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1. Introduction

In this paper we use commutative graded algebras to utilize the so-called ”occupa-
tion number formalism” of the quantum field theory for analysis of metabolisms
of information within fixed human communities (cf. [5], [6]). We treat bits of
information circulating in such communities as bosons and use the Bose-Fock
space structure to investigate their way to form opinions. Questionnaires are used
to construct an analogue of the momentum space of finitely many frequencies
which in this case are called ”attitudes”. The propagators of those boson-like
bits of information are principally individual respondents which, depending on
their ”states-of-mind”, provide answers yes or no to questions. Organizations
can as well get status of respondents and quality of possessing a ”state-of-mind”.
The states-of-mind are functions over the space of attitudes - the procedure often
called ”quantization”. At this early stage of the development of the theory, the
only observables we consider are questions directed to respondents. Questions are
coupled with orthogonal projections in the space of states-of-mind. Affirmative
answers are weighted by the assigned number of energy-bits they carry: electing
a Member of Parliament requires many energy-bits in the form of single votes
whereas a shareholder’s single vote carries the number of energy-bits equal to the
number of owned shares.
The subsequent second quantization (cf.[1]) of the space of states-of-mind pro-

vides the Bose-Fock space of states-of-opinion which is a commutative graded
algebra with an inner product (cf.[4]).
Suppose that within a human community two standpoints are being cultivated,

e.g. supporting the government or supporting the opposition in a democratic
country. A respondent of a community, where such a difference of opinion occurs,
will at any moment of time be inclined to support one or neither of the standpoints
and his state-of-mind may change at any time subject to an interaction due to
direct conversations, reading newspapers, watching television, election campaigns
etc. We shall concentrate on describing the opinions emerging as a fusion (a
superposition) of such two different points of view. The statistical approach we
introduce goes back to von Neumann [3].
Though the applications we describe are of a very simple nature, they already

induce the emergence of two important constants impossible to obtain by use of
empirical means.
The first constant called the interaction coefficient is a number between 0 and

1 measuring the actual backgrounds for communication between respondents of
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different fractions: a common language, traditions, religion, interest etc.
The second constant called the superposition constant plays a double role - if

it is greater or equal to one, it prevents interaction blocking the influence of the
interaction coefficient. If negative, it controls regions of high and low frequencies
of affirmation to questions asked in the fusioned community.
We show that under high interaction a sudden critical switch of opinion can

occur in consequence of a minimal change of the superposition constant (cf. Re-
mark 3). Changes of opinions under a temporary influence of some outside factors
(as for instance election campaigns) are investigated. It is shown that such a tem-
porary influence causes diminishing of high amplitudes (cf. Remark 4).
Formal descriptions of the results can be found in Section 5, where also a

limited number of applications is presented. Investigation of more refined models
goes beyond the reasonable limits of the present paper. In particular, the case of
exterior influence which is not simple is being postponed to another paper.
The authors are much indebted to Krista Graversen for her help in editing this

paper. Also the first of the authors wishes to express his gratitude for the hospi-
tality of the Institute for Mathematical Behavioral Sciences at UCI. Discussions
with members of the Institute considerably influenced the form of this paper.

2. The first quantization

A selected sub-population characterized by a collection of attitudes will here be
called a profile. For example the body of parliament members of a democratic
country constitutes a profile. The attitudes will represent different political af-
filiations. The states-of-mind will then concern actual political problems. Also
the government and its members can be considered as a profile. Here the set of
attitudes will include different policies. For the profile of workers, the relevant
attitudes will be conerned with the unions and the socialistic party.
As already mentioned, the same physical population consists of many different

profiles. Profiles connected with professions are easiest revealed by asking a ques-
tion to which the answer ”yes” selects the states-of-mind of the profession. For
example, the question ”do you have a valid certificate qualifying you as a physi-
cian?” automatically extracts the profile of medical doctors. An examination will
filter respondents of the profile of a particular profession. The whole population
itself constitutes a profile as well.
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2.1. Attitudes

Consider a community familiar with subjects which can be presented in a list of
statements. The statements can be accepted or rejected by members of the com-
munity. In what follows we refer to this list of statements as a questionnaire. The
term ”questionnaire” should not be taken literally. For instance, a questionnaire
may consist of a set of examination questions but it can as well be an ordinary
questionnaire prepared for a poll.
A copy of a completed questionnaire shall be called an attitude. The quan-

tum mechanical counterpart of an attitude is a frequency. Hence the quantum
mechanical equivalence of spaces of attitudes are momentum spaces consisting of
finitely many points.

2.2. The first quantization: from attitudes to states-of-mind

Let the space of attitudes consist of n attitudes {1, 2, ..., n}. Consider the real-
valued functions x of n real variables t1, t2, ..., tn. To the attitude j we attach the
function ej, which is the value of the variable tj,

ej (t1, t2,, ..., tn) = tj.

We shall consider the real vector space F of vectors

x = λ1e1 + λ2e2 + · · ·+ λkek,

where λ1,λ2, ...,λk are arbitrary real numbers. Given another vector from F ,

y = η1e1 + η2e2 + · · ·+ ηkek,

we define the inner product (Hermitian form) setting

hx, yi = λ1η1 + λ2η2 + · · ·+ λnηn

so that e1, e2, ..., en is an orthonormal basis in F and each vector x from F can
be written in the form

x = hx, e1i e1 + hx, e2i e2 + · · ·+ hx, eni en.

Then
hx, yi = hx, e1i hy, e1i+ hx, e2i hy, e2i+ · · ·+ hx, eni hy, eni .
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We shall write |x| for the length of the vector x,

|x| = hx, xi 12 .

A vector x is called a state-of-mind if |x| = 1. We do not distinguish between
states provided by x and −x. We shall write briefly

x/
def
=

x

|x|
for the state-of-mind corresponding to the vector x.
If a respondent is in the state-of-mind x, his attitude will be j with probability

hx, eji2 , i.e. to the question ”which is your attitude?” he will name the attitude
j with probability hx, eji2 .
The (real) vector space F shall be called the space of states-of-mind (we have

as yet no interpretation for the process of multiplication by the imaginary unit i).
Continuing the analogy with photons, the space F of states-of-mind is the

counterpart of the state-space for photons with fixed finite number of frequencies
= attitudes in this paper.
Given states-of-mind x and y, the number hx, yi2 is called the correlation of x

and y. States for which the correlation is equal to zero shall be called uncorrelated.
Observe that the space F can be considered as the space of all real-valued

functions x on the set {1, 2, ..., n} , each such function assigning a real number λj
to j from the set {1, 2, ..., n} .

2.3. Questions as observables

The process of assigning an attitude j to a respondent can be ”first quantized”
to a question directed to a respondent ”are you fully accepting the attitude j? ”
The question itself then becomes an observable taking the form of the projection

Qej = hej, ·i ej.

Now the procedure can be extended over arbitrary states-of-mind by attaching to
a state-of-mind x the projection

Qx = hx, ·ix

which directed to a respondent runs as follows
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are you in the state-of-mind x ?

We attach statistics to this question by way of the statement

hQxy, yi = hx, yi2 =
 the probability of obtaining the
answer ”yes” to the question Qx
from a respondent in state y

i.e. the probability of the answer ”yes” is equal to the correlation of x and y.
More general questions Q are linear combinations of questions of the form Qx.

Then

hQy, yi =
 the probability of obtaining the
answer ”yes” to the question Q
from a respondent in state y

.

As an example we consider the projection

Qx = hei, xi ei + hej, xi ej,
where i and j are different attitudes. The question corresponding to this projection
should read ”do you favor precisely the attitudes i and j out of the collection of
all possible attitudes?” Here we have Qx = x, exactly for x = hei, xi ei+ hej, xi ej
which means that the answer ”yes” comes from the states x = λei + ηej, with
λ2 + η2 = 1.
As explained in the Introduction, each affirmative answer to a question carries

a number of energy-bits depending on the nature of the corresponding model.

3. The second quantization

The notions of attitude and state-of-mind concern individual respondents. The
second quantization amounts to providing a formalism by use of which the parallel
notions on the level of profiles can be defined (cf.[1], [4]). The counterpart of the
notion of attitude attached to an individual member of a community will be the
notion of opinion attached to a group of individuals. Similarly the counterpart of
the notion of state-of-mind attached to a respondent will be the notion of state-
of-opinion attached to a profile (which can as well be the whole population). As a
state-of-mind assigns a number to every possible attitude, a state-of-opinion will
assign a number to every possible opinion of a profile. The square of the number
assigned to an opinion gives the probability that this is exactly the opinion of the
profile.
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3.1. Opinions and the Bose Fock space for states-of-opinion

The main goal of this section is to introduce the concept of the state-of-opinion
of a profile as an analogue to the concept of state-of-mind of a respondent.
Suppose that from a poll we have gathered information about the actual dis-

tribution of attitudes of a profile. It means that we have a collection of attitudes,
where the same attitude may appear many times, a single time or not at all. To
obtain the precise definition we proceed as follows.
Let {1, 2, ..., n} be the set of all attitudes. Then a tuple of positive integers

(k1, k2, ..., kn) shall be called an opinion in which the attitude j appears kj times
for j = 1, 2, ..., n. If a particular attitude, say i, does not appear at all, we write
ki = 0. A poll assigns to each attitude the number of respondents that share this
attitude i.e. it provides the opinion of the community.
We use the Bargmann version of the Bose Fock space construction starting

with the algebra eFof all formal series
f =

X
λk1,k2,...,knek1,k2,...,kn ,

where ek1,k2,...,kn are products of variables t1, t2, , tn :

ek1,k2,...,kn (t1, t2, , tn)
def
= tk11 t

k2
2 · · · tknn .

We multiply the series in the standard way setting

ej1,j2,...,jmek1,k2,...,kn = ej1+k1,j2+k2,...,jm+km,km+1,...,kn .

We postulate that a profile which consists of k1 members carrying state-of-mind
e1, k2 members carrying the state-of-mind e2 etc. up to kn members carrying the
state-of-mind en, is in the state-of-opinion

ek1,k2,...,kn√
k1!k2!...,kn!

and we assume that the setn
ek1,k2,...,kn√
k1!k2!...,kn!

o
, where (k1, k2, ..., kn) runs through all possible opinions, constitutes

an orthonormal basis of Bargmann’s Hilbert space

ΓF =
nX

λk1,k2,...,knek1,k2,...,kn :
X

λ2k1,k2,...,knk1!k2!..., kn! <∞
o

contained in eF and called the space of states-of-opinion. Then the inner product
is of the form DX

ηj1,j2,...,jmej1,j2,...,jm ,
X

λk1,k2,...,knek1,k2,...,kn

E
=

½ P
k1!k2!..., kn!ηk1,k2,...,kmλk1,k2,...,km n = m

0 otherwise
.
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For x1, x2, · · · , xn, y from F we have the following useful formula (cf.[4])

hx1x2 · · ·xn, ymi =
½
m! hx1, yi hx2, yi · · · hxm, yi for m = n

0 otherwise.
.

A state-of-opinion will be a vector f from ΓF such that hf, fi = 1. This way
for a state-of-opinion f =

P
λk1,k2,...,knek1,k2,...,kn we have

P
λ2k1,k2,...,kn = 1 and

for each opinion (k1, k2, ..., kn) the number λ
2
k1,k2,...,kn

represents the probability
that the members of the concerned profile share the opinion (k1, k2, ..., kn) . We
identify states of opinions f and −f. If all kj = 0, then we get the vector ø,
ø(t1, t2, ..., tn) = 1, called the vacuum vector.
Notice that states-of-opinion can be interpreted as functions defined on the

space of opinions, each such function assigning to an opinion (k1, k2, ..., kn) a real
number λk1,k2,...,kn.

Remark 1. In this paper there is no need to take for λk1,k2,...,kn the complex num-
bers. Should such a need occur later, the necessary adjustments are elementary.

We shall need the notion of the operator w∗of annihilation by an element w
from F (cf.[4]).We definie w∗ first for the basis vectors ej of F setting for f ∈ −F¡

e∗jf
¢
(t1, t2, ..., tn) =

∂

∂tj
f (t1, t2, ..., tn)

and then extend it linearly to include all w from F .
The only infinite sums we will use are the elements of ΓF called coherent

vectors, which are the exponential functions

ex =
∞X
n=0

1

n!
xn,

of x ∈ F . It is easy to verify that

hex, eyi = ehx,yi.

3.2. Occupation numbers and their statistics

To every orthogonal projection Q in F and every natural number k we assign a
projection Qk in ΓF which we define as follows:
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Take x1, ..., xp, y1, ..., yq ∈ F such that Qxj = xj for j = 1, 2, ..., p and Qyi = 0
for i = 1, 2, ..., q. Then we define

Q(k) (x1x2 · · ·xpy1y2 · · · yq) def=
½
x1x2 · · ·xpy1y2 · · · yq p = k

0 otherwise
.

It is easy to extend Q(k) to an orthogonal projection of ΓF into itself. The
projection Q(k) is an observable in the space of states-of-opinion and corresponds
to the question:

Is there exactly k answers”yes”to the question Q?

Consequently, for a state-of-opinion f we have­
Q(k)f, f

®
=

½
the probability that in the state f
we get precisely k answers ”yes” to Q

.

Let f be a state, i.e let |f | = 1. The numbers ­Q(k)f, f® are called the occupation
numbers of affirmation of Q in the state f
We extend Q to a derivation dΓQ, i.e. a transformation obeying the Leibniz

rule,
(dΓQ) fg = (dΓQf) g + f (dΓQg) .

This operation is often called the second quantization of Q. It is easy to verify
that the spectral decomposition of dΓQ is

dΓQ = Σ∞k=0kQ
(k).

Hence, if f is a state-of-opinion, then

hdΓQf, fi = Σ∞k=0k
­
Q(k)f, f

®
=

 the expected number of energy-bits
coming from the affirmative
answers to Q in the state-of-opinion f.

(3.1)
However, it is not the expected number of energy-bits coming from the affirmative
answers which is measured by a poll but the expected percentageR (Q, f) of those
energy-bits,

R (Q, f) = hdΓQf, fi
hdΓIf, fi =

 the expected percentage of energy-
bits coming from the affirmative
answers to Q in the state-of-opinion f.

, (3.2)

9



We shall call R (Q, f) the relative expectation for energy of affirmation of Q in
the state f. Here the identity operator I corresponds to the question: ”How many
energy-bits are available”?
Given a state-of-opinion f, we can produce a new one by making a superposi-

tion of f with the vacuum

(f + αø)/ =
f + αøp

1 + α2 + 2 hø, fi .

Since
hdΓQ (f + αø) , f + αøi = hdΓQf, fi ,

we get

R
³
Q, (f + αø)/

´
=

D
dΓQ (f + αø)/ , (f + αø)/

E
D
dΓI (f + αø)/ , (f + αø)/

E = hdΓQf, fi
hdΓIf, fi = R (Q, f)

which means that the superposition with the vacuum does not change the per-
centage of energy-bits coming from affirmation of Q.

3.3. Coherent states

A coherent state describes respondents with states-of-mind gathered around a
special fixed state-of-mind called the mode of coherence, e.g. physicians with
their professional curriculum as the mode, members of a political party with their
party program as the mode, lawyers with professional know-how as the mode etc.
Take a vector x from the states-of-mind space F . The coherent state c (x)

generated by x is the normalized coherent vector ex,

c (x) = ex/ = e
− 1
2
hx,xiex

c (0) = ø.
(3.3)

Observe that if the number hx− y, x− yi is very large, the correlation
hc (x) , c (y)i = e− 1

2
|x−y|2 (3.4)

is almost 0, i.e. c (x) and c (y) are almost uncorrelated. Hence any experiment
performed in one of those states has almost no probable relation to an experiment
performed in the other state.
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The coherent states are ”almost” multiplicative; we have

c (x+ y) = e−hx,yic (x) c (y) .

The number |x|2 , the state-of-mind x/ and the vector x shall be respectively
called the energy, the mode and the generating vector of the coherent state c (x) .
Hence in the background of a given coherent state lies the mode which is the
state-of-mind that provides the right frequencies of occurrence of the attitudes
from a fixed list. Given a coherent state, we can approximate the mode for this
coherent state as follows. We produce a ”super-questionnaire” out of all involved
attitudes; then count the frequencies of the choice of particular attitudes in a poll
and take their square roots as coefficients to the respective attitude.
We can easily compute the relative expectation R for Q in a coherent state

c (x) . Since dΓQ is a derivation, we have

dΓQc (x) = (Qx) c (x)

so that
hdΓQc (x) , c (x)i = hx,Qxi = |Qx|2

and we obtain the number

R (Q, c (x)) = ­x/, Qx/® = ¯̄Qx/¯̄2
which does not depend on the energy |x|2 of c (x) .

4. Bicoherence

The concept of bicoherence concerns a community consisting of two coherent frac-
tions, e.g. the government and the opposition in a democratic country, members
of two different religious affiliations, a population consisting of natives and im-
migrants etc. In each of these cases the state-of-opinion of the whole population
is a superposition of states-of-opinion of two coherent sub-profiles. The state-
of-opinion of the superposition is not any longer coherent and shall be called
bicoherent.
One can easily quote important cases involving more than two coherent states

but already in the case of three, the amount of necessary computation will double
the size of this paper and hence must be postponed to a separate publication.
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4.1. Bicoherent states

Take coherent states c (u) and c (v) , u 6= v, and a number λ. The number
ω = hc (u) , c (v)i = e− 1

2
|u−v|2

shall be called the interaction coefficient. States of the form

cλ (u, v) =
c (u) + λc (v)

ϑ (λ,ω)
, (4.1)

where
ϑ (λ,ω) = |c (u) + λc (v)| =

p
1 + λ2 + 2λω, (4.2)

shall be called bicoherent states. For λ 6= 0 we have
cλ (u, v) = c 1

λ
(v, u)

so that for λ close to infinity cλ (u, v) behaves exactly as cλ (v, u) behaves for λ
close to zero. The coefficient λ will be called the superposition constant.
The closer to zero is ω, i.e. the greater is |u− v| , the more the states c (u)

and c (v) act as uncorrelated, and cλ (u, v) describes a profile split into two groups
which hardly communicate with each other.
With fixed u and v, when λ increases to infinity, the state cλ (u, v) converges

to the state c (v) , and when λ decreases to zero, it converges to the state c (u) .
Excluding the case of simultaneous λ = −1 and u = v, we get from 3.1 the
expected number of energy-bits of the affirmative answers to a question Q :

hcλ (u, v) , (dΓQ) cλ (u, v)i
=

κ (Q;λ, u, v,ω)

ϑ (λ,ω)2
, (4.3)

where
κ (Q;λ, u, v,ω) = |Qu|2 + 2λω hQu, vi+ λ2 |Qv|2 . (4.4)

Applying (3.2) we get

R (Q, c
λ
(u, v))

=

½
the expected percentage of affirmations
of Q in the state-of-opinion cλ (u, v)

(4.5)

=
κ (Q;λ, u, v,ω)

κ (I;λ, u, v,ω)
.
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Since

R (Q, c
λ
(tu, tv))

|Qu|2 + λ2 |Qv|2 + 2λ hQu, vi e− 1
2
t2|u−v|2

|u|2 + λ2 |v|2 + 2λ hu, vi e−1
2
t2|u−v|2

by choosing the right t and substituting e−
1
2
t2|u−v|2for ω, we can get every number

between 0 and 1 for the interaction coefficient ω.We expose the fact that ω ∈ [0, 1]
can be considered as an independent variable by writing

Rω (Q,λ, u, v) =
|Qu|2 + λ2 |Qv|2 + 2λ hQu, viω
|u|2 + λ2 |v|2 + 2λ hu, viω (4.6)

and observing that
Rω (Q,λ, u, v) = R (Q, cλ (tu, tv)) (4.7)

if ω = e−
1
2
t2|u−v|2.

4.2. Weyl transformations

Suppose that some social forces alter the coherent state c (x) to another coherent
state c (y) . Then, writing z = y − x, we can consider z as the vector altering the
generating vector x of the given coherent state to a new generating vector x + z
of the new coherent state c (x+ z) = c (y) . This reduces the process of changing
c (x) into c (y) to the application of transformation Wz dependent on a vector z
from F . The transformation

Wzc (x) = c (x+ z)

of c (x) into c (x+ z) is called theWeyl transformation. Given z, the Weyl trans-
formationWz is uniquely extendable to a linear isometry (states-of-mind preserv-
ing transformation) of ΓF onto itself (cf. [4]). The Weyl transformation Wz is
fully described by the coherent state c (z) which shall be called the generator of
Wz.

4.3. The mathematics of bicoherence

In this section we shall prove a series of results necessary for further development
of the theory.
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Let y, u ∈ F and f, g ∈ ΓF and let Q be an orthogonal projection. In the
proofs below we shall freely use the following identities (cf.[4]):

hyf, gi = hf, y∗gi
y∗ (fg) = (y∗f) g + f (y∗g)

y∗c (u) = hy, ui c (u)
hdΓQf, gi = hf, dΓQgi
dΓQ (fg) = (dΓQf) g + f (dΓQg)

dΓQc (u) = (Qu) c (u) .

Given x, z ∈ F , |z| = 1, we briefly write
z#c (x) =

¡­
x, z/

®
ø− z/

¢
c (x)

Lemma 1. For every u, z ∈ F . The vector z#c (u) is a state-of-opinion.
Proof. We have

hc (u) , zc (u)i = hz∗c (u) , c (u)i = hz, ui
and

hzc (u) , zc (u)i
= hc (u) , z∗ (zc (u))i = |z|2 + hz, ui hc (u) , zc (u)i = |z|2 + hz, ui2

so that

h(hu, zi ø− z) c (u) , (hu, zi ø− z) c (u)i
= hhu, zi c (u)− zc (u) , hu, zi c (u)− zc (u)i
= hu, zi2 − 2 hu, zi hc (u) , zc (u)i+ hzc (u) , zc (u)i
= hu, zi2 − 2 hu, zi2 + |z|2 + hz, ui2 = |z|2

Now we can verify the following

Proposition 2. We have

lim
α→0

¯̄̄̄
¯ c (u+ αz)− c (u)√
2
p
1− e− 1

2
(α|z|)2

− z#c (u)
¯̄̄̄
¯ = 0

i.e. the bicoherent states c−1 (u+ αu, u) converge strongly to the state z#c (u) .
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Proof. Take an arbitrary y ∈ F . Using l’Hospital Theorem, we get

lim
α→0

*
c (u+ αz)− c (u)√
2
p
1− e− 1

2
(α|z|)2

− ¡­u, z/® ø− z/¢ c (u) , c (y)+ = 0.
But z/#c (u) lies on the unit sphere and {ex : x ∈ F} is total so that the Propo-
sition holds.

Proposition 3. We have

lim
α−→0

hc−1 (u+ αz, u) , (dΓQ) c−1 (u+ αz, u)i = |Qu|2 + ¯̄Qz/¯̄2 .
Proof. We have

hc (u+ αz)− c (u) , dΓQ (c (u+ αz)− c (u))i
= hc (u+ αz) , (Q (u+ αz)) c (u+ αz)i− hc (u+ αz) , (Qu) c (u)i
− hc (u) , (Q (u+ αz)) c (u+ αz)i+ hc (u) , (Qu) c (u)i

= hQ (u+ αz) , u+ αzi− 2 hQu, u+ αzi e− 1
2
α2|z|2 + hQu, ui

and using l’Hospital Theorem, we get

lim
α→0

|Q (u+ αz)|2 − 2 hQu, u+ αzi e− 1
2
α2|z|2 + |Qu|2

2
³
1− e− 1

2
(α|z|)2

´ = |Qu|2 + ¯̄Qz/¯̄2 .

Proposition 4. We have

lim (cλ (u, v)−Wαzcλ (u, v))/ =
¡
z/#c (u) + λz/#c (v)

¢
/

Proof. We have

Wαzcλ (u, v) =
c (u+ αz) + λc (v + αz)

ϑ (λ,ω)
,

where ϑ is given by 4.2. Let

Uα = c (u)− c (u+ αz)

Vα = c (v)− c (v + αz)

|Uα|2 = 2
³
1− e− 1

2
|αz|2

´
= |Vα|2 .
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Then

Uα

|Uα| → U =
¡­
u, z/

®
ø− z/

¢
c (u) ,

Vα
|Vα| → V =

¡­
v, z/

®
ø− z/

¢
c (v)

cλ (u, v)−Wαzcλ (u, v)

=
(c (u)− c (u+ αz)) + λ (c (v)− c (v + αz))

ϑ (λ,ω)

=
Uα + λVα
ϑ (λ,ω)

cλ (u, v)−Wαzcλ (u, v)

|cλ (u, v)−Wαzcλ (u, v)|

=
Uα + λVα
|Uα + λVα| =

Uα
|Uα| + λ Vα

|Vα|¯̄̄
Uα
|Uα| + λ Vα

|Vα|

¯̄̄ → U + λV

|U + λV |

=

¡­
u, z/

®
ø− z/

¢
c (u) + λ

¡­
v, z/

®
ø− z/

¢
c (v)¯̄¡­

u, z/
®
ø− z/

¢
c (u) + λ

¡­
v, z/

®
ø− z/

¢
c (v)

¯̄ .
Given a real number λ and u, v, z ∈ F we define

ι (Q, u, v, z) = hv − u, zi (hQu, vi hv − u, zi+ h(v − u) , Qzi) .
Proposition 5. Take u, v, z ∈ F , where |z| = 1. Then

hdΓQ (z#c (u) + λz#c (v)) , z#c (u) + λz#c (v)i
= ϑ2 (λ,ω) |Qz|2 + κ (Q;λ, u, v,ω)− 2λωι (Q,u, v, z) .

The Proposition is an immediate consequence of the following

Lemma 6. Take vectors u, v and z fromF and a projectionQ. Then the following
identity holds

1

ω
hdΓQz#c (u) , z#c (v)i

= hz,Qzi+ hz, zi hQu, vi+ ι (Q, u, v, z) .
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Proof.

hdΓQ (hu, zi ø− z) c (u) , (hv, zi ø− z) c (v)i
= hdΓQ (hu, zi ø) c (u) , (hv, zi ø) c (v)i+ hdΓQ (hu, zi ø) c (u) , (−z) c (v)i

+ hdΓQ (−z) c (u) , (hv, zi ø) c (v)i+ hdΓQ (−z) c (u) , (−z) c (v)i
= hu, zi hv, zi hQu, vi hc (u) , c (v)i− hu, zi hQu, zi hc (u) , c (v)i
− hu, zi2 hQu, vi hc (u) , c (v)i− hv, zi hQz, vi hc (u) , c (v)i
− hv, zi2 hQu, vi hc (u) , c (v)i+ hQz, zi hc (u) , c (v)i
+ hQz, vi hz, ui hc (u) , c (v)i+ hz, zi hQu, vi hc (u) , c (v)i
+ hz,Qui hz.vi hc (u) , c (v)i+ hz, ui hQu, vi hz, vi hc (u) , c (v)i

4.4. Consequences of temporary external influence

Consider a profile in a bicoherent state cλ (u, v) and an element z ∈ F . Let for
α > 0 an external influence caused by Wαz ,

cλ (u, v)→Wαzcλ (u, v) ,

induce a new state cλ (u+ αz, v + αz). As the result of the enforcement, the
population falls into the superposition state

(cλ (u+ αz, v + αz)− cλ (u, v))/
of the original contra the enforced state-of-opinion Wαzcλ (u, v). In Proposition
4 it is proved that when the enforcement fades away, i.e. when α → 0, the
state-of-opinion tends to the limit state-of-opinion

(z#c (u) + λz#c (v))/ .

By Proposition 5 the expected percentage of affirmative answers to Q in this state
is

R
³
Q, (z#c (u) + λz#c (v))/

´
=

hdΓQ (z#c (u) + λz#c (v)) , z#c (u) + λz#c (v)i
hdΓI (z#c (u) + λz#c (v)) , z#c (u) + λz#c (v)i (4.8)

=
ϑ2 (λ,ω) |Qz|2 + κ (Q;λ, u, v,ω)− 2λωι (Q,u, v, z)

ϑ2 (λ,ω) + κ (I;λ, u, v,ω)− 2λωι (I, u, v, z) ,
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where ω = e−
1
2
|u−v|2. Due to the lack of homogeneity relative to u, v, we cannot

make ω in 4.8 an independent variable as in 4.7.
The term ι (Q,u, v, z) measures the balance of the influence of c (z) on com-

ponents c (u) and c (v) of cλ (u, v) . If the influence of c (z) on cλ (u, v) is equally
distributed between c (u) and c (v), the term ι (Q,u, v, z) vanishes.

5. Analysis of a model

Let consider a special case. Suppose that in a community two complementary
coherent profiles manifest. Fix two positive numbers a and b and consider states-
of-mind

u =

µ
a

b

¶
and v =

µ
b

a

¶
.

Suppose further that the community we investigate is polarized into two profiles
- one in the state c1 = c (u) and the other in the state c2 = c (v) .
Let 100 a2

a2+b2
% of the members of the profile in state c (u) support an attitude

X while 100 a2

a2+b2
% of the members of the profile in state c (v) will reject X. We

consider the bicoherent state cλ
¡¡
a
b

¢
,
¡
b
a

¢¢
.

Let the question we ask correspond to the projection

Q =

µ
1 0
0 0

¶
with the eigenvector

¡
1
0

¢
corresponding to the answer ”yes” to the question

”Do you support the attitude X?”

We shall now analyze the expected relative frequencies of affirmative answers to
Q before and after the exertion of an influence generated by c (z) . Analysis of un-
equal balance of the influence of c (z) manifesting in non-zero ι is too complicated
for the first approach we are making here and it will be postponed to a separate
paper. Hence we shall take z =

¡
s
t

¢
such that hv − u, zi = (b− a) (s− t) = 0

which requires s = t, and since z is a unit vector we must have

z =
1√
2

µ
1

1

¶
.
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We have the following set of values

|Qu| = a , |Qv| = b, hu, vi = 2ab, hv − u, zi = 0
ab = hQu, vi , |u− v|2 = 2 (a− b)2 , |Qz|2 = 1

2

yielding

κ (Q;λ, u, v,ω) = a2 + 2λωab+ λ2b2

κ (I;λ, u, v,ω) =
¡
1 + λ2

¢ ¡
a2 + b2

¢
+ 4λωab

and

ι (Q,u, v, z) = ι (I, u, v, z) = 0.

Using 4.5 and 4.8 we get

Rω (Q,λ, u, v) =
a2 + 2λωab+ λ2b2¡

1 + λ2
¢
(a2 + b2) + 4λωab

(5.1)

and

R
³
Q, (z#c (u) + λz#c (v))/

´
=

1
2

¡
1 + λ2 + 2λω

¢
+ a2 + 2λωab+ λ2b2¡

1 + λ2 + 2λω
¢
+
¡
1 + λ2

¢
(a2 + b2) + 4λωab

where ω = e−
1
2
|u−v|2 = e−(a−b)

2

.

5.1. The meanings of the interaction coefficient and the superposition
constant

Let us take a2 + b2 = 1. For u =
¡
a
b

¢
and v =

¡
b
a

¢
we get

Rω (Q,λ, u, v) =
a2 + 2λωa

√
1− a2 + λ2 (1− a2)¡

1 + λ2
¢
+ 4λωa

√
1− a2 . (5.2)

Taking u =
¡
a
b

¢
, v =

¡
b
a

¢
and 0 < ω < ρ < 1, we get

Rω (u, v,λ)−Rρ (u, v,λ)

=
2λa

p
(1− a2) (ρ− ω) (1− 2a2) ¡λ2 − 1¢³

1 + λ2 + 4λωa
p
(1− a2)

´³
1 + λ2 + 4λρa

p
(1− a2)

´ .
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For a2 < 1
2
and λ ≥ 1 the above difference is non-negative and we can estimate,

2λa
p
(1− a2) (ρ− ω) (1− 2a2) ¡λ2 − 1¢¡

1 + λ2
¢
4λρa

p
(1− a2) + ¡1 + λ2

¢
4λωa

p
(1− a2)

≤ 2λa
p
(1− a2) (ρ− ω) (1− 2a2) ¡λ2 − 1¢¡
1 + λ2

¢
4λ (ρ+ ω) a

p
(1− a2)

≤ 2 (ρ+ ω) (1− 2a2) ¡λ2 + 1¢
4
¡
1 + λ2

¢
(ω + ρ)

≤ 1
2

¡
1− 2a2¢

which shows that there is almost no influence of the interaction coefficient if a is
close to 1√

2
and λ ≥ 1.

The interaction coefficient measures the ability for interaction (as for instance
speaking the same everyday language, being a citizen of a democratic country,
having the same cultural background etc.).
The superposition constant plays two different roles. It points out which per-

centage of influence on the superposition state has each of the two coherent com-
ponents and it marks the existence of wish to enter the interaction at all: Catholics
and Protestants of Northern Ireland are fully capable of interacting on an arbi-
trarily high social level but they will not enter the interaction due to some special
reasons.
Let us look at the diagrams at the end of the paper. For λ > 1 there are no

significant differences in the forms of the diagrams. In all cases maximum is not
attained for λ = 0 but first for a negative λ. Movement of λ from zero in the
negative direction makes Rω increase. Consequently we have

Remark 2. The increase of the influence of c2 acts as a buster for c1 providing
more affirmative answers.

Say the interaction coefficient ω is close to one. Starting at λ = 0 and moving
in the negative direction, we observe a rapid increase of Rω. Then, continuing
moving λ in the same direction, the situation reverses - now the maximum de-
creases towards the minimum.

Remark 3. The closer to one is the interaction coefficient, the shorter is the
interval within which Rω attains first the maximum and then the minimum.
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Then the situation stabilizes and with further decrease of λ, Rω converges to
its limit R (Q, c2) in −∞ so that the role of c1 is eliminated.
As an example we can take the government and the opposition of a democratic

country both in coherent states respectively. Assume that there is an intensive
interaction between c1 and c2. Say the government has majority: R (Q, c1) >
R (Q, c2) . A small negative weight λ attached to c2 yields not much contribution
itself but by way of the interaction it provokes the other fraction to vote. Similarly
if R (Q, c1) < R (Q, c2) , then the increase of negative answers is provoked. Still
higher negative weight yields the reversed status - the respondents from c2 take
over and in the first case cause a decrease and in the second case an increase of
affirmations. These unusual variations can happen only in the presence of high
interaction and in small intervals of negative λ and hence will seldom occur in
real life. However, such jumps in the distribution of votes have been observed in
the past (cf.[2]).

5.2. Consequences of an equidistributed temporary exterior influence

Take

w =
1√
2

µ
1

0

¶
#c

µµ
a

b

¶¶
+ λ

1√
2

µ
1

0

¶
#c

µµ
b

a

¶¶
/

and consider

R ¡Q,w/¢ = 1
2

¡
1 + λ2 + 2λω

¢
+ a2 + 2λωa

√
1− a2 + λ2 (1− a2)¡

1 + λ2 + 2λω
¢
+
¡
1 + λ2

¢
+ 4λωa

√
1− a2 . (5.3)

In order to observe the consequences of the influence we shall draw the graphs
of 5.3 imposed onto the graphs of 5.2 for a2 + b2 = 1, a2 = 19

36
, 22
36
, 26
36
, 28
36
, with

respective interaction coefficients ω = 0.998 46, 0.975 31, 0.901 05, 0.844 91.
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It is clearly visible that equally distributed influence of Wz makes the extreme
values of Rω diminish.

Remark 4. The influence of Wz tempers the extreme reactions.
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