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Abstract

In a number of recent papers [1, 2, 3, 4], a continuous spatio-
temporal process based on the integration of Lévy bases was proposed
to describe the statistics of the turbulent energy dissipation. An im-
mediate consequence of this model is self-scaling of dissipation cor-
relators, similar to the concept of Extended Self Similarity (ESS) for
velocity increments. We report empirical findings about self-scaling of
dissipation correlators that support the Lévy based dynamical mod-
eling of the energy dissipation.
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1 Introduction

Geometric cascade processes play a fundamental role for modeling strongly
anomalous, intermittent fluctuations, long-range correlations, multi-scale
structuring and self-similarity. In particular, they have been proved and
tested in describing stylized facts of the statistics of the energy-dissipation
in turbulence [5, 6, 7, 8].

Various generalisations of such purely spatial and discrete processes to-
wards continuous cascade processes in time and/or space, formulated in terms
of integrals over an uncorrelated noise field, have been undertaken recently
[1, 2, 3, 4, 9, 10]. A spatio-temporal generalisation in a continuous framework
that is causal is proposed in [4]. It was shown that this process can be con-
structed in analogy to a discrete cascade process and analytical forms for two-
and three-point correlations were successfully compared to the corresponding
experimental statistics in fully developed turbulent shear flow. In particular,
it was demonstrated that two- and three-point correlations follow a simple
scaling relation for a certain, but extended range of scales. As a generalisa-
tion of these results, [2] proved that scaling n-point correlations imply scaling
relations for the moments of the coarse grained energy-dissipation which is
usually associated to the multifractal structure of the energy-dissipation field.

However, scaling of moments of the coarse grained energy-dissipation and
n-point correlations is not perfect. Pure scaling relations are expected only
within the so called inertial subrange for very high Reynolds numbers. The
present paper investigates the form of two-point correlations of the energy-
dissipation field for various data sets, in particular for low and moderate
Reynolds numbers. It turns out that two-point correlations of the energy-
dissipation can be expressed in analogy to the concept of Extended Self-
Similarity [11] for the turbulent velocity field. Furthermore, we show that
this kind of self-scaling follows immediately within the continuous framework
proposed in [1, 2, 3, 4].

Section 2 reviews the definition and basic properties of the Lévy based
model. Section 3 provides a detailed analysis of various data sets that sup-
ports the concept of self-scaling of two-point correlators. Section 4 discusses
the empirical results and Section 5 concludes.

2 Lévy based model

This Section briefly describes a class of causal spatio-temporal processes that
are based on the integration of an independently scattered random measure of
Lévy type. These processes comprise, as special cases, the temporal cascade
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processes discussed in [9] and [10], as well as the spatio-temporal cascade
process derived in [4].

The basic notion is that of an independently scattered random measure

(i.s.r.m) on continous space-time, R×R. These measures associate a random
number with any subset of R × R. Whenever two subsets are disjoint, the
associated numbers are independent, and the measure of a disjoint union of
sets almost certainly equals the sum of the measures of the individual sets.
For a mathematically more rigorous definition of i.s.r.m.’s and their theory
of integration, see [3, 12, 13].

Independently scattered random measures provide a natural basis for de-
scribing uncorrelated noise processes in space and time. A special class of
i.s.r.m.’s is that of factorisable and homogeneous Lévy bases, where the dis-
tribution of the measure of each set is infinitely divisible and does not depend
on the location of the subset. In this case, it is easy to handle integrals with
respect to the Lévy basis using the well-known Lévy-Khintchine and Lévy-
Ito representations for Lévy processes. Here, we state the result and point
to [3] for greater detail and rigour.

Let Z be a factorisable and homogeneous Lévy basis on R×R, i.e. Z(A)
is infinitely divisible for any A ⊂ R × R. Then we have the fundamental
relation

〈

exp

{
∫

A

h(a)Z(da)

}〉

= exp

{
∫

A

K[h(a)]da

}

, (1)

where 〈· · · 〉 denotes the expectation, h is any integrable deterministic func-
tion, and K denotes the cumulant function of Z(da), defined by

ln 〈exp {ξZ(da)}〉 = K[ξ]da. (2)

The usefulness of (1) is obvious: it permits explicit calculation of the corre-
lation function of the integrated and h-weighted noise field Z(da) once the
cumulant function K of h is known.

Based on relation (1), we construct a spatio-temporal process for the (1+
1) dimensional energy dissipation in turbulence that is causal and continuous
[14] by defining the energy dissipation field ε(x, t) as

ε(x, t) = exp

{
∫

At(x)

Z(dx′ × dt′)

}

, (3)

where we have set h(a) ≡ 1. (3) constitutes a multiplicative process of inde-
pendent factors exp{Z(dx′×dt′)} made up of a factorisable and homogeneous
Lévy basis Z over R × R. Contributions to field amplitude ε(x, t) lie within
the influence domain At(x), called the associated ambit set.
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Figure 1: Illustration of the ambit set At(x) associated to ε(x, t).

Figure 1 illustrates the construction of the energy dissipation field. The
decorrelation time T denotes the temporal extension of the ambit set in the
past.

The generality of the model (3) is based on the possibility of choosing
the constituents of the process ε(x, t) independently. The available degrees
of freedom are an arbitrary infinitely divisible distribution for the Lévy basis
Z (including Brownian motion, stable processes, self-decomposable processes
etc.) and the shape of the ambit set A.

Despite its generality, the model is tractable enough to yield explicit ex-
pressions for arbitrary n-point correlations 〈ε(x1, t1) · . . . · ε(xn, tn)〉 in closed
form. In this paper, the focus is on two-point correlators of order (n1, n2),
defined as

cn1,n2
(x1, t1; x2, t2) ≡

〈ε(x1, t1)
n1ε(x2, t2)

n2〉

〈ε(x1, t1)n1〉 〈ε(x2, t2)n2〉
. (4)

Using (1), it is straightforward to show [2, 3, 4]

cn1,n2
(x1, t1; x2, t2) = exp

{

K[n1, n2]

∫

At1
(x1)∩At2

(x2)

dxdt

}

, (5)

with the abbreviation K[n1, n2] = K[n1 +n2]−K[n1]−K[n2]. The important
point here is the fact that the exponent in (5) factorizes into the overlap of
the two ambit sets times a factor depending only on the order (n1, n2). Thus
we are able to rewrite (5) as a self-scaling relation of two point correlators of
orders (n1, n2) and (m1, m2)

cn1,n2
(x1, t1; x2, t2) = cm1,m2

(x1, t1; x2, t2)
k[m1,m2;n1,n2] (6)
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with the abbreviation

k[m1, m2; n1, n2] =
K[n1, n2]

K[m1, m2]
, (7)

called the self-scaling exponent. This is the fundamental implication of the
Lévy based model (3) we adress in this paper. We provide empirical evidence
for (6) by analyzing a number of different turbulent data sets, with Taylor
Reynolds numbers ranging from 80 up to 17000.

It is to note that (6) is similar to the concept of Extended Self-Similarity
(ESS) [11] for the statistics of the turbulent velocity field. ESS claims that
moments of velocity increments u(s) of order n show a pronounced scaling
behaviour over a certain range of separations s when plotted as a function
of the moments of some different order m

〈u(s)n〉 = An,m 〈u(s)m〉τ(n,m) (8)

with constant factors An,m and constant, apparently universal exponents
τ(n, m). A fundamental conceptual difference between (6) and (8) lies
in the fact that (6) is expected to hold for arbitrary orders (n1, n2) and
(m1, m2), including the case m1/n1 6= m2/n2. The later case means that
ε(x1, t1)

m1ε(x2, t2)
m2 is not a power of ε(x1, t1)

n1ε(x2, t2)
n2 . In contrast to

that, (8) connects the statistics of u(s)n with that of its power (u(s)n)m/n.
Moreover, the ESS-relation (8) contains adjustable parameters An,m, while
for the self-scaling relation (6) the constant of proportionality is equal to one
for all orders (n1, n2) and (m1, m2).

3 Self-scaling of correlators

The data sets we analysed in view of the self-scaling relation (6) consist
of one-point time records of the longitudinal (along the mean flow) velocity
component. The data are from the atmospheric boundary layer (data set (A))
[15, 16], from a gaseous helium jet flow (data sets (H1)-(H4)) [17], from a
free air jet experiment (data set (F)) [18] and from a wind tunnel experiment
(data set (W)) [19]. This collection of data sets comprise a wide range of
Reynolds numbers from 80 (W) up to 17000 (A). Table 1 lists the Taylor
Reynolds numbers Rλ and the integral length scales L (in units of the finest
resolution) obtained as the integral over the velocity autocorrelation function
(using Taylor’s hypothesis). As is the standard practice, we invoke Taylor’s
hypothesis and calculate the one-dimensional surrogate energy-dissipation

ε(x) = 15ν

(

du

dx

)2

. (9)
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Table 1: Taylor Reynolds numbers Rλ and the estimated integral length
scales L (in units of the finest resolution) for the seven data sets.
data set (A) (W) (F) (H1) (H2) (H3) (H4)
Rλ 17000 80 190 85 124 208 352
L 20000 50 240 85 168 196 270

Note that this construction gives the energy-dissipation at a fixed time, thus
we omit the time coordinate of ε(x, t) in the following. We normalize the
energy dissipation field 〈ε(x)〉 = 1, implying K[1] = 0 and K[2] = K[2].

We perform our analysis of (6) for all combinations of the orders (1, 1),
(1, 2), and (2, 2). Although we believe that our results also hold for higher
order statistics, the quality of the data does not alllow to investigate higher
order correlators with confidence. Note that (2, 2) corresponds to velocity
statistics of order 8.

Figure 2 shows the correlators cn1,n2
(s) of data set (H3) as a function

of the lag s in double logarithmic representation. Here and in subsequent
Figures s is measured in units of the finest resolution. For the very large lags
s ∈ [50, 200] it seems to be feasible to fit a straight line to all three graphs,
corresponding to a scaling relation

cn1,n2
(s) = Bn1,n2

s−ξ(n1,n2) (10)

with constant factors Bn1,n2
and constant exponents ξ(n1, n2). Of particular

interest is the case (n1, n2) = (1, 1), defining the intermittency exponent
µ = ξ(1, 1) [21, 22, 23]. For the very small lags s we observe a strong
increase of correlations which is associated to surrogacy effects [20]. Due to
the approximate scaling of cn1,n2

(s) at large lags, we expect the self-scaling
relation (6) to hold for lags s ∈ [50, 200].

Figure 3 shows the two-point correlator cn1,n2
(s) as function of cm1,m2

(s)
in double logarithmic representation, again for data set (H3). It clearly
confirms the self-scaling relation (6) with high accuracy for nearly all values
of cm1,m2

that are displayed in Figure 2, extending the scaling range [50, 200]
(Figure 2) to [5, 200] (Figure 3). For the not too small lags s constant slopes
k[m1, m2; n1, n2] are well defined. Since k[2, 2; 1, 2] = k[2, 2; 1, 1]/k[1, 2; 1, 1],
the self-scaling behaviour in Figure 3(c) is an immediate consequence of the
self-scaling behaviour in Figures 3(a) and 3(b).

Note that a scaling relation for cn1,n2
(s), as observed for large lags in

Figure 2 does not necessarily imply the self-scaling relation(6). In this case
the validity of (6) additionally requires

B1/ξ(n1,n2)
n1,n2

= B1/ξ(m1,m2)
m1,m2

. (11)
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Figures 4, 5 show the corresponding results for data set (F). Again, we
confirm the self-scaling relation (6) for nearly all lags (Figure 5). The scaling
of cn1,n2

(s) as a function of the lag s is again restricted to the very large lags
(Figure 4).

Similar results hold for the other data sets (H1), (H2), (H4) and (W).
For data set (A) correlators show more scatter compared to the other data
sets (Figure 6). For this high Reynolds number data set we expect the
scaling relation c1,1(s) ∝ s−µ [21] for a wide range of lags s which is clearly
displayed in Figure 6. For the higher orders, scatter increases. However, the
absence of any trend makes it reasonable to assume (10) for (n1, n2) = (1, 2)
and (n1, n2) = (2, 2) and all lags s. In this case the self-scaling relation
(6) reduces to the condition (11). Figure 7 shows cn1,n2

(s) as function of
cm1,m2

(s) and clearly supports the self-scaling relation (6).
In summary, we showed that the self-scaling relation (6) holds for all

Reynolds numbers and nearly all lags s. For the very large Reynolds num-
ber it is related to scaling of correlators as a function of the lag s under
the condition (11). For the small and moderate Reynolds numbers and not
too large lags s self-scaling (6) is not related to scaling of correlators as a
function of the lag s. The corresponding exponents k[m1, m2; n1, n2] can be
estimated with high accuracy for all Reynolds numbers. These exponents
are shown in Figure 8 for n1, n2, m1, m2 ∈ [1, 2] as a function of the Reynolds
number. Paying attention to the scatter, we are not able to clearly detect any
Reynolds number dependence. A further clarification of this points requires
investigation of higher order correlators. For the moment, we conclude that
a possible Reynolds number dependence is very weak and does not show for
the low orders. This is a remarkable result and similar to ESS where the
reduced scaling exponents τ(n1, n2) (8) also seem to be Reynolds number
independent.
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Figure 2: Energy dissipation correlators cn1,n2
as a function of the lag s (in

units of the finest resolution) for data set (H3) and orders (a) (n1, n2) =
(1, 1), (b) (n1, n2) = (1, 2) and (c) (n1, n2) = (2, 2) in double logarithmic
representation.
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Figure 3: Energy dissipation correlators cn1,n2
as a function of cm1,m2

for data
set (H3) and orders (a) (n1, n2) = (1, 2), (m1, m2) = (1, 1), (b) (n1, n2) =
(2, 2), (m1, m2) = (1, 1) and (c) (n1, n2) = (2, 2), (m1, m2) = (1, 2), in double
logarithmic representation. The straight line is of the form (a) (c1,1)

1.68, (b)
(c1,1)

2.99 and (c) (c1,2)
1.78.
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Figure 4: Energy dissipation correlators cn1,n2
as a function of the lag s

(in units of the finest resolution) for data set (F) and orders (a) (n1, n2) =
(1, 1), (b) (n1, n2) = (1, 2) and (c) (n1, n2) = (2, 2) in double logarithmic
representation.
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Figure 5: Energy dissipation correlators cn1,n2
as a function of cm1,m2

for data
set (F) and orders (a) (n1, n2) = (1, 2), (m1, m2) = (1, 1), (b) (n1, n2) = (2, 2),
(m1, m2) = (1, 1) and (c) (n1, n2) = (2, 2), (m1, m2) = (1, 2), in double
logarithmic representation. The straight line is of the form (a) (c1,1)

1.71, (b)
(c1,1)

3.03 and (c) (c1,2)
1.77.
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Figure 6: Energy dissipation correlators cn1,n2
as a function of the lag s

(in units of the finest resolution) for data set (A) and orders (a) (n1, n2) =
(1, 1), (b) (n1, n2) = (1, 2) and (c) (n1, n2) = (2, 2) in double logarithmic
representation.
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Figure 7: Energy dissipation correlators cn1,n2
as a function of cm1,m2

for
data set (A) and orders (a) (n1, n2) = (1, 2), (m1, m2) = (1, 1), (b) (n1, n2) =
(2, 2), (m1, m2) = (1, 1) and (c) (n1, n2) = (2, 2), (m1, m2) = (1, 2), in double
logarithmic representation. The straight line is of the form (a) (c1,1)

1.71, (b)
(c1,1)

2.82 and (c) (c1,2)
1.65.
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Figure 8: Self-scaling exponents k[m1, m2; n1, n2] of order (a) (n1, n2) =
(1, 2), (m1, m2) = (1, 1), (b) (n1, n2) = (2, 2), (m1, m2) = (1, 1) and (c)
(n1, n2) = (2, 2), (m1, m2) = (1, 2) as a function of the Taylor Reynolds
number Rλ. Abscissa is represented in logarithmic scales.
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4 Discussion

Our empirical findings clearly support the self-scaling relation (6) for not
too small scales s. The deviations at very small scales can not be explained
within the simple ansatz (3). To account for these, we propose, instead of
h(x − x′, t − t) ≡ 1, as in definition (3), to introduce a non-constant weight-
function h

ε(x, t) = exp

{
∫

At(x)

h(x − x′, t − t)Z(dx′ × dt′)

}

. (12)

This more general choice weights the contributions to ε(x, t) from the
background field Z differently. A natural choice would be of the form
h(x− x′, t− t) = h(|x− x′|, |t− t′|) that measures the distance of the contri-
butions of Z at point (x′, t′) to the field ε at point (x, t) in a suitable norm.
The spatio-temporal variation of this distance-function h can not be analysed
using a one-dimensional time series. Suggested by our empirical results, for
low and moderate Reynolds numbers, we expect h to vary slowly for small
|x−x′| while being constant above some treshold |x−x′| = x0. Here x0 is to
be identified with scales where deviations from (6) occur. For |x − x′| > x0,
one can always set h(|x − x′|) ≡ 1.

The apparent Reynolds number independence of the self-scaling expo-
nents k[m1, m2; n1, n2] and the strong Reynolds number dependence of the
intermittency exponent µ [22] allows to draw some important conclusions
about the dependence of the background field Z on Rλ. The variation of
µ with Rλ indicates the non-universal character of the background field Z.
In other words, the cumulant function K[n] = K[n, Rλ] changes with the
Reynolds number (and possibly with the type of experiment performed).
However, the Reynolds number independence of k[m1, m2; n1, n2] implies

K[n, Rλ] = fn(K[2, Rλ]), (13)

where the functions fn are universal (independent of Rλ and the type of
experiment) and only depend on the order n. (13) follows immediately by
iterating (7) for (n1, n2) = (1, 1) and (m1, m2) = (1, n − 1) and using the
normalisation K[1] = 0. For the universal functions fn we get

fn(x) = x

(

1 +
n−1
∑

i=2

k[1, i; 1, 1]−1

)

, n ≥ 3. (14)

Thus the background field Z can be characterized by a single parameter
K[2, Rλ] = K[2, Rλ] that contains all individual characteristics of the experi-
mental situations.
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Furthermore, we conclude the identification

K[2, Rλ] = µ (15)

designating the intermittency exponent µ as the only control parameter of
the background field Z. To see this, we note that a proper definition of the
intermittency exponent requires c1,1(s) ∝ s−µ for a certain range of scales s.
Comparing this scaling relation with (5) for (n1, n2) = (1, 1) gives aK[2, Rλ] =
µ, where a is a positive constant. a can simply be absorbed in the definition
of the background field Z, establishing the identification (15).

5 Conclusions

The observed self-scaling of energy dissipation correlators clearly supports
the multiplicative ansatz (3). Further motivation for this type of multiplica-
tive structure is reported in [4], fitting two- and three point correlations of
the high Reynolds number energy dissipation field with high accuracy, and
in [2], establishing the connection to the multifractal picture of the energy
dissipation. In these works, all calculations can be done analytically, a ma-
jor advantage of the Lévy based modeling. The analytical tractability of the
Lévy based model is highly advantageous for inference. The next step is a
closer inference on the shape of the ambit set At(x) and the distribution of
Z in their dependence on the Reynolds number. The latter determines the
distribution of ε(x, t) since marginally ε(x, t) = exp{Z(At(x))}.
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