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STATISTICS FOR LOCALLY SCALED POINT PROCESSES

MICHAELA PROKEŠOVÁ*, UTE HAHN**, AND EVA B. VEDEL JENSEN***

Abstract. Recently, locally scaled point processes have been proposed as a new class of
models for inhomogeneous spatial point processes. They are obtained as modifications of

homogeneous template point processes and have the property that regions with different

intensity differ only by a location dependent scale factor. The main emphasis of the

present paper is on analysis of such models. Statistical methods are developed for esti-

mation of scaling function and template parameters as well as for model validation. The

proposed methods are assessed by simulation and used in the analysis of a vegetation

pattern.

1. Introduction

The present paper deals with statistical analysis for inhomogeneous point processes that
are obtained by local scaling. In these point processes, local geometry is constant, that
is, subregions of the inhomogeneous process with different intensity appear to be scaled
versions of the same homogeneous process. This property is characteristic of locally scaled
point processes and not present in the other models for inhomogeneous point processes
discussed in [Hahn et al., 2003]. Such patterns occur for example in vegetation of dry areas,
as shown in Figure 1. Where water or other resources are short, plants grow sparsely
and keep larger distances between individuals than in regions with better supply. Naturally
there is no preference for a direction, and therefore the vegetation pattern is locally isotropic.
Local scaling of an isotropic template process yields locally isotropic patterns in contrast to
transformation of an isotropic template process ([Nielsen, 2001]).

Figure 1. Left part: Map of 171 individuals of a Scholtzia aff. involucrata in
Australian bush on a 220×220 m square. Right part: Two rectangular subregions
with different intensity were rescaled such that they have the same number of
individuals by unit area. Data from [Armstrong, 1991].

Similar locally scaled structures are found in arrangements of solid bodies with constant
shape but location dependent size, such as the sinter filter discussed in [Hahn et al., 2003]
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or in sponges with constant porosity but small pore size close to the surface and large pore
size in the interior.

Locally scaled point processes are derived from a homogeneous template process which
describes the interaction between points and is responsible for the local geometry of the re-
sulting pattern. We will put the major focus on Markov template processes. Inhomogeneity
is introduced through a location dependent function that gives the local scale, as explained
in detail in Section 2 below.

Fitting a model to a given pattern thus consists of finding the parameters inherited from the
template and choosing an appropriate scaling function. This can be achieved by simultaneous
maximum (pseudo)likelihood estimation as discussed in Section 3. A less time consuming
procedure is two step maximum likelihood estimation where the parameters of the template
are estimated after having determined the scaling function. Section 4 is centred on two step
estimation, which is assessed and demonstrated by a simulation study presented in Section 5.
Section 6 addresses possibilities to estimate the scaling function by other methods.

A widely used popular method for model validation in the homogeneous case is to com-
pare the empirical K-function with the theoretically known or simulated K-function of
the fit. An inhomogeneous analogue of the K-function is proposed in Section 7. Fur-
thermore we suggest an inhomogeneous version of the Q2-statistic recently proposed by
[Grabarnik and Chiu, 2002] for model validation of homogeneous point processes.

Finally, a statistical analysis of the point pattern in Figure 1 is presented in Section 8.

2. Locally scaled point processes

In this section, we introduce the locally scaled point processes and discuss some of their
basic properties.

Let X be a point process, defined on a full-dimensional bounded subset X of R
k. We

suppose that X has a density fX with respect to the restriction of the unit rate Poisson
point process Π to X . Let ν∗ = (ν0, . . . , νk) be the set of d-dimensional volume measures
νd in R

k, d = 0, 1, . . . , k. Let us suppose that fX is of the following form

(1) fX(x) ∝ g(x; ν∗), x ⊂ X finite,

where the function g is scale-invariant, i.e.

(2) g(cx; ν∗c ) = g(x; ν∗)

for all x and c > 0. Here, ν∗c = (ν0
c , . . . , ν

k
c ) and νdc (A) = νd(c−1A), A ∈ Bk. The classical

homogeneous point processes have densities with this property.

The process X will serve as a template process. In order to construct a locally scaled version
of X with scaling function c : R

k → R+, we replace the d-dimensional volume measure νd

in R
k with a locally scaled version

νdc (A) =
∫
A

c(u)−dνd(du), A ∈ Bk,

d = 0, 1, . . . , k. In what follows, we assume that the scaling function c is bounded from below
and from above, i.e. 0 < c < c(u) < c, u ∈ R

k. Furthermore, we will assume that g(·; ν∗c )
is integrable with respect to the Poisson point process Πc with νkc as intensity measure.
A locally scaled point process Xc on X with template process X is then defined by the
following density with respect to Πc

(3) f
(c)
Xc

(x) ∝ g(x; ν∗c ).

Note that the density of Xc with respect to Π is

(4) fXc
(x) = exp

(
−
∫
X

[c(u)−k − 1]νk(du)
)∏
x∈x

c(x)−k · f (c)
Xc

(x).
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Example 1. The Strauss process X with intensity parameter β > 0, interaction parameter
γ ∈ [0, 1] and interaction distance r > 0 is given by the density

fX(x) ∝ βn(x)γs(x), x ⊂ X finite,

where n(x) is the number of points in x and s(x) is the number of r-close pairs, cf.
[Strauss, 1975]. The density is of the form (1) with

g(x; ν∗) = βν
0(x)γ

∑ 6=
{u,v}⊆x

1{ν1([u,v])≤r}
,

where the superscript 6= in the summation indicates that u and v are different. It is easy to
check that this function is indeed scale-invariant. The locally scaled Strauss process Xc has
density with respect to Πc of the form

f
(c)
Xc

(x) ∝ βn(x)γsc(x),

where

sc(x) =
6=∑

{u,v}⊆x

1{ν1
c ([u, v]) ≤ r}.

Figure 2 shows locally scaled Strauss processes on X = [0, 1]2 with scaling function of the
exponential form

(5) cθ(u) =

√
1− e−2θ

2θ
eθu1 , u = (u1, u2) ∈ X ,

for 4 different values of the inhomogeneity parameter θ ∈ {0.25, 0.5, 1, 1.5}. The normali-

sation
√

1−e−2θ

2θ ensures that the 4 point patterns have approximately the same number of
points (see Section 4.2 for details).

Figure 2. Simulation of locally scaled Strauss processes on [0, 1]2 with expo-
nential scaling function (5) for θ ∈ {0.25, 0.5, 1, 1.5} (from left to right) and
template parameters β = 250, γ = 0.3 and r = 0.05.

�

Example 2. The area-interaction point process with intensity parameter β > 0, interaction
parameter γ > 0 and interaction distance r > 0 is given by the density

f(x) ∝ βn(x)γ−ν
2(Ur(x)), x ⊂ X finite,

where Ur(x) =
⋃
x∈x b(x, r) is the union of balls with centers in x and radius r. For γ > 1 the

point pattern appears clustered, for γ < 1 regular, cf. [Baddeley and van Lieshout, 1995].
The density is again of the form (1) with scale invariant

g(x; ν∗) = βν
0(x)γ−ν

2(∪x∈x{v∈X : ν1([v,x])≤r}).

The locally scaled area-interaction process has density with respect to Πc of the form

f
(c)
Xc

(x) ∝ βn(x)γ−ν
2
c (Uc,r(x)),

where Uc,r =
⋃
x∈x bc(x, r) and bc(x, r) = {v ∈ X : ν1

c ([v, x]) ≤ r} is the scaled ball.
Figure 3 shows locally scaled area-interaction processes with the same scaling function (5)
as in Example 2. The value of the interaction parameter γ was chosen so that γ−πr

2 ≈ 0.1
and the point patterns are visibly clustered.
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Figure 3. Simulation of locally scaled area-interaction processes on [0, 1]2 with
exponential scaling function (5) for θ ∈ {0.25, 0.5, 1, 1.5} (from left to right) and
template parameters β = 180, γ = 6.7 · 1031 and r = 0.1.

�

The Strauss process and the area-interaction process are examples of point processes from
two large classes of homogeneous template processes, viz. the distance-interaction pro-
cesses and the shot noise weighted processes. For these two classes, it has been shown
in [Hahn et al., 2003] that the Papangelou conditional intensities λXc

of the locally scaled
process Xc and λX of the template process X, respectively, satisfy

(6) λXc
(x | x) = c−k0 λX(

x

c0
| x
c0

),

if the scaling function c is constant and equal to c0 in a scaled neighbourhood of x. The
right-hand side of (6) is the conditional intensity of a globally scaled template process with
scaling factor c0. It is therefore expected that the locally scaled process appears as a scaled
version of the template process if the scaling function is slowly varying compared to the
interaction radius. The development of further formal reasoning, supporting this statement,
seems very hard.

It is also of interest to study the unconditional intensity function λc(x), x ∈ X , of the locally
scaled process. Let us suppose that the template process X is homogeneous with intensity
λ0 (X may, for instance, be defined on a torus with periodic boundary conditions). Then,

(7) λc(x) = c(x)−kλ0, x ∈ X ,
holds if the template process is Poisson or the scaling function is constant. Also, (7) holds
for any locally scaled distance-interaction process in R

1, see the Appendix. The equality (7)
is expected to hold approximately if the scaling function is slowly varying, compared to the
interaction radius.

For statistical inference of locally scaled models, we will distinguish two cases. In fully
parametric models, both the scaling function c and the homogeneous template process X
are specified by a set of parameters. In semiparametric models only the template process is
parametrically specified.

In the following, the parameters of the template process are denoted by ψ, and θ is the
parameter of the scaling function in fully parametric models. The parameter space of a
fully parametric model is Θ×Ψ, while, in semiparametric models, the scaling function can
be any function in the space C+ of measurable positive functions, satisfying the regularity
conditions mentioned above.

A particularly attractive parametric form of the scaling function is the exponential form

(8) cθ(u) = α(θ) eθ·τ(u), u ∈ R
k,

where θ ∈ Θ ⊆ R
l, α(θ) ∈ R+, · indicates the inner product and τ(u) ∈ R

l. A locally scaled
model with an exponential scaling function is called an exponentially scaled model. Note
that if τ(u) = u, then scaled distances can be calculated explicitly. Using the coarea formula
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we get

ν1
c ([u, v]) =

∫
[u,v]

α(θ)−1e−θ·x ν1(dx) =

=
∫ 1

0

ν1([u, v]) α(θ)−1e−θ·(u+t(v−u)) d t =

= ν1([u, v])
[cθ(u)−1 − cθ(v)−1]

θ · (v − u)
, u, v ∈ R

k.

3. Simultaneous maximum (pseudo)likelihood estimation of scaling function

and template parameters

In a fully parametric model, the likelihood factorizes as, cf. (4),

(9) L(θ, ψ;x) = L0(θ;x) · L1(θ, ψ;x),

where L0 is the likelihood of an inhomogeneous Poisson point process Πc with intensity
measure νkc , and L1(θ, ψ;x) = f

(c)
Xc

(x;ψ) is the density of the scaled process Xc with respect
to Πc. Recall that the scaling function is parametrized by θ, i.e. c = cθ.

Maximum likelihood estimation is most feasible in exponential families, since it amounts
to moment estimation there. Most popular homogeneous Markov point process models
are partially exponential, and the set ψ splits into two components – the nuisance pa-
rameters and the remaining parameters, that form exponential family parameters given
the nuisance parameters. Since the likelihood in Markov point processes is known only
up to the normalizing constant, one has to resort to MCMC methods for MLE, cf. e.g.
[Møller and Waagepetersen, 2003]. Whilst moment estimation in these models can be done
relatively precisely with affordable effort, estimation of the normalizing constant entails nu-
merical pitfalls and should be avoided as much as possible. This suggests that MLE should
be done on a grid of nuisance parameters, since given this component, the remaining pa-
rameters are exponential family parameters. In locally scaled processes, the inhomogeneity
parameter also acts as a nuisance parameter.

Usually, the point process Xc is observed in a sampling window W ⊆ X . In such cases,
a conditional likelihood may be used, based on the conditional density of Xc ∩ W given
Xc ∩W c = xW c where xW c is a finite subset of W c. Since

fXc
(· | xW c) ∝ fXc

(· ∪ xW c),

it follows from (4) that (9) still holds for the conditional likelihoods. This result is mainly
of interest for locally scaled Markov point processes.

A less computational demanding procedure is based on the pseudolikelihood function, see
[Baddeley and Turner, 2000] and references therein. The pseudolikelihood function of a
point process density f with respect to a Poisson point process with intensity measure µ,
based on observation in W , is defined by

exp
(
−
∫
W

[λ(u | x)− 1]µ(du)
) ∏
x∈x∩W

λ(x | x\{x}), W ⊆ X

where x is the realized point pattern in X and

λ(u | x) =
f(x ∪ {u})

f(x)
, u /∈ x,

is the Papangelou conditional intensity associated with f .

Based on observation inW , let PLW (θ, ψ;x) be the pseudolikelihood function for the density
fXcθ

( · ;ψ) with respect to the unit rate Poisson point process and let PLW,1(θ, ψ;x) be the

pseudolikelihood for the density f (cθ)
Xcθ

( · ;ψ) with respect to the Poisson point process with
intensity measure νkcθ

. Then, using (4), we find

(10) PLW (θ, ψ;x) = L0(θ;x ∩W ) · PLW,1(θ, ψ;x).
5



Note that
λθ,ψ(u | x) = cθ(u)−k λ

(cθ)
θ,ψ (u | x), u /∈ x,

where λθ,ψ and λ
(cθ)
θ,ψ are the conditional intensities associated with fXcθ

and f
(cθ)
Xcθ

, respec-
tively.

A proof of (10) can be constructed as follows. From (4), we get

PLW (θ, ψ;x)

= exp(−
∫
W

[λθ,ψ(u | x)− 1]νk(du))
∏

x∈x∩W
λθ,ψ(x | x\{x})

= exp(−
∫
W

[cθ(u)−k − 1]νk(du))
∏

x∈x∩W
cθ(x)−k

× exp(−
∫
W

[λ(cθ)
θ,ψ (u | x)− 1]cθ(u)−kνk(du))

∏
x∈x∩W

λ
(cθ)
θ,ψ (x | x\{x})

= L0(θ;x) · PLW,1(θ, ψ;x).

As the values of the scaled interaction statistics (e.g. scθ
(x) in the Strauss model) and

subsequently the values of λ(cθ)
θ,ψ (u | x) depend on the inhomogeneity parameter θ, the

latter is a nuisance parameter also in the pseudolikelihood estimation. This means we
have to evaluate the profile pseudolikelihood on a grid of nuisance parameters similarly to
the maximum likelihood approach. However, this is much less computational intensive in
maximum pseudolikelihood estimation than in maximum likelihood estimation, since PL1

can be calculated directly without having to estimate an unknown normalizing constant by
simulation as it is the case with L1.

4. Two step maximum likelihood estimation of scaling parameters prior to

template parameters

The structural similarity of the full likelihood in locally scaled models and the full likelihood
in transformation models for point processes suggests that partial likelihood inference as
in the paper by [Nielsen and Jensen, 2004] will be successful also for locally scaled mod-
els. [Nielsen and Jensen, 2004] estimated the inhomogeneity parameters by maximizing the
Poisson part L0 of the likelihood only, assuming no interaction. They chose an exponential
model for the inhomogeneity function, since this largely simplifies calculations.

Below, this approach is followed for the locally scaled models. In Section 4.1, we find the
maximum likelihood estimate θ̂0 of θ on the basis of L0 and, in Section 4.2, it is shown that
θ̂0 can be regarded as an approximate moment estimator. In Section 4.3, estimation of the
template parameters is considered.

4.1. Estimation of scaling parameters, using the Poisson likelihood

We suppose that the scaling function is of the form

(11) c(u) = α eθ·τ(u), u ∈ R
k,

where θ ∈ Θ ⊆ R
l and α ∈ R+. In addition to the inhomogeneity parameter θ, the scaling

function contains a global scaling parameter α. For the moment, these two parameters vary
in a product set Θ× R+.

Then, the Poisson part of the likelihood of the process Xc, observed in a set W , is

L0(θ, α;x ∩W ) = e−
∫

W
(α−ke−k θ·τ(u)−1) νk(du)

∏
x∈x∩W

(α−ke−k θ·τ(x)).

The log-likelihood becomes

l0(θ, α;x∩W ) =
∫
W

1 νk(du)−
∫
W

α−ke−k θ·τ(u) νk(du)−k n(x∩W ) lnα+
∑

x∈x∩W
(−k θ·τ(x)).

6



Assume that n(x ∩W ) > 0 and ‖τ(u)‖ eθ·τ(u) is uniformly bounded in u ∈ W and θ ∈ Θ.
Then by differentiating we get l + 1 equations

kα−k−1

∫
W

e−k θ·τ(u) νk(du) = k n(x ∩W )α−1

α−k
∫
W

kτi(u)e−k θ·τ(u) νk(du) = k
∑

x∈x∩W
τi(x), i = 1, . . . , l.

Dividing the last l equations by the first equation we get the vector equation

(12)
t(x ∩W )
n(x ∩W )

= m(θ),

where t(x ∩W ) =
∑
x∈x∩W τ(x) and

(13) m(θ) =

∫
W
τ(u)e−k θ·τ(u) νk(du)∫
W

e−k θ·τ(u) νk(du)
.

Thus the estimate of θ does not depend on the estimate of the constant α and furthermore
the estimate depends only on the statistic t(x ∩W )/n(x ∩W ).

It turns out that we get exactly the same estimate of θ if we impose the following normalizing
condition on cθ

(14)
∫
W

cθ(u)−k νk(du) = νk(W ),

implying that

(15) α = α(θ) =
[∫

W

e−k θ·τ(u)νk(du) / νk(W )
] 1

k

.

To see this, note that under (15), the Poisson likelihood takes the form

L0(θ;x ∩W ) = e−
∫

W
(α(θ)−ke−kθ·τ(u)−1) νk(du)

∏
x∈x∩W

(α(θ)−ke−k θ·τ(x))

=
(
α(θ)−ke−kθ·

t(x∩W )
n(x∩W )

)n(x∩W )

.

Taking the logarithm and differentiating with respect to θ, we again get the vector equa-
tion (12). As we shall see in Section 4.2, (14) appears to be a very natural condition.

The existence and uniqueness of a solution θ̂0 to (12) have been studied in
[Nielsen and Jensen, 2004] in a closely related set–up where the parameter of interest was
θ̃ = −k θ. The same type of arguments applies here. Using (15), it is seen that

{α(θ)−k

νk(W )
e−k θ·τ(u) : θ ∈ Θ}

is an exponential family of densities on W , with respect to νk. If the family is regular, then
the function m in (13) is a bijection of Θ on intS where S is the convex support of the
family, cf. e.g. [Barndorff-Nielsen, 1978]. Thus, under these conditions, there is a unique
solution to (12) if n(x ∩W ) > 0 and t(x ∩W )/n(x ∩W ) ∈ intS.

Example 3. Let τ(u) = u and W = [0, 1]k. Then, Θ = R
k

cθ(u) = α(θ)eθ·u,

α(θ) =

(
k∏
i=1

1− e−k θi

k θi

) 1
k

,

and m(θ) = (m1(θ), . . . ,mk(θ)) where

mi(θ) =
1− e−k θi − k θie−k θi

k θi(1− e−k θi)
, i = 1, . . . , k.

�
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4.2. Statistical properties of θ̂0

The estimator θ̂0 is the maximum likelihood estimator of θ if the template process is Poisson.
It is also possible to give theoretical support to the use of θ̂0 for general template processes,
as shown below.

Proposition 1. Suppose that the intensity of the locally scaled process Xcθ
satisfies

(16) λθ,ψ(u) = cθ(u)−kλ0ψ.

Then,
Eθ,ψ[t(Xcθ

∩W )]
Eθ,ψ[n(Xcθ

∩W )]
= m(θ).

Proof. We use the following version of the Nguyen-Zessin formula for Xcθ
, cf.

[Nguyen and Zessin, 1976],

Eθ,ψ

∑
x∈Xcθ

h(x) =
∫

Rk

h(x)λθ,ψ(x)νk(dx).

We get

Eθ,ψ[t(Xcθ
∩W )] = Eθ,ψ

∑
x∈Xcθ

∩W
τ(x)

=
∫
W

τ(x)λθ,ψ(x)νk(dx)

= λ0ψ

∫
W

τ(x)cθ(x)−kνk(dx).

In particular,

(17) Eθ,ψ[n(Xcθ
∩W )] = λ0ψ

∫
W

cθ(x)−kνk(dx).

The result now follows directly. �

If (16) holds, θ̂0 can thus be regarded as a moment estimator.

As mentioned in Section 2, the equation (16) holds if the template process is homogeneous
and the scaling function is constant. More interestingly, (16) holds for a not necessarily
constant scaling function for distance-interaction processes in R

1, see the Appendix. Gen-
erally, equation (16) is expected to hold approximately if the scaling function varies slowly
compared to the interaction radius.

4.3. Estimation of the template parameters

Having estimated the scaling parameter θ we can proceed by the estimation of the tem-
plate process parameters. We will here concentrate on the case where the pseudolikelihood
PLW,1(θ̂0, ψ;x) from the decomposition (10) is used. In the following we discuss the prac-
tical implementation of this method for the locally scaled models. We consider general
parametric scaling functions.

Recall that the pseudolikelihood PLW,1(θ, ψ;x) for the density f
(cθ)
Xcθ

( · ;ψ) with respect to
the Poisson point process with intensity measure νkcθ

, based on observation in a window
W ⊂ R

k, is defined as follows

(18) PLW,1(θ, ψ;x) = exp
(
−
∫
W

[λ(cθ)
θ,ψ (u | x)− 1] νkcθ

(du)
) ∏
x∈x∩W

λ
(cθ)
θ,ψ (x | x\{x}).

In the second step of the two-step estimation procedure we fix the scaling parameter θ to

θ̂0 and maximize PLW,1(θ̂0, ψ;x) e
−νk

c
θ̂0

(W )
as a function of ψ. This can be done in a way

similar to the procedure used in the homogeneous case, cf. [Baddeley and Turner, 2000].
8



We partition W into a finite number of cells Ci, each containing one dummy point ui, i =
1, . . . , l. The union of the dummy points and the points of the observed pattern is denoted
{uj : j = 1, . . . ,m}. Furthermore let Ci(j) be the unique cell containing uj , j = 1, . . . ,m,
with dummy point ui(j). Then we approximate the integral in the pseudolikelihood by∫

W

λ
c

θ̂0

θ̂0,ψ
(u | x)νkc

θ̂0
(du) ≈

m∑
j=1

λ
c

θ̂0

θ̂0,ψ
(uj | x\{uj})wj ,

where

(19) wj =
νk(Ci(j))
cθ̂0(ui(j))

k

1
(1 + n(x ∩ Ci(j))) ≈ νkc

θ̂0
(Ci(j))

1
(1 + n(x ∩ Ci(j))) .

Here, n(x ∩ Ci(j)) is the total number of observed points in the cell Ci(j).
νk(Ci(j))

c
θ̂0

(ui(j))k appro-

ximates νkc
θ̂0

(Ci(j)) if the cells Ci(j) are sufficiently small, such that the scaling function c is

approximately constant in Ci(j). Let us denote λ
c

θ̂0

θ̂0,ψ
(uj | x\{uj}) by λj , j = 1, . . . ,m. The

pseudolikelihood can then be approximated as a weighted likelihood of independent Poisson
variables yj with means λj and weights wj

log(PLW,1(θ̂0, ψ;x)e
−νk

c
θ̂0

(W )
) ≈

m∑
j=1

(yj log λj − λj)wj ,(20)

yj =
1
wj

1{uj ∈ x}, j = 1, . . . ,m.(21)

When the conditional intensity λ
c

θ̂0

θ̂0,ψ
is of exponential family form, (20) can easily be maxi-

mized, using standard software for generalized linear models.

5. Simulation study

In order to further study the properties of the estimation procedure proposed in Section 4,
a simulation study was carried out. The simulation experiment concerns the exponentially
scaled Strauss point process with scaling function

(22) cθ(u) =

√
1− e−2θ

2θ
eθu1 , u = (u1, u2) ∈ R

2,

observed on the unit square W = [0, 1]2. We used four different values of the inhomogeneity
parameter θ ∈ {0.25, 0.5, 1, 1.5}. For the template Strauss process we fixed the interaction
radius r to 0.05 and used a dense set of γ-values in {0.01, 0.02, . . . , 1.00}. For β, we used
the two values of 250 and 100 to investigate the influence of the total intensity. Note that
θ = 1.5 represents quite strong inhomogeneity, compare with Figure 2.

For each combination of the parameters, 1000 point patterns were generated using MCMC
and the distribution of θ̂0 was approximated by the empirical distribution from the 1000
realisations. To reduce the edge effects in the simulation the process was generated on a
bigger window [−0.2, 1.5]× [−0.5, 1.5] so that

⋃
x∈[0,1]2 bc(x, 2r) was included in this bigger

window.

Figure 4 shows the empirical mean values for the estimator θ̂0. Since the function m defined
by (13) is concave and t(x ∩ W )/n(x ∩ W ) was found to be approximately unbiased for
m(θ), θ̂0 tends to overestimate θ. This can be seen in Figure 4 for θ = 1.5 and 1, however
the relative bias is not larger than 1% and it does not depend on the interaction parameter
γ. The 95% envelopes for θ̂0 are also shown in Figure 4 and for reasonably high number
of observed points (i.e. β = 250) the inhomogeneity is reliably detected by θ̂0. Notice, for
example that for θ = 1, 95% of the estimates θ̂0 falls into the interval [0.75, 1.25] and even
for θ = 0.25 – an inhomogeneity often hardly recognizable from the realizations, 97.5% of
the θ̂0 estimates are larger that zero.
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Figure 4. Empirical mean values and 95% envelopes for the estimator
θ̂0 for four different values of the inhomogeneity parameter θ (values are
indicated in the plots) and for template parameter β = 250 (full drawn
lines, resp. dashed lines for envelopes) and β = 100 (dashed lines, resp.
dotted lines for envelopes), as a function of the template parameter γ. The
central lines in the envelope plots are the empirical means again.

Note that since the scaling function has been normalized as in (14), (16) implies that

(23) Eθ,ψ n(Xcθ
∩W ) = λ0ψν

k(W ),
10



i.e. the mean number of points in W does not depend on the inhomogeneity parameter θ.
Since (16) does not hold exactly for the Strauss process, we investigated whether (23) holds
approximately, using the simulated data. The approximation is excellent in this example,
cf. Figure 5.

0.0 0.2 0.4 0.6 0.8 1.0

50

100

150

200

250

β = 250

β = 100

γ

Figure 5. Comparison of intensities (empirical mean values) on the unit
square for the exponentially scaled Strauss point process with different
θ ∈ {0.25, 0.5, 1, 1.5} (dashed, chain-dotted, full and dotted curves) and
the intensity of the template process (circles). As the maximal vertical
difference between the curves is less than 3 these are hardly distinguishable.

Let us next study the estimation of the template parameters. The density of the Strauss
process is of exponential family form with one nuisance parameter r – the interaction radius
(see Example 1). Thus ψ = (β, γ, r) and

log λj = log β + sc(uj ;x) log γ,

where
sc(uj ;x) =

∑
x∈x\{uj}

1{ν1
c ([uj , x]) ≤ r}.

To find the estimate of ψ we have to compute and compare the profile pseudolikelihood

PLW,1(r) = max
β,γ

PLW,1(θ̂0, β, γ, r;x)

on a grid of values of r. We let βr and γr be the values of β and γ at which

PLW,1(θ̂0, ·, ·, r;x)

is maximal (the subscript r indicates the dependence on r). In Figures 6 and 7 we illustrate
the procedure on a simulated exponentially scaled Strauss point pattern with the scaling
function (22) and parameters θ = 1, β = 250, γ = 0.25, r = 0.05, W = [0, 1]2. The
parameter θ has been fixed to the correct value and a regular grid of 100 × 100 dummy
points was used. In the plots presented in Figures 6 and 7, the profile pseudolikelihood and
the estimates β̂r and γ̂r are plotted as functions of the nuisance parameter r. The jaggedness
of the plots is due to the discontinuity of the interpoint distance function sc as a function of
r. In Figure 6 we used no border correction (the pseudolikelihood (18) with x replaced by
x∩W ) while in Figure 7 we used a border correction of ν1

c = 0.05 (the psedolikelihood (18)
with W replaced by an irregular observation window W̃ = {u ∈ W : ν1

c (u, ∂W ) > 0.05},
where ∂W denotes the boundary of W ).

The obtained estimates of ψ are in good agreement with the true values, especially the
estimate of the interaction radius is very precise. It is also important that the estimates
with and without border correction do not differ substantially (which is probably caused by
the sufficiently large number of observed points in W ).

The results concerning pseudolikelihood estimation were confirmed in repeated simulation
experiments.

11
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Figure 6. Profile pseudolikelihood estimation of the template parameters
β, γ, r of a simulated exponentially scaled Strauss process on [0, 1]2 without
any border correction. The first picture shows the data x. In the 3 graphs,
the profile pseudolikelihood and the corresponding estimates β̂r and γ̂r are
plotted as functions of r. The final estimates r̂ = 0.0508, β̂ = 283, γ̂ = 0.23
are indicated by the dotted lines. The true values are r = 0.05, β = 250,
γ = 0.25.

6. Two step inference where scaling function is estimated using other (non

ML) methods

Going one step further, one could also estimate c in some other way from the local intensity

λc(u) = E λc(u | Xc),

u ∈ X , of the locally scaled process Xc, using the approximate relation

(24) λc(u) ≈ c(u)−kλ0,

where λ0 is the intensity of the template process. In order to estimate the scaling function,
we could use an estimate λ̂c(u) of the local intensity, and set

ĉ(u) =
[
Kλ̂c(u)

]−1/k

,

where K = 1/λ0 is some constant that can be arbitrarily fixed. For convenience, one may
choose K = 1.

If, in a parametric setting, λ̂c(u) is the maximum likelihood estimator of the intensity of
an inhomogeneous Poisson process, then ĉ(u) is the same partial MLE as the one based
on L0. On the other hand, λc(u) can also be estimated non parametrically, for example,
using kernel methods or Voronoi tessellations. Or parametrically by other methods than
maximum likelihood, e.g. regression methods.

7. Model validation

Since the two-step estimation procedure, suggested in the present paper, can only be justified
theoretically in special cases, it is particularly important to develop effective procedures for
model validation. This is the topic of the present section. For non-Poisson point processes
only little is known about the theoretical distribution of characteristics that can be used for
model validation. Therefore tests are usually simulation based.
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Figure 7. Profile pseudolikelihood estimation of the template parameters
β, γ, r of a simulated exponentially scaled Strauss process on W = [0, 1]2

with border correction ν1
c = 0.05. The first picture shows the same data

used in Figure 6. The full circles are the data points used for the estimation.
The 3 graphs are constructed as in Figure 6. The obtained estimates are
r̂ = 0.0508, β̂ = 282, γ̂ = 0.22. The true values are r = 0.05, β = 250,
γ = 0.25.

In the case of homogeneous point processes, the probably most popular tests are based on
second order summary statistics such as Ripley’s K-function, see e.g. [Diggle, 1983] and
[Møller and Waagepetersen, 2003]. [Baddeley et al., 2000] extend the definition of the K-
function and other second order characteristics to a certain type of inhomogeneous point
processes, so called second order intensity reweighted stationary processes. This class of
processes comprises inhomogeneous processes obtained by independent thinning, but does
not include locally scaled processes (apart from the Poisson process).

[Grabarnik and Chiu, 2002] consider another so-called Q2 statistic for tests against Poisson
processes, which simply spoken amounts to a goodness-of-fit test for the frequency dis-
tribution of number of neighbours in an r-neighbourhood. In this section we investigate
how K−functions and Q2-statistics can be adapted to locally scaled inhomogeneous point
processes.

7.1. The K-function

The K-function for a stationary point process X is defined as the expected number of points
in X \ {0}, given 0 ∈ X, in a ball of radius r around 0, divided by the intensity λ0 of X

K0(r) =
E

!
0n(X ∩ b(0, r)\{0})

λ0
.

(In the case of finite processes with interaction, we assume that the domain of X is large
enough that X ∩ b(0, r) is virtually free of boundary effects.) By the Campbell-Mecke
theorem, a ratio-unbiased estimator of K0(r) is given by

K̂0(W, r) =
1

λ0n(x ∩W )

∑
x∈x∩W

∑
y∈x\{x}

1{ν1([x, y]) ≤ r},

where x is an observed point pattern from the stationary point process X. If instead a
locally scaled point pattern x is observed, we suggest to use a locally scaled analogue of

13



K̂0(W, r), viz.

(25) K̃0(W, r) =
1

λ0n(x ∩W )

∑
x∈x∩W

∑
y∈x\{x}

1{ν1
c ([x, y]) ≤ r}.

Note that K̃0(W, r) is ratio-unbiased for K0(r) if c is constant. Furthermore, K̃0(W, r) is
ratio-unbiased for general scaling functions and distance-interaction point processes defined
on an interval I of R

1. To see this, we use that in R
1 a locally scaled distance-interaction

process Xc has the same distribution as h(X) where h is a 1-1 differentiable transformation
of I onto I with (h−1)′ = c−1. (A proof of this result can be found in the Appendix.)
Therefore, we have

E(
∑

x∈Xc∩W

∑
y∈Xc\{x}

1{ν1
c ([x, y]) ≤ r})

= E(
∑

x∈h(X)∩W

∑
y∈h(X)\{x}

1{ν1([h−1(x), h−1(y)] ≤ r})

= E(
∑

x∈X∩h−1(W )

∑
y∈X\{x}

1{ν1([x, y]) ≤ r}).

Accordingly, the ratio-unbiasedness of K̃0 follows from the ratio-unbiasedness of K̂0. Gene-
rally, K̃0 is expected to be (approximately) ratio-unbiased if r is small such that c varies
little in a scaled neighbourhood. In any case, one should use simulations of the scaled null
hypothesis model, not only of the template, for model validation.

A further simplification is accomplished by applying ν1
c ([x, y]) ≈ 2

c(x)+c(y)ν
1([x, y]), which

was introduced for distance-interaction processes in [Hahn et al., 2003]. The corresponding
statistic

(26) Ǩ0(W, r) =
1

λ0n(x ∩W )

∑
x∈x∩W

∑
y∈x\{x}

1{ν1([x, y]) ≤ 1
2 (c(x) + c(y))r}

is particularly useful if c is estimated nonparametrically, because it requires evaluation of c
only in the data points.

In practical situations, both λ0 and c have to be estimated from the data. As discussed in
the preceeding sections, the estimation of c cannot be separated from the estimation of λ0.
Since the template is unique only up to a constant scale factor which determines λ0, the
scaling function c is unique only up to a constant as well. We suggest to normalize c such
that νkc (W ) = νk(W ), see (14). Thus, we set λ̂0 := n(x ∩W )/νk(W ) since En(Xc ∩W ) =∫
W
λc(x) νk(dx) ≈

∫
W
λ0c(x)−k νk(dx) = λ0 ν

k(W ).

7.2. The Q2 statistic

The Q2-statistic proposed by [Grabarnik and Chiu, 2002] is (in the simplest case) based
on the numbers M`(W, r) of points in W with ` r-close neighbours, ` = 0, 1, . . . , q. For
a homogeneous Poisson point process, the expectation µ and the covariance matrix Σ of
the vector M = (M0,M1, . . . ,Mq)> can easily be calculated. A finite range dependency
argument is used to show that the statistic

Q2 = (M − µ)>Σ−1(M − µ)

is asymptotically χ2-distributed for increasing size of the observation window W . By simu-
lation experiments, [Grabarnik and Chiu, 2002] showed that Q2 discriminates well between
patterns from a mixed cluster and regular point process and the Poisson process.

Since µ and Σ can also be calculated for an inhomogeneous Poisson point process, it would
be possible to use the same Q2-statistic also for tests of inhomogeneous Poisson processes.
However, the expected number of neighbours in a ball of radius r around a point x would
depend on the local intensity λ(x). Thence, inhomogeneity introduces much extra variation
to M which would largely cut down the diagnostic value of Q2.
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This effect can be avoided by adjusting r to the local intensity. We propose to replace the
Euclidean neighbour distance by the locally scaled neighbour distance. In an inhomoge-
neous Poisson point process with intensity λc(x) = c(x)−kλ0, the number of r-scaled-close
neighbours of a point x is Poisson distributed with parameter λ0ν

k
c (bc(x, r)). Since

νkc (bc(x, r))
νk(b(x, r))

→ 1 as r → 0,

the distribution of r-scaled-close neighbours does hardly depend on the location for small r,
and is close to the distribution of r-close neighbour number in the homogeneous case.

The local scaling analogue of M` is

(27) M`inhom(W, r) =
∑

x∈x∩W
1{n(bc(x, r) ∩ x \ {x}) = `}.

Since calculation of µ and Σ is feasible only for the Poisson point process with slowly varying
scaling function, we suggest to do simulation tests. This would allow to test any hypothesis.
While any distance between observed and expected neighbour number distribution can be
used, we still recommend to use the squared Mahalanobis distance Q2, however to replace
µ and Σ with estimates obtained by simulation. Note that the simulations for estimating µ
and Σ are not to be reused for the test.

8. Data analysis

The plant point pattern in Figure 1 appears slightly clustered, so we need to model attractive
interaction between the plants. The exponentially scaled area-interaction model appears to
be a good candidate because the area of a location dependent neighbourhood around each
plant enters explicitly into the model density.

We used the two-step fitting procedure. For convenience we rescaled the data to the unit
square W = [0, 1]2. As the pattern exhibits obvious inhomogeneity in the vertical direction
but appears quite homogeneous in the horizontal direction we used an exponential scaling
function of the form

(28) c(u) =

√
1− e−2θ

2θ
eθu2 , u = (u1, u2) ∈ R

2.

Based on L0(θ;x ∩W ) we obtained the following estimate of θ

θ̂0 = 1.0839,

with α(θ̂0) = 0.6391, see (15).

Secondly, we maximized the pseudolikelihood PLW,1(θ̂0, ψ;x) with θ̂0 fixed. The density of
the area-interaction process is of an exponential family form with one nuisance parameter r
- the interaction radius. As for the Strauss process, ψ = (β, γ, r) and for the estimation we
use the same weights as in (19) and

log λj = log β − ν2
c (Uc,r(uj ;x)) log γ,

Uc,r(uj ;x) = {y ∈W : ν1
c ([y, uj ]) ≤ r, ν1

c ([y,x\{uj}]) > r}.
We used a grid of 100×100 dummy points which were equidistant in the horizontal direction
and ν1

c
θ̂0

– equidistant in the vertical direction (actually this means that the dummy points

were ν1
c

θ̂0
– equidistant in both directions – compare with (28) ).

We maximized the profile pseudolikelihood on a grid of r-values. The main problem is the
computation of the scaled volumes ν2

c (Uc,r(uj ;x)) for all the points uj , j = 1, . . . ,m. This
can be done only approximately. To approximate these scaled volumes with a reasonable
precision it is necessary to compute the scaled distances from the points {uj , j = 1, . . . ,m} to
each point in a very fine grid of points in W . This job is computationally quite demanding.

The approximate profile pseudolikelihood PLW,1(θ̂0, ψ;x) was computed with border cor-
rection ν1

c = 0.05. This degree of border correction was chosen as a compromise between
15



minimizing the bias caused by missing unobserved points and not excluding too many ob-
served points from the estimation (with the chosen border correction one forth of the points
was not used in the estimation). The profile pseudolikelihood and estimates of the parame-
ters as functions of r are plotted in Figure 8. Note that the curves are smoother than in the
case of the Strauss process because now the interaction function is continuous as a function
of r. We obtained the following values

(29) r̂ = 0.085, β̂ = 184, γ̂ = 3.99 · 1026, γ̂−πr̂
2

= 0.25.

The value of γ̂−πr̂
2

is included because it gives a better impression of the strength of the
interaction, as this is actually the term which appears in the template density. The fit
indicates a slightly clustered point pattern as we expected.
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Figure 8. Pseudolikelihood estimation of the template parameters β, γ, r
of the exponentially scaled area-interaction process for the plant data from
Figure 1 rescaled to [0, 1]2 with border correction ν1

c = 0.05. The graphs
show the profile pseudolikelihood and the corresponding estimates β̂r and
γ̂r as functions of r. The last graph of γ̂−πr̂

2
shows the strength of the

attractive interaction. The resulting estimates are r̂ = 0.085, β̂ = 184, γ̂ =
3.99 · 1026.

For model validation we used the K̃0(W̃ , r) and Q2 statistics from Section 7. Figure 9 shows
the locally scaled estimate K̃0(W̃ , r) with W̃ = {u ∈ W : ν1

c (u, ∂W ) > 0.05} (full-drawn
line) together with the empirical mean and 95% envelopes for K̃0(W̃ , r) calculated from 399
simulations under the fitted exponentially scaled area-interaction model (dashed lines). The
locally scaled estimate K̃0(W̃ , r) for the plant data lies inside the envelopes of the fitted
area-interaction model.

Next we tested the locally scaled Poisson hypothesis on the plant data. We used the

Q2
P = (Minhom − µP )>Σ−1

P (Minhom − µP )

statistic with r = 0.05 and Minhom = (M0inhom, . . . ,M6inhom) defined by (27). The subscript
P indicates that in the formula for Q2 we use as µ and Σ the mean µP and the covariance
matrix ΣP of Minhom for the fitted locally scaled Poisson model with θ = θ̂0. The values
of µP and ΣP were estimated from 8000 simulated realizations of the fitted locally scaled
Poisson model.
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Figure 9. The estimate K̃0 for the plant data (full drawn line) and mean and

95% envelopes for K̃0 for the exponentially scaled area-interaction model (dashed

lines).

The simulation test (using 499 realizations of the hypothesis locally scaled Poisson model
with θ = θ̂0) gives the p-value of 0.05. Thus the plant data is not very well described by the
Poisson model.

Then we used the Q2
A statistic (i.e. the mean value µA and covariance matrix ΣA of Minhom

are computed for the fitted exponentially scaled area-interaction model) for testing of the
fitted locally scaled area-interaction model. The test gave the p-value of 0.106.
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Appendix A. Proof of relation

Let us suppose that X is a distance-interaction process on an interval I = [a, b] of R
1 with

density

fX(x) ∝ βn(x)
∏

y⊆2x

ϕ({ν1([u, v]) : {u, v} ⊆ y, u 6= v}),
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where ⊆2 indicates that y should have at least two elements. The density of Xc is then

fXc
(x) ∝

∏
x∈x

c(x)−1 × βn(x)
∏

y⊆2x

ϕ({ν1
c ([u, v]) : {u, v} ⊆ y, u 6= v}).

Let us consider the 1-1 differentiable transformation h of I onto I defined by

h−1(x) =
∫ x

a

c(u)−1du.

Then, the density of Xc can be rewritten as

fXc
(x) ∝

∏
x∈x

Jh−1(x) · fX(h−1(x)).

It follows that Xc is distributed as h(X). In particular, for A ∈ B(I),

En(Xc ∩A) = En(X ∩ h−1(A))

=
∫
h−1(A)

λ0dx

=
∫
A

c(u)−1λ0du,

or
λc(u) = c(u)−1λ0.
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