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1. Introduction

Assume an insurance company models its surplus via a Markov process (X1
t ). For

the premium calculation the company uses the expected value principle with safety

loading � > 0, which means that E[X1
1 ] is � times the expected out
ow in a unit

interval. The risk left to the �rst-line insurer often is too large. Thus reinsurance is

needed, see also [13]. Usually, reinsurance is also needed by legal restrictions.

Assume the company has the possibility of proportional reinsurance. The rein-

surer also uses the expected value principle with safety loading �. We have to assume

that � � �. Otherwise, the insurer could reinsure the whole portfolio and make a

riskless pro�t, because the reinsurance premiumwould be smaller than the premium

income for the portfolio.

The company has now to choose the proportion b of the portfolio they are willing

to take over. We will here consider two types of risk models: a classical Cram�er-
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Lundberg model and a di�usion approximation to the surplus process. The Cram�er-

Lundberg model is used in the literature as an approximation to reality if the number

of individual contracts is large. Many characteristics of the risk process cannot be

calculated in closed form. One therefore often uses a di�usion approximation to the

risk model which, hopefully, help to take almost optimal decisions. For the theory

of di�usion approximations see for instance [10], [6], [7], [14] or [12].

Waters [15] considered a general model where (Xk � Xk�1 : k 2 IIN) was iid

distributed. The most important special case is the Cram�er-Lundberg model. The

idea was to minimize the ruin probability, i.e. the probability that the surplus ever

becomes negative. As an approximation to an optimal reinsurance treaty the ad-

justment coe�cient was maximized. That is, it was assumed that there is a b such

that there are constants R(b), C and C such that

Ce�R(b)x �  b(x) � Ce�R(b)x

and b was chosen such that R(b) was maximized. This gives in some sense the

asymptotically optimal strategy with respect to the ruin probability. In order that

the problem has a non-trivial solution the assumption � > � had to be made.

H�jgaard and Taksar [9] considered a di�usion approximation and maximized

the \expected future surplus" in the sense that

E
hZ �

0

Xse
��s ds

i

for some discounting factor � > 0. Here, � is the time of ruin. In their model they

assumed � = � and at each time t the proportion bt could be chosen.

In this paper we will also allow a proportion bt that continuously can be changed.

It will turn out to be of feedback form bt = b(Xb
t�) where (X

b
t ) is the surplus process

corresponding to the strategy b = (bt). Our aim is to minimize the ruin probability.

The problem has a trivial solution bt = 0 in the case � = � because then ruin can
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never occur. We restrict bt to be smaller than one. A proportional reinsurance with

bt > 1 would not be realistic. We will �rst consider the di�usion case (Section 2)

and then the Cram�er-Lundberg case (Section 3).

For the rest of this paper we work on a complete probability space (
;F ; P ) on
which the process (Xt) is de�ned. The information at time t is given by the complete

�ltration generated by (Xt). A reinsurance strategy is a previsible process (bt) with

values in [0; 1]. The time of ruin is

� = �b = infft � 0 : Xb
t < 0g :

Here, (Xb
t ) is the surplus under reinsurance strategy (bt). The survival probability

is

�b(x) = P [�b =1 j Xb
0 = x] :

Our aim is to �nd the optimal value

�(x) = sup
(bt)

�b(x)

and, hopefully, an optimal strategy (b�t ) such that �(x) = �b�(x).

At the moment we do not know whether an optimal strategy exists. It could

happen that for any strategy (bt) there exists a strategy ~bt such that �~b(x) > �b(x).

But we know that it is possible to �nd a strategy which is near to be optimal. More

speci�cally, for each " > 0 we can �nd a strategy (bt) such that �(x) � �b(x) < ".

Assuming that �(x) is a \nice" function we will �nd the Hamilton-Jacoby-Bellman

equation. This equation which will be the starting point for solving the problem.

Finding a candidate f(x) for �(x) and a candidate (bt) for (b�t ) we will then be able

to verify that in fact f(x) = �b(x) = �(x).

The survival probability without reinsurance is then �1(x), giving �(x) � �1(x).

Moreover, we have that �(x) is strictly increasing, so �0(x) > 0 provided the deriva-

tive exists. Indeed, if x1 > x0 and (bt) is a strategy for x0 we can apply the strategy
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for initial capital x1 until � (x0). In the di�usion case X�(x0)(x1) = x1 � x0. If we

let bt = 1 for t > � (x0) there is a positive probability for survival. In the Cram�er-

Lundberg case there is a positive probability that X�(x0)(x1) � 0. This yields also a

positive probability for survival for initial capital x1 but ruin for initial capital x0.

Thus �(x0) < �(x1).

2. The di�usion case

Consider a Cram�er-Lundberg model with claim arrival intensity � and expected

claim size �. The premium income in (0; t] is then (1+�)��t. A reinsurance contract

with proportion b will cost (1+�)�b�t. This gives a net premium (b(1+�)�(���))��
in a unit interval. in a unit time interval the expected value of the aggregate claims

is b�� and its variance is b2��2. Here �2 is the second moment of the claim size

distribution. The di�usion approximation considered in [6] is therefore

(b� � (� � �))��t + b
p
��2Wt

where (Wt) is a standard Brownian motion. For simplicity we divide by �� and

consider a model of the form

Xb
t = x+

Z t

0

(bs� � (� � �)) ds + �

Z t

0

bs dWs : (1)

For an introduction to stochastic integrals and stochastic analysis see for instance

[5] or [11].

As ruin time we can consider here �b = infft � 0 : Xb
t = 0g which coincides

almost surely with the ruin time de�ned above. Note that �(0) = 0. Consider the

following strategy

bt =

(
b; if 0 � t � h ^ � ,
~bt�h(Xh); if t > h and � > h.
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Here b is an arbitrary constant and ~bt(x) is strategy such that �~b(x) > �(x)�" where
" is arbitrary but �xed. Then by the Markov property

�(x) � �b(x) = E[�~b(Xh); � > h] = E[�~b(Xh^� )] � E[�(Xh^�)]� "

and because " is arbitrary

�(x) � E[�(Xh^�)] :

Let us now assume that �(x) is twice continuously di�erentiable. By Itô's formula

(see [5] or [11]),

�(Xh^� ) = �(x)+

Z h^�

0

f(b�� (���))�0(Xs)+
�2b2

2
�00(Xs)g ds+

Z h^�

0

b��0(Xs) dWs :

If the stochastic integral is a martingale we obtain the equation

0 � E
hZ h^�

0

f(b� � (� � �))�0(Xs) +
�2b2

2
�00(Xs)g ds

i
:

Dividing the latter equation by h and letting h ! 0 we obtain, provided limit and

expectation can be interchanged,

(b� � (� � �))�0(x) +
�2b2

2
�00(x) � 0 :

This equation must hold for all b 2 [0; 1]. On the other side, for h small and b

\optimal" �b(x) should be close to �(x), so intuitively equality should be derived.

This yields the Hamilton-Jacoby-Bellman equation

sup
b2[0;1]

(b� � (� � �))�0(x) +
�2b2

2
�00(x) = 0 : (2)

If b�(x) is the value at which the maximum above is attained we can conjecture that

(b�(Xb�

s )) is an optimal strategy.

Equation (2) admits the following solution.
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Lemma 1. The function

f(x) = 1� e��x (3)

solves (2) where

� =

8<
:

�2

2�2(���)
; if � < � < 2�,

2�
�2
; if � � 2�.

The value b�(x) that maximizes the left hand side of (2) is constant and

b� = 2(1 � �=�) ^ 1 : (4)

Proof. Of course, one can directly verify that f(x) solves (2). But in order to

illustrate the method we will solve (2) analytically. The equation is quadratic in

b. If f 00(x) > 0 then the minimum is attained at ��=�2. The maximum in [0; 1] is

therefore attained at b = 1. This yields the solution f 0(x) = C1e
�2�x=�2 > 0 and

therefore f 00(x) < 0 which is a contradiction. f 00(x) = 0 implies that b = 1 and

therefore f 0(x) = 0. But our solution should satisfy f 0(x) > 0. Thus f 00(x) < 0 and

the supremum is attained at

b = � �f 0(x)

�2f 00(x)
:

If b is larger than one then b�(x) = 1 and the solution to (2) is f 0(x) = C1e
�2�x=�2 > 0.

If b 2 (0; 1) we obtain

� �2f 0(x)2

2�2f 00(x)
� (� � �)f 0(x) :

Because the solution we are looking for satis�es f 0(x) > 0 we can divide by f 0(x) and

obtain f 0(x) = C2e
��2x=(2�2(���)). Note that �2=(2�2(� � �)) � 2�=�2 and equality

holds if and only if � = 2�. In the latter case we �nd b = 1, so the two solutions

coincide. Assume there is a point x0 where the solution f(x) changes from one

of the solutions f1(x) to another of the solutions f2(x). Because we want f(x) to

be twice continuously di�erentiable we get the two equation f 01(x0) = f 02(x0) and

f 001 (x0) = f 002 (x0). These two equations can never be ful�lled simultaneously, except

if � = 2�, thus the desired solution is one of the functions obtained above. From
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f(0) = 0 and limx!1 f(x) = 1 the possible solutions are (3) with one of the two

possible values of � given above. The maximum in (2) is attained for b = �=(�2�)

which is smaller than one if and only if � < 2�. This proves the lemma. 2

We have now found a candidate f(x) for �(x) and a candidate b�(Xt�) for the

optimal control. We now have to verify that f(x) is indeed the right solution. Note

that �b�(x) = f(x).

Theorem 1. We have �(x) = f(x) where f(x) is given by (3) and b� given by (4)

is an optimal reinsurance strategy.

Proof. Because f(x) = �b�(x) it remains to show that f(x) � �(x). Let (bt) be an

arbitrary reinsurance strategy. It follows readily that either � < 1 or X�^t ! 1.

Then by Itô's formula

f(X�^t) = f(x) +

Z �^t

0

(bs� � (� � �))f 0(Xs) +
b2s�

2

2
f 00(Xs) ds+

Z �^t

0

bs�f
0(Xs) dWs

� f(x) +

Z �^t

0

bs�f
0(Xs) dWs

because f(x) solves (2). Because f 0(x) is bounded by � the stochastic integral is a

martingale. Taking expectations yields

E[f(X�^t)] � f(x) :

Letting t!1 the left hand side converges to �b(x). Thus �(x) � f(x). 2

3. The Cram�er-Lundberg case

Let us now turn to a Cram�er-Lundberg model. Here the number of claims Nt in

(0; t] is a Poisson process with rate � and the claim sizes (Yi) is a sequence of positive

iid random variables independent of (Nt). Let G(x) = P [Yi � x], E[Yi] = � and
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assume that G(x) is continuous. Let (Ti) be the occurrence time of the i-th claim.

Then

Xt = x+

Z t

0

(bs(1 + �)� (� � �))��ds �
NtX
i=1

bTiYi

is the surplus process under reinsurance policy (bt). Note that in order that �b(x) < 1

we need a strictly positive premium income, which shows that we can restrict to

strategies with bt 2 (b; 1] where b = (� � �)=(1 + �).

Let us �rst �nd the corresponding Hamilton-Jacoby-Bellman equation. Consider

the following strategy

bt =

(
b; if 0 � t � h ^ T1,
~bt�h^T1(Xh^T1); if t > h ^ T1 and T1 ^ h < � .

Here h > 0 and ~bt(x) is a strategy such that �~b(x) > �(x)� " for some arbitrary but

�xed " > 0. Let cb = (b(1 + �)� (�� �))��. By the law of total probability we �nd

�(x) � �b(x) = e��h�b(x+ cbh) +

Z h

0

Z (x+cbt)=b

0

�b(x+ cbt� by) dG(y)�e��t dt

� e��h�(x+ cbh) +

Z h

0

Z (x+cbt)=b

0

�(x+ cbt� by) dG(y)�e��t dt� " :

Because " was arbitrary we can let " = 0. Rearranging the terms and dividing by h

yields
�(x+ cbh)� �(x)

h
e��h � 1� e��h

h
�(x)

+
1

h

Z h

0

Z (x+cbt)=b

0

�(x+ cbt� by) dG(y)�e��t dt � 0 :

Assume that �(x) is di�erentiable. Letting h! 0 yields

(b(1 + �)� (� � �))���0(x) + �

Z x

0

�(x� by) dG(y)� ��(x) � 0 :

This must hold for every b. For h small and b optimal the corresponding survival

probability is almost optimal, thus equality in the above calculations should be

obtained. This yields the Hamilton-Jacobi-Bellman equation

sup
b2(b;1]

(b(1 + �)� (� � �))��0(x) +

Z x=b

0

�(x� by) dG(y)� �(x) = 0 : (5)
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To solve the above equation seems hard. Trying to �nd the b(x) that maximizes the

left hand side of (5) yields an integral equation for �(x). We therefore try another

approach, similar to the approach in [8].

Assume that b(x) maximizes the left hand side of (5). BecauseZ x=b

0

�(x� by) dG(y) <

Z x=b

0

�(x) dG(y) = �(x)G(x=b)

and �0(x) > 0 it follows that b(x)(1 + �)� (� � �) > 0. Solving for �0(x) we �nd

�0(x) =
�(x)� R x=b(x)

0
�(x� b(x)y) dG(y)

(b(x)(1 + �)� (� � �))�
:

Observing that �b(x) = 1�R1
x
�0b(y) dy we would maximize �b(x) if we could minimize

�0b(y) for all y simultaneously. One therefore conjectures that �(x) satis�es

�0(x) = inf
b2(b;1]

�(x)� R x=b0 �(x� by) dG(y)

(b(1 + �)� (� � �))�
: (6)

The latter equation determines solutions only up to a multiplicative constant. Let

us therefore look for a solution f(x) with f(0) = �1(0) = �=(1 + �), where �1(x) is

the survival probability for the strategy bt = 1. The candidate for our solution will

then be f(x)=f(1).

Lemma 2. There exists a unique solution f(x) to (6) with f(0) = f0 for each

f0 > 0. Moreover, f 0(x) > 0, f 0(x) is continuous and f(1) <1.

Proof. We can assume that f0 = �1(0) = �=(1 + �). Note that

f(x)�
Z x=b

0

f(x� yb) dG(y) = f0(1�G(x=b)) +

Z x

0

(1 �G((x � z)=b))f 0(z) dz :

This means, for x small enough we must have f 0(x) > 0. But then it follows from

(6) that f 0(x) > 0 for all x > 0.

De�ne the operator V on the space of di�erentiable functions via

(Vf)0(x) = inf
b2(b;1]

f(x)� R x=b0 f(x� by) dG(y)

(b(1 + �)� (� � �))�
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and Vf(0) = f0. The solution we are looking for ful�ls Vf = f . Because

f0(1�G(x=b)) +
R x

0
(1�G((x� z)=b))f 0(z) dz

(b(1 + �)� (� � �))�

is both continuous in x and b it follows that (Vf)0(x) is continuous and that the

optimal b(x) is bounded away from b on bounded intervals. We therefore can restrict

to functions f with f 0(x) positive and continuous.

Let f1(x) and f2(x) be two functions and let bi(x) be the point where the in�mum

is taken. Then

(Vf1(x)� Vf2(x))0 =
f0(1�G(x=b1)) +

R x
0
(1 �G((x � z)=b1))f

0
1(z) dz

(b1(1 + �)� (� � �))�

� f0(1�G(x=b2)) +
R x
0
(1 �G((x � z)=b2))f 02(z) dz

(b2(1 + �)� (� � �))�

� f0(1�G(x=b2)) +
R x
0
(1 �G((x � z)=b2))f 01(z) dz

(b2(1 + �)� (� � �))�

� f0(1�G(x=b2)) +
R x
0 (1 �G((x � z)=b2))f 02(z) dz

(b2(1 + �)� (� � �))�

=

R x
0
(1 �G((x � z)=b2))(f 01(z)� f 02(z)) dz

(b2(1 + �)� (� � �))�

�
R x
0
jf 01(z)� f 02(z)j dz

(b2(1 + �)� (� � �))�
:

Interchanging the functions gives

j(Vf1(x)� Vf2(x))0j �
R x
0 jf 01(z)� f 02(z)j dz

((b2 ^ b1)(1 + �)� (� � �))�
: (7)

Assume now fi(x) = Vfi(x). Fix x0 � 0 and let x1 = inff((b2(x) ^ b1(x))(1 + �) �
(� � �))� : 0 � x � x0g. Then for x < x1 we must have f 01(x) � f 02(x) = 0. This

gives for x � x1

jf 01(x)� f 02(x)j �
R x

x1
jf 01(z)� f 02(z)j dz

((b2 ^ b1)(1 + �)� (� � �))�

and f 01(x) = f 02(x) for x < 2x1 follows. Proceeding in the same way shows f 01(x) =

f 02(x) for all x � x0. Thus f1(x) = f2(x) on [0; x0]. Because x0 was arbitrary any

solution must be unique.
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Let f0(x) = �1(x) and de�ne fn(x) = Vfn�1(x). Because

f 00(x) =
f0(x)�

R x
0
f(x� y) dG(y)

(1 + �)�

it follows that f 01(x) � f 00(x). The considerations above show that

f 0n+1(x)� f 0n(x) �
R x
0 (f

0
n(z)� f 0n�1(z)) dz

(bn(1 + �)� (� � �))�
� 0

and by induction f 0n(x) is a decreasing sequence. Because f 0n(x) > 0 we have that

f 0n(x) converges to a function f(x). It follows that Vf(x) = f(x). Because f0(x) � 1

for all x we have f(x) � 1 for all x. 2

We now have to verify that f(x)=f(1) indeed coincides with �(x).

Theorem 2. The function �(x) is determined by �(x) = f(x)=f(1) where f(x)

is the unique solution to (6). The strategy (b�(Xt�)) is optimal, where b�(x) is a

argument that minimizes the right hand side of (6).

Proof. Let (bt) be an arbitrary strategy. Then the process

f(Xt^� )��
Z t^�

0

h
(bs(1+�)�(���))�f 0(Xs)+

Z Xs=bs

0

f(Xs�bsy) dG(y)�f(Xs)
i
ds

is a martingale, see for instance [2] or [1]. This gives

f(x) = E[f(Xt^�)]� �E
h Z t^�

0

(bs(1 + �)� (� � �))�

�
�
f 0(Xs)�

f(Xs)�
R Xs=bs
0

f(Xs � bsy) dG(y)

(bs(1 + �)� (� � �))�

�
ds
i

� E[f(Xt^�)]

because f(x) ful�ls equation (6). Note that f(x) � E[f(Xt^�)] also holds if bs(1 +

�) � (� � �) = 0 for some s. Letting t ! 1 gives f(x) � f(1)P [� = 1] or

f(x)=f(1) � �(x) because the strategy was arbitrary. Redoing the calculation with

the strategy (b�(Xt)) yields f(x) = E[f(Xt^�)] and letting t ! 1 gives f(x) =

f(1)P [� =1]. Thus f(x)=f(1) � �(x) which ends the proof. 2
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For x small the optimal strategy b�(x) will just be b�(x) = 1. This follows readily

for x = 0. For x small we have that

Z x=b

0

�(x� by) dG(y) =

Z x

0

(1�G((x� z)=b))�0(z) dz

will only vary slowly with b 2 (b; 1]. Therefore the minimumin (6) will be determined

by the maximum of the denominator in (6), i.e. at b = 1.

4. Two examples

In this section we consider two numerical examples. This is in order to illustrate

how the optimal strategies and the survival function �(x) can be calculated on a

computer. The two examples come from the two main classes of claim size distribu-

tions: exponentially decreasing tail and subexponential distributions. From these

examples it can be seen that fn(x) = Vfn�1(x) converges very quickly. The quantity
of interest, bn(x), the values of b where the minimum in the operator Vfn�1(x) is
attained, will converge much slower. For x large, the function �(x) only increases

slowly, which means that the value to be minimized will not vary strongly with b

near the optimal point. This makes it harder to �nd the optimal value. However,

for large initial capital a choice of b(x) near the optimal value will lead to an almost

optimal strategy. This will be good enough for practical applications.

In the examples below we choose distributions such that � = 1. The other

parameters are � = 1, � = 0:5 and � = 0:7.

4.1. Exponentially distributed claim sizes

Let G(x) = 1� e�x. Then �1(x) = 1� e��x=(1+�)=(1 + �) = 1� 2e�x=3=3. This is an

ideal choice for f0(x), see the proof of Lemma 2. In many cases the function �1(x) is

not known explicitly. As an alternative to calculating �rst �1(x) one can start with
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Figure 1: The �rst 31 approximations to �(x) for Exp(1) distributed claim sizes

an approximation to �1(x), as for example the Cram�er-Lundberg approximation, see

[11]. As the derivation of (7) suggests, the operator V ultimately behaves like a

contraction. Thus fn(x) also converges for arbitrary f0(x).

Figure 1 gives the �rst 31 approximations to �(x). The lowest curve is f0(x) =

�1(x). We see that convergence �(x) takes place very fast. The normalization of the

functions ~fn(x) in Figure 1 is done in such a way that ~fn(x) = fn(x)=fn(20). Note

that 1�f0(20) = 8:5 �10�4, so the error made by the normalization is negligible. For

determining �(x) a lower number of iterations had been enough. However, b�20(x)

determined after 20 iterations would not coincide for x near 14 with b�(x).

Figure 2 gives b�30(x), the value of b based on f30(x). The graph suggests that

the optimal strategy b�(x) is of the form b(x) = 1Ix<m + b01Ix�m. The function �b(x)

can be calculated for such a strategy and will be of the form A�Be�Rx, where the
parameters A;B;R will be di�erent for x < m and x � m. But it is not trivial

to check, whether �b(x) solves (6). Because this section is meant to illustrate the

numerical evaluation of b�(x) we do not consider here the question whether the
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Figure 2: The optimal strategy for Exp(1) distributed claim sizes

conjecture �(x) = �b(x) is true or not.

Using the approach of Waters [15], the optimal choice of b in the sense that the

adjustment coe�cient R(b) is maximized is

bR = max
n�

1� �

�

��
1 +

1p
1 + �

�
; 1
o

in the case of exponentially distributed claims. For our parameters this yields bR =

0:5048. Because maximizing the adjustment coe�cient yields the asymptotically

best strategy, we expect b�(x) to tend to bR. Figure 2 seems to verify this conjecture.

In practice, this means that for x \large", we choose the strategy b(x) = bR, and it

is therefore not necessary to calculate b�(x) for \large" x.

4.2. Pareto distributed claim sizes

For G(x) = 1 � (1 + x)�2 no explicit expression for �1(x) is available. Of course,

�1(x) could be calculated to any accuracy one likes, see for instance [3]. But this is
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Figure 3: The �rst 13 approximations to �(x) for Par(2) distributed claim sizes

not necessary. From [4] it is known that

lim
x!1

1 � �1(x)R1
x
(1 �G(y)) dy

=
1

��
: (8)

We therefore choose the initial function

f0(x) = 1� 1

��

Z 1

x

(1�G(y)) dy :

Figure 3 shows the �rst 13 approximations to �(x). 12 iterations were chosen because

after 15, 20, 30 or 40 iterations Figures 3 and 4 will look the same. The lowest curve

here is f0(x). We see that it is not even a problem that f0(x) is negative for small

x. For the calculation we have chosen fn(0) = �=(1 + �). As for the exponentially

distributed claim sizes, the functions ~fn(x) in Figure 3 are normalized such that

~fn(x) = fn(x)=fn(20). Here 1 � f0(20) = 0:095. This accuracy is good enough

because we mainly are interested in the optimal strategy b�(x).

The optimal strategy b�(x) given in Figure 4 looks di�erently to the strategy

in the case of exponentially distributed claims. Note that fn(x) and bn(x) converge

much faster than in the exponential case. This is do to the fact, that the convergence

15
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Figure 4: The optimal strategy for Par(2) distributed claim sizes

to zero of 1 � �(x) is behaving as x�1 and not as e�Rx as in the exponential case.

Thus f 0n(x) is larger, and di�erences between di�erent values of b on the right hand

side of (6) will be larger. Thus bn(x) will be expected to converge faster to b�(x).

It should be noted that the irregularity of the graph at the right end is do to the

discretization used.

It is an open question whether b�(x) converges to some value as x!1. Let us

consider the following heuristic argument. For x large and b �xed we have, using

the approximation (8),

1� �b(x) � 1

b� � (� � �)

b

1 + x=b
=

1

(� � (� � �)=b)(1 + x=b)
:

Thus the ruin probability is minimized if (�� (���)=b)(1+x=b) is maximized. This

gives

b =
1(� � �)x

�x� � � �
:

Letting x! 1 this indicates that the asymptotic value of b�(x) as x! 1 should

be ba = 2(� � �)=� ^ 1. Note that this is the value (4) obtained from the di�usion

approximation. In our example we obtain ba = 4=7 � 0:5714. Suppose that b�(x)

16



really converges to ba. As indicated by Figure 4 at x = 14 the value b�(14) is far

away from ba and would only converge slowly to ba. Thus the calculations would

have to be done also for large initial capital. This, of course yields some numerical

problems. In principle, however, with modern computers such a calculation could

be done.
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