points, and since we don’t need to
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worry about running short on RAM. One run took in average 76.541 seconds.
In step 5 we also had to count the number of neighbours under a different
value of r for each of the 200 point patterns. This added 22.138 seconds to
each run. All other operations had no considerable impact on the runtimes.
Hence, in steps 2 to 5, the runtimes of the programs are approximately
proportional to the number of runs (times we have to estimate a mean),

estimated runtime in minutes = @ * no. of runs, (13)

where ¢ = 76.541/60 in steps 2-4 and a = 98.679/60 in step 5. In Table 1
the estimated runtimes based on (13) are given for the steps 2 to 5 together
with the measured runtimes.

Step no. | no. of runs | estimated time | measured time
2 10397 13263 n.a.
3 271 346 348
4 170 217 216
5 93 153 153

Table 1: Estimated and measured runtimes in minutes.

Step 2 (9.2 days)

This step was the real time-killer, both concerning human time and computer

run-time. It took really a long time to fiddle around to find the grid midpoints

(10). Then, for each of the 101 r € G, and each of the 101-129 grid points in

G} x @G, in all 10397 different parameter values, we had to estimate (IEAn, Es)
No measured run-time available since the programs were run parallel on

machines of different types.

Step 8 (5.8 hours)
The multiple regression for all » € G, took 0.08 second. Second part of step
3 is to check all 271 estimates. This is the runtime given in Table 1.

Step 4 (3.6 hours)

In this step we estimate normalising constant ratios. For each r € G, we
make ratios between the different parameter-values in S(r). Thus, there are
271-101=170 grid points in which to estimate.

Step 5 (2.7 hours)

As step 4. In all there are 100 possible ratios A(j,j — 1), but 7 of them does
not need to be computed, cf. Section 1.6. Thus, this step involves 93 runs.
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The tests

First we made a full analysis in the case where 6y = 0 was fixed. In this
case step 1 took 95 seconds. Notice that the size of the f—grid is now 801,
where it was 8012 before, and 1276 minutes divided by 801 is 95.6 seconds.
The grid G contains now 193 different values, and (7) is still fulfilled. Step 2
was not run, the results simply reused. Step 3 took 0.07 second. Step 4 was
estimated to take 93 % 76.541 /60 = 119 minutes and took 119 minutes. Step
5 involved 86 runs (14 ratios dismissed) and was estimated to, and took, 141
minutes. To calculate the last missing loglikelihood ratio C involved 1 run
and took 76.04 seconds.

Comments on test probabilities

We could have tried to simulate the test probabilities. Then we should have
simulated, say, 100 point patterns and run them through the same estimation
procedure as the observed point pattern in the case where 6y = 0 is fixed.
Step 1 through 3 takes no considerable time. Step 4 and 5 took 260 minutes
for the cell data. To make step 4 faster, a more narrow grid of r values could
be considered. Step 5 could be speeded up since we only need to compute
the between-plane ratio in those r grid values where the profile log-likelihood
can obtain its maximum. This set consist of the inner-point distances in
B 0)(yi), and those grid values where the inner-plane ratio found in step 4
is positive. Then the full maximum likelihood estimation could be reduced
to take, say, 200 minutes, and we would have a test probability after 14 days
of CPU time. Using parallel programming, the 14 days can be reduced with
a factor equal to the number of CPUs, and in a couple of years the machines
are probably so powerful that the 14 days are reduced to a couple of hours
or even minutes.

Hence, the worrying thing about making inference in the full TIM model,
is not the CPU time, but the human time it takes to construct and implement
the algorithms. With very powerful machines, many of the considerations,
such as reducing the grid of relevant #—values or to adjust the (5, y)—grid to
r, can of course be skipped. But still it takes some effort to get the programs
implemented and to make sure that the results produced are reliable.

In Nielsen and Jensen (2001) we have suggested to use a Poisson based
test instead, where the interaction model is not used at all. Such a test is
very fast and easy to implement and to compute. However, the distribution
of the test statistic is at present not known, and if we want to simulate
a test probability this involves finding the MLE for the data based on an
interaction model. The advantage is that we use 6, as estimate for €, which
reduces the complexity of the maximum likelihood estimation considerably
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since the model is homogeneous.

The exact (simulated) test probability given in Nielsen and Jensen (2001)
was based on 2000 realizations from the Strauss model and took 24.9 minutes
to compute. Based on realizations from the Poisson model, it took 0.26
seconds to compute a test probability.

Appendix: On estimating r for the cell data

In Nielsen (2000) the cell data set was analysed. Here we used 0o as estimator
for # and an estimate of the interaction range r was obtained using the J-
function and profile pseudo-likelihood analysis for the homogeneous back-
transformed point pattern z = hgol (y). The relevant plots are shown in this
appendix. All calculations have been done using Adrian Baddeley and Rolf

Turners program spatstat, cf. Baddeley and Turner (2000).

J—function

The empty space function F' and the nearest neighbour function G, cf. e.g.
Diggle (1983), for the back-transformed cell data are shown in Nielsen (2000,
Figure 3). These functions are compared with the corresponding functions
for the homogeneous Poisson process in order to evaluate the interaction
structure of the point pattern in question. On basis of these functions we
concluded that there is inhibition between the points in the cell point pattern.

Another non-parametric statistic that can reveal the interaction structure,
is the J—function introduced by van Lieshout and Baddeley (1996),

1-G(d)

d > 0.

For the Poisson process, J = 1 and for clustered and regular point pat-
terns, J < 1 and J > 1, respectively. In Figure 10 the empirical J—function
(Kaplan-Meyer) for the cell data is plotted together with envelopes (point-
wise maxima and minima) based on 39 simulated Poisson point patterns.
This plot supports that there is inhibition in the back-transformed cell point
pattern.

The variance of the J-function increases in d. This effect can be seen in
the range of the Poisson envelopes. Therefore, the empirical J-function for
the cell data is not to be trusted for large values of d.

From the J-function we get a rough estimate of . In a model such as the
Strauss process, where the interaction is of finite range r, the J-function is
increasing in (0;7) and constant for d > r. The cell data does not show such
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behaviour. However, choosing r = 0.007, then the theoretical Strauss J-—
function will increase until d = r, and then be constant which in average will
represent the empirical J—function. Therefore we choose r = 0.007 as a rough
estimator of the interaction range in the Strauss model. A plot of the J-
function for the Strauss process with parameters (3, ,r) = (760, 0.09, 0.007)
as found in Nielsen (2000), follows the empirical J—function in (0;r).

Profile pseudo-likelihood

Baddeley and Turner (2000) presents a fast and efficient method to compute
the pseudo-likelihood function for a point pattern based on software for gen-
eralized linear models. The method requires that the parameters enter into
the density in a certain way. For a Strauss model (f3,) enters as an expo-
nential family parameter, which is all right, but the interaction range r does
not enter in a way such that it is covered by the method. Therefore we make
profile pseudo-likelihood analysis with r as nuisance parameter. In Figure 11
the maximum value of the pseudo-likelihood has been plotted for the back-
transformed cell data for each value of r in a large grid. The corresponding
maximum pseudo-likelihood estimates of 3 and ~y are also plotted. In the left
hand-side of Figure 11 the pseudo-log-likelihood has been evaluated based
on a dummy point grid of size 30 x 30, and in the right hand-side the size of
the dummy grid is 50 x 50. The accuracy of the pseudo-likelihood depends
heavily on the size of the dummy point grid, and the result using the small
grid is obviously wrong since the profile pseudo-likelihood is maximized for
~ > 1 which is in conflict with the point pattern being regular. For the larger
grid, the profile pseudo-likelihood is maximized in r = 0.007, corresponding
to (8,7v) = (721.2,0.2312).

We did not try an even finer dummy grid, since the computer ran out of
space. However, we know that v < 1, which corresponds to a small value of
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Figure 10: J—function for the back-transformed cell data with envelopes for Poisson pro-
cess.
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Figure 11: Profile pseudo log-likelihood for the back-transformed cell data for two different
dummy point grid sizes. The model is the Strauss model. For various values of r, (8,7)
has been estimated by maximising the pseudo log-likelihood.

r. For small values of r, the value of the pseudo-likelihood does not change
very much using a 50 x 50 grid rather than a 30 x 30 grid, the error seems to
be when 7 is large. Therefore we tend to believe that the pseudo-likelihood is
correct for small values of r, and that » = 0.007 therefore is a good estimate
of the interaction range.

The estimates of # and v may however change more using an even finer
grid. Baddeley and Turner (2000) also analysed a regular point pattern
using the Strauss model. On page 301 they note that in their analysis, a
finer dummy grid always led to a smaller value of v and a larger value of 8
(for fixed 7). We got the same result going from the 30 x 30 to the 50 x 50
grid. Thus, we conclude that § > 721.2, v < 0.2312, and r =~ 0.007.

Furthermore, Baddeley and Turner (2000, p. 302) note that also edge-
correction can be important for the accuracy of the pseudo-likelihood. How-
ever, for the back-transformed cell data, the interaction range is very small
compared to the window size, and therefore edge-correction might not have
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large impact in this particular case. However, it could be interesting to inves-
tigate this. For the analysis shown in Figure 11 we have used the translate
edge-correction, c.f. e.g. Baddeley (1999).
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Abstract

In the present paper the transformation model for inhomogeneous point
processes introduced in Jensen and Nielsen (2000) is examined fur-
ther. We restrict attention to 2-dimensional manifolds that can be
parametrized by a product set. For such sets and for a given type of ex-
ponential inhomogeneity the transformation is found in closed form. A
criteria for preserving the ’ordering’ in a point pattern under the trans-
formation is also presented. As an example we study point processes in a
region around a smooth planar curve where the inhomogeneity depends
on the distance to the curve.

Keywords: Differential equation; Inhomogeneity; Interaction; Jacobian; Man-
ifold; Parametrization; Relation; Smooth curve; Strauss process; Transformed
point process

1. Introduction

Let X be a k—dimensional differentiable manifold. We are interested in finding
a bijective mapping hg : X — X', depending on a parameter 6, that transforms
a homogeneous point process on X’ into an inhomogeneous point process, such
that the inhomogeneity is of exponential form. From Jensen and Nielsen (2000,
Proposition 3.2) we have that, if X is a point process on X with density fx,
then hy(X) is a point process on X’ with density

Froo) (@) = fx(hg' (@) [[ Tha ' (n), for z € Q. (1)

Here €y is the set of finite subsets of X and Jf denotes the Jacobian of the
mapping f, see Jensen (1998).

!Postal address: Laboratory for Computational Stochastics, Department of Mathemat-
ical Sciences, University of Aarhus, Ny Munkegade, DK-8000 Aarhus C, Denmark. Email
addresses: lins@imf.au.dk and eva@imf.au.dk.
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The first term of the density (1) is the homogeneous density evaluated at
the inversely transformed point pattern. The Jacobian term of the density is
the term that controls the inhomogeneity of the point process. Thus, we are
searching for a mapping hy that is a solution of the differential equation

Thyt () = B(8)e”™. (2)

Here the inhomogeneity parameter # has dimension [, say, and € : X — R' is
some mapping. Below (2) is called the intensity of the transformed process,
although we are aware that this term traditionally has another formal defini-
tion. Notice that for fixed €(n) the intensity (2) of the inhomogeneous process
is constant. Hence, for K € IR, the sets {n € X : ¢(n) = K} are level curves
for the intensity of the inhomogeneous process.

In the next section we will restrict attention to 2-dimensional manifolds
that can be parametrized by a product set. In Section 3 we will examine
the two examples from Jensen and Nielsen (2000) and see that they both are
special cases of the set-up presented in Section 2. In Section 4 we will introduce
another more complicated example of a 2-dimensional manifold parametrized
by a product set, and for this example discuss solutions of the differential
equation (2). This example will reappear several times in this paper. In
Section 5 we introduce a class of transformations, the so-called lexicographic
transformations. Inside this particular class of transformations it is possible to
find a unique solution to the differential equation (2). In Section 6, the example
from Section 4 is reviewed in the light of the transformation results presented
in Section 5. In Section 7 we discuss the importance of having a transformation
that preserves the visual order of the points. A criteria for the preservation of
visual order under the lexicographic transformations is presented.

2. Two-dimensional manifolds parametrized by a product set

In this paper we will concentrate on 2-dimensional manifolds that can be
parametrized by a product of two intervals. By a rescaling and translation, we
can choose the parametrization intervals to be the unit interval [0;1]. But in
concrete examples, other intervals may be more natural to consider. Hence,
let p be a differentiable bijective mapping from a product set of intervals to X,

p:Iy XTIy — X,

where Z; = [a;, b;] for —0o < a; < b; < 00, i = 1,2. Henceforth we shall refer
to p~1(n) as the geodesic coordinates of a point n € X. The above mapping is
a parametrization of X', and the transformation mapping is then of the form

h9:pok90p_la (3)



where
k@ ZI]_ XIQ —>I1 XI2

is the corresponding bijective mapping on the parametrization set. The Jaco-
bian of the transformation mapping can be rewritten in the following manner

Thy'(n) = Jpok‘1 p~'(n)
= Jp(ks"' op™ (n)Jky " (0™ () Tp™" (1)
Jp(ke op 1(77)) 1
( ()) Jko (p (77))

Let 7 = € o p. The intensity level curves are then, expressed in geodesic
coordinates, of the form

{(wi,ws) €1 X I i T(wi,wo) = K}, K€ R

The differential equation (2) to be solved becomes a differential equation in
k@a
Ip(ky (w1, ws))

-1 — 0-1(w1,w2) 4
Tp(wr, ws) Jkq (wi,ws) = B(0)e . (4)

The general aim is to find the set of solutions to the above-mentioned differ-
ential equation. This problem will not be solved in the present paper, but we
will later introduce a sub-class of transformations for which a unique explicit
solution to the differential equation can be found.

3. Two well-known examples

In Jensen and Nielsen (2000) we have already seen two examples of the set-
up described in Section 2. Even though they seemed quite different, they
share some important characteristics. This will be explored further in the
next section, see e.g. Example 4.1. In the following we will shortly present the
two examples.

Example 3.1 (The unit square)

In Jensen and Nielsen (2000, Example 4.1), we studied exponential inhomo-
geneity in the unit square. Here Z; = [0;1], ¢ = 1,2. The parametrization
mapping p was the identity mapping and the inhomogeneity mapping was of
the form

(w1, wa) = (11 (w1), T2(w2)),

where 7; : R — IR. Hence 6 = (01, 6,) was 2-dimensional.

3
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This is indeed a model of the form described in Section 2. The differential
equation (4) becomes

Tk (w, wp) = B(R)em () efr(e2), (5)

Using the following rewriting of the Jacobian

Jk;l (wl, u)g)
d . _ d ., _ d . _ d . _
= d—wlke 1((4)1,(4)2)1d—w2/f9 1(W1;w2)2 - d—wlko 1(w1’w2)2d—w2k0 1(601,002)1 ; (6)
it is easy to see that the differential equation (5) has a unique solution among
functions of the form

kg (wi, wa) = (lgg (w1), lgs (w2))

where ly;, i = 1,2, are increasing bijections on [0; 1], viz.
lgi (wi) = ﬁz‘(ei)/ Wy, §=1,2.
0

Here (31(61)52(02) = 5(6), and (3;(6;) are chosen such that the mappings ly;(w;),
i = 1,2, are bijections on [0;1].

In this example an intensity level curve is a product set. If 7 is strictly
monotone in each coordinate, then an intensity level curve consists of one
single point.

Another way of handling this example is to consider two independent map-
pings, one in each coordinate. Hence,

T1 ((4)1, a)g) =T (wl) and To (wl, w2) = 7'2((4)2),
which gives the mappings
kal(w1,w2) = (lel(w1),w2) and kaz(w1,w2) = (wla laz(w2))-

For the first mapping an intensity level curve is of the form S; x Z,. Here
S1 C I, is a set where 71(w;) = K for all w; € S; and 7(w;) # K for
all w; € 7;\S;. If 7y is strictly monotone, then lines parallel to the second
coordinate axis are the intensity level curves. The mapping move the points
from one line parallel to the second coordinate axis to another along lines
parallel to the first coordinate axis.

Similarly for the second mapping. O



Example 3.2 (The unit sphere)
The other example that was examined in Jensen and Nielsen (2000) concerned
the unit sphere. Here Z; = [0;7), Zo = [0; 27) and p was the polar coordinate
mapping, see Jensen and Nielsen (2000, Appendix). Furthermore, 7 was some
function of the first coordinate, 7(w;,wy) = 7(w;). Hence, the inhomogeneity
parameter # was 1-dimensional.

Under these circumstances, using (6) and the fact that Jp(w;,ws) = sin(w;)
the differential equation (4) can be formulated as

o d _

sin(k, 1((4)1, wa)1) d—wlkg 1(w1, wg)ld—wzka l(wl, W)z
d  _

— ——ky (w1, w2)

d :
y byt (wi,w2)2| = B(0)e™ “Dsin(w;). (7)
W2

1d—a)1
The right hand-side of the equality does not depend on w,, and therefore the
left hand-side can of course not depend on wy either. Let us suppose

ke_l(wl, LL)Q) = (10_11 (wl), LL)Q) .

Then the differential equation (7) can be formulated as
d
———cos(ly! (w1)) = B(0)e" V) sin(wn).
dwl

By integrating on both sides of the equality, we get an explicit expression for
cos(l; (wr))-

Here the intensity is constant on lines parallel to the second coordinate axis
in the parametrization set. Thus, the intensity is constant on the latitudes
of the sphere. Notice that the transformation moves the points along the
longitudinales from one latitude to another. U

4. Perpendicular transformation in the curve set

One of the features that made the solution of the differential equation in
the examples from the previous section relative simple was, that using the
parametrization mapping, the problem could be translated into simpler prob-
lems where the intensity was constant on lines parallel to one of the coordinate
axis. Thus, if this axis was the second axis, then the inhomogeneity function
was of the form

T(w1,ws) = T(w1). (8)

In both examples a solution of the differential equation (4) was a mapping
that moved the points from one line parallel to the second coordinate axis to
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another along lines parallel to the first coordinate axis. Thus,

ko(w1, w2) = (lg(wr), w2), 9)

where [y is an increasing bijective mapping on Z;.

It is interesting to find out whether such a transformation in general is a
solution to the differential equation (4) when the inhomogeneity is of the form
(8), or whether the two examples from Section 3 had some nice properties that
made things work out fine. Therefore we will in this section take a look at
another example.

The set we will study will henceforth be referred to as the curve set. Let
S C IR? be a 2-dimensional manifold equipped with a metric. The curve set
is defined as the subset X C § consisting of the points lying within distance
a > o from a smooth curve ¢ C S. Let ¢ be defined as

c(t) = (ar(t), c2(t)), te[0;1].
Hence, the curve set is defined by
X ={neS:dnc) <a},

for some a > 0, where d(n, ¢) is the distance from a point n € S to the curve.

In the following we will restrict attention to planar curves ¢ C IR2. Then
the distance from a point in IR? to the curve will be defined as follows. For
a point n € IR? there exists at least one point £ € ¢ with tangent vector
perpendicular to the line through & and 7. Let &;,...,& be the points on ¢
with this property, then we define d(n, ¢) = min;—,, . ;d>(n, &), where dy denotes
the Euclidian distance in IR%. Note, that for 1 close enough to c relative to the
curvature of ¢, [ = 1.

The planar curve set can be parametrized by the mapping p : [—a;a] X
[0;1] = &,
¢(wn)
plw,we) = c(ws) — Wi
[l (w2)]
ch(wo)w i (we)w
— ( 2) 1 ’62(w2)_ I 1( 2) 1/ .
\/0’1 2+ cy(wo)? VE (W2)? + ch(w2)?
Here || - || denotes the length of a vector. The first coordinate w; in the

parametrization set is the signed distance from the point p(w;,ws) to the curve,
i.e.
wy = sign x d (p(wy,ws), c) ,

6



where sign € {—1,1} indicates on which side of the curve the point lies.
When the inhomogeneity is of the form (8), it only depends on the signed
distance from the curve. Thereby the intensity is constant on curves with
fixed perpendicular distance from the curve.

Suppose that
1

7’
max | (ws)|

a <

where k denotes the curvature of the curve c. Then it can be shown, that each
point in X is perpendicular to exactly one point on c¢. Hence p is bijective.

Let us derive the explicit form of the differential equation (4) in this setting.
The derivatives of the parametrization mapping has the form

d
o= < dgip(wbwgh ) =12
@p(wl,c@)Q

It can easily be shown that v; and v, are perpendicular and that ||v4]| = 1.
Thus, the Jacobian for the parametrization mapping is

Ip(wy, wa) = [v2| = [|¢'(wa)[| (1 + K(wa)wn),

and the differential equation (4) is then

ﬂ(e) eG-T(wl w2)

e (kg M wr, wo)2)[[(1 + w(ky H(wi, wa)2) kg H(wi,we)1) o, .
- ¢! (w2)][(1 + K(ws)wn) Jky (w1, ws). (10)

Before we study the curve set further, we will argue that the unit square
and the unit sphere are special cases of the curve set.

Example 4.1 (The unit square and unit sphere)

In Example 3.1 we noted, that the transformation studied here could be divided
into two transformations. The set-up from above can be directly transferred
to each of these transformations. Let, for the first transformation, the main
curve ¢ be the line z; = 1/2. The lines parallel to the main curve has constant
distance to c¢. The curvature and the tangent vector are constant, so (10)
becomes the differential equation Jk; "' (wi,ws) = B(0)e®1m®1) as we saw in
Section 3, see (5).

In Example 3.2 we did not consider a planar curve set but the 2-dimensional
sphere in IR?, and therefore the set-up from above does not cover this example.
However, the sphere can be regarded as a curve set where the main curve is a
latitude infinitely close to the north pole. Hence, each latitude has constant

7
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distance to the main curve. As in the unit square example, we have that the
curvature and the length of the tangent vector are constant. This does nicely
follow the fact that the Jacobian does not depend on the second geodesic
coordinate. O

Example 4.2 (Simple perpendicular transformation)
In this example, we will examine whether a transformation of the form (9) can
be a solution of the differential equation (10) when the inhomogeneity is of the
form (8).

In this situation the differential equation can be rewritten into the following
equation

(1-+ Kwn)on) BOT) = (14 Rl (1)) 7ty ).

This implies that

B ) — oty () .
rlws) = g (w1) 3505 " (u) — w1 B(B)el7n) (11)
But the left hand-side of the equation depends on w, only, while the right
hand-side depends on w;. This is a contradiction unless both sides are equal
to some constant. If the curvature is constant, then the intensity lines are
either straight lines or (part of) circles. This was the situation in both cases
mentioned in Example 4.1.

So, the differential equation does not have a solution among functions of
the form (9) unless the main curve has constant curvature. It is actually quite
obvious why this is so. Consider two pieces of the curve with the same length,
one with positive curvature and the other with negative. If we transform a
homogeneous point process with same intensity in the two areas along perpen-
dicular lines such that the signed distance to the main curve increases, we get
an intensity which does not only depend on the signed distance to the main
curve because the points in the concave area are spread out, while the points
in the convex area are are squeezed together.

The problem with the contradictory equation (11) is not solved by trans-
forming also the second parameter. In this situation, we get an equation of the
same form but now with left hand-side x(dp(wi,ws)), where dy is the trans-
formed second coordinate. If we then integrate with respect to wo on both
sides of the equality (11), the right hand-side is equal to 0. The left hand-side
is equal to 0 if either k = 0, i.e. the curve is a straight line, if k is an even
function, or if dg(w;, wq) does not depend on ws. The situation where the curve
is a straight line have already been examined, see Example 4.1. The exam-
ples where k is even and the example where dy do not depend on the second




geodesic coordinate are not interesting in a search for a general solution for
any curve c. U

Example 4.3 (Perpendicular transformation)
Let us expand the transformation class from Example 4.2. If Iy also depends
on wy, the above equation (11) makes sense. Hence, let

ke(wl’a)Q) = (la(wl;(“J?)’w2)’ (12)

where lp(+;ws) is an increasing differentiable bijective mapping on [—a;al for
every choice of wy € [0;1]. Notice, that the transformation still follows the
perpendicular distance lines, but now the transformation along these lines
is different for each line. Therefore such a transformation will be called a
perpendicular transformation, and the transformation (9) from the previous
example will be called a simple perpendicular transformation.

The differential equation becomes

(1 + K(wa)wr) ﬂ(g)ee'T(wl) = (1 + ”(%)le_l(wl; w)) diwlla_l(wl; wa).

Integrating on both sides with respect to w; in the interval [—a; a], we get the
following expression for the constant ((6)

2a
J¢, @ dwy + k(ws) [, wiefT @) dw,

() =

Suppose that x is not constant. As () does not depend on the parameter
wy, we have that

a
/ w1’ @ dw, = 0.
—a

This is true for every choice of a, which implies that 7 is an even function,
T(—u)l) = T(wl).

Thus, the differential equation has a solution among functions of the form (12)
only if the inhomogeneity depends on the absolute distance from the main
curve, and not as previously assumed, the signed distance.

At first, in the light of the discussion in Example 4.2, it does not seem
reasonable that the perpendicular transformation should work out just because
we allow the transformation of the first geodesic coordinate to depend on the
second coordinate. The problems with points being squeezed in concave areas
and being spread out in convex areas are expected to carry over. But the
reason is, that the transformation now is allowed to adjust locally. Given a

9
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piece of the main curve, then it is easy to show that the two pieces of curve in
perpendicular distance K, 0 < K < a, from the main curve has total length
equal to two times the length of the corresponding piece of the main curve.
Thereby the length of the two level curves with same intensity is always equal
to twice the length of the main curve.

The solution of the differential equation (10) will be postponed to Section 6,
see Example 6.1. O

In this section we have studied perpendicular transformations. In Exam-
ple 4.2 we saw that we had to allow the transformation of the first geodesic
coordinate to depend on the second one, and in Example 4.3 we saw that only
even inhomogeneity functions 7 were covered by this approach if the second
geodesic parameter stayed untransformed. Hence, if we want to cover other
inhomogeneity functions than the even functions, we have to allow the second
coordinate to be transformed. This means that the transformation is no longer
perpendicular.

5. Lexicographic transformation

With reference to the discussion in the previous section, we will consider a
transformation

ko(wi,w2) = (lg(w1; dp(wa)), dp(w2)), (13)
where dy : I, — Z, is an increasing differentiable bijective mapping and
lo(;we) : Iy — Iy is an increasing differentiable bijective mapping for all
wo € Zy. Notice that ky is increasing with respect to the lexicographic ordering

(wl,wQ) < ((:)1,(:)2) = (LUQ < (:}2) or (LUQ = W9 and w < (:)1)

For this reason, the transformation is called lexicographic.
Let us now find explicit expressions for the transformations dy and ly that
solves the differential equation (4). We have that

kg H(wn, wa) = Iy (wis wa), dy H(w2))-

Using (6) the Jacobian is

d _ d _
Jk;l(wl) (4)2) = d—wll@ 1((,{}1; w2)d—u)2d9 1((,()2).
Therefore the differential equation (4) can be rewritten as
Ip(ly " (wiswn), g (w2)) d
Ip(wi, ws) dwy

- d _ T(w1,w2
dal(wz)d—mlel(wl;w)=/3(0)ea( ) (14)

This differential equation is possible to solve. We have the following result.

10



Proposition 5.1 Let

U2 b1
Vo (u2) :/ / e/ T@12) Jp(wi, wo)dwidwa, Uz € [az; by,
a2 al
and for ug € [ag; by] fized, let

ul
@0(“1;“2) =/ ea'T(wl’m)Jp(wl,UQ)dwla u € [al;bl]-

al

With the inhomogeneity constant of the form

_ Yo(bs)
Vo (be)’

p(0)

there exists a unique solution to the differential equation (14) in the class of
lexicographic transformations. The solution is given by the two coordinate func-
tions in (13)

do(us) = 05" (2l (15)
and
lo(us; dofuz)) = 05" (%wuu) ; da(w)) ()
Remark 5.2

The functions vy () and @g(-; u2), ug € [ag; bo], are both increasing functions.
Furthermore, 1y(a3) = 0 and @g(ai;uz) = 0. Thereby both dy(-) and ly(-; us)
are well-defined increasing bijective mappings on [ag; be] and [aq; b1], respec-
tively.

Notice that we have to know both the original and the transformed geodesic
second coordinate in order to transform the first geodesic coordinate, see (16).
To transform the geodesic coordinates, we just need to derive some values of
integrals involving the Jacobian of the parametrization mapping. If we know
the Jacobian, this is a simple problem that can be solved using numerical
computing.

Finally, notice the similarity between the expressions for dy and [y in (15)
and (16), and that

g (u2) = /“2 ©o(b1; wa)dws. n

a2

11
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Proof of Proposition 5.1 Let u; € [a;;b1] and us € [ag; by]. Integrating the
above version of the differential equation (14), we get

/ / ﬂ(@)e‘g'T(“”"‘”)Jp(wl, ws)dwdwsy

u2 ui d d

= /a2 A Tp(ly " (wi;wa), da_l(wz))d—mda_l(wz)d—mla_l(wﬁ wp)dwidws
dy ' (u2)  ply H(uasde(w2))

= / / JIp(wr, wa)dwidws. (17)
a2 ai

Here we have used that because both dy and ly(-;ws) are increasing and sur-
jective,
dg(az) = ay and lg(ar;we) = a1, wy € [ag; be).

For the same reasons we also have
dg(bg) = b2 and lg(bl;(UQ) = bl, Wwo € [CLQ; bg]
Let u; = by, then the equation (17) is of the form

B(0) 1o (uz) = tho(dy ' (uz))- (18)

With 3(0) as in the proposition, 3(6)ty(-) and 1o(d, ' (+)) are increasing sur-
jective mappings from [as; be] onto [0;1(b2)]. Hence there exists a unique
solution dy to (18) with the required properties.

Consider the equation (17) again, and differentiate on both sides with re-
spect to us. Then we get the following equation,

B(0) 9 (tr; 2) = m%(za%uu ws); dy (). (19)

From this equation we can derive an expression for dj by letting u; = by,

900(51; Uz) 1
©o(b1; dg(uz)) B(0) .

For each uy € [ag; ba], B(0)wa(-;ua) and @o(ly " (-5 u2); dy ' (ua))/dy(dy ' (u2)) are
increasing and surjective mappings from [ay; b1] onto [0; 3(0)pg(b1; u2)] and so
there exists a unique solution [y.

As the coordinate mappings given by (15) and (16) in the proposition are
solutions to the equations (18) and (19), respectively, these coordinate map-
pings are the unique solution to the differential equation (14). O

dy(ug) =

12



6. The curve set — revisited

Let us again study the curve set from Section 4 where the inhomogeneity was
of the form (8). In Section 4 we discovered, that the transformation of the
first geodesic coordinate had to depend on the second geodesic coordinate.
Using a transformation of the form (12), we could only cover inhomogeneity
functions 7 that were even functions. The transformation (12) is a subclass
of the class of lexicographic transformations where dj is the identity function.
In the example below, we will consider the case when 7 is an even function,
using the lexicographic transformation approach. We will see, that then dy
will always be the identity mapping.

Example 6.1 (Inhomogeneity in the distance from the main line)
Let 7 be an even function, 7(—w;) = 7(w1), or equivalently

7(w1) = 7(|wi))-

Hence, the inhomogeneity depends only on the distance from the main curve.
Using the transformation approach from Section 5, we get

() =20 [ ¢ wn) [ da,
0

(1) = 2 / 71 gy / ¢ (ws)||dews for 0 0.
0 0

Due to the fact that dg(1) = 1, we have from (18) that 3(0)ws(1) = 1o(1).
From the expressions above this implies that 3(6) foa ef7@dy, = a. Hence
B(0)g(uz) = 1o (uz) for all uy € [0;1]. Hereby dy is the identity function. Now
we are in the situation from Example 4.3. Notice that we now have shown,
that using the transformation approach from Section 5, then 7 is even if and
only if dy is the identity function.

Let us now find the first geodesic transformation. We have that

u1

ousiue) = ¢l ([ & ain + ) |

—a —a

wleaT(l“’l)dm) )

This function does only depend on the second coordinate through the curvature
and the length of the tangent vector of ¢ in that particular point. When the
main curve is either a straight line or (part of) a circle, then the curvature and
the length of the tangent vector are constant, and ¢y does not depend on the
second coordinate, and so does neither ly. This agrees with the results from
Example 4.1 and 4.2.

13
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Figure 1: A homogeneous Strauss process in the square-root set with 100 points and pa-
rameters v = 0.01 and R = 0.05 is transformed using the perpendicular transform. The
dashed curve (- - -) is the boundary of the square-root set, and the solid line is the main
curve. The first plot is the homogeneous process, the second, third and forth plots are the
resulting inhomogeneous process with parameters # =-5,-10 and -20, respectively. In the
two last plot the behaviour of the transformation is illustrated for § = —10. In the fifth plot
we see lines indicating to where each point is transformed. In the last plot, the solid curves
are curves with the same distance to the main curve, the dotted curves (---) show to where
these curves are transformed. 14



Let us in particular consider the curve c(t) = (¢,v/t), a = 0.25, and inho-
mogeneity defined by
T(w1) = |wr].

Then it is possible to derive an explicit expression for the transformation lg. In
Figure 1 a realization of a repulsive Strauss process living in this square-root
set is being transformed with three different transformation parameters, 8 =
—5,—10, —20, respectively. In the fifth plot we can see that the transformation
is perpendicular. In the last plot it is illustrated that the transformation of
the first geodesic coordinate, the signed distance to the main curve, depends
on more than the first geodesic coordinate. U

This example shows, as indicated earlier, that with 7 not even, then we
have to transform the second geodesic coordinate. In this situation 1y and 1)
are not proportional, and so we do not have that dy is the identity function,
which also would be in contradiction with the results in Example 4.3 and 6.1.
Let us therefore in the following consider an example where 7 is uneven.

Example 6.2 (Inhomogeneity in the distance from the boundary line)
In this example we will consider exponential inhomogeneity in the distance
from the lower right border-line of the curve set. Such type of one-sided in-
homogeneity could for example be relevant if we want to construct a point
process model on the bank of a river. Thus, let

T(w1, ws) = a — wy.

In Figure 2 we again consider the square-root introduced in Example 6.1,
and we also reuse the point pattern from Figure 1. In the third plot in Figure 2
we see that the transformation is not perpendicular. Notice, that it seems as
if the point process preserves the visual ordering of the points. In the two last
plots this is clearly illustrated. U

7. Preserving the visual ordering of the points

When transforming point processes with interaction, it would be preferable
that the ’ordering’ of the points does not change under the transformation.
This is expected to be the case for moderate inhomogeneity.

One possibility is to require that the geodesic coordinate transformations
kg1 and kgo are increasing functions, cf. (3). This is not fulfilled for lexico-
graphic transformations, however.

Such a transformation is increasing in the second geodesic coordinate. The
transformation is also increasing in the first geodesic coordinate when the

15



Nielsen & Jensen (1999)

12
1.2

1.0
1.0

0.8

0.6

0.4
1

0.2

0.0

1.0

0.8

0.6

0.2
1

0.0

Figure 2: A homogeneous Strauss process in the square-root set is transformed using the
lexicographic transform with parameter § = —5. The dashed curve (- - -) is the boundary
of the square-root set, and the solid line is the main curve. The first plot is the homo-
geneous process, which is the realization from Figure 1, first plot. The second plot is the
resulting inhomogeneous process. The third plot shows lines indicating to where each point
is transformed. The forth plot is the same as the third plot, here the lines between the
transformations with parameters § = —1, —5, —10, —50 are plotted.

second coordinate is fixed, but in general the first geodesic coordinate is not
increasing. However, from a visual inspection of point patterns transformed
with a lexicographic transformation, it seems as if the point patterns maintain
the ordering of the points anyway, see Figure 1 and 2.

Below we will give another definition of "ordering’ which includes the above
definition. The new definition is dependent on the realization instead of the
transformation.

For w,w € 7y x Ty, let R(w,w) C Z; x Z, be the smallest closed rectangle
containing w and w. Let y € Qg <7, be a point pattern. Then w,w € y are

16



rectangular neighbours iff
R(w,@) Ny\{w,w} = 0.

A point pattern x € €y is said to preserve the order under a transformation
of the form (3) if the following condition is fulfilled for w,& € y = p~*(z)

w and w are rectangular neighbours in y

0

kg(w) and ky(w) are rectangular neighbours in ky(y).

The above condition is fulfilled for any point pattern if the transformation is
increasing in each of it’s coordinates. Below, we give a condition that ensures
that this is also true for lexicographic transformation with parameter 6.

Proposition 7.1 Let

Ay = maz | mazl, Hwi:wy) — minl,  (wy;ws)] .
w1€Ty w2EI29 ( ’ ) W2€I29 ( ’ )

Given two points w,w € y. Suppose that
|wir —@i] > A, (20)

Then, w and W are rectangular neighbours in y iff ke(w) and ke(w) are rectan-
gular neighbours in ko(y).

Remark 7.2
If (20) is fulfilled for all the points in y, then the order of the points in x is
preserved under the lexicographic transformation with parameter 6. If there is
inhibition in the original untransformed point process, then the condition (20)
is more likely to be fulfilled for all the points in y.

Consider the band [wy; w1 +Ag| X Ty, for wy € [a1; by —Ay]. If a point pattern
x has two points with geodesic coordinates within such a band, these two points
are allowed to exchange the order of the first geodesic coordinate. As the
transformation function ly is continuous, the points have almost identical first
geodesic coordinate after a transformation if Ay is small relative to a. Hence,
if p does not behave too wildly, it is practically impossible to discover visually
that some points have exchanged in the original point pattern z, especially if
the points lie very far apart in the second geodesic coordinate. So even though
the condition (20) is not fulfilled for all the points in y, the order is somewhat
preserved under the transformation (3) if Ay is small enough. This will be
examined further in Example 7.3. U

17
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Proof of Proposition 7.1 Suppose that w and w are rectangular neighbours
in y. For simplicity, suppose that

w; <w; and wy < Wo.

Since dy is increasing, the only thing that can disturb this neighbour relation-
ship under the transformation ky is a point @ € y, satisfying

wo < Wo < Wo.
Let us for simplicity suppose that
W < w.
We will then show that
lg(W1;dg(W9)) < lg(wr; dg(w2)).
Thus, suppose that we instead have the relation
lg(&1,dg(W2)) > lp(w1, dg(@2)).

Then because ly(-; dg(w2)) is increasing

01 € (D315 (lo(@1; dg(@2)); do(@2)))
= (l5" (v3do(@2)); 1 (v5@2)))

where v = lg(wy; dyg(w2)), and accordingly
w1 — (:31 < Ag,

which is a contradiction.

Using the same kind of reasoning, it may easily be shown that if ky(w) and
kg() are rectangular neighbours in y, then w and w are rectangular neighbours
in y. O

Example 7.3 (Inhomogeneity in the distance from the border line)

Let us again take a look at Example 6.2. In Figure 2 we saw a realization
of a transformation of the homogeneous Strauss process in the curve set with
the graph of the square-root function as main line. Here there was an striking
visual preservation of the order of the points. However, requirement (20) is
not fulfilled for all the points in the geodesic point process y. In Table 1 the
expression Ay from Proposition 7.1 has been calculated for the transformation

18



0 Ay

110.000233921 || 6
9 | 0.00255696 || 31
10 | 0.00814604 | 55
50 | 0.0409686 82

— o = O

Table 1: An examination of the ordering for transformations of the realization of a Strauss
process from Figure 2. The first column are the transformation parameters, the second
column are the width of the swopping bands given in Proposition 7.1. The third column are
the number of pairs of points in the realization that swoppes first geodesic coordinates, and
the last column are the number of point-pairs from column three with distance less than
R =0.05.

in the square-root set for various values of . As we see, when § = —5 as
in Figure 2, then only points with first geodesic coordinate distance less than
0.0026 can change order in the first geodesic coordinate, and this is impossible
to discover visually. It is interesting to notice, that most of the points that
swop the first geodesic coordinate lie very far away from each other. Actually
none or only one pair of points in the original realization in Figure 2 with
distance less than R is swopped when 6 = —1, —5, —10, —50. O
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