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Directional Analysis of Digitized 3D Images by

Configuration Counts

P. Gutkowski∗ E.B.V. Jensen† M. Kiderlen‡

Abstract

A method for estimating the oriented rose of normal directions of a three

dimensional set Z from a digitization of Z, i.e. a voxel image, is presented.

It is based on counts of informative configurations in n × n × n voxel cubes.

An algorithm for finding all informative configurations is proposed and an

estimation procedure is described in detail for the case n = 2. The presented

method is a 3D version of a method of estimating the oriented rose of binary

planar images using n × n configurations. A new feature is the design-based

approach, being more appropriate for biomedical image analysis than the

formerly applied model-based approach.

Keywords: configuration; design-based approach; normal measure; orientation

distribution; oriented rose; 3D binary image

1 Introduction

An analysis of various biological structures often aims to estimate their anisotropy.
It can be expressed quantitatively using the orientation distribution, known also as
the oriented rose of normal directions. The oriented rose is the distribution of the
outer unit normal at a uniform random point on the boundary of the structure.

Contemporary scanning techniques allow to produce 3D raster images of such struc-
tures. In the present paper a method of estimating the oriented rose of normal
directions of a discretized spatial structure is presented using 2 × 2 × 2 configura-
tions of voxels.

For the planar case, an estimation method for the oriented rose of normal direc-
tions from binary images using 2 × 2 configurations of pixels has been presented
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by Kiderlen and Jensen [3] and it has been extended to n × n configurations in [2].
Most of the concepts considered in the two-dimensional space R

2 and presented in
[2] have their counterparts in R

3. The theoretical discussion in the previous articles
was based on the model-based approach, in which an anisotropic structure was rep-
resented as a stationary random set Z, extending over the entire space. The simpler
design-based approach presented here assumes that Z is deterministic and bounded.
This approach is often more appropriate for the analysis of biomedical images.

In Section 2 we will give a design-based definition of the oriented rose and introduce
n× n× n configurations. In Section 3, it is shown how the probability of observing
an n × n × n configuration is related to the oriented rose. Section 4 deals with
informative configurations and twins. In particular, a geometric characterization
of informative configurations is given and an algorithm for finding all n × n × n
informative configurations is developed. Estimation of the oriented rose from 2 ×
2 × 2 configuration counts is presented in Section 5. In Section 6, the approach is
illustrated by two examples. The paper is concluded with some general remarks in
Section 7

2 Background

2.1 The normal measure and the oriented rose

Let Z be a bounded subset of the three-dimensional space R
3. We suppose that Z

is a finite union of closed convex sets with interior points. This ensures that Z has
finite surface area and a sufficiently smooth boundary ∂Z such that the part where
a unique outer normal cannot be defined, has area zero. We also assume, that Z is
contained in a closed bounded set Y ⊆ R

3, called the reference space.

Let A be a set of directions in R
3. (Formally, A is a measurable subset of the unit

sphere S2 in R
3.) Let NZ(A) be the set of all boundary points of Z having an outer

normal in A. The normal measure S of Z with respect to Y is defined by

S(A) =
S(NZ(A))

V (Y )
, (1)

where S denotes surface area and V denotes volume. If this measure is normalized,
we get the oriented rose of normal directions

Ro(A) =
S(A)

S(S2)
=

S(NZ(A))

S(∂Z)
. (2)

These definitions are in analogy with the corresponding notions in the stationary
case, which can be found for example in Weil [8, 9]. Note that Ro(A) can be
interpreted as the probability that the outer unit normal at a uniform random point
on ∂Z belongs to A. It can be shown that S (and accordingly Ro) is always a
centered measure, i.e. ∫

S2

uS(du) = 0, (3)

see [8, p. 395] for details.
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2.2 n × n × n configurations

We assume that the set Z is not observed directly, but only via a discretization,
performed by means of a scaled lattice tL, where t > 0,

L := Z
3 = {(i1, i2, i3) | i1, i2, i3 ∈ Z},

and Z denotes the integers. The set Y ∩ tL corresponds to a 3D digital image;
any of its points can be considered as a voxel. To each voxel a brightness value

is associated. This brightness value belongs to a to a finite set of colors, referred
to as the palette. In the considered case, voxels of Y ∩ tL belong either to Z ∩ tL
or to ZC ∩ tL, where ZC := R

3 \ Z is the complement of Z, i.e. the background
of the image. Hence the palette consists of two elements, black and white (b and
w, respectively). It is arbitrarily assumed that voxels belonging to Z ∩ tL have
brightness value b, while the remaining voxels have value w.

In Jensen and Kiderlen [2], it is demonstrated how the oriented rose of a planar set
Z can be estimated, using so-called configuration counts. We generalize this concept
to 3D. Let

Ln := {(i1, i2, i3) | i1, i2, i3 = 0, . . . , n − 1} ⊂ L

be the n-lattice cube. An n×n×n configuration is any 3D binary image on a scaled
lattice cube tLn. Equivalently, we may think of a configuration as a subset tB of
the scaled lattice cube tLn which consists of voxels having a brightness value b, or
a pair (tB, tW ), where tW is complementary to tB in tLn. Wherever we consider a
configuration without referring to its scaling factor, t will be omitted.

In the following, we recall a method to enumerate n × n × n configurations with
the integers 0, . . . , 2n3

− 1. It was apparently first suggested by the Centre de Mor-
phologie Mathématique in Fontainebleau (see Serra [7]). Details can also be found
in Ohser and Mücklich [5]. First, the voxels of tLn are enumerated by assigning the
integer k = k(p) := n2i1 + ni2 + i3 to the voxel p = t(i1, i2, i3) ∈ tLn. Using the
numbering of voxels, each of the 2n3

configurations of size n×n×n can be assigned
a unique number. For the configuration tB this number is

N(tB) =

n3−1∑

k=0

2k · 1tB(pk), (4)

where pk ∈ tLn is the voxel with associated number k.

Configurations different from ∅ and tLn are called boundary configurations, as they
contain information about the boundary of Z.
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3 The probability of observing an n × n × n con-

figuration

3.1 An asymptotic result for large resolution

Kiderlen and Jensen in [3] proved a formula for the asymptotic probability of ob-
serving different n × n configurations in a planar binary image. In the theorem
below, we formulate and prove a corresponding 3-dimensional result. In contrast to
the model-based approach used in [3], we here take a design-based point of view.

Consider the random experiment of translating a scaled version tLn uniformly in
Y , such that the translated scaled lattice cube hits Y . Thus we consider tLn + xt,
where xt is a uniform random point in

Xt = {x ∈ R
3 | (tLn + x) ∩ Y 6= ∅}. (5)

Since (tLn + x) ∩ Y 6= ∅ if and only if there exists y ∈ Y and z ∈ tLn such that
x = y − z, we have

Xt = {y − z | y ∈ Y, z ∈ tLn}. (6)

The probability that in the randomly translated scaled lattice cube tLn + xt we
observe the configuration (tB, tW ) is

P (tB + xt ⊂ Z, tW + xt ⊂ ZC).

In Theorem 1 below, a formula for this probability, valid for small t, is given. The
probability depends on the normal measure and the function h(B,W ) defined by

h(B,W )(v) :=
[
min
w∈W

〈w, v〉 − max
b∈B

〈b, v〉
]+

, v ∈ S2, (7)

with f+ := max{0, f} denoting the positive part of a function f and

〈x, y〉 := x1y1 + x2y2 + x3y3

being the usual scalar product of the vectors x = (x1, x2, x3) and y = (y1, y2, y3) in
R

3. The function h(B,W ) evaluated at v ∈ S2 has a nice geometric interpretation:
consider a plane p with normal v. Let H+ and H− be the positive and negative
closed half-spaces of p. Then, h(B,W )(v) is the width of the strip Sv of all such planes
with B ⊂ H− and W ⊂ H+, cf. Figure 1. If Sv is empty, its width is considered to
be 0, so h(B,W )(v) = 0 in this case.

Theorem 1 For any 3D boundary configuration (tB, tW ) we have

lim
t→0+

1

t
P (tB + xt ⊂ Z, tW + xt ⊂ ZC) =

∫

S2

h(B,W )(v)dS(v). (8)
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Figure 1: 2D illustration of the geometric interpreta-
tion of the function h(B,W ). For details, see text.

The proof of this theorem can be found in Appendix A. Theorem 1 connects the
probability to observe a boundary configuration (tB, tW ) to a certain integral with
respect to the normal measure. Clearly, only those configurations yield information
on S, for which h(B,W ) is not identical to 0 on S2. Boundary configurations with this
property are therefore called informative configurations. In other words, (B, W ) is
an informative configuration if and only if there is v ∈ S2 such that the strip Sv has
a positive width, cf. Figure 1. This is equivalent to saying that there is a plane p
with normal v strictly separating B and W (i.e. B lies on one side of p, W lies on
the other side of p and p∩ (B ∪W ) = ∅). Thus (B, W ) is informative if and only if
B and W can be strictly separated by a plane.

3.2 Estimation from binary images

In applications, replicated generation of a uniformly translated lattice cube tLn +xt

is performed. Usually, independent replication is impracticable and a systematic
scheme is more appropriate. In order to explain this in more detail, recall that
the feature of interest is Z, contained in the reference space Y . In applications, a
specimen X ⊆ Y is available for examination, cf. Figure 2.

Figure 2: Illustration of the restricted and extended cases. The feature of
interest Z is contained in the reference space Y . The specimen available
for examination is X. In the restricted case X = Y , while in the extended
case X is a part of Y .

Two cases should be distinguished, cf. Miles [4]. In the restricted case, the specimen
X is the whole reference space Y , e.g. X is a whole organ or tumor. In this case,
it is natural to use an unbounded cubic lattice with uniform position. Let z be a
uniform random vector in [0, 1]3. For a given configuration (B, W ), the ratio

∑
i∈L

1{t(B + z + i) ⊂ Z, t(W + z + i) ⊂ ZC}∑
i∈L

1{t(Ln + z + i) ∩ Y 6= ∅}
(9)
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can be determined from the digitization: The numerator is just the number of
(B, W )-configurations of the digitization Z ∩ t(L + z). It is divided by the number
of (scaled) n × n × n lattice cubes hitting Y . A standard argument shows that (9)
is a ratio-unbiased estimator for

P(tB + xt ⊂ Z, tW + xt ⊂ ZC). (10)

Instead of the observation of configurations in all n×n×n lattice cubes, a systematic
subset of these lattice cubes can be considered. Note that this procedure is free of
edge effects, as an unbounded lattice is used here.

In the extended case, the specimen X available for examination is but a portion of
the much larger reference space Y . If the specimen X is cuboidal, a digitization of
X will be a discrete scaled cuboidal window tD, where

D = {0, . . . , k − 1} × {0, . . . , l − 1} × {0, . . . , m − 1},

say. Let us suppose that tD is uniformly translated in Y , such that part of the
translated tD hits Y . Contained in this uniformly scaled cuboidal window are

(k − n + 1)(l − n + 1)(m − n + 1)

scaled n × n × n lattice cubes, each being uniform in a set containing Xt. For each
of these cubes, Theorem 1 still holds. Thus, the relative number of a configuration
(B, W ) in tD is an unbiased estimator for the probability (10). Ohser & Mücklich
[5, p. 111] mention that this procedure is free of edge effects as it is based on
observations in a reduced window.

4 Twins and informative configurations

For certain configurations (B, W ) the corresponding functions h(B,W ) coincide. As
in the planar case, we introduce a twin pair configuration (B, W )* of (B, W ). It is
(B, W )∗ := (B′, W ′) with

B′ := ρn(W ), W ′ := ρn(B),

where ρn denotes the reflection of a set at the midpoint (n−1
2

, n−1
2

, n−1
2

) of Ln. If the
process of finding a twin results in the original configuration, we call it a self-twin.
From the definitions of h(B,W ) and the twin pair, it follows that

h(B,W )∗ = h(B,W ).

The total number of n × n × n configurations is 2n3

. The crucial task is to de-
termine the set of informative configurations, since only these configurations have
asymptotically non-vanishing probabilities of being observed. As the three dimen-
sional problem is slightly more involved than the planar one, we recall the latter
for comparison. Recall the following definition of separation in general dimension:
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two subsets of (the d-dimensional space) R
d can be separated if there is a hyperplane

such that the two corresponding closed half spaces contain one of the sets, each. The
sets can be strictly separated if the separating hyperplane can be chosen such that
it does not hit any of the two sets. Lemma 1 in [2] states that two planar subsets
B and W of the n × n-lattice square can be separated if and only if there exists an
n-lattice line separating B and W and not hitting both of them. Here, an n-lattice
line in the plane is a line passing through at least two points of the n × n-lattice
square. This lemma has been the basis for an algorithm for searching all planar
informative configurations [2]. However, Lemma 1 cannot be directly modified by
replacing lines with planes. The algorithm of searching 3D configurations is instead
based on Proposition 2 below. For its formulation we need the notion of an n-lattice
plane, which is a plane in R

3 passing through at least 3 points of Ln, see Figure 3,
left, for an illustration.

Proposition 2 For a boundary configuration (B, W ) in Ln the following two state-

ments are equivalent:

(i) (B, W ) is informative.

(ii) The two sets B and W can be separated by an n-lattice plane pn such that if pn

hits both sets, there is an n-lattice line gn ⊂ pn separating B ∩ pn and W ∩ pn,

only hitting one of them.

Condition (ii) of this proposition is illustrated in Figure 3. A proof is given in
Appendix A.

pn

gn

B

W

pn

gn

Figure 3: Illustration of condition (ii) of Proposition 2. On the left, a 3 × 3 × 3
configuration (B, W ) is shown. The separating n-lattice plane pn hits both, B and
W . On the right hand side, the intersection of the configuration with pn is indicated:
as gn is a separating n-lattice line in pn not hitting W , condition (ii) of Proposition
2 is satisfied.

Proposition 2 enables us to formulate the following algorithm of searching all infor-
mative 3D configurations. The informative configurations are collected in the set
Tn.
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Algorithm 1

1. Set Tn := ∅.

2. Choose an n-lattice plane pn. Decompose Ln into the three sets L, L+ and
L−, where L = Ln ∩ pn, and L+ and L− are the remaining points of Ln, lying
on different sides of pn.

3. Choose two lattice points on pn and let gn be the line passing through them.

4. Decompose L into G = gn ∩ Ln, G+ and G−, where G+ and G− are the
remaining points in L on each side of gn.

5. Put W = L− and B = L+ and then, successively,

(a) Put W = W ∪ G− and B = B ∪ G+ ∪ G

(b) Put W = W ∪ G− ∪ G and B = B ∪ G+

(c) Put W = W ∪ G+ and B = B ∪ G− ∪ G

(d) Put W = W ∪ G+ ∪ G and B = B ∪ G−

For each of (a), . . . , (d) include (B, W ) in Tn, if both B and W are nonempty.

6. Repeat 5 with W = L+ and B = L−.

7. Go to 3 and pick another pair of points until all lattice lines in pn have been
analysed.

8. Go to 2 and pick another n-lattice plane until all n-lattice planes have been
analysed.

9. The output Tn is the set of all informative n × n × n configurations.

For n = 2 it is easy to try out all the 223

= 256 configurations without using
Algorithm 1. However, Algorithm 1 is helpful in the case n ≥ 3, because the
number of all n × n × n configurations increases exponentially in n. For reference,
we list in Appendix B all informative 2 × 2 × 2 configurations.

5 Implementation

In the following, an estimation procedure is discussed for the case n = 2. We approx-
imate S by a discrete measure Ŝ, supported by the directions v1, . . . , v26 determined
by all ordered pairs of vertices of the unit cube. Among all informative 2 × 2 × 2
configurations, there are 54 configurations (B, W ) not having all values h(B,W )(vj),
j = 1, . . . , 26, equal to 0. Moreover, for each such configuration h(B,W )(vj) > 0
holds for only one vj . If two configurations among the 54 have positive h-value
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for the same direction, their value is identical. Therefore it is possible to parti-
tion these 54 configurations into 26 classes, each class associated with one vector
vm, m = 1, . . . , 26.

Table 1 presents these 54 configurations partitioned according to such vectors. The
configurations are ordered according to increasing configuration number. The com-
mon value hm = h(B,W )(vm) for all configurations (B, W ) belonging to class m is also
given. For the sake of legibility, here and further on all the vectors corresponding to
normal directions will be presented as unnormalised. Note that two configurations
(B, W ) and (B′, W ′), belonging to the same class, do not necessarily have identi-
cal h functions. For instance, consider class 1 and direction v = [0.5, 0.5, 1]. For
configuration 1, hB,W (v) = 1√

6
, while for configuration 23, hB,W (v) = 0.

Table 1: The 26 classes of 54 configurations. ’s ’ indicates that the configuration is
a self-twin.

class no. vector config. twin config. twin hm

m vm N N N N

1 [1, 1, 1]
........
..
..

....
.. ........

..

..

....
.. ........

..

..

....
.. s

√
3

3

1 127 23

2 [1, 1,−1]
........
..
..

....
.. ........

..

..

....
.. ........

..

..

....
.. s

√
3

3

2 191 43

3 [1, 1, 0]
........
..
..

....
.. ........

..

..

....
.. – –

√
2

2

3 63

4 [1,−1, 1]
........
..
..

....
.. ........

..

..

....
.. ........

..

..

....
.. s

√
3

3

4 223 77

5 [1, 0, 1]
........
..
..

....
.. ........

..

..

....
.. – –

√
2

2

5 95

6 [1,−1,−1]
........
..
..

....
.. ........

..

..

....
.. ........

..

..

....
.. s

√
3

3

8 239 142

7 [1, 0,−1]
........
..
..

....
.. ........

..

..

....
.. – –

√
2

2

10 175

8 [1,−1, 0]
........
..
..

....
.. ........

..

..

....
.. – –

√
2

2

12 207

continues
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Table 1: (continued)

class no. vector config. twin config. twin hm

m vm N N N N

9 [1, 0, 0]
........
..
..

....
.. s – – 1
15

10 [−1, 1, 1]
........
..
..

....
.. ........

..

..

....
.. ........

..

..

....
.. s

√
3

3

16 247 113

11 [0, 1, 1]
........
..
..

....
.. ........

..

..

....
.. – –

√
2

2

17 119

12 [−1, 1,−1]
........
..
..

....
.. ........

..

..

....
.. ........

..

..

....
.. s

√
3

3

32 251 178

13 [0, 1,−1]
........
..
..

....
.. ........

..

..

....
.. – –

√
2

2

34 187

14 [−1, 1, 0]
........
..
..

....
.. ........

..

..

....
.. – –

√
2

2

48 243

15 [0, 1, 0]
........
..
..

....
.. s – – 1
51

16 [−1,−1, 1]
........
..
..

....
.. ........

..

..

....
.. ........

..

..

....
.. s

√
3

3

64 253 212

17 [0,−1, 1]
........
..
..

....
.. ........

..

..

....
.. – –

√
2

2

68 221

18 [−1, 0, 1]
........
..
..

....
.. ........

..

..

....
.. – –

√
2

2

80 245

19 [0, 0, 1]
........
..
..

....
.. s – – 1
85

20 [−1,−1,−1]
........
..
..

....
.. ........

..

..

....
.. ........

..

..

....
.. s

√
3

3

128 254 232

continues
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Table 1: (continued)

class no. vector config. twin config. twin hm

m vm N N N N

21 [0,−1,−1]
........
..
..

....
.. ........

..

..

....
.. – –

√
2

2

136 238

22 [−1, 0,−1]
........
..
..

....
.. ........

..

..

....
.. – –

√
2

2

160 250

23 [0, 0,−1]
........
..
..

....
.. s – – 1
170

24 [−1,−1, 0]
........
..
..

....
.. ........

..

..

....
.. – –

√
2

2

192 252

25 [0,−1, 0]
........
..
..

....
.. s – – 1
204

26 [−1, 0, 0]
........
..
..

....
.. s – – 1
240

Let km be the number of configurations in class m, m = 1, . . . , 26; for instance k1 = 3
and k9 = 1. We refer to pm as the probability of observing a configuration in class
m. The probability pm can be estimated from replicated observation, as explained
at the end of Section 3. If nm denotes the number of observed configurations in class
m, then

p̂m =
nm

ntotal

,

where ntotal is the total number of observed, not only informative, 2 × 2 × 2 config-
urations.

A reasonable requirement for Ŝ to be an estimator of S is that (8) should hold true
for Ŝ in place of S. Hence,

pm = tkmhmŜ({vm}), m = 1, . . . , 26. (11)

should hold approximately and we define the mass of Ŝ in vm by

Ŝ({vm}) :=
p̂m

tkmhm

, m = 1, . . . , 26. (12)
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Note that in contrast to the planar case in [2] the constraint (3) is not taken into
account in this procedure. The advantages of omitting this constraint are that
firstly, the estimation procedure is straightforward and secondly, that it can easily
be extended to multiphase materials: Consider a material consisting of three (or
more) phases, say of red, blue and yellow color. Our procedure can be used to
estimate the distribution of the normal pointing from red to blue (not regarding the
yellow phase), say. This distribution will not satisfy (3) in general.

On the other hand, there is also an advantage to take (3) into account as the resulting
estimator can then be illustrated by a set in three–dimensional space. The procedure
is then as follows: Informally, we have to find a measure S̃ supported by {v1, . . . , v26},

such that S̃({vm}) fits ’best possible’ to the measurements p̂m

tkmhm

under the constraint

that S̃ is centered. The estimator then can be interpreted as the surface area measure
of a centered compact convex set B̃(Z) (this means that the two-dimensional facets of

B̃(Z) have outer unit normals vm and area S̃({vm}), m = 1, . . . , 26). The set B̃(Z)
is called the estimated Blaschke body of Z and represents the estimated directional
information more intuitively than a discrete measure. The use of associated sets
(often called associated convex bodies) to geometric structures Z is well established
in stochastic geometry: In the case, where Z is a (stationary) random closed set,
associated bodies are introduced and studied e.g. in [8] and in the book [6, Kapitel
4.5].

We describe now in more detail the estimation procedure to obtain B̃(Z). In a
first step the above mentioned constrained optimization problem to find the masses
θm = S̃({vm}), m = 1, . . . , 26, must be formalized. The constraint (3) for S̃ reads

26∑

i=1

θmvm = 0. (13)

Following the two-dimensional case in [3] and [2], we suggest to choose θ = (θ1, . . . , θ26)
to be a solution of the problem

maximize `(θ) =
∑26

m=0 nm ln pm(θ)

subject to (13) and θ ≥ 0.
(14)

Here, according to (11), pm(θ) = tkmhmθm, m = 1, . . . , 26. We set

p0(θ) = 1 −
26∑

m=1

pm(θ) and n0 = ntotal −
26∑

m=1

nm

to take into account the number of all non-informative configurations. One reason
for the choice of the objective function `(θ) is the fact that its maximization leads
to a maximum likelihood estimator of θ in the (hypothetical) case of independent
observations (see [3] for more details on `(θ)). As (14) is a convex optimization

problem, it can be solved with standard software. Once S̃ is found, the algorithm
in [1] can be used to find the estimated Blaschke body B̃(Z) corresponding to S̃.

In the next section we give two simple simulation examples to illustrate the estima-
tion procedure.
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Figure 4: The two simulation examples: cuboid and hemisphere contained in Y .

6 Examples

Cuboid with axes–parallel edges

The 3D image contains a single cuboid Z ⊂ Y , cf. Figure 4, left. The dimensions
of the reference space Y are 125 × 125 × 125, and the dimensions of the cuboid are
100 × 50 × 25. The normal measure is known for this image. It can be found by
calculating the area of each face and normalizing it with respect to the volume of
the image, being V = 1253.

The image was analyzed, using a resolution of 1/t = 1. Only 3% of the total mass
of the estimated measure were not concentrated at the 6 normal directions of the
cuboid. Table 2 compares the true and estimated values of the oriented rose. As
these values correspond(approximately) to a centered measure, the two estimators

Ŝ and S̃ coincide. The estimated masses at these 6 directions correspond to an
estimated Blaschke body, which is a cuboid of side lengths 93.8 × 49.8 × 24.4.

Table 2: Comparison of the normal measure calculated directly and estimated from
the 3D binary image of the cuboid

normal surface area of the exact normal estimated normal

vector corresponding face measure S of Z measure Ŝ = S̃

[ 0, 0, 1] 5000 2.56 2.39
[ 0, 0,-1] 5000 2.56 2.39
[ 0, 1, 0] 2500 1.28 1.17
[ 0,-1, 0] 2500 1.28 1.17
[ 1, 0, 0] 1250 0.64 0.62
[-1, 0, 0] 1250 0.64 0.62
others 0 0 0.25

Hemisphere The reference space Y (size 125 × 125 × 125) contains a single solid
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Table 3: The masses (∗104) of the estimators Ŝ and S̃ in the example of the hemi-
sphere.

vector Ŝ S̃

[ 0, 0, 1] 3.20 3.20
[ 0, 0,-1] 3.20 3.20
[ 0, 1, 0] 6.39 7.40
[ 0, 1, 1] 4.83 5.19
[ 0, 1,-1] 4.83 5.19
[ 0,-1, 0] 40.00 35.33
[ 0,-1, 1] 0.14 0.14
[ 0,-1,-1] 0.14 0.14
[ 1, 0, 0] 3.20 3.20
[ 1, 0, 1] 2.42 2.42
[ 1, 0,-1] 2.42 2.42
[ 1, 1, 0] 4.83 5.19
[ 1, 1, 1] 5.82 6.09

vector Ŝ S̃

[ 1, 1,-1] 5.82 6.09
[ 1,-1, 0] 0.14 0.14
[ 1,-1, 1] 0.09 0.17
[ 1,-1,-1] 0.09 0.17
[-1, 0, 0] 3.20 3.20
[-1, 0, 1] 2.42 2.42
[-1, 0,-1] 2.42 2.42
[-1, 1, 0] 4.84 5.19
[-1, 1, 1] 5.82 6.09
[-1, 1,-1] 5.82 6.09
[-1,-1, 0] 0.15 0.14
[-1,-1, 1] 0.09 0.17
[-1,-1,-1] 0.09 0.17

hemisphere Z with radius r = 50, cf. Figure 4, right. The unit normal vector of the
circular flat face is v0 = [0,−1, 0]. Notice that the normal measure of Z is given by

S(A) =
1

V (Y )
[πr21A(v0) + r2

∫

S2
+

1A(v)dv], (15)

where
S2

+ = {v ∈ S2 | v = (v1, v2, v3), v2 ≥ 0}. (16)

The image was analyzed using a resolution of 1/t = 1. In contrast to the example
of the cuboid, the normal measure is not concentrated on {v1, . . . , v26}. Hence, a

direct comparison of the estimator Ŝ with the normal measure of Z is not possible.
The measure Ŝ is not centered and therefore differs from the second estimator S̃,
the latter being centered by definition. In Table 3 the masses of the two estima-
tors the are listed for comparison. Both estimators show a clear maximum in the
direction [0,−1, 0], which is due to the large number of observations of boundary

configurations hitting the flat face of Z. The measure S̃ can be represented using the
estimated Blaschke body B̃(Z). This body is shown in Figure 5; it is a polyhedral
approximation of the hemisphere.

According to Theorem 1, non-informative boundary configurations (i.e. non-informa-
tive configurations that are not monochrome) cannot occur asymptotically, but they
occur with positive probability if we work with finite resolution (and if the feature of
interest has “non-convex corners”). A large relative number ξ of observations of non-
informative boundary configurations indicates that the resolution is not sufficiently
high compared to the features of Z. In [2], as a rule of thumb for the planar case,
it has been suggested to consider the resolution to be sufficient if ξ is below 1%. In
the spatial case, a similar benchmark could be used.

14



Figure 5: The estimated Blaschke body B̃(Z) seen from different viewpoints. On
the left, the perspective corresponds to Figure 4, right.

7 Discussion

The extension of the planar method proposed in [3, 2] to three dimensional space can
be a useful tool in estimation of the directional distributions of spatial structures
Z. Our method allows to find a discrete estimator of this measure, based on a
configuration analysis of a discretization of Z.

However, there is still room for future improvements of the present implementation.
It should be emphasized that the estimation procedure in Section 5 does not use the
complete information of all informative 2 × 2 × 2 configurations. We have chosen a
proper subset of all informative configurations because then the estimated masses
Ŝ({vm}) have a straightforward interpretation in terms of the frequency of class-m-
configurations, m = 1, . . . , 26, as expressed in (12). A more detailed study would
use all 102 informative configurations, as listed in Table 4, Appendix B. formed by
twins.

The estimation procedure presented here is based on the asymptotic result of The-
orem 1, which holds as t becomes arbitrarily small i.e. the resolution 1/t becomes
large. In applications, however, one is forced to work with (one or several) fixed scal-
ing factors t and the resulting estimator clearly depends on t. Since the estimator
of the mean normal measure Ŝ given by (12), depends linearly on the configuration
counts, this dependence on t is continuous, meaning that for small t the estimator
is close to the true normal measure, if the latter satisfies the model. An additional
difficulty in applications is the presence of noise in the digitized image. Clearly,
configuration counts are sensitive to noise and its effect on the estimators is an
interesting question that will be considered in future work.
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Appendix A: Proofs.

In this appendix, we give proofs of Theorem 1 and Proposition 2.

(Heuristic) proof of Theorem 1:
Let Z be a finite union of closed convex sets with interior points contained in the
reference space Y , and let (tB, tW ) be a 3D boundary configuration with scaling
factor t > 0.

Since xt is uniform in Xt, given by (5), we have

P (tB + xt ⊂ Z, tW + xt ⊂ ZC) =
V (Λ(tB, tW ))

V (Xt)
,

where Λ(tB, tW ) is the set of all translation vectors x ∈ Xt for which tLn +x produces
the configuration (tB, tW ). Since tB + x ⊂ Z implies that (tLn + x) ∩ Y 6= ∅ we
can allow arbitrary translations and put

Λ(tB, tW ) = {x ∈ R
3 | tB + x ⊂ Z, tW + x ⊂ ZC}.

The boundary of Z can locally be thought to be a small disc dz in a plane p. Let v
be the outer unit normal of Z at that plane p. We call x ∈ R

3 a ‘local translation’ if
the cube t[0, n− 1]3 + x hits the disc. For sufficiently small t > 0, the volume of the
set of local translations x ∈ R

3 with tB +x ⊂ Z and tW +x ⊂ ZC is approximately

t h(B,W )(v) dz. (17)

Integration over the surface ∂Z corresponds to integration on S2 with respect to the
surface area measure S(∂Z)R0. Hence, for small t > 0 we have

P (tB + xt ⊂ Z, tW + xt ⊂ ZC) ≈
t
∫

S2 h(B,W )(v)S(∂Z)dRo(v)

V (Xt)

= t
V (Y )

V (Xt)

∫

S2

h(B,W )(v)dS(v).

As limt→0+ V (Xt) = V (Y ), the assertion follows. �

It should be noted that the proof given above is heuristic since the local consid-
erations leading to (17) are applied independently to every boundary point z of
Z.

Proof of Proposition 2:
We have already remarked after Theorem 1, that a configuration (B, W ) is informa-
tive if and only if there is a plane strictly separating B and W .

”(i) implies (ii)”: Let us assume that there exists a plane p strictly separating B and
W such that B ⊂ H+ and W ⊂ H−, where H+ and H− are the closed half-spaces
associated to p. As p does not hit B ∪W , we can move the plane p to obtain an n-
lattice plane as follows: Translation of p along its normal leads to a first intersection
point with Ln. If the resulting plane hits Ln in one point only, it can be rotated
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around this intersection point until it first hits Ln in a second point. This leads
to a separating plane having at least two points with Ln in common. If there are
precisely two points, a rotation around the axis given by these two points leads to
a first intersection point with Ln outside the rotation axes. The resulting plane is
clearly an n-lattice plane pn. The plane pn separates B and W because none of the
voxels has passed through the moved plane to the other side. If pn is parallel to p,
the rotation equals the identity and pn is entirely contained in H+ or H− and hence
B∩pn = ∅ or W ∩pn = ∅. If pn is not parallel to p, then the line g = p∩pn strongly
separates B∩pn and W ∩pn in pn. As pn contains at least 3 points of Ln, a suitable
translation and rotation of g in pn leads to an n-lattice line separating B ∩ pn and
W ∩ pn and not hitting both of them.

”(ii) implies (i)”: Let pn be an n-lattice plane separating B and W . If B ∩ pn = ∅
or W ∩ pn = ∅ the assertion is clear as pn can be suitably translated into a strictly
separating plane. Assume therefore that B ∩ pn 6= ∅, W ∩ pn 6= ∅ and that gn ⊂ pn

is an n-lattice line separating B ∩ pn and W ∩ pn in pn, not hitting both of them.
By a sufficiently small rotation of pn around gn we obtain a separating plane only
hitting one of the sets B and W . Again, a suitable translation yields the assertion.
�
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Appendix B

Table 4: All 2 × 2 × 2 informative configurations

No. config. N twin N

1
........
..
..

....
.. 1

........

..

..

....
.. 127

2
........
..
..

....
.. 2

........

..

..

....
.. 191

3
........
..
..

....
.. 3

........

..

..

....
.. 63

4
........
..
..

....
.. 4

........

..

..

....
.. 223

5
........
..
..

....
.. 5

........

..

..

....
.. 95

6
........
..
..

....
.. 7

........

..

..

....
.. 31

7
........
..
..

....
.. 8

........

..

..

....
.. 239

8
........
..
..

....
.. 10

........

..

..

....
.. 175

9
........
..
..

....
.. 11

........

..

..

....
.. 47

10
........
..
..

....
.. 12

........

..

..

....
.. 207

11
........
..
..

....
.. 13

........

..

..

....
.. 79

12
........
..
..

....
.. 14

........

..

..

....
.. 143

13
........
..
..

....
.. 15 s —

14
........
..
..

....
.. 16

........

..

..

....
.. 247

15
........
..
..

....
.. 17

........

..

..

....
.. 119

16
........
..
..

....
.. 19

........

..

..

....
.. 55

17
........
..
..

....
.. 21

........

..

..

....
.. 187

continues
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Table 4: (continued)

No. config. N twin N

18
........
..
..

....
.. 23 s —

19
........
..
..

....
.. 32

........

..

..

....
.. 251

20
........
..
..

....
.. 34

........

..

..

....
.. 187

21
........
..
..

....
.. 35

........

..

..

....
.. 59

22
........
..
..

....
.. 42

........

..

..

....
.. 171

23
........
..
..

....
.. 43 s —

24
........
..
..

....
.. 48

........

..

..

....
.. 243

25
........
..
..

....
.. 49

........

..

..

....
.. 115

26
........
..
..

....
.. 50

........

..

..

....
.. 179

27
........
..
..

....
.. 51 s —

28
........
..
..

....
.. 64

........

..

..

....
.. 253

29
........
..
..

....
.. 68

........

..

..

....
.. 221

30
........
..
..

....
.. 69

........

..

..

....
.. 93

31
........
..
..

....
.. 76

........

..

..

....
.. 205

32
........
..
..

....
.. 77 s —

33
........
..
..

....
.. 80

........

..

..

....
.. 245

34
........
..
..

....
.. 81

........

..

..

....
.. 117

continues
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Table 4: (continued)

No. config. N twin N

35
........
..
..

....
.. 84

........

..

..

....
.. 213

36
........
..
..

....
.. 85 s —

37
........
..
..

....
.. 112

........

..

..

....
.. 241

38
........
..
..

....
.. 113 s —

39
........
..
..

....
.. 128

........

..

..

....
.. 254

40
........
..
..

....
.. 136

........

..

..

....
.. 238

41
........
..
..

....
.. 138

........

..

..

....
.. 174

42
........
..
..

....
.. 140

........

..

..

....
.. 206

43
........
..
..

....
.. 142 s —

44
........
..
..

....
.. 160

........

..

..

....
.. 250

45
........
..
..

....
.. 162

........

..

..

....
.. 186

46
........
..
..

....
.. 168

........

..

..

....
.. 234

47
........
..
..

....
.. 170 s —

48
........
..
..

....
.. 176

........

..

..

....
.. 242

49
........
..
..

....
.. 178 s —

50
........
..
..

....
.. 192

........

..

..

....
.. 252

51
........
..
..

....
.. 196

........

..

..

....
.. 220

continues
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Table 4: (continued)

No. config. N twin N

52
........
..
..

....
.. 200

........

..

..

....
.. 236

53
........
..
..

....
.. 204 s —

54
........
..
..

....
.. 208

........

..

..

....
.. 244

55
........
..
..

....
.. 212 s —

56
........
..
..

....
.. 224

........

..

..

....
.. 248

57
........
..
..

....
.. 232 s —

58
........
..
..

....
.. 240 s —
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