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Abstract. It is well-known that quasi-homogeneity is characterized by equality of the
Milnor and Tjurina numbers for isolated complex analytic hypersurface singularities and
for low-dimensional isolated complete intersection singularities. In this paper we prove that
this characterization extends to isolated purely elliptic complete intersection singularities,
with bounds on neither the embedding codimension nor the dimension of the singularity.

Introduction

The famous theorem of K. Saito [Sa] from 1971 states that an isolated hypersurface
singularity is quasi-homogeneous (i.e. has a good C

� -action) if and only if the Milnor
number equals the Tjurina number. The question of characterizing quasi-homogeneity
for other types of singularities has subsequently occupied many authors (see e.g. [Wal],
[G2], [Wahl2], [HM], [XY], [V] to mention but a few), and Saito's result has been
extended to irreducible curve singularities by G.M. Greuel [G2, 2.6(3)] and isolated
complete intersection surface singularities by J. Wahl [Wahl2] using rather di�erent
techniques.

In this paper we shall focus on higher-dimensional isolated complete intersection
singularities. The Milnor number and Tjurina number are de�ned for such singularities,
and it is natural to ask if Saito's result generalizes? The main theorem below give
an a�rmative answer for purely elliptic singularities (1.4) which form the border line
between rational and `general' singularities (they are Du Bois but non-rational or, in
di�erent terms, log-canonical but non-canonical). In contrast with earlier results it
is interesting to note that within the class of purely elliptic singularities there are no
bounds on dimension and embedding codimension.

Throughout the paper a singularity will mean a germ (X;x) of a C -analytic space.
For an isolated complete intersection singularity (ICIS for short) one de�nes the Milnor
number � = �(X;x) as the number of spheres appearing in the vanishing cohomology,
and the Tjurina number � = � (X;x) is the C -dimension of the space T 1

X;x of �rst-order

deformations of (X;x). See [L] for details.
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2 HENRIK VOSEGAARD

Main Theorem. Let (X;x) be a purely elliptic ICIS of dimension n � 2. Then (X;x)
is quasi-homogeneous if and only if � = � .

The `only if'-part is due to Greuel [G1, Satz 0.3] and holds for any ICIS of positive
dimension.

To �nd su�cient conditions for a purely elliptic ICIS (X;x) to be quasi-homogeneous
we start in section 1 with a discussion on the Hodge type (0; s) of (X;x), 0 � s � n�1,
as de�ned by S. Ishii [I]. This invariant may be de�ned from the mixed Hodge theory
on the (n � 1)-cohomology of the link of (X;x) and measures the `purity' of a certain
component of the Hodge-graduation. It will be clear (1.9) that Hodge type (0; n� 1) is
a necessary condition for quasi-homogeneity, but it is not quite su�cient when n � 3
(1.11).

E. Looijenga and J. Steenbrink gave in [LS] a formula expressing for any ICIS (X;x)
with n � 2 the di�erence ��� as a sum of non-negative terms computed from the Hodge
theory of the link and cohomological data of a choice of resolution. We extract from
these data a non-negative analytic invariant � = �(X;x) satisfying � � � � �. When
(X;x) is purely elliptic the only possible values of � are 0 and 1, and we prove that � = 0
precisely when (X;x) is quasi-homogeneous (Thm 2.6). This result is sharper than (and
clearly implies) the `if'-part of Main Theorem since the di�erence ��� generally is much
greater than �.

The proof that � = 0 implies quasi-homogeneity owes much to the ideas and tech-
niques in the papers [I] and [Wahl2] by S. Ishii and J. Wahl. For any good resolution
(Y;D) �! (X;x) of a purely elliptic ICIS (X;x) satisfying � = 0 there is a distinguished
`essential' exceptional irrreducible component DJ � D. We produce a vector �eld (i.e.

a derivation) ~� on (X;x) that lifts to a meromorphic vector �eld on Y with a well-
described logarithmic vanishing along DJ , whose action on the Zariski tangent space is
non-nilpotent. By a theorem of Scheia and Wiebe [SW] this ensures quasi-homogeneity
except in a more delicate special case which is treated separately.

1. Purely elliptic singularities

1.1. Let (X;x) be a normal singularity of dimension n � 2, and let (Y;D)
�
�! (X;x) be

a good resolution, i.e. Y is a nonsingular space, D = ��1(x)red is a divisor with normal
crossings, and � induces an isomorphism of Y nD and X n fxg. We will assume that
each irreducible component of D is non-singular.

Choose representatives X;Y such that X is a good contractible Stein representative
of the singularity (X;x) and Y = ��1(X). Put U = X n fxg (which we identify via �
with Y nD). Then U is homotopy equivalent to the link of (X;x). Let 
p

Y (resp. 
p

U )
denote the sheaf of holomorphic p-forms on Y (resp. U).

Recall that the singularity (X;x) is rational if Hi(OY ) = 0 for i > 0, while (X;x) is

Du Bois [St1, 3.6] if the natural map Hi(OY )
qi
�! Hi(OD) is an isomorphism for i > 0.

By [St1, Lemma 2.14] qi is surjective for all i, hence rational singularities are also Du
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Bois. Moreover, (X;x) is Du Bois if and only if Hi(OY (�D)) = 0 for i > 0.

1.2. Now assume that (X;x) is Gorenstein. By Serre-duality and the theorem of
Grauert and Riemenschneider Hi

D(OY ) = 0 for i 6= n, so Hi(OY ) = Hi(OU ) = 0 for
i 6= 0; n� 1. Therefore, (X;x) is rational (resp. Du Bois) if and only if Hn�1(OY ) = 0
(resp. Hn�1(OY (�D)) = 0). The composite Hn�1

D (OY (�D)) ,! Hn�1(OY (�D)) ,!

Hn�1(OY ) factors through Hn�1
D (OY ) = 0, hence Hn�1

D (OY (�D)) = 0, and dually,
H1(
n

Y (D)) = 0. It is now immediate that (X;x) is Du Bois if and only ifH0(
n
Y (D)) �!

H0(
n
U ) is surjective. Similarly, (X;x) is rational if and only if H0(
n

Y ) �! H0(
n
U ) is

surjective.

1.3. Du Bois and rational singularities are also characterized in terms of their discrep-
ancies. Write KY = ��KX + DI � DJ , where DI and DJ are e�ective exceptional
divisors having no irreducible components in common. (The notation is due to Ishii [I,
Def. 3.3] who calls DJ the essential divisor of �.) A choice ! 2 H0(
n

U ) of generator
(as a cyclic H0(OX)-module) gives rise to an isomorphism

! : OY (DI �DJ )
�=
�! 
n

Y : (1.3.1)

By the above, (X;x) is rational (resp. Du Bois) if and only if DJ = 0 (resp. DJ � D).
Note that the condition DJ = 0 also de�nes canonical singularities, while DJ � D
de�nes log-canonical singularities.

De�nition 1.4 [Wat, 3.16]. A normal Gorenstein singularity (X;x) is called purely
elliptic if it is Du Bois but not rational (equivalently, the essential divisor DJ is reduced
and non-trivial).

1.5. Now recall that the cohomology groups of U (for any normal singularity (X;x))
carry canonical mixed Hodge structures [St1, Sect. 1]. We let hi;j denote the (i; j)'th
mixed Hodge number of Hn�1(U; C ), i.e.

hi;j = dimGriF GrWi+j H
n�1(U; C ): (1.5.1)

By the semipurity theorem [St1, Cor. 1.12], hi;j = 0 unless i; j � 0 and i+ j � n� 1.

From [LS] we obtain isomorphisms

GrpF Hp+q(U; C )
�=
�! Hq(
p

Y (logD) 
OD); (1.5.2)

where 
p
Y (logD) is the sheaf of holomorphic p-forms on Y with logarithmic poles along

D. In particular,

Gr0F Hn�1(U; C )
�=
�! Hn�1(OD):

When (X;x) is purely elliptic, it follows easily from 1.3 that hn�1(OD) = 1. Conse-
quently, exactly one of the numbers h0;i is equal to 1, while the rest vanish.
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De�nition 1.6 [I, Sect. 4]. A purely elliptic singularity (X;x) is of Hodge type (0; s),
if h0;s = 1.

Clearly, 0 � s � n� 1 when n is the dimension of (X;x) and (0; s) its Hodge type.

This de�nition is equivalent to the one given by Ishii (see [I, Def. 4.1] and the
following remark).

We will give two characterizations of (X;x) being of Hodge type (0; n� 1). The �rst
is essentially proved in [I, Thm. 4.3] and the proof is taken from there.

Lemma 1.7. Assume that (X;x) is purely elliptic of dimension n. Then (X;x) is of

Hodge type (0; n� 1) if and only if the essential divisor DJ is irreducible.

Proof. If DJ is irreducible, then DJ is non-singular and the mixed Hodge strucure on
Hn�1(DJ ; C ) is pure of weight n � 1. Since Gr0F Hn�1(D; C ) �! Gr0F Hn�1(DJ ; C ) is
surjective, (X;x) is of Hodge type (0; n � 1) in this case.

Conversely, assume (X;x) is of Hodge type (0; n�1). If DJ = D1+D2 for non-trivial
e�ective divisors D1;D2, then by Mayer-Vietoris,

Gr0F GrWn�1H
n�2(D1 \D2; C ) �! Gr0F GrWn�1H

n�1(D; C ) �!

Gr0F GrWn�1H
n�1(D1; C ) �Gr0F GrWn�1H

n�1(D2; C )

is exact. Now,
Gr0F Hn�1(Di; C ) = Hn�1(ODi

) = 0; i = 1; 2

by [I, Cor 3.9], while GrWn�1H
n�2(D1\D2; C ) = 0 sinceD1\D2 is complete of dimension

< n � 1. Thus, Gr0F GrWn�1H
n�1(D; C ) = 0. But this contradicts our assumption on

the Hodge type of (X;x), so DJ is indeed irreducible. �

Lemma 1.8. Assume that (X;x) is purely elliptic of dimension n. Then

h0(
n�1
Y (logD) 
OD) � 1

with equality if and only if (X;x) is of Hodge type (0; n� 1).

Proof. By (1.5.2), h0(
n�1
Y (logD) 
 OD) is equal to dimGrn�1F Hn�1(U; C ), hence by

semipurity to hn�1;0 = h0;n�1. The result is now obvious from the de�nition of Hodge
type and the discussion prior to it. �

1.9 Examples of purely elliptic singularities. As we shall be mostly concerned
with purely elliptic n-dimensional (n � 2) singularities of Hodge type (0; n� 1), let us
give a brief recipe of how to produce examples.

Let f : C n+t �! C
t be a polynomial map whose vanishing de�nes the germ (X; 0) of

an ICIS at 0. Assume that f is weighted homogeneous with respect to the standard co-
ordinates x1; : : : ; xn+t (resp. y1; : : : ; yt) of strictly positive integral weights w1; : : : ; wn+t
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(resp. d1; : : : ; dt) in the source (resp. target). Then ! (1.3.1) may be chosen weighted
homogeneously as

! =
dx1 ^ � � � ^ dxn+t
df1 ^ � � � ^ dft

: (1.9.1)

Thus, ! is of weight Q = (w1 + � � � + wn+t) � (d1 + � � � + dt). Let B
�
�! C

n+t be the
weighted blow-up of the source. Then the strict transform Y of X is a V-manifold,
i.e. has only (cyclic) quotient singularities, and the exceptional divisor D � Y has V-
normal crossings. From [St2, 2.6 and Cor. 3.4] it is not hard to see that the invariants
Hn�1(OY ) and Hn�1(OY (�D)) of 1.1 can be computed from this situation (that is, we
don't need a full resolution; a V-resolution su�ces). An easy computation now shows
that (X; 0) is rational (resp. Du Bois) if and only if Q > 0 (resp. Q � 0), thus (X; 0)
is purely elliptic precisely when Q = 0. In this case, (X; 0) is of Hodge type (0; n � 1)
since D is a complete V -manifold.

1.10. Now de�ne a new map-germ f 0 = f + g : (C n+t ; 0) �! (C t ; 0) by adding to f a
holomorphic map g = (g1; : : : ; gt) for which all monomials in gi are of weight > di for
all i = 1; : : : ; t. Let (X 0; 0) be its vanishing. Then the weighted blow-up � from before
gives a V-resolution Y 0 �! X 0 in a neighbourhood of 0, and the exceptional divisor
D0 � Y 0 is isomorphic to D as analytic spaces. It follows from the reasoning above that
(X 0; 0) is purely elliptic of Hodge type (0; n � 1) if Q = 0.

1.11. From weight considerations in the space T 1
X;0 of �rst order deformations of (X; 0)

(see for instance [PW, Prop. 10.5.16]) it follows that any deformation of a purely
elliptic surface singularity of the above type is trivial ((X; 0) and (X 0; 0) are isomorphic
for all choices of g) and indeed, a purely elliptic Gorenstein surface singularity is quasi-
homogeneous if and only if it is of Hodge type (0; 1); see 2.8. For dimensions n � 3
however, starting with a weighted homogeneous f with Q = 0, the generic choice of g will
produce a purely elliptic (X 0; 0) of Hodge type (0; n�1) which is not quasi-homogeneous
(cf. 2.15).

2. Quasi-homogeneity of purely elliptic ICIS's

2.1. Throughout this section (X;x) will be an ICIS of dimension n � 2. Then the
Milnor number � and the Tjurina number � are well-de�ned. Our main concern is
to �nd conditions that ensure quasi-homogeneity in the purely elliptic case. By 1.9,
a necessary condition for (X;x) to be quasi-homogeneous is that it is of Hodge type
(0; n � 1), but by 1.11 this is generally not su�cient. We shall see that the extra
condition needed is that the natural map

� : H0(
n�1
Y (logD)) �! H0(
n�1

Y (logD) 
OD) = Grn�1F Hn�1(U; C ) (2.1.1)

be surjective. (Here and in the following, we apply the de�nitions in 1.1.)
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This may be motivated as follows. It is a well-known fact that (n�1)-cohomology of
U may be identi�ed with the (n�1)-hypercohomology Hn�1(
�Y (logD)) of the complex

�Y (logD), and that the �ltration bête would compute the Hodge �ltration if Y were
complete. Now that Y is not complete, the �ltration bête is a�ected by the analytic
behaviour of Y `at in�nity' and will not in general give the Hodge �ltration; but it does
when (X;x) quasi-homogeneous [V, Thm. 3.3], and � will then be surjective.

2.2. We shall make use of the following formula due to E. Looijenga and J. Steenbrink
[LS], valid (as most of what we have to say in 2.2 { 2.4) for any ICIS of dimension at
least 2,

�� � =

n�2X

i=0

hi;0 + a1 + a2 + a3: (2.2.1)

The hi;j were de�ned in (1.5.1), while the ai are non-negative integers de�ned relative
to a choice of good resolution. It is not very instructive to include the de�nitions
of the ai here. Most important for our purpose is the fact that a3 dominates the
dimension of Coker�. Hence, the assumption � = � implies that � is surjective and
that Gr0F Hn�1(U; C ) is pure of weight n� 1 (Thus, in the purely elliptic case (X;x) is
of Hodge type (0; n� 1)).

2.3. But we can be more speci�c. From [V, Lemma 2.7] we get the formula

a2 + a3 = en;02 + dimCoker�: (2.3.1)

Here en;02 is the dimension of the cokernel of the natural map

H0(
n�1
Y (logD)(�D))

d
�! H0(
n

Y ): (2.3.2)

For later use we note that there is a spectral sequence

Ep;q
1 = Hq(
p

Y (logD)(�D)) =) H
p+q (
�Y (logD)(�D)) = 0 (2.3.3)

with Ep;q
1 = 0 if p+ q > n ([St2, Thm. 2(b)],[V, 2.2, 2.4]). Clearly, en;02 = dimEn;0

2 .

2.4. Let us de�ne � = �(X;x) =
Pn�2

i=0 hi;0 + dimCoker�. It follows from [V, Prop.
4.2] that � is an analytic invariant for any ICIS (X;x). Note that the codomain of �
has dimension hn�1;0 = h0;n�1 by semipurity, so � = dimGr0F Hn�1(U; C ) � rk�.

The following lemma is now immediate once we observe (by consulting [LS]) that
a1 = 0 when (X;x) is Du Bois.

Lemma 2.5. Let (X;x) be a purely elliptic ICIS of dimension n � 2. Then

(1) �� � = �+ en;02 :
(2) � = 1� rk�.
(3) The only possible values of � are 0 and 1, and � = 0 if and only if (X;x) is of

Hodge type (0; n � 1) and � is surjective.

The Main Theorem is a corollary to the following.
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Theorem 2.6. Let (X;x) be a purely elliptic ICIS of dimension n � 2. Then the

following are equivalent

(1) (X;x) is quasi-homogeneous.

(2) � = � .
(3) � = 0.
(4) (X;x) is of Hodge type (0; n� 1) and � is surjective.

(5) � is non-trivial

2.7. As mentioned earlier, (1) =) (2) is due to Greuel [G1, Satz 0.3]. The implications
(2) =) (3) () (4) () (5) follow form Lemma 2.5. It remains to give a proof of
(4) =) (1). This will be done in 2.9 { 2.14 below.

2.8. It is well-known that a purely elliptic surface ICIS (i.e. n = 2) is either a cusp
(if of Hodge type (0; 0)) or simply elliptic (if of Hodge type (0; 1)) [Wat, Thm. 3.20].
With Theorem 2.6 we can prove the slightly weaker statement that (X;x) is quasi-
homogeneous if and only if it is of Hodge type (0; 1). This follows immediately from the
formula

� � � = � = h1;0 (2.8.1)

which holds for any Du Bois ICIS of dimension 2 since a2+a3 = e2;02 +dimCoker� = 0.

(Indeed, E0;1
1 = 0 by the Du Bois property, hence E2;0

2 = E2;0
1

= 0 and E1;1
1 = E1;1

1
= 0.

Since Coker� embeds into the Serre-dual H1
D(


1
Y (logD)) of E1;1

1 , the claim follows).

2.9 Proof of (4) =) (1). As usual, let �Y (logD) = Hom(
1
Y (logD);OY ) denote

the sheaf of analytic vector �elds on D with logarithmic vanishing along D. By (1.3.1),
contraction of ��! yields an isomorphism

�Y (logD)(DI �DJ +D)
�=
�! 
n�1

Y (logD): (2.9.1)

Assuming condition (4) in Theorem 2.6 (as we do throughout), surjectivity of �
implies via (2.9.1) that

0! H0(�Y (logD)(DI �DJ )) �! H0(�Y (logD)(DI �DJ +D)

�! H0(�Y (logD)(DI �DJ +D) 
OD)! 0; (2.9.2)

is exact. Here H0(�Y (logD)(DI �DJ +D) 
OD) �= C by Lemma 1.8 since (X;x) is
of Hodge type (0; n� 1).

2.10. By Lemma 1.7,DJ is an irreducible exceptional component. From [Wahl1, 1.10.2]
we then get an injective morphism

� : ODJ
,! �Y (logD) 
ODJ

de�ned as follows. If (y1; : : : ; yn) are local coordinates on Y centered at some point of
DJ with y1 = 0 a local equation for DJ , then � maps 1 2 ODJ

to y1@y1 .



8 HENRIK VOSEGAARD

It is easily checked that the identity map of �Y (logD) produces a well-de�ned mor-
phism

�Y (logD) 
ODJ
�! �Y (logD) 
OD(D +DI �DJ );

whose composition with � gives a morphism

� : ODJ
�! �Y (logD) 
OD(D +DI �DJ ):

By the local expression 1 7! y1@y1 and the fact that D +DI �DJ is trivial along DJ ,
� must be injective. Hence,

H0(ODJ
)

�
�! H0(�Y (logD) 
OD(D +DI �DJ ))

is an isomorphism of 1-dimensional vector spaces.

2.11. Now choose �Y 2 H0(�Y (logD)(DI �DJ +D)) such that �Y projects to �(1) in
H0(�Y (logD)(DI �DJ +D) 
OD) (cf. (2.9.2)). It is quite standard that H0(�U ) =
H0(�X), thus �Y maps to a vector �eld �X on X. This �eld preserves the maximal
ideal mX;x of OX;x and induces a derivation on mX;x=m

2
X;x.

2.12. We proceed as in [Wahl2, 3.12]. In local coordinates as before, centered at a
point of DJ which is regular for D, �Y is of the form

�Y = y1@y1 + y1�
0

Y

for some �0Y which is logarithmic along DJ . Hence, �0Y preserves for all k > 0 the ideal
(yk1 ) generated by yk1 . Let k be the greatest positive integer satisfying ��mX;x � (yk1 )

and pick g 2 mX;x for which g � � belongs to (yk1 ) but not to (y
k+1
1 ). Write g � � locally

as yk1h for some h. Then

�X(g) � � = �Y (y
k
1h) = kyk1h+ yk+1

1 @y1(h) + y1�
0

Y (y
k
1h);

which modulo (yk+1
1 ) gives �X(g) � � � k(g � �). Since ��m2

X;x � (yk+1
1 ), this shows

that �pX(g) is non-trivial in mX;x=m
2
X;x for all powers p. Thus, �X acts non-nilpotently

on the Zariski tangent space of (X;x) at x.

We can now apply [SW, Thm. 4.1] to conclude that (X;x) is quasi-homogeneous,
except possibly when (X;x) is a hypersurface singularity of multiplicity 2 (note that a
positive-dimensional C -analytic ICIS is reduced).

2.13. For the remaining case we must work a bit harder. Assume that (X;x) is the
hypersurface de�ned by an analytic map-germ f : (C n+1; 0) �! (C ; 0) of multiplicity at
least 2. Let x1; : : : ; xn+1 be local coordinates on C

n+1 centered at 0, and let J(f) =

( @f

@x1
; : : : ; @f

@xn+1
) denote the Jacobian ideal. Since f has an isolated singularity we may

choose k � 1 so that mk � J(f), where m denotes the maximal ideal in the local ring
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On+1;0 of the germ (C n+1; 0). Put R = On+1;0=m
nk+2. Then �X from 2.11 lifts to some

vector �eld �Cn+1 on (C n+1; 0) which in turn induces a C -derivation �R on R. Let �0R :
R �! R denote the semi-simple part of the operator �R. Then �0R is itself a derivation,
polynomial in �R. Clearly �R preserves the ideal ( �f ) � R generated by the projection
�f of f , hence so does �0R, and we may choose a unit �u 2 R so that �u �f is an eigenvector
for �0R with eigenvalue � 2 C , say. Let u 2 On+1;0 denote a lift of u, and let �0

Cn+1
be

a vector �eld on (C n+1 ; 0) lifting �0R. Then �0
Cn+1

(uf) � �uf 2 mnk+2 � m
2 � J(f)n.

By the Brian�con-Skoda Theorem (uf)n 2 J(uf), from which J(f)n � J(uf) (indeed,

J(f) = J(u�1(uf)) is generated by @(uf)
@xi

+ uf @ log u
�1

@xi
for i = 1; : : : ; n + 1), whence

�0
Cn+1

(uf) � �uf 2 m2J(uf). It follows that there exists yet another vector �eld �00
Cn+1

on (C n+1; 0) satisfying �00
Cn+1

(uf) = �uf and agreeing with �0
Cn+1

up to order 2.

By Saito's theorem [Sa], (X;x) is quasi-homogeneous if � 6= 0.

2.14. Assume � = 0. We will show that this leads to a contradition. Upon replacing
f with uf as de�ning function for (X;x) we may assume �00

Cn+1
(f) = 0. Let �00X denote

the induced vector �eld on X. Then by [L, Lemma 9.6], contraction of ! (1.3) by
�00
Cn+1

yields an element � in H0(
n�1
X ). Obviously ��� 2 H0(
n�1

Y ), but since � is

constant along D and 
n�1
Y (logD)(�D) are the forms in 
n�1

Y whose restriction to

each component of D is trivial, then ��� 2 H0(
n�1
Y (logD)(�D)). We conclude from

(2.9.1) that �00X lifts to a vector �eld �00Y 2 H0(�Y (logD)(DI�DJ )). Now we may repeat
the arguments of 2.11 and 2.12 with �Y � �00Y in place of �Y and conclude that �X � �00X
acts non-nilpotently on mX;x=m

2
X;x. But this contradicts the fact that the action of �00X

by construction is the semi-simple part of the action of �X . Thus, � 6= 0 as desired.

This concludes the proof of Theorem 2.6. �

2.15 Remark. To see why Scheia and Wiebe's theorem fails for hypersurfaces of mul-
tiplicity 2, let (X;x) be the germ de�ned in (C 6 ; 0) by (u; v;w; x; y; z) 7! uv+w4+x4+
y4+ z4+w2x2y2z2. Then (X;x) is purely elliptic (by 1.10) and not quasi-homogeneous
(� = � +1 = 81). Nevertheless, u@u� v@v induces a vector �eld on (X;x) whose action
on mX;x=m

2
X;x is non-nilpotent.

2.16 Vector �elds on a purely elliptic ICIS. We end with the following description
of the vector �elds on a purely elliptic ICIS (X;x). This should be contrasted with the
equivariance of the minimal good resolution of a surface singularity [Wahl1].

Proposition 2.17. If (X;x) is a Du Bois ICIS, then

H0(�X) = H0(�Y (logD)(DI �DJ +D)):

In particular, any vector �eld on a purely elliptic (X;x) lifts to a meromorphic vector

�eld on Y with logarithmic vanishing along the essential divisor DJ .

Proof. The terms Ep;q
1 of (2.3.3) vanish for p + q > n, and E0;n�1

1 = 0 since (X;x) is

Du Bois. It follows that E1;n�1
1 = E1;n�1

1
= 0. By Serre-duality, H1

D(

n�1
Y (logD)) = 0
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so H0(
n�1
Y (logD)) �! H0(
n�1

U ) is an isomorphism. By (2.9.1) this translates to

H0(�Y (logD)(DI �DJ +D)) = H0(�U ) = H0(�X);

as claimed. �
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