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Introduction

Let G be a reductive algebraic group over an algebraically closed �eld K of
prime characteristic p > 0. This paper deals with certain representations of the Lie
algebra g of G. For the purpose of this introduction assume that G is semi-simple
and simply connected, that the root system R of G is irreducible, and that p is
larger than the Coxeter number h of R. (If R is of type E8 or F4, assume that
p > h+ 1; this restriction should be unnecessary, but my proofs require it.)

Each simple g{module has a p{character; that is a linear form � on g such
that all xp � x[p] � �(x)p1 with x 2 g annihilate the module. Here xp is the p{th
power of x in the universal enveloping algebra U(g) and x 7! x[p] is the p{th power
map on the Lie p{algebra g. A general result due to Kac and Weisfeiler reduces
the problem of describing all simple modules basically to the case where the p{
character � is nilpotent; this means that � vanishes on some Borel subalgebra
of g. Due to work by Curtis, Friedlander, Parshall, and Panov one then has a
classi�cation of the simple modules in case � has a certain special form (\standard
Levi form"). For � not of this form so far no classi�cation of the corresponding
simple modules has been known.

We look in this paper at the case where � is subregular nilpotent. Here \sub-
regular" means that the orbit of � under the coadjoint action of G has dimension
2(N �1) where 2N = jRj. A subregular nilpotent � has standard Levi form if and
only if R has type An or Bn. In those two cases I have given a detailed description
of the corresponding simple modules in [10]. For the other types the results in this
paper are new. In order to describe them I �rst need some notation.

Let T be a maximal torus in G, let X be the character group of T and h the
Lie algebra of T . Choose a basis � for the root system R � X. Set � equal to half
the sum of the positive roots, and let �0 denote the unique short root that is a
dominant weight. (If all roots have the same length, then all roots are short, and

none is long.) Set e� = � [ f��0g.
Consider the algebra U(g)G of G{invariants in U(g). Each � 2 X de�nes a

\central character" cen� : U(g)G ! K such that U(g)G acts via cen� on a highest
weight module with highest weight �. Fix a subregular nilpotent �. Denote for
each � 2 X the category of all �nite dimensional g{modulesM that are annihilated
by all xp � x[p] � �(x)p1 with x 2 g and such that U(g)G acts via cen� on all
composition factors of M .

Assume �rst that all roots in R have the same length. (This is the case where
our results are most complete.) Let � 2 X such that 0 < h� + �; �_i < p for all
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positive roots �. (We denote by �_ the coroot corresponding to �.) Then there

are up to isomorphism je�j simple modules in C�. We can denote them by L�� with

� 2 e� such that

dimL�� =

�
h� + �; �_ipN�1; if � 2 �,
(p � h�+ �; �_0 i)p

N�1; if � = ��0.
(1)

De�ne integers m� for all � 2 e� by m��0 = 1 and �_0 =
P

�2�m��
_. Let Q�

�

denote the projective cover of L�� in C�. Then

[Q�
� : L��] = jW jm�m� for all �; � 2 e�. (2)

Here W is the Weyl group of R and we write [M : L] for the multiplicity of a
simple module L as a composition factor of a module M .

If � vanishes on the \standard" Borel subalgebra (corresponding to the posi-
tive roots), then one can de�ne \baby Verma modules" Z�(�). One gets then

[Z�(�) : L
�
�] = m� for all � 2 e�. (3)

The extension group (in C�) of two non-isomorphic simple modules is given by

Ext1(L��; L
�
�) '

�
K; if (�; �) < 0,
0; if (�; �) = 0,

(4)

unless R is of type A1 where one has to replace K by K2. I do not know how big
the Ext group is in case � = �; it will be non-zero in most cases.

The result on the number of simple modules in C� as well as the formula in
(2) for the Cartan matrix con�rm conjectures by Lusztig.

If we consider more generally � 2 X such that 0 � h� + �; �_i < p for all
positive roots �, then the results in (1), (2), and (3) extend if we drop all L�� with
h� + �; �_i = 0 and if we replace jW j in (2) by jW ��j. (We use here the `dot
action' where w�� = w(�+ �)� �.) In types An and Dn we get thus a description
of all possible C� (that depends only onW ��+pX), while there remain some open
problems in type En.

Consider next R of type Bn, Cn, or F4. Choose again a weight � 2 X such
that 0 < h� + �; �_i < p for all positive roots �. In this case there is one simple

module L�� corresponding to each short root � 2 e�, and one expects that there

are two simple module L��;1 and L
�
�;2 corresponding to each long root � 2 e�. This

expectation is known to hold in type Bn; in types Cn and F4 I cannot exclude
that we get only one simple module corresponding to a given long simple root.

The formulas in (1){(4) extend to the present situation as long as all roots
occurring are short. The dimension formula (1) holds also for the simple modules
corresponding to long roots. If our expectation holds, then one gets L��;2 from

L��;1 by twisting with the adjoint action of a suitable element in the centraliser of
� in G. In (2){(4) one has to make then minor changes in case long roots occur.
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For example, if � is long, then one should divide the right hand side in (3) by 2.
If �, � are long with (�; �) < 0, then one can choose the numbering of the simple
modules such that

Ext1(L��;i; L
�
�;j) '

�
K; if i = j,
0; otherwise.

There are again similar results for all � 2 X such that 0 � h�+ �; �_i < p for
all positive roots �. In types Bn and Cn these � su�ce to understand all possible
C�.

In type G2 our results are much weaker.

Let me brie
y describe the main steps in the proof of the results. We �rst
construct a chain of submodules in a baby Vermamodule. Using the Kac-Weisfeiler
conjecture (Premet's theorem) one can show that this is a composition series. (In
the case of two root lengths the argument is actually slightly more complicated.)
We then show that all composition factors can be described as induced modules
from minimal parabolic subalgebras of g. (These results are contained in Section
D and build on earlier work on translation functors and submodules of baby Verma
modules in Sections B and C.)

The main problem then is to decide when two factors in our composition
series are isomorphic to each other. In order to show that two modules are not

isomorphic to each other, we apply suitable translation functors and show that the
modules behave di�erently under them. In order to show that two modules are
isomorphic to each other, we use a deformation argument to construct a non-zero
homomorphism. This is done in Section F after some preparations in Sections A
and E. This is followed by an investigation of the action of the centraliser in G of
� on the simple modules.

The results on the Cartan matrix and the Ext groups are contained in Sections
G and H. Here we use \translation through the walls" as a main technique.

Much of this work was done while I was visiting the SPIC Mathematical
Institute (now: Chennai Mathematical Institute) and the Tata Institute of Fun-
damental Research. I would like to thank all those who made those stays possible
and enjoyable, in particular C. S. Seshadri and K. N. Raghavan, V. B. Mehta and
A. J. Parameswaran. I also would like to thank Jim Humphreys for several useful
suggestions.
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A

A.1. Let K be an algebraically closed �eld of characteristic p > 0. Let G be a
reductive algebraic group over K and denote by g the Lie algebra of G. This is
a restricted Lie algebra as the Lie algebra of an algebraic group; we denote the
p{th-power map by x 7! x[p].

Let T be a maximal torus in G and set h = Lie(T ). Let X = X(T ) the
(additive) group of all characters of T and let R � X be the root system of G.
For each � 2 R let g� denote the corresponding root subspace of g. We choose a
system R+ of positive roots. Set n+ equal to the sum of all g� with � > 0 and n�

equal to the sum of all g� with � < 0. We have then the triangular decomposition
g = n+�h�n� of g. Set b+ = h�n+. All of these Lie subalgebras (h, n+, n�, b+)
of g are Lie algebras of closed subgroups of G and hence restricted subalgebras of
g.

For each � 2 R let �_ denote the corresponding coroot. Denote then by s�;n
(for all n 2 Z) the (a�ne) re
ection given by s�;n(�) = �� (h�;�_i � n)� for all
� 2 X. Write W for the Weyl group (generated by all s� = s�;0), and write Wp

for the a�ne Weyl group generated by all s�;mp with m 2 Z and � 2 R. ThenWp

contains all translations by p� with � 2 R, and Wp is generated by W and these
translations.

Each � 2 X de�nes by taking the derivative a linear form d� on h. The map
� 7! d� yields an embedding of X=pX into h�. If �1, �2; : : : ; �s is a basis of X over
Z, then the d�i are a basis of h� over K. There exists for each � 2 R an element
h� 2 h such that d� (h�) is the reduction modulo p of h�;�_i for each � 2 X. We
choose for each root � a basis vector x� for g� such that always [x�; x��] = h�.

We have x
[p]
� = 0 and h

[p]
� = h� for all � 2 R.

Let � 2 X 
Z Q be a weight with h�; �_i = 1 for all simple roots �. We
shall use the `dot action' of W or Wp on X given by w�� = w(� + �) � �. (It is
independent of the speci�c choice of �.)

We denote the universal enveloping algebra of g by U(g). For each � 2
g� set U�(g) equal to the factor algebra of U(g) by the ideal generated by all
xp�x[p]��(x)p with x 2 g. We use analogous notations for restricted subalgebras
of g.

A.2. Each f 2 h� de�nes a one dimensional h{module Kf [with each h 2 h

acting as multiplication by f(h)]. There exists �(f) 2 h� such that Kf is a
U�(f)(h){module, i.e., with �(f)(h)p = f(h)p � f(h[p]) for all h 2 h. So we have in
particular

�(f)(h�)
p = f(h�)

p � f(h�) for all � 2 R (1)

and

f(h�) 2 Fp () �(f)(h�) = 0: (2)

Any f1; f2 2 h� satisfy obviously

�(f1 + f2) = �(f1) + �(f2): (3)



5

We have clearly �(�) = 0 for all � 2 X, hence

�(f + �) = �(f) for all f 2 h�, � 2 X. (4)

Here (as usual) we write � instead of d� by abuse of notation.
For each � 2 g� set

�� = f f 2 h� j �jh = �(f) g: (5)

Given f 2 h� we can regard Kf as a b+{module with n+ acting trivially. This is
then a U�(b+){module for all � 2 g� satisfying �(n+) = 0 and f 2 ��. For all
these � we get then an induced U�(g){module (a \baby Verma module")

Z�(f) = U�(g) 
U�(b+) Kf : (6)

Denote its \standard generator" 1 
 1 by vf . As before we usually write Z�(�)
instead of Z�(d�) for � 2 X; we should keep in mind that Z�(�) depends only on
d�, hence on the coset �+ pX.

If f 0 2 h� satis�es f 0(h�) = 0 for all � 2 R, then we can extend Kf 0 to a
g{module with all x� acting as 0. This is then a U�(f 0)(g){module where we extend
�(f 0) to a linear form on g such that �(f 0)(n+ + n�) = 0. A trivial form of the
tensor identity yields then

Z�(f) 
Kf 0 ' Z�+�(f 0)(f + f 0) (7)

for all f 2 h� and � 2 g� with f 2 �� and �(n+) = 0.

A.3. Fix a simple root � for the rest of Section A. Denote by p� = b++ g�� the
corresponding parabolic subalgebra. For all f 2 h� and � 2 g� with �(n+) = 0
and f 2 �� consider the induced U�(p�){module

Z�;�(f) = U�(p�) 
U�(b+) Kf : (1)

Denote the \standard generator" 1 
 1 now by v0f . It satis�es x�v0f = 0 for all

� 2 R+ and hv0f = f(h)v0f for all h 2 h; the xi��v
0
f with 0 � i < p are a basis of

Z�;�(f). We have

x�(x
i
��v

0
f ) = i(f(h�) + 1� i)xi�1�� v

0
f for 0 < i < p

and x�(xi��v
0
f ) = 0 for all � 2 R+ with � 6= �.

Suppose now that
f(h�) 2 Fp: (2)

Let d be the integer with 0 < d � p and f(h�) + 1 = d 1 in Fp. Then xd��v0
is annihilated by all x� with � > 0. It follows that we have a homomorphism of
U�(p�){modules

'f : Z�;�(f � d�) �! Z�;�(f) (3)



6

given by '(v0f�d�) = xd��v
0
f . [Note that Z�;�(f �d�) makes sense because �(f) =

�(f � d�) by A.2(4).]
If �(x��) 6= 0, then 'f is an isomorphism since xp�� acts as the scalar �(x��)p

on these modules. If �(x��) = 0, then the image of 'f is spanned over K by all
xi��v

0
f with d � i < p. In this case the cokernel of 'f [the factor module of

Z�;�(f) by that image] has dimension d; let us denote it by L�;�(f). Note that
L�;�(f) = Z�;�(f) in case d = p. If d < p, then the image of 'f is clearly
isomorphic to L�;�(f � d�).

If f 0 2 h� satis�es f 0(h�) = 0, then we can extend Kf 0 from a b+{module to
a p�{module such that x�� acts as 0. This is then a U�(f 0)(p�){module where we
extend �(f 0) to a linear form on p� such that �(f 0)(n+ + g��) = 0. We get then
[as in A.2(7)] �rst Z�;�(f) 
Kf 0 ' Z�+�(f 0);�(f + f 0) and then

L�;�(f) 
Kf 0 ' L�+�(f 0);�(f + f 0) (4)

whenever L�;�(f) is de�ned.

A.4. Let again f 2 h� and � 2 g� with �(n+) = 0 and f 2 ��. We have by
transitivity of induction an isomorphism of U�(g){modules

Z�(f)
�
�! U�(g) 
U�(p�) Z�;�(f) (1)

that maps vf to 1 
 v0f . If f(h�) 2 Fp, then we get from A.3 an induced homo-
morphism of U�(g){modules

'f� : Z�(f � d�) �! Z�(f) (2)

where d is the integer with 0 < d � p and f(h�) + 1 = d 1 in Fp.
If �(x��) 6= 0, then 'f� is again an isomorphism. If �(x��) = 0, then we

denote the cokernel of 'f� by Z�(f; �). So we have then an exact sequence

Z�(f � d�)
'f��! Z�(f) �! Z�(f; �)! 0: (3)

Since induction is exact in our situation, we can identify Z�(f; �) with the module
induced from the cokernel of 'f :

Z�(f; �) ' U�(g) 
U�(p�) L�;�(f): (4)

We have dimZ�(f; �) = dpN�1 where N = jR+j. If d = p, then Z�(f; �) = Z�(f).
If d < p, then the image of 'f� is isomorphic to Z�(f � d�;�).

We shall use the notation vf also for the image in Z�(f; �) of the standard
generator of Z�(f).

If f 0 2 h� satis�es f 0(h�) = 0 for all � 2 R, then we get (as at the end of A.2)
a U�(f 0)(g){module Kf 0 where we extend �(f 0) to a linear form on g such that
�(f 0)(n+ + n�) = 0. One checks easily that A.2(7) induces an isomorphism

Z�(f; �) 
Kf 0 ' Z�+�(f 0)(f + f 0; �) (5)

whenever Z�(f; �) is de�ned.
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A.5. Let R0 be a root subsystem of R. Then g0 = h�
L

�2R0 g� the Lie algebra
of a reductive closed subgroup of G. We can then apply A.2 also to g0 working
with b+ \ g0 instead of b+. We shall write then

Z�(f ; g
0) = U�(g

0) 
U�(b+\g0) Kf (1)

for the analogue of Z�(f). In case � 2 R0 we can also extend A.3/4 and get

Z�(f; �; g
0) = U�(g

0)
U�(p�\g0) L�;�(f) (2)

as an analogue of Z�(f; �). We do not introduce extra notations for the analogues
of Z�;�(f) and L�;�(f) because the analogous U�(p� \ g0){modules are just the
restrictions of the corresponding U�(p�){modules.

A.6. In some cases we shall have to consider for a given f 2 h� at the same time
all � such that Z�(f; �) is de�ned. In that situation it will be convenient to work
with a slightly modi�ed notation.

Set
X = f f 2 h� j f(h�) 2 Fp g: (1)

This is a union of p a�ne subspaces of h� of codimension 1 unless h� = 0 (in which
case X = h�). Set

� = f� 2 g� j �(p�) = 0 g: (2)

Extend each �(f) to g such that �(f)(n++n�) = 0. Then Z�(f)+�(f; �) is de�ned
for all f 2 X and � 2 �. We write

Z(f; �; �) = Z�(f)+�(f; �): (3)

Note that then also all Z(f + �; �; �) with � 2 X are de�ned because f + � 2 X.

A.7. Proposition: Let �1; �2 2 X. For each integer m the set

f(f; �) 2 X� � j dim Homg(Z(f + �1; �; �); Z(f + �2; �; �)) � m g (1)

is closed in X� �.

Proof : The point is to show that the Hom space in (1) can be described as a space
of solutions to a system of linear equations where the matrix of the system has
size independent of (f; �) and entries that are polynomial functions of f and �. If
we have, say, l unknowns, then the Hom space has dimension � m if and only if
the rank of the matrix is � l�m if and only if all (l�m+1)� (l�m+1) minors
of the matrix are 0. This condition clearly de�nes a closed subset of X� �.

In order to show that we are in a situation as described above, let me introduce
some notation. Let R be the set of all R+{tuples of non-negative integers. To
each r = (r(�))� 2 R we associate elements

x�r =
Y
�>0

x
r(�)
�� and x+r =

Y
�>0

x
r(�)
�



8

in U(g) where these products are to be carried out in some �xed order. That order

is arbitrary except that x
r(�)
�� should occur in x�r as the factor most to the right.

Choose a basis h1, h2; : : : ; hn of h. Let S be the set of all n{tuples of non-
negative integers. Associate to each t = (t(i))i 2 S the element

ht =
nY
i=1

h
t(i)
i

in U(h) � U(g). So the

x�r htx
+
s with r; s 2 R, t 2 S

are a PBW basis of U(g).
Let d1 and d2 be the integers with 0 < di � p and (f + �i)(h�) + 1 = di1 in

Fp. Set Ri equal to the set of all r 2 R with r(�) < di and r(�) < p for all other
positive roots. Then the x�r vf+�i with r 2 Ri are a basis of Z(f + �i; �; �).

Claim: Let a 2 g. There exist cisr(a; f; �) 2 K[X� �] such that

ax�r vf+�i =
X
s2Ri

cisr(a; f; �)x
�
s vf+�i (2)

for all r 2 Ri.

Well, to start with there are cs;t;s0;r(a) 2 K (independent of f and �, almost
all equal to 0) such that

ax�r =
X
s2R

X
t2S

X
s02R

cs;t;s0;r(a)x
�
s htx

+
s0

in U(g). It follows that

ax�r vf+�i =
X
s2R

X
t2S

cs;t;0;r(a)(f + �i)(ht)x
�
s vf+�i : (3)

Here 0 denotes the R+{tuple with all components equal to 0. Given s 2 R there
exist unique s0; s00 2 R with s(�) = s0(�)+ ps00(�) and 0 � s0(�) < p for all �. We
denote then s0 by sred. Then we have

x�s vf+�i = bs(�)x
�
sred

vf+�i with bs(�) =
Y

s00(�)>0

�(x��)
ps00(�):

If sred(�) � di, then x
�
sred

vf+�i = 0. So it is enough to consider in (3) only s with
sred 2 Ri. We get now a formula as in (2) with

cisr(a; f; �) =
X

s02R;s=s0
red

X
t2S

bs0(�)cs0;t;0;r(a)(f + �i)(ht):
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This sum is a regular function on X� �, since each bs0 (�) is polynomial in � and
each

(f + �i)(ht) =
nY
i=1

(f + �i)(hi)
t(i)

is polynomial in f .

This �nishes the proof of the claim. We now return to the proof of the
proposition. The space of all linear maps from Z(f + �1; �; �) to Z(f + �2; �; �)
has basis Esr with r 2 R1, s 2 R2 such that for all r0 2 R1

Esr(x
�
r0vf+�1) =

�
x�s vf+�2 ; if r0 = r;
0; otherwise.

Given a 2 g we can now use (2) to evaluate each

(a �Esr)(x
�
r0vf+�1) = a (Esr(x

�
r0vf+�1)) �Esr(ax

�
r0vf+�1 )

and get

a �Esr =
X
t2R2

c2t;s(a; f; �)Etr �
X
u2R1

c1r;u(a; f; �)Esu:

So we have a formula of the form

a �Esr =
X
r02R1

X
s02R2

bs0;r0;s;r(a; f; �)Es0r0

where the bs0;r0;s;r(a; f; �) are regular functions of (f; �) 2 X� �.

Now Homg(Z(f + �1; �; �); Z(f + �2; �; �)) identi�es with the space of all
(R2 �R1){tuples (xsr)r;s of elements in K with a �

P
r;s xsrEsr = 0 for all a 2 g.

It actually su�ces to take for a all elements in a basis (or a generating system) of
g. This shows that we indeed get the Hom space as a solution space of a linear
system of equations as described at the beginning of the proof. The proposition
follows.
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B

Keep the assumptions and notations from Section A. We shall have to make in
this section (and in most sections to come) two restrictive assumptions on g: We
assume that

(B1) The derived subgroup DG of G is simply connected

and

(B2) The group X=ZR has no p{torsion.

These assumptions are needed to introduce translation functors with \nice" prop-
erties, see B.1 and B.3 below. If G is semi-simple our assumptions mean that X is
equal to the weight lattice of R and that p does not divide the index of connection,
i.e., the index of the root lattice ZR in the weight lattice. If you want to compare
with the assumptions in [11], 6.3: Our (B1) is called (H1) there, our (B2) follows
from (H1) and (H3) there, see [11], 11.2.

B.1. Fix � 2 g� with �(b+) = 0. The set �� from A.2(5) consists then of all d�
with � 2 X. A simple U�(g)-module is therefore the homomorphic image of some
Z�(�) with � 2 X, cf. [10], 1.4 or [11], 6.7.

The subalgebra U(g)G (cf. [11], 9.1) of the centre of U(g) acts on each Z�(�)
via a character. Let C� denote the category of all �nite dimensional U�(g){modules
M such that U(g)G acts on each composition factor of M via the same central
character as on Z�(�).

Our assumption (B1) implies that

C� = C� () � 2W ��+ pX; (1)

cf. [11], 9.4. The simple modules in C� are the simple homomorphic images of
the Z�(w��) with w 2 W . Since all these Z�(w��) de�ne the same class in the
Grothendieck group (cf. [10], 1.5) we get also that the simple modules in C� are
the composition factors of Z�(�).

The category C of all �nite dimensional U�(g){modules is the direct sum of
all C� with � running over representatives for the orbits on X of the semi-direct
product of W and pX [acting via (w; p�) � � = w�� + p�]. Each (closed) alcove
with respect to Wp contains a representative of each orbit, cf. [11], 11.19 or [12],
4.1. In general, it will contain more than one representative.

If M is in C, let pr�(M) denote the largest submodule of M that belongs to
C�. ThenM is the direct sum of pr�(M) and other pr�(M). We get thus an exact
functor pr� : C ! C�.

B.2. Given �; � in a �xed (closed) alcove C with respect to Wp, we de�ne a
translation functor T�� : C� ! C� (as usual) by

T�� (V ) = pr�(E 
 V ) (1)
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where E is the simple G{module with highest weight in W (� � �). (This makes
sense: see the argument in [12], 4.7 where there is a more restrictive assumption
on �, which however does not a�ect the argument here.) We have clearly T�� =

Tw��+p�w��+p� for all w 2 W and � 2 X. Note that we get (in general) more than one
functor C� ! C� for �xed � and �: if � and �0 are two distinct weights in C with

�0 2 W ��+ pX, then T�� and T�
0

� will be two (in general:) distinct functors from
C� to C� = C�0 .

We have as usual that each T�� is exact and that T�� and T�� are adjoint to

each other: The natural isomorphism Homg(E 
M;N)
�
�! Homg(M;E� 
 N)

induces an isomorphism

Homg(T
�

� (M);N)
�
�! Homg(M;T�� (N)); (2)

cf. [12], 4.7.

B.3. For the next result we have to use the assumption (B2) made at the begin-
ning of this section.

Proposition: Let �; � 2 X and w 2 Wp. Suppose that there exists a closed

alcove with respect to Wp containing � and �. Then T��Z�(w��) has a �ltration

with factors Z�(ww1��) with w1 2 Wp, w1�� = �. There is one factor for each

weight of the form ww1��.

Proof : ConsiderE as in the de�nition of T�� . The tensor identity (see [12], 1.12(1))
implies that E 
 Z�(w��) has a �ltration with factors Z�(w�� + �) with � run-
ning over the weights of E (counted with multiplicities). Then T��Z�(w��) has
a �ltration with factors Z�(w�� + �) where � runs over all weights of E with
w��+p� 2W ��+pX. Suppose that � has this property; so there are w1 2W and
�1 2 X with w��+ � = w1��+ p�1. We have w�� 2 �+ZR and � 2 (�� �) +ZR
and w1�� 2 � + ZR, hence p�1 2 ZR. In other words, we have p(�1 + ZR) = 0
in X=ZR. Assumption (B2) yields now �1 2 ZR, hence w1�� + p�1 2 Wp��.
So T��Z�(w��) has a �ltration with factors Z�(w�� + �) where � runs over those
weights of E with w�� + p� 2 Wp�� + pX. Now the claim follows from standard
results, cf. [9], II.7.13.

B.4. Note that Proposition B.3 implies in particular: If � is in the closure of the
facet of � with respect to Wp, then we have

T��Z�(w��) ' Z�(w��) (1)

for all w 2 Wp.

Lemma: If � is in the closure of the facet of � with respect to Wp, then we have

T��L 6= 0 for all simple modules L in C�.

Proof : There exists w 2 W with Homg(Z�(w��); L) 6= 0. Now (1) and the
adjointness property B.2(2) imply that

Homg(Z�(w��); T��L) ' Homg(Z�(w��); L) 6= 0;

hence the claim.

Remark : The claim extends of course to all non-zero modules in C�.



12

B.5. Proposition: Suppose that � and � belong to the same facet with respect

to Wp. Then T��L is simple for each simple module L in C�. The functor T��
induces a bijection from the isomorphism classes of simple modules in C� to the

isomorphism classes of simple modules in C�; the inverse is induced by T�� .

Proof : Consider a composition series

Z�(�) =Mr �Mr�1 � � � � �M1 �M0 = 0

of Z�(�). The exactness of T
�

� and B.4(1) yield a chain of submodules

Z�(�) ' T�
�
Mr � T�

�
Mr�1 � � � � � T�

�
M1 � T�

�
M0 = 0:

Each T��Mi=T
�

�Mi�1 ' T�� (Mi=Mi�1) is non-zero by Lemma B.4. It follows that
the length of Z�(�) is greater than or equal to the length of Z�(�). By symme-
try we get also the reversed inequality. Therefore both modules have the same
length. This implies that all T�� (Mi=Mi+1) are simple, hence the �rst claim of the
proposition.

We get by symmetry: If L0 is simple in C�, then also T��L
0 is simple. It follows

that T�� T
�

�L is simple for all L simple in C�. We have by adjointness

Homg(T
�
� T

�

�L;L) ' Homg(T
�

�L; T
�

�L) 6= 0;

hence T�� T
�

�L ' L (both modules being simple). We get by symmetry: T�� T
�
�L

0 '
L0 for all L0 simple in C�. The second claim follows.

B.6. Let I be a subset of the set of simple roots. Let PI be the corresponding
parabolic subgroup of G and pI its Lie algebra. So pI is the direct sum of b+ and
the g� with � < 0 and � 2 RI = R \ZI. Let GI � T be the standard Levi factor
of PI and gI its Lie algebra, gI = h�

L
�2RI

g�.
For each � 2 X set

Z�;I(�) = U�(pI) 
U�(b+) K�: (1)

Note that this generalises the case jIj = 1 considered in A.3(1) except for that we
consider here more restrictive �.

We have [as in A.4(1)] by transitivity of induction an isomorphism of U�(g){
modules

Z�(�)
�
�! U�(g) 
U�(pI) Z�;I(�): (2)

If we write v�;I for the standard generator 1
 1 of Z�;I(�), then the isomorphism
in (2) takes v� to 1
 v�;I . The nilradical nI of pI (the sum of the g� with � > 0
and � =2 RI) annihilates each Z�;I(�). Considered as a module over gI ' pI=n

I ,
each Z�;I(�) identi�es with the corresponding baby Verma module for U�(gI).

The Weyl group WI of RI identi�es with the subgroup of W generated by
the s� with � 2 I; similarly for the corresponding a�ne Weyl group WI;p. The
group GI again satis�es (B1) and (B2); for (B2) note that ZRI = ZI is a direct
summand of ZR. We de�ne categories C(I)� of �nite dimensional U�(gI ){modules
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analogous to the C�: A �nite dimensional U�(gI){module M belongs to C(I)� if
and only if all its composition factors are composition factors of some Z�;I(w��)
with w 2 WI.

We can extend each U�(gI){module M to a U�(pI ){module letting nI act
trivially. We get then an induced U�(g){module that we shall denote by indIM :

indIM = U�(g) 
U�(pI)M: (3)

We have by (2) and the remarks following it

indI Z�;I(�) ' Z�(�): (4)

Clearly indI is an exact functor.

Lemma: Let � 2 X. If M is in C(I)�, then indI(M) is in C�.

Proof : This is clear for M = Z�;I(w��) with w 2 WI by (4). It then follows (by
the exactness of indI) �rst for all simple modules in C(I)� and then for all M in
C(I)�.

B.7. Keep the notations and assumptions from B.6. The category of all �-
nite dimensional U�(gI ){modules is the direct sum of all C(I)� with � running
over suitable representatives. We denote the corresponding projection functors by
pr(I)�.

If � and � are weights in the same (closed) alcove with respect to WI;p then
we can de�ne a translation functor T (I)�� working with the simple GI{module E0

with highest weight in WI(� � �).
If � and � are weights in the same (closed) alcove with respect to Wp then �

and � belong also to the same (closed) alcove with respect to WI;p. So both T��
and T (I)�� are de�ned and we want to compare them. Choose w1, w2; : : : ; wr 2Wp

with wi�� = � such that each w�� with w 2 StabWp
� is conjugate to exactly one

wi�� under the stabiliser of � in WI;p.

Proposition: There exists for each V in C(I)� a �ltration of T�� (indI V ) with

factors isomorphic to indI(T (I)
wi��

� V ), 1 � i � r.

Proof : [Note that we do not claim that the factors in the �ltration occur in the
same order as the indices.]

Let E be the simple G{module with highest weight in W (�� �). The tensor
identity yields an isomorphism

E 
 indI V = E 
 (U� 
U�(g)(pI) V )
�
�! U�(g) 
U�(pI) (E 
 V )

that takes any e 
 (1 
 v) with e 2 E and v 2 V to 1 
 (e 
 v). We get thus a
functorial isomorphism

T�� (indI V )
�
�! pr� U�(g) 
U�(pI) (E 
 V ): (1)

Consider a composition series of E as a PI{module. The unipotent radical of
PI acts trivially on the factors (hence so does its Lie algebra nI) and these factors
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are simple GI{modules. It follows that T�� (indI V ) has a �ltration with factors
pr� indI(L
 V ) with L running over the factors in a composition series of E as a
PI{module. Each L 
 V is the direct sum of all pr(I)�0(L 
 V ) with �0 running
over representatives for the orbits of WI on X=pX. So T�� (indI V ) has a �ltration
with factors

pr� indI pr(I)�0 (L
 V ) (2)

with L and �0 as above.
Since � � � is a weight of E with multiplicity 1, so is each wi�� � � =

wi�� � wi�� 2 W (� � �). Therefore our composition series of E as a PI{module
contains exactly one factor, say Ei, such that wi�� � � is a weight of Ei. Now
wi���� is an extremal weight of the GI{module Ei since it is an extremal weight
of the G{module E. (The last statement means for all � 2 R that either no
wi��� �+ n� with n > 0 is a weight of E or that no wi��� �� n� with n > 0 is
a weight of E or both.) Therefore wi�� � � is conjugate to the highest weight of
Ei under WI and we can take Ei as the simple module E0 used in the de�nition
of T (I)wi��

� . This means that

T (I)wi��

� (V ) ' pr(I)wi��(Ei 
 V ):

So indI(T (I)
wi��

� V ) is one of the factors as in (2). [Note that indI(T (I)
wi��

� V )
= pr� indI (T (I)

wi��

� V ) by Lemma B.6.]

Let us check next that distinct i lead here to distinct factors. Otherwise
we have i 6= j with (Ei;pr(I)wi��) = (Ej ;pr(I)wj��). This implies wi�� � � 2
WI(wj�� � �) and wi�� 2 WI�(wj��) + pX. The �rst property yields wi�� 2
wj��+ ZI; since both X=ZR and ZR=ZI have no p{torsion, the second property
implies that wi�� 2 WI�(wj��) + pZI = WI;p�(wj��). So � = wi�� � � is a
weight of the simple GI{module with extremal weight wj��� � such that �+ � 2
WI�(wj��). Now [9], II.7.7 implies that there exists w 2 WI;p with w�� = � and
w�(wj��) = �+ � = wi��. This is a contradiction to the choice of the wi.

We have so far shown that all indI(T (I)
wi��

� V ) occur in the �ltration of
T�� (indI V ) with factors as in (2). It remains to be shown that all remaining
factors as in (2) are 0. Using the exactness of pr�, of all pr(I)�0 , and of the
induction one reduces �rst to the case where V is simple and then to the case
where V = Z�;I(w��) for some w 2 WI . That all other factors as in (2) are 0 in
this case will follow if we can show that

dim T�� (indI V ) =
rX
i=1

dim indI(T (I)
wi��

� V )

for V = Z�;I(w��). In this case indI V ' Z�(w��); so T�� (indI V ) has by B.3
a �ltration with factors Z�(w0

��) with w0
�� running over wStabWp

(�)��. Simi-
larly, each T (I)wi��

� V has a �ltration with factors Z�;I(w0wi��) with w0wi�� run-
ning over wStabWI;p

(�)wi��. Then indI(T (I)
wi��

� V ) has a �ltration with factors
Z�(w0wi��) and w0 as before. Now the claim follows because StabWp

(�)�� is the
disjoint union of the StabWI;p

(�)wi��.
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Remark : The following situation is particularly easy: Suppose that � is contained
in the closure of the facet of � with respect to Wp. Then there is only one factor
in the �ltration (since w�� = � for all w in the stabiliser of �). So we get in this
case an isomorphism

T�� (indI V )
�
�! indI(T (I)

�

� V ): (3)

This map is functorial: We have for each morphism ' : V ! V 0 in C(I)� a
commutative diagram

T�� (indI V )
�
�! indI(T (I)

�

� V )

T
�

�
(indI ')

??y ??yindI(T (I)��('))
T�� (indI V

0)
�
�! indI(T (I)

�

� V
0)

where the horizontal maps are isomorphisms as in (3). This follows from the
functoriality of the isomorphism in (1) and the fact that idE 
' induces morphisms
pr(I)�0 (L
 V )! pr(I)�0 (L 
 V 0) for all L and �0 as in (2).

B.8. We want to apply B.6/7 in the case where jIj = 1. We �rst have to prove
some results on T (I)�� in that case. In order to simplify the notations we assume
in this and the following subsection that gI = g.

So assume now that G has semi-simple rank equal to 1. There is then exactly
one positive root; denote it by �. In this case our baby Verma module Z�(�)
coincides with the module Z�;�(�) in the notation from A.3. We can use the ex-
plicit description of a basis for this module there, and we have the homomorphism
'� : Z�(� � d�) ! Z�(�) as in A.3(3) given by '�(v��d�) = xd��v�. Here d is
the integer with 0 < d � p and h� + �; �_i � d (mod p), hence �(h�) + 1 = d1
in Fp. We claim now that

Homg(Z�(�� d�); Z�(�)) = K'� if d < p. (1)

Indeed, our assumption (B2) implies that ��i� 6� ��j� (mod pX) whenever 0 �
i; j < p and i 6= j. So the xi��v� with 0 � i < p belong to distinct eigenspaces with
respect to h, hence span these eigenspaces. Each homomorphism from Z�(�� d�)
to Z�(�) has to take '(v��d�) to an eigenvector for the same eigenvalue, hence to
a multiple of xd��v�. So (1) follows.

The same argument shows that

Homg(Z�(� � p�); Z�(�)) = Homg(Z�(�); Z�(�)) = K id : (2)

(Note that Z�(� � p�) = Z�(�).) If d = p, then '� is equal to multiplication by

�(x��)p since x
[p]
�� = 0. Therefore (1) extends to the case d = p if �(x��) 6= 0.

For �(x��) = 0, however, we have '� = 0 in this case.

B.9. Keep the assumptions from B.8. Consider now two weights � and � such
that � is in the closure of the facet of � with respect to Wp. There is a unique
integer n with

np < h�+ �; �_i � (n + 1)p:
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The assumption on the facet implies that

np � h� + �; �_i � (n+ 1)p:

Set d = h�+ �; �_i �np and d0 = h�+ �; �_i �np. Then d is the same number as
considered in B.8. If d0 > 0, then it the analogue of d working with � instead of �;
if d0 = 0, then that analogue is equal to p, however. Note that s�;np�� = � � d�
and s�;np�� = �� d0�.

We get from B.4(1) isomorphisms T��Z�(�) ' Z�(�) and T��Z�(� � d�) '
Z�(�� d0�). We claim that, modulo these isomorphisms:

Lemma: If d0 > 0, then T�� ('�) is a non-zero multiple of '�. If d0 = 0, then
T�� ('�) is a non-zero multiple of the identity.

Proof : If d = p, i.e., if h� + �; �_i = (n + 1)p, then the assumption on the facets
implies that also h� + �; �_i = (n + 1)p and d0 = p. In this case both '� and '�
are equal to �(x��)p times the identity. Since the functor T�� takes a multiple of
the identity to the corresponding multiple of the identity, the claim follows in this
case.

Assume from now on that d < p.
Case I: We have h� + �; �_i � h� + �; �_i. Then the module E involved in the
construction of T�� has highest weight s�(� � �) = � � � + (d � d0)�. If e0 is a
highest weight vector of E, then v = e0
v��d� is a highest weight vector of weight
��d0� in E
Z�(��d�) and generates the summand T��Z�(��d�) ' Z�(��d�).

The map T�� ('�) is the restriction of idE 
'� to T��Z�(�� d�). It maps v to
e0 
xd��v�, hence is non-zero (since d < p). Now the claim follows from B.8(1) in
case d0 > 0, or from B.8(2) in case d0 = 0.
Case II: We have h�+�; �_i > h�+�; �_i. Now E has highest weight ���. It has
a basis ei = xi��e0 with 0 � i < d0 � d = h� � �;�_i where e0 is a weight vector
of weight � � � and satis�es x�e0 = 0. We have x�ei = i(d0 � d + 1 � i)ei�1 for
all i > 0. A straightforward calculation shows that T��Z�(� � d�) ' Z�(�� d0�)
is generated by

v =
d
0�dX
i=0

�
d0

i

�
ei 
 xd

0�d�i
�� v��d�:

(Note that v 6= 0 since the coe�cient of e0 
 xd
0�d
�� v��d� is non-zero.) We have

now

T�� ('�)v =
d0�dX
i=0

�
d0

i

�
ei 
 xd

0�i
�� v��d�:

If d0 < p, then a look at the \leading term" e0
xd
0

��v��d� shows that T�� ('�) 6= 0
and the claim follows from B.8(1). If d0 = p, then

T�� ('�)v = e0 
 xp��v��d� = �(x��)
pe0 
 v��d�:

We see thus that T�� ('�) 6= 0 if and only if �(x��) 6= 0 if and only if '� 6= 0. Now
the claim is obvious in case �(x��) = 0 and follows otherwise from B.8(2).
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B.10. Let G again be arbitrary. Choose a simple root � and set I = f�g. We
get from A.4(2) for each � 2 X a homomorphism '�� : Z�(� � d�)! Z�(�) with
'��(v��d�) = xd��v�. Here d is again the integer with 0 < d � p and h�+�; �_i � d
(mod p).

We can identify Z�(�) with indI Z�;�(�) [see A.4(1)]; then '�� identi�es with
indI('�).

Proposition: Let �; � 2 X such that � is contained in the closure of the facet of

� with respect to Wp. If h�+ �; �_i � 0 (mod p) and h�+ �; �_i < h� + �; �_i,
then T�� ('

�
�) identi�es with a non-zero multiple of the identity on Z�(�). Otherwise

T�� ('
�
�) identi�es with a non-zero multiple of '��.

Proof : As stated above, we can identify '�� with indI('�). The functoriality in
B.7(3) implies that we can identify T�� ('

�
�) with indI(T (I)

�

�'�). Now the claim
follows from Lemma B.9 applied to gI . (Note that the �rst case in the present
proposition corresponds to the case d0 = 0 in B.9.)

B.11. Let � be a simple root with �(x��) = 0. In this situation we have de�ned
in A.4 the module Z�(�;�) as the cokernel of '��.

Corollary: Let �; � 2 X such that � is contained in the closure of the facet of �
with respect to Wp. If h� + �; �_i � 0 (mod p) and h� + �; �_i < h� + �; �_i,
then T��Z�(�;�) = 0. Otherwise T��Z�(�;�) ' Z�(�;�).

Proof : This follows from Proposition B.10 when we apply the exact functor T�� to
the exact sequence A.4(3).

Remark : Let I be a subset of the set of simple roots such that the restriction
of � to gI has standard Levi form (see [11], 10.1 or [12], 2.2). We have then for
each � 2 X a unique simple quotient L�;I(�) of Z�;I(�) and can de�ne induced
modules Z�(�; I) = indI L�;I(�). We can apply B.7(3) and describe T��Z�(�; I)
(for � in the closure of the facet of �) using [12], 4.11(4). The corollary above is
a special case of that more general result.

B.12. We shall always write [M : L] to denote the multiplicity of a simple module
L as a composition factor of a module M .

For each simple U�(g){module L let QL denote the projective cover of L in
the category of all U�(g){modules.

The proof of Lemma 10.9 in [11] shows that

dimQL = pN
X
�

[Z�(�) : L] (1)

where N = jR+j and where � runs over a system of representatives for X=pX. (In
[11], 10.9 one has a more restrictive assumption on � that actually does not enter
the argument.)

Since QL and hence L belongs to C�, only � 2 W �� + pX can contribute a
positive multiplicity [Z�(�) : L]. Since all Z�(�) with � 2 W �� + pX de�ne the
same class in the Grothendieck group (cf. [10], 1.5) we get from (4) that

dimQL = pN jW �(�+ pX)j [Z�(�) : L]: (2)
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Remark : Our assumptions (B1) and (B2) are not needed to prove (1). For (2) we
just need (B1). Similarly, one can check that the �rst seven paragraphs in B.13
below do not require the assumptions while (B1) su�ces for the remainder of B.13
and for B.14.

B.13. In this and the next subsection we drop our assumption that �(b+) = 0
and consider arbitrary � 2 g�. (But we shall soon assume � to be nilpotent.) Let
C(�) denote the category of all �nite dimensional U�(g){modules; as before we just
write C when it is clear which � we consider.

Let g 2 G. We write Ad(g) for the adjoint action of g on g and for the induced
action on U(g). If M is a g{module, then we write gM for M \twisted by g", i.e.,
we take gM = M as a vector space and let any x 2 g (or in U(g)) act on gM as
Ad(g�1)(x) does on M . (See also the more general discussion at the beginning of
[10], 1.13.)

Clearly M 7! gM is an exact functor that takes simple modules to simple
modules. IfM is aG{module considered as a g{module via the derived action, then
we have an isomorphism gM

�
�! M given by m 7! gm. If M is a U�(g){module,

then gM is a Ug�(g){module where g� is the image of � under the coadjoint action
of g given by (g�)(x) = �(Ad(g�1)x). The functor M 7! gM is an equivalence of
categories from C(�) to C(g�). It takes simple modules to simple modules.

Assume now that � is nilpotent. This means that � vanishes on a Borel
subalgebra of g, or, equivalently, that there exists g 2 G with (g�)(b+) = 0, see
[13].

If M is a U�(g){module, then each u 2 U(g)G acts on each gM as it does on
M . Suppose for the moment that (g�)(b+) = 0; if M is simple, then U(g)G acts
on gM (and hence also on M) as on some Zg�(�) with � 2 X. Set C(�)� equal to
the full subcategory of C(�) consisting of those N in C(�) such that U(g)G acts
on each composition factor of N as on Zg�(�). Then C(�) is the direct sum of all
C(�)� with � in a suitable set of representatives.

Note: If we have already �(b+) = 0, then the de�nition of C(�)� given above
coincides with that one that we get by applying B.1 directly, because each u 2
U(g)G acts on Z�(�) and on Zg�(�) by the same scalar (for each � 2 X), cf.
[10], 1.7. This observation implies for arbitrary � that the de�nition of C(�)� is
independent of the choice of g with (g�)(b+) = 0.

We have (for each nilpotent �) projection functors pr� : C(�) ! C(�)� and
translation functors T�� : C(�)� ! C(�)� de�ned as in B.1/2.

Let g 2 G. IfM is a U�(g){module in C(�)�, then gM belongs to C(g�)�. The
functor M 7! gM restricts to an equivalence of categories from C(�)� to C(g�)�.
We get for arbitrary M in C(�) that

pr�(
gM) = g(pr�M): (1)

This implies for M in C(�)� that

g(T��M) ' T�� (
gM): (2)
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Indeed, we use the same G{module E when we de�ne T�� on C(�)� and on C(g�)�
and get therefore

g(T��M) = g(pr�(E 
M)) = pr�
g(E 
M) = pr�(

gE 
 gM)

' pr�(E 
 gM) = T�� (
gM):

Lemma: Suppose that � 2 g� and g 2 G with �(b+) = (g�)(b+) = 0. Let � 2 X
and let L be a simple U�(g){module. Then

[Zg�(�) :
gL] = [Z�(�) : L]: (3)

Proof : If QL is the projective cover of L in the category of all U�(g){modules, then
g(QL) is the projective cover of L in the category of all Ug�(g){modules. Applying
B.12(2) to g� instead of �, we get

dim g(QL) = pN jW �(�+ pX)j [Zg�(�) :
gL]: (4)

Since QL and g(QL) have the same dimension, a comparison of (4) with B.12(1)
yields (3).

B.14. Let again g 2 G. Given a Lie subalgebra q of g and a q{module M , then
we get an Ad(g)q{module gM by an obvious generalisation of the de�nition in
B.13. If q is a restricted Lie subalgebra of g and if M is a U�(q){module, then gM
is a Ug�(Ad(g)q){module. It is then easy to check that we get for all � 2 g� an
isomorphism for the induced modules

g(U�(g) 
U�(q)M)
�
�! Ug�(g) 
Ug�(Ad(g)q)

gM (1)

induced by u
m 7! Ad(g)(u) 
m.
Let B+ = P; (cf. B.6) be the Borel subgroup of G with Lie algebra b+. If

� 2 g� with �(b+) = 0, then we get applying (1) with q = b+

gZ�(�) ' Zg�(�) for all � 2 X and g 2 B+ (2)

since Ad(g)(b+) = b+ and since Ad(g) acts trivially on b+=n+.
Let � be a simple root and let P� � B+ be the standard parabolic subgroup

with Lie algebra p� = b+ + g��. Suppose that �(p�) = 0. Then we claim that

gZ�(�;�) ' Zg�(�;�) for all � 2 X and g 2 P�. (3)

We want to apply (1) using A.4(4). We can replace � by a weight in � + pX
and assume that 0 � h�;�_i < p. Then we get L�;�(�) by taking the derived
action of p� on the simple P�{module with highest weight �. This then implies
gL�;�(�) ' L�;�(�), hence via (1) the claim.
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C

Keep all assumptions and notations from Section B, in particular (B1) and (B2).
However, one may check that (B1) and (B2) are used only for C.1{4 and C.9{10.

We introduced in A.1 an element � 2 X 
Z Q. If (B1) holds, then we can choose
� 2 X. We assume in future that we have made such a choice whenever (B1)
holds. (If G is not semi-simple, then � is not necessarily half the sum of the
positive roots.)

C.1. Set

C0 = f� 2 X j 0 � h� + �; �_i � p for all � 2 R+ g (1)

and

C 0
0 = f� 2 X j 0 � h� + �; �_i < p for all � 2 R+ g: (2)

So C0 is the usual \�rst dominant alcove" C0 as in [11], 11.19(1) or [12], 4.1(1).
We begin now (for certain �) an investigation of the subcategories C� with

� 2 C 0
0. If R has no components of exceptional type, then one can show (see H.1

below) that there exists for each � 2 X a weight � 2 C 0
0 with � 2 W �� + pX,

hence with C� = C�. So in those case we do not lose anything by the restriction
to weights in C 0

0.

Lemma: Let � 2 C 0
0. If w 2W and � 2 X with w��+ p� = �, then � = 0.

Proof : If w�� + p� = �, then p� 2 ZR since w�� 2 � + ZR. So our assumption
(B2) implies that � 2 ZR. This means that the map x 7! w�x + p� belongs to
the stabiliser of � in the a�ne Weyl group Wp. Since Wp is a re
ection group,
that stabiliser is generated by all s�;rp with � 2 R+ and h� + �; �_i = rp. The
de�nition of C 0

0 implies that then necessarily rp = 0. Therefore the stabiliser of �
in Wp is contained in W ; this yields � = 0.

C.2. Proposition: Let � 2 C 0
0. There exists a simple module L in C� with

projective cover isomorphic to T���Z�(��); it satis�es [Z�(�) : L] = 1.

Proof : Let us abbreviate Q = T���Z�(��). Proposition B.3 implies that Q has a
�ltration with factors Z�(�) with � 2W ��, one factor for each such �. We get in
particular that

dimQ = jW ��j pN (1)

with N = jR+j.
One knows that Z�(��) is projective, cf. [7], Thm. 4.1. Any translation

functor T �� takes projective modules to projective modules since the adjoint functor
T�� is exact. Therefore Q is projective.

Let L be a simple quotient of Q. Then the projective cover QL of L has to
be a direct summand of Q. We have by B.12(2)

dimQL = pN jW �(�+ pX)j [Z�(�) : L]: (2)
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Now Lemma C.1 implies that the stabiliser of �+pX inW is equal to the stabiliser
of � in W . Using (1) and the fact that QL is a summand of Q, we get that

dimQ = pN jW ��j � dimQL = pN jW ��j[Z�(�) : L] � pN jW ��j:

So we have to have equality everywhere, hence QL = Q and [Z�(�) : L] = 1. So
the claim follows.

C.3. Proposition C.2 yields a representation theoretic proof of the following
special case of a recent theorem of Brown and Gordon in [2], 3.18:

Corollary: If � 2 C 0
0, then the subcategory C� is a block of the category of all

�nite dimensional U�(g){modules.

Proof : If C� is not a block, then it is a direct sum of two non-trivial subcate-
gories that are closed under taking subquotients. The indecomposable module Q
considered in C.2 would have to belong to one of them. Then so would be all
subquotients Z�(w��) with w 2 W of Q, hence all simple modules in C�. Then
the other subcategory will contain no simple modules at all, hence be trivial.

Remark : The theorem in [2] says that all C� with � 2 X are blocks. That proves
the conjecture by Humphreys in [8], Section 18. (For arbitrary type such a result
had previously been known only for � in standard Levi form, cf. [8].) The corollary
here together with H.1 yields that conjecture in case R has no components of
exceptional type (and p 6= 2 if it has components not of type A).

C.4. Let w0 2W denote the unique element with w0(R+) = �R+.

Proposition: Let � 2 C 0
0, let L denote the simple module in C� with projective

cover isomorphic to T���Z�(��).

a) Up to isomorphism L is the only simple module in C� with T��� L 6= 0.

b) The socle of Z�(�) and the head of Z�(w0��) are isomorphic to L. We have

dimHomg(Z�(w0��); Z�(�)) = 1: (1)

Each non-zero homomorphism from Z�(w0��) to Z�(�) has image equal to the

socle of Z�(�).

Proof : a) It is known that Z�(��) is simple, cf. [7], Thm. 4.2. (The assumption
in that theorem that p is good for R is not needed for this particular result.)
Therefore Z�(��) is the only simple module in C�� (up to isomorphism). If M is
a module in C� with T��� M 6= 0, then we get

0 6= Homg(Z�(��); T
��
� M) ' Homg(T

�
��Z�(��);M):

If we assume additionally that M is simple, then we get that M is a homomorphic
image of the projective cover of L, hence isomorphic to L.
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b) Let E be a G{module; suppose that �1, �2; : : : ; �r are the weights of E (counted
with multiplicities) enumerated such that �i > �j implies i < j. Then any E 

Z�(�) has a �ltration with factors Z�(�+ �i) such that Z�(�+ �1) occurs at the
bottom, then Z�(�+�2) as the next higher factor, and so on. Each pr�(E
Z�(�))
has then a similar �ltration where only the Z�(� + �i) with � + �i 2 W �� + pX
occur. In particular, if i1 (resp. i2) is minimal (resp. maximal) among the i with
� + �i 2 W �� + pX, then Z�(� + �i1) is a submodule of pr�(E 
 Z�(�)), and
Z�(�+ �i2) is a homomorphic image of pr�(E 
Z�(�)).

Applied to Q = T���Z�(��) this shows that Z�(�) is a submodule of Q and
that Z�(w0��) is a factor module. Since Q (being the projective cover of L) has
simple head isomorphic to L, so has Z�(w0��). Since U�(g) is a symmetric algebra
(see [6], Prop. 1.2), the simple module L is also isomorphic to the socle of Q, hence
to that of Z�(�).

It is now clear that we get a non-zero homomorphism from Z�(w0��) to Z�(�)
by projecting �rst onto L and then embedding L into Z�(�). Conversely, let ' be
a non-zero homomorphism from Z�(w0��) to Z�(�). The image of ' has simple
head and simple socle, both isomorphic to L. Since [Z�(�) : L] = 1, the image of
' has to be isomorphic to L. Therefore the image is equal to the socle of Z�(�),
and the kernel of ' has to be equal to the radical of Z�(w0��). Now (1) follows
from Schur's Lemma.

Remark : The entries in the row (or column) of the Cartan matrix of C� corre-
sponding to L are equal to jW �(� + pX)j[Z�(�) : L0] with L0 running over the
simple modules in C�. In particular, the diagonal entry is equal to jW �(� + pX)j
and the other entries are non-zero multiples of that number. This implies that
Lusztig's original conjecture in [15], 14.5 for the Cartan matrix could not work in
type D4 (for example).

C.5. Fix � 2 C 0
0. If w 2 W and if � is a simple root with w�1� > 0, then

0 � hw(�+ �); �_i < p and we have a homomorphism

'�w;s�w : Z�(s�w��) �! Z�(w��) (1)

given by

'�w;s�w(vs�w��) = x
hw(�+�);�_i
�� vw��: (2)

If hw(�+�); �_i = 0, then '�w;s�w is the identity map on Z�(�). If hw(�+�); �_i >

0, then '�w;s�w is up to a non-zero scalar multiple of the map 'w��� from A.4(2).
We get therefore from A.4:

Lemma: If �(x��) 6= 0, then '�w;s�w is an isomorphism. If �(x��) = 0, then

im'�w;s�w ' Z�(s�w��;�) (3)

and

dim im('�w;s�w) = (p � hw(�+ �); �_i)pN�1 (4)

where N = jR+j.
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C.6. We now want to de�ne for each w 2W a homomorphism

'�w : Z�(w��) �! Z�(�) (1)

as follows: If w = s1s2 : : : sr is a reduced decomposition (with si = s�i for some
simple root �i) then we want to have

'�w = '�1;sr � '
�
sr;sr�1sr

� � � � � '�s2:::sr�1sr;s1s2:::sr�1sr
(2)

where the single factors are de�ned in C.5. One has to check the independence of
the right hand side in (2) of the chosen reduced decomposition. It is (as usual)
enough to check the \braid relations" for each pair �; �, (� 6= �) of simple roots.
For example, if s�s� has order 3, then we have to check for each x 2 W with
x�1�; x�1� > 0 that

'�x;s�x � '
�
s�x;s�s�x

� '�s�s�x;s�s�s�x = '�x;s�x � '
�
s�x;s�s�x

� '�s�s�x;s�s�s�x:

This follows from the Verma relations, see [4], 7.8.8; similarly in the cases where
s�s� has order 2, 4, or 6.

Now that the '�w are well-de�ned, we get for all w 2 W and all simple roots
� with w�1� > 0 that

'�s�w = '�w � '
�
w;s�w

(3)

since we get a reduced decomposition of s�w when we multiply a reduced decom-
position of W on the left by s�.

C.7. Set for all w 2W

sbm(w;�) = im('�w) � Z�(�) (1)

the submodule corresponding to w.

Lemma: Let � be a simple root and w an element in W with w�1� > 0.

a) We have sbm(s�w;�) � sbm(w;�).

b) If �(x��) 6= 0, then sbm(s�w;�) = sbm(w;�).

c) If �(x��) = 0, then sbm(s�w;�) is a homomorphic image of Z�(s�w��;�),
and sbm(w; �)= sbm(s�w;�) is a homomorphic image of Z�(w��;�).

Proof : The identity '�s�w = '�w � '
�
w;s�w

from C.6(3) implies a). If �(x��) 6= 0,

then '�w;s�w is an isomorphism; this yields b).

Suppose now that �(x��) = 0. Denote the image of '�w;s�w by M . Then M
is isomorphic to Z�(s�w��;�), and Z�(w��)=M is isomorphic to Z�(w��;�). Now
the claim in c) follows from sbm(s�w;�) = '�w(M) and sbm(w;�) = '�w(Z�(w��)).

Remark : It is sometimes more convenient to restate the last part of the lemma as
follows: Let w 2W and 
 2 R+ such that w
 is a simple root with �(x�w
) = 0.
Then sbm(ws
 ; �) is a homomorphic image of Z�(ws
 ��;w
), and sbm(w;�)= sbm
(ws
 ; �) is a homomorphic image of Z�(w��;�). [Note that sw
w = ws
 .]
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C.8. We now want to generalise Lemma C.7.a to positive roots that are not
necessarily simple:

Proposition: Let w 2 W and � 2 R+ with w�1� > 0. Then sbm(s�w;�) �
sbm(w;�).

Proof : This will follow in the same way as in C.7 if we can �nd a homomorphism

'�w;s�w : Z�(s�w��)! Z�(w��) with '�s�w = '�w � '
�
w;s�w

: (1)

Suppose �rst that G is semi-simple and simply connected; drop the assump-
tion that (B2) should hold. In order to construct the map in (1) we make a detour
to characteristic 0. Let gC be a complex semisimple Lie algebra of the same type
as g. Fix a triangular decomposition gC = n�C � hC � n+C and a Chevalley basis
of gC. Denote by gZ the span over Z of our Chevalley basis. This is a Lie algebra
over Z with a triangular decomposition gZ = n�Z � hZ � n+Z induced by that of
gC. We can and shall assume that g = gZ 
ZK, similarly for n� and h. We have
then also U(g) = U(gZ) 
Z K and similarly for n� and h. We denote (by abuse
of notation) the vectors in our Chevalley basis of gC by x
 and h� (�; 
 2 R, �
simple). We assume that we have chosen the x

1 as our root vectors in g (which
we usually denote by x
).

The group X can be identi�ed with the lattice of integral weights of hC. We
have for each � 2 X a Verma module M(�)C for gC with highest weight �; we
denote its standard generator by z� . We de�ne for each w 2W a homomorphism
f�w : M(w��)C !M(�)C in the same way as we de�ned in C.6(2) the '�w. There
is a unique element

u�w 2 U(n
�
C) with f�w(zw��) = u�wz�: (2)

The construction shows that u�w is a product of powers of the x�� with � simple,
hence contained in U(n�Z ), and that

'�w(vw��) = (u�w 
 1)v�: (3)

Let �1, �2; : : : ; �n denote the simple roots. If we write u(w;�) as a linear combi-
nation of the usual PBW basis of U(n�C), then

u�w =

nY
i=1

xri��i + lower order terms if �� w�� =

nX
i=1

ri�i (4)

where \lower order terms" refers to the canonical �ltration of an enveloping algebra
as in [4], 2.3.1.

Now consider w and � as in the proposition. The theory of Verma modules
shows that there exists a unique homomorphism

f�w;s�w :M(s�w��)C !M(w��)C with f�w � f
�
w;s�w

= f�s�w; (5)
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see [4], 7.6.6 and 7.6.23. There is a unique element

u�w;s�w 2 U(n
�
C) with f�w;s�w(zs�w��) = u�w;s�w zw��: (6)

A comparison with (2) shows that

u�s�w = u�w;s�wu
�
w: (7)

A look at the terms of highest order shows that

u�w;s�w =
nY
i=1

xri��i + lower order terms if w��� s�w�� =
nX
i=1

ri�i: (8)

If we write d = hw(� + �); �_i, then we have above d� =
Pn

i=1 ri�i. This shows
that u�w;s�w is equal to the element denoted by S�;d(w��) in [5], Section 3. (Note
that there is a misprint in the last displayed equation on p. 66 of [5]: One should
replace r by dr.)

The results in [5] say that

u�w;s�w 2 U(n
�
Z ): (9)

(See the remarks on the top of page 67 in [5].) We now want to use this element
to de�ne '�w;s�w by

'�w;s�w(vs�w��) = (u�w;s�w 
 1) vw��: (10)

If this is possible, then (7) and (3) yield the equality '�s�w = '�w � '
�
w;s�w

, hence
the proposition.

The right hand side in (10) has weight s�w��; it therefore su�ces to show
that this term is annihilated by all x
 
 1 with 
 > 0. We have to start with in
U(gZ)

x
u
�
w;s�w

=
X
�

F�c� + terms in U(gZ)n
+
Z

where the F� are (as in [5]) the elements in a PBW basis of U(n�Z ) and where all
c� 2 U(hZ). We have then

0 = x
u
�
w;s�w

zw�� =
X
�

(w��)(c�)F�zw��:

Since the F�zw�� are linearly independent, we get (w��)(c�) = 0 for all �. Since

(x
 
 1)(u�w;s�w 
 1) vw�� =
X
�

(w��)(c�)(F� 
 1)vw�� = 0

the claim follows (for G semi-simple and simply connected).

The extension to the case where G is a direct product of a semi-simple and
simply connected group with a torus is immediate. In general, G is a quotient of
such a group, say eG, by a central subgroup. The corresponding homomorphism
� from eg = Lie( eG) to g satis�es g = h + �(eg). If we consider a baby Verma
module for g as a eg{module via �, we get a baby Verma module for eg. We can use
the construction above to get a map '�w;s�w as in (1) that is a homomorphism ofeg{modules. It then su�ces to show that this map also commutes with h. That,
however, follows from the fact that the element u�w;s�w has weight �d� also for h.
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Remark : Let � denote the usual Chevalley-Bruhat order on W (with smallest
element 1). The proposition implies for all w1; w2 2W :

w1 � w2 =) sbm(w1; �) � sbm(w2; �): (11)

C.9. Lemma: Let � be a weight in the closure of the facet of � with � 2 C 0
0.

For all w 2W and � 2 R simple and w�1� > 0 we can identify T�� ('
�
w;s�w

) with

a non-zero multiple of '�w;s�w. We can identify T�� ('
�
w) with a non-zero multiple

of '�w and have

T�� sbm(w;�) ' sbm(w;�) (1)

for all w 2W .

Proof : In order to prove the claim for the '�w;s�w we distinguish two cases:
If hw(� + �); �_i = 0, then the assumption on � implies that also hw(� +

�); �_i = 0. Then both '�w;s�w and '�w;s�w are the identity. So is T�� ('
�
w;s�w

); the
claim follows in this case.

If hw(� + �); �_i > 0, then the claim follows easily from Proposition B.10
because '�w;s�w is a non-zero multiple of the map 'w��� considered there.

The rest of the lemma follows now from the de�nition of '�w, the functor
property of T�� and its exactness.

C.10. We can apply Lemma C.9 to � = ��. Since all '��w are the identity, hence
non-zero, we get that

'�w 6= 0 for all w 2W . (1)

This holds in particular for w = w0. Proposition C.4.b implies therefore that

sbm(w0; �) = socZ�(�): (2)

C.11. Set
I = f� 2 R j � simple; �(x��) 6= 0 g: (1)

Let WI denote the subgroup of W generated by all s� with � 2 I.

Lemma: a) We have sbm(w1; �) = sbm(w2; �) for all w1; w2 2 W with WIw1 =
WIw2.

b) Let w 2WI and � be a simple root with � =2 I. Then

sbm(s�w;�) ' Z�(s�w��;�) (2)

and

dim sbm(s�w;�) = (p� hw(� + �); �_i)pN�1 (3)

where N = jR+j.

Proof : The claim in a) follows easily from Lemma C.7.b. In b) we have w�1� > 0
since w 2WI and � =2 I. It follows that '�s�w = '�w �'

�
w;s�w

. Furthermore '�w is a

composition of certain '�w0;s�w0 with � 2 I, hence an isomorphism. Therefore the

image sbm(s�w;�) of '�s�w is isomorphic to the image of '�w;s�w. Now the claims
in b) follow from Lemma C.5.
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C.12. Here and in the next two subsections we �x a simple root with �(x��) = 0
and consider I as in C.11(1). Note that

WI� � (� + ZI) \R � R+: (1)

Pick for each � 2WI� an element w� 2WI with w
�1
� � = � and set

M� = sbm(s�w�; �): (2)

Lemma C.11.b implies that

dimM� = (p� h�+ �; �_i)pN�1 (3)

and that
M� ' Z�(s�w���;�): (4)

Claim: The submodule M� of Z�(�) depends only on �, not the choice of w�.

Proof : If w0
� is a second element inWI with (w0

�)
�1� = �, then w = w0

�w
�1
� 2WI

satis�es w� = �, hence ws� = s�w. It follows that s�w
0
� = ws�w� 2 WIs�w�;

now apply Lemma C.11.a.

C.13. Lemma: Let 
 be a simple root, let w 2 W with w
 2 WI�. Then

sbm(w;�)= sbm (ws
 ; �) is a homomorphic image of Z�(ww
w��;�).

Proof : The element x = ww
w satis�es x
 = �, hence xs
 = s�x. Since ww
 2
WI , Lemma C.11.a implies that

sbm(w;�) = sbm(x; �)

and
sbm(ws
 ; �) = sbm(xs
 ; �) = sbm(s�x; �):

Now the claim follows from Lemma C.7.c.

C.14. Proposition: Let � 2WI� and 
 2 I with h
; �_i < 0.

a) We have

M� �Ms
� (1)

and

dim(M�=Ms
�) = jh
; �_ij h� + �; 
_ipN�1: (2)

b) Assume that h
; �_i = h�; 
_i = �1. Then �0 = w�(� + 
) is a root and

belongs to WI�; the element x = w�0s�w� 2W satis�es x�1� = 
 and

M�=M�+
 ' Z�(x��;�) if h� + �; 
_i > 0. (3)
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Proof : a) We have clearly s
� 2WI� and could choose ws
� = w�s
 . So we have

Ms
� = sbm(s�w�s
 ; �):

On the other hand s�
 = 
 �h
; �_i� is a positive root not in ZI. Therefore also
�0 = w�s�
 is positive. Using s� = w�1

�
s�w�, we get �0 = s�w�
, hence

s�0s�w� = (s�w�s
w
�1
� s�)s�w� = s�w�s
 :

Since (s�w�)
�1�0 = 
 > 0, we get from Proposition C.8 that

sbm(s�0s�w�; �) � sbm(s�w�; �);

hence (1). Now (2) follows from C.12(3) and (s
�)_ = �_ � h
; �_i
_.

b) Now our assumptions imply that s
� = �+
 = s�
. It follows that �+
 2WI�
and that �0 = w�s�
 = w�(� + 
) 2 WI�. We observed above that �0 = s�w�
;
so we can apply Lemma C.13 with w = s�w�. Now x = w�0s�w� is the same x as
in the proof of Lemma C.13 and satis�es � = x
. We have

M� = sbm(w;�) and M�+
 = sbm(ws
 ; �)

since w�s
 is a possible ws
� = w�+
. Now Lemma C.13 says that we have a
surjective homomorphism

Z�(x��;�) �!M�=M�+
 : (4)

The left hand side has dimension equal to

hx(� + �); �_ipN�1 = h�+ �; 
_ipN�1

as long as h� + �; 
_i > 0; otherwise its dimension is equal to pN . In the �rst
case, the surjection in (4) has to be an isomorphism by dimension comparison;
this implies (3).

Remark : In the situation from b) one can deduce the inclusion in (1) directly from
Lemma C.7.a (without the more complicated argument in C.8) using x�1� = 
 > 0
and the equalities

M� = sbm(x; �) and M�+
 = sbm(s�x; �):
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D

We keep the assumptions from Sections B and C. We assume in addition:

(D1) The prime p is good for R.

and

(D2) G is almost simple.

The �rst assumption is crucial so that we can apply the Kac-Weisfeiler conjec-
ture proved by Premet. The second assumption is mainly meant to simplify the
statement of the results.

D.1. We call a linear form � 2 g� subregular if its orbit under the coadjoint
action has dimension equal to 2(N � 1) where N = jR+j. If so, then the Kac-
Weisfeiler conjecture as proved by Premet says: If M is a U�(g){module, then
dim(M) is divisible by pN�1.

Recall that we set p� = b+ + g�� for each simple root �; we denote (as in
B.14) by P� the corresponding parabolic subgroup of G. The following result is a
translation of well known results on orbits in g:

Lemma: There exists a unique subregular nilpotent orbit O in g�. If � is a simple

root then O intersects the set of all � 2 g� with �(p�) = 0 in an open and dense

subset. This intersection is one orbit under P�.

Proof : We can (under our assumptions on p) identify g and g� as G{modules. The
classi�cation of the nilpotent orbits in g is the same as for the Lie algebra over C
of the same type (since p is good). In particular, there is exactly one subregular
nilpotent orbit in g; this yields the �rst claim.

The elements � 2 g� with �(b+) = 0 and �(x��) = 0 correspond (under
g ' g�) to the elements in the nilradical n� =

L

>0;
 6=� g
 of the parabolic

subalgebra p�. The theory of the Richardson orbits (cf. [3], 5.2.3) says that there
exists exactly one nilpotent orbit for G that intersects n� in an open and dense
subset. That intersection is one orbit under P�; furthermore the dimension of the
orbit (under G) is equal to the codimension in g of a Levi factor of p�. Since that
codimension is equal to 2(N � 1), we get the remaining claims.

Remark : For each simple root � 6= � the set of all � with �(p�) = 0 and �(x��) 6= 0
is an open and dense subset of the set of all � with �(p�) = 0. It follows: The set

of all subregular � 2 g� with �(p�) = 0 and �(x��) 6= 0 for all simple roots � 6= �
is an open and dense subset of the set of all � with �(p�) = 0.

D.2. Each subset J of the set of all simple roots de�nes a facet F (J) contained in
C 0
0 as follows: A weight � 2 C 0

0 belongs to F (J) if and only if h�+�; �
_i > 0 for all

� 2 J and h�+�; 
_i = 0 for all simple roots 
 =2 J . Write $
 for the fundamental
weight corresponding to a simple root 
. Then � 2 X belongs to F (J) if there
are integers m� > 0 such that � + � =

P
�2J m�$� and if h� + �; �_i < p for all

� 2 R+. Each facet (with respect to Wp) that is contained in C 0
0 has the form

F (J).
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Lemma: Let J be as above and let 
 2 J . Suppose that we have for all � 2 F (J)
a module N(�) in C� with dimN(�) = h�+ �; 
_ipN�1 such that T��N(�) ' N(�)
for all �; � 2 F (J). If � is subregular, then each N(�) with � 2 F (J) is simple.

Proof : We may assume that F (J) 6= ;. Then the weight � = �� +
P

�2J $�

belongs to F (J) since h� + �; �_i � h� + �; �_i < p for all � 2 F (J) and all
� 2 R+.

We have now dimN(�) = pN�1. Therefore Premet's theorem implies that
N(�) is simple. Proposition B.5 yields now simplicity in general.

Remark : Let m be a positive integer. Suppose that we have in the lemma
dimN(�) =m h�+�; 
_ipN�1, while all the remaining assumptions are unchanged.
Then the same proof as above yields that the length of N(�) is at most equal to
m.

D.3. Here are two types of situations where we shall apply Lemma D.2. Let �
be a simple root and let � be subregular nilpotent with �(p�) = 0.

Lemma: a) Let w 2 W such that w�1� is a simple root. Then Z�(w��;�) is

simple for all � 2 C 0
0 with hw(� + �); �_i > 0.

b) Let 
 be a simple root, let w1; w2 2W such that sbm(w1; �) � sbm(w2; �) and

dimsbm(w2; �)= sbm(w1; �) = h� + �; 
_ipN�1

for all � 2 C 0
0. Then sbm(w2; �)= sbm(w1; �) is simple for all � 2 C 0

0 with h� +
�; 
_i > 0.

Proof : a) Let J be the set of simple roots with � 2 F (J). Then hw(�+�); �_i > 0
is equivalent to w�1� 2 J . If so, then

dimZ�(w��;�) = hw(� + �); �_ipN�1 = h� + �;w�1�_ipN�1:

Now the claim follows from Corollary B.11 and Lemma D.2.

b) This follows from C.9(1) and Lemma D.2. (Note that C.14(2) provides us with
cases where our assumption is satis�ed.)

D.4. Let �0 denote the unique short root that is a dominant weight. Set h =
h�; �_0 i+ 1 equal to the Coxeter number of R.

Proposition: If R is of type E8, F4, or G2 suppose that p > h + 1. Let � be a

simple root and let � be subregular nilpotent with �(p�) = 0. Let � 2 C 0
0.

a) Let w 2 W with w�1� = ��0. Then Z�(w��;�) is simple and isomorphic to

the socle of Z�(�). We have sbm(w;�) = socZ�(�).

b) The socle of Z�(�) has dimension (p� h�+ �; �_0 i)p
N�1.

Proof : a1) Suppose �rst that R is not type E8, F4, or G2. Under this assumption
there exists a fundamental weight $ with h$;�_0 i = 1. Set

� = �+ (p� 1� h�+ �; �_0 i)$:
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We have then h� + �; �_0 i = p � 1; furthermore � belongs to C 0
0 and � is in the

closure of the facet of �. We have

hw��;�_i = h�+ �;w�1�_i � 1 = �p � 0 (mod p);

hence dimZ�(w��;�) = pN�1. Therefore Z�(w��;�) is simple by Premet's theo-
rem.

We have

�p < �h�+ �; �_0 i = hw(� + �); �_i � 0 = hw�(��) + �; �_i;

hence by B.11

T��� Z�(w��;�) ' Z�(w�(��); �) = Z�(��) 6= 0:

So Proposition C.4.a implies that Z�(w��;�) is isomorphic to the socle of Z�(�),
hence Z�(w��;�) ' sbm(w0; �) by C.10(2). Applying T�� we get [using B.11 and
C.9(1)]

Z�(w��;�) ' sbm(w0; �) = socZ�(�):

Note that sbm(w;�) is a (non-zero) homomorphic image of Z�(w��;�) [by
Lemma C.7.c and C.10(1)]. Because the latter module is simple, so is sbm(w;�).
Therefore it is equal to the (simple) socle of Z�(�).

a2) Consider now the case where R is of type E8, F4, or G2. Let J be the set
of simple roots with � 2 F (J). We would like to �nd a weight � 2 C 0

0 with
h� + �; �_0 i = p � 1 such that � is in the closure of the facet of �. If so, then we
can argue as above.

There exist fundamental weights $ and $0 with h$;�_0 i = 2 and h$0; �_0 i
= 3. If h� + �; �_0 i = p � 1, then we take � = � and are done. Otherwise we try
to �nd integers r; s � 0 such that

� = r$ + s$0 +
X
�2J

$� � �

satis�es h� + �; �_0 i = p� 1. This is possible unless h
P

�2J $�; �
_
0 i = p� 2. This

equality can hold only when p� 2 � h� 1 sinceX
�2J

h$�; �
_
0 i � h�; �_0 i = h� 1:

So our assumption p > h+ 1 makes sure that the \bad case" will not occur.

b) Let L denote the socle of Z�(�). Suppose �rst that � is short. Then � and
��0 are roots of the same length; so there exists w 2 W with w(��0) = �. Now
a) implies that L ' Z�(w��;�). Since p� h�+ �; �_0 i � hw(�+ �); �_i (mod p)
and 0 < p � h� + �; �_0 i � p, we get the claim from the formula in B.11.

Suppose now that R has two root lengths and that � is long. Let then �0

be an arbitrary short simple root. We can �nd (see D.1) subregular �0 2 g� with



32

�0(b+) = 0 and �0(x��0 ) = 0. Since there exists only one subregular nilpotent
orbit in g�, there exists g 2 G with g� = �0.

Let us use notations from B.13 like C0� for g� = �0. Applying the results so
far to �0 and �0 (instead of � and �) we see that there is a simple U�0(g){module
L1 in C0� of dimension equal to (p�h�+ �; �_0 i)p

N�1 and satisfying (T��� )0L1 6= 0.
Twisting L1 with g�1 we get a simple module L2 in C� of the same dimension with
T��� L2 6= 0 (by B.13(2)). Now C.4.a implies that L2 ' L; the claim follows.

Remarks: 1) The proof in a2) shows that the claim holds also in many cases where
R of type E8, F4, and G2 and p � h+ 1. One may hope that it holds always in
good characteristic.

2) We have here deduced b) from a). Note conversely: If we know that b) holds
(for a speci�c �), then also a) holds (for that �): We have T��� Z�(w��;�) '
Z�(��) for w as in a) [by B.11]. Therefore (and by C.4) the socle of Z�(�) is
a composition factor of Z�(w��;�). Now a dimension comparison shows that
Z�(w��;�) is isomorphic to that socle, hence simple. The remainder of a) follows
now as above.

D.5. Given � 2 C 0
0 write J(�) for the set of simple roots with � 2 F (J(�)). Note

that each ��+$� with � 2 J(�) is in the closure of the facet of �. Let � 2 g� be
nilpotent. We associate to each module M in C� an invariant by setting

�(M) = f� 2 J(�) [ f0g j T
$���
� (M) 6= 0 g (1)

where we use the convention $0 = 0.

This invariant will turn out to be useful in the case where � is subregular. In
the general case one should have a �ner invariant that keeps track of the behaviour
under all translations to the boundary of a given facet.

There may exist weights �; �0 2 C 0
0 with � 6= �0 and C� = C�0 . If we replace

� by �0 in (1), then we will in general get di�erent results. So � depends not just
on the category C�, but also on the choice of �. It might therefore be better to
denote this map by ��. However, usually we �x � and then no problems should
arise.

Suppose that �(b+) = 0. Then C.9(1) and C.10(1) show that

� sbm(w;�) = J(�) [ f0g for all w 2W . (2)

In particular, the socle L = sbm(w0; �) of Z�(�) satis�es �(L) = J(�) [ f0g.
Proposition C.4 says that this is the only simple module in C� with 0 2 �(L).

Let g 2 G. Given M in C� we have gM in C(g�)�, see B.13. We get now

�( gM) = �(M) (3)

from B.13(2).
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Lemma: Let � 2 g� with �(b+) = 0.

a) Let 
 be a simple root and w 2W with w
 > 0. Then

�(sbm(w;�)= sbm(ws
 ; �)) � f
g:

b) If L is a composition factor of Z�(�) not isomorphic to socZ�(�), then �(L)
is either empty or consists of just one simple root.

c) Suppose that � is a simple root with �(p�) = 0. Let w 2W with w�1� 2 J(�).
Then �Z�(w��;�) = fw�1�g.

Proof : a) We have for all � 2 J(�) [ f0g by C.9(1)

T
$���
� sbm(w;�)= sbm(ws
 ; �) ' sbm(w;$� � �)= sbm(ws
 ;$� � �): (4)

If � 6= 
, then we have s
�($� � �) = $� � �, hence sbm(w;$� � �) = sbm(ws
 ;
$� � �). So the right hand side in (4) is 0 in that case; the claim follows.

b) Let w0 = s1s2 : : : sN be a reduced decomposition of w0. (So si = s
i for some
simple root 
i.) This leads to a chain of submodules

Z�(�) = sbm(1; �) � sbm(s1; �) � sbm(s1s2; �) � � � � � sbm(w0; �):

It follows that L is a composition factor of some sbm(w;�)= sbm(ws
 ; �) with
w 2 W and 
 a simple root with w
 > 0. Now the claim follows from a) since
quite generally �(M 0) � �(M) for any subquotient M 0 of a module M in C�.

c) Set � = w�1�. The de�nition of J(�) and of C 0
0 implies that � = � satis�es

0 < hw��+ �; �_i < p. The same inequalities hold for � = $� � �. On the other
hand, all � = $
 � � with 
 6= � satisfy hw��+ �; �_i = 0. Now the claim follows
from Corollary B.11.

Remark : Let 
 be a simple root and let m be a positive integer. Suppose that we
have w1; w2 2W with sbm(w1; �) � sbm(w2; �) and

dimsbm(w2; �)= sbm(w1; �) =m h� + �; 
_ipN�1

for all � 2 C 0
0. If 
 2 J(�), then C.9(1) shows that

� sbm(w2; �)= sbm(w1; �) = f
g: (5)

D.6. We are now ready to state our �rst main result (to be proved in D.7{10).
Let m� denote the positive integers with

�_0 =
X
�

m��
_ (1)

where we sum over all simple roots �.
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Theorem: Assume that � is subregular nilpotent with �(b+) = 0. Exclude the

case where R is of type G2; if R is of type E8 or F4, assume that p > h+ 1. Let

� 2 C 0
0. Then Z�(�) has length 1 +

P
�2J(�)m�. We can denote the factors in a

composition series of Z�(�) by L0 and L�;i with � 2 J(�) and 1 � i � m� such

that

dim L�;i = h� + �; �_ipN�1 and �(L�;i) = f�g (2)

for all � and i, while

dim L0 = (p� h�+ �; �_0 i)p
N�1 and �(L0) = J(�) [ f0g: (3)

Remarks: 1) The restrictions on the type are hoped to be unnecessary. If R is of
type E8 or F4 and p � h+ 1, then the theorem will hold for all � 2 C 0

0 where the
socle of Z�(�) has dimension equal to (p � h� + �; �_0 i)p

N�1. The same remark
applies to the results in D.12/13.

2) The theorem does not say whether di�erent factors in the composition series are
isomorphic to each other. If L and L0 are composition factors with �(L) 6= �(L0),
then clearly L 6' L0. So the question is whether for �xed � 2 J(�) the m� factors
L�;i are isomorphic to each other. We shall see in Section F that such isomorphisms
exist in certain cases.

3) The theorem con�rms in part my speculations in [11], 11.15 (where I look only
at those � 2 C 0

0 that are p{regular, i.e., satisfy h� + �; �_i > 0 for all � 2 R+).
The part of those speculations not con�rmed is that the factors in a composition
series should be pairwise non-isomorphic. As mentioned in the preceding remark,
that turns out to be wrong.

D.7. We now begin to prove the theorem. Lemma B.13 and D.5(3) show: If
Theorem D.6 holds for one subregular �, then it holds for all subregular �. We
assume from now on that � is a simple root with �(p�) = 0 and �(x��) 6= 0 for
all simple roots � 6= �. Remark D.1 shows that we can �nd � with this property
for each �. Later on we shall make speci�c choices for �. [Usually this is done
such that the right hand side in (6) below is as small as possible.]

Set L0 equal to the simple socle of Z�(�). It satis�es D.6(3) by Proposition
D.4.b and D.5(2).

By our choice of � the set I as in C.11(1) consists of all simple roots � 6= �. We
shall use the construction from C.12{14 in order to �nd the remaining composition
factors of Z�(�).

We can construct inductively a chain

�1 = �; �2; : : : ; �r (1)

of roots in WI� such that h�r ; 
_i � 0 for all 
 2 I and such that there exists for
each i < r a simple root 
i 2 I with h�i; 
_i i < 0 and �i+1 = s
i�i.



35

The root �r is uniquely determined as the only weight inWI� that is dominant
with respect to the root system RI and its basis I. Set

Mi =M�i for 1 � i � r (2)

and M0 = Z�(�). We have by C.14(1) a descending chain of submodules in Z�(�)

M0 = Z�(�) �M1 �M2 � � � � �Mr � sbm(w0; �) � 0 (3)

where the inclusion Mr � sbm(w0; �) follows from C.10(2). Furthermore, C.14(2)
yields

dim(Mi=Mi+1) = jh
i; �
_
i ij h� + �; 
_i ip

N�1 for 1 � i < r. (4)

On the other hand, M1 =M� = sbm(s�; �) shows that M0=M1 ' Z�(�;�) and

dim(M0=M1) = h� + �; �_ipN�1: (5)

Finally, a comparison of C.12(4) and Proposition D.4.b shows that

dim(Mr= sbm(w0; �)) = h�+ �; �_0 � �_r ip
N�1: (6)

D.8. Suppose �rst that all roots in R have the same length. We choose � such
that (in the notations from Bourbaki's tables in [1]) � = �7 (resp. � = �8) for R of
type E7 (resp. of type E8) and � = �1 otherwise. Then one checks by inspection

�r =

�
�0 � �; for R of type E8;
�0; otherwise.

(1)

Writing 
0 = � we get from D.7(4),(5)

dim(Mi=Mi+1) = h�+ �; 
_i ip
N�1 for 0 � i < r (2)

since �i and 
i have the same length (for i > 0).
If 
i =2 J(�), then clearly Mi=Mi+1 = 0. If 
i 2 J(�), then Lemma D.3.b

implies that Mi=Mi+1 is simple; furthermore D.5(5) shows that �(Mi=Mi+1) =
f
ig.

Exclude the case E8 for the moment. Then (1) and D.7(6) show that Mr is
equal to the simple socle L0 of Z�(�). So the results in the preceding paragraph
show that the Mi provides us with a composition series of Z�(�)=L0. The length
of this series is equal to the number of i with 0 � i < r and 
i 2 J(�). If
� 2 J(�) and if m0

� is the number of i with 
i = �, then the composition series

has exactly m0
� factors L with dim(L) = h� + �; �_ipN�1 and �(L) = f�g. We

have �i = �i�1 + 
i�1 for 2 � i � r and �1 = � = 
0, hence

r�1X
i=0


i = �r = �0 =
X
�

m��:

This shows that m0
� = m�; the claim follows.

If R is of type E8, then set Mr+1 = sbm(w0; �) and 
r = �. Now (1) and
D.7(6) yield

dim(Mr=Mr+1) = h�+ �; 
_r ip
N�1:

Again Lemma D.3.b and D.5(5) show that Mr=Mr+1 is simple with �(Mr=Mr+1)
= f
rg. Now argue as in the preceding paragraph.
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D.9. Consider now R of type Bn or Cn with n � 2. We choose � such that
� = �1 (in the notations from [1]) and get then (in those notations) WI� =
f"1 � "i j 2 � i � ng. The sequence from D.7(1) is now equal to

"1 � "2; "1 � "3; : : : ; "1 � "n; "1 + "n; : : : ; "1 + "3; "1 + "2:

We have 
i = "i+1 � "i+2 = �i+1 for 1 � i < n � 1, and 
n�1 = �n and

n+i = "n�i�1 � "n�i = �n�i�1 for 0 � i < n � 2. We get in particular that
r = 2n� 2 and that

�_r = ("1 + "2)
_ =

�
�_0 � �_; for type Bn;
�_0 ; for type Cn.

(1)

If R is of type Cn, then D.8(6) implies now that Mr is equal to the simple socle
L0 of Z�(�). For R of type Bn we get instead

dim(Mr= sbm(w0; �)) = h� + �; �_ipN�1: (2)

Now Lemma D.3.b and D.5(5) show thatMr= sbm(w0; �) is simple with � invariant
equal to f�g in case h�+ �; �_i > 0; otherwise this factor module is equal to 0.

If R is of type Bn, then � and hence all �i are long. We get therefore h
i; �_i i =
�1 for 1 � i < r, hence [using D.7(4),(5)]

dim(Mi=Mi+1) = h�+ �; 
_i ip
N�1 for 0 � i < r (3)

setting 
0 = �. One gets then (as in D.8) that all Mi=Mi+1 are simple or 0, with
� invariant equal to f
ig in the �rst case. Then the theorem follows by counting
the numbers of i with 
i = � for each simple root �.

Assume now that R is of type Cn. Then (3) holds for all i 6= n � 1 and we
can argue as in the preceding paragraph for these factors. However, we now get

dim(Mn�1=Mn) = 2 h�+ �; �_nip
N�1: (4)

If h� + �; �_ni = 0, then Mn�1 = Mn and we have already a composition series.
Counting the numbers of i with 
i = � yields then the claim. Suppose from now
on that h�+�; �_ni > 0. We want to show in this case thatMn�1=Mn has length 2,
with both composition factors of dimension h�+ �; �_nip

N�1 and with � invariant
equal to f�ng. Then the theorem will follow as before.

Formula (4) implies by Remark D.2 that Mn�1=Mn has length at most equal
to 2. Note next that � = �$n + � is in the closure of the facet of �; we have

dimT�� (Mn�1=Mn) = 2pN�1:

We can �nd (by Lemma D.1) an element g 2 G such that (g�)(b+) = 0 and
(g�)(x��n ) 6= 0. Then L = Zg�(�;�n) is (by Lemma D.3.a) a simple module of
dimension equal to h� + �; �_nip

N�1; we have furthermore �(L) = f�ng. More

precisely, T��L ' Zg�(�;�n) has dimension equal to pN�1. Then L0 = g�1

L is a
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simple module in C� of the same dimension with �(L0) = f�ng by B.13(2) and
dimT��L

0 = pN�1.
Since L0 is in C� it has to be a composition factor of Z�(�). AllMi=Mi+1 with

i 6= n�1 andM2n�2 are simple with � invariant di�erent from f�ng. Therefore L0

has to be a composition factor ofMn�1=Mn. It follows that this factor module has
length equal to 2 and that the second composition factor, say L00, has to have the
same dimension. Furthermore, the exactness of the translation functors implies
that T�� (Mn�1=Mn) has a �ltration with factors T��L

0 and T��L
00. By comparison

of dimensions we get that also T��L
00 has dimension equal to pN�1. This shows

that �n 2 �(L00). On the other hand, since L00 is a composition factor ofMn�1=Mn

we have

�(L00) � �(Mn�1=Mn) = f�ng:

So we get equality: �(L00) = f�ng. This completes the proof of the claim con-
cerning the composition factors of Mn�1=Mn, hence that of the theorem for type
Cn.

D.10. ConsiderR of type F4. We choose � such that � = �4 in the notations from
[1]. So � is short. We can choose the chain in D.7(1) such that the corresponding
simple roots are (in this order)

�3; �2; �1; �3; �2; �3:

We get r = 7 and �7 = �1 + 2�2 + 3�3 + �4, hence

�_7 = 2�_1 + 4�_2 + 3�_3 + �_4 = �_0 � �_4 :

Set M8 = sbm(w0; �). We get from D.7(4){(6)

dim(M0=M1) = dim(M7=M8) = h� + �; �_4 ip
N�1;

dim(M1=M2) = dim(M4=M5) = dim(M6=M7) = h�+ �; �_3 ip
N�1;

dim(M2=M3) = dim(M5=M6) = 2 h� + �; �_2 ip
N�1;

dim(M3=M4) = 2 h� + �; �_1 ip
N�1:

Lemma D.3.b implies that M0=M1, M7=M8, M1=M2, M4=M5, and M6=M7 are
simple or 0; if non-zero, then the �rst two modules have � invariant f�4g, and the
remaining three modules have � invariant f�3g.

Each factor module M2=M3, M5=M6, M3=M4 has length at most equal to 2
by the Remark D.2. We have

�(M2=M3) = �(M5=M6) = f�2g and �(M3=M4) = f�1g:

More precisely, we have, if �2 2 J(�),

dimT$2��
� (M2=M3) = dimT$2��

� (M5=M6) = 2pN�1
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and, if �1 2 J(�),
dimT$1��

� (M3=M4) = 2pN�1:

The theorem will follow if we can show: If �1 2 J(�), then M3=M4 has length
2 with both factors of dimension h� + �; �_1 ip

N�1 and with � invariant f�1g. If
�2 2 J(�), then both M2=M3 and M5=M6 have length 2 with all simple factors of
dimension h�+ �; �_2 ip

N�1 and with � invariant f�2g.

Set �0 = �1. Choose g 2 G such that �0 = g� satis�es �0(b+) = 0 and
�0(x��0 ) = 0. (This is possible by D.1.) We can carry out the constructions from
C.12{14 and D.7 with �0 and �0 instead of � and �. Let me write �0i and 


0
i for

the corresponding roots and M 0
i for the corresponding submodules of Z�0(�). We

can choose the sequence as in D.7(1) such that the sequence of the 
0i is equal to

�2; �3; �4; �2; �3; �2:

We get from D.7(4){(6)

dim(M 0
0=M

0
1) = h� + �; �_1 ip

N�1;

dim(M 0
1=M

0
2) = dim(M 0

4=M
0
5) = dim(M 0

6=M
0
7) = h�+ �; �_2 ip

N�1;

dim(M 0
2=M

0
3) = dim(M 0

5=M
0
6) = h� + �; �_3 ip

N�1;

dim(M 0
3=M

0
4) = h� + �; �_4 ip

N�1:

Lemma D.3.b implies that each M 0
i=M

0
i+1 with 0 � i < 7 is simple or 0; if

dim(M 0
i=M

0
i+1) = h� + �; �_j ip

N�1 and �j 2 J(�), then M 0
i=M

0
i+1 has � invariant

f�jg and satis�es dimT
$j��
� (M 0

i=M
0
i+1) = pN�1.

Twisting with g�1 we get: If �1 2 J(�), then Z�(�) has a composition factor
L1;1 of dimension h�+ �; �_1 ip

N�1, with � invariant f�1g and dimT$1��
� (L1;1) =

pN�1. If �2 2 J(�), then a composition series of Z�(�) contains three quotients
L2;1, L2;2, and L2;3, all of dimension h�+ �; �_2 ip

N�1, with � invariant f�2g and
dimT$2��

� (L2;i) = pN�1. (Here one has to use the full strength of Lemma B.13.)
A look at the � invariants of theMi=Mi+1 and ofM8 shows now: If �1 2 J(�),

then L1;1 is a composition factor of M3=M4. If �2 2 J(�), then L2;1, L2;2, L2;3

are factors in a composition series of M2=M3 �M5=M6. Now one concludes the
proof arguing as in type Cn.

D.11. Consider R of type G2. We choose � such that � = �1 in the notations
from [1]. So � is short. Assume that the socle of Z�(�) has the expected dimension.
When we carry out our standard construction we get r = 2 and �r = �1 + �2,
hence �_r = �_1 + 3�_2 = �_0 � �_1 . Setting M3 = sbm(w0; �) we get

dim(M0=M1) = dim(M2=M3) = h�+ �; �_1 ip
N�1;

dim(M1=M2) = 3 h� + �; �_2 ip
N�1:

We see thatM0=M1 andM2=M3 are simple or 0, with � invariant f�1g if non-zero.
If h� + �; �_2 i = 0, then we are done. So assume that h�+ �; �_2 i > 0. In order to
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extend Theorem D.6 to type G2, we would have to show that M1=M2 has length 3
with all factors of dimension h�+ �; �_2 ip

N�1 and � invariant f�2g. The way that
we handle such problems in types Cn and F4 was to look at another subregular �0

and to get simple modules of the right type by twisting. If we do this here, we get
one simple module L that has to occur as a composition factor of M1=M2 having
the expected dimension and the expected � invariant. But one such factor is not
enough when the expected length is 3.

D.12. Return to the situation from Theorem D.6. So we exclude the case where
R is of type G2; if R is of type E8 or F4, assume that p > h + 1. If R is of type
Bn set � = �n; otherwise let � be the same simple root that was used in D.8{10.
So � is a short simple root in all cases. Choose � subregular with �(p�) = 0. We
claim under these assumptions:

Lemma: Let � 2 C 0
0. Let 
 be a short simple root with 
 2 J(�). If L is a simple

module in C� with �(L) = f
g, then there exists an element x 2 W with x
 = �
and L ' Z�(x��;�).

Proof : If the claim holds for one � as above, then it holds also for all g� with
g 2 P�; this follows easily from B.14(3) and D.5(3). This means by Lemma D.1
that it su�ces to prove the claim for one special �. We can therefore assume that
�(x��) 6= 0 for all simple roots � 6= �.

Suppose at �rst that 
 6= �. (Note that this case does not occur for R of type
Bn.) Since L is isomorphic to one of the L
;i from Theorem D.6, the proofs in
D.8{10 show that L is isomorphic to one of the factors Mj=Mj+1 with 1 < j < r
in D.7(3). In these cases the claim follows from C.14(3).

So assume that 
 = �. If m� = 1, then we have L ' Z�(�;�) and we can
take x = 1.

Assume from now on that m� > 1. Then R is of type E8 or F4; we have
m� = 2. The two composition factors L�;1 and L�;2 in D.6 arise as

L�;1 = Z�(�)=M
� ' Z�(�;�) (1)

and
L�;2 =M�0��= socZ�(�): (2)

We can take x = 1 if L ' L�;1. So we may assume that L ' L�;2.
Recall that � = �8 in type E8 and � = �4 in type F4. In both cases �0 is the

fundamental weight $� corresponding to �.
Set �0 equal to the unique simple root with (�;�0) < 0. Then �0 is short; we

have s��0 = �0 + � = s�0�.
Write I (as in D.7) for the set of simple roots di�erent from �. Let wI be the

longest element in WI . It is an involution and satis�es

wI�
0 = ��0 and wI� = �0 � �: (3)

Here the �rst equality follows from the fact that I is of type E7 or B3, hence that
wI acts as �1 on all of I. For the second equality note that � (resp. �0��) is the
unique weight in WI� that is antidominant (resp. dominant) with respect to I.
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Claim: The element w1 = s�wIs�0 satis�es

sbm(w1; �) � sbm(w1s�0 ; �) � sbm(w1s�0s�; �) � sbm(w1s�+�0 ; �) (4)

and

sbm(w1; �) � sbm(w1s�; �) � sbm(w1s�s�0 ; �) � sbm(w1s�+�0 ; �) (5)

and

sbm(w1s�0 ; �)= sbm(w1s�0s�; �) ' L�;2: (6)

Proof (of Claim): We have s��0 = �0 � � and s�0�0 = �0, hence

w1� = s�wI(�+ �0) = s�(�0 � �� �0) = �0 � �� �0

and
w1�

0 = s�wI(��
0) = s��

0 = �+ �0:

Since both w1� and w1�
0 are positive, we have in the Bruhat-Chevalley order

w1 < w1s�0 < w1s�0s� < w1s�0s�s�0 = w1s�+�0

and
w1 < w1s� < w1s�s�0 < w1s�s�0s� = w1s�+�0:

This yields (4) and (5) using C.8(11).
The second equality in (3) implies by C.12(2)

sbm(s�wI ; �) =M�0��: (7)

We get also s�wIs�(�) = �s�(�0 � �) = ��0, hence by Proposition D.4.a

sbm(s�wIs�; �) = socZ�(�): (8)

Using w1s�0 = s�wI and w1s�0s� = s�wIs�, we see that (6) follows from (2), (7),
and (8). This concludes the proof of the claim.

Now (4){(6) imply that L�;2 is a composition factor of one of the subsequent
quotients in (5). Because sbm(w1s�; �)= sbm(w1s�s�0 ; �) has � invariant contained
in f�0g by Lemma D.5.a, L�;2 cannot be a composition factor of this quotient. So
it is a composition factor of sbm(w2; �)= sbm(w2s�; �) with w2 = w1 or w2 =
w1s�s�0 . We have w1� = �0 � � � �0 and w1s�s�0� = w1�

0 = � + �0, hence
w2� 2 WI�. Now Lemma C.13 yields an element x 2 W with x� = � such
that sbm(w2; �)= sbm(w2s�; �) is a homomorphic image of Z�(x��;�). It follows
that L�;2 is a composition factor of Z�(x��;�). This implies the lemma because
Z�(x��;�) is simple by Lemma D.3.a.
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D.13. We want to have an analogue to Lemma D.12 for the simple modules
whose � invariant is a long simple root. Suppose that R is of type Bn, Cn, or F4;
if R is of type F4 assume that p > h+ 1. Set � = �1 if R is of type Bn or F4, set
� = �n if R is of type Cn. So � is a long simple root.

Let � be subregular with �(p�) = 0. We claim under these assumptions:

Lemma: Let � 2 C 0
0. Let 
 be a long simple root with 
 2 J(�). If L is a simple

module in C� with �(L) = f
g, then there exists an element x 2 W with x
 = �
and L ' Z�(x��;�).

Proof : As in D.12 it su�ces to prove the claim for one special subregular � with
�(p�) = 0.

Consider �rst R of type Bn. Then we may assume that � has the standard
Levi form considered in [10], Section 3. Now the claim follows from [10], 3.13.

Consider next R of type Cn. We may assume that �(x��i ) 6= 0 for all i < n.
So the set I as in D.7 is the set of all �i with i < n, henceWI ' �n the symmetric
group permuting all "j .

Write si = s�i . Set

xi = snsn�1 : : : si and yi = x1x2 : : : xi

for 1 � i � n. One checks inductively that

xi("j) =

8<:
"j ; if j < i
�"n; if j = i
"j�1; if j > i

and

yi("j ) =

�
�"n+1�j ; if j � i
"j�i; if j > i.

We have in particular yn("j ) = �"n+1�j for all j, hence yn 2WIw0. This implies

sbm(yn; �) = sbm(w0; �) = socZ�(�): (1)

We have (exercise) l(yn) = n(n+ 1)=2; therefore

yn = (snsn�1 : : : s1)(snsn�1 : : : s2) : : : (snsn�1)sn (2)

is a reduced decomposition of yn. Let zk be the product of the �rst k factors on the
right hand side in (2); then the sbm(zk; �) are a descending chain of submodules
in Z�(�). Since L is not isomorphic to the simple socle of Z�(�) it has to be a
composition factor of some sbm(zk; �)= sbm(zk+1; �). There exists a simple root 

with zk+1 = zks
; then each composition factor of some sbm(zk; �)= sbm(zk+1; �)
has � invariant contained in f
g, see D.5.a. This implies 
 = �n.

Now a look at (2) shows that either zk = z0 = 1 or that zk = yi for some
i < n. In the �rst case we get that L is a composition factor of

Z�(�)= sbm(sn; �) ' Z�(�;�n);
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hence that L is isomorphic to Z�(�;�n) since that module is simple (see D.3.a).
Suppose that we are in the second case. We have yi(�n) = 2"n�i for each

i < n. Now
2"n�i = s"n�i�"n(�n)

shows that
yi(�n) 2WI�n:

Now Lemma C.13 implies that sbm(yi; �)= sbm(yisn; �) is a homomorphic image
of Z�(x��; �n) with x = s"n�i�"nyn satisfying x�n = �n. Now the simplicity
(by D.3.a) of Z�(x��;�n) implies that this module is isomorphic to L; the lemma
follows.

We �nally turn to the case where R is of type F4. We may assume that
�(x��i ) = 0 for all i > 1. In other words, our set I consists now of all �i with
i > 1.

Let wI be the longest element in WI . We have

sbm(wIw0; �) = sbm(w0; �) = socZ�(�):

So L is a composition factor of Z�(�)= sbm(wIw0; �).
An elementary calculation shows that

wIw0 = s1s2s3s4s2s3s2s1s2s3s4s2s3s2s1: (3)

Since there are 15 factors on the right hand side, this is a reduced decomposition
of wIw0. Denote by xj the product of the �rst i factors on the right hand side of
(3). Then the sbm(xj ; �) are a descending chain of submodules in Z�(�) ending
in sbm(wIw0; �). So L is a composition factor of some sbm(xj ; �)= sbm(xj+1; �).

Now suppose that �(L) = f�2g. Then D.5.a implies xj+1 = xjs2, hence
j 2 f1; 4; 6; 8; 11; 13g. I claim that xj�2 2 WI�1 for these six j. If so, then we
get from Lemma C.13 that L is a composition factor of some Z�(x��;�1) with
x�2 = �1, hence by D.3.a isomorphic to such a module. Another elementary
calculation shows that

x1�2 = �1 + �2 = s2�1;

x4�2 = �1 + �2 + 2�3 = s3s2�1;

x6�2 = �1 + �2 + 2�3 + 2�4 = s4s3s2�1;

x8�2 = �1 + 2�2 + 2�3 = s2s3s2�1;

x11�2 = �1 + 2�2 + 2�3 + 2�4 = s2s4s3s2�1;

x13�2 = �1 + 2�2 + 4�3 + 2�4 = s3s2s4s3s2�1:

The claim follows and we are done for i = 2. (Actually, for j = 1; 4; 6 one
could have quoted C.14(3) since the corresponding xj have the form s1w� with
� 2WI�1.)
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Assume now that i = 1. The approach above does not work because x7�1 =
$1 =2WI�1. Set J = f�1; �2; �3g and use the abbreviation

Z�;J(�;�1) = U�(pJ )
U�(p�1)
L�;�1(�)

for all � 2 X. Recall the notation Z�;J(�) from B.6(1).

The nilradical of pJ acts trivially on each Z�;J (�), the centre of the standard
Levi factor gJ acts via scalars. Now gJ is the direct sum of its centre and its
derived Lie algebra DgJ [since p 6= 2.] So a composition series of Z�;J(�) is the
same as one as a DgJ{module.

The Lie algebraDgJ has type B3. Assume for the moment that the restriction
of � to DgJ has the standard Levi form considered in [10]. The results in [10] show
then that Z�;I(�) has a composition series with factors (among others)

Z�;J (�;�1) and Z�;J (s�1+2�2+2�3��;�1):

[If we take �1 = � in [10], then we can take �5 = s�1+2�2+2�3��.] Induction to g

yields a chain of submodules in Z�(�) with

Z�(�;�1) and Z�(s�1+2�2+2�3��;�1)

among the factors. Since these two modules are simple with � invariant f�1g and
since each composition series of Z�(�) has only two factors with this � invariant,
our L has to be isomorphic to one of them.

It remains to be shown that we can choose � such that its restriction of � to
DgJ has the desired standard Levi form. Well, consider � with �(p�) = 0 and
�(x��) 6= 0 if and only if � 2 f�2; �3; �4; �1 + �2 + �3 + �4g. It is not di�cult
to check that the centraliser of � in g has dimension 6. This implies that � is
subregular. (See [20], p. 38, on the connection between centralisers in G and g.)
On the other hand, the restriction of � to DgJ has clearly the required form.
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E

We return to the more general set-up from Section A. We assume that G satis�es
(B1) and (D1).

E.1. Let � 2 g� have Jordan decomposition � = �s + �n. Assume that we have

�s(n
� + n+) = 0 and �n(b

+) = 0: (1)

Then the assumption that � = �s + �n is a Jordan decomposition means that

�s(h�) = 0 for all � 2 R with �n(x�) 6= 0. (2)

Set R1 equal to the set of all roots � with �s(h�) = 0. This is a root subsystem
of R; it satis�es R1 = R \QR1 because we assume the characteristic to be good.
The centraliser l of �s is given

l = h�
M
�2R1

g�: (3)

This is a Levi subalgebra of some parabolic subalgebra of g. This parabolic subal-
gebra is not uniquely determined. We choose it as follows: We �rst choose a basis
of the root system R1 such that R1 \R+ is the set of positive roots with respect
to this basis. Then we extend this basis of R1 to a basis of R. (This is possible
since R1 = R \QR1, see [1], Ch. VI, x1, prop. 24.) Set u equal to the direct sum
of all g� with � positive with respect to this new basis and not in R1. Then l� u

is a parabolic subalgebra of g with nilradical u.
Now Kac & Weisfeiler (or rather Friedlander & Parshall, [6], Thm. 3.2) tell

us: The functor V 7! V u is an equivalence of categories from U�(g){modules to
U�(l){modules. We have

dim(V ) = pdim u dim(V u) (4)

for all these V . (It is here that we need (B1) and (D1). In [6] one assumes also
that G is semi-simple, but that is not necessary, cf. [11], 7.4.)

E.2. Keep the assumptions from E.1. We want to evaluate the functor V 7! V u

on certain induced modules.
Let I be a subset of the set of simple roots and let pI � b+ be the correspond-

ing standard parabolic subalgebra. Assume that � satis�es in addition

�s(h�) = 0 for all � 2 I and �n(pI) = 0: (1)

Let gI be the standard Levi factor of pI (i.e., the direct sum of h and all g� with
� 2 R \ ZI).

LetM be a �nite dimensionalU�(gI ){module. ExtendM to a pI{module such
that the nilradical of pI acts trivially. We get thus a U�(pI){module because �
vanishes on that nilradical. This leads then to the inducedmodule U�(g)
U�(pI)M .
We want to describe (U�(g) 
U�(pI)M)u. We shall identify each m 2M with the
element 1
m in the induced module.

We shall need some additional notation: Set R+
2 (resp. R+

3 ) equal to the set
of all positive roots � with g�� � u (resp. g� � u). So u is the direct sum of all
g� with � 2 (�R+

2 ) [R
+
3 .
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Lemma: If m runs through a basis of M , then the set of allY

>0;
2R1nZI

x
r(
)
�


Y
�2R+

2

xp�1�� m (2)

with 0 � r(
) < p for all 
 2 R1 n ZI is a basis of (U�(g) 
U�(pI) M)u.

Proof : Let me abbreviate V = U�(g) 
U�(pI)M . All

Y

>0;
2R1nZI

x
r(
)
�


Y
�2R+

2

x
r(�)
��

Y
�2R+

3

x
r(�)
�� m (3)

with m as above and all exponents runnning from 0 to p� 1 are a basis of V . The
elements in (2) are a subset of this basis, hence linearly independent.

We have dimu = jR+
2 j + jR+

3 j. Therefore a comparison of (3) and (2) shows
that the elements in (2) span a subspace of dimension equal to dim(V )=pdim u.
This is by E.1(4) also the dimension of V u. So the claim will follow if we can show
that all elements in (2) belong to V u.

There exists a group homomorphism d : ZR ! Z with d(�) = 0 for all
� 2 R1 and d(�) > 0 for all � 2 R with g� � u, i.e., for all � 2 (�R+

2 ) [ R
+
3 .

(If � belongs to the basis of R used to construct u in E.1, then set d(�) = 1 if
� =2 R1 and d(�) = 0 otherwise.) We get then a Z{grading on g such that each g�
is homogeneous of degree d(�) and such that h is homogeneous of degree 0. Then
l is the homogeneous component of degree 0 and u is the sum of the homogeneous
components of positive degree. This induces a grading on U(g) and then also on
U�(g). (For the last claim one uses that � vanishes by E.1(2) on all x� not in l.)

The subalgebra pI of g is graded (since it is spanned by h and certain x�, hence
by homogeneous elements). If we giveM the trivial grading (where everything has
degree 0), then it becomes a graded pI{module. (The homogeneous components
of pI of non-zero degree belong to the nilradical of pI and act as 0.) This leads
then to a grading on the induced U�(g){module V .

Each basis element in (3) is homogeneous [of degree �
P
r(�)d(�)]. We get

elements of maximal degree if we choose r(�) = p � 1 whenever d(�) < 0, and
r(�) = 0 whenever d(�) > 0. We have to admit arbitrary m and arbitrary r(�)
whenever d(�) = 0. If � 2 R+, then we have d(�) = 0 if and only if � 2 R1, and
d(�) < 0 if and only if g�� � u if and only if � 2 R+

2 . It follows that the elements
in (2) are precisely the elements in (3) that have maximal degree. So they are a
basis for the homogeneous component of maximal degree of V . Since each x� 2 u

maps an element of some degree to an element of higher degree, all elements in
(2) are annihilated by u. The lemma follows.

E.3. Lemma: We have

x

Y
�2R+

2

xp�1�� m =
Y
�2R+

2

xp�1�� x
m (1)
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for all 
 2 R1 and m 2M .

Proof : Let me abbreviate x =
Q

�2R+

2

xp�1�� . We have to show that x
x � xx

annihilates M � V .

Since u is the nilradical of l� u, we have [l; u] � u. So x
 2 l implies that

x
x� xx
 2 U(u):

We can express this commutator in terms of a PBW basis of U(u). So x
x� xx

is a linear combination of monomials of the formY

�2R+

2

x
a(�)
��

Y
�2R+

3

x
b(�)
� (3)

with non-negative integers a(�); b(�).
Now x
x � xx
 and all monomials in (3) are eigenvectors for the adjoint

action of T . We can therefore assume that only monomials occur that have the
same weight as x
x� xx
 , i.e., withX

�2R+

3

b(�)� �
X
�2R+

2

a(�)� = 
 � (p � 1)
X
�2R+

2

�: (4)

If b(�) > 0 for some � 2 R+
3 , then the term in (3) annihilates M since x� belongs

to the nilradical of pI , hence annihilatesM . In order to prove our claim it therefore
su�ces to look at the terms in (3) with b(�) = 0 for all � 2 R+

3 . Then (4) reduces
to X

�2R+

2

(p� 1� a(�))� = 
: (5)

If a(�) � p for some � 2 R+
2 , then x

a(�)
�� acts as 0 on V since �(u) = 0; hence so

does the monomial in (3). So we may assume that a(�) � p � 1 for all � 2 R+
2 .

Note that then a(�) < p� 1 for at least one �, since otherwise we get 0 = 
.
Recall now the homomorphism d : ZR! Z used in the proof of Lemma E.2.

It satis�es d(
) = 0 since 
 2 R1, and d(�) < 0 for all � 2 R+
2 . If we assume in

(5) that a(�) � p � 1 for all � and a(�) < p � 1 for at least one �, then the left
hand side has a negative image under d. This contradicts d(
) = 0. So (5) cannot
have a solution with a(�) � p � 1 for all � 2 R+

2 . Therefore all monomials from
(3) annihilate M ; the claim follows.

E.4. Set �0 equal to half the sum of the positive roots in R1.

Lemma: We have h�� �0; 
_i =
P

�2R+

2
h�; 
_i for all 
 2 R1.

Proof : Let 
 2 R1. Set ai =
P

�2R+

i
h�; 
_i for i = 2; 3. Since R+ is the disjoint

union of R+ \R1, R
+
2 , and R

+
3 , we get

h�� �0; 
_i =
1

2
(a2 + a3): (1)



47

Because u is the nilradical of a parabolic subalgebra with Levi factor l � h, the
set of all � with g� � u is stable under the Weyl group of l. Now s
 belongs to
that Weyl group; this implies s
((�R

+
2 ) [ R

+
3 ) = (�R+

2 ) [R
+
3 , hence

0 =
X

�2(�R+

2
)[R+

3

h�; 
_i = �a2 + a3:

So a2 = a3; plugging this into (1) we get our claim.

E.5. Set

�1 =
X
�2R+

2

�: (1)

Each � 2 I belongs to the basis of R with positive system R+, and it belongs to
the basis of R1 with positive system R+ \R1. This implies h�; �_i = 1 = h�0; �_i.
So Lemma E.4 shows that h�1; �_i = 0, hence �1(h�) = 0 for all � 2 I. It follows
that �1 vanishes on the intersection of h with the derived Lie algebra of gI . We get
therefore a one dimensional gI{module where each x� with � 2 R \ ZI acts as 0,
and each h 2 h as �1(h). This is a restricted gI{module. Its tensor product with
a U�(gI ){module, say N , is again a U�(gI ){module; we shall denote it be N 
 �1.

Proposition: Let M be a �nite dimensional U�(gI){module extended trivially to

a U�(pI){module. Then we have an isomorphism of U�(l){modules

(U�(g) 
U�(pI)M)u ' U�(l) 
U�(l\pI) (M 
 �1): (2)

Proof : Abbreviate the left hand side in (2) by M 0. Write x =
Q

�2R+

2
xp�1�� .

Lemma E.3 implies that the subspace xM of M 0 is stable under all x
 satisfying

 2 R1 \R+ or 
 2 (�R+) \ZI. (Note that M is stable under these x
 .) On the
other hand, we have for all h 2 h and m 2M

h xm = xhm�
X
�2R+

2

(p� 1)�(h) xm = xhm+ �1(h) xm: (3)

Because l \ pI is spanned by h and the x
 as above, it follows that xM is a
U�(l\pI ){submodule ofM 0. Formula (3) and Lemma E.3 show that this submodule
is isomorphic to M 
 �1.

The universal property of an inducedmodule yields a homomorphismof U�(l){
modules

U�(l)
U�(l\pI) xM !M 0; u
 xm 7! uxm:

Lemma E.2 implies that this map is bijective. The claim follows.
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E.6. We now drop the assumptions �xed throughout E.1{5 and consider a more
general situation.

Let � = �0 + �1 2 g� with

�0(n
� + n+) = 0 and �1(b

+) = 0: (1)

So this looks like E.1(1); but we no longer assume that � = �0 + �1 is a Jordan
decomposition, i.e., the analogue of E.1(2) will not hold in general.

On the other hand, we �x again a set I as in E.2 and assume the analogue of
E.2(1):

�0(h�) = 0 for all � 2 I and �1(pI) = 0: (2)

Let PI be standard parabolic subgroup of G with Lie algebra pI . Denote its
unipotent radical by Ru(PI ). For each g 2 Ru(PI) and all x 2 pI the di�erence
Ad(g�1)(x)�x belongs to the nilradical of pI . Since � vanishes on that nilradical,
we get

(g � �)jpI = �jpI : (3)

(Recall that (g � �)(x) = �(Ad(g�1)(x)).

Lemma: There exist g 2 Ru(PI) and �01 2 g� with �01(pI) = 0 such that g �� has

Jordan decomposition g � � = �0 + �01.

Proof : This follows from the proof in Subsection 3.8 in [13]. If we apply the
construction there to our � (as their l), then we get an element g 2 G such that
g �� has Jordan decomposition g �� = �0+�01 where �

0
1 = g ����0. We just have

to check that the g used there actually is in Ru(PI ). (If so, then we get �01(pI) = 0
from �1(pI ) = 0, since �01 coincides by (3) with �1 on pI .)

Well, in [13] one considers the set (denoted by �) of all positive roots � with
�(h�) 6= 0. Then g is constructed as a product of elements from the root subgroups
U� with � 2 �. Now our assumption (2) says that � � R+ nZI. This implies that
g 2 Ru(PI ) as claimed.

E.7. Keep the assumptions of E.6 and choose g as in Lemma E.6. We can
apply E.1{5 with �s = �0, �n = �01 and with � replaced by g�. Set in particular
R1 = f� 2 R j �0(h�) = 0g and l = h�

L
�2R1

g�. We get also �1 as in E.5(1).

Proposition: There exists an equivalence of categories

F : U�(g){modules ! Ug�(l){modules

such that

F(U�(g)
U�(pI)M) ' Ug�(l)
U�(l\pI) (M 
 �1) (1)

for all �nite dimensional U�(gI){modules M extended trivially to a pI{module.

Proof : We construct F as a composition of two equivalences. The �rst one is

U�(g){modules ! Ug�(g){modules; V 7! gV (2)
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where gV is equal to V as a vector space and where each x 2 g acts on gV as
Ad(g�1)(x) acts on V .

In case V = U�(g) 
U�(pI)M with M as above one checks easily that

gV ' Ug�(g) 
Ug�(Ad(g)pI)
gM ' Ug�(g) 
U�(pI)

gM:

For the second equality use that Ad(g)pI = pI since g 2 Ru(PI) and apply E.6(3).
For each x 2 pI the di�erence Ad(g�1)x � x belongs to the nilradical of pI. This
nilradical acts trivially on M . Therefore gM is isomorphic to M as a pI{module.
We get thus

gV ' Ug�(g) 
U�(pI)M: (3)

Let F be the composition of the functor in (2) with the equivalence of cate-
gories V 0 7! (V 0)u from [6], with u as in E.1. Then F is an equivalence of categories
from U�(g){modules to Ug�(l){modules with F(V ) = (gV )u. Combining (3) and
Proposition E.5 we get (1).

F

We assume in this section that (B1), (B2), and (D1) hold. From F.5 on we shall
also assume (D2).

F.1. Let � be a simple root. We write (as before) p� = b+ � g�� for the
corresponding minimal parabolic subalgebra of g. Let 
 be a root orthogonal to
�.

We want to show:

Proposition: Suppose that the root system R \ (Q� +Q
) has type A1 �A1 or

B2. In the second case assume that � is a short root in that subsystem. Then we

have

Homg(Z�(s
 ��;�); Z�(�;�)) 6= 0 (1)

for all � 2 X and all � 2 g� with �(p�) = 0.

The proof will occupy the following subsections until F.4. We shall �rst prove
the proposition in the rank 2 case (i.e., if R = R \ (Q� +Q
)) and then use the
`old S' to reduce to that case.

Remark : This proposition does not generalise to the situation where R\(Q�+Q
)
has type B2 and where � is long. For example, if R is of type B2, then [10],
3.13 shows that there exist simple modules Z�(�1; �1) and Z�(�3; �1) that are not
isomorphic to each other, but where �3 = s
��1 with 
 the positive root orthogonal
to �1.

F.2. Lemma: Proposition F.1 holds if R is of type A1 �A1.

Proof : In this case also 
 is a simple root. Let e be the integer with 0 � e < p and
h� + �; �_i � e (mod p). Let v (resp. v0) be the standard generator of Z�(�;�)
(resp. of Z�(s
��;�)). Using [x��; x�
 ] = 0, one checks easily that there exists a
homomorphism between our two modules that maps v0 to xe�
v.
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F.3. Lemma: Proposition F.1 holds if R is of type C2.

Proof : The assumption (D1) implies in this case that p 6= 2. It follows that the
derived Lie algebra of g is simple and that g is the direct sum of its centre and of
its derived Lie algebra Dg. The centre (equal to the intersection in h of all ker(�)
with � 2 h acts on Z�(�;�) and Z�(s
 ��;�) via the same linear form. So we can
replace g in F.1(1) by Dg. When we regard a Z�(�) as a Dg{module we get again
a baby Verma module. An analogous result holds for the Z�(�; �). Therefore it
su�ces to prove the claim for Dg instead of g.

So assume from now on that G is semi-simple. Let � be the second simple
root (besides �). Recall that we suppose in this case that � is short, hence � long.
Since 
 is orthogonal to �, we have 
 2 f�(�+ �)g and s
 = s�s�s�.

Assume that � is subregular with �(x��) 6= 0. (Such � are by D.1 dense in
the set � of all � 2 g� with �(p�) = 0. Therefore Proposition A.7 implies that it
su�ces to prove the claim for these �.)

Since C0 is a fundamental domain for the a�ne Weyl group, there exist � 2
C0, w 2W , and � 2 X with � = w��+ p�. We can actually assume that � 2 C 0

0:
If � 2 C0 n C 0

0, then h� + �; 
_i = p. In this case one checks (using p 6= 2) that
�0 = s�w0��+ p$� belongs to C 0

0 and replaces � by �0.
Because any Z�(�1; �) depends only on the coset of �1 modulo pX, we see

that it su�ces to show that

Homg(Z�(s
w��;�); Z�(w��;�)) 6= 0 (1)

for all � 2 C 0
0 and w 2W .

This is now done case-by-case. We �rst assume that � is regular, i.e., that
h� + �; �_i > 0 and h� + �; �_i > 0. Then Z�(�) has length 4. We denote the
composition factors as in D.6 by L� [short for L�;1], L�;1, L�;2, and L0. (We know
in this case actually that L�;1 and L�;2 are not isomorphic to each other; but that
will not play a role here.)

The chain of submodules from D.7(3) is in our situation

Z�(�) �M� �M�+� � 0:

We have
Z�(�) = sbm(1; �) = sbm(s� ; �);

M� = sbm(s�; �) = sbm(s�s�; �);

and

M�+� = sbm(s�s�; �) = sbm(s�s�s�; �) = sbm(s�s�s�; �) = sbm(w0; �);

where the equality M�+� = sbm(w0; �) was observed in D.9, right after D.9(1).
We have Z�(�)=M

� ' L� and M�+� ' L0. Let me use the abbreviation
M = M�=M�+�. This module has length 2 with composition factors L�;1 and
L�;2.
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We have w�1� = � for w = 1 and w = s
. Therefore Lemma D.3.a and
Lemma D.5.c imply that Z�(w��;�) is [for these two w] simple with � invariant
f�g, hence satis�es

Z�(�;�) ' L� ' Z�(s
 ��;�): (2)

We have w�1� = ��0 for w = s�s� and w = s�s�s�, hence by D.4

Z�(s�s���;�) ' L0 ' Z�(s�s�s���;�): (3)

Clearly (2) and (3) imply (1) for all w 2 f1; s�s�; s�s�s�; s�s�s�g

In order to get the result for the remaining w 2W , we recall that we have for
all w 2W an exact sequence

0! Z�(s�w��;�) �! Z�(w��) �! Z�(w��;�)! 0: (4)

Using (2) and (3) we see that the remaining Z�(w��;�) have composition factors

L�;1; L�;2; L0 for w = s� and w = w0,

L�;1; L�;2; L� for w = s� and w = s�s�.

Note that w0 = s
s� and s�s� = s
s� .
We have M� ' Z�(s���;�) by C.12(4), hence a short exact sequence

0! L0 �! Z�(s���;�) �!M ! 0: (5)

The isomorphism Z�(�)
�
�! Z�(s���) induces a surjective homomorphism from

Z�(�) onto Z�(s���;�). The kernel of this map has to be isomorphic to L0, hence
equal to the socle M�+� of Z�(�). This leads to a short exact sequence

0!M �! Z�(s���;�) �! L� ! 0: (6)

The isomorphism Z�(s���)
�
�! Z�(s�s���) induces a surjective homomorphism

from Z�(s���) onto Z�(s�s���;�). The kernel of this map has to be isomorphic
to L0. Therefore the submodule Z�(�;�) ' L� of Z�(s���) is mapped isomor-
phically onto a submodule of Z�(s�s���;�). The corresponding factor module
of Z�(s�s���;�) is a homomorphic image of Z�(s���;�). The surjection from
Z�(s���;�) onto this image has kernel isomorphic to L0. Since Z�(s���;�) has
only one submodule isomorphic to L0, that image has to be isomorphic to M . We
get therefore a short exact sequence

0! L� �! Z�(s�s���;�) �!M ! 0: (7)

Applying (4) with s�w = w0, we see that Z�(w0��;�) is isomorphic to a submodule
of Z�(s�s�s���), hence to one of Z�(s�s���). Here we also have a submodule
isomorphic to Z�(s���;�). A look at the composition factors shows that the sum
of these two submodules has to be all of Z�(s�s���) and that their intersection
has to have composition factors L�;1 and L�;2. Another look at the composition
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factors shows that Z�(s���;�) has only one submodule with this property; this
submodule is by (6) isomorphic toM . Therefore also Z�(w0��;�) has a submodule
isomorphic to M ; we get thus a short exact sequence

0!M �! Z�(w0��;�) �! L0 ! 0: (8)

Comparing (5) with (8) and (6) with (7) we get now (1) also for the remaining
four elements in W .

We now turn to singular �. Suppose �rst that h�+�; �_i > 0 and h�+�; �_i =
0. Then Z�(�) has length 2 with composition factors L� and L0. We have now

Z�(s���;�) = Z�(�;�) ' L� ' Z�(s
 ��;�) = Z�(s�s���;�)

and

Z�(s���;�) = Z�(s�s���;�) ' L0 ' Z�(s�s�s���;�) = Z�(w0��;�):

So the claim follows in this case.
If h�+ �; �_i = 0 = h�+ �; �_i, then w�� = � for all w 2W and the claim is

trivial. So we are left with the case where h�+�; �_i = 0 and h�+�; �_i > 0. We
have now w�� = s
w�� for all w 2 fs�; s�s�; s�s� ; s�s�s�g, so the claim is trivial
for these elements. On the other hand, we have now

Z�(s���;�) = Z�(�;�) = Z�(�) ' Z�(s���)

and
Z�(w0��;�) = Z�(s�s�s���;�) = Z�(s�s�s���) ' Z�(s�s���):

So it su�ces to show that there are non-zero homomorphisms (in both directions)
between Z�(s���) and Z�(s�s���). But there exists a non-zero homomorphism
from Z�(s���) to Z�(�) for all � 2 X: This is trivial in case h� + �; �_i 2 Zp;
otherwise take '�� as in A.4(2).

F.4. We now begin the proof of Proposition F.1 in general. Set

X1 = f f 2 h� j f(h�) = �(h�); f(h
 ) = �(h
) g: (1)

Recall the notation Z(f; �; �) from A.6(3). Note that Z�(�;�) = Z(�; �; �) and
Z�(s
��; �) = Z(� � a
; �; �) where a is the integer with 0 � a < p and a �
h� + �; 
_i.

Proposition A.7 implies that the set of all f 2 X1 with

Homg(Z(f � a
; �; �); Z(f; �; �)) 6= 0 (2)

is closed in X1. Proposition F.1 claims that d� belongs to this closed set. This
will follow when we can show that (2) holds for all f in an open and dense subset
of X1.
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Since we assume p to be good, h� and h
 are linearly independent in h.
Therefore X1 is an a�ne subspace of h� of codimension 2.

If � is a root in Q� + Q
, then h� 2 Kh� + Kh
 in h (since p is good).
Each f 2 X1 coincides with � (or rather d�) on h� and h
, hence on all h� with
� 2 R \ (Q�+Q
). We have then f(h�) 2 Fp and �(f)(h� ) = 0 (recall A.2) for
these �.

On the other hand, if � 2 R+ with � =2 Q� +Q
, then h� is linearly inde-
pendent of h� and h
 (since p is good). It follows that we can �nd f 2 X1 with
f(h�) =2 Fp. Therefore the set

X
reg
1 = f f 2 X1 j f(h�) =2 Fp for all � 2 R+, � =2 Q�+Q
 g (3)

is open and dense in X1. By our remarks above, Proposition F.1 will follow from:

Claim: Each f 2 X
reg
1 satis�es (2).

Proof (of Claim): Let f 2 X
reg
1 . The de�nition of Xreg

1 implies (cf. A.2)

f� 2 R j �(f)(h� ) = 0g = R \ (Q� +Q
): (4)

We want to apply E.6/7 with �0 = �(f) and �1 = � and I = f�g. [So the � in
E.6 is our present �(f) +�.] The Lie subalgebra l as in E.7 is by (4) now equal to

l = h �
M

�2R\(Q�+Q
)

g�: (5)

We get from E.6 a linear form, say �0, on g [denoted by �01 in E.6] with �0(p�) = 0
such that �(f) + �0 is the Jordan decomposition of some conjugate of �(f) + �.
Furthermore E.7 yields an equivalence of categories F . Its description in E.7(1)
involves a certain element �1 2 X satisfying �1(h�) = 0. The last property implies
by A.3(4) for all � 2 X

L�(f);�(f + �) 
 �1 ' L�(f);�(f + � + �1):

Therefore E.7(1) applied to M = L�(f);�(f + �) yields

F Z(f + �; �; �) ' Z�(f)+�0(f + � + �1; �; l) (6)

using the notation from A.5.
Note that d��f is a linear form on h that vanishes on Kh�+Kh
 . So A.4(5)

applied to l instead of g yields

Z�(f)+�0(f + �; �; l) 
Kd��f ' Z�0(� + �; �; l) (7)

for all � 2 X. Set now F 0 equal to the composition of F with the functor N 7!
N
Kd��f . Then F

0 is again an equivalence of (appropriate) categories; it satis�es
by (6) and (7)

F 0 Z(f + �; �; �) ' Z�0(� + � + �1; �; l):



54

So the Hom space in (2) is isomorphic to

Homl(Z�0(� � a
 + �1; �; l); Z�0(� + �1; �; l)): (8)

Note that l is the Lie algebra of some reductive group satisfying the same
assumptions as G. Furthermore l is either of type A1�A1 or C2. So we can apply
Lemma F.2 or Lemma F.3 and get

Homl(Z�0(s
�
0�0; �; l); Z�0(�

0; l)) 6= 0 (9)

for all �0 2 X. Here �
0 is the dot action for l, de�ned as w�

0� = w(�+�0)��0 where
�0 is half the sum of the positive roots in R \ (Q�+Q
). We have h�� �0; 
_i =
h�1; 
_i by Lemma E.4 and the de�nition E.5(1). This implies

s
�
0(� + �1) = �+ �1 � h�+ �1 + �0; 
_i
 = �+ �1 � h� + �; 
_i


= (s
��) + �1 � �� a
 + �1 (mod pX):

So we can rewrite the �rst module in (8) as Z�0(s
 �
0(�+ �1); �; l). Now (9) implies

that the Hom space in (8) is non-zero. This yields the claim, hence Proposition
F.1.

F.5. We now return to the situation from Theorem D.6. So we assume in addition
that (D2) holds. Let � 2 g� be subregular nilpotent. We exclude the case where
R is of type G2; if R is of type E8 or F4, we assume that p > h+ 1. (The results
here as well as in F.6{11 hold in these cases also for p � h+1 provided the socle of
Z�(�) as in D.4 has the expected dimension.) Recall the de�nition of the integers
m
 from D.6(1).

Theorem: Let � 2 C 0
0. Let 
 be a short root with 
 2 J(�). If L1 and L2

are composition factors of Z�(�) with �(L1) = �(L2) = f
g, then L1 ' L2. If

�(b+) = 0, then L1 has multiplicity m
 as a composition factor of Z�(�).

Proof : Lemma B.13 and D.5(3) show: If this theorem holds for one subregular �,
then it holds for all subregular �. Assume from now on that we choose � and the
simple root � as in D.12. We get then from Lemma D.12 elements x1, x2 2 W
with xi
 = � and

L1 ' Z�(x1��;�); L2 ' Z�(x2��;�):

We have x1x
�1
2 � = �. Since W is a re
ection group, there are roots 
1,


2; : : : ; 
r with x1x
�1
2 = s
1s
2 : : : s
r and s
i� = � for all i.

Set yi = s
is
i+1 : : : s
rx2 for 1 � i � r + 1; we get in particular y1 = x1 and

yr+1 = x2. We have y�1i � = 
 for all i and yi = s
iyi+1 for all i � r. If we can
show that Z�(yi��;�) and Z�(yi+1��;�) are isomorphic to each other for all i � r,
then the claim will follow.

This shows that we may assume that there exists a root 
0 orthogonal to �
with x2 = s
0x1. Since � is short and since we exclude type G2, we can apply
Proposition F.1 and get

Homg(Z�(x1��;�); Z�(x2��;�)) 6= 0:

This implies that these modules are isomorphic to each other, since they are simple.
The claim on [Z�(�) : L1] follows now from Theorem D.6.
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Remark : Suppose that all roots in R have the same length. Then the theorem
says that C� has 1 + jJ(�)j isomorphism classes of simple modules. For p{regular
�, i.e., if J(�) consists of all simple roots, this con�rms a conjecture of Lusztig,
see [15], 14.5, [17], 2.4, and [18], 17.2.

F.6. Let � 2 C 0
0. It is clear that modules in C� with distinct � invariants are not

isomorphic to each other. Given Theorem F.5 the main open problem (besides
type G2 and the restriction on p in the types E8 and F4) is the classi�cation of
the simple modules with � invariant a long simple root. Unfortunately our results
are not as complete as in the case treated in F.5.

Let again � be subregular. Assume that R has type Bn, Cn, or F4; if R is of
type F4, assume that p > h+ 1.

Proposition: Let � 2 C 0
0. Let 
 be a long root with 
 2 J(�). If R has type Bn,

then there are two isomorphism classes of simple modules with � invariant f
g.
In the other cases there are at most two such isomorphism classes.

Proof : As in F.5 we get: If this theorem holds for one subregular �, then it holds
for all subregular �.

If R is of type Bn then we assume that � has the form as in [10], Section
3. In this case the claim follows from the results in [10]: If 
 = �i, then the two
isomorphism classes are represented by L�(�i) and L�(�2n�i) in the notation from
[10].

Assume now that R has type Cn. Then 
 has to be equal to �n. We may
assume that �(p�n ) = 0. Set

W1 = fw 2 W j w�n = �ng:

Recall that all Z�(x��;�n) with x 2W1 are simple with � invariant f�ng, see D.3.a
and D.5.c. On the other hand, each simple module L in C� with �(L) = f�ng is
by D.13 isomorphic to some Z�(x��;�n) with x 2W1

Since W1 is generated by all s� with � orthogonal to �n = 2"n, it is clear
that W1 is the Weyl group of the root system R1 = R \

P
i<nQ"i. This is a root

system of type Cn�1. The short roots in R1 are a root system R2 of type Dn�1;
denote the corresponding Weyl group by W2. Then W2 has index 2 in W1 and we
have

W1 =W2 [W2s2"n�1
: (1)

If 
 is in R2, then R \ (Q�n + Q
) is of type A1 � A1. Then Proposition F.1
implies for all x 2 W1 that Z�(x��;�n) is isomorphic to Z�(s
x��;�n). So (1)
shows for all x 2W1 that

Z�(x��;�n) '

�
Z�(�;�n); if x 2W2;
Z�(s2"n�1

��;�n); if x =2W2.
(2)

So there are two possibilities: Either all Z�(x��;�n) are isomorphic to Z�(�; �n),
or these modules fall into two isomorphism classes.
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Consider �nally R of type F4. We may assume that �(p�1) = 0. The set of
roots orthogonal to �1 is a root system of type C3. (Note that �1 is conjugate
to the largest root, i.e., to $1.) A basis of this root system is �4, �3, "2 + "3 =
�1 + 2�2 + 2�3. The stabiliser W1 of �1 is the Weyl group of this subsystem.
The short roots orthogonal to �1 form a root system of type D3 = A3. The
corresponding Weyl group W2 is a subgroup of index 2 in W1; we have

W1 =W2 [W2s"2+"3 : (3)

We have 
 2 f�1; �2g. The simple modules in C� with � invariant f
g are
(by D.3.a, D.5.c and D.14) the Z�(x��;�1) with x 2W and x
 = �1. The x with
this property are a coset for W1, in fact equal to W1 in case 
 = �1, equal to
W1s2s1 in case 
 = �2. Proposition F.1 implies for all w 2 W2 (and x as above)
that Z�(wx��;�1) ' Z�(x��;�1). This yields for all x 2W1 in case 
 = �1

Z�(x��;�1) '

�
Z�(�;�1); if x 2W2,
Z�(s"2+"3��;�1); if x =2W2,

(4)

and in case 
 = �2

Z�(xs2s1��;�1) '

�
Z�(s2s1��;�1); if x 2W2,
Z�(s"2+"3s2s1��;�1); if x =2W2.

(5)

Remark : Lusztig's conjectures predict that we should have two classes also for
types Cn and F4.

F.7. Given � 2 g� each g 2 CG(�) (the stabiliser of � under the coadjoint action)
permutes the isomorphism classes of simple U�(g){modules via L 7! gL. Since
there are only �nitely many classes, one sees easily that CG(�)0, the connected
component of the identity in CG(�), acts trivially. So does the centre Z(G).
This means that we are really looking at an action of the \component group"
A(�) = CG(�)=(Z(G)CG(�)0). (It is really the component group for the adjoint
group.)

Note that this action is \the same" for all � in a �xed G{orbit: Given h 2 G we
have CG(h�) = hCG(�)h�1; therefore conjugation with h induces an isomorphism
A(�)

�
�! A(h�). Furthermore, the map L 7! hL induces a bijection from the

set of isomorphism classes of simple U�(g){modules to the corresponding set for
Uh�(g). This bijection is compatible with the actions of A(�) and A(h�) identi�ed
as above.

We have used before that U(g)G acts on gL as it does on L. Therefore the
action of A(�) permutes (for � nilpotent) the simple modules in each C�. (For
general � one would have to introduce a new notation.) By D.5(3) the action of
A(�) preserves the � invariant (when de�ned).

Suppose now that � is subregular and nilpotent. If all roots have the same
length, then F.5 and the remarks above show that A(�) acts trivially. Actually,
we have in these cases A(�) = 1 at least for large p, see [20], 7.5.

In the next subsections we are going to prove:
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Proposition: Suppose that R has type Bn, Cn, or F4; if R has type F4, assume

that p > h+ 1. Let � 2 C 0
0, let 
 be a long root with 
 2 J(�). If � is subregular,

then A(�) permutes transitively the isomorphism classes of simple modules in C�
with � invariant f
g.

Remarks: 1) We have A(�) ' Z=2Z for the groups considered in the proposition,
at least if p is large, see [20], 7.5. (In types Bn and Cn it su�ces to assume that
p > 2, see [21], IV.2.26.)

2) The claim is of course trivial in the (unexpected) case that there is only one
isomorphism class of such modules. If however there are two and if L and L0 are
representatives for these classes, then the proposition implies [by B.13(3)] that
L and L0 occur with the same multiplicity in Z�(�) in case �(b+) = 0. That
multiplicity has then to be equal to m
=2 in the notation from D.6(1).

F.8. We look �rst at type Bn. I shall now use freely the notations and assump-
tions from [10], Section 3. In particular, we have � subregular with �(x��) 6= 0 if
and only if � 2 f�2; �3; : : : ; �ng. We work with an arbitrary � 2 C0.

We can �nd in NG(T ) a representative g of s"1 with g� = �. (Each represen-
tative g will satisfy Ad(g)x��i 2 Kx��i for all i > 1 since s"1�i = �i. Multiplying
g with a suitable element in T we can get Ad(g)x��i = x��i for all i > 1. Then
g� = � holds.)

Claim: Suppose that 1 � i � 2n with bi < bi+1. Then

gL�(�i) '

�
L�(�2n�i) 
 4(n� 1)p; if i < 2n
L�(�2n) 
 (4n � 2)p; if i = 2n

as U�(g){T0{modules.

Proof : Recall that T0 is the one parameter subgroup of T corresponding to 2"1,
see [10], 3.2. This implies that gtg�1 = t�1 for all t 2 T0. One checks easily that
the Lie subalgebra m from [10], 3.4 is stable under Ad(g). It follows that

( gM)m = g(Mm)

for each U�(g){T0{module M . Furthermore the weights of T0 on ( gM)m are the
negatives of the weights of T0 on Mm.

Apply this to M = L�(�i). We know by [10], 3.8 that gL�(�i) is isomorphic
to some L�(�l) 
mp with l;m 2 Z and 1 � l � 2n. We can determine l and m
using the weights of T0 on (gL�(�i))m. The necessary calculations are the same
that prove [10], 3.14(5), but were not written up in [10].

The weights of T0 on L�(�i)m are by [10], 3.10(3) and 3.6(6) all

h�1;  i � 2(n� 1)(p � 1)� 2j with bi � j < bi+1.

So the weights on (gL�(�i))m are all

�h�1;  i + 2(n � 1)(p� 1) + 2j = h�1;  i � 2(n � 1)(p � 1)� 2j0 + 4(n � 1)p
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with j as above and
j0 = h�1;  i+ 2(n � 1) � j:

We have b2n = h�1;  i + 2n � 1 and bi + b2n+1�i = b2n for 1 � i � 2n, see [10],
3.2(1) and 3.6(8). If j runs from bi to bi+1 � 1 (and if i < 2n) then j0 = b2n � j
runs from b2n�i to b2n+1�i � 1. This yields the claim for i < 2n. In case i = 2n
recall that b2n+1 = p; so now j runs from b2n to p � 1, hence j0 from b2n � p to
�1, and j0 + p from b2n to p� 1. This yields the claim in that case.

F.9. Keep for the moment the notation from F.8. Suppose that � 2 C 0
0. If

bi < bi+1 for some i < 2n, then the simple module L�(�i) has � invariant f�ig
if i � n, resp. f�2n�ig if i > n. This follows, e.g., from [10], 3.13. Furthermore,
L�(�2n) is the socle of Z�(�1).

Now Proposition F.7 follows for R of type Bn immediately from the claim
in F.8. (We also see that g has to be a representative for the non-trivial class in
A(�). That, however, follows also from the descriptions in [21] or [20].)

With a view to another application let me look a bit more precisely at the
case n = 2. Consider � as in F.8. Given �1 2 C0 with h�1 + �; �_1 i > 0, then [10],
3.13 says that

L�(�1) ' Z�(�1; �1) and L�(�3) ' Z�(s"1+"2��1; �1):

So Claim F.8 says that

gZ�(�1; �1) ' Z�(s"1+"2��1; �1): (1)

It will be convenient to change notation and assume that R is of type C2. Let
now � 2 g� have standard Levi form with �(x��) 6= 0 if and only if � = �1. Let g
be a representative in NG(T ) of s"1+"2 with g� = �. Then we have for all � 2 C0

with h�+ �; �_2 i > 0
gZ�(�;�2) ' Z�(s2"1��;�2): (2)

This is an immediate translation of (1).

F.10. Consider R of type Cn. One can check that

x =
n�1X
i=1

x�i + x�n�2+�n�1+�n

is subregular. [It acts for the natural representation on K2n with partition (2n�
2; 2).] So the corresponding (under g

�
�! g�) linear form � satis�es �(p�n) = 0

and �(x��i ) 6= 0 for all i < n.
Choose a representative g 2 NG(T ) of s"n�1+"n such that g� = �. (This

is possible, more or less as in F.8: If g is an arbitrary representative, then
Ad(g)x��i 2 Kx��i for i < n, i 6= n � 2 while Ad(g)x��n�2

2 Kx�("n�2+"n)

and Ad(g)x�("n�2+"n) 2 Kx��n�2
. Now multiply g by a suitable element in T .)

Proposition F.7 follows in this case from F.6(2) and:
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Claim: We have
gZ�(�;�n) ' Z�(s2"n�1

��;�n) (1)

for all � 2 C0 with h�+ �; �_ni > 0.

Proof : Set J = f�n�1; �ng and use the abbreviation

Z�;J (�;�n) = U�(pJ )
U�(p�n)
L�;�n(�)

for all � 2 X. We have by transitivity of induction

Z�(�;�n) ' U�(g) 
U�(pJ ) Z�;J (�;�n)

for all �. Note that g belongs to the standard Levi factor GJ of PJ since we can
�nd there at least one representative of s"n�1+"n [coming from the root subgroups
U�("n�1+"n)]. Therefore we have for all �

gZ�(�;�n) ' U�(g) 
U�(pJ)
gZ�;J (�;�n);

cf. B.14(1). So our claim will follow if we can show that

gZ�;J (�;�n) ' Z�;J (s2"n�1
��;�n): (2)

The nilradical of pJ acts as 0 on both sides in (2). So we just have to �nd an
isomorphism of gJ{modules. The centre of gJ [equal to the intersection in h of
ker(�n) and ker(�n�1)] acts on both sides via the restriction of �. So we just have
to �nd an isomorphism as modules over the derived Lie algebra DgJ of gJ .

We want to apply F.9(2) to DgJ in order to get the isomorphism in (2) and
thus the claim. The restriction of � to DgJ has standard Levi form. We have
GJ = Z(GJ )0DGJ [where Z(GJ )0 � T is the connected centre] and can thus
write g = zg0 with z 2 Z(GJ )0. Since z trivially �xes � on DgJ , so does g0. Since
g0 is still a representative for s"n�1+"n, we can now apply F.9(2) and get the claim.

F.11. Suppose now that R is of type F4. Set

x = x�2 + x�3 + x�4 + x�1+�2+�3+�4: (1)

Let � be the linear form corresponding to x. Then � is subregular (see the end of
the proof of D.13) with �(p�1) = 0. We can �nd a representative g 2 NG(T ) for
the re
ection s"2 = s�1+�2+�3 such that g� = �. Proposition F.7 follows in this
case from F.6(4),(5) and:

Claim: Let � 2 C0. We have

gZ�(�;�1) ' Z�(s"2+"3��;�1) (2)

if h�+ �; �_1 i > 0, and

gZ�(s2s1��;�1) ' Z�(s"2+"3s2s1��;�1) (3)
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if h�+ �; �_2 i > 0.

Proof : Note that "2 + "3 = �1 + 2�2 + 2�3 2 R. Set J = f�1; �2; �3g; we have
then g 2 GJ . We basically proceed as in F.10 using an abbreviation Z�;J (�;�1)
as there. We have to show

gZ�;J (�;�1) ' Z�;J (s"2+"3��;�1) (4)

and
gZ�;J(s2s1��;�1) ' Z�;J (s"2+"3s2s1��;�1): (5)

Again, it su�ces to �nd isomorphisms of DgJ{modules. Now DgJ has type B3.
We now apply F.8 with n = 3 and get (4) from the case i = 1 and (5) from i = 2.
Well, we have to take another look at [10], 3.13 to check that we can choose there
�2 = s2s1��1 and �4 = s"1+"2s2s1��1 and �5 = s"1+"2��1.

G

We keep the assumptions from Section D. However, in G.2 and G.3 only (D1) is
needed.

G.1. Assume that � 2 g� is subregular nilpotent. We exclude R of type G2, and
assume that p > h+ 1, if R has type E8 or F4. Given � 2 C 0

0 we write L
�
0 for the

simple module in C� with � invariant J(�) [ f0g. If � 2 J(�) and if there is up to
isomorphism only one simple module in C� with � invariant f�g, then we denote
such a simple module by L��. If there are two such modules (up to isomorphism),

then we denote them by L��;1 and L
�
�;2.

Lemma: Let �; � 2 C 0
0 such that � is in the closure of the facet of �.

a) We have T��L
�
0 ' L�0 .

b) Let � 2 J(�). If L is a simple module in C� with �(L) = f�g, then T��L = 0 if

� =2 J(�), while T��L is a simple module with �(T��L) = f�g if � 2 J(�).

Proof : By B.13(2) and D.5(3) the claim holds for all �, if it holds for one �. So
we may assume that �(b)+ = 0. Then the claim in a) follows from

T��L0 = T�� sbm(w0; �) ' sbm(w0; �) ' socZ�(�);

see C.9(1) and C.10(2).
In order to prove b) we may assume that � has the form considered in D.12

or in D.13, hence that L ' Z�(x��;�) with � as in D.12/13 and x 2W such that
x� = �. Now the claim follows from B.11 and D.3.a.

Remark : If � is short, then we can express the claim in b) as

T��L
�
� '

�
L��; if � 2 J(�),
0; if � =2 J(�).

(1)

For long � things get more complicated, in particular when we do not know the
number of simple modules with a given � invariant.
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G.2. Let now � be an arbitrary linear form on g with �(b+) = 0.

Lemma: Each projective U�(g){module is a direct summand of some E
Z�(��)
with E a G{module.

Proof : It su�ces to look at the projective cover QL of a simple U�(g){module L.
There exists a weight � 2 X such that L is a homomorphic image of Z�(�). In
fact, we can �nd a dominant weight � such that L is a homomorphic image of
Z�(��+w0�) since Z�(�) depends only on �+ pX and since each coset in X=pX
has a representative of the form �� + w0� as above. Now take E as the simple
module with highest weight �. Then E 
 Z�(��) has a �ltration with factors
Z�(�� + �0) with �0 running over the weights of L. The factor Z�(�� + w0�)
occurs thus as a homomorphic image of E 
 Z�(��). So does then L. Because
E
Z�(��) is projective, this implies that QL is a direct summand of E
Z�(��).

G.3. Let � be as in G.2. We say that a U�(g){module M has a Z{�ltration if
there exists a chain of submodules in M , beginning with 0 and ending with M ,
such that all subsequent factors are isomorphic to some Z�(�) with � 2 X. If so,
then also each E 
M with E a G{module, and each pr�(M) with � 2 X has a
Z{�ltration, cf. the proof in B.3. Therefore all modules of the form

pr�r (Er 
 pr�r�1
(Er�1 
 � � � pr�2(E12
 pr�1 (E1 
 Z�(��))) : : :)) (1)

have a Z{�ltration. All these modules are projective, since Z�(��) is projective,
see [7], Thm. 4.1.

Set P equal to the Grothendieck group of all projective U�(g){modules. So
this is a free Abelian group with the projective covers of the simple U�(g){modules
as a basis. We shall usually write Q also for the class in P of a projective U�(g){
module Q.

Let P 0 denote the subgroup of P generated by all modules as in (1). For each
� 2 X let P� be the Grothendieck group of all projective modules in C�, and set
P 0
� = P 0 \ P�. Then P is the direct sum of all P� (and P 0 that of all P 0

�) with �
running over a suitable set of representatives. It is clear that

T�
�
P 0
� � P 0

� (2)

for all �; � 2 X.

Lemma: Let � 2 X, let Q be a projective module in C�. If there exists an integer

m > 0 with Qm 2 P 0
�, then we have

[Q] =
dimQ

pN
[Z�(�)] (3)

in the Grothendieck group of all modules in C�.

Proof : Since this Grothendieck group is free over Z, it su�ces to prove the claim
for Qm. So we may assume that Q 2 P 0

�. So Q is a Z{linear combination (in P 0)
of modules as in (1) [with �r = �]. Since the claim in (3) is additive in Q, we may
assume that Q is a module as in (1), hence that Q has a Z{�ltration. But then
the claim follows from the fact that [Z�(w��)] = [Z�(�)] for all w 2W .
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Remark : Let L be a simple module in C�. Suppose that the projective cover QL

of L satis�es the assumption of our lemma. Then (3) and B.12(2) imply

[QL] = jW �(�+ pX)j [Z�(�) : L] [Z�(�)]; (4)

hence

[QL : L0] = jW �(� + pX)j [Z�(�) : L] [Z�(�) : L
0] (5)

for all simple L0 in C�.

G.4. We return to the assumptions and conventions from G.1. In particular, we
have � 2 g� subregular nilpotent. Given � 2 C 0

0 we denote by Q�
0 (resp. Q�

� or

Q�
�;i) the projective cover in C� of the simple module L�0 (resp. L�� or L��;i).

Proposition C.2 says that Q�
0 ' T���Z�(��). So we get

Q�
0 2 P

0
� (1)

for all � 2 C 0
0.

Lemma: Let � be a short simple root. Then there exists an integer n(�) > 0 such

that

n(�)Q$���
� 2 P 0

$���: (2)

Proof : Set � = $� � �. There are in C� (up to isomorphism) only two simple
modules: L�� and L�0 , hence only two indecomposable projective modules: Q�

�

and Q�
0 . Lemma G.2 yields a G{module E such that Q�

� is a direct summand of
E 
 Z�(��). Then there exist integers n(�) > 0 and m � 0 with

pr�(E 
 Z�(��)) ' (Q�
�)

n(�) � (Q�
0 )
m:

Now the de�nition of P 0 and (1) yield the claim.

Remark : Let � be a long simple root. Set � = $� � �. Should (against expecta-
tions) there be only one simple module in C� with � invariant f�g, then we get as
above an integer n(�) > 0 with n(�)Q�

� 2 P
0
�. If however, as expected, there are

two such modules, then we get instead

n(�)(Q�
�;1 +Q�

�;2) 2 P
0
�: (3)

Indeed, we have in this situation by Proposition F.7 an element g 2 G with
g� = � and gL��;1 ' L��;2, hence

gQ�
�;1 ' Q�

�;2. On the other hand, we have
above gE ' E [since this is a G{module] and gZ�(��) ' Z�(��) [since this is the
only simple module in C��]. Therefore the multiplicities of Q

�
�;1 and of gQ�

�;1 as
direct summands of E
Z�(��) have to be equal. (The same argument show that
gQ ' Q for all Q in P 0.)
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G.5. We have quite generally for all �; � 2 C0 and all simple L in C�

T�� QL '
M
L0

(QL0 )
m(L;L0) (1)

where L0 runs over representatives of simple modules in C� and

m(L;L0) = dimHom(T��QL; L
0) = dimHom(QL; T

�
�L

0) = [T��L
0 : L]: (2)

Lemma: Let � 2 C 0
0, let � be a short simple root with � 2 J(�). Then we have

n(�)Q�
� 2 P

0
�: (3)

Proof : Set � = $� � �. We claim that

Q�
� ' T�� Q

�
�: (4)

Then the claim follows from G.3(2) and Lemma G.4. In order to get (4), we use
(1) and (2): If L0 is a simple module in C� with T��L

0 6= 0, then � 2 �(L0), hence
L0 ' L�� or L0 ' L�0 . It remains to recall that T��L

�
� ' L�� and T��L

�
0 ' L�0 by

G.1.

Remark : Let � 2 C 0
0, let � be a long simple root with � 2 J(�). One gets similarly,

using Remark G.4 instead of Lemma G.4 that n(�)Q�
� 2 P

0
� or n(�)(Q

�
�;1+Q

�
�;2) 2

P 0
�.

G.6. Recall the integers m� from D.6(3).

Theorem: Let � 2 C 0
0. Suppose that all roots in R have the same length. Then

we have

[Q�
0 : L�0 ] = jW ��j: (1)

and

[Q�
� : L�0 ] = [Q�

0 : L��] = jW ��jm� (2)

for all � 2 J(�) and
[Q�

� : L��] = jW ��jm�m� (3)

for all �; � 2 J(�).

Proof : We may assume that �(b+) = 0. Lemma G.5 and G.4(1) imply that we
can apply G.3(5) to all simple modules L and L0 in C�. We have

jW �(�+ pX)j = jW ��j (4)

by C.1. So the claim follows from [Z�(�) : L��] = m� (see F.5) and [Z�(�) : L�0 ] = 1
(see C.2).
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Remarks: 1) This result con�rms for p{regular � (i.e., for � 2 C 0
0 with jW ��j =W )

the revised conjecture by Lusztig, as in [17], 2.6. (The formulation there looks
somewhat di�erent, but can be checked to yield the same numbers.)

2) Suppose that R is of type Bn, Cn, or F4. Then we can apply G.3(5) for L = L�0
and for L = L�� with � short. Therefore (1) holds, (2) holds if � is short, and
(3) holds if both � and � are short. If � is a long root in J(�) and if there (as
expected) exist two isomorphism classes of simple modules with � invariant f�g
in C�, then we get

[Q�
0 : L��;i] = jW ��j

m�

2
(5)

and
[Q�

� : L��;i] = jW ��j
m�m�

2
(6)

for all short � 2 J(�) [and for i = 1; 2] in both cases. By the symmetry of the
Cartan matrix we get also [Q�

�;i : L
�
0 ] and [Q�

�;i : L
�
�].

3) For R of type Bn we can choose � to have standard Levi form. Then QL has a
Z{�ltration for each simple L in C, cf. [11], 10.11. This implies that G.3(5) holds
for all L even though QL =2 P 0 in general (see the �nal remark in G.4). We get in
this case that

[Q�
�;i : L

�
�;j] = jW ��j

m�m�

4
(8)

for all long �; � 2 J(�). One may speculate whether (8) also holds in types Cn
and F4.

H

We keep the assumptions from Section D.

H.1. Recall from D.6(1) that we write �_0 =
P

�2�m��
_ where � is the set of

simple roots.
The fundamental weight $� corresponding to a simple root � is minuscule

(in the sense of [1], Ch. VI, x1, exerc. 24) if and only if m� = 1. For all � with
this property set y� = y0�w0 2W where w0 is the longest element inW and where
y0� is the longest element in the subgroup of W generated by all s� with � 6= �.

Now Prop. 6 in [1], Ch. VI, x2, (applied to R_ instead of R) shows that
y��C0 + p$� = C0. More precisely, the map x 7! y��x + p$� maps the `real'
alcove of all x 2 X 
Z R with 0 � hx + �; �_i � p for all � 2 R+ to itself. It
therefore permutes the \walls" of this alcove, i.e., the hyperplanes with equations
hx + �; �_i = 0 with � 2 � and the hyperplane with equation hx+ �; �_0 i = p. So
y� permutes � [ f��0g. In fact, one checks easily that y�(��0) = � and that

hx + �; �_0 i = p () hy�(x + �) + p$�; �
_i = 0: (1)

The simple root �w0� satis�es y�(�w0�) = �y0�(�) < 0 since y0�(�) > 0. It
follows that y�(�w0�) = ��0, hence that

hx + �; (�w0�)
_i = 0 () hy�(x + �) + p$�; �

_
0 i = p: (2)
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If we apply y� to �_0 , then we get easily that

m�w0� = 1 and my�� = m� for all � 2 �; � 6= �w0�. (3)

Proposition: Suppose that R is not of exceptional type. Then there exists for

each � 2 X a weight � 2 C 0
0 with � 2W ��+ pX.

Proof : Since C0 is a fundamental domain for Wp, we may assume that � 2 C0.
If h� + �; �_0 i < p, then � 2 C 0

0 and we can take � = �. So let us assume that
h� + �; �_0 i = p.

If there exists a simple root � with $� minuscule and y���+ p$� 2 C 0
0, then

we take � = y��� + p$�. If not, then (2) shows that h� + �;�w0�
_i = 0 for all

these �. Since �w0 is an involution, we get also h� + �; �_i = 0 for all simple �
with m� = 1. The assumption h�+ �; �_0 i = p yields therefore

p =
X
m�>1

m�h� + �; �_i: (4)

So far we did not use any assumption on R. We do that now. If R is of type
An, then we have m� = 1 for all � 2 �; so the right hand side in (4) is equal to 0:
a contradiction. If R is of type Bn or Cn (with n � 2), or Dn (with n � 4), then
m� 2 f1; 2g for all � 2 �. Then (4) turns into

p = 2
X
m�=2

h� + �; �_i:

Since p 6= 2 in these cases by (B2), we get a contradiction.

Remarks: 1) If we drop our assumptions (B1) { (D2), then we can extend the
proposition to all cases where R has no components of exceptional type provided
that p 6= 2 if R has a component not of type A.

The proposition above gives the result in case G is semi-simple and R inde-
composable. If G is semi-simple and R arbitrary, then X is the direct sum of the
weight lattices of the irreducible components of R. These components are stable
underW ; we get the result for X immediately from that for each component. For
arbitrary reductive G set X0 equal to the subgroup of all � 2 X with h�; �_i = 0
for all � 2 R. ThenX=X0 identi�es with the weight lattice of R, and the canonical
map X ! X=X0 commutes with the action of W . Therefore the claim for X=X0

implies the claim for X.

2) It is clear that the proposition cannot extend to the types E8, F4, and G2. In
these cases W �� + pX = Wp��; since C0 is a fundamental domain for Wp, we
cannot move any � 2 C0 with h� + �; �_0 i = p to an element in C 0

0.
For R of type E6 and E7 the proof of the proposition shows that we can

handle all � 2 C0 with h�+ �; �_0 i = p for which there exists a simple root � with
m� = 1 and h� + �; �_i > 0. The simple roots with this property are �1 and
�6 for E6, resp. �7 for E7 (in the numbering from [1]). However there will now
exist other weights that we cannot handle since there exist simple roots �; 
 with
m� = 2 and m
 = 3.
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H.2. Let � 2 g� be subregular nilpotent. Let � 2 C0 be p{regular, i.e., with
0 < h� + �; �_i < p for all positive roots �. Consider a simple root � such that
$� is minuscule. Then �0 = y��� + p$� belongs to C0 (see H.1) and one checks

easily that also �0 is p{regular. The translation functor T�
0

� is an selfequivalence
of the category C� = C�0 .

Lemma: We have

T�
0

� L�0 ' L�
�y�1

�
�0

(1)

and for all short simple roots 


T�
0

� L�
 '

(
L�
y
�1

�


; if y�1� 
 2 �,

L�0 ; if y�1� 
 = ��0.
(2)

Proof : It is enough to prove this for one choice of �. So we may assume that there
exists a short simple root � with �(p�) = 0. Consider (2). Choose w 2 W with
w�1� = 
. Then L�
 is isomorphic to Z�(w��;�), since the latter module is simple
and has the right � invariant, see D.3.a, D.4.a, D.5.c. It follows that

T�
0

� L�
 ' Z�(w��0; �) = Z�(wy���;�):

Now (2) follows using again D.3.a, D.4.a, D.5.c, since (wy�)�1� = y�1� 
.

The proof of (1) is analogous; one has now to choose w 2 W with w�1� =
��0.

Remarks: 1) One can show similarly: If 
 is a long simple root, then T�
0

� takes a
simple module with � invariant 
 to one with � invariant y�1� 
.

If R is of type Bn or Cn, then there exist exactly one simple root � with $�

minuscule: We have � = �n in the Bn case, and � = �1 in the Cn case.

For R of type Cn one checks then easily that y� = s2"1 . The only simple
modules not covered by the lemma are those with � invariant f�ng. If we choose
� as in F.6(2), then L = Z�(�;�n) is one of these simple modules. We get then

T�
0

� L ' Z�(s2"1 ��;�n) '
gL

with g as in F.10. So we see that T�
0

� interchanges in this case the two (expected)
simple modules corresponding to �n.

In type Bn one checks similarly that T�
0

� L�(�i) ' L�(�n+i) for 1 � i < n in
the notations from [10].

2) Note that Lemma G.1 says T�
0

� L�
 ' L�
0


 for all 
 as in (2). This illustrates that
� depends (as mentioned in D.5) on the choice of �, not just on the category C�.
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H.3. So far we have studied only the categories C� with � 2 C 0
0. In order to get

all possible C� we should also look at the � 2 C0 with h� + �; �_0 i = p. We know
from H.1 that there exist in many cases �0 2 C 0

0 with C� = C�0 , but there are also
cases where this does not hold.

When we try to extend the theory for weights in C 0
0 to the remaining weights

in C0, then we encounter two major problems: The proof in D.3 that certain
modules are simple will not work for all � 2 C0, and there is not an easy de�nition
of a � invariant as in D.5. The �rst problem occurs only for relatively few � and
we are going to ignore them here.

De�nition: We say that a weight � 2 C0 is nice if for all simple roots �, all
subregular � 2 g� with �(p�) = 0, and all w 2 W with w�1� simple and hw(� +
�); �_i > 0 the module Z�(w��;�) is simple.

Note that Lemma D.3.a says that each � 2 C 0
0 is nice. I hope that all � 2 C0

are nice in good characteristic; what I can prove is this:

Lemma: Let � 2 C0 with h�+ �; �_0 i = p.

a) In case R is of type E8, F4, or G2, assume that p > h + 1. If there exists a

simple root � with $� minuscule such that y��� + p$� 2 C 0
0, then � is nice.

b) If there exists for each simple root 
 with h� + �; 
_i > 0 a weight � in the

same facet as � with h�+ �; 
_i = 1, then � is nice.

c) Suppose that R is not of type G2. If h�+ �; 
_i > 0 for all simple roots 
, then
� is nice.

Proof : Consider �, �, and w as in the de�nition above.

a) Set �0 = y���+ p$�. We have

Z�(w��;�) ' Z�(wy
�1
� ��0; �): (1)

Recall from H.1 that y� permutes � [ f��0g. We have therefore

(wy�1� )�1� = y�w
�1� 2 � [ f��0g:

So the right hand side in (1) is simple by Lemma D.4.a (in case y�w�1� = ��0)
or by Lemma D.3.a (in case y�w�1� simple) provided we know in the second case
that hwy�1� (�0 + �); �_i > 0. However, one checks easily that

hwy�1� (�0 + �); �_i = hw(� + �); �_i+ ph$�; y�w
�1�_i > 0

using wy�1� (�0 + �) = w(� + �) + pwy�1� $�.

b) Under these assumptions Lemma D.2 holds with F (J) replaced by the facet of
�. Therefore the proof of Lemma D.3.a works in this case.

c) Note that p = h� + �; �_0 i and � 2 C0 imply p � h�; �_0 i = h� 1.
If R is of type A1, then � = 0 and w = 1. Then Z�(�;�) = Z�(�) is a

Steinberg module, hence irreducible.
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Assume that R is not of type A1. I want to show that the assumption in b)
is satis�ed. Let 
 be a simple root. If $� is a minuscule fundamental weight with
� 6= 
, then we can choose � = (p� h�; �_0 i)$� .

We are left with the cases where there are no minuscule fundamental weights
at all, or where $
 is the only minuscule fundamental weight. (So we are not in
type An.) In these cases one can �nd a fundamental weight $� with h$� ; �

_
0 i = 2

and � 6= 
. (Recall that we exclude G2.) Furthermore both h�; �_0 i and p are
odd (since we are done with type An). So we can choose � = r$� with r =
(p � h�; �_0 i)=2.

Remark : If R is of exceptional type, then there exist simple roots � and 
 with
h$� ; �

_
0 i = 2 and h$
 ; �

_
0 i = 3. Consider positive integers a and b with 2a+3b = p.

(They exist for each p � 5.) Then � = a$� + b$
 � � satis�es h� + �; �_0 i = p.
The weights in the facet of � are all � = a0$� + b0$
 � � with a0; b0 > 0 and
2a0 + 3b0 = p. We have h� + �; �_i = 1 if and only if a0 = 1, if and only if
3b0 = p� 2. So we can �nd � with this property only in case p � 2 (mod 3). So
� does not satisfy the condition in b). Using Remark 2 in H.1 one can see that �
also does not satisfy the condition in a).

H.4. Let � 2 C0 with h� + �; �_0 i = p. Suppose that � is a weight with � 2 C 0
0

such that � is in the closure of the facet of �. (Given � we can �nd � with this
property as long as there exists a simple root � with h�+ �; �_i > 1: In that case
� = � �$� works. If there is no such �, then � + � =

P
�2J(�)$� and then no

� as above can exist. This can happen only in case p � h� 1.)

Lemma: Let � and � be as above. Let � be a simple root and let � 2 g� with

�(p�) = 0. Let w 2W .

a) We have T��Z�(w��;�) = 0 if w�1� < 0 and hw(� + �); �_i = �p or if

w�1� > 0 and hw(� + �); �_i = 0 < hw(� + �); �_i. In all other cases we have

T��Z�(w��;�) ' Z�(w��;�).

b) Suppose that hw(�+�); �_i 6� 0 (mod p). Then T��Z�(w��;�) has a �ltration

with factors Z�(w��0; �) with �0 2 (StabWp
�)��.

Proof : a) This is more or less a special case of Corollary B.11. One uses that
hw(� + �); �_i > �p for all w 2W .

b) We apply Proposition B.7 with I = f�g to (w��;w��) instead of (�; �). Since
w�� is in the closure of the facet of w��, the assumption hw(� + �); �_i 6� 0
(mod p) implies that also hw(� + �); �_i 6� 0 (mod p). So both w�� and w��
have trivial stabiliser in WI;p. Proposition B.7 says now that

T��Z�(w��;�) = Tw��w�� indI L�;�(w��)

has a �ltration with factors

indI T (I)
wiw��
w�� L�;�(w��) (1)

where the wi belong to StabWp
w�� and are a system of representatives for the

cosets modulo StabWp
w��.
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Now w�� and each wiw�� belong to the same (open) alcove with respect
to WI;p. This implies that T (I)wiw��

w�� L�;�(w��) ' L�;�(wiw��). So the module
in (1) is isomorphic to Z�(wiw��;�). The claim follows since the xw�� with
x 2 StabWp

w�� are precisely the wy�� with y 2 StabWp
�.

H.5. Suppose that � and � are weights as in H.4. We return to the assumptions
and notations from G.1. In particular, we suppose that � is subregular nilpotent.

Lemma: Assume that � is nice.

a) If L is a simple module in C�, then T
�

�L is either 0 or simple. We have T��L = 0
if and only if L ' L�0 or �(L) = f
g with 
 =2 J(�).

b) Each simple module L0 in C� is isomorphic to some non-zero T��L as in a).
We have

[T�� T
�
�L

0] = (StabWp
(�) : StabWp

(�))[L0] (1)

in the Grothendieck group of C�.

Proof : a) Suppose �rst that L ' L�0 or �(L) = f
g with 
 short. Using B.13(2)
and D.1 one reduces to the case where �(p�) = 0 for some short simple root �.
We have then w 2W with L ' Z�(w��;�) and w�1� = ��0 or w�1� = 
. Now
Lemma H.4 yields T��L = 0 in case w�1� = ��0 or w�1� = 
 with 
 =2 J(�).
In the remaining cases the translated module is isomorphic to Z�(w��;�), hence
simple by the de�nition of `nice'.

In case �(L) = f
g with 
 long, one argues similarly with � long.

b) We may assume that �(b+) = 0. Each simple module L0 in C� is a composition
factor of Z�(�). Since Z�(�) ' T��Z�(�), the exactness of T

�

� implies that L0 is a
composition factor of some T��L with L a composition factor of Z�(�). Using a)
this yields the �rst claim in b).

Suppose that L0 = T�
�
L with L and L0 as above. There exists a simple root

� 2 J(�) � J(�) such that �(L) = f
g. We may assume that there exists a simple
root � of the same length as 
 such that �(p�) = 0. Then there exists w 2 W
with w
 = � such that L ' Z�(w��;�) and L0 ' Z�(w��;�).

Suppose �rst that hw(�+ �); �_i < p. Then Lemma H.4.b implies that T��L
0

has a �ltration with factors Z�(ww0
��;�) with w0 running over representatives for

the cosets of StabWp
(�) in StabWp

(�). Each of these factors satis�es

T��Z�(ww
0
��;�) ' Z�(ww

0
��;�) = Z�(w��;�) ' L:

This yields the claim in this case.
Finally, if p = hw(�+ �); �_i = h�+ �; 
_i, then necessarily �+ � = p$
 and

$
 minuscule. In this case one gets L0 ' Z�(w��) and one can argue similarly
using Proposition B.3.

Remark : If L0 is a simple module in C�, then a) and G.5(1),(2) imply

T��QL0 '
M

T
�

�
L'L0

QL (2)
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(Here L runs over representatives of isomorphism classes.) If all QL occurring in
(2) satisfy G.3(3), i.e.,

if [QL] =
dimQL

pN
[Z�(�)] for all L with T��L ' L0,

then the exactness of T�� yields

[T��QL] =
dimQL

pN
[Z�(�)] =

dimT��QL

pN
[Z�(�)]:

Combining (2) and (1) we get

(StabWp
(�) : StabWp

(�))[QL0 ] = [T�� T
�
�QL0 ] =

X
T
�

�
L'L0

[T��QL];

hence

[QL0 ] =
dimQL0

pN
[Z�(�)]: (3)

In other words, QL0 satis�es G.3(3), if all QL in (2) do. (We see also that all
simple modules in C� are composition factors of QL0 , hence that C� is a block, as
proved in general in [2].)

H.6. Let � be a simple root, let � 2 g� be subregular with �(p�) = 0. We
need some information on the composition factors of Z�(w��;�) with � 2 C 0

0 and
w 2W . De�ne integers m(w; �) for each simple root � such that

X
�

m(w; �)�_ =

�
w�1�_; if w�1� > 0,
w�1�_ + �_0 ; if w�1� < 0.

(1)

Lemma: Let � 2 C 0
0 and w 2W . We have

[Z�(w��;�) : L�0 ] =

�
0; if w�1� > 0,
1; if w�1� < 0.

(2)

Let � 2 J(�). If there is up to isomorphism only one simple module L�� in C� with

�(L��) = f�g, then

[Z�(w��;�) : L��] =m(w; �); (3)

otherwise we get

[Z�(w��;�) : L��;1] + [Z�(w��;�) : L��;2] = m(w; �): (4)

Proof : We have [Z�(w��) : L�0 ] = 1 by Proposition C.2. So the multiplicity in
(2) is either 0 or 1. Corollary B.11 implies that T��� Z�(w��;�) = 0 if and only if
w�1� > 0. Now (2) follows from C.4.
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Consider next (3). Using Lemma G.1 we see that

T
$���
� Z�(w��;�) ' Z�(w�($� � �); �)

has [Z�(w��;�) : L��] composition factors isomorphic to T
$���
� L�� ' L

$���
� ; in

case w�1� > 0 there is an additional composition factor isomorphic to T
$���
� L�0 '

L
$���
0 . We have

dim L
$���
� = pN�1; dim L

$���
0 = (p � h$�; �

_
0 i)p

N�1;

and

dim Z�(w�($� � �); �) =

�
h$� ; w

�1�_ipN�1; if w�1� > 0,
(p + h$�; w

�1�_i)pN�1; if w�1� < 0,

see A.4. Comparing dimensions we get

[Z�(w��;�) : L��] =

�
h$�; w

�1�_i; if w�1� > 0,
h$�; w

�1�_i + h$�; �
_
0 i; if w�1� < 0.

Plugging in (1), we get (3). The proof of (4) is analogous.

Remark : Note that (2) holds (by the same proof as above) for all � 2 g� with
�(p�) = 0, not only for subregular �.

H.7. Return to the situation from Lemma H.5. So we consider a weight � 2 C 0
0

and a weight � in the closure of the facet of � with h�+ �; �_0 i = p such that � is
nice.

Lemma: If L1 and L2 are simple modules in C� with T��L1 ' T��L2 6= 0, then
�(L1) = �(L2).

Proof : Lemma H.5.a implies that there exists a simple root 
 2 J(�) with �(L1) =
f
g. If J(�) = f
g, then Lemma H.5.a implies that also �(L2) = f
g, hence our
claim. So assume from now on that jJ(�)j > 1.

We may assume that there exists a simple root � of the same length as 
 such
that �(p�) = 0. Then there exists w 2 W with w
 = � and L1 ' Z�(w��;�).
Using

Homg(L2; T
�
� T

�

�L1) ' Homg(T
�

�L2; T
�

�L1) ' K

we see that [T�� T
�

�L1 : L2] 6= 0. Lemma H.4 implies that T�� T
�

�L1 has a �ltration
with factors of the Z�(ww1��;�) with w1 2 Wp, w1�� = �. (We need here
jJ(�)j > 1 in order to get the assumption in H.4.b.)

It follows that [Z�(ww1��;�) : L2] 6= 0 for one of these w1. We can write
w1 as a composition of some w0 2 W with a translation by a weight in pZR and
get Z�(ww1��;�) ' Z�(ww0

��;�). We want to apply Lemma H.6 to this module.
Note that w0 is a product of re
ections s� with � in the union of f�0g and of the
set �0 of simple roots not in J(�). So there are integers c and c� with

(ww0)�1�_ = 
_ + c�_0 +
X
�2�0

c��
_: (1)
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Let 
0 2 J(�) with 
0 6= 
. If we write (ww0)�1�_ as a linear combination of the �_

with � simple, then 
0_ occurs with coe�cient cm
0 with m
0 as in D.6(1). Since
�_0 is the largest root of R_ this implies jcm
0 j � m
0 , hence jcj � 1. If c = 1, then

_ occurs above with coe�cient 1+m
, a contradiction. So we get c = 0 or c = �1.
If c = 0, then a look at the coe�cient of 
_ implies (ww0)�1� > 0; if c = �1, then a
look at the coe�cient of 
0_ [with 
0 as before] implies (ww0)�1� < 0. Now Lemma
H.6 shows that Z�(ww0

��;�) has a composition factor L01 with � invariant f
g.
All remaining composition factors have a � invariant in �0 or are are isomorphic
to L�0 , hence are killed by T�� . On the other hand, L2 is a composition factor of
Z�(ww0

��;�) that is not killed by T�� . This implies L2 ' L01, hence the claim.

Remark : If all roots in R have the same length, then Theorem F.5 implies now
L2 ' L1. Furthermore H.6(2) simpli�es now to

T��QT
�

�
L ' QL (2)

for all simple L in C� with T��L 6= 0.
If R is of type Bn, Cn, or F4, then we get the same result as long as �(L1) is a

short simple root. If 
 is a long simple root in J(�), then we cannot exclude that
there are two non-isomorphic simple module L�
;1 and L�
;2 that have the same
image under translation. We shall look in H.11 at a special case where this does
not happen. I expect that it never occurs.

H.8. For the remaining subsections �x a p{regular weight �. The existence of �
implies that p � h. We can therefore �nd a weight �(0) 2 C0 with StabWp

�(0) =
f1; s0g where s0 = s�0;p and we can �nd for each simple root � a weight �(�) 2 C0

with StabWp
�(�) = f1; s�g, cf. [9], II.6.3(1). So J(�(0)) is the set � of all simple

roots whereas J(�(�)) = � n f�g otherwise.
We want to evaluate the \translations through the walls" functors

�� = T��(�) � T
�(�)
� ; � 2 � [ f0g (1)

on our simple modules. There is one trivial case: We have for all �

��L
�
� = 0 resp. ��L

�
�;i = 0; (2)

since already T
�(�)
� annihilates these modules, see G.1 or H.5.

Lemma: a) Let �; 
 2 � with � 6= 
. If L is a simple module in C� with

�(L) = f
g, then ��L has 2 composition factors with � invariant f
g and �h�; 
_i
composition factors with � invariant f�g.

b) Let 
 2 �. If L is a simple module in C� with �(L) = f
g, then �0L has 2
composition factors with � invariant f
g and h�0; 
_i composition factors isomor-

phic to L�0 . On the other hand, �
L
�
0 has 2 composition factors isomorphic to L�0

and h
; �_0 i composition factors with � invariant f
g.

Proof : When looking at ��L or at �0L with �(L) = f
g, then we may assume
that there exists a simple root � and w 2 W with w
 = � such that �(p�) = 0
and L ' Z�(w��;�).
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Arguing as in H.4 one checks that ��L has a �ltration with factors Z�(w��;�)
' L and Z�(ws���;�). We want to apply Lemma H.6 to the second factor. We
have

(ws�)
�1�_ = s�


_ = 
_ � h�; 
_i�_:

Now the claim in a) follows immediately from H.6.
In most cases Lemma H.4 implies that �0L has a �ltration with factors

Z�(w��;�) ' L and Z�(ws0��;�) ' Z�(ws�0��;�). The only exception occurs
when hw(�(0)+�); �_i = h�(0)+�; 
_i is congruent to 0 modulo p. The choice of
�(0) implies that this can happen only if 
 = �0, hence only if R has type A1. Set
that case aside for the moment. We want to apply Lemma H.6 to Z�(ws�0��;�);
we have

(ws�0)
�1�_ = s�0


_ = 
_ � h�0; 

_i�_0 :

Since �_0 is the largest root in R_ and since R has not type A1, we have h�0; 
_i 2
f0; 1g. It follows that (ws�0)

�1� < 0 if and only if h�0; 
_i = 1. Now the claim
concerning �0L follows easily from H.6.

In the exceptional case A1 we have 
 = �0 = � and w = 1. In this case

T
�(0)
� L ' Z�(�(0)). It follows that �0L has a �ltration with factors Z�(�) and
Z�(s0��) ' Z�(s���). Both factors have length 2 with composition factors L��
and L�0 . Again the claim follows since now h�0; 
_i = 2.

When looking at �
L
�
0 , then we may assume that there exists a simple root

� and w 2 W with w�0 = �� such that �(p�) = 0 and L ' Z�(w��;�). One
argues then as above. (The case A1 requires a special argument as before.)

H.9. Suppose in this subsection that all roots in R have the same length and
that R is not of type A1. Then the results in Lemma H.8 can be simpli�ed using
Theorem F.5. We get for all �; 
 2 � with � 6= 


[��
�L

�

 ] =

�
2[L�
 ] + [L��]; if (�; 
) < 0,

2[L�
 ]; if (�; 
) = 0,
(1)

and for all 
 2 �

[��
0L

�

 ] =

�
2[L�
] + [L�0 ]; if (�0; 
) > 0,

2[L�
]; if (�0; 
) = 0,
(2)

[��

L

�
0 ] =

�
2[L�0 ] + [L�
 ]; if (�0; 
) > 0,

2[L�0 ]; if (�0; 
) = 0.
(3)

By G.1, H.5, and H.7 the translation functors T
�(�)
� with � 2 � [ f0g take simple

modules to simple modules or 0; if they take two simple modules L1 and L2 to iso-
morphic simple modules, then already L1 and L2 are isomorphic. The adjunction
property of the translation functors implies that

Homg(��M;M 0) ' Homg(T
�(�)
� M;T

�(�)
� M 0) (4)
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and
Homg(M

0;��M) ' Homg(T
�(�)
� M 0; T

�(�)
� M) (5)

for all modules M , M 0 in C�. It follows that each ��L
�

 with �; 
 2 � [ f0g has

simple head and simple socle isomorphic to L�
 . (These are standard arguments

due to Vogan.) We have soc��L
�

 � rad��L

�

 . In case �; 
 2 � we get now from

(1)

rad��L
�

= soc��L

�

 '

�
L��; if (�; 
) < 0,
0; if (�; 
) = 0.

(6)

One gets similar formulas from (2) and (3).
Note that (6) implies in case (�; 
) = 0 that we have a non-split extension

0! L�
 �! ��L
�

 �! L�
 ! 0: (7)

Let me write Exti for Ext groups in the category of U�(g){modules. So (7) says
that Ext1(L�
 ; L

�

) 6= 0 for all 
 2 � such that there exists a simple root � with

(�; 
) = 0. Using (2) one get similarly Ext1(L�
 ; L
�

) 6= 0 in case (�0; 
) = 0, and

from (3) one gets Ext1(L�0 ; L
�
0 ) 6= 0 if there exists a simple root 
 with (�0; 
) = 0.

This shows that Ext1(L;L) 6= 0 for all simple modules in C� unless R has type A2

(compatibly with Remark 1 in [10], 2.19) or type D4 where L = L��2 is the only
possible exception. I have no idea how large these non-vanishing Ext groups are.

Proposition: Suppose that all roots in R have the same length and that R is not

of type A1. If � and 
 are simple roots with � 6= 
, then

Ext1(L�
 ; L
�
�) '

�
K; if (�; 
) < 0,
0; if (�; 
) = 0.

(8)

If 
 is a simple root, then

Ext1(L�
 ; L
�
0 ) ' Ext1(L�0 ; L

�

) '

�
K; if (�0; 
) > 0,
0; if (�0; 
) = 0.

(9)

Proof : This follows again from standard arguments due to Vogan. When dealing
with (8), one applies the functor Homg( ; L��) to the short exact sequence

0! rad��L
�

 �! ��L

�

 �! L�
 ! 0:

The adjointness of T
�(�)
� and T�

�(�) implies that �� is self-adjoint. This implies

Exti(��L
�

 ; L

�
�) ' Exti(L�
 ;��L

�
�) = 0

for all i � 0, see G,13(2). It follows that

Ext1(L�
 ; L
�
�) ' Homg(rad��L

�

 ; L

�
�):

Now apply (6).
The proof of (9) is similar, working with (2) and (3) instead of (1).
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Remark : If R has type A1 and if we denote the unique simple root by 
, then one
has

[��
0L

�

 ] = [��


L
�
0 ] = 2[L�
 ] + 2[L�0 ]

It is well known that in this case

Ext1(L�
 ; L
�
0 ) ' Ext1(L�0 ; L

�

) ' K2:

(Note that � = 0 and look at [19].)

H.10. We now want to extend some results from H.9 to the cases with two root
lengths. Recall that we exclude type G2. Note �rst that H.9(4) and H.9(5) hold
without restriction. We next look at H.9(7).

Lemma: Let 
 be a simple root and let L be a simple module in C� with �(L) =
f
g. If � is a simple root with (�; 
) = 0 or if � = 0 and (�0; 
) = 0, then we

have a short exact sequence

0! L �! ��L �! L! 0 (1)

that does not split.

Proof : LemmaH.8 shows that ��L has length 2 with both composition factors, say
L1 and L2, satisfying �(L1) = �(L2) = f
g. We want to show that L1 ' L2 ' L.
If so, then we get a short exact sequence as in (1). If that sequence splits, then we
get dim Homg(L;��L) = 2 contradicting H.9(5).

If 
 is short, then L1 ' L2 ' L follows from Theorem F.5. So consider
the case where 
 is long. We may assume that there exists a simple root � with
�(p�) = 0 and w 2 W with w
 = � and L ' Z�(w��;�). The proof of Lemma
H.8 shows that our claim will follow if we can show that Z�(ws��;�) is isomorphic
to L where s = s� in case � 2 � and s = s�0 in case � = 0. We distinguish two
cases:

The type of R is Bn. We may assume that we are in the situation of [10], Section
3. In particular, we have � = �1 and 
 = �j with 1 � j < n. We get from [10],
3.13 that

Z�(w��;�) ' L�(�j) () w�1"1 = "j and w
�1"2 = "j+1

while

Z�(w��;�) ' L�(�2n�j) () w�1"1 = �"j+1 and w
�1"2 = �"j :

We have to show that ws has the same property as w, i.e., that s"j = "j . The
possibilities for s are s = s"i�"i+1 (with i 6= j; j� 1) or s"n (if j < n� 1) or s"1 (if
j > 1). So we get indeed s"j = "j and the claim follows in type Bn.

The type of R is Cn or F4. We may assume that we are in the situation of
F.6(1),(2) or F.6(3){(5). We have to show that ws 2 W2w in the notations from
F.6(1) or F.6(3). Since ws = sw�0w with �0 = � or �0 = �0 this means that
sw�0 2 W2. Now (�0; 
) = 0 and w
 = � imply that w�0 is orthogonal to �. So
it su�ces to show that w�0 is a short root. (Recall the de�nition of W2.) That
is obvious in case � = 0. Otherwise note that in type Cn or F4 all simple roots
orthogonal to a long simple root are short.
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Remarks: 1) The lemma can be extended to the case where L = L�0 and where �
is a simple root with (�; �0) = 0.

2) We see as in H.9 that Ext1(L;L) 6= 0 in almost all cases. The only additional
exceptions can occur in types C2 = B2 and C3.

H.11. Lemma: Let � 2 �[f0g, let L be a simple module in C� with ��L 6= 0.

a) The head and the socle of ��L are both isomorphic to L.

b) If L0 is a simple module in C� with T
�(�)
� L0 ' T

�(�)
� L, then L0 ' L.

Proof : If L0 is a simple module in C�, then H.9(4),(5) imply that L0 occurs with

multiplicity 1 both in head and in the socle of ��L if T
�(�)
� L0 ' T

�(�)
� L. Otherwise

it does not occur at all. In particular L itself occurs with multiplicity 1. This shows
that a) will follow from b).

Suppose that L0 is a simple module in C� with T
�(�)
� L0 ' T

�(�)
� L. Lemma

H.7 implies that �(L) = �(L0). If L0 is not isomorphic to L, then there has to be a
long simple root 
 with �(L) = f
g. Lemma H.8 shows that both L and L0 occur
with multiplicity 1 as composition factors in ��L. Since they occur both in the
head and in the socle they have to be direct summands. The discussion above of
the socle implies that there cannot be any other contributions to the socle, hence
that ��L ' L�L0. Then Lemma H.8 implies that (�; 
) = 0 in case � 2 �, resp.
(�0; 
) = 0 in case � = 0. Now Lemma H.10 yields a contradiction.

H.12. Proposition: a) If � and 
 are simple roots with (�; 
) = 0, then we

have Ext1(L;L0) = 0 for all simple modules L and L0 in C� with �(L) = f
g and

�(L0) = f�g.

b) Let �, 
 be simple roots with (�; 
) < 0, let L be a simple module L in C� with

�(L) = f
g. Then there exists a simple module L0 in C� with �(L0) = f�g and

Ext1(L;L0) ' K ' Ext1(L0; L): (1)

If � and 
 have the same length, then the condition Ext1(L;L0) 6= 0 determines

L0 up to isomorphism. If � and 
 have di�erent lengths, then (1) holds for all

possible L and L0.

c) If 
 be a simple root. If R is not of type A1, then

Ext1(L;L�0 ) ' Ext1(L�0 ; L) '

�
K; if (�0; 
) > 0,
0; if (�0; 
) = 0

(2)

for all simple modules L in C� with �(L) = f
g.

Proof : a & b) Consider simple modules L and L0 in C� with �(L) = f
g and
�(L0) = f�g. Arguing as in H.9 one gets

Ext1(L;L0) ' Homg(rad��L;L
0): (3)
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If we use the short exact sequence

0! L �! ��L �! ��L= soc��L! 0

and apply the functor Homg(L0; ), we get similarly

Ext1(L0; L) ' Homg(L
0;��L= soc��L): (4)

If (�; 
) = 0, then H.8 shows that L0 is not a composition factor of ��L; this
implies now the claim in a).

Suppose that (�; 
) < 0. If � and 
 have the same length, then h�; 
_i = �1.
Then H.8 and H.11 imply: Given L as above there exists a simple module L01 with
�(L01) = f�g and

rad��L= soc��L ' L01:

Then (3) and (4) show that L01 satis�es (1) while these Ext groups are 0 for any
simple module L02 with �(L

0
2) = f�g and L02 6' L01.

Consider now the case where � and 
 have di�erent lengths. The claim in
the proposition is symmetric in � and 
. So we may assume that � is short and 

is long. So there is up to isomorphism only one choice for L0 while there are one
or two possibilities for L. We have h�; 
_i = �1 and h
; �_i = �2. Lemma H.8
yields therefore

rad��L= soc��L ' L0:

This implies that (1) holds for all possible L and L0.

c) The proof is similar and left to the reader.

Remark : Let �, 
 be simple roots with (�; 
) < 0 such that � is short and 
 is
long. We know that there exists up to isomorphism only one simple module L��
in C� with � invariant f�g. Consider now M = rad�
L

�
�= soc�
L

�
�. Lemma H.8

tells us that M has length 2, with both factors having � invariant f
g. Part b) of
the proposition implies using (3) and (4) that each simple module L in C� with �
invariant f
g occurs with multiplicity 1 in the socle and in the head of M .

There are now two possibilities: If there are (as expected) two isomorphism
classes (with representatives L�
;1 and L

�

;2) of simple modules in C� with � invari-

ant f
g, then we can apply the discussion to L = L�
;1 and to L = L�
;2. It follows

that M ' L�
;1 � L�
;2 in this case. If, however, there is only one such class, then
M has to be a non-split extension of L by itself. So, as in other situations, it is
desirable to show that the middle M is completely reducible.
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