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Abstract

We consider capacity expansion of a telecommunications network in the face of

uncertain future demand and potential future failures of network components. The

problem is formulated as a bicriteria stochastic program with recourse in which

the total cost of the capacity expansion and the probability of future capacity

requirements to be violated are simultaneously minimized. Assuming the existence

of a �nite number of possible future states of the world, an algorithm for the

problem is elaborated. The algorithm determines all non-dominated solutions to

the problem by a reduced feasible region method, solving a sequence of restricted

subproblems by a cutting plane procedure. Computational results are reported

for three di�erent problem instances, one of which is a real-life problem faced by

Sonofon, a Danish communications network operator.

Keywords: Capacity Expansion; Telecommunications; Stochastic Programming;

Integer Programming; Bicriteria Optimization.

1 Introduction

Capacity expansion problems is an important class of problems arising in many contexts.

Uncertainty is almost always an inherent feature of the system being modeled, and the

importance of taking due account of this uncertainty when formulating the problem as an

optimization problem, is well-recognized. This paper is concerned with capacity expan-

sion of a telecommunications network in an uncertain environment. The uncertainties
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facing the network operator are assumed to be twofold. Some arises due to the inher-

ent uncertainty involved in the assessment of future demand and some is due to the

potential future failure of nodes or edges in the network. Previous studies have mainly

dealt with these issues separately. Capacity expansion problems with uncertain future

demand have been considered by authors such as Dempster, Medova and Thompson [5],

Medova [9], Riis and Andersen [13], Riis, Skriver and Lodahl [15], and Sen, Doverspike

and Cosares [17]. Capacity expansion problems including potential future failures in

the network have been considered in the framework of survivable network design by e.g.

Dahl and Stoer [4] and Rios, Marianov and Gutierrez [16]. The emphasis in most of

these studies has been on minimization of the expected cost of capacity installments.

Sen, Doverspike and Cosares [17], however, used another approach in which capacity ex-

pansion was planned so as to minimize the expected number of unserved requests subject

to a budget constraint. Dempster, Medova and Thompson [5] and Medova [9] use chance-

constrained programming to solve the capacity expansion problem subject to constraints

limiting the blocking probabilities at di�erent network levels, whereas the remaining ca-

pacity expansion models fall in the general category of two-stage stochastic programs with

recourse. (This terminology, though, is usually not used in connection with survivable

network design.) The basic assumption underlying the two-stage stochastic programming

model is that decisions can be split into two groups, a group of �rst-stage decisions which

must be taken with only distributional information on the uncertainties of the model,

and a group of second-stage decisions which may be postponed until uncertainty has

been revealed. In the case of capacity expansion problems, the �rst stage corresponds

to the planning of capacity installments and the second stage corresponds to routing of

traÆc in the network once actual demand has been observed and a failure has possibly

occured. For a general introduction to the �eld of stochastic programming, we refer to

the textbooks by Birge and Louveaux [3], Kall and Wallace [8], and Pr�ekopa [12].

The demand input for the long-term capacity expansion planning models under con-

sideration here is a set of capacity requirements between node-pairs, needed to maintain

a prescribed Grade-of-Service (GoS). (See e.g. Dempster, Medova and Thompson [5],

Medova [9], or Riis and Andersen [13] for related discussions.) In the case of node or

edge failures it is required that a certain fraction of these capacity requirements are

available to uphold the GoS for all node-pairs. Since the prescribed GoS, as well as the

fraction of capacity requirements to be available in case of failures, are selected somewhat

arbitrarily, however, refusing to waive these requirements under any circumstances, may

not make sense in a cost minimization framework. In other words, we may obtain a

considerable decrease in the optimal cost by relaxing the requirements for a few critical
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failure states. Moreover, such a cost reduction would be of major interest if the probabil-

ity of the critical failures to actually supervene is very small. To illuminate the trade-o�

between total cost of the capacity expansion and the probability of GoS requirements to

be violated, we formulate a bicriteria model for capacity expansion in which these two

objectives are simultaneously minimized. A general bicriteria problem takes the form

min z1 = f1(x)

min z2 = f2(x)

s.t. x 2 S:

(1)

Since, in general, we cannot expect to obtain a solution �x 2 S which minimizes both

objectives over S, it is not immediately clear what an \optimal" solution of problem (1)

should be. The relevant concept in this respect is that of eÆcient solutions, de�ned next.

Let the feasible region in criterion space be

Z =
�
(z1; z2) 2 IR2

�� 9x 2 S : z1 = f1(x); z2 = f2(x)
	
:

De�nition 1. A criterion vector (z1; z2) 2 Z is dominated if there exists x 2 S such that

f1(x) � z1 and f2(x) � z2 with at least one inequality being strict. Otherwise (z1; z2) is

a non-dominated criterion vector.

De�nition 2. A solution vector x 2 S is eÆcient if
�
f1(x); f2(x)

�
is a non-dominated

criterion vector. Otherwise x is ineÆcient.

For a basic introduction to multicriteria optimization we refer to Steuer [18].

This paper is organized as follows. In Section 2 we develop a bicriteria stochastic

integer programming formulation of the problem. Next, in Section 3 we elaborate two

algorithms. The �rst algorithm determines all non-dominated solutions to the bicriteria

problem by a reduced feasible region method. The second algorithm is used to solve a se-

ries of restricted subproblems arising during the course of the �rst algorithm. In Section 4

we present the results of some computational experiments performed on three di�erent

problem instances. One of these is a real-life problem provided by Sonofon, a Danish

mobile communications network operator, whereas the other two are modi�ed instances

of real-life problems previously studied in e.g. Bienstock and G�unl�uk [2], G�unl�uk [6], and

Riis and Andersen [13]. Finally, in Section 5 we give some concluding remarks.

2 Problem Formulation

The network is modeled as a connected undirected graph G = (V;E), where V denotes

the set of nodes (switches) and E denotes the set of edges (circuit groups). Also a set K
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of point-to-point pairs of nodes between which demand is to be routed is given. We shall

think of the future state of the world as a random event ! and denote by (
;F ; P ) the

underlying probability space. Associated with ! is a speci�c failure state (possibly no

failure) reducing the set of functional nodes and edges to V (!) and E(!), respectively,

and a set of point-to-point demands Dk(!) between functional node-pairs k 2 K(!),

that are to be routed in the network G(!) = (V (!); E(!)). We assume that routing of

traÆc is restricted to a set of prespeci�ed routes P. Given a state of the world !, the

set of functional routes between node-pairs k 2 K(!) is denoted by Pk(!) and the set

of functional routes which use the edge fi; jg 2 E(!) is denoted by Qij(!). Finally, we

let P(!) =
S

k2K(!) Pk(!) denote the set of all functional routes given the state of the

world !. The existing capacity on an edge fi; jg 2 E is denoted by Cij. Additional

capacity on the edge may be installed in multiples of a �xed batch size. In particular,

a facility providing a capacity of � may be installed at a unit cost of cij. By rescaling

demand and existing capacity, we may assume that � = 1. The bicriteria stochastic

programming model may now be formulated as

min z1 =
X

fi;jg2E

cijxij

min z2 = P
�
! 2 
 : �(x; !) > 0

�
s.t. x 2 Z

jEj
+ :

(2)

Here xij denotes the number of facilities to be installed on edge fi; jg 2 E. The �rst

objective z1 is the total cost of the capacity expansion while the second objective z2 is

the probability of capacity requirements to be violated. Hence, as the function �(�; !),

we can use any function which is less or equal to zero if suÆcient capacity is installed and

strictly greater than zero otherwise. One possibility is to use the following de�nition,

�(x; !) := min
X

k2K(!)

tk

s.t.
X

p2Pk(!)

fp + tk = �k(!)Dk(!); k 2 K(!);

X
p2Qij(!)

fp � Cij + xij; fi; jg 2 E(!);

fp � 0; p 2 P(!);

(3)

where fp denotes the amount of capacity allocated to route p 2 P(!), and �k(!) is the

fraction of capacity requirements between node-pairs k 2 K(!) that should be available

in state ! 2 
.

Remark 1. Modeling the actual process of real-time call-by-call routing within a long-

term planning model such as problem (2)-(3) is obviously not viable. As brie
y pointed
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out in Section 1, the demand inputs for this problem is a set of capacity requirements

for each point-to-point pair, needed to maintain a prescribed Grade-of-Service (GoS).

(See e.g. Dempster, Medova and Thompson [5] and Medova [9] who consider ATM-based

broadband integrated services digital networks (B-ISDN) and determine the capacity

requirements for each point-to-point pair as the e�ective bandwidth requirements needed

to ensure that a set of blocking probabilities are not exceeded.) In Sen, Doverspike

and Cosares [17] the approximation of real-time routing by a static model similar to

problem (3) was validated using simulation, and the results are encouraging.

Remark 2. The assumption that routing of demand is restricted to a set of prespeci�ed

routes is a common one, employed also by e.g. Sen, Doverspike and Cosares [17], Demp-

ster, Medova and Thompson [5], and Medova [9]. The assumption may be justi�ed by

the fact that most static real-time routing algorithms implemented in switch software

choose routes from a limited set, allowing us to simply enumerate the routes of interest.

Remark 3. As pointed out in Section 1, problem (2) �ts in the general framework of two-

stage stochastic programs with recourse. The �rst stage includes decisions on capacity

expansion x which must be taken before the future state of the world is known. Once

uncertainty is revealed, the second-stage decision, consisting of allocation of capacity to

routes f , is settled. One might argue that a three-stage formulation of the problem would

more accurately capture the actual alternating process of decisions and observations of

random outcomes. In the �rst stage, as before, the decision on capacity expansion is

taken. In the second stage, an actual outcome of random demand is observed and the

capacity is allocated accordingly to routes. Finally, in the third stage, a failure possibly

occurs and capacity may be reallocated among routes. Clearly, however, the second-stage

decisions in such a formulation is of no importance for the capacity planning model, and

hence the second and third stages may be joined to obtain the two-stage formulation (2).

See also Riis, Skriver and Lodahl [15] for a related discussion.

Remark 4. Ignoring the �rst objective z1, problem (2) turns into a special case of the so-

called minimum risk problem considered by Riis and Schultz [14]. In this paper structural

properties of the problem are investigated and, in particular, the authors establish lower

semicontinuity of the objective z2 with respect to x. Using this fact, problem (2) is

obviously well-de�ned. Riis and Schultz also elaborated an algorithm for the minimum

risk problem, and the seminal idea of their approach is a corner stone in the solution

procedure for problem (2) presented in Section 3.
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3 Solution Procedure

For practical purposes we need to make the following assumption.

(A1) The distribution P of ! is discrete and has �nite support, say 
 = f!1; : : : ; !Sg

with corresponding probabilities P
�
f!1g

�
= �1; : : : ; P

�
f!Sg

�
= �S.

From now on we shall refer to a possible future state of the world !s 2 
 as a scenario,

and for notational convenience we let Ds
k = Dk(!

s) for all k 2 K(!s) and de�ne V s, Es,

Ks, Ps, Ps
k , Q

s
ij, and �

s
k accordingly for k 2 K(!s) and fi; jg 2 E(!s).

Employing Assumption (A1), problem (2)-(3) may be restated as

min z1 =
X

fi;jg2E

cijxij

min z2 =
SX

s=1

�s (x; !s)

s.t. x 2 Z
jEj
+ ;

(4)

where  : Z
jEj
+ � 
 7! IB is an indicator function de�ned by

 (x; !) :=

(
1 if �(x; !) > 0;

0 otherwise:
(5)

3.1 Finding all Non-Dominated Solutions

To determine all non-dominated solutions of problem (4), we observe that the second

objective z2 can only take on a �nite number of values, say p1; : : : ; pn in any solution to

the problem. Hence to obtain all non-dominated solutions to the bicriteria problem, we

may simply solve the following problem for all possible values p,

min z1 =
X

fi;jg2E

cijxij

s.t. z2 =
SX

s=1

�s (x; !s) � p;

x 2 Z
jEj
+ :

(6)

We shall refer to problem (6) as the p-restricted problem.

Remark 5. Note that problem (6) is feasible for all values of p since z2 can be made arbi-

trarily small (equal to zero) by installing suÆcient capacity. Hence an optimal solution

can always be found in Step 2 of Algorithm 1.
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Algorithm 1

Step 1 (Initialization) Let 0 = p1 < � � � < pn be the possible values of
P

s2J �
s,

J � f1; : : : ; Sg to be considered. Set L = ; and i = 1.

Step 2 (Solve problem) Solve the p-restricted problem (6) with p = pi and let

(xi; zi1; z
i
2) be an optimal solution vector.

Step 3 (Update list) If zi1 < zi�11 then set L = L [
�
(xi; zi1; z

i
2)
	
.

Step 4 (Termination) If i = n then stop. Otherwise set i = i+1 and go to Step 2.

Remark 6. In general the number n may be very large (n � 2S). For practical purposes,

however, it will often be suÆcient to consider a modest number of possible values for p in

Algorithm 1. This happens for two reasons. First of all the network operator is most likely

to accept only very small values of p and hence all values pi exceeding some maximum

acceptable level may be discarded beforehand. Secondly, the number of possible values

is reduced if any of the scenario probabilities are equal. In particular, if the distribution

P is uniform on 
, i.e. �1 = � � � = �S, we have n � S +1. Uniform scenario probabilities

are often used in practical studies for example when scenarios are generated by sampling.

Proposition 1. At termination of Algorithm 1, the set
�
(z1; z2) j (x; z1; z2) 2 L

	
is the

set of non-dominated criterion vectors.

Proof. First note that z11 � � � � � zn1 since p1 < � � � < pn. Now, assume that in some

iteration i of the algorithm we have zi1 < zi�11 but (zi1; z
i
2) is a dominated criterion vector,

i.e. there exists a solution (x; z1; z2) to problem (4) such that z1 � zi1 and z2 � zi2 with at

least one inequality being strict. Now, we must have z2 < zi2, since z1 < zi1 contradicts

optimality of (xi; zi1; z
i
2) in problem (6) with p = pi. This means that z2 = pj for some

j < i. But this contradicts optimality of (xj; zj1; z
j
2) in problem (6) with p = pj since

zj1 � zi�11 > zi1 = z1 by assumption. Hence we see that only solutions for which the

criterion vector is non-dominated are put into the list L.

To see that the set
�
(z1; z2) j (x; z1; z2) 2 L

	
contains all non-dominated criterion

vectors, we assume that, in some iteration i of the algorithm, the solution (xi; zi1; z
i
2) is

not put into the list L, i.e. we have zi1 = zi�11 . If zi2 > zi�12 the criterion vector (zi1; z
i
2) is

dominated by (zi�11 ; zi�12 ). Assume on the contrary that zi2 � zi�12 . Then we have zi2 = pj

for some j < i. Now, we obviously have that zj2 � zi2, and since (xi; zi1; z
i
2) is a feasible

solution for problem (6) with p = pj we must also have z
j
1 � zi1. Thus the criterion vector

(zi1; z
i
2) is either equal to or dominated by (zj1; z

j
2) and hence the solution (xi; zi1; z

i
2) can

be excluded from the list L with no loss of non-dominated solutions. The result follows,

since all possible values of z2 are considered during the course of the algorithm.
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Remark 7. Clearly, several eÆcient solutions may correspond to the same non-dominated

criterion vector. Hence if one should want the set
�
x j (x; z1; z2) 2 L

	
to contain all

eÆcient solution vectors, it is necessary, in Step 2 of Algorithm 1, to determine all

optimal solution vectors to problem (6) in each iteration i where zi1 < zi�11 .

3.2 Solving the p-Restricted Problems

The question remains how to eÆciently solve problem (6) in Step 2 of Algorithm 1. The

approach we suggest here is based on the seminal idea presented by Riis and Schultz [14].

The idea is for each scenario ! 2 
 to replace the indicator function  (�; !) by a binary

variable and a number of cutting planes derived through linear programming duality. In

particular, for any feasible solution x, the binary variable �s representing  (x; !s) should

be equal to one if and only if �(x; !s) > 0, where we recall that

�(x; !s) := min
X
k2Ks

tk

s.t.
X
p2Ps

k

fp + tk = �skD
s
k; k 2 Ks;

X
p2Qs

ij

fp � Cij + xij; fi; jg 2 Es;

fp � 0; p 2 Ps:

(7)

Consider now the dual of problem (7). Letting M > 0 be some upper bound on the

optimal value of this problem and denoting by Ds the set of extreme points of the feasible

region, it is easily seen that problem (6) is equivalent to the following problem,

min z1 =
X

fi;jg2E

cijxij

s.t. z2 =
SX

s=1

�s�s � p;

X
k2Ks

�skD
s
kuk �

X
fi;jg2Es

(Cij + xij)vij �M�s; (u; v) 2 Ds; s = 1; : : : ; S;

x 2 Z
jEj
+ ; � 2 IBjSj:

Remark 8. We note that problem (7) is always feasible and bounded and hence the

same things go for its dual. Thus an optimal solution to the problems always exists and

their optimal values are equal. Moreover, an upper bound on the optimal value of the

problems, obtained letting fp = 0 for p 2 Ps and s = 1; : : : ; S, is

M := max
s2f1;:::;Sg

X
k2Ks

�skD
s
k:
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Remark 9. The cutting planes described above may be seen as generalizations of the

metric inequalities originally introduced by Iri [7] and Onaga and Kakusho [11]. These

inequalities have been employed as valid inequalities in cutting plane procedures for the

capacitated network design problem in a stochastic setting by Riis and Andersen [13]

and in a deterministic setting by e.g. Bienstock et al. [1].

The algorithm progresses by sequentially solving a master problem and adding vio-

lated cutting planes generated through the solution of subproblems (7). Hence for some

subsets Es � Ds of the dual extreme points, we de�ne the master problem as the following

relaxation in which only some of the cutting planes are included,

min z =
X

fi;jg2E

cijxij

s.t.
SX

s=1

�s�s � p;

X
k2Ks

�skD
s
kuk �

X
fi;jg2Es

(Cij + xij)vij �M�s; (u; v) 2 Es; s = 1; : : : ; S;

x 2 Z
jEj
+ ; � 2 IBjSj:

(8)

Algorithm 2

Step 1 (Initialization) Set � = 0 and let Es � Ds for s = 1; : : : ; S be subsets of

dual extreme points for which the corresponding cutting plane is included in

the initial master problem.

Step 2 (Solve master problem) Solve the current master problem (8) and let

(x�; ��) be an optimal solution vector with optimal value z� .

Step 3 (Solve subproblems) Solve the second-stage problem (7) corresponding to

all scenarios for which �s� = 0. Consider the following situations:

1. If �(x�; !
s) = 0 for all of these scenarios, then the current solution x� is

optimal for problem (6) with (z1; z2) = (z�;
PS

s=1 �
s�s�).

2. If �(x� ; !
s) > 0 for some of the scenarios, say for s 2 S � f1; : : : ; Sg,

then a dual extreme point (us; vs) 2 Ds with positive objective value is

identi�ed for each s 2 S and the corresponding violated optimality cuts

are added to the master. Set Es = Es [
�
(us; vs)

	
for s 2 S and let

� = � + 1; go to Step 2.

Remark 10. Recall that Algorithm 1 involved the solution of problem (6) for a sequence

of increasing values of p. The cutting planes generated while solving the �rst of these
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problems remain valid when p is changed. Hence in Step 1 of Algorithm 2, we may

let the sets Es, s = 1; : : : ; S consist of the dual extreme points generated in previous

runs of Algorithm 2 (or some subset thereof). This strategy of retaining cutting planes

from previous runs resulted in remarkable time savings in the overall solution time for

problem (4).

Remark 11. MirHassani et al. [10] considered a capacity expansion problem arising in

supply chain network planning and solved the problem by a Benders decomposition

approach, similar in many ways to the solution procedure described above. The authors

observed that solutions to the master problem, in particular in early iterations, performed

very poorly, since the master problem tends to minimize the amount of capacity installed,

whereas \good" solutions in the second stage require substantial amounts of capacity to

be installed. To circumvent this problem several enhancements of the master problem

were considered. One such enhancement was to include some scenario in the master

problem, thus making it more representative of the second-stage subproblems. Using

this expanded formulation, MirHassani et al. observed a considerable improvement in

overall solution time. In our setting, however, the expanded formulation performed very

poorly. This is not too surprising, since the expanded master problem in this case is

a capacitated network design problem with additional constraints, and several studies

such as e.g. Bienstock et al. [1] and Riis and Andersen [13] have shown that projecting

out the 
ow variables f is an eÆcient solution approach for such problems. Also, when

the strategy of retaining cuts from previous runs is employed, the lack of consistency

between the master problem and the second-stage subproblems is only signi�cant in

early iterations of the �rst run (p = 0) and hence does not outweigh the increased e�ort

required to solve an expanded master problem.

Proposition 2. Algorithm 2 terminates with an optimal solution in a �nite number of

iterations.

Proof. First of all note that the optimal value of the master problem in any iteration

is a lower bound on the optimal value of problem (6), since the master problem is a

relaxation. Now, suppose that in some iteration � for some scenario s 2 f1; : : : ; Sg we

have 0 = �s� <  (x� ; !
s) = 1. In that case a violated cutting plane, cutting o� the current

solution (x� ; ��), is identi�ed in Step 3 and the algorithm proceeds. Since the number of

dual extreme points is �nite, this can only happen a �nite number of times and we will

eventually have

 (x�; !
s) � �s�; s = 1; : : : ; S;
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and hence
SX

s=1

�s (x�; !
s) �

SX
s=1

�s�s� � p:

At this point the current solution x� is feasible in problem (6) and hence optimal. The

corresponding criterion vector is (z1; z2) =
�
z� ;
PS

s=1 �
s�s�
�
.

3.3 Valid Inequalities for the p-Restricted Problems

The algorithm for the p-restricted problem (6), proposed in the previous section, solves

a sequence of master problems which are all integer programming problems. Clearly,

though, one should not put too much e�ort into �nding optimal integer solutions for these

problems in early iterations, since solutions are cut o� anyway as more cutting planes

are added. Hence, rather than solving the integer master problem (8) to optimality in

each iteration, we chose to work with a relaxation of the problem and strengthen the

formulation using valid inequalities.

From now on we shall refer by the linear relaxation of the master problem (8) to

the corresponding problem in which integer requirements on the capacity variables have

been relaxed. (Hence we speak of a linear relaxation, even though the arti�cial variables

� are still restricted to binaries.) Starting from this relaxation, we add cutting planes

de�ning the indicator functions as described in the previous section. These cutting

planes, however, should not only be used to de�ne the indicator functions but also as

valid inequalities for the convex hull of feasible integer solutions. In particular, since the

feasible region of the dual of problem (7) is a rational polyhedron, we may assume that

the extreme points (u; v) 2 Ds are integral | this can be achieved by scaling. Hence

the cutting planes derived in the previous section may be strengthened by rounding.

Applying this approach, we arrive at what we shall refer to as the strengthened linear

relaxation of the master problem,

min z =
X

fi;jg2E

cijxij

s.t.
SX

s=1

�s�s � p;

X
fi;jg2Es

xijvij +M�s �
lX
k2Ks

�skD
s
kuk �

X
fi;jg2Es

Cijvij

m
; (u; v) 2 Es; s = 1; : : : ; S;

x 2 IR
jEj
+ ; � 2 IBjSj:

(9)

Clearly, solving problem (9) rather than problem (8) may not produce an integer solu-

tion at termination of Algorithm 2. Therefore, to obtain an optimal integer solution to
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problem (6), this approach should be combined with some branching procedure. This

could be done simply by explicitly reintroducing the integer requirements on capacity

variables in the master problem and proceeding with Algorithm 2. Alternatively, the

solution procedure could be incorporated in a more extensive branch-and-cut approach

similar to the one described in Riis and Andersen [13]. As the computational experi-

ments presented in Section 4 indicate, though, the integrality gap is very small when the

strengthened linear relaxation of the master problem is put to use. Hence we consider it

a viable approach to restrict attention to the strengthened linear relaxation of the master

problem and subsequently establish near-optimal integer solutions by some heuristic.

Remark 12. Once again we note that the cutting planes used in the strengthened linear

relaxation of the master problem may be seen as a generalization of the class of integral

metric inequalities which are valid inequalities for the capacitated network design prob-

lem, discussed in a stochastic setting by Riis and Andersen [13] and in a deterministic

setting by e.g. Bienstock et al. [1], Bienstock and G�unl�uk [2], and G�unl�uk [6]. In a similar

manner we may derive generalizations of other classes of valid inequalities discussed in

these papers such as e.g. partition inequalities and mixed integer rounding inequalities.

4 Computational Experiments

The solution procedure for the bicriteria problem (4) described in the previous section

was implemented in C++ using procedures from the callable library of CPLEX 6.6 to

solve the linear subproblems (7) and (mixed-) integer master problems (8) or (9). A series

of computational experiments was carried out using three di�erent problem instances.

In this section we give some brief implementational details, describe the three problem

instances and �nally we report results of some preliminary computational experiments.

4.1 Implementational Details

As brie
y discussed in Section 3.3 we chose to relax the integer requirements on capacity

variables in the master problem at the start of each run. Starting from this relaxation we

proceeded with Algorithm 2 until no more cuts could be identi�ed. If the current solution

at this point was not integral we explicitly reintroduced the integer requirements on x

in the master problem and proceeded with Algorithm 2 until no more cuts could be

identi�ed. Using this approach it turned out that in general only very few additional

iterations upon reintroduction of the integer requirements on x were necessary before an

optimal integer solution of the current p-restricted problem was achieved. Hence we did
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not �nd the e�ort of generating cuts during branching in a more extensive branch-and-cut

approach worthwhile.

Cutting planes for the master problem were generated through the solution of sub-

problems (7). To obtain the generalized integral metric inequalities described in Sec-

tion 3.3 we used a heuristic. This heuristic simply divides all coeÆcients of the cut by

the smallest positive coeÆcient. If the resulting coeÆcients are integral, a generalized

integral metric inequality is obtained by rounding up the right-hand side.

As pointed out in Section 3.2, we achieved a considerable reduction in overall solution

time by keeping cuts from previous runs in the master problem when the value of p

was updated. To control the size of the master problem, however, it was necessary to

temporarily remove \old" cuts. A cut ax + M�s � b was considered to be inactive

if the corresponding binary variable �s was equal to 0 in the current solution and the

relative slack (ax+M�s � b)=b was larger than 10%. A cut which had been inactive for

more than 10 iterations was temporarily removed from the master problem and stored

in a cut-pool. The cut-pool on the other hand was searched at regular intervals, and

any violated cuts were returned to the master problem. The de�nition of inactive cuts

and the number of iterations to keep an inactive cut in the master problem were chosen

somewhat arbitrarily, so as to keep the size of the master problem manageable, while

limiting the number of movements in and out of the cut-pool.

Even though the additional number of iterations required upon reintroduction of the

integer requirements on x in the master problem was small, the CPU time required for

these additional iterations turned out to be substantial, at least for the larger instances.

Hence, for some problems, it may not be practicable to search for an optimal integer

solution in this fashion, and the need arises for good heuristics providing upper bounds

on the optimal solution. We propose a simple heuristic based on sequential rounding.

The heuristic starts from the optimal solution �x of the strengthened linear relaxation.

The index fi; jg, for which cij(d�xije � �xij) is minimal, is identi�ed and the constraint

xij � d�xije is added to the problem. The heuristic proceeds by alternatingly solving the

problem, checking for violated cutting planes, and rounding up variables until a feasible

integer solution is obtained.

4.2 Problem Instances

The �rst problem instance is a real-life telecommunications network provided by Sonofon,

Denmark. The network is a complete network on 7 nodes and hence has 21 edges. The

remaining two problem instances are modi�ed versions of two real-life instances previously

studied in e.g. Bienstock and G�unl�uk [2], G�unl�uk [6], and Riis and Andersen [13]. In
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the original versions of these instances two di�erent types of facilities (i.e. low-capacity

and high-capacity) were available for installation. The cost exhibited a high degree of

economies to scale and hence we chose to use only the high-capacity facilities for our

experiments, in order to �t the instances into the framework of the present paper. The

�rst of these instances is a network representing the Atlanta area, containing 15 nodes

and 22 edges. The second instance is a denser network representing the New York area.

This network contains 16 nodes and 49 edges and has no existing capacity on the edges.

All three instances have fully dense traÆc matrices.

For each network we performed a series of experiments with varying number of sce-

narios. We considered only one type of failure, namely failure of a single edge. Moreover,

we randomly generated a number of outcomes of future point-to-point demands assuming

some uncertainty in the overall demand level captured in a parameter � as well as some

regional (node dependent) 
uctuations captured in parameters �i (i 2 V ). The demand

between nodes i and j under scenario s was calculated as

Ds
ij = �s�si�

s
jDij;

where Dij is the expected demand between nodes i and j and the random parameters �s

and �si (i 2 V ) are sampled from uniform distributions,

�s � U(0:9; 1:1);

�si � U(0:9; 1:1); 8 i 2 V:

For all situations with no failure, the network was required to ful�ll the capacity

requirements for each point-to-point pair no matter the level of demand. Hence for a

scenario s representing a situation with no failure, the binary variable was excluded from

the cutting planes (i.e. set to zero) and �sk = 1 for all k 2 Ks. Likewise, a scenario s

corresponding to some failure situation was considered as violating whenever the capacity

requirement was not ful�lled for some point-to-point pair, i.e. �sk = 1 for all k 2 Ks.

Assuming that the probability of failure is equal for all edges in the network (which

was the case at least for the Sonofon problem), we used uniform scenario probabilities for

the failure situations �s = 1=S for s = 1; : : : ; S, where S = jEj � d for a problem instance

with jEj edges in the network and d possible values of future point-to-point demands.

The assumption is justi�ed in situations where typical failures mainly occur at the end-

points of connections. Such failures include breakdowns of electronic equipment as well as

human errors during con�guration of switches. Since the backbone network is normally

well-protected (e.g. carried along highways, railroads or high-voltage transmission lines),

such failures are often more likely than damage to the actual connection. Situations with
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no failure were not treated as actual scenarios cf. the discussion above, and hence no

probabilities were assigned to them. Note that using these scenario probabilities, the

parameter p in problem (6) denotes the conditional probability of capacity requirements

to be violated given that a failure occurs | or in other words, the fraction of failure

situations for which the capacity requirements are violated.

4.3 Computational Results

The �rst series of experiments was conducted in order to examine the quality of the

approximations provided by the strengthened linear relaxation and the upper bounding

heuristic. The �rst run was performed on the Atlanta problem assuming that demand is

deterministic (d = 1). All values of p ranging from 0 to 1 were considered in the computa-

tions. Figure 1 shows the optimal objective values resulting from the IP-formulation, the

linear relaxation, the strengthened linear relaxation and the upper bounding heuristic,

respectively.
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Figure 1: Atlanta problem (d = 1)

For this instance the integrality gaps were substantial, ranging from 10% to 20% for

di�erent values of p. Evidently, though, we see that the strengthened linear relaxation as

well as the upper bounding heuristic performed extremely well. The integrality gap was

closed by the strengthened linear relaxation for 8 of 26 problems, and the remaining gap

was very small (< 2%) in all other cases. Moreover, the upper bound was 5.7% o� in the

worst case, and the optimal integer solution was found by the heuristic for 14 di�erent

values of p.

The second run was performed on the Sonofon problem. Once again we considered

all values of p ranging from 0 to 1 assuming that demand is deterministic. For this
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instance the integrality gaps were quite small and hence, in Figure 2, we plotted for

each value of p the optimal objective value resulting from the linear relaxation (LR), the

strengthened linear relaxation (SLR), and the upper bounding heuristic (UBH), relative

to the objective value of the optimal integer solution.
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Figure 2: Sonofon problem (d = 1)

Once again we see that the strengthened linear relaxation as well as the upper bounding

heuristic performed very well. In fact the integrality gap was closed by the strengthened

linear relaxation for 12 of 22 problems and more than halved in most other cases, and

the upper bounding heuristic found the optimal integer solution in all but four cases.

Finally, we performed one more run on the Sonofon problem, this time generating 5

possible outcomes of future demand. Considering values of p ranging from 0 to 0.25, we

obtained the results shown in Figure 3.
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Figure 3: Sonofon problem (d = 5)

We see that the integrality gaps are somewhat smaller than what was seen for the deter-

ministic problem. The integrality gap remaining from the strengthened linear relaxation
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was less than 1% for all di�erent values of p and the optimal integer solution was found

by the upper bounding heuristic for 19 of 27 problems.

The second series of experiments was conducted in order to test the practicability of

the solution procedure. For each of the three instances we solved a series of problems

with varying number of scenarios. In all cases the maximum acceptable level of p was

set to 10%. Table 1 to Table 3 give the results. We report the CPU time required

to solve the bicriteria stochastic programming problem using the IP-formulation as well

as the strengthened linear relaxation. Also, the number of p-restricted problems to be

solved during computation is reported. For illustration we also report these �gures when

only values of p less than or equal to 5% are considered. All CPU times are reported

as minutes:seconds. Computations were stopped after three hours of CPU time and in

this case the last value of p for which the p-restricted problem was being solved is given

in brackets. Note once again that situations with no failure are not counted as actual

scenarios since they do not give rise to any binary variables in the master problem,

but still subproblems have to be solved to generate cuts ensuring feasibility for these

situations.

Table 1: Sonofon problems

Number of
scenarios

Maximum
value of p

Number of
problems

CPU time

IP formulation Relaxation

21 � 1
0.05 2 0:01 0:01

0.10 3 0:01 0:01

21 � 5
0.05 6 0:11 0:04

0.10 11 1:03 0:19

21 � 10
0.05 11 2:35 0:58

0.10 22 92:36 25:03

Table 2: Atlanta problems

Number of
scenarios

Maximum
value of p

Number of
problems

CPU time

IP formulation Relaxation

22 � 1
0.05 2 0:07 0:06

0.10 3 0:10 0:09

22 � 5
0.05 6 0:53 0:41

0.10 12 5:25 1:52

22 � 10
0.05 12 25:33 5:44

0.10 23 180:00 (0:077) 107:55
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Table 3: New York problems

Number of
scenarios

Maximum
value of p

Number of
problems

CPU time

IP formulation Relaxation

49 � 1
0.05 3 135:37 6:02

0.10 5 180:00 (0:061) 12:25

49 � 5
0.05 13 180:00 (0:000) 180:00 (0:037)

0.10 25 � q � � q �

49 � 10
0.05 25 180:00 (0:000) 180:00 (0:010)

0.10 50 � q � � q �

As expected we see that computation time increases drastically with the number of

scenarios as well as the size of the network. The increase in CPU time, when a larger

number of possible outcomes of future demand is generated, is partly explained by the

fact that a larger number of second-stage multicommodity 
ow problems have to be

solved in each iteration. More important, however, was the increased e�ort required to

solve the master problems as the number of binary variables increase. When a network

containing a larger number of edges is considered, not only the number of scenarios

(and hence the number of second-stage problems and the number of binary variables

in the master problem) increases, but also the number of �rst-stage variables. Hence

the problem complexity is heavily dependent on the number of edges in the network, as

illustrated by the di�erence in CPU time for the New York problem compared to the two

smaller instances. Finally, we observed that the p-restricted problems were increasingly

diÆcult to solve, as the value of p was increased. Hence for the New York network the

algorithm was only practicable for the case of deterministic demand, unless only very

small values of p were considered.

5 Conclusions

The capacity expansion model considered in this paper incorporates uncertainty con-

cerning future demand as well as potential future failures of network components. The

problem was formulated as a bicriteria stochastic program in which the total cost as

well as the probability of capacity requirements to be violated are minimized. We have

proposed a simple reduced feasible region method (Algorithm 1) which was shown to

determine all non-dominated solutions of the problem (Proposition 1) by solving a �nite

number of so-called p-restricted problems. The p-restricted problems determine the min-

imum cost such that at most a fraction of p of failure situations result in violations of
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the capacity requirements. To solve the p-restricted problems we elaborated a cutting-

plane procedure (Algorithm 2), and it was shown that the algorithm terminates in a

�nite number of iterations (Proposition 2). The solution procedure has been succesfully

implemented and our preliminary computational experiments indicate that the method

is certainly practicable, at least for moderate size networks or when only small values of

p are allowed.
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