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Abstract

We consider an optimization problem in which some uncertain parameters are re-

placed by random variables. The minimax approach to stochastic programming con-

cerns the problem of minimizing the worst expected value of the objective function

with respect to the set of probability measures that are consistent with the available

information on the random data. Only very few practicable solution procedures have

been proposed for this problem and the existing ones rely on simplifying assumptions.

In this paper, we establish a number of stability results for the minimax stochastic

program, justifying in particular the approach of restricting attention to probability

measures with support in some known �nite set. Following this approach, we elaborate

solution procedures for the minimax problem in the setting of two-stage stochastic re-

course models, considering the linear recourse case as well as the integer recourse case.

Since the solution procedures are modi�cations of well-known algorithms, their eÆcacy

is immediate from the computational testing of these procedures and we do not report

results of any computational experiments.

Keywords: Stochastic Programming; Minimax Techniques; Stability; Algorithms.

1 Introduction

Almost any real-life decision problem involves some degree of uncertainty. The importance

of taking this inherent uncertainty into account when formulating such problems as mathe-

matical programs is well-recognized and has received great attention during recent years. In
�Corresponding author. Email: riis@imf.au.dk
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this paper we consider an optimization problem in which some parameters are not known

with certainty and therefore replaced by random variables. Assuming that an outcome of

random parameters constitutes a vector in RN , we will be concerned with P(IRN), the set

of all Borel probability measures on RN . A classical approach to the class of stochastic

programming problems is to assume that the distribution � 2 P(IRN) of random parameters

is known and then to solve the problem,

min
x2X

Q(x; �); (1.1)

where X is some closed, convex set, and the function Q(x; �) typically denotes the total ex-

pected cost given the decision x and the distribution �. For an introduction to general classes

of stochastic programming models we refer to the textbooks by Birge and Louveaux [4], Kall

and Wallace [16], and Pr�ekopa [22].

A major concern in the formulation of the stochastic programming model (1.1) is the

fact that the distribution � of random parameters will hardly ever be directly accessible. In

practice, the only information on the probability distribution that is available may be an

estimate based on statistical information on the random data. In this situation a possible

alternative approach is the following. First a class A � P(IRN ) of possible or conceivable

distributions, consistent with the available information, is established. A typical example is

the case whenA is the set of all distributions satisfying a number of mathematical constraints,

taking the form of upper and lower bounds on mean, variance and other moments, but in

general this class may be de�ned by any information characterizing probability distributions.

Given the set of conceivable distributions A the following problem is solved,

MMP (A) min
x2X

n
f(x) := sup

�2A

Q(x; �)
o
: (1.2)

Problem (1.2) is referred to as the minimax approach to stochastic programming. Starting

with �Z�a�ckov�a [40], variations of this approach have been considered by authors such as

e.g. Birge and Dul�a [2], Birge and Wets [5], Breton and Hachem [6, 7], Dupa�cov�a [9, 10],

Ermoliev, Gaivoronski and Nedeva [12], Kall [15], and Shapiro and Kleywegt [37]. Only few

numerical solution procedures for the minimax problem (1.2) have been presented in these

papers. Furthermore, the ones proposed rely on results such as the following. If A is the

class of all probability measures with support in some compact set �, satisfying a number

of generalized moment conditions,Z
�

gi(�)�(d�) � �i; i = 1; : : : ; L;

where gi(�); i = 1 : : : ; L; are bounded continuous functions on �, then A is a compact, convex

set, and its extreme points are discrete measures with �nite supports of at most L+1 points
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(cf. Karr [17, Theorem 2.1], see also Kempermann [18]). Thus attention can be restricted

to discrete measures in A having �nite support of at most L + 1 points. In Breton and

Hachem [6, 7] this approach is employed to develop two alternative solution procedures, an

extension of the progressive hedging algorithm (see Rockafellar and Wets [27]) and a bundle

method, respectively. In fact, Breton and Hachem not only assume that all measures in A

have �nite support of at most L+1 points, but also that the support is known and identical

for all � 2 A. In Ermoliev, Gaivoronski and Nedeva [12], on the other hand, generalized

linear programming techniques are employed to determine the mass points and corresponding

probabilities of a \worst" distribution in A with L + 1 mass points. These techniques are

combined with a projected quasi subgradient approach to determine an optimal solution

of the minimax problem. Situations may occur, however, in which the set A does not

�t into the above-mentioned framework, so that the restriction of attention to measures

with �nite support is not immediately valid. Also, even if attention can be restricted to

measures in A with �nite support, the inner maximization in (1.2), taking the form e.g.

of a generalized moment problem, may still be intractable. In such situations, stability

analysis of the minimax problem, when the set of conceivable measures is subjected to

perturbations, becomes relevant. In particular, the results presented in Section 2 justify the

approach followed by Breton and Hachem [6, 7], restricting attention to discrete measures

with support in some known �nite set.

In this paper we will be particularly concerned with two-stage stochastic recourse models

for optimization under uncertainty. Such models are based on the assumption that an alter-

nating process of decisions and observations of random data is appropriate. More speci�cally,

we assume that some decisions must be taken in a �rst stage in which only distributional

information on the uncertainties is available. The outcome of random parameters is subse-

quently observed and some corrective (or recourse) actions may be taken in a second stage.

A typical approach to this class of problems is to minimize the sum of �rst-stage cost and

expected second-stage, i.e. to let

Q(x; �) := cx+

Z
IRN

�(x; �)�(d�): (1.3)

Here the random vector � 2 IRN is constituted by the components of a tuple (q; h; T ), and

the second-stage value function � is given accordingly by

�(x; �) := min
n
qy j Wy � h+ Tx; y 2 Y

o
: (1.4)

It is assumed that c 2 IRn1 is a known vector, and that W is a known rational matrix

of size m � n2, referred to as the recourse matrix. Furthermore, it is assumed that the
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second-stage cost q is a random n2-vector, the second-stage right-hand h is a random m-

vector, and the technology matrix T is a random matrix of size m � n1. Finally, the set

Y � IRn2 may or may not contain integrality restrictions on some or all of the variables.

Under fairly general assumptions, the function Q(�; �) is a real-valued, lower semicontinuous

function on IRn1 for any � 2 P(IRN). Also, it is easily seen that the supremum of a family

of lower semicontinuous functions is again a lower semicontinuous function (cf. the proof of

Proposition 4.1 in Section 4 below). Thus the minimax problem (1.2) is well-de�ned in the

sense that one minimizes a lower semicontinuous function, and hence the optimal value is

actually attained, provided that the problem is feasible and bounded.

The reason for focusing on two-stage stochastic recourse problems in the present paper

is the fact that much research has gone into stability properties of optimal solutions to these

problems, when the underlying probability distribution � varies in some subset of P(IRN). In

particular, qualitative and quantitative continuity properties of the recourse function Q lead

to continuity results for the optimal value function and the optimal solution set mapping

as functions of �. For a collection of results on stability in two-stage stochastic linear

programming, we refer to Dupa�cov�a [10, 11], Kall [14], Robinson and Wets [25], R�omisch

and Schultz [28, 29, 30], Shapiro [36], and Wang [39], and for results in two-stage stochastic

programming with mixed-integer recourse, we refer to Schultz [32, 33, 34]. It turns out

that the continuity properties of Q established in these papers are also suÆcient to provide

stability results for the minimax problem (1.2), when the set A is subjected to perturbations.

Still, the results of the present paper are applicable for any other class of problems for which

similar continuity properties can be established.

Also, solution procedures for the class of two-stage stochastic recourse programs have

been the center of extensive research. In 1969 Van Slyke and Wets [38] introduced the L-

shaped method, a solution procedure for problems with linear recourse, based on Benders

decomposition principle. Since then, several modi�cations and enhancements of this algo-

rithm have been introduced. Among the most important of these procedures are the multicut

version of the L-shaped algorithm presented by Birge and Louveaux [3], the stochastic de-

composition procedure introduced by Higle and Sen [13], and the regularized decomposition

method introduced by Ruszczynski [31]. Alternative procedures based on decomposition

with respect to scenarios rather than stages have been considered by various authors, the

most prominent example being the progressive hedging algorithm elaborated by Rockafellar

and Wets [27]. For problems with (mixed-) integer recourse a smaller number of general

purpose algorithms exist. Still a number of alternatives have been proposed, such as e.g. the

branch and bound procedure presented by Ahmed, Tawarmalani and Sahinidis [1], the dual

decomposition procedure introduced by Car�e and Schultz [8], the integer L-shaped method

4



introduced by Laporte and Louveaux [20], and a framework using the concept of Gr�obner

bases presented by Schultz, Stougie and van der Vlerk [35].

This paper is organized as follows. In Section 2, we establish a number of stability re-

sults for the minimax problem (1.2) with a general objective function Q. We discuss their

application to the class of two-stage stochastic recourse problems, where the recourse func-

tion is given by (1.3), and we discuss the implications of our results for the development of

numerical solution procedures for the problem. In particular, the results justify the assump-

tion that all measures in A are discrete with support in some known �nite set. Employing

this assumption, we elaborate solution procedures for the minimax problem in the setting

of two-stage stochastic programs with linear recourse and integer recourse in Section 3 and

Section 4, respectively. The solution procedure for the linear recourse case is a modi�cation

of the L-shaped algorithm and its multicut version. We give a proof of �nite convergence

whereas eÆcacy of the algorithm is immediate from the extensive application of the original

L-shaped algorithm, and therefore no computational experiments are reported. Likewise,

the solution procedure for the integer recourse case is a modi�cation of a branch and bound

algorithm presented by Ahmed, Tawarmalani and Sahinidis [1], and hence we only prove

�nite convergence and refer to the computational testing of Ahmed et al. for demonstration

of eÆcacy of the algorithm. Finally we give some conclusions in Section 5.

2 Stability

In this section we establish qualitative and quantitative stability results for the minimax

problem (1.2) when the set of conceivable distributions A is subjected to perturbations.

To facilitate the analysis, we endow the set P(IRN) of all Borel probability measures on

IRN with the notion of weak convergence. We recall that a sequence f�ngn�1 of Borel

probability measures on IRN is said to converge weakly to some � 2 P(IRN), if for any

bounded continuous function, g : IRN 7! IR, we have

Z
IRN

g(t)�n(dt)
n!1
����!

Z
IRN

g(t)�(dt);

and in that case we write �n
w
�! �. The qualitative stability results will be based on the

assumed joint continuity of Q with respect to x and �, whereas the quantitative results rely

on quantitative continuity properties of Q(x; �) for x 2 X. SuÆcient conditions for these

properties to hold for two-stage stochastic recourse models are brie
y discussed.

The stability results presented here take the form of continuity properties of the optimal

value function and the optimal solution set mapping as functions of A. Since the problem

is non-convex in several important cases, such as e.g. mixed-integer recourse models, we will
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include local optimizers in the analysis. To this end, we de�ne for any non-empty open set,

V � IRn1, a localized version of the optimal value function,

'V (A) := min
x2X\clV

sup
�2A

Q(x; �);

and a localized version of the optimal solution set mapping,

	V (A) :=
�
x 2 X \ clV j sup

�2A

Q(x; �) = 'V (A)
	
;

where clV denotes the closure of V . Moreover, we will adopt the notion of a complete

local minimizing (CLM) set, originally introduced by Robinson [24] and Klatte [19]. Given

some set A � P(IRN ) of conceivable distributions, a set M � IRn1 is called a CLM set for

MMP (A) if there exists some open set V � IRn1 such thatM = 	V (A) andM � V . Clearly,

the set of global minimizers of problem (1.2), as well as any set of strict local minimizers, is a

CLM set. Moreover, the notion of CLM sets precludes pathologies arising when A � P(IRN)

and V � IRn1 are such that 	V (A) is a set of local minimizers for problem (1.2), while even

the slightest perturbation of A leads to local solution sets with respect to V , which do not

contain any local minimizers of (1.2).

Proposition 2.1. Let A � P(IRN ) and let fAngn�1 be a sequence of sets of probability

measures converging to A in the sense that [n�1An � A, and � 2 A if and only if there

exists a sequence f�ngn�1 such that �n 2 An for all n � 1 and �n
w
�! � as n ! 1. Also,

let V � IRn1 be some bounded open set such that 	V (A) is a CLM set for MMP (A) with

respect to V . If Q : IRn1 � P(IRN) 7! IR is continuous at (x; �) for all x 2 X and � 2 A,

then

(a) 'V (An)! 'V (A) as n!1;

(b) sup
x2	V (An)

dist(x;	V (A))! 0 as n!1;

(c) There exists N � 1 such that 	V (An) is a CLM set for MMP (An) with respect to V

for all n � N .

Proof. De�ne for all x 2 X \ clV and n � 1,

f(x) := sup
�2A

Q(x; �) and fn(x) := sup
�2An

Q(x; �):

Now let x� 2 	V (A) so that we have 'V (A) = f(x�), and for n � 1 let x�n 2 	V (An) so that

we have 'V (An) = fn(x
�
n).

The assumption that [n�1An � A implies that for all x 2 X \ clV and n � 1 we have

fn(x) � f(x) so that lim supn!1 'V (An) � 'V (A). To prove (a) by contradiction we assume
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that lim infn!1 'V (An) < 'V (A)� � for some � > 0. As a consequence of this assumption,

there exists some in�nite subset IK1 � IN such that 'V (An) < 'V (A)� � for all n 2 IK1, and

hence Q(x�n; �n) < 'V (A)� � for all �n 2 An and all n 2 IK1. Now, compactness of X \ clV

implies the existence of some in�nite subset IK2 � IK1 such that the subsequence fx�ngn2IK2

converges to some �x 2 X \ clV . Also, for any � 2 A we can select a sequence f�ngn2IK2

converging weakly to � such that �n 2 An for all n 2 IK2. Joint continuity of Q now implies

that

Q(�x; �) = lim
n!1
n2IK2

Q(x�n; �n) < 'V (A)� �:

Thus f(�x) < 'V (A), a contradiction. This proves part (a).

To prove part (b), we let �x be any accumulation point of the sequence fx�ngn�1, i.e. for

some in�nite subset IK1 � IN the sequence fx�ngn2IK1
converges to �x. Let � > 0 be given

and let �� 2 A be such that Q(�x; ��) > f(�x) � �. For any sequence f��ngn�1 of probability

measures such that ��n 2 An and ��n
w
�! �� as n!1 we now have

lim
n!1
n2IK1

Q(x�n; ��n) = Q(�x; ��) > f(�x)� �:

On the other hand, for any n � 1 the de�nition of fn(�) implies fn(x
�
n) � Q(x�n; ��n) and from

part (a) we have

lim
n!1

fn(x
�
n) = lim

n!1
'V (An) = 'V (A):

Thus f(�x) < 'V (A) + � and since � was arbitrary we must have f(�x) � 'V (A) so that

�x 2 	(A). This proves part (b).

To prove part (c) we note that 	(A) � V where 	(A) is closed and V is open. Hence

for some Æ > 0 we must have that dist(x;	V (A)) < Æ implies x 2 V . This completes the

proof.

Remark 2.1. Proposition 2.1 applies for example in the situation when A is an in�nite set

of probability measures, rendering numerical solution of the inner maximization problem

in (1.2) intractable. In this case Proposition 2.1 justi�es the approach of approximating A

by smaller subsets which are easier handled computationally. In particular, if A is the set of

all Borel probability measures with support in some set �, satisfying a number of generalized

moment conditions, a possible approach is to restrict attention to those measures inA having

support in some known �nite set �0 � �. In this way the inner maximization problem is

simpli�ed from a generalized moment problem to an ordinary linear program. Moreover,

as a consequence of Proposition 2.1 we see that the optimal solution of such a simpli�ed

problem converges to the true optimal solution as the approximation of � provided by �0 is

progressively improved.
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In some situations, however, di�erent kinds of approximations of A than the one ex-

pressed in Proposition 2.1 may be more desirable. Consider for example the situation when

A is constituted by a number of speci�c distributions, rendering the inner maximization

problem in (1.2) intractable, e.g. A being a �nite set of distributions that are absolutely

continuous with respect to the Lebesgue measure on IRN . In this case, we do not want the

approximations of A to be subsets thereof, but rather to be sets of probability measures ap-

proximating each of the individual measures in A. In this situation the following proposition

applies.

Proposition 2.2. Let A = f�1; : : : ; �kg � P(IRN) and for n � 1 let An = f�1n; : : : ; �
k
ng

where �jn
w
�! �j as n ! 1 for j = 1; : : : ; k. Also, let V � IRn1 be some bounded open set

such that 	V (A) is a CLM set for MMP (A) with respect to V . If Q : IRn1 � P(IRN) 7! IR

is continuous at (x; �) for all x 2 X and � 2 A, then

(a) 'V (An)! 'V (A) as n!1;

(b) sup
x2	V (An)

dist(x;	V (A))! 0 as n!1;

(c) There exists N � 1 such that 	V (An) is a CLM set for MMP (An) with respect to V

for all n � N .

Proof. De�ne for all x 2 X \ clV and n � 1

f(x) := max
�2A

Q(x; �) and fn(x) := max
�2An

Q(x; �):

Now let x� 2 	V (A) and let �� 2 A be such that 'V (A) = f(x�) = Q(x�; ��), and for n � 1

let x�n 2 	V (An) so that we have 'V (An) = fn(x
�
n).

As in the proof of Proposition 2.1 we may show that lim infn!1 'V (An) � 'V (A). Hence

to prove part (a) by contradiction we assume that lim supn!1 'V (An) > 'V (A). Since we

have fn(x
�
n) � fn(x

�) for all n � 1, the assumption implies lim supn!1 fn(x
�) > 'V (A).

Thus for some j 2 f1; : : : ; kg we have

Q(x�; �j) = lim
n!1

Q(x�; �jn) > 'V (A);

a contradiction since Q(x�; �j) � Q(x�; ��) = 'V (A) for all j 2 f1; : : : ; kg. This proves

part (a). The proofs of part (b) and (c) are similar to those in Proposition 2.1.

Next, we turn to quantitative stability results for the minimax problem (1.2). To this

end we assume that D is some distance de�ned on the set P(IRN). Also, for � 2 P(IRN)

and A � P(IRN) we let D(�;A) = inf�2AD(�; �) and introduce a Hausdor�-like distance

between sets of probability measures, de�ned for A;B � P(IRN) by

DH(A;B) = max
�
sup
�2A

D(�;B); sup
�2B

D(�;A)
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Proposition 2.3. Let A � P(IRN) and let V � IRn1 be some bounded open set such that

	V (A) is a CLM set forMMP (A) with respect to V . If there exists constants L; p; Æ > 0 such

that jQ(x; �)�Q(x; �)j � L �D(�; �)p whenever x 2 X and �; � 2 P(IRN ) with D(�; �) < Æ,

then

j'V (A)� 'V (B)j � L �DH(A;B)
p

whenever B � P(IRN) with DH(A;B) < Æ.

Proof. Let B � P(IRN ) with DH(A;B) < Æ and de�ne for all x 2 X \ clV ,

f(x) = sup
�2A

Q(x; �) and g(x) = sup
�2B

Q(x; �)

and let x�A 2 	V (A) and x�B 2 	V (B) so that we have 'V (A) = f(x�A) and 'V (B) = g(x�B).

Obviously, we have

'V (A)� 'V (B) � f(x�B)� g(x�B):

Let � > 0 be given and let �� 2 A be such that Q(x�B; ��) > f(x�B) � �. Also, let �� 2 B be

such that D(��; ��) � DH(A;B) < Æ and Q(x�B; ��) � g(x�B). We now have

f(x�B)� g(x�B) < Q(x�B; ��)�Q(x
�
B ; ��) +Q(x�B; ��)� g(x�B) + �

� jQ(x�B ; ��)�Q(x
�
B; ��)j+ �

� L �DH(A;B)
p + �:

Since � was arbitrary we get

'V (A)� 'V (B) � L �DH(A;B)
p;

and in the exact same way we may show that

'V (B)� 'V (A) � L �DH(A;B)
p:

Thus we have

j'V (A)� 'V (B)j � L �DH(A;B)
p;

and the proof is complete.

Remark 2.2. Note that if the distance D is such that it metrizes the topology of weak

convergence, then the result in Proposition 2.3 quanti�es those in Proposition 2.1 (a) and

Proposition 2.2 (a).
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Remark 2.3. Consider the formulation of a classical two-stage stochastic program with re-

course, where the recourse function Q is given by (1.3)-(1.4). When Y = IRn2 , basic assump-

tions guarantee that the recourse function is a well-de�ned, real-valued, convex function on

IRn1. Since Q(�; �) is convex for � 2 P(IRN), joint continuity of Q with respect to x and �

is implied by continuity of Q(x; �) for all x 2 X. (See e.g. Rockafellar [26, Theorem 10.7].)

The continuity of Q with respect to �, on the other hand, typically requires some uniform

integrability condition to be satis�ed. Such an approach was formalized by e.g. Robinson

and Wets [25]. To arrive at quantitative continuity results of Q(x; �) for x 2 X, on the

other hand, it is necessary to equip the set P(IRN) with some suitable distance D, preferably

metrizing (at least locally) the topology of weak convergence. Now, employing some suitable

uniform integrability condition one may establish quantitative continuity results, for example

of the form required in Proposition 2.3. For a collection of such results, related in particular

to the bounded Lipschitz metric and an Lp-Wasserstein metric, we refer to R�omisch and

Schultz [28, 29, 30].

Remark 2.4. Consider again the formulation of the recourse function Q given by (1.3)-(1.4).

When Y contains integrality restrictions on some or all of the second-stage variables, the

analysis is somewhat impeded by the fact that the recourse functionQ is no longer necessarily

convex nor even continuous. Structural properties have mainly been investigated for the case

of �xed second-stage cost q. To arrive at continuity of Q(�; �) at some point (x; �) in this

setting, the above-mentioned uniform integrability condition must be combined with some

assumption guaranteeing that the set of those (h; T ) 2 IRm�(1+n1), for which the second-

stage value function (1.4) is discontinuous at (x; h; T ), has �-measure zero. Using this line

of approach, Schultz [33] established qualitative continuity of Q(�; �) under the assumption

that the conditional distribution of h given T is absolutely continuous with respect to the

Lebesgue measure on IRm. The results were quanti�ed in Schultz [34] for problems with �xed

technology matrix.

Remark 2.5. Several alternatives to the formulation of the recourse function (1.3) have been

proposed by various authors. Riis and Schultz [23], for example, proposed the following

formulation, de�ning the recourse function as the probability of total cost exceeding some

given threshold value �,

Q(x; �) := �
��

� 2 IRN j cx + �(x; �) > �
	�

;

where the second-stage value function is still de�ned by (1.4). Riis and Schultz showed

that this formulation is in fact equivalent to a classical two-stage stochastic program with

mixed-integer recourse and hence is a special case of (1.3). Moreover, it was shown that the

above-mentioned continuity properties remain valid, even under simpli�ed assumptions.
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3 Solution Procedure for Linear Recourse Models

In this section, we consider the minimax problem (1.2) in the setting of a two-stage stochastic

program with linear recourse, i.e. the recourse function is given by

Q(x; �) := cx+

Z
IRN

�(x; �)�(d�); (3.1)

where the random vector � 2 IRN is constituted by the components of the second-stage cost q,

the second-stage right-hand side h and the technology matrix T , and the second-stage value

function is given by

�(x; �) := min
n
qy
��� Wy � h + Tx; y 2 IRn2

+

o
: (3.2)

We elaborate a solution procedure for the problem under the following assumptions.

(A1) The set of conceivable distributionsA is de�ned as the set of all probability measures �

with support in some �nite set � =
�
�1; : : : ; �S

	
, satisfying a number of generalized

moment conditions, Z
�

gi(�)�(d�) � �i; i = 1; : : : ; L:

(A2) For all t 2 IRm there exists y 2 IRn2
+ such that Wy � t.

(A3) For all � 2 � there exists � 2 IRm
+ such that �W � q.

According to Assumption (A1) attention is restricted to a �nite number of scenarios, each

scenario �s corresponding to a possible outcome of random parameters (qs; hs; Ts). This

assumption is justi�ed by the stability results established in the previous section, since

the optimal solution of a minimax problem, employing a more general de�nition of the

set of conceivable distributions, may be approximated to any given accuracy by solutions

of minimax problems, employing only sets of probability measures with support in known

�nite sets (cf. Remark 2.1 and Remark 2.3).

Assumption (A2) is the assumption of complete recourse, ensuring feasibility of the

second-stage problem for any right-hand side t 2 IRm, whereas Assumption (A3) is the

assumption of dual feasibility, employed to ensure boundedness of the second-stage prob-

lems. We note that the assumption of complete recourse may be replaced by the weaker

assumption of relatively complete recourse, ensuring feasibility of the second-stage problems

only for those right-hand sides that may actually occur, i.e. for all x 2 X and all � 2 �

there exists y 2 IRn2
+ such that Wy � h+ Tx. If relatively complete recourse is not inherent

in the problem, it may be established by the inclusion of feasibility cuts (see e.g. Birge and

Louveaux [4]).
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Employing Assumption (A1) we may reformulate the minimax problem (1.2) in terms of

the scenario probabilities p1; : : : ; pS as follows

min
n
f(x) := cx +max

p2P

SX
s=1

ps�(x; �s)
o

(3.3)

where

P =
n
p 2 IRS

+

���
SX
s=1

ps = 1;
SX
s=1

psgi(�s) � �i; i = 1 : : : ; L
o
: (3.4)

Note that the inner maximization problem is now a linear programming problem over a

bounded polyhedron and hence the maximum value is always attained.

The following proposition states the relevant structural properties of the function f .

Proposition 3.1. Assume (A1)-(A3) and let f be de�ned by (3.2) and (3.3). Then f is a

real-valued, piecewise linear and convex function on X.

Proof. It is well-known that for each p 2 P the function gp(x) = cx +
PS

s=1 ps�(x; �s) is

a real-valued, piecewise linear and convex function on X, cf. e.g. Birge and Louveaux [4].

Noting that P is a bounded polyhedron, we see that f is the maximum of a �nite number

of real-valued, piecewise linear and convex functions, corresponding to the extreme points

of P.

The solution procedure that we will propose is based on the following reformulation of

problem (3.3),

min cx+ �

s.t. � �
SX
s=1

ps�(x; �s); p 2 P;

x 2 X; � 2 IR:

(3.5)

As in L-shaped decomposition, the constraints of this problem may be replaced by linear

inequalities referred to as optimality cuts. The algorithm progresses by sequentially solving

a master problem and adding optimality cuts which are violated at the current solution.

In particular, given a solution (x� ; ��) of the master problem in iteration �, the second-

stage problems are solved to obtain w�
s = �(x� ; �s) = ��s (hs + Tsx

�) where ��s are optimal

dual solutions for s = 1; : : : ; S. Next, denoting by p� the optimal solution of the linear

programming problem w� = maxp2P
PS

s=1w
�
sps, we obtain the following inequality that is

valid for all x 2 X and binding at x = x�,

max
p2P

SX
s=1

ps�(x; �s) �
SX
s=1

p�s�
�
s (hs + Tsx):

12



In this way we see that if �� < w�, the current solution (x� ; ��) is cut o� by including the

following constraint in the master problem,

� �
SX
s=1

p�s�
�
s (hs + Tsx):

Algorithm 1

Step 1 (Initialization) Set � = 0 and �z = 1 and let the current master problem be

min
�
cx + � j x 2 X; � 2 IR

	
.

Step 2 (Solve master problem) Solve the current master problem. Let (x�; ��) be

an optimal solution vector if one exists; if the problem is unbounded, then let

(x�; ��) be a feasible solution with cx� + �� < �z

Step 3 (Termination) If cx� + �� = �z, stop; the current solution is optimal.

Step 4 (Solve subproblems) For s = 1; : : : ; S solve the second-stage problems to �nd

w�
s = �(x� ; �s).

Step 5 (Solve max-problem) Solve the problem w� = maxp2P
PS

s=1w
�
sps. If �

� < w�

a violated optimality cut is added to the master problem.

Step 6 (Update bound) Let �z := minf�z; cx� + w�g. Go to Step 2.

It is easily seen that Algorithm 1 terminates in a �nite number of iterations whenever a

solution to the minimax problem exists.

Proposition 3.2. Assume (A1)-(A3). If problem (3.5) is feasible and bounded, then Algo-

rithm 1 terminates with an optimal solution in a �nite number of iterations.

Proof. Assume that the minimax problem has an optimal solution �x. In any iteration � of the

algorithm we must have cx� + �� � c�x +maxp2P
PS

s=1 ps�(�x; �s), since the master problem

is a relaxation of problem (3.5). As mentioned above, the current solution (x� ; ��) is cut o�

by an optimality cut whenever �� < maxp2P
PS

s=1 ps�(x
� ; �s). This can only happen a �nite

number of times since the number of optimality cuts is �nite, cf. Proposition 3.1. Thus we

will eventually have �� = maxp2P
PS

s=1 ps�(x
� ; �s), at which point the current solution is

feasible for problem (3.5) and hence optimal.

Consider now the following alternative reformulation of problem (3.3),

min cx+ �

s.t. � �
SX
s=1

ps�s; p 2 P;

�s � �(x; �s); s = 1; : : : ; S;

x 2 X; � 2 IR; � 2 IRS:

13



This reformulation leads directly to the following multicut version of Algorithm 1.

Algorithm 2

Step 1 (Initialization) Set � = 0 and �z = 1 and let the current master problem be

min
�
cx + � j x 2 X; � 2 IR; � 2 IRS

	
.

Step 2 (Solve master problem) Solve the current master problem. Let (x� ; ��; ��) be

an optimal solution vector if one exists; if the problem is unbounded, then let

(x�; ��; ��) be a feasible solution with cx� + �� < �z.

Step 3 (Termination) If cx� + �� = �z, stop; the current solution is optimal.

Step 4 (Solve subproblems) For s = 1; : : : ; S solve the second-stage problems to �nd

w�
s = �(x� ; �s) = ��s (hs + Tsx

�). If ��s < w�
s , add the cut �s � ��s (hs + Tsx) to

the master problem.

Step 5 (Solve max-problem) Solve the problem w� = maxp2P
PS

s=1w
�
sps and let p�

be an optimal solution. If �� <
PS

s=1 p
�
s�

�
s , add the cut � �

PS

s=1 p
�
s�s to the

master problem.

Step 6 (Update bound) Let �z := minf�z; cx� + w�g. Go to Step 2.

Proposition 3.3. Assume (A1)-(A3). If problem (3.5) is feasible and bounded then Algo-

rithm 2 terminates with an optimal solution in a �nite number of iterations.

Proof. The proof is similar to that of Proposition 3.2.

Remark 3.1. The multicut approach of Algorithm 2 o�ers some computational advantages

compared to the single-cut approach of Algorithm 1, since more detailed information is passed

to the master problem in each iteration. The improved detailing, however, comes at the cost

of an increased complexity of the master problem since the size of the problem grows quite

rapidly. Also, due to their resemblance to the original L-shaped method and its multicut

version, respectively, the algorithms are bound to su�er from some of the same drawbacks.

Apart from the growing size of the master problem, such drawbacks include the tendency for

early iterations to oscillate heavily, causing slow convergence towards an optimal solution.

In the case of L-shaped decomposition some of these drawbacks were circumvented by the

regularized decomposition method introduced by Ruszczynski [31]. The idea is to introduce

an incumbent solution a� and include a quadratic regularizing term of the form �
2
kx� a�k2

in the objective. Clearly, a similar approach could be used for the algorithm presented here,

but we will not go into the details of such an implementation.
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Remark 3.2. Riis and Schultz [23] elaborated a solution procedure to �nd the minimum value

of a recourse function given by

Q(x; �) := �
��

� 2 IRN j cx + �(x; �) > �
	�

; (3.6)

where � is some given threshold value. This procedure is in many ways similar to the multicut

version of the L-shaped algorithm. Hence we may modify Algorithm 2 in a similar way to

obtain a solution procedure for the minimax problem (1.2) with Q de�ned by (3.6).

4 Solution Procedure for Integer Recourse Models

If second-stage variables are restricted to integer values, the solution procedures presented

in the previous section break down, since the second-stage value function is no longer convex

and piecewise linear, but in fact only lower semicontinuous. To solve the minimax prob-

lem (1.2) in this setting, we elaborate an extension of the branch and bound algorithm for

two-stage stochastic programs with integer recourse, proposed by Ahmed, Tawarmalani and

Sahinidis [1]. As in (3.1) the recourse function is de�ned as the sum of �rst-stage cost and

expected second-stage cost, whereas the second-stage value function is now given by

�(x; �) := min
n
qy
���Wy � h+ Tx; y 2 Zn2+

o
: (4.1)

The solution procedure is elaborated under the following assumptions.

(B1) The set of conceivable distributionsA is de�ned as the set of all probability measures �

with support in some �nite set � =
�
�1; : : : ; �S

	
, satisfying a number of generalized

moment conditions, Z
�

gi(�)�(d�) � �i; i = 1; : : : ; L:

(B2) For all t 2 IRm there exists y 2 Zn2 such that Wy � t.

(B3) For all � 2 � there exists � 2 IRm
+ such that �W � q.

Note that Assumption (B2) is a natural extension of the complete recourse assumption for

the integer recourse case, while Assumption (B3) is in fact the same as Assumption (A3).

Employing Assumption (B1), we may once again reformulate the minimax problem (1.2) as

min
n
f(x) := cx+max

p2P

SX
s=1

ps�(x; �s)
o
; (4.2)

where the set P is still de�ned by (3.4). According to the following proposition, problem (4.2)

is well-de�ned in the sense that one minimizes a real-valued, lower semicontinuous function.
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Proposition 4.1. Assume (B1)-(B3) and let f be de�ned by (4.1) and (4.2). Then f is a

real-valued, lower semicontinuous function on X.

Proof. For each p 2 P the function gp(x) =
PS

s=1 cx + ps�(x; �s) is a real-valued, lower

semicontinuous function on X, cf. e.g. Nemhauser and Wolsey [21]. As in the proof of

Proposition 3.1 we see that f is real-valued. Now, let x 2 X and let fxngn�1 be some

sequence in X converging to x. Assuming that �p 2 argmaxp2P gp(x), we have

lim inf
n!1

f(xn) � lim inf
n!1

g�p(xn) � g�p(x) = f(x);

which completes the proof.

The algorithm presented in [1] is based on the following assumptions.

(B4) The technology matrix is �xed, i.e. Ts = T for s = 1; : : : ; S.

(B5) The �rst-stage constraint set X is non-empty and compact.

(B6) The recourse matrix W is integral.

Employing Assumption (B4), we may reformulate problem (4.2) by introducing the variable

transformation � = Tx for x 2 X to obtain the following formulation,

min
�2X

n
F (�) := h(�) +H(�)

o
(4.3)

where

h(�) = min
�
cx j Tx = �; x 2 X

	
;

H(�) = max
p2P

n
	p(�) :=

SX
s=1

ps	s(�)
o
;

	s(�) = min
�
qsy jWy � hs + �; y 2 Zn2

	
;

and

X =
�
� 2 IRm j � = Tx; x 2 X

	
:

As in the proof of Proposition 4.1 it is easily seen that the function H(�) is real-valued

and lower semicontinuous, and since h(�) is clearly real-valued and continuous, we see that

problem (4.3) is well-de�ned, and under Assumption (B5) the optimal value exists and is

actually attained for some �� 2 X . Furthermore, given an optimal solution �� 2 X of

the transformed problem (4.3), it is easily seen that x� 2 X is an optimal solution of the

minimax problem (4.2) if x� 2 argmin
�
cx j Tx = ��; x 2 X

	
, cf. [1, Theorem 3.2].
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The insight of Ahmed et al. was to note that for any p 2 P the discontinuity points of

the function 	p(�) are contained in a �nite number of hyperplanes that are all orthogonal to

the variable axes. In fact, they show that the function is piecewise constant over rectangular

regions of X , the boundaries of which are orthogonal to the variable axes. This result leads

directly to the following.

Lemma 4.1. Assume (B1)-(B6), let k = (k11; : : : ; k
s
j ; : : : ; k

S
m) 2 Z

mS be a vector of integers,

and let

C(k) :=
S\
s=1

mY
j=1

(ksj � hsj � 1; ksj � hsj]

and

K :=
�
k 2 ZmS j C(k) \ X 6= ;

	
:

Then jKj <1 and for all k 2 K the function H(�) is constant over C(k).

Proof. According to [1, Theorem 4.4 and 4.5] the result is true for the function 	p(�) for any

p 2 P. The proposition follows immediately.

The branch and bound algorithm, formally stated below, proceeds by partitioning the

feasible set X into regions of the form X \ �m
j=1(lj; uj], where each lj, j = 1; : : : ; m, is a

possible point of discontinuity of H(�), i.e. lj + hsj is integral for some s = 1; : : : ; S. This is

combined with a specialized bounding procedure which is a simple generalization of the one

presented by Ahmed et al.

Algorithm 3

Step 1 (Initialization) Set �z = 1. Let lP ; uP 2 IRm be such that X � �m
j=1 (l

P
j ; u

P
j ]

and for all j = 1; : : : ; m, lPj +hsj is integral for some s = 1; : : : ; S. Let L consist of

problem P de�ned by (4.3) with the additional constraints lP < � � uP . Also,

let � 2 IRm be such that H(�) is constant over �m
j=1 (lj; lj + �j] whenever l 2 IRm

is such that for all j = 1; : : : ; m, lj + hsj is integral for some s = 1; : : : ; S.

Step 2 (Termination) If L = ;, stop. The solution that yielded the upper bound �z is

optimal.

Step 3 (Node selection) Select and remove from the list of open problems L a prob-

lem P , de�ned as min
�
F (�) j lP < � � uP ; � 2 X

	
.

Step 4 (Bounding) Obtain a lower bound on P by solving the lower bounding problem

zP := H(lP + �) + min
�
cx j Tx = �; lP � � � uP ; x 2 X

	
and let �P be an

optimal solution. Update the upper bound as �z := min
�
�z; F (�P )

	
and remove

from L all problems P 0 with zP
0

� �z. If zP � �z go to Step 2.
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Step 5 (Branching) Select an index j 2 f1; : : : ; mg and a value vj with lPj < vj < uPj

and such that vj + hsj is integral for some s = 1; : : : ; S. Construct two new

problems P 0 and P 00, obtained from P by adding the constraints �j > vj and

�j � vj, respectively. Let z
P 0

= zP
00

= zP and add the two problems to L.

Before we prove �nite termination of Algorithm 3, let us note that Ahmed et al. presented

a procedure for the a priori determination of the constant �. The procedure is based on the

result in Lemma 4.1 and simply determines the smallest possible width of the non-empty

regions C(k), k 2 ZmS. Observing the de�nition of �, it is easily seen that the optimal value

zP of the lower bounding problem in Step 4 of the algorithm is a lower bound on the optimal

value of the current problem P . In particular, since H(�) is clearly non-decreasing in �, the

de�nition of � implies that H(lP + �) is a lower bound on H(�) for lP < � � uP . Moreover,

min
�
cx j Tx = �; lP � � � uP x 2 X

	
is clearly a lower bound on h(�) for lP < � � uP .

Proposition 4.2. Assume (B1)-(B6). Then Algorithm 3 terminates with an optimal solu-

tion in a �nite number of iterations.

Proof. Suppose in some iteration of the algorithm that the current problem P is such that

H(�) is constant over the set f� 2 X j lP < � � uPg. Then H(�P ) � H(lP + �) so that

F (�P ) = h(�P ) + H(�P ) � h(�P ) + H(lP + �) = zP and the current problem is fathomed

with no further re�nements of the partition. Thus branching only occurs whenever the set

f� 2 X j lP < � � uPg contains a discontinuity point of H(�). By Lemma 4.1 and the

de�nition of Step 5, this can only happen a �nite number of times and hence the algorithm

terminates in a �nite number of iterations. Optimality follows from validity of the lower and

upper bounding procedures, cf. the proof of [1, Theorem 6.4].

For further implementational details, such as e.g. speci�cation of the branching rule and

improvements of the lower bounding procedure as well as extension of the algorithm to the

case of random technology matrix, we refer to Ahmed, Tawarmalani and Sahinidis [1].

5 Conclusions

In this paper we have considered the minimax approach to stochastic programming. Con-

sidering some objective function Q which is dependent on a decision x and the probability

distribution of random parameters �, the problem is to minimize the function f de�ned

by f(x) = sup�2AQ(x; �), where A is a given set of possible or conceivable distributions.

Considering this formulation of the problem, we have established a number of stability prop-

erties in the form of continuity properties of local optimal values and local optimal solutions
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when the set A is subjected to perturbations (Proposition 2.1, Proposition 2.2 and Propo-

sition 2.3). The stability results justify in particular the approach of approximating the set

A by simpler sets, consisting only of measures with support in some known �nite set. Using

this approach, we have elaborated solution procedures for the minimax problem in the set-

ting of stochastic recourse models, considering the linear recourse case as well as the integer

recourse case. In the linear recourse case, the objective function f is piecewise linear and

convex (Proposition 3.1), and hence modi�cations of the L-shaped algorithm and its multi-

cut version apply and are easily seen to converge to an optimal solution in a �nite number

of iterations (Proposition 3.2 and Proposition 3.3). In the integer recourse case the function

f is no longer convex but in fact only lower semicontinuous (Proposition 4.1). Introducing

a proper variable transformation and observing that the transformed objective is piecewise

constant on certain rectangular regions (Lemma 4.1), a branch and bound procedure for

two-stage stochastic integer programs may be modi�ed to solve the minimax problem, and

once again convergence to an optimal solution in a �nite number of iterations is guaranteed

(Proposition 4.2).
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