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Categorical distribution theory; heat equation

A. Kock G.E. Reyes

Introduction

The simplest notion allowing a theory of function spaces to be formulated is that of
cartesian closed categories.

In a cartesian closed category, containing in a suitable sense the ring R of real
numbers, a notion of “distribution of compact support” on any object M can be
defined, because the object of R-linear functionals on the ring R can be formulated,
cf. e.g. [24], [21]. Thus, a “synthetic” theory of “distributions-of-compact support”,
and models for it, do exist (we exploited this fact in [15]).

The content of the present note is to provide a similar theory, as well as models,
for distributions which are not necessarily of compact support. This amounts to
describing synthetically the notion of “test function” of compact support. The R-
linear dual of the vector space of test functions then is then a synthetic version of
the space of distributions.

When we say “model”, we mean more precisely a cartesian closed category,
containing as full subcategories both the category of smooth manifolds, and also
some suitable category of topological vector spaces, in such a way that the synthetic
contructs alluded to agree with the classical functional analytic ones.

The category of “suitable” topological vector spaces will be taken to be the
category of Convenient Vector Spaces, in the sense of [5], [16]. With the smooth
(not necessarily linear) maps, this category Con™ is already cartesian closed, cf.
loc.cit. We exhibited in 1986-1987 ([11], [13]) a full embedding of this category into
a certain topos (the “Cahiers Topos” of Dubuc [3]). It is this embedding that we
here shall prove is a model for a synthetic theory of distributions. The point about
the Cahiers Topos is that it is also a well-adapted model for Synthetic Differential
Geometry (meaning in essence that R acquires sufficiently many nilpotent elements).

The functional-analytic spadework that we provide also gives, — with much
less effort than what is needed for the Cahiers Topos —, a simpler model, namely
Grothendieck’s “Smooth Topos”. However, a main purpose of distribution theory
is to account for partial differential equations, and therefore a synthetic theory of
differentiation should preferably be available in the model, as well, which it is in the
Cahiers Topos, but not in the Smooth Topos (at least such theory has not yet been
developed, and is anyway bound to be less simple).

As a pilot project for our theory, we shall finish by showing that the Cahiers
topos does admit a fundamental (distributional) solution of the heat equation on
the unlimited line. (Here clearly distributions of compact support will not suffice.)



Solutions of the heat equation model evolution through time of a heat distri-
bution. A heat distribution is an extensive quantity and does not necessarily have
a density function, which is an intensive quantity (cf. [18]). The most important
of all distributions, the point- or Dirac- distributions, do not. For the heat equa-
tion, it is well known that the evolution through time of any distribution leads
‘instantaneously’ (i.e., after any positive lapse of time ¢t > 0) to distributions that
do have smooth density functions. Indeed, the evolution through time of the Dirac
distribution §(0) is given by the map (“heat kernel”, “fundamental solution”)

K :Rso — D'(R) (1)
defined by cases by the classical formula

Ko={50 VR0 2

here D'(R) denotes a suitable space of distributions (in the sense of [25], [26]); notice
that in the first clause we are identifying distributions with their density functions
(when such density functions exist).

The fundamental mathematical object given in (2) presents a challenge to the
synthetic kind of reasoning in differential geometry, where a basic tenet is “every-
thing is smooth”; therefore, definition by cases, as in (2), has a dubious status. This
challenge was one of the motivations for the present study.

One may see another lack of smoothness in (2), namely “6(0) is not smooth”;
but this “lack of smoothness” is completely spurious, when one firmly stays in the
space of distributions and their intrinsic “diffeology”, in particular avoids viewing
distributions as generalized functions. We describe in Section 2 the distribution
theory that is adequate for the purpose. In fact, as will be seen in Section 5 and
6, this theory is forced on us by synthetic considerations in the Smooth Topos,
respectively in the Cahiers topos.

We want to thank Henrik Stetkeer for useful conversations on the topic of distri-
butions.

1 Diffeological spaces and convenient vector spaces

A diffeological space is a set X equipped with a collection of smooth plots, a plot
p being a map from (the underlying set of) an open set U of some R" into X,
p: U — X; the collection should satisfy certain stability properties: a smooth plot
precomposed with an ordinary smooth map U’ — U is again a smooth plot; and the
property of being a smooth plot is a [ocal property (local on the domain). These
properties are conceptualized by considering the following site mf: its objects are
open subsets of R, the maps are smooth maps between such sets; a covering is a
jointly surjective family of local diffeomorphisms. (This site is a site of definition
of the “Smooth Topos” of Grothendieck et al., [1] p. 318; and is one of the first
examples of what they call a “Gros Topos”.) Any set X gives rise to a presheaf
¢(X) on this site, namely ¢(X)(U) := Homges(U, X). A diffeological structure on
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the set X is a subsheaf P of the presheaf ¢(X), the elements of P(U) are called the
smooth U-plots on X. A set theoretic map f : X — X’ between diffeological spaces
is called (plot-) smooth if f o p is a smooth plot on X’ whenever p is a smooth plot
on X.

Any smooth manifold M carries a canonical diffeology, namely with P(U) being
the set of smooth maps U — M. We have full inclusions of categories: smooth
manifolds into diffeological spaces into the smooth topos, (= the topos of sheaves
on the site mf),

The category of diffeological spaces Diff is cartesian closed (in fact, it is a concrete
quasi-topos). Thus, if X and Y are diffeological spaces, YX has for its underlying
set the set of smooth maps X — Y; and a map U — Y is declared to be a smooth
plot if its transpose U x X — Y is smooth. The inclusion of Diff into the smooth
topos preserves the cartesian closed structure.

For any smooth manifold M, we have in particular a diffeology on C*(M) = RM,
namely a map g : U — C°°(M) is declared to be a smooth plot iff its transpose
U x M — R is smooth.

Topological vector spaces X carry a canonical diffeology: a plot f : U — X
is declared to be smooth if for every continuous linear functional ¢ : X — R,
¢o f:U — R is smooth in the standard sense of multivariable calculus. (Note that
the diffeology on a topological vector space X only depends on the dual space X'.)
— Continuous linear functionals X — R are, almost tautologically, (plot-)smooth;
on the other hand, (plot-)smooth linear functionals X — R need not be continuous.

A convenient vector space (cf. [5]) is a (Hausdorff) locally convex topological
vector space X such that plot smooth linear functionals are continuous, and which
have a completeness property. The completeness property may be stated in several
ways, cf. [5], [16]; for the purposes here, the most natural formulation is: for any
smooth curve f : U — X (where U is an open interval), there exists a smooth curve
f" U — X which is derivative of f in the scalarwise sense that for any continuous
linear ¢ : X — R, ¢po f' = (¢po f).

— More generally, if U C R” is open, and f : U — X is a smooth plot, then
partial derivatives f¢ of f exist, in the scalarwise sense; and they are smooth. Here
« is a multi-index; and to say that f“ is an iterated partial derivative of f, in the
scalarwise sense, is to say: for each ¢ € X', ¢ o f has an a’th iterated derivative,
and (g0 f)* = o fo.

The category of convenient vector spaces which we deal with here is Con® (cf.
[5]), whose objects are the convenient vector spaces and whose morphisms are all
smooth maps in between them, not just the smooth linear ones. The category Con™
is a full subcategory of the category Diff of diffeological spaces, and is cartesian
closed; the inclusion functor preserves the cartesian closed structure.

(In [16], the notion of Convenient Vector Space is taken in a slightly wider sense:
it is not required that (plot-) smooth linear functionals are continuous. The resulting
category of “convenient” vector spaces and smooth maps in [16] is therefore larger,
but equivalent to the one of [5]. Every convenient vector space in the “wide” sende



is smoothly (but not necessarily topologically) isomorphic to one in the “narrow”
sense of [5].)

Let i : X — Y be a (plot-) smooth linear map between convenient vector spaces.
Then 7 preserves differentiation of smooth plots U — X, in an obvious sense. For
instance, if f: U — X is a smooth curve, i.e. U C R an open interval, then for any
to e U ,

(io f)(to) = i(f'(to)).
For, it suffices to test this with the elements ) € Y. If ¢b € Y, then 1 oi € X’ since
1 is smooth and linear, and the result then follows by definition of being a scalarwise
derivative in X.

(Another aspect of the completeness of convenient vector spaces is: if U is an
open interval, and uy € U, there is a unique smooth primitive G (G’ = g) of g, with
G(up) = 0. This is the basis for constructing “Hadamard remainders” with values

in a convenient vector space, and hence for the comparisons of the present Section
6.)

2 The basic vector spaces of distribution theory;
test plots

Let M be a smooth (paracompact) manifold M. Distribution theory starts out
with the vector space C>°(M) of smooth real valued functions on M, and the linear
subspace D(M) C C*°(M) consisting of functions with compact support (D(M)
is the “space of test functions”). The topology relevant for distribution theory is
described (in terms of convergence of sequences) in [26], p. 79 and 108, respectively.
Note that topology on D(M) is finer than the one induced from the topology on
C>®(M). The sheaf semantics which we shall consider in Section 5 and 6 will justify
the choice of this topology.

We shall describe the diffeological structure, arising from the topology on D(M),
and utilize the fact ([5], Remark 3.5) that it is a convenient vector space.

We cover M by an increasing sequence K, of compact subsets, each contained
in the interior of the next, and with M = UKj}; the notions that we now describe
are independent of the choice of these K;,. For M = R", we would typically take
Ky={xeR"||z| <b},beN.

Consider a smooth map f : U x M — R, where U is an open subset of some R".
We say that it is of uniformly bounded support if there exists b so that

f(u,z) =0 for all w € U and all z with = ¢ K

We say that f is locally of uniformly bounded support (“lLu.b.s.”) if U can be
covered by open subsets U; such that for each i, the restriction of f to U; x M is
of uniformly bounded support. (We may use the phrase “f is Lu.b.s., locally in
the variable u € U”) — Alternatively, we say that f : U x M — R is of uniformly
bounded support at u € U if there is an open neighbourhood U’ around « such that
the restriction of f to U’ x M is of uniformly bounded support; and f is L.u.b.s. if
it is of uniformly bounded support at u, for each u. (For yet another description of
the notion, see Lemma 5.2 below.)



We let f denote the transpose of f, so f: U — C*(M).

Theorem 2.1 Let f : U x M — R be smooth, and pointwise of bounded support
(so that f factors through D(M)). Then t.f.a.e.:

1) f is locally of uniformly bounded support

2) f:U — D(M) is continuous.

We may use the term test plot for functions f satisfying the conditions of the Propo-
sition. In particular, they are pointwise test functions in the sense of distribution
theory.

Proof of the Theorem. We first prove that 1) implies 2). Since the question is
local in U, we may assume that f is of uniformly bounded support, i.e. there exists
a compact K C M so that f(t,z) = 0 for x ¢ K and all t. The same K applies
then to all the iterated partial derivatives f, of f in the M-directions (v denoting
some multi-index). So f and all the f, factor through Dy, the subset of C*°(M)
of functions vanishing outside K. Now to say that f : U — Dg is continuous is
by definition of the topology on Dy equivalent to saying that for each a, (f,) is
continuous as a map into RX, the space of continuous maps K — R, with the
topology of uniform convergence. This topology is the categorical exponent ( =
compact open topology) (cf. [6] Ch. 7 Thm. 11), which implies that (f,) : U — RX
is continuous iff f, : U x K — R is continuous, iff f, : U x M — R is continuous.
But f, is indeed continuous, by the smoothness assumption on f. So f : U — D(M)
Is continuous.

For proving that 2) implies 1), we prove that if not 1), then not 2), i.e. we consider
a function f : U x M — R which is smooth and of pointwise bounded support, but
not l.u.b.s. Then there is a ty € U and a sequence t, — ty, as well as a sequence
x € M\ Ky with f(tg, ) # 0, denote this number ¢;. Let N be a number so that
the support of f(to, —) is contained in K. We consider the (non-linear) functional
T :D(M)— R given by

g— Z 07729(%1)2'
n=N

Note that for g of compact support, this sum is finite, since the z,’s “tend to
infinity”. Also, the functional D(M) — R is continuous; for the topology on D(M)
is the inductive limit of the topology D(K},), and the restriction of T" to this subspace
equals a finite algebraic combination of the Dirac distributions. Now it is easy to
see that T takes f(to, —) to 0, by the choice of N, whereas T" applied to f(tx, —) for
k > N yields a sum of non-negative terms, one of which has value 1, namely the
one with index k, which is ¢ 2f (t, 21)% = 1. So T o f is not continuous, hence f is
not continuous.

This proves the Theorem.
It has the following Corollary:

Theorem 2.2 Let f: U x M — R be smooth and of pointwise bounded support (U
an open subset of some R"™). Then t.f.a.e.:

1) f is locally of uniformly bounded support
2) f:U— D(M) is smooth.



Recall that assertion 2) means “in the scalarwise sense”, i.e. ¢ o f is smooth for any
continuous linear functional, i.e. for any distribution ¢.

Proof. The implication 2) = 1) is a consequence of Theorem 2.1, since smoothness
implies continuity. (This is not completely evident. “Smooth” means “scalarwise
smooth”, and this of course implies scalarwise continuity; now, scalarwise continuity
means continuity w.r.to the weak topology, but Theorem 2.1 deals with the classical
(inductive limit) topology. We don’t know at present whether these two topologies
agree. However, since D(M) is a Montel space ([7] p. 197), these topologies agree
on bounded subsets, ([7] p. 196), which suffices here since U is locally compact.)

Conversely, assume 1), i.e. assume f is smooth and L.u.b.s. Then we also have
that 0% f/0t™ is smooth (iterated partial derivative in the U-directions, a a multi-
index) and l.u.b.s., and so its transpose is a continuous maps U — D(M), by
Theorem 2.1; it serves as scalarwise iterated partial derivative (cf. the argument in
[16] p. 20-21).

The vector space of distributions D'(M) is, in diffeological terms, the linear
subspace of the diffeological space RPM) consisting of the smooth linear maps
D(M) — R. They are the same as the continuous linear maps, since D(M) is
a convenient vector space. (So the vector space of distributions D'(M) (as an ab-
stract vector space) is the same in the diffeological and the topological context.) A
map U — D'(M) is smooth iff it is smooth as a map into RPM); this defines a
diffeology on D'(M). With this diffeology, D’(M), too, is convenient.

3 Functions as distributions

Any sufficiently nice function f : R" — R gives rise to a distribution i(f) € D'(R")
in the standard way “by integration over R™”

(i(1),0) = [ J(s)-9(s) ds.

This also applies if R™ is replaced by another smooth manifold M equipped with a
suitable measure. For simplicity of notation, we write M for R" in the following. —
All smooth functions f : M — R are “sufficiently nice”; so we get a map (obviously
linear)

i: C®(M)— D'(M). (3)
It is also easy to see that this map is injective.

Theorem 3.1 The map i is smooth.

Proof. Let g : V — C*°(M) be smooth, (V an open subset of some R"), we have
to see that o0 g : V — D'(M) is smooth, which in turn means that its transpose

(iog):V xDM)—R

is smooth. So consider a smooth plot U — V' X D(M), given by a pair of smooth
maps h: U — V and ® : U — D(M). Here U is again an open subset of some R*.



Let us write £ for go h: U — C*°(M). It is transpose of a map F': U x M — R.
Also, let us write ® for the transpose of ®; thus ® is a map

o:UxM-—-R

which is locally (in U) of uniformly bounded support, by Theorem 2.2. We have
to see that (i o gf o < h,® > is smooth (in the usual sense). By unravelling the
transpositions, one can easily check that

((tog) o (h,®))(t) = (i(F(t,—)), (,—))
The conclusion of the Theorem is thus the assertion that the composite map U — R
given by

£ /M Fl(t,s)- ®(t,s) ds (4)

is smooth (in the standard sense of finite dimensional calculus). To prove smoothness
at to € U, we may find a neighourhood U’ of ¢y and a b such that

P(t,s) =01if t € U and s ¢ K,

because ® is l.u.b.s. We thus have, for any ¢ € U’ that the expression in (4) is
Ji, F'(t,s) - ®(t,s) ds, but since K} is compact, differentiation and other limits in
the variable ¢ may be taken inside the integration sign.

Since i : C*°(M) — D'(M) is smooth and linear, it preserves differentiation.
In particular, if f : U — C*(M) is a smooth curve, and t, € U, we have
that (i o f)'(to) = i(f'(to)). However, f" is explicitly calculated in terms of the
partial derivative of the transpose f : U x M — R, namely as the function
s+ 0f(t,5)/0t |(1,s)- This is the reason that ordinary (evolution-) differential equa-
tions for curves f : U — D'(M) manifest themselves as partial differential equations,
as soon as the values of f are distributions represented by smooth functions.

4 Smoothness of the heat kernel

We consider the heat equation on the line,
af |ot = 0*f ) 0x>.

Recall that the classical distribution solution of this equation, having §(0) as
initial distribution, is the map

K RZO — D/(R)
whose value at ¢ > 0 takes a test function ¢ to

/Oo e~ At ¢(s) ds ift >0
(K(t),¢)=q "~ (5)

¢(0) ift =0
We need the smoothness of K in the diffeological sense. The diffeology on Rxq
is induced by the inclusion of it into R.

The following is a special case of [16] Theorem 24.5 and Proposition 24.10 (which
in turn is a generalization of Seeley’s Theorem, [27]).
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Theorem 4.1 Let X be a convenient vector space, and let K : R>g — X be a map.
Then K is smooth in the diffeological sense iff its restriction to R~q is smooth,
and for all n, lim,_o, K™ (t) exists (w.r.to the weak topology on X ). In this case,
K extends to a smooth map on all of R, (whose n’th derviative at O then equals
limy o K™(t)).

We shall apply this Theorem to the heat kernel K described in (5), so X is D'(R).
For t > 0, the smooth two-variable function K (¢, x) satisfies the heat equation as
a partial differential equation 9/t K(t,x) = 0*/0z* K(t,z). Since, by Section 3,
the inclusion i : C*°(R) — D'(R) preserves differentiation (“in the ¢-direction”), we
get, by iteration, that for any test function ¢, and any ¢ > 0,

& Jde K (1), 6) = (K (1), 6% ). )
Also, it is well known that for any smooth ),
Jim (K(1).1) = v(0)(= (6.0)). ")

where ¢ is the Dirac distribution at 0.
To prove that the conditions for smoothness in the above Theorem are satisfied,

we shall prove that

lim K™ (t) = 6@,

t—0+
Since the topology on D'(R) is the weak one and D(R) is reflexive, it suffices to
prove that for each ¢ € D(R),

i 0" de" (K(2).0) = 6% (0).

But this is immediate from (6) and (7).

5 Distributions in the Smooth Topos

Recall from section 1 that the Smooth Topos is the topos S = sh(mf) of sheaves on
the site mf of open subsets of coordinate vector spaces R". It contains the category
of diffeological spaces (and hence also Con™) as a full subcategory, and the inclusion
preserves exponentials. Let us denote the embedding Diff C § by h. — We write R
instead of h(R).

We want to give a synthetic status to h(D(M)) and to h(D(M)'). Here M is
any paracompact smooth manifold, and for the synthetic description, one needs to
cover M by an increasing sequence of compacts K, as in Section 2. The predicate
of “belonging to K;, € M” will have to be part of the language. In order not to load
the exposition too heavily, we shall consider the case of M = R only, with K, the
closed interval from —b to b (b € N).

Because h preserves exponentials, and R = h(R), R® is h(C*(R)). (For, the lat-
ter with its standard Frechet topology, is the exponential in Con™, by [16], Theorem
3.2)



The following is a formula with a free variable f that ranges over R:
H>0] Ve, (e < —-bVa>b = f(r)=0 |. (8)

Let us write |x| > b as shorthand for the formula x < —bV & > b (so, in spite of
the notation, we don’t assume an “absolute value” function). Then the formula (8)
gets the more readable appearance:

36> 0[ Va,|z| > b= f(z)=0]. 9)

(verbally: “f is a function R — R of bounded support” (namely support contained
in the interval [—b, b]). Tts extension is a subobject D(R) C R'.

Theorem 5.1 (Test functions in the Smooth Topos) The inclusion
D(R) C C*(R) goes by h : Con™ — S to the inclusion D(R) C RE.

Proof. We shall freely use sheaf semantics, cf. e.g. [9], [21], and thus consider
“generalized elements” or “elements defined at different stages”, the stages being
the objects of the site mf.

Consider an element f €; R? (a generalized element at stage U). This means
a map h(U) — R in C, and this in turn corresponds, by transposition, and by
fullness of the embedding h, to a smooth map

f:UxR—R.

Now we have that

Foy3b>0 [V, |z > b= f(z)=0]

if and only if there is a covering U; of U (i € I) and witnesses b; €y, R0, so that
for each ¢
|_Ui \V/I, |J?| > b, = f(f) =0

Externally, this implies that b; : U; — R is a smooth function Wit}} positive values,
with the property that for all ¢ € U;, if x has x > bi(t), then f(t,x) = 0. The
following Lemma then implies that f is of l.u.b.s. on U;, and since the U;’s cover K,

fis of Lub.s. on K.

Lemma 5.2 Let g : U x R — R have the property that there exists a smooth (or
jJust continuous) b : U — R-q so that for all t € U |z| > b(t) implies g(t,x) = 0.
Then g is l.u.b.s.

Proof. For each t € U, let ¢; denote b(t) + 1. There is a neighbourhood V; around
t such that b(y) < ¢ for all y € V;. The family of V};’s, together with the constants
¢; now witness that ¢ is L.u.b.s. For, for all y € V; and any x with |z| > ¢;, we have
2] > ¢ > b(y), so g(y,x) = 0.

Conversely, if f is L.u.b.s., it is easy to see that the element f €y U satisfies the
formula (reduce to the uniformly bounded case, and write the condition as existence
of a commutative square).

So we conclude that for f €y RE, f €y D(R) iff the external function f :

~

UxR — Ris lLubs., ie., by Theorem 2.2, iff f : U — C*°(R) factors by a
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(diffeologically!) smooth map through the inclusion D(R) C C*°(R), i.e. belongs
to C(U,D(R)) = h(D(R))(C>*(U). This proves that h(D(R)) = D(R).

We next can consider the synthetic status in S of the space of distributions
D(R)'.

If R is a commutative ring object in a topos, and it is equipped with a com-
patible preorder <, we have already described the R-module D(R), (space of test
functions). For any R-module object Y, we may then form its R-linear dual object
Y' = Ling(Y, R) as a subobject of RY; in particular, we may form (D(R))" which is
then the internal object of distributions on R, as alluded to in the Introduction.

Theorem 5.3 (Distributions in the Smooth Topos) The convenient vector space
(D(R))" goes by h : Con™ — S to the internal object of distributions (D(R))’.

We first make an analysis of h(Y’) for a general convenient vector space Y.
(Here, Y’ denotes the diffeological dual consisting of smooth linear functionals.)
Recall that the diffeology on Y’ is inherited from that of C*°(Y,R), so that (for
an open U C R¥), the smooth plots U — Y’ are in bijective correspondence with
smooth maps U x Y — R, which are R-linear in the second variable y € Y. It
follows that the elements at stage U are in bijective correspondence with smooth
maps U x Y — R, R-linear in the second variable, or equivalently, with smooth
R-linear maps Y — C*°(U,R).

On the other hand, an element of R™Y) defined at stage U is a morphism
h(U) — RMY) hence by double transposition it corresponds to a map h(Y) — R"U);
and it belongs to the subobject Ling(h(Y'), R) iff its double transpose is R-linear.
Since h is full and faithful, and preserves the cartesian closed structure (hence
the transpositions), this double transpose corresponds bijectively to a smooth map
Y — C>®(U,R) = C*(U), and R-linearity is equivalent to R-linearity, by the fol-
lowing general

Lemma 5.4 Let X and Y be convenient vector spaces. Then a smooth map f :
Y — X is R-linear iff h(f) : h(Y') — h(X) is R-linear.
Proof. The implication = is a consequence of the fact that h preserves binary
cartesian products (and of h(R) = R). For the implication <, we just apply the
global sections functor I'; note that I'(Y") is the underlying set of the vector space
Y, and similar for X; and I'(R) = R.

The Theorem now follows from Theorem 5.1.

We have in particular:

Proposition 5.5 There is a natural one-to one correspondence between distribu-
tions on R, and R-linear maps D(R) — R

Proof. This follows from fullness of the embedding h.

This result should be compared to the Theorem of [24], or Proposition 11.3.6 in
[21], where a related assertion is made for distributions-with-compact-support, i.e.
where D(R) is replaced by the whole of R, (- or even with RM, with M an arbitrary
smooth manifold; the generalization of our theory is straightforward). Distributions
with compact support are generally easier to deal with synthetically (as we did in
[15]).
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6 Cahiers Topos

This topos was constructed by Dubuc [3] in order to get what he called a well-
adapted model for Synthetic Differential Geometry (SDG). The site of definition
should contain not only a suitable representative category of smooth manifolds, but
also encode the infinitesimal objects (of “nilpotent elements”), like D, which are
crucial in SDG. The category of infinitesimal objects is taken to be the dual of the
category of Weil-algebras (i.e. finite dimensional commutative real algebras, where
the nilpotent elements form an ideal of codimension 1). This prompts us to replace
also the representative category of smooth manifolds with a the dual of a category
of (C*-) algebras, capitalizing on the fact that smooth maps U — V' correspond
bijectively to C*°—algebra maps C* (V) — C*(U).

To conform with our exposition in [13], we take the representative smooth man-
ifolds just to be the coordinate vector spaces RF, rather than all open subsets U
of such. (We could, by suitable comparison theorem of site theory, have used the
category of just these R¥ for the Smooth Topos also.)

We recall the site of definition D for the Cahiers Topos C. The underlying
category is the dual of a certain category of C'*°-rings, namely those that are of
of the form C*(R!™)/J where J is a semi-Weil ideal; we explain this notion: a
Weil ideal I C C*°(R!) is an ideal such that the residue ring is a Weil algebra (in
particular, I is of finite codimension). A semi-Weil ideal J C C*(R!**) is an ideal
which comes about from a Weil ideal I in C*°(R! as I*, where I* is the ideal of
functions of the form Y- fi(z,y) - g;(x) with ¢; € I.

To describe and analyze the embedding h of Con™ into C, we need a more
elaborate account of the relationship between semi-Weil ideals and convenient vector
spaces:

6.1 Ideals and differential operators

Let x € R". By a differential operator supported at x, we understand a map d :
C*>®(R") — R which is a linear combination of operators f s 0!°lf/0t®(z), where
a is a multi-index and ¢ = (¢1,...,t,). (The notion can be defined in a coordinate
free way; it is actually the same as a distribution with point-support.) In particular,
d is linear.

Any such d defines, because of its explicit form, for each convenient vector space
Y alinear dy : C*°(R™,Y) — Y with the property that for f: R" — Y

d(¢o f) = o(dy(f))
for all ¢ € Y'. The maps dy are natural in Y w.r.to smooth linear maps:

Proposition 6.1 If F : Y — X is a smooth linear map, then for any differential
operator d, and any f € C*(R™,Y), dx(F o f) = F(dy(f))

Proof. It suffices to test with an arbitrary ¢ € X’; by replacing F' by ¢ o F', this

reduces the problem to the case where the dodomain X is R, and here, the result
follows from the very characterization of Y-valued derivatives in “scalarwise” terms.
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Let us also note that “partial derivatives are transposable” (cf. [16] Section 3).
For simplicity, we state it for functions in two variables s, only:

Proposition 6.2 Let f(s,t) : R*> =Y be a smooth function with values in a con-
venient vector space Y. Then the Of(s,t)/0s is smooth in s,t, and its transpose is

A

the derivative (f)'(s) of the transposed function f: R — C*(R,Y).
Proof. The function (f)'(s) exists and is smooth, and characterized in terms of the
smooth linear functionals on C*°(R,Y"). But among these are those of the form (for

teR)

ccRY) - .y Y R

and these are enough to recognize the transpose of f’(s) as df(s,t), for each t.

Let N be a manifold, and let I C C*°(N) be an ideal. For each convenient
vector space Y, (in fact for any dualized vector space (Y,Y")) we define two linear
subspaces of C*(N,Y), the “weak” and the “strong” I(Y), denoted I,(Y) and
I,(Y), respectively. To say that f : N — Y is in [,(Y) is to say that for every
peY' ¢ofel;and tosay that f: N — Y isin [,(Y) is to say that f may be

written
f(s) =D hi(s)ki(s),

with the h;’s scalar valued functions belonging to I, and the k;’s smooth Y-valued
functions. It is clear that I,(Y) C I,,(Y). We are interested in when the converse
implication holds.

A main result in [10] (Theorem 2.11) says that this is the case for the ideal
M" C C°(R!) of functions vanishing to order 7 at 0. In [13] (Proposition 1), we
generalized this to any proper ideal I C C*(R!) which contains an ideal M". We
call such ideals Weil ideals; they are of finite codimension, and the algebra C*(R') /I
is a Weil algebra (in the sense of [9] or [21], say); any Weil algebra arises this way.
(Note that a Weil ideal is contained in M, since the only maximal ideal containing

M is M. Soif f e I, f(0) =0.)

We shall generalize this result further to semi-Weil ideals J (whose definition we
shall recall), and at the same time provide a simpler proof of the result quoted from

13].

If I CC>®(N)isanideal and ifp: P — N is a smooth map (P and N manifolds),
we get an ideal p*(I) € C*°(P) consisting of functions f : P — R which can be
written Y (h; o p) - k; with the h;’s in I (and the k;’s in C°°(P)). This is clearly a
“transitive” construction, in an evident sense, ¢*(p*(I)) = (po q)*({). On the other
hand, since C*°(M) is a convenient vector space, we may consider I;(C*(M)) C
C>°(N,C*(M)). Under the isomorphism C*°(N,C>®(M)) = C*(N x M) it is clear
that I,(C>°(M)) corresponds to p*(I), where p : N x M — N denotes the projection.

If I is a Weil ideal C C*(R!), and p : R"* — R’ the projection, we get by the
above procedure an ideal J = p*(I) in C*(R!**), and ideals J of this form, we call
semi-Weil ideals. (If p is understood from the context, we may write I* instead of

p*(1).)
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The basis of monomials s* (where « is a multi-index of order < r) for C*°(R') /(M")
gives rise to a dual basis for the linear dual (C*°(R!)/M"))*, and this dual basis
consists of differential operators supported at 0,

9°/(0)

laldse

f—

So fe M"ift %&0) = 0 for such multi-indices a.

We consider functions f(s,t) : R"** — Y where Y is a convenient vector space;
s denotes a variable ranging over R! and t a variable ranging over R*. We then have

Proposition 6.3 Let f : R'"* — Y be a smooth function. Then

fe@MN))wY)

if and only if
0°f(0,¢)

Sea 0 for all a with || <1 and all t.

Proof. The Y-valued partial derivatives here are determined scalarwise, i.e. de-
termined by testing with the ¢ € Y’ and since these ¢ are linear, the problem
immediately reduces to the case of Y = R, i.e. to the assertion f(s,t) € p*(M") iff

%(B’t) = 0 for all o with || < 7 and all ¢. This is well known (or can be deduced

from Theorem 2.11 in [10], by passing to the transpose function f : Rl — C®(RF)).
The following is now a Corollary of Theorem 2.11 in [10]:

Proposition 6.4 For any convenient vector space Y, we have (p*(M")),(Y) =
(p"(M7))s(Y).

Proof. It suffices to prove the inclusion C. If f is in the left hand side, it satisfies the
equational conditions of Proposition 6.3, but then its transpose f ‘Rl — C®(R*)Y)
has %&O) = 0 for all @ with |a| < r. Now we apply Proposition 6.3 again, this time
for the convenient vector space C*°(R*,Y’), and with no p* involved, and conclude
f e (M) (C®(R*,Y)). Then, by the Theorem quoted, f € (M) ,(C=(R*,Y))
(strong instead of weak), and this in turn implies that f € (p*(M"))s(Y), proving
the Proposition.

Consider a Weil ideal I i.e. an ideal I C C*(R!) containing some M". There is
a (finite) basis A for the dual vector space (C°°(R')/M")* consisting of differential
operators D* at 0 (with M" the common nullspace of these). (Here, « is just
an abstract index, and D® does not necessarily mean 2.) Since (C*(R')/I)* C
(C>=(R!)/M")*, we may, by suitable change of basis, organize ourselves so that the
basis A for (C*°(R!)/M")* contains a subset B which is a basis for (C*°(R!)/I)*. Tt
follows that I is the common null space of the collection B of differential operators.

The dual basis A for C(RY)/M" consists (modulo M") of polynomials hg of
degree < r, (o € A). The fact that the bases A and A’ are dual implies that for any
fe =R,

f(S) = ZDaf ’ ha(s)v
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mod M" (as functions of s € R!). If now f € I, the terms D[ vanish for o € B.
With A — B as index set for the index ~, we therefore have

Proposition 6.5 Given a Weil-ideal I € C*(R') containing M". There is a finite
family of differential operators DY and a family of polynomials h.(s) in s € R! so
that for any f € 1,
f(s)=>_ D7f-hy(s) € M".
B!

(If for instance I = M"™! D M", the h,’s may be taken to be the monomials
s®, where a ranges over multi-indices with |o| =r — 1.)

Because differentiation of functions R! — Y (with Y a convenient vector space)
makes sense, and because of the explicit way (in terms of D?’s) in which functions
in I get transformed into functions in M", this Proposition immediately extends to
functions R! — Y let I and h be as above, and let the Dy denote the Y-valued
differential operators corresponding to the R-valued D7’s considered.

Proposition 6.6 For any f € 1,(Y), the difference
Fls) = D7 f b (s
i

belongs to M, (Y') (which equals ML(Y)) by the Theorem [10] 2.11 quoted).

Proof. We test with arbitrary ¢ € Y’; since ¢ is linear, and since ¢ commutes with
differentiation, the result follows by applying the result of the previous Proposition
to the smooth function ¢ o f, which is in I by assumption.

Now let J denote the semi-Weil ideal p*I C C°°(R!**) given by the Weil ideal
I C C*(R!). Then
Proposition 6.7 Let f : R'™* — R be a function in J. Then
f(s,t) =Y _(DVf)(t) - ha(s)

is in p*(M") (where p : RIT% — R is the projection,).

(Here, s and ¢ denote variables ranging over R! and R, respectively. The differential
operators D? operate in the s-variable and then s = 0 is substituted, so a function
D7 f of t remains, as indicated.)

Proof. We pass to the transpose function f :R! = Y, where Y is the convenient
vector space C®°(RF). To say f € J is equivalent to saying f € I,(C®(R¥)), in
particular f € I,(C*°(RF)), and so Proposition 6.6 may be applied, reducing f
to MZ(C*°(R¥), which by transposition corresponds to p*(M"). This proves the
Proposition.

We generalize this further to the case of functions with values in a convenient
vector space Y.
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Proposition 6.8 Let J C C®°(R™*) be the semi-Weil ideal given by the Weil ideal
I € C®R!). Let g(s,t) € J,(Y). Then

g(s,t) = 2 (D7g)(t) - hy () (10)
is in (p*(M")w(Y) (hence, by Proposition 6.4, in (p*(M"))s(Y)).

Proof. Testing with ¢ € Y’ reduces the problem to showing that

¢(g(s,)) = >_ D' (dog)(t) - hy(s) (11)
is in p*(M"), but this follows from Proposition 6.7, applied to f = ¢ o g.

Theorem 6.9 If J is a semi-Weil ideal, and Y a convenient vector space, Js(Y) =
Jo(Y) (as linear subspaces of C*(RIT*Y)).

Proof. Let g = g(s,t), g : R* x R* = Y, be a map in J,,(Y). Since the h,(s) are in
I, the sum Y3(D7g)(t) - hy(s) in (10) is in J4(Y"). The whole expression in (10) is in
(p*(M"))(Y), by Proposition 6.8, and hence, by Proposition 6.4, in (p*(M"))s(Y)
which in turn is contained in J5(Y). This proves the Theorem.

From now on, we write J(Y') instead of J,,(Y) or J4(Y), in case J is a semi-Weil
ideal and Y a convenient vector space; for, they agree, by the Theorem.

We now discuss the description of semi-Weil ideals in terms of differential oper-
ators.

If I C C®(R"™) is an ideal which is the null space of a family of differential
operators {d° | 3 € B} (not necessarily supported at the same z € R"), then it
follows from Proposition 6.1 that [,,(Y) C C*(R",Y) is the null space of the family
of the d¥..

If I is a Weil ideal in C*°(R!), null space of a finite family {d” | 3 € B} of
differential operators supported at 0 € R!, then J C C°°(R!™*) is the null space
of the (infinite) family of differential operators d**, 3 € B, z € R*, where for a
function f(s,t) € C°(R"*), d%*(f) takes the relevant partial derivatives in the
s-directions, and then substitutes 0 for s and x for t.

It follows that J(Y"), for Y a convenient vector space, may be described as the null
space of the B x R*-indexed family of differential operators df}x :C®(RITFY) =Y.

Also, it follows from Theorem 6.9 that under the transposition isomorphism
Ce(RIF*)Y) = C*(R!, C*(R*,Y)), the line ar subspace J(Y) on the left corre-
sponds to the linear subspace I(C*(R* Y")) on the right.

Let I C R! be a Weil ideal, I D M". Let {D” | 3 € B} be a family of differential
operators at 0, of degree < r, forming a basis for (C*°(R!)/I)*. Note that B is a finite
set. Let the dual basis for (C*°(R!)/I be represented by polynomials of degree < r,
{ps(s) | B € B}. Then we can construct a linear isomorphism

C*RLY)/I(Y) — ][V,

by sending the class of f : R' — Y into the B-tuple Dsﬁ/( f). Its inverse is given by
sending a B-tuple yg € Y to Y5 ps(s) - ys-
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It follows that for a semi-Weil ideal J = p*(I) C R**, as above,
C*RMY)/J(Y) 2 [[C(R"Y). (12)
B

(The isomorphism is not canonical but depends on the choice of a linear basis pg(s)

for the Weil algebra C>=(R!)/1.)

6.2 The embedding into C

The full embedding h, described in [13], of Con™ into C is, on objects, given by
sending a convenient vector space X into the presheaf on D given by

C>®(R!TF)/J — C* R, X)/J(X).

The fundamental observation in [13] is that for smooth maps f : X — Y, composing
with f preserves the property of “being congruent mod J”, (provided that J is a
semi-Weil ideal), cf. Coroll. 2 in [13]; and this describes the functorality. (This
fundamental observation, in turn, is a generalization of the theory from [11] that
the category of Weil algebras acts “by Weil prolongation” on the category Con;
this prolongation construction is expounded also in [16] Section 31.) — For finite
dimensional vector spaces X, h(X) = i(X).

The embedding A is full. It preserves the exponentials in Con®, and furthermore,
if X is a convenient vector space, the R-module h(X) in C “satisfies the vector form
of Axiom 1”7 (generalized Kock-Lawvere Axiom), so that in particular synthetic
calculus for curves R — h(X) is available; cf. the final remark in [11]. From this,
one may deduce that the embedding h preserves differentiation, i.e. for f : R — X
a smooth curve, its derivative f' : R — X goes by h to the synthetically defined
derivative of the curve h(f) : R = h(R) — Rh(X). This follows by repeating the
argument for Theorem 1 in [8] (the Theorem there deals with the case where the
codomain of f is R, but it is valid for X as well because h(X) satisfies the vector
form of Axiom 1).

We note the following aspect of the embedding h. Let X be a convenient vector
space. Each ¢ € X’ is smooth linear X — R and hence defines a map h(¢) :
h(X) — h(R) = R in C. This map is R-linear.

Proposition 6.10 The maps h(¢) : h(X) — R, as ¢ ranges over X', form a jointly
monic famaly.

Proof. The assertion can also be formulated: the natural map

e:h(X)— [][ R
pEX

is monic (where projsoe := h(¢)). To prove that this (linear) map is monic, consider
an element a of the domain, defined at stage C°°(R'*)/J, where J is a semi-
Weil ideal. So a € C*(R™* X)/J(X). Let a € C*°(R"* X) be a smooth map
representing the class a, a = o+ J(X). The element e(a) is the X’ tuple a, + J(X),
where ay € C*(R!"*)/J(X) is represented by the smooth map ¢ o o : R"* — R.
To say that a maps to 0 by e is thus to say that for each ¢ € X', o € J. But
this is precisely the defining property for « itself to be in J,,(X) = J(X), i.e. for a
to be the zero as an element of h(X) (at the given stage C(R!**)/.J).
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6.3 Distributions in the Cahiers Topos

We begin by analyzing the object of test functions. We shall prove the analogue of
Theorem 5.1, now for the embedding h : Con™ — C. The object D(R) is defined
synthetically by the same formula (8) as in Section 5. Part of the proof of the
Theorem 5.1 there can be “recycled”. In fact, letting U be R, the proof recycles
to give information about the elements of D(R) defined at stage C*(R¥); they are
the same as the elements of h(D)(R), more precisely,

h(D(R))(C*(R")) = D(R)(C*(RY)). (13)

To get a similar conclusion for elements of D(R) (as synthetically defined by
(9)), defined at stage C>°(R!**)/J, we shall prove that such can be represented by
B-tuples of elements defined at stage C*(R*); we shall prove that such a B-tuple
defines an element of D(R) precisely if each of these B elements is an element in
D(R). This proof is a piece of purely synthetic reasoning;:

We consider an R-algebra object R in a topos C, and assume that R satisfies
the general “Kock-Lawvere” (K-L) axiom (recalled below), and is equipped with a
strict order relation <. Because the reasoning is purely synthetic, we don’t have to
think in terms of sheaf semantics, so for instance we don’t have to be specific at
what “stages”, the “elements” in question are defined; we reason as if all elements
are global elements. For b > 0, we write |z| > b as shorthand for x < —bV z > b
as before; and we stress again that we don’t assume any absolute-value function (it
does not exist in the Cahiers topos). We argue in C as if it were the category of sets,
making sure to use only intuitionistically valid reasoning.

A Weil algebra C*°(R!)/I, as above, gives rise to an “infinitesimal” subobject
W C R pick a (finite) set of differential operators Ds (3 € B) forming a basis for
(C°°(R!)/I)*, and take the dual basis for C*°(R!)/I, whose elements are represented
mod I by polynomials ps(s) in [ variables. Then W C R' is the extension of the
formulas pg(s) = 0, s being a variable ranging over R’ (note that real polynomials
in [ variables define functions R — R in C).

We assume that such W’s are internal atoms, in a sense we partially recall below;
this is so for all interesting models C of SDG, including the Cahiers Topos.

To say that an R-module object Y in C satisfies the general K-L axiom is to say
that for each such Weil algebra, the map

[y - v%
B

given by
(y3)gen — [s — Y pa(s) - ya}
B

is an isomorphism.

We assume that R itself satisfies K-L. This immediately implies that RM does
for any M € C. We shall consider R”.

Now recall that D(R) C R was the subobject which is the extension of the
formula (9) (with free variable f ranging over R®) 30> 0: |z| > b = f(z) = 0.
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Proposition 6.11 Let a B-tuple of elements fs in RT represent an element in
(REYW. Then it defines an element in the sub“set” (D(R))V if and only if each f3
is in D(R).

Proof. Assume first that all fg are in D(R). For each [ there exists a witnessing
bz > 0 witnessing that the formula (9) holds for fs, but since there are only finitely
many (3’s, we may assume one common witness b > 0. So for all 3, and for all z
with |z| > b, fg(x) = 0. But then for each such z, the function of s € W given by

s = %:PB(S) - fa(z)

is the zero function. The sum here, as a function of s and x, is the element of (R%)W
corresponding to the B-tuple fs, and for || > b, it is the zero. So for each s, the
given fixed b witnesses that the sum, as a function of z, is in D(R).

Conversely, assume that the f3’s are such that the corresponding function W —
RE factors through D(R). So for each s € W, the function

v %:pﬁ(S) - fo(@)

belongs to D(R). So

VseW3b>0:|z| >b=> ps(s)- falz) =0. (14)
B

We would like to pick for each s € W a b(s) such that

Vs €W ol > 66) = Tpale) - fola) =0

the existence of such a function b follows from (14) by a use of the Axiom of Choice,
so in general is not possible in a topos. But since W is an internal atom, and s
ranges over W, such a function b exists after all. (See the Appendix for a general
formulation and proof of this principle.)

But now |z| > b(0) = |z| > b(s) for all s € W, because b, as does any function,
preserves infinitesimals, and because strict inequality is unaffected by infinitesimals.
So we have a b, namely b(0), so that

Vse W :|z|>b=> ps(s) fs(x) =0.
So for |z| > b,

Vs € W, pa(s) - fa(z) = 0.

Thus, for fixed x with |z| > b, the function of s here is constantly 0. But functions
W — R can uniquely be described as linear combinations of the pg(s)’s (this is
a verbal rendering of the K-L axiom for R). So for such z each fz(x) is 0. So b
witnesses, for each (3, that f3 € D(R). This proves the Proposition.

Combining (12) (with D(R) for V') with (13) and Proposition 6.11, we get
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Theorem 6.12 (Test functions in the Cahiers Topos) The inclusion D(R)
goes by h: Con™ — C to the inclusion D(R) C R

We proceed to use this result as the tool analyze the object of distributions
D(R)’. We could proceed along the lines of the proof of Theorem 5.1, but a more
elegant argument is available. For any convenient vector space Y, the dual Y’ is a
not only a subspace of RY, it is even a retract, namely the fixpoint set of the smooth
linear endomap dy on RY given by f + dof, the differential of f at 0 € Y. In the
Cahiers topos C, synthetic differential calculus is available, and there is a similar
retraction operator dy on RZ, for any vector space (R-module) Z, and in fact,
the object Ling(Z, R) C RZ is the fixpoint object for this operator (this follows
from elementary synthetic differential calculus, cf. [17] 1.2.3 and 1.2.4). But the
embedding h takes the “external” dy to the internal one, and any functor preserves
fixpoint objects for idempotent endomaps. Thus h takes the subobject Y’ C RY to
the subobject Ling(h(Y'), R). If we apply this observation to the case of Y = D(R),
and use the Theorem 6.12 above, we get

Theorem 6.13 (Distributions in the Cahiers Topos) The embedding
h:Con>™ — C

takes the convenient vector space D(R) of distributions on R into the internal object
of distributions D(R)’.

We get in particular

Proposition 6.14 There is a bijective correspondence between distributions on R,
and R-linear maps in C, D(R) — R.

6.4 Half line in C

By Theorem 4.1, the two C*°-rings C*(R)/ M, and C>*(R>() are isomorphic,
where M, is the ideal of smooth functions vanishing on the non-negative half line,
and C=(Rsg) is the ring of smooth functions R>y — R. Being a quotient of the
ring C*°(R) which represents R € C, it defines a subobject of R, which we denote
R (also considered in [12]'). — Thus, R>q is “represented from the outside” by the

C*-ring C*(R)/ M, = C*(Rxo).

Proposition 6.15 Let I C C°(R!) be a Weil ideal and let f : R! x RF — R be a

smooth function. Then the following are equivalent:
1. f(0,z) >0 for all z € R*

2. p(f(w,x)) €I for all p € MZ5.

IThe ring representing R>o, was in loc.cit. defined using the ideal M, of functions vanishing
on an open neighbourhood of Rx>¢, rather than the ideal M, considered here. But it can be
proved that they represent (from the outside) the same object in the Cahiers topos.
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Proof. “not 1”7 implies “not 2”; for, if f(0,z) < 0, we may find a function p
vanishing on R>q and with value 1 at f(0,z). Then f ¢ I* (recall that any Weil
ideal I consists of functions vanishing at 0). — On the other hand, “1” implies “2”:
For, by Taylor expansion,

(po fllw ) = (po )0 )+ 3 wilpo fi(0.x) + D> wiw;(po f);(0,2) +---

4,3
where (—); = 0/0x;, (—);; = 0*/0x,x; ete.

This series finishes after finitely many terms modulo I*, since a product of powers
of w;’s belong to the ideal I. But each of its terms is 0: Indeed, so is the term without
derivatives, by hypothesis. But so are the others. For instance. (po f)i(0,z) =
p'(f(0,2)0f/0z;(0,x) is 0, since the derivative of p is zero on non-negative reals (by
definition of mgs,).

Let J denote I*. Then an element F of Rsq defined at stage C°(R")/J is
represented by a function f satisfying the conditions of the Proposition.

Proposition 6.16 There is a bijection between the set of smooth maps K : Ry —
X and the set of maps K : R>g — h(X) in C.

Proof/Construction. Passing from K to K is just by taking global sections. —
Conversely, given K, we extend it (using Theorem 4.1) to a smooth map K; : R —
X, and apply the embedding h to get a map h(K;) : R — h(X) in C; its restriction
to R>g is the desired K. We have to see that this K does not depend on the choice
of the extension K. Given some other extension K. We should prove that for any
generalized element F' of Rxq, h(K1)(F) = h(K3)(F'). Suppose F' is an element of
stage C°(R"*)/J, where J is the semi-Weil ideal I* considered in the Proposition
above. Thus, as a generalized element of R, it is identified with f + J, where
f € C®°(R™*), and it satisfies condition 2. of the Proposition, being an element of
R>0.

We should prove that Kj o f = Ky o f modulo J(X). Since J is a semi-Weil
ideal, it suffices by Theorem 6.9 to prove, for any ¢ € Y’ that

poKiof=¢oKyof

modulo J. But subtracting the two entries to be compared yields, by linearity of ¢
the map
po (K —Ky)of,

and since K; — K vanishes on R, then so does ¢ o (K; — K3). We may thus
take p = ¢ o (K; — K>5) in the condition 2. in the Proposition, and conclude that
po(Ky— K)o fisin I* = J, as desired.

— Uniqueness is easy, using Proposition 6.10, together with the fullness result
from [23] on manifolds with boundary.

The Proposition is a “mixed fullness” result; we have that Con™ and Mf (=
smooth manifolds), (even the category of smooth manifolds with boundary), embed
fully in The Cahiers Topos; but at present we do not at present have a general result
about what can be said about C*(M, X), for M a manifold with boundary and X
a convenient vector space.
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7 Heat Equation in the Cahiers Topos

For any topos C with a ring object R with a preorder <, we may form the R-module
D'(R™) of distributions on R"™, as explained in Section 5 and 6. If C, R is a model
of SDG, then D’(R"™) automatically satisfies the “vector form” of the general Kock-
Lawvere axiom, so that (synthetic) differentiation of functions K : R — D'(R")
is possible — it is even enough that K be defined on suitable (“formally étale”)
subobjects of R, like R>¢. We think of the domain R or R>( as “time”, and denote
the differentiation of curves K w.r. to time by the Newton dot, K. On the other
hand, we think of R" as a space, and the various partial derivatives 0/0z; (i =
1,...,n), as well as their iterates, we call spatial derivatives; in case n = 1, they
are just denoted (=)', (—)”, etc. They live on D'(R™) as well, by the standard
way of differentiating distributions (which immediately translates into the synthetic
context, cf. e.g. [15]). The heat equation for (Euclidean) space in n dimensions says
K = AoK, where A is the Laplace operator; in one dimension it is thus the equation

K =K".

We can summarize the constructions into an general existence theorem about

models for SDG:

Theorem 7.1 There exists a well-adapted model for SDG (with a preorder < on
R), in which the heat equation on the (unlimited) line R has a unique solution
k: R>y — D'(R) with initial value k(0) = §(0) (the Dirac distribution).

Proof. The well adapted model witnessing the validity of the Theorem is the
Cahiers Topos C. Consider the classical heat kernel, viewed, as we did in Section 4,
as a map R>o — D'(R). By Section 4, this map is smooth, hence by Proposition
6.16, it defines a morphism in C, K : R>¢o — h(D'(R)). This K is going to be our
k. By Theorem 77, its codomain is the desired D’'(R). We prove that this & satisfies
the heat equation k& = A o k. This is a purely formal argument from the fact that
K does, and the fact that h takes “analytic” differentiation into the “synthetic”
differentiation in C. We give this argument. Synthetically, we want to prove that
forall z € R>pand d € D

k(z +d) = k(z) + d - Ak(z)).

Universal validity of this equation means that a certain diagram, with domain R x
D and codomain D’(R), commutes. Taking the transpose of this diagram, we get
a diagram with domain R>y and codomain (D’'(R))? = D'(R) x D'(R) (by K-L for
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D/(R)):

R (R>0)”
k kP
(R
(1,A)

D'(R) x D'(R) < (D'(R))”

When the global sections functor I' is applied to this diagram, the left hand
column yields (K, A o K), because I'(k) = K; the composite of the other maps is
(K, K) because I takes synthetic differentiation into usual differentiation. Since K
satisfies K = Ao K , we conclude that I" applied to the exhibited diagram commutes.
Now I' is not faithful, but because of the special form of the domain and codomain
of the two maps to be compared, we may still get the conclusion, by virtue of the
following

Proposition 7.2 Given a map a : R>y — h(X), where X is a convenient vector
space. If T'(a) =0, then a = 0.

Proof. Since the h(¢) : h(X) — R are jointly monic as ¢ ranges over X', by
Proposition 6.10, it suffices to see that each h(¢) o a is 0. Since I'(h(¢) 0 a) =
¢ o I'(a), this reduces the question to the case where X = R. A map a: R>g — R
is tantamount to an element in a : C*°(R>q), and the assumption I'(a) = 0 is
tantamount to a(t) = 0 for all ¢ € R>o. But this clearly implies that a, and hence
a, is 0.

The uniqueness assertion in the Theorem is likewise an easy consequence of this
Proposition.

Appendix

Recall that an atom A in a cartesian closed category C is an object so that the
exponential functor (—)A has a right adjoint; in particular, it takes epimorphisms
to epimorphisms. The following says that “axiom of choice” holds for “A”-tuples
sets:

Proposition 7.3 Assume that A is an atom, B arbitrary and R C A x B. Then
(Va € A)(3b € B) R(a,b) = (3b € B*)(Va € A) R(a,b(a))

Proof: The hypothesis means that the composite R — A x B ™ A is surjective.
By exponentiation, and the assumption that A is an atom, the composite R4 —
A% x BA TS A4 is surjective. In particular, 14 € A* must have a pre-image (14, D).
This b obviously does the job.
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