
DEPARTMENT OF OPERATIONS RESEARCH
UNIVERSITY OF AARHUS

Working Paper no. 2004 / 3

The Futures Market Model and No-Arbitrage
Conditions on the Volatility

Kristian R. Miltersen, J. Aase Nielsen and Klaus Sandmann

ISSN 1600-8987

Department of Mathematical Sciences Building 530, Ny Munkegade
Telephone: +45 8942 1111 DK-8000 Aarhus C, Denmark
E-mail: institut@imf.au.dk URL: www.imf.au.dk



THE FUTURES MARKET MODEL AND NO-ARBITRAGE
CONDITIONS ON THE VOLATILITY

KRISTIAN R. MILTERSEN, J. AASE NIELSEN, AND KLAUS SANDMANN

Abstract. Interest rate futures are basic securities and at the same time highly
liquid traded objects. Despite this observation, most models of the term structure
of interest rate assume forward rates as primary elements. The processes of futures
prices are therefore endogenously determined in these models. In addition, in these
models hedging strategies are based on forward and/or spot contracts and only to
a limited extent on futures contracts.

Inspired by the market model approach of forward rates by Miltersen, Sand-
mann, and Sondermann (1997), the starting point of this paper is a model of
futures prices. Using the prices of futures on interest related assets as the input
to the model, new no-arbitrage restricions on the volatility structure are derived.
Moreover, these restrictions turn out to prevent an application of a market model
based on futures prices.
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I. Introduction

The aim of this paper is to establish and analyze the no-arbitrage conditions orig-
inating from a term structure of interest rate model where the exogenous inputs
consist of futures prices on zero coupon bonds, and the dynamics of these futures
prices. The earliest models of the term structure of interest rates appearing in
the literature were based on the short-term interest rate as the exogenously given
input. The no-arbitrage condition derived claims that the expected excess return
of a bond divided by its volatility, should equal the market price of risk function
which is found to be independent of the maturity of the bond considered. Assum-
ing the latter function known, interest rate derivatives could then be priced. This
modelling was subsequently modified by increasing the set of inputs to the model.
Firstly, the parameters of the stochastic differential equation were chosen in such a
manner that the model determined prices would be in accordance with the today
observed prices. Secondly, the number of state variables were extended, but the no-
arbitrage implications on the drift and volatility terms were uninfluenced by these
modifications.

A major step forward was made by the so-called Heath, Jarrow, and Morton (1992)
modelling approach. Here the dynamics of the family of forward rates and not only
the short-term interest rate is the input to the model. This modelling approach
highlights the dynamic relationship between different interest rate depending ob-
jects, which has to be satisfied in a continuous time dynamic setting without ar-
bitrage, like bonds of different maturities, yields, forward rates, etc. Whereas in
earlier models the drift and the volatility terms could be chosen independently of
each other, the degree of freedom was now reduced so that only one of these terms
could be specified exogenously: an important restriction on the drift parameter in
relation to a chosen volatility structure was established.

The strength and elegance of the Heath, Jarrow, and Morton model comes from
the exogenous modelling of the instantaneous forward rate processes. However, this
is also the most critical aspect of the model: The instantaneous interest rates are the-
oretical objects defined by taking the limit as the compounding interval approaches
zero. These rates do not correspond in any simple way to interest rates observed
in real financial markets. Observable rates like forward rates are endogenously de-
termined within this modelling approach. The same hold true for futures prices
and rates. What happens if we now exogenously specify the much richer family of
futures prices? Richer in the sense that a futures has many more payment days
than the corresponding forward contract. This question will be addressed in the
following. Furthermore, we will analyze whether a consistent market model based
on futures prices can be established to overcome the non-adequate behavior of the
forward based market model where we cannot in a rational sense price both swaps
and caps.
The paper is organized as follows: In Section II we recall some known results and
present some definitions. Section III contains the main model of futures prices re-
lated to the term structure of interest rates. In this section new restrictions concern-
ing the volatility structure of the futures price process are presented. In Section V
we discuss the interrelationship between the Heath, Jarrow, Morton modelling and
the futures based approaches.
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II. Spot, Forward and Futures Prices

The construction of an arbitrage free model for financial instruments starts with
the definition of the underlying securities. This step is usually not difficult. Nev-
ertheless this modelling step asks for particular care in the case of an interest rate
market. There is nothing like the interest rate. Instead, different concepts of interest
rates have to be reflected.

The terminology in this paper includes spot, forward and futures prices as well as
the concept of nominal and instantaneous interest rates on spot, forward and futures
markets. A spot price is the amount of money that we have to pay now (today) to
get immediate ownership of a specific good or security. Since we restrict ourselves
to the interest rate market, the basic securities are coupon or zero coupon bonds.
Setting the face value to one, the owner of a zero coupon bond holds the right to a
payment of one unit of account at the maturity of the contract. Denote by B(t, τ)
the spot price at time t ≤ τ of a zero coupon bond with face value one and maturity
τ.

In contrast to the spot contract, a forward contract is a binding agreement to
deliver a specific good or security at some fixed point in time in the future. Conse-
quently the forward price of a good or security is the amount of money payable at
the delivery date. Since, in the case of a forward contract, the closure of the con-
tract and the delivery date are not identical, the forward price differs from the spot
price. In particular its dimension is not money today. With respect to the interest
rate market we restrict ourselves to forward contracts on zero coupon bonds. Set
t ≤ u ≤ τ and define by F (t, u, τ) the forward price of a zero coupon bond with ma-
turity τ and delivery at time u. At time t the forward price F (t, u, τ) is determined
in such a way that the value of the forward contract equals zero. Closely related to
spot prices are spot and forward interest rates. A forward interest rate is an interest
rate fixed by two parties for a specific compounding period in the future. Denote by
rn(t, u, τ) the nominal forward interest rate at time t for the compounding interval
[u, τ ] with t ≤ u ≤ τ. The relationship between nominal forward rates on the one
side and zero coupon bond spot and forward prices on the other side are given by

B(t, τ) =:
B(t, u)

(1 + (τ − u) · rn(t, u, τ))
,(1)

F (t, u, τ) =
B(t, τ)

B(t, u)
=:

1

1 + (τ − u) · rn(t, u, τ)
.(2)

The nominal spot rate is obtained for u = t. The concept of nominal spot and forward
rates is the main modelling instrument of the market model approach. The interest
rate concept underlying this class of models is chosen to be close to observable
interest rates. In contrast, most other models of the term structure of interest rates
are defined on the concept of instantaneous spot and forward rates. Instantaneous
interest rates are defined as the limiting concept of nominal interest rates as the
length of the compounding period converges to zero. Assume that the spot prices of
zero coupon bonds are differentiable with respect to the maturity date. The function
of the instantaneous forward rate f(t, ·) : [t, T ] −→ IR at time t is defined by:

(3) f(t, u) := lim
τ→u

rn(t, u, τ) = −∂ ln B(t, u)

∂u
.
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As a special case the instantaneous spot rate rc(·) is defined by:

(4) rc(t) := f(t, t) = lim
τ→t

rn(t, t, τ) = −∂ ln B(t, u)

∂u

∣

∣

∣

∣

u=t

.

The forward contract as well as the futures contract is an agreement between two
parties to exchange a good or security at a specific price in the future. In contrast to
the forward contract, the margin system of a futures contract implies a continuous
cash flow between the two counterparts. The futures price is fixed in such a way
that the value of the futures contract is equal to zero. This implies that the futures
price changes over time and the cash flow between the counterparts is determined
by the increments of the futures price. As for the forward price, the dimension of
the futures price is not money today. Following Cox, Ingersoll, and Ross (1981), the
futures price is equal to the amount of money necessary to implement a self-financing
portfolio strategy with a payoff equal to the value of the underlying security times
the rollover bank account. Denote by H(t, u, τ) the futures price at time t if the
underlying security is a zero coupon bond with maturity τ, and delivery is at time
u. Suppose that the marketed-to-market of a futures is continuous. In this case
H(t, u, τ) is equal to the present value of the payoff

exp

{
∫ u

t

rc(s)ds

}

B(u, τ)

at time u ≥ t. This implies that for u > t the forward and futures prices only coincide
if the interest rate is deterministic or if exp

{∫ u

t
rc(s)ds

}

is orthogonal to B(u, τ).
Furthermore, the difference between forward and futures prices is determined by the
model of the term structure of interest rates. For u = t we have

H(t, t, τ) = B(t, τ) = F (t, t, τ).

In the limit u = t we therefore have that

f(t, τ) = −∂ ln H(t, t, τ)

∂τ
,(5)

rc(t) = −∂ ln H(t, t, τ)

∂τ

∣

∣

∣

∣

τ=t

.(6)

III. Stochastic Model of Futures Prices

Any of the mentioned definitions for prices and rates can be used as the starting
point of the construction of a model for the term structure of interest rates. Within
the Heath, Jarrow and Morton (1992) framework the exogenous assumptions are
based on the concept of instantaneous forward rates. Consequently the stochastic
evolution of spot and forward prices as well as nominal interest rates are determined
endogenously within this model structure. The market model approach by Miltersen,
Sandmann and Sondermann (1997) on the other hand is formulated with respect
to nominal forward rates. The idea of this section is to use futures prices as the
primary and exogenous objects of the modelling structure.

From a theoretical point of view one can argue that these approaches are equiva-
lent to each other. Neglecting technical aspects this argument is to some extent valid
and will be discussed in this section. Nevertheless two aspects should be stressed at
this point.
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• First, the information given by futures prices is richer than the one given by
forward prices. In addition to the drift restriction determined by the initial
forward price curve, further no-arbitrage restrictions should be expected.

• Second, the futures market is a highly liquid market. Banks, companies
and institutional investors are managing large futures positions. Why is a
futures based model not used to analyze the risk of these positions? Due to
the marketed-to-market system the default risk of futures is less crucial than
for forward contracts. To reduce the effects of default risk an empirical study
of the term structure of interest rates should refer to the futures market data
rather than to the forward market data.

These two aspects serve as the main intuitive justification for the following modelling
approach.

A. Term Structure of Futures Prices. The futures price is equal to the present
value of a self-financing financial strategy with a payoff equal to the value of the
underlying security at delivery multiplied by the rollover return. Therefore an ar-
bitrage free model of the term structure of interest rates implies that the futures
price is equal to the expected value of the underlying security under the martingale
measure. Let (Ω, IF, P, IFt) be a filtered probability space and let P ∗ be a probability
measure equivalent to P such that discounted spot price processes are martingales
under P ∗. The martingale property of spot prices implies for futures prices:

H(t, u, τ) = EP ∗ [B(u, τ)|IFt| = EP ∗ [EP ∗ [B(u, τ)|IFs]|IFt](7)

= EP ∗ [H(s, u, τ)|IFt] ∀t ≤ s ≤ u ≤ τ,

which yields that the futures price is a martingale under P ∗. Note that the martin-
gale property of futures prices is not restricted to zero coupon bonds as underlying
securities.

For the following we apply the usual modelling framework, i.e. the stochastic
processes are defined as stochastic integrals. Assume that the filtration of the prob-
ability space is generated by a k-dimensional Brownian motion {W ∗(t)}t under the
martingale measure P ∗. The futures price is therefore a solution of the stochastic
differential equation

(8) dH(t, u, τ) = H(t, u, τ)σH(t, u, τ) · dW ∗(t),

where σH(·, u, τ) : [t0, u] → IRk is the k-dimensional stochastic volatility function of
the futures price. We have to impose the usual restrictions on the volatility struc-
ture guaranteeing the existence of the solution to the above stochastic differential
equation. Furthermore the restrictions should allow for the application of the sto-
chastic Fubini Theorem at several places in the paper.1 Furthermore, the solution
of the futures price process given by equation (8) is determined by
(9)

H(t, u, τ) = H(t0, u, τ) · exp

{

−1

2

∫ t

t0

||σH(s, u, τ)||2ds +

∫ t

t0

σH(s, u, τ) · dW ∗(s)

}

.

1For details see Appendix A.
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B. Implied Term Structure of Forward and Spot Prices. Since the volatility
structure of the futures prices is exogenously given, we are interested in the implied
structure of spot and forward prices and interest rates. For u = t the futures price
is equal to the spot price of the underlying. Therefore the spot price is a solution
of the stochastic differential equation

dB(t, τ) =
∂H(t, u, τ)

∂u

∣

∣

∣

∣

u=t

dt + dH(·, t, τ)t(10)

=
∂H(t, u, τ)

∂u

∣

∣

∣

∣

u=t

dt + H(t, t, τ) σH(t, t, τ) · dW ∗(t)

= B(t, τ)
∂ ln H(t, u, τ)

∂u

∣

∣

∣

∣

u=t

dt + B(t, τ) σH(t, t, τ) · dW ∗(t).

Under the equivalent martingale measure the drift of the zero coupon bond equals
the spot rate. In addition to the definition of the instantaneous spot rate in equation
(6) the no-arbitrage implies that

(11)
∂ ln H(t, u, τ)

∂u

∣

∣

∣

∣

u=t

= rc(t) ∀t ≤ τ.

We can know address our main question: Does the initial curve of futures prices
restrict the volatility structure of the term structure of interest rates? Our main
answer to this question is positive and can be summarized by the following propo-
sition:

Proposition 1. Suppose that the volatility function of the futures price satisfies the
usual regularity conditions then:

i) Under the martingale measure the expected value of the instantaneous spot
rate is determined by the futures price at time t0, i.e.

EP ∗ [rc(t)|IFt0 ] = − ∂ ln H(t0, t, τ)

∂τ

∣

∣

∣

∣

τ=t

.

ii) No-arbitrage conditions imply that the volatility of the futures price must
satisfy a.s.

0 =
∂σH(t, t, τ)

∂τ

∣

∣

∣

∣

τ=t

+
∂σH(t, u, τ)

∂u

∣

∣

∣

∣

u=t

and furthermore

0 =
∂

∂t

(

∂σH(s, t, τ)

∂τ

∣

∣

∣

∣

τ=t

)
∣

∣

∣

∣

s=t

+
∂

∂t

(

∂σH(s, t, τ)

∂t

)
∣

∣

∣

∣

s=t

iii) A weaker condition, derived by taking expectations, is
∫ τ

t

∂2 ln H(t0, t, s)

∂t∂s
ds = EP ∗

[
∫ t

t0

σH(s, t, τ) · ∂σH(s, t, τ)

∂t
ds

∣

∣

∣

∣

IFt0

]

.

The statements in Proposition 1 concentrate on two aspects.

• First, the initial futures prices completely determine the expected spot rate
under the martingale measure. In other words, the derivative of the futures
price is the best predictor of the spot rate under the martingale measure.
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• Second, the volatility function cannot be specified in an arbitrary manner.
The derivative of the futures volatility with respect to settlement of the
future and the maturity of the underlying bond respectively shares the same
property as the futures prices. The formal relationship between the initial
futures prices and the volatility is given by Proposition 1 ii). Unfortunately,
there is no easy interpretation possible. The weaker condition iii) implies
that the expected volatility under the martingale measure is determined by
the initial futures prices. Observe that the left hand side of this equation is in
principle given by the initial futures prices. Thus from an empirical point of
view the expected volatility can be related to observable data. This result is
of particular interest if in addition the volatility is assumed to deterministic.

IV. Applications of the Futures Market Model

To further understand the no-arbitrage restrictions given in Proposition 1 we
have to consider specific situations. In the first model we analyze a specification, in
similarity with the LIBOR market model. In the second model σH(t, u, τ) itself is
assumed to have a deterministic development.

A. Futures Market Model and Log-normality? Within this section we con-
sider a specific volatility structure which is in accordance with the LIBOR-Market
model, i.e.

σH(t, u, τ) = (1 − H(t, u, τ)) γH(t, u, τ) ∀t ≤ u(12)

where the functions γH(·, u, τ) : [t0, u] → IRk are ∀u ∈ [t0, T ] and ∀τ ∈ [t0, T ]
with u ≤ τ deterministic and bounded. Refering to the Bund Futures contract the
implied futures rate in nominal terms rH(t, u, τ) is defined by:

(13) H(t, u, τ) =:
1

1 + (τ − u) rH(t, u, τ)
.

With this choice the implied futures rate process can be rewritten as the solution of
the following stochastic differential equation:

drH(t, u, τ) = −rH(t, u, τ) γH(t, u, τ)

· (dW ∗(t) − (1 − H(t, u, τ))γH(t, u, τ) · dt) .
(14)

Obviously the futures market structure is similar to the modelling assumptions
within the LIBOR market model. Nevertheless, defining the volatility of the fu-
tures market in accordance with equation (12), implies that no forward rate process
is a log-normal martingale under the appropriate forward risk adjusted measure.
The log-normality for the corresponding nominal forward rate process under the τ -
forward risk adjusted measure is fulfilled if a deterministic function γF (., u, τ) exists
such that

σH(t, t, τ) − σH(t, t, u) = (1 − F (t, u, τ)) · γF (t, u, τ).

Instead, the specification (12) implies that this function should equal

γF (t, u, τ) =
(1 − B(t, τ)) γH(t, t, τ) − (1 − B(t, u)) γH(t, t, u)

B(t, τ) − B(t, u)
· B(t, u).

Even if we assume γH(., ., .) to be constant, a stochastic specification of the function
γF (., ., .) is implied. In other words, the Black formula for caplets and floorlets are
not satisfied. The reason for this strong property is that, assuming that (12) is valid
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for all τ , is a much stronger assumption than the corresponding one in the LIBOR
market model. In particular log-normality within the LIBOR market model can
only be imposed on one specific compounding period τ −u. As we will see the same
property holds within the futures market model.

We will now analyze whether the above log-normal volatility structure satisfies
the conditions in Proposition 1. Inserting the expression for σH(t, u, τ) into ii) of
Proposition 1, leads to the condition

∂H(t, t, τ)

∂τ

∣

∣

∣

∣

τ=t

γH(t, t, t)

= −∂H(t, u, τ)

∂u

∣

∣

∣

∣

u=t

γH(t, t, τ) + (1 − H(t, t, τ))
∂γH(t, u, τ)

∂u

∣

∣

∣

∣

u=t

(15)

which can be reformulated to

B(t, τ) =
rc(t) γH(t, t, t) + ∂γH(t,u,τ)

∂u

∣

∣

∣

u=t

rc(t) γH(t, t, τ) + ∂γH(t,u,τ)
∂u

∣

∣

∣

u=t

(16)

Observe that B(t, t) = 1. In addition we want to restrict the volatility structure
such that B(t, τ) is a decreasing function in τ . Before the presentation of possible
structures satisfying this requirement the implications of the second no-arbitrage
condition in Proposition 1 will be derived. Inserting the expression for σH(t, u, τ)
leads to the condition

0 = rc(t)

(

∂γH(t, t, τ)

∂τ

∣

∣

∣

∣

τ=t

+
∂γH(t, u, τ)

∂u

∣

∣

∣

∣

u=t,τ=t

)

(17)

− γH(t, t, t)

(

∂2H(t, t, τ)

∂τ 2

∣

∣

∣

∣

τ=t

+
∂2H(t, u, τ)

∂u∂τ

∣

∣

∣

∣

u=t,τ=t

)

− γH(t, t, τ)
∂2H(t, u, τ)

∂u2

∣

∣

∣

∣

u=t

− 2rc(t)B(t, τ)
∂γH(t, u, τ)

∂u

∣

∣

∣

∣

u=t

+ (1 − B(t, τ))
∂2γH(t, u, τ)

∂u2

∣

∣

∣

∣

u=t

A large class of γ−functions could fulfill (16) with B(t, ·) a decreasing function.

However in equation (17) in particular the term ∂γH(t,t,τ)
∂τ

∣

∣

τ=t
restricts the possible

choice of the volatility structure. A valid choice of the volatility structure concerning

(16) and at the same time preventing the term ∂γH(t,t,τ)
∂τ

∣

∣

τ=t
to equal infinity is

γH(t, u, τ) = A(t, τ) (A(t, τ) + G(t, u))

with

i) A(t, τ) being nonnegative, concave and increasing in τ

ii) ∂A(t,τ)
∂τ

∣

∣

τ=t
< ∞

iii) G(t, t) = 1, G(t, u) > 0 and increasing in u.
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Choosing e.g. A(t, τ) = ln(τ−t+1) and G(t, u) = exp (α(u − t)) with α > 0 equation
(16) is satisfied with B(t, ·) being a positive, convex and decreasing function in τ .
Equation (17) turns into

rc(t) = ln(τ − t + 1) (ln(τ − t + 1) + 1) γH(t, t, τ)
∂2H(t, u, τ)

∂u2

∣

∣

∣

∣

u=t

(18)

+ 2 rc(t) B(t, τ) α ln(τ − t + 1) − (1 − B(t, τ)) α2 ln(τ − t + 1)

Observe now that this expression should be valid for all τ meaning that the
parameters have to be chosen in such a manner that the right hand side is only a
function of t. It might at a first glance seem possible to have (18) satisfied. However,
the choice τ = t turns the right hand side into 0 with the nonsensical consequence
that rc(t) = 0. Based on this and other analyzed cases, we do not believe that it is
possible to establish a rational futures market model. In other words the log-normal
volatility specification in equation (12) cannot be satisfied for all t. Similar to the
LIBOR Market model, log-normality of implied futures rates can only be satisfied
for a finite set of Futures.

B. Deterministic volatility model. In the deterministic volatility model it is
assumed that the futures prices are log-normal, i.e. that

dH(t, u, τ) = H(t, u, τ) σH(t, u, τ) · dW ∗(t)

with σH(t, u, τ) being deterministic. As the futures price turns into a bond price
at the maturity date of the futures, and as we want to model the possibility that
the futures price deviates from the corresponding forward price an obvious choice of
σH(t, u, τ) is

σH(t, u, τ) = (ν(t, τ) − ν(t, u))
(

1 − ξ exp
(

− α

u − t

))

,

with α > 0. It is easily shown that this specification satisfy the two established no-
arbitrage conditions on the volatility structure. Furthermore, the volatility σF (t, u, τ)
of the corresponding forward contract is equal to

σF (t, u, τ) := σH(t, t, τ) − σH(t, t, u) = ν(t, τ) − ν(t, u).

For β = 0 the volatility coincides with the volatility of the corresponding forward
contract, whereas the situations ξ < 0 and ξ > 0 lead to that σF (t, u, τ)·σH(t, u, τ) <

0 and σF (t, u, τ) · σH(t, u, τ) > 0 respectively. As an example we consider an appli-
cation of this structure leading to the Vasicek (1977) model.

Example 1. Suppose that the futures prices at time t0 are up to some constant
determined by the following function:

−∂ lnH(t0, t, s)

∂s
= f(t0, s) +

k
∑

i=1

ηie
−βi(s−t0) · [cosh(βi(t − t0)) − 1],

where f(t0, s) is equal to the instantaneous forward rate. η = (η1, ...ηk) and β :=
(β1, ..., βk) are k-dimensional constants. In addition, suppose that the volatility is
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deterministic. Applying Proposition 1 the volatility of the futures price has to satisfy
∫ t

t0

σH(s, t, τ) · ∂σH(s, t, τ)

∂t
ds =

∫ τ

t

∂2 ln H(t0, t, s)

∂t∂s
ds

=

∫ τ

t

−
k
∑

i=1

ηi · βie
−βi(s−t0) · sinh(βi(t − t0)) ds

= −
k
∑

i=1

ηi · sinh(βi(t − t0))
(

e−βi(t−t0) − e−βi(τ−t0)
)

= −
k
∑

i=1

ηi

2

[

e−βit − e−βiτ
]

· e−βit ·
[

e2βit − e2βit0
]

= −
k
∑

i=1

ηiβi

[

e−βit − e−βiτ
]

· e−βit ·
∫ t

t0

e2βis ds

= −
k
∑

i=1

ηiβi

∫ t

t0

[

e−βi(t−s) − e−βi(τ−s)
]

· e−βi(t−s) ds

This implies that the volatility function should be of the form:

σH(s, t, τ) =
(√

η1

(

e−β1(t−s) − e−β1(τ−s)
)

, . . . ,
√

ηk

(

e−βk(t−s) − e−βk(τ−s)
))

i.e. the above specification of the initial futures prices and the assumption of a
deterministic volatility structure imply that the term structure of interest rates is
determined by a k-factor, non-Markovian Vasicek type term structure model with
the speed factor β := (β1, . . . , βk) and the volatility of the instantaneous spot rate
equal to

σ := (β1 ·
√

η1, . . . , βk ·
√

ηk) .

In other words Proposition 1 enables us to estimate the volatility structure from the
initial futures prices in the deterministic case. If the volatility is stochastic, the
initial futures prices restrict the volatility structure. In the Vasicek case the solution
for the spot rate is given by

rc(t) = − ∂ lnH(t0, t, s)

∂s

∣

∣

∣

∣

s=t

−
k
∑

i=1

∫ t

t0

βi
√

ηie
−βi(t−s) dW ∗

i (s).

V. HJM and the Futures Market model

Applying the relationship (5) between forward rates and futures prices the forward
rates can be expressed as

f(t, τ) = −∂ ln H(t, t, τ)

∂τ

= −∂ ln H(t0, t, τ)

∂τ
+

1

2

∫ t

t0

∂||σH(s, t, τ)||2
∂τ

ds

−
∫ t

t0

∂σH(s, t, τ)

∂τ
· dW ∗(s).

(19)

10



In addition the specification of the futures model endogenously fixes the dynamics
of the forward prices and the nominal forward and futures rates. Applying Itô‘s
Lemma, the forward price is given by:

dF (t, u, τ) = d

(

B(t, τ)

B(t, u)

)

(20)

= F (t, u, τ) (σH(t, t, τ) − σH(t, t, u)) · dW u(t),

where dW u(t) := dW ∗(t) − σH(t, t, u)dt defines a Brownian motion under the u-
forward risk adjusted measure Qu

dQu

dP ∗

∣

∣

∣

∣

t

:=
exp

{

−
∫ u

t
rc(s)ds

}

B(u, u)

EP ∗

[

exp
{

−
∫ u

t
rc(s)du

}

B(u, u)
∣

∣ IFt

](21)

= exp

{

−1

2

∫ u

t

||σH(s, s, u)||2ds +

∫ u

t

σH(s, s, u) · dW ∗(s)

}

.

Since the forward price process {F (t, u, τ)}t is a martingale under the u-forward risk
adjusted measure, the nominal forward rate, {rn(t, u, τ)}t, is a martingale under the
τ -forward risk adjusted measure, i.e.

drn(t, u, τ) = d
1

τ − u

(

F (t, u, τ)−1 − 1
)

= − 1

τ − u

1

F (t, u, τ)2
dF (t, u, τ) +

1

τ − u

1

F (t, u, τ)3
d〈F (·, u, τ) 〉t(22)

= − rn(t, u, τ)

1 − F (t, u, τ)
(σH(t, t, τ) − σH(t, t, u)) · dW τ (t).

Similarly, we know that the futures price process (H(t, u, τ))t is a martingale under
P ∗. With reference to the Bund Futures contract the implied futures rate in nominal
terms rH(t, u, τ) is a solution to the following stochastic differential equation

(23) drH(t, u, τ) = − rH(t, u, τ)

1 − H(t, u, τ)

(

σH(t, u, τ) · dW ∗(t) − ||σH(t, u, τ)||2dt
)

.

The process of the implied futures rate (rH(t, τ, α))t is not a martingale under P ∗.
Define for t ≤ u ≤ τ by

dQ
u,τ
H

dP ∗

∣

∣

∣

∣

t

=
H(u, u, τ)

EP ∗ [H(u, u, τ)|IFt]
(24)

= exp

{

−1

2

∫ u

t

||σH(s, u, τ)||2du +

∫ u

t

σH(s, u, τ)dW ∗(u)

}

a new probability measure. Under this (u, τ)-futures risk adjusted measure, Q
u,τ
H ,

the process (W u,τ
H (t))t with

(25) dW
u,τ
H (t) := dW ∗ − σH(t, u, τ) · dt

is a standard Brownian motion and the implied futures rate is a martingale, i.e.

(26) drH(t, u, τ) = − rH(t, u, τ)

1 − H(t, u, τ)
σH(t, u, τ) · dW

u,τ
H (t).

The martingale property of the implied futures rate corresponds to a change of
numeraire. In the case of the forward rate adjusted measure a zero coupon bond is

11



chosen to be the numeraire. The futures risk adjusted measure is derived by choosing
a futures price as the numeraire. Note that, for u = t, the (u, τ)-futures risk adjusted
measure and the τ -forward risk adjusted measure coincide. Furthermore, if the
volatility function of the corresponding futures satisfies the log-normal assumption
given by equation (12), the implied futures rates is a log-normal martingale under
the corresponding futures risk adjusted measure. The following example illustrates
the implication of the martingale property for the implied futures rate under the
futures risk adjusted measure:

Example 2. Following the analysis in section A we can impose the log-normal
assumption (12) on one specific compounding period (τ ∗ − u∗), i.e assume that the
implied futures rate is a solution of

drH(t, u∗, τ ∗) = −rH(t, u, τ) γH(t, u, τ) · (dW ∗(t) − (1 − H(t, u, τ)) γH(t, u, τ) · dt)

= −rH(t, u∗, τ ∗)γH(t, u∗, τ ∗) · dW
u∗,τ+

H (t).

where γH(·, u∗, τ ∗) : [t0, u
∗] → IRk is a deterministic function. The implied futures

rate {rH(, u∗, τ ∗)}t is a log-normal martingale under the appropriate futures risk
adjusted measure. In this case the no-arbitrage value of futures style options on the
implied futures rate or the futures price are easy to calculate. As a first example
consider the futures price of a futures style option on the implied futures rate. The
no arbitrage price of the option with face value V , strike L on the implied futures
rate rH(t, u∗, τ ∗) and maturity s ≥ t is equal to:

V (τ ∗ − u∗)EP ∗

[

[rH(s, u∗, τ ∗) − L]+
∣

∣ IFt

]

= V (τ ∗ − u∗) H(t, u∗, τ ∗)E
Qu∗,τ∗

H

[

H(s, u∗, τ ∗)−1[rH(s, u∗, τ ∗) − L]+
∣

∣ IFt

]

= V (τ ∗ − u∗)H(t, u∗, τ ∗)

· E
Qu∗,τ∗

H

[

(1 + (τ ∗ − u∗)rH(s, u∗, τ ∗))[rH(s, u∗, τ ∗) − L]+
∣

∣ IFt

]

= V (τ ∗ − u∗)H(t, u∗, τ ∗)
[

rH(t, u∗, τ ∗)N(d1) − LN(d2)

+(τ ∗ − u∗)rH(t, u∗, τ ∗)
(

rH(t, u∗, τ ∗)eg2

N(d1 + g) − LN(d1)
)]

with

d1/2 :=
ln
(

rH(t,u∗,τ∗)
L

)

± 1
2
g2

g
and g2 :=

∫ s

t

||γH(θ, u∗, τ ∗)||2dθ.

Formally the pricing formula of a futures style option on the implied futures rate
corresponds to a sum of two caplet formulas. The main reason for this is that the
implied futures rate is a martingale under the futures risk adjusted measure and not
under the martingale measure. Furthermore, the margin system implies that the
futures style option is equivalent to a contract situation with payment in advance.
The above pricing formula is based on the definition of the nominal futures rate.
This corresponds not to the definition of the Eurodollar Futures rate. The implied
Eurodollar Futures rate is by definition linearly related to the futures price. From
the relation between the futures price and the implied Eurodollar Futures rate r̃H is
given by

H(t, u∗, τ ∗) =: 1 − (τ ∗ − u∗)r̃H(t, u∗, τ ∗).

12



Therefore the Eurodollar option corresponds to an option on the futures price. In a
similar way, we can now compute the arbitrage price of a futures style option on a
futures contract with exercise time s ≥ t, s < τ ∗ and strike K:

EP ∗

[

[H(s, u∗, τ ∗) − K]+
∣

∣ IFt

]

= EP ∗

[

H(s, u∗, τ ∗) ·
[

1 − K · H(s, u∗, τ ∗)−1
]+ ∣
∣ IFt

]

= H(t, u∗, τ ∗) · E
Qu∗,τ∗

H

[

[1 − K(1 + (τ ∗ − u∗) · rH(s, u∗, τ ∗)]+
∣

∣ IFt

]

= H(t, u∗, τ ∗) · [(1 − K) · N(e1) − (τ ∗ − u∗) · K · rH(t, u∗, τ ∗) · N(e2)]

= H(t, u∗, τ ∗)(1 − K)N(e1) − K(1 − H(t, u∗, τ ∗))N(e2),

with

e1/2 =

ln

(

(1 − K)H(t, u∗, τ ∗)

K(1 − H(t, u∗, τ ∗))

)

± 1
2
g2

g
and g2 :=

∫ s

t

||γH(θ, u∗, τ ∗)||2dθ.

The structure of this formula coincides with the arbitrage price of an option on a
zero coupon bond in the LIBOR Market Model.

In general under the futures risk adjusted measure we obtain the following solu-
tions:

−∂ ln H(t, u, τ)

∂τ
= −∂ ln H(t0, u, τ)

∂τ
−
∫ t

t0

∂σH(s, u, τ)

∂τ
· dW

u,τ
H (s),

f(t, τ) = −∂ ln H(t0, t, τ)

∂τ
−
∫ t

t0

∂σH(s, t, τ)

∂τ
· dW

t,τ
H (s),(27)

rc(t) =
∂ lnH(t0, t, τ)

∂t
+

∫ t

t0

∂σH(s, t, τ)

∂t
· dW

t,τ
H (s).

This implies that −∂ ln H(t,u,τ)
∂τ

, the intensity of the futures prices, is a martingale
under the appropriate futures risk adjusted measure, i.e.

−d
∂ ln H(t, u, τ)

∂τ
=

(

−∂σH(t, u, τ)

∂τ

)

· dW
u,τ
H (t).(28)

The instantaneous forward rate can be expressed as a solution to the following
stochastic differential equation:

df(t, τ) =

(

−∂σH(t, t, τ)

∂τ

)

· dW
t,τ
H (t) +

∂

∂u

(

−∂ ln H(t, u, τ)

∂τ

)
∣

∣

∣

∣

u=t

dt(29)

=

(

−∂σH(t, t, τ)

∂τ

)

· dW τ (t) − ∂

∂τ

(

∂ ln H(t, u, τ)

∂u

∣

∣

∣

∣

u=t

)

dt

=

(

−∂σH(t, t, τ)

∂τ

)

· dW τ (t) − ∂

∂τ
(rc(t)) dt

=

(

−∂σH(t, t, τ)

∂τ

)

· dW τ (t).

13



The instantaneous forward rate is a martingale under the appropriate forward risk
adjusted measure. Similarly, the spot rate is a solution to

drc(t) = df(t, t) +
∂f(t, τ)

∂τ

∣

∣

∣

∣

τ=t

dt(30)

=

(

−∂σH(t, t, τ)

∂τ

∣

∣

∣

∣

τ=t

)

· dW ∗(t) −
(

∂2 ln H(t, t, τ)

∂τ 2

∣

∣

∣

∣

τ=t

)

dt.

Example 3. Consider again Example 1 of the Vasicek term structure model and for
simplicity assume the 1-factor version. From equation (29) the forward rate can be
expressed by

df(t, τ) = −β
√

ηe−β(τ−t)dW τ(t).

Furthermore, applying equation(30) implies the usual representation of the spot rate

drc(t) = β[θ(t) − rc(t)]dt + β
√

ηdW ∗(t),

with

θ(t) := h(t0, t, t) −
1

β

∂2 ln H(t0, t, τ)

∂t∂τ

∣

∣

∣

∣

τ=t

+
βη

2

(

1 − e−2β(t−t0)
)

.

VI. Conclusion

The approach taken in this paper is the definition of a no-arbitrage model, based
on futures prices, for the term structure of interest rates. At a first view this
approach could seem to be mainly of theoretical interest. This intuition turns out
to be wrong. Similar to option prices, also futures prices add information to the
structure of the model. This additional information implies that the expected spot
rate and the volatility structure of the futures prices are closely related to the initial
futures prices. Two main consequences can be drawn.
First, the expected spot rate is through Proposition 1 related to the initial futures
prices under the martingale measure. This opens a new and, to our knowledge, so
far unconsidered way to value the accuracy of an assumed model specification for the
term structure of interest rates. Since this property is independent of the volatility
structure of the futures prices, it can be used to justify a specific volatility structure
even if the structure can only be analyzed in numerical ways.
Second, the main result in Proposition 1 implies that the volatility structure itself
is related to the initial futures prices. This is of importance in two ways. For
short times to maturity an approximation of futures prices by a sufficiently smooth
function can be used to fix the short end of the term structure of volatility. It
means that, in addition to an estimation on the basis of a time series approach,
the implied term structure of volatility can be expressed by using futures prices.
Furthermore, a majority of the volatility structures applied in practice assume a
deterministic specification. In this case our results imply that the initial futures
prices can be used to completely determine this function. As an example this is
shown for a multidimensional Vasicek model. In the same way this can be shown
for other model specifications. This again allows us to relate a specific structure for
the term structure of volatilities to market information. Furthermore, Example 1
seems to indicate that the functional form of the initial futures prices is related to
the number of factors entering the term structure of interest rates. More precisely,
suppose that the logarithm of initial futures prices can be approximated by a sum
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of basis functions. In this case the number of basis functions is equal to the number
of factors and each basis function determines the structure of the corresponding
projection of the volatility vector. In addition to these features, the paper adds a
new measure transformation to the existing martingale results. Assuming sufficient
regularity, the no-arbitrage condition implies that discounted spot and futures prices
are martingales under the martingale measure, and that forward prices and forward
rates are martingales under the appropriate forward risk adjusted measure. It is
shown that nominal futures rates are martingales under the appropriate futures risk
adjusted measure. As for the case of standard options this property is central to
compute the no-arbitrage value of futures style options. Parallel to option pricing
techniques for non-futures style options, this measure transformation can be used
to efficiently compute the option value of futures style options.
To show this, we consider a LIBOR market structure. Again two results are derived.
First, assuming log-normality yields the same structural problem already known in
the LIBOR market situation. Under no-arbitrage it is not possible to impose log-
normality on all nominal futures rate processes. In contrast to the LIBOR market
this result is not derived by a simple duplication argument in connection with the
instability of the log-normal distribution with respect to summation. In the futures
market case this assumption is not compatible with the no-arbitrage restrictions
on the volatility given by Proposition 1. On the other hand these restrictions do
not prevent us from assuming log-normality for a limited number of processes, i.e.
as in the LIBOR market case, the term structure of volatilities is not completely
specified. In this case future style options on futures prices and futures rates can
be calculated in closed form. In particular this yields a new pricing formula for a
Eurodollar futures option. The interpretation of this formula is closely related to
Blacks formula for the caplet and floorlet. Instead of the forward rate volatility the
futures price volatility enters the formula. Furthermore, the margin system implies
an additional option part which intuitively arises from the payment in advance
property of a futures style option.
From an applied point of view the paper focuses on two aspects: The relationship
between futures prices and the term structure of volatilities and the necessity to use
observable data to further develop the no-arbitrage theory of the term structure of
interest rates.
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Appendix

A. Regularity conditions on the volatility function.

Assumption 1. For any tuple (u, τ) with u ≤ τ we assume that the volatility process
{σH(t, u, τ)}t≤u of the futures price H(t, u, τ) satisfies the following conditions:

• {σH(t, u, τ)}t≤u is a k-dimensional continuous and adapted stochastic process
with σH(t, τ, τ) = 0 ∀t ≤ τ.

• The processes of the partial derivatives
{

∂σH(t,u,τ)
∂u

}

t≤u
and

{

∂σH(t,u,τ)
∂τ

}

t≤u

are k-dimensional continuous and adapted processes.

• EP ∗

[

exp
{

1
2

∫ u

t
||σH(s, u, τ)||2ds

}
∣

∣ IFt

]

< ∞ ∀t ≤ s ≤ u ≤ τ.

• EP ∗

[

∥

∥

∥

∂σH(s,u,τ)
∂u

∥

∥

∥

2
∣

∣

∣

∣

IFt

]

and EP ∗

[

∥

∥

∥

∂σH(s,u,τ)
∂τ

∥

∥

∥

2
∣

∣

∣

∣

IFt

]

are bounded on t ≤ s ≤
u ≤ τ.

• There exists a predictable and bounded process {A(t, u, τ)}t with EP ∗ [A(s,
u, τ)2 | IFt] < ∞∀s ∈ [t, u] and EP ∗ [

∫ u

t
A(s, u, τ)2ds | IFt] < ∞ such that

∥

∥

∥

∂σH(s, u, τ)

∂u
− ∂σH(s, u + δ, τ)

∂u

∥

∥

∥
≤ A(s, u, τ) · δ ∀s ≤ u ≤ τ, ∀δ > 0

∥

∥

∥

∂σH(s, u, τ)

∂τ
− ∂σH(s, u + δ, τ)

∂τ

∥

∥

∥
≤ A(s, u, τ) · δ ∀s ≤ u ≤ τ, ∀δ > 0.

Furthermore, we assume that at any time t the futures price is continuously dif-
ferentiable with respect to the delivery date and the maturity date of the underlying

zero coupon bond, i.e. ∂H(t,u,τ)
∂u

and ∂H(t,u,τ)
∂τ

exist.

B. Proof of Proposition1. The no-arbitrage condition (11) implies the following
representation for the instantaneous spot rate process:

rc(t) =
∂ ln H(t, u, τ)

∂u

∣

∣

∣

∣

u=t

(31)

=
∂ ln H(t0, t, τ)

∂t
− 1

2

∫ t

t0

∂||σH(s, t, τ)||2
∂t

ds +

∫ t

t0

∂σH(s, t, τ)

∂t
· dW ∗(s).

Taking in (31) the expectation given the information at time t0, we find the following
relationship between the expected spot rate under the martingale measure and the
futures prices:

EP ∗

[

rc(t)
∣

∣ IFt0

]

=
∂ ln H(t0, t, τ)

∂t
− EP ∗

[
∫ t

t0

σH(s, t, τ) · ∂σH(s, t, τ)

∂t
ds

∣

∣

∣

∣

IFt0

]

.

(32)

This equation already shows that the expected spot rate and the initial futures
prices are closely related. It still implies a dependency on the volatility structure
of the model. Intuition at that point indicates that this model dependency is still
too strong, i.e. initial futures prices should completely determine the expected spot
rate. To see this we substitute the solution of the futures price in equation (9)
into the definition of the spot rate given by equation (6). To simplify this second
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representation of the instantaneous spot rate, notice that, as σH(s, t, t) = 0, we have
that

1

2

∫ t

t0

∂||σH(s, t, τ)||2
∂τ

∣

∣

∣

∣

τ=t

ds =

∫ t

t0

σH(s, t, t) · ∂σH(s, t, τ)

∂τ

∣

∣

∣

∣

τ=t

ds = 0 P ∗a.s.

With this remark a second representation of the instantaneous spot rate process is
derived by

rc(t) = − ∂ lnH(t, t, τ)

∂τ

∣

∣

∣

∣

τ=t

= − ∂ ln H(t0, t, τ)

∂τ

∣

∣

∣

∣

τ=t

−
∫ t

t0

∂σH(s, t, τ)

∂τ

∣

∣

∣

∣

τ=t

· dW ∗(s).

(33)

Taking again expectations, (33) yields for the expected spot rate a second relation-
ship:

EP ∗ [rc(t)|IFt0 ] = − ∂ ln H(t0, t, τ)

∂τ

∣

∣

∣

∣

τ=t

(34)

Furthermore, combining the expressions (32) and (34) gives us a first no-arbitrage
condition on the volatility of the term structure of futures prices. At this point
of the analysis this condition is still weak, since it is based on the expectation
under the martingale measure given the information at time t0. More precisely any
specification of the term structure of volatility for the futures prices has to satisfy
the following no-arbitrage condition:

EP ∗

[
∫ t

t0

σH(s, t, τ) · ∂σH(s, t, τ)

∂t
ds

∣

∣

∣

∣

IFt0

]

=
∂ ln H(t0, t, τ)

∂t
+

∂ ln H(t0, t, τ)

∂τ

∣

∣

∣

∣

τ=t

=

∫ τ

t

∂2 ln H(t0, t, s)

∂t∂s
ds(35)

In order to strengthen this condition, we derive the stochastic differential equations
of the spot rate implied by the two representations (31) and (33). To facilitate this
approach we use the following application of Fubini‘s Theorem

Lemma 2. Suppose that for any t ≤ τ and s ∈ [t0, t] the drift g(·, t, τ) and the
k-dimensional volatility function l(·, t, τ) of a stochastic process {Y (t)}t are given
by

g(s, t, τ) =

∫ t

s

∂g(s, u, τ)

∂u
du + g(s, s, τ),(36)

l(s, t, τ) =

∫ t

s

∂l(s, u, τ)

∂u
du + l(s, s, τ).(37)

By changing the order of integration the stochastic process {Y (t)}t with

Y (t) =

∫ t

t0

g(s, t, τ)ds +

∫ t

t0

l(s, t, τ) · dW ∗(s)

=

∫ t

t0

(
∫ t

s

∂g(s, u, τ)

∂u
du + g(s, s, τ)

)

ds

+

∫ t

t0

(
∫ t

s

∂l(s, u, τ)

∂u
du + l(s, s, τ)

)

· dW ∗(s)
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is the solution to the stochastic differential equation

dY (t) =

(
∫ t

t0

∂g(s, t, τ)

∂t
ds + g(t, t, τ) +

∫ t

t0

∂l(s, t, τ)

∂t
dW ∗(s)

)

dt

+ l(t, t, τ) · dW ∗(t) .

Preparing for the application of the Lemma we define

l(t, u, τ) :=
∂σH(t, u, τ)

∂u
and g(t, u, τ) :=

∂||σH(t, u, τ)||2
∂u

.

Then, applying Lemma 2 we obtain through the no arbitrage condition (11):

drc(t) =

(

∂2 lnH(t0, t, τ)

∂t2
dt − 1

2

∫ t

t0

∂g(s, t, τ)

∂t
ds − 1

2
g(t, t, τ)

+

∫ t

t0

∂l(s, t, τ)

∂t
· dW ∗(s)

)

dt + l(t, t, τ) · dW ∗(t).

With the definition

h(s, t) :=
∂σH(s, t, τ)

∂τ

∣

∣

∣

∣

τ=t

the same approach using equation (33) yields for the stochastic differential equation
for the spot rate process

drc(t) =

(

− ∂

∂t

(

∂ ln H(t0, t, τ)

∂τ

∣

∣

∣

∣

τ=t

)

−
∫ t

t0

∂h(s, t)

∂t
· dW ∗(s)

)

dt − h(t, t) · dW ∗(t).

Equating the Wiener driven terms and the drift terms we find the following two
restrictions on the volatility

−h(t, t) = l(t, t, τ)(38)

∂

∂t

(

∂ ln H(t0, t, τ)

∂t
+

∂ ln H(t0, t, τ)

∂τ

∣

∣

∣

∣

τ=t

)

(39)

=
1

2

∫ t

t0

∂g(s, t, τ)

∂t
ds +

1

2
g(t, t, τ)

+

∫ t

t0

(

∂h(s, t)

∂t
+

∂l(s, t, τ)

∂t

)

· dW ∗(s)

respectively.
Observe, that the left hand side of (39) is IFt0 measurable and deterministic. This

implies that the right hand side also has to be deterministic for all t0 ≤ t ≤ τ . As
a consequence the process V (t), defined by

V (t) =
1

2

∫ t

t0

∂g(s, t, τ)

∂t
ds +

1

2
g(t, t, τ) +

∫ t

t0

(

∂h(s, t, )

∂t
+

∂l(s, t, τ)

∂t

)

· dW ∗(s),

(40)

has to be a deterministic process. Applying again Lemma 2 to the right hand side
of (40) we obtain the differential equation for V (t). With only the Wiener terms
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explicitly specified we find that

dV (t) = (·) dt −
(

∂h(s, t)

∂t

∣

∣

∣

∣

s=t

+
∂l(s, t, τ)

∂t

∣

∣

∣

∣

s=t

)

· dW ∗(t).(41)

The requirement that V (t) should be a deterministic process therefore turns into
the requirement that

0 =
∂h(s, t)

∂t

∣

∣

∣

∣

s=t

+
∂l(s, t, τ)

∂t

∣

∣

∣

∣

s=t

(42)

Transforming to the futures volatilities (38) and (42) appear as

0 =
∂σH(t, t, τ)

∂τ

∣

∣

∣

∣

τ=t

+
∂σH(t, u, τ)

∂u

∣

∣

∣

∣

u=t

(43)

and

0 =
∂

∂t

(

∂σH(s, t, τ)

∂τ

∣

∣

∣

∣

τ=t

)
∣

∣

∣

∣

s=t

+
∂

∂t

(

∂σH(s, t, τ)

∂t

)
∣

∣

∣

∣

s=t

(44)

respectively. This second no-arbitrage condition, equation (44), on the volatility of
the futures prices is more general than the condition (35), i.e. taking the expectation
in (44) implies the former condition.
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