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On operator-valued spherical functions

Henrik Stetkær

Abstract

Cauchy’s equation and the cosine equation on an abelian group G
are both particular cases of the general equation,∫

K
f(x + k · y)dk = f(x)f(y), x, y ∈ G,

in which a compact group K acts on G, viz. the cases K = {e} and
K = Z2, respectively. We extend a result due to Chojnacki on operator-
valued solutions of the cosine equation to this general equation: We
prove that if f takes its values in the normal operators on a Hilbert
space H, then f(x) =

∫
K U(k · x)dk, x ∈ G, where U is a unitary

representation of G on H, and dk denotes the normalized Haar measure
on K. We show that normality may not be needed if K is finite, thereby
generalizing a result by Kurepa on the cosine equation.

Mathematics Subject Classification (2000): Primary 47D09. Secondary
22D10, 39B42.
Keywords: Cosine equation, transformation group, locally compact, unitary
representation, spherical function.

1 Introduction

Let (G,+) be an abelian group with neutral element 0. The cosine equation,
also called d’Alembert’s equation, on G is the equation

f(x+ y) + f(x− y)

2
= f(x)f(y), x, y ∈ G, (1.1)

where f : G→ C is the unknown.
The present paper deals with an extension of (1.1), both with respect to

the form of (1.1) where a transformation group will enter, and to the range
of f which will be in the bounded operators on a Hilbert space. The non-
zero solutions of (1.1) are the functions of the form f(x) = (γ(x) + γ(−x))/2,
x ∈ G, where γ is a homomorphism af G into the multiplicative group of non-
zero complex numbers ([14, Theorem 2]). Our extension will generalize this
fact.
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Let G be a topological group and let K be a compact topological trans-
formation group of G, acting by automorphisms of G. Writing the action by
k ∈ K on x ∈ G as k · x and letting dk denote the normalized Haar measure
on K a generalization of the cosine equation (1.1) is∫

K

f(x+ k · y)dk = f(x)f(y), x, y ∈ G, (1.2)

where f ∈ C(G) is the unknown. The equation (1.2) is studied in the theory
of group representations, being the relation defining K-spherical functions (for
the terminology see [1, p. 88]).

The equation (1.1) is the case of K = Z2 = {±1}, while the Cauchy
equation hasK = {I}. Another example ofK is ZN = {ωn | n = 0, . . . , N−1},
where ω = exp(2πi/N), acting on R2 = C by multiplication. A third one is
O(n) acting on Rn by rotations.

The first part of the following general Theorem 1.1 is due to Shin’ya [21,
Corollary 3.12], and the second part to Chojnacki [4, Theorem 1.1]. As men-
tioned above it was derived by Kannappan [14, Theorem 2] in the special case
of K = Z2.

Theorem 1.1. Let G be a locally compact abelian group. If f ∈ C(G) is
a non-zero solution of (1.2) then there exists a continuous homomorphism
γ : G→ C

∗ such that f(x) =
∫

K
γ(k ·x)dk for all x ∈ G. If f is bounded, then

γ may be chosen in the dual group Ĝ of G.

Theorem 1.1 is of a very general nature, giving no information about γ. We
mention in passing that explicit expressions for γ are known from the theory of
spherical functions on Euclidean-type symmetric spaces (see [12, Proposition
IV.4.8]).

A natural generalization of the equation (1.2) is to consider solutions f that
take their values in an algebra, and not just in C. If f is a complex-valued
non-zero solution of (1.1) then f(0) = 1, but in the algebra case this need no
longer be true. So we shall impose the standard condition f(0) = I, where I
denotes the identity of the algebra.

The purpose of the present paper is to extend the last part of Theorem
1.1 to solutions taking values in the algebra B(H) of bounded operators on a
Hilbert space H.

A point of departure is the following fundamental result by Chojnacki [3,
Théorème 1.1 and 3.1] for K = Z2:

Theorem 1.2. Let G be a locally compact abelian group. Let H be a Hilbert
space and let f : G→ B(H) be a solution of (1.1) such that f(0) = I. Assume
furthermore that f is bounded and strongly continuous.

Then there exists a bounded and strongly continuous representation Γ of G
on H such that

f(x) =
Γ(x) + Γ(−x)

2
for all x ∈ G. (1.3)
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If f takes its values in the normal operators, then Γ may be chosen unitary.

In Theorem 3.1 below we find for any Hilbert space H the uniformly
bounded, B(H)-valued solutions Φ of the equation∫

K

Φ(x+ k · y)dk = Φ(x)Φ(y), x, y ∈ G, such that Φ(e) = I, (1.4)

thereby giving a simultaneous extension of the results by Chojnacki mentioned
above in Theorems 1.1 and 1.2. More precisely we show that the weakly
continuous, normal-operator-valued solutions are the functions of the form
Φ(x) =

∫
K
U(k · x)dk, x ∈ G, where U is a unitary representation of G on H,

a result which is quite analogous to the one of the scalar case of Theorem 1.1.
Our main tools are from harmonic analysis.

We refer to [3] for literature on the classical cosine equation (1.1), but
let us for the sake of completeness mention that Székelyhidi in [22, Theorem
4.2] described the matrix-valued continuous solutions of the cosine equation
(1.1) on an infinite topological group in which division by 2 is defined, without
assuming that the matrices are normal. And that Elqorachi and Akkouchi in
[8, Section 5] studied an integral equation related to (1.4), viz.∫

G

Γ(xty)dµ(t) +

∫
G

Γ(xty−1)dµ(t) = 2Γ(x)Γ(y), x, y ∈ G,

where µ is a generalized Gelfand measure and where Γ : G → B(H) takes its
values in the normal operators on a Hilbert space H.

2 Set-up and notation

Throughout the paper we let (G,+) be an abelian, locally compact Hausdorff
topological group with neutral element 0. C(G) denotes the algebra of all
continuous, complex-valued functions on G, C0(G) the subalgebra of functions
vanishing at infinity and Cc(G) the subalgebra of compactly supported func-

tions. The dual group of G is denoted Ĝ. We fix a Haar measure dx on G and
let ∗ denote the corresponding convolution of functions. If F is a function on
G we define F̌ (x) = F (−x), x ∈ G.

K is a compact, Hausdorff topological group with neutral element I and
normalized Haar measure dk. We assume that it acts as a topological trans-
formation group on G (as defined in, e.g. [11, II §3]) and that the action is
by automorphisms. The action of k ∈ K on x ∈ G is denoted k · x. If f is a
function on G we write k · f for the function [k · f ](x) := f(k−1 · x), x ∈ G.

When H is a complex Hilbert space, we let B(H) denote the algebra of all
linear continuous maps of H into H.
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3 The main result

Theorem 3.1 below characterizes uniformly bounded, K-spherical, normal ope-
rator-valued functions on abelian groups, because its converse is also true as
is easy to check. Theorem 3.1 is essentially [3, Théorème 1.1] for K = Z2.

Theorem 3.1. Let G satisfy the second axiom of countability. Let H be a
complex Hilbert space. Let Φ : G → B(H) be a weakly continuous mapping
such that∫

K

Φ(x+ k · y)dk = Φ(x)Φ(y) for all x, y ∈ G, and Φ(e) = I, (3.1)

Φ(x) is normal for each x ∈ G, and finally sup{‖Φ(x)‖ | x ∈ G} <∞.
Then there exists a strongly continuous unitary representation U of G on

H such that Φ =
∫

K
k · Udk.

In particular Φ(x)∗ = Φ(x−1) for all x ∈ G and furthermore Φ is strongly
continuous.

If H is finite-dimensional, then Theorem 3.1 can be proved simply by di-
agonalization. In this case the countability assumption on G is not used.

Remark 3.2. (a) We have in Theorem 3.1 assumed that Φ is bounded. An
unbounded matrix-valued cosine function, even on G = R, need not be of
the form (1.3) up to similarity (Kisyński [15, Example 1]).

(b) On the other hand, Niechwiej has in [19] extended Chojnacki’s results [3, 4]
to solutions that are majorized by a calibrating function, but that need
not be uniformly bounded.

(c) The Hilbert space can in general not be replaced by a Banach space (see
Kisyński [15, 16] for examples). Even more is true: Chojnacki [5, Theorem
2.5] has shown the following result for any locally compact abelian groupG:
If for every Banach space E, any B(E)-valued bounded strongly continuous
solution of (1.1) may be written in the form (1.3), where Γ is a bounded
group representation, then {2x | x ∈ G} is finite.

Some of the technical details in our proof of Theorem 3.1 will be handled
by the following Proposition 3.3 and Lemma 3.4. The proposition takes care of
certain measure theoretical questions and the lemma of some algebraic ones.

Proposition 3.3. Let G satisfy the second axiom of countability.
Then K acts as a group of topological automorphisms of Ĝ by (k, γ) 7→

k · γ, and the orbit space Ĝ/K is with respect to the quotient topology a locally
compact Hausdorff space. Furthermore there exists a Borel measurable cross
section s : Ĝ/K → Ĝ.
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Proof. The orbit space Ĝ/K is according to [2, III.4.1] locally compact, which

in the Bourbaki terminology in particular means Hausdorff. Ĝ is is a com-
pletely regular Hausdorff space [13, Theorem II.8.4] satisfying the second ax-
iom of countability [20, Satz 57], so [10, Theorem 2] gives the existence of the
desired cross section.

We need some notation: We let F : L1(G) → C0(Ĝ) denote the Fourier

transform and put A(Ĝ) := F(L1(G)) ⊆ C0(Ĝ). Let A(Ĝ)K = {f ∈ A(Ĝ) |
k · f = f for all k ∈ K}.

If f ∈ C(Ĝ) we let f \ :=
∫

K
k · fdk ∈ C(Ĝ). Similarly we put ψ\ :=

∫
K
k ·

ψdk for ψ ∈ L1(G). We let C0(Ĝ)K = {f ∈ C0(Ĝ) | k · f = f for all k ∈ K}.
Lemma 3.4. Let Φ : G → B(H) be a weakly continuous, uniformly bounded

mapping satisfying (3.1) and define Φ̂ : A(Ĝ) → B(H) by

Φ̂(Fψ) :=

∫
G

Φ(x)ψ(x−1)dx for ψ ∈ L1(G).

Then

(a) (ψ\)\ = ψ\ for all ψ ∈ L1(G).

(b) C0(Ĝ)\ = C0(Ĝ)K.

(c) (Fψ)\ = F(ψ\) for all ψ ∈ L1(G).

(d) Φ̂(f \) = Φ̂(f) for all f ∈ A(Ĝ).

(e) Φ̂(Fψ1)Φ̂(Fψ2) = Φ̂(Fψ1Fψ2) for ψ1, ψ2 ∈ L1(G), such that ψ\
2 = ψ2.

Proof. (a) and (b): Trivial.
(c): The compactness of K implies that

∫
G
φ(k · x)dx =

∫
G
φ(x)dx for all

φ ∈ L1(G) and k ∈ K. Using that we find for any γ ∈ Ĝ that

(Fψ)\(γ) =

∫
K

(Fψ)(k−1 · γ)dk =

∫
K

∫
G

ψ(x)(k−1 · γ)(x)dxdk

=

∫
K

∫
G

ψ(x)γ(k · x)dxdk =

∫
K

∫
G

ψ(k−1 · x)γ(x)dxdk

=

∫
G

ψ\(x)γ(x)dx = F(ψ\)(γ).

(d): Putting x = 0 in (3.1) we find that Φ(k · x) = Φ(x) for all k ∈ K and
x ∈ G. Now, we find for any ψ ∈ L1(G) that

Φ̂((Fψ)\) = Φ̂(F(ψ\)) =

∫
G

Φ(x)ψ\(−x)dx

=

∫
G

Φ(x)

∫
K

ψ(−k−1 · x)dkdx =

∫
K

∫
G

Φ(x)ψ(−k−1 · x)dxdk

=

∫
K

∫
G

Φ(k · x)ψ(−x)dxdk =

∫
G

Φ(x)ψ(−x)dx = Φ̂(Fψ).
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(e): The computation

Φ̂(Fψ1)Φ̂(Fψ2) =
( ∫

G

Φ(x)ψ̌1(x)dx
)( ∫

G

Φ(y)ψ̌2(y)dy
)

=

∫
G

∫
G

Φ(x)Φ(y)ψ̌1(x)ψ̌2(y)dxdy

=

∫
G

∫
G

∫
K

Φ(x+ k · y)dkψ̌1(x)ψ̌2(y)dxdy

=

∫
K

∫
G

∫
G

Φ(x+ k · y)ψ̌1(x)ψ̌2(y)dxdydk

=

∫
K

∫
G

∫
G

Φ(x+ y)ψ̌1(x)ψ̌2(k
−1 · y)dxdydk

=

∫
G

∫
G

Φ(x+ y)ψ̌1(x)ψ̌2(y)dxdy

=

∫
G

∫
G

Φ(x)ψ̌1(x− y)ψ̌2(y)dxdy

=

∫
G

Φ(x)(ψ̌2 ∗ ψ̌1)(x)dx =

∫
G

Φ(x)(ψ1 ∗ ψ2)
∨(x)dx

= Φ̂(F(ψ1 ∗ ψ2)) = Φ̂(F(ψ1)F(ψ2))

proves (e).

Proof of Theorem 3.1.

Claim. Φ̂ : A(Ĝ) → B(H) extends to a continuous linear map Φ̂ : C0(Ĝ) →
B(H) with norm ‖Φ̂‖ ≤ 1.

We start by proving the claim: Let f = Fψ where ψ ∈ L1(G), so that
f \ = (Fψ)\ = F(ψ\).

G being abelian we get from the functional equation (3.1) that Φ is K-
invariant and from this that Φ(x)Φ(y) = Φ(y)Φ(x) for all x, y ∈ G, i.e. that

Φ(x) and Φ(y) commute. It follows that Φ(x) and Φ̂(f) :=
∫

G
Φ(y)ψ̌(y)dy

commute. We infer from Fuglede’s theorem that Φ(x) also commutes with

Φ̂(f)∗, from which it follows that Φ̂(f) and Φ̂(f)∗ commute, i.e. that Φ̂(f) is a
normal operator.

Φ̂(f \) is normal, so its norm equals its spectral radius. Combining that
with (d) and (e) of Lemma 3.4 we get

‖Φ̂(f)‖ = ‖Φ̂(f \)‖
= lim

n→∞
‖[Φ̂(f \)]n‖

1
n

= lim
n→∞

‖Φ̂((f \)n)‖
1
n
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= lim
n→∞

‖Φ̂(F([ψ\]∗n))‖
1
n = lim

n→∞

∥∥∥∫
G

Φ(x)(ψ\)∗n(−x)dx
∥∥∥ 1

n

≤ lim sup
n→∞

{
[sup{‖Φ(x)‖ | x ∈ G}]

1
n [

∫
G

|(ψ\)∗n(x)|dx]
1
n

}
≤ lim sup

n→∞

{
[

∫
G

|(ψ\)∗n(x)|dx]
1
n

}
.

Since ‖α∗n‖1/n
1 → ‖Fα‖∞ as n→∞ for any α ∈ L1(G), we find that

‖Φ̂(f)‖ ≤ ‖F(ψ\)‖∞ = ‖(Fψ)\‖∞ ≤ ‖Fψ‖∞ = ‖f‖∞.

This proves the claim because A(Ĝ) is dense in C0(Ĝ).
Combining the above results we have that the restriction to the algebra

A(Ĝ)K of the extension Φ̂ : C0(Ĝ) → B(H) is a representation of A(Ĝ)K on H
(Here we do not view A(Ĝ)K as a ∗-algebra, but just as an algebra).

Claim. This representation of A(Ĝ)K on H is non-degenerate.

Proof. We shall prove that if ξ ∈ H is orthogonal to Φ̂(A(Ĝ)K)η for all η ∈ H,

then ξ = 0. From Lemma 3.4(d) we see that ξ ⊥ Φ̂(Fψ)η for all ψ ∈ L1(G)
and all η ∈ H. This means that∫

G

〈Φ(x)η, ξ〉ψ̌(x)dx = 0 for all η ∈ H and ψ ∈ L1(G).

It follows that 〈Φ(x)η, ξ〉 = 0 for all x ∈ G and η ∈ H. Since Φ(0) = I we get
by choosing x = 0 that ξ = 0.

Let q : Ĝ→ Ĝ/K denote the quotient map and qt : C0(Ĝ/K) → C0(Ĝ)K its

transpose, which is an isomorphism. Φ̂◦qt is a non-degenerate representation of
the abelian and hence nuclear C*-algebra C0(Ĝ/K) on the Hilbert space H, so

there exists a positive bounded operator h on H such that ‖Φ̂‖−1I ≤ h ≤ ‖Φ̂‖I
and Ad(h) ◦ (Φ̂ ◦ qt) is a ∗-representation [6, Theorem 4.1]. As we saw above

‖Φ̂‖ ≤ 1, so h = I, and hence Φ̂ ◦ qt is a non-degenerate ∗-representation of

C0(Ĝ/K) on H.
By commutative representation theory there exists a spectral measure E

on the Borel sets of Ĝ/K with values in B(H) such that

Φ̂(f) =

∫
bG/K

[(qt)−1(f)](σ)dE(σ) for all f ∈ C0(Ĝ)K .

Let s : Ĝ/K → Ĝ be a Borel measurable cross section for the quotient

map q : Ĝ → Ĝ/K. Such one exists by Proposition 3.3. It follows from the
properties of a spectral measure that the formula

U(x) :=

∫
bG/K

s(σ)(x)dE(σ), x ∈ G, (3.2)
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defines a strongly continuous unitary representation U of G on H. For any
x ∈ G and ψ ∈ Cc(G)K we get, using the formula

[(qt)−1Fψ](K · χ) =

∫
G

ψ(x)

∫
K

χ(k−1 · x)dkdx,

that ∫
G

ψ(x)
( ∫

K

k · Udk
)
(x)dx

=

∫
bG/K

{∫
G

ψ̌(x)
[ ∫

K

s(K · γ)(k−1 · x)dk
]
dx

}
dE(K · γ)

=

∫
bG/k

[(qt)−1(F ψ̌)](K · s(K · γ))dE(K · γ)

=

∫
bG/k

[(qt)−1(F ψ̌)](K · γ)dE(K · γ)

= Φ̂(F ψ̌) =

∫
G

Φ(x)ψ(x)dx.

Since Φ is K-invariant we conclude that Φ(x) = (
∫

K
k · Udk)(x).

Remark 3.5. Substituting the formula (3.1) into the expression for Φ just found
we get that

Φ =

∫
bG/K

{∫
K

k · (s(σ))dk
}
dE(σ)

which for K = {I} reduces to the Stone-Naimark-Ambrose-Godement formula
for unitary representations of locally compact abelian groups.

4 On the assumption of the operators being

normal

For some time it was an open problem whether a uniformly bounded represen-
tation of a group G on a Hilbert space had to be similar to a unitary represen-
tation. Although it was solved in the negative for G = SL(2,R) by Kunze and
Stein [17], it is true forG abelian [7, Théorème 6]. This means that the assump-
tion about normality in Theorem 3.1 is inessential if K = {I}. The same holds
for K = Z2, i.e. for cosine functions, by [3, Théorème 2.1] and the earlier works
by Fattorini [9] (when G = R) and Kurepa [18] (when G = {2x | x ∈ G}).
Our final result (Theorem 4.1), in which we replace K = {I} and K = Z2

by a finite group, is a continuation of these investigations. Our condition in
Theorem 4.1 reduces to Kurepa’s, i.e. to G = {2x | x ∈ G}, when K = Z2.
The proof is inspired by [3, Théorème 2.1] and as in [3] we do not need any
topology on G here.
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Theorem 4.1. Let G be abelian. Let K be finite and such that the map
x 7→ x−k ·x of G into G is surjective for each k ∈ K \{I}. Let H be a Hilbert
space and Φ : G→ B(H) a uniformly bounded map such that Φ(e) = I and

1

|K|
∑
k∈K

Φ(x+ k · y) = Φ(x)Φ(y) for all x, y ∈ G. (4.1)

Then there exists an inner product 〈·, ·〉 on H, equivalent with the original one
on H, such that

〈Φ(x)u, v〉 = 〈u,Φ(−x)v〉 for all x ∈ G, u, v ∈ H. (4.2)

In particular Φ(x) is for each x ∈ G a normal operator with respect to the new
inner product 〈·, ·〉.

Proof. Let (·, ·) denote the inner product on H, ‖·‖ the corresponding norm
and C := sup{‖Φ(x)‖ | x ∈ G} < ∞. Let m be an invariant mean on
the bounded functions on G. Such one exists [13, Theorem 17.5]. We use
the notation mx{f(x)} instead of m(f) to tell that the mean of the bounded
function f is taken with respect to the variable x ∈ G.

We can write an explicit formula for the desired new inner product 〈·, ·〉 on
H down: For u, v ∈ H we put

〈u, v〉 := mx{(Φ(x)u,Φ(x)v) +
∑

k∈K\{I}

(Φ(k · x− x)u,Φ(k · x− x)v)}. (4.3)

It is obvious that 〈·, ·〉 is sesquilinear, that 〈u, u〉 ≥ 0 and that 〈u, u〉 ≤
|K|C2‖u‖2 for all u ∈ H. To get an estimate the other way we let u ∈ H
and x ∈ G and compute

‖u‖ ≤ ‖u+
∑
k 6=I

Φ(−x+ k · x)u‖+
∑
k 6=I

‖Φ(−x+ k · x)u‖ (4.4)

= |K|‖Φ(−x)Φ(x)u‖+
∑
k 6=I

‖Φ(−x+ k · x)u‖ (4.5)

≤ |K|C‖Φ(x)u‖+
∑
k 6=I

‖Φ(−x+ k · x)u‖, (4.6)

so by the Cauchy-Schwarz inequality ‖u‖2 ≤ C2|K|3〈u, u〉.
We show that (4.2) holds by proving the relation for each of the terms

defining the new inner product (4.3). The first term is an easy consequence of
the invariance of the mean m. The typical term of the remaining sum is the
expression

(Φ(k · x− x)Φ(y)u,Φ(k · x− x)v)

=
1

|K|
∑
k′∈K

(Φ(k · x− x+ k′ · y)u,Φ(k · x− x)v),
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where k ∈ K \{I}. By assumption k′ ·y = k ·z′−z′ for some z′ = z′(k′, y) ∈ G,
so that we may rewrite the term to the following expression

1

|K|
∑
k′∈K

(Φ(k · x− x+ k · z′ − z′)u,Φ(k · x− x)v)

=
1

|K|
∑
k′∈K

(Φ(k · [x+ z′]− [x+ z′])u,Φ(k · x− x)v).

Now (4.2) follows from the invariance of the mean m by a simple computation.
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