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Abstract

Functional magnetic resonance imaging (fMRI) is a technique for studying the
active human brain. During the fMRI experiment, a sequence of MR, images is
obtained, where the brain is represented as a set of voxels. The data obtained
are a realization of a complex spatio-temporal process with many sources of
variation, both biological and technical. Most current model-based methods
of analysis are based on a two-step procedure. The initial step is a voxel-
wise analysis of the temporal changes in the data while the spatial part of
the modelling is done separately as a second step in the analysis. We present
a spatio-temporal point process model approach for fMRI data where the
temporal and spatial activation are modelled simultaneously. This modelling
framework allows for more flexibility in the experimental design than most
standard methods. It is also possible to analyze other characteristics of the
data than just the locations of active brain regions, such as the interaction
between the active regions. In this paper, we discuss statistical inference in the
model based on mean value, variance and covariance. We analyze simulated
data without repeated stimuli both for location of the activated regions and
for interactions between the activated regions.

1 Introduction

Functional Magnetic Resonance Imaging (fMRI) is a non-invasive imaging technique
that has been available for about ten years. Cognitive psychologists and neurosci-
entists have shown an enormous interest in fMRI because it is believed that fMRI
can reveal the human brain in action. There is a comprehensive literature on the
topic, mainly in Human Brain Mapping, Magnetic Resonance in Medicine and Neu-
rolmage, reporting various empirical findings and new methods of analysis.

During a typical fMRI experiment, the subject is asked to perform specific behav-
ioral tasks (like finger-tapping or calculations) or the subject is exposed to passive
stimulus (like flashing light). The experiment is carefully designed with periods of no
specific stimulus (‘off periods’) between periods of stimuli (‘on periods’). The brain
is scanned during the experiment and represented as a set of voxels. At each voxel a
time series is recorded, showing the local brain activity during the experiment. An
informative introduction for statisticians to the design of fMRI experiments can be
found in the paper by Genovese (2000).
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The analysis of fMRI data is usually aimed at localizing the activated or de-
activated parts of the brain during the experiment. The initial analysis is often
performed voxel-wise, using the time series available at each voxel. The variation in
the local signal intensity is analyzed using a temporal model, involving the known
design of the experiment and the hemodynamic response function. Using this tech-
nique, local activation estimates based on level changes during on and off periods are
assessed. Spatial modelling of fMRI data is usually done after the image of voxel-
wise activation estimates (for instance an image of p—values for activation tested
by t—tests) is obtained. The most common approach is to use Gaussian random
field theory for this part of the modelling, see Friston et al. (1995) and Cao and
Worsley (1999). The approach is not without problems since the threshold value
will depend on the search volume. This type of procedure, involving generalized
linear models, has been implemented in the SPM (Statistical Parametric Mapping)
software package. The package has been developed by members and collaborators
of the Wellcome Department of Imaging Neuroscience, UCL, UK.

In Genovese (2000), a fully Bayesian analysis of fMRI data is discussed, see
also Friston (2002), Friston et al. (2002a), and Friston et al. (2002b). The model
still only involves one voxel at a time but is very heavy computationally. In the
comments to Genovese (2000), see Worsley (2000), it is suggested to try to spatially
link the voxel-wise models. In recent times, ICA (independent component analysis)
has become quite popular, cf. Stone (2002) and McKeown et al. (2003). See also
the early critical comments in Friston (1998). Techniques for detecting functional
clusters have been described in Tonini et al. (1998).

Especially amongst psychologists there has been some criticism of the localiza-
tion paradigm. They argue that psychological processes are probably not realized as
static constellations. Also, it is believed that the repeated stimulus experiments are
artificial. In Greicius et al. (2003), the functional connectivity in the resting brain
is studied. In particular, the hypothesis of a default mode network is examined.
Regions of interest, being deactivated during a cognitive task, are found to be inter-
acting during periods of rest without particular stimulus. This finding is obtained,
using an unconventional type of analysis. The average time series from one region is
used as an explanatory variable in the analysis of the time variation in other regions
of the brain. It is here of interest to try to develop models that can justify this
type of data analysis. It is also of interest to find methods for searching for larger
clusters showing small magnitudes of activity that are temporally correlated with
areas showing large activities.

In a way, these developments are a consequence of the fact that fMRI is a more
mature field now. Instead of seeking the locations of active brain regions, the focus
is on the interaction between the active regions. This change of paradigm has
consequences for the choice of appropriate method of analysis. Instead of looking
for changes in level it seems to be more promising to study the covariation between
the time series.

A first attempt to provide a modelling framework for experiments without re-
peated stimuli is outlined in the present paper. Such an experiment will be called a
nonstimulus experiment. In our approach the temporal and the spatial part of the
activation are modelled simultaneously. We use a high-level model for the spatial



activation and follow the point process approach in Taskinen (2001) and Hartvig
(2002), where the spatial activation is modelled using Gaussian bell functions. The
model studied in Hartvig (2002) is in its simplest form as follows

Ly = Z h(ﬂf — -Tj)@t + 0€
J

where Z, is the observed MR signal intensity at time ¢ and voxel z, {z;} is a Poisson
point process defined on the brain, A is a Gaussian density function with mean 0 and
independent components, ¢, is a regression variable, containing information about
the repeated stimulus experiment, and e, ~ N(0, 1) represents the noise.

For a nonstimulus experiment it seems obvious to replace ¢; with a stationary
stochastic process { F;}. One possibility is to consider stimuli at random time points

such that
Ft = Zg(t_ti)a

where {t;} is a Poisson point process on the real line and ¢ is a hemodynamic re-
sponse function. The general model to be described in the present paper is specified,
using marked point process theory. The classical repeated stimulus experiments can
also be dealt with, using this modelling approach, but this is not our primary ob-
jective. Various methods of analyzing the model will be discussed, with increasing
degree of computational complexity. Inference based on mean values, variances and
covariances is relatively light from a computationally point of view while methods
based on complete likelihood or Bayesian methods are more demanding.

In Section 2, the suggested spatio-temporal model is described. Models for the
temporal and spatial parts of the activation profile are discussed in Section 3 while
first and second order properties of Z;, are expressed in terms of corresponding prop-
erties of the underlying spatio-temporal point process in Section 4. In this section,
specific point process models are also discussed. Section 5 describes statistical infer-
ence based on mean value and covariance relations. A simulation study is presented
in Section 6 while future work and perspectives are outlined in Section 7.

2 The spatio-temporal model

Our general model has the form

Zig = N$+thx(tzyxzvml) + Ot <1)

)

where 11, is the baseline signal at voxel x and ¥ = {[t;, z;; m;]} is a marked spatio-
temporal point process on [0,7] x X with marks in M C R?. Here, T represents
the duration of the fMRI experiment while X is a bounded subset of R? or R3,
representing a two dimensional slice or a three dimensional volume of the brain.
Furthermore, &4, is the error term with Ee;, = 0 and Ve, = 1. It is assumed
that {e:} are independent of ¥ and that {e,} are mutually independent. Various
models for correlated noise are discussed in Section 7.



The baseline intensity can vary by an order of magnitude across the volume
X. This is due to both variations in the brain tissue as well as variations within
the scanner. The baseline p, is well determined from data in repeated stimulus
experiments and may otherwise be estimated as the value in voxel z in the T'1
weighted image, which is acquired at the start of each scan (Genovese 2000).

According to (1), the activation profile is described by the marked point process
U. Each marked point [¢;, z;;m;] may be considered as a centre of activation at
location x; € X. The centre is activated at time ¢; € [0, 7] and its duration and
extension are described by the mark m; € M. If two regions Ay and &) of the
brain interact, it is expected that an activation [t;,, z;,; ms] in z;, € Xy implies
an activation [t;,, z;,; m;,] with t;, close to t;, and x;; € AX). Specific point process
models with such long-distance-dependencies will be described in Section 4. An
illustration of the basic set-up may be found in Figure 1.
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Figure 1: Illustration of the spatio-temporal point process model. Each ellipse illustrates
the set of (t,z) € Ry x X, affected by the activation in the leftmost point (¢;,z;) of the
ellipse. The mark m; determines the shape and size of the ellipse. In the illustration, an
example of simultaneous activation in two different places of the brain is seen, as well as
activation of the same place of the brain at different time points.

For modelling of fMRI data, it is interesting to consider an activation profile f,
that can be separated in a temporal and a spatial activation component

fro(w,y;m) = g(t — u;mYh(x — y;m?), (2)

where m = (m!, m?) € M;x My and M; € R% say,i = 1,2. In the fMRI literature,
g is called the hemodynamic response function (HRF) and h is the spatial activation
function (SAF). The modelling of these two functions will be discussed in the next
section.

The standard repeated stimulus experiment can be described within this frame-
work. In such an experiment we have k activation periods with known starting times
t; and known durations l;, i = 1,...,k, cf. Figure 2. Furthermore, let us suppose
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that the points x; € X are activated, j = 1,...,n. The marked spatio-temporal
process then becomes

v = {[tia‘rj; (mzlami)]}v

where ¢; and m] = [; are known. In Hartvig (2002), the activation profile is described
by

Z Wz — z5;m) ey,
j=1
where ¢, is of the form
T
o = / Tuk(t — u)du,
0

7, = Lifu € US| [t;, t; + ;] and & is the response function for an activation at time
0. This expression can be rewritten as

k n
i=1 j=1

where fi, satisfies (2) and

Figure 2: Repeated stimulus experiment.

3 Activation profile

3.1 Temporal activation

Most current fMRI studies rely on the blood oxygenation level dependent (BOLD)
effect (Ogawa et al. 1992) to detect changes in the MR signal intensity. Neural activ-
ity initiates a localized inflow of oxygenated blood to the active area, a hemodynamic
response. This response is detectable in the MR signal due to different magnetic
properties of oxygenated and deoxygenated blood. The biological processes behind
the hemodynamic response are not known in detail, but the general structure of
the temporal behaviour has been described and reproduced in many studies. The
hemodynamic response lags the neuronal activation with several seconds; it increases



slowly to a peak value at about 4 — 7 seconds after a neuronal impulse, and then
returns to baseline again a few seconds after the neuronal impulse ceases. Often a
late undershoot is reported as well, in the sense that when the signal drops after
the peak value, it drops below baseline for a period before it returns to the baseline
value.

Several different methods for modelling the HRF have been introduced. Perhaps
the most precise models are input-state-output models such as the Balloon model
(see Buxton et al. (2004) and references therein for more details). These models are
computationally very complex. The simpler models described below are considered
to give a fairly good approximation to empirical studies of the HRF, see Friston et
al. (1995) and Glover (1999). In these models, g is of the following form

g(u;m') = /Ol K(u — v)du,

where [ is the temporal duration of the activation. The mark m! includes [ and
possibly other parameters describing the function x. As discussed above, k(t) ~ 0
for t < 0, k increases in the interval from 0 to about 4-7 seconds and then decreases
to 0, possibly with a drop below 0 before returning to the value 0.

3.1.1 HRF as an integral of Gaussian densities

Based on empirical studies, Friston et al. (1995) modelled the delay and dispersion
of the hemodynamic response by a Gaussian density with mean 6 sec and variance
9 sec? as impulse response. In our formulation, this gives

1 (t—6)?
\/%3 GXp(— 18 )7

K(t) =

(3)

cf. Figure 3.

Figure 3: Gaussian response function x (dashed) and the
corresponding integrated response function g (solid).

This model assumes that the temporal activity pattern is the same for all ac-
tivations during the experiment, which is a rather strong assumption. It is not
complicated to make (3) slightly more general, by allowing the mean and the vari-
ance of the Gaussian density to vary for each activity. That information would then
be included in the mark m!. The response function would though still not be able to



account for a hemodynamic response with a late undershoot. A natural extension to
improve this is to linearly combine (3) with its derivatives with respect to different
parameters as in Friston et al. (1998).

3.1.2 HRF as an integral of gamma functions

Other empirical studies (Glover 1999) have shown that gamma functions may be
more appropriate than Gaussian densities to capture the shape of the HRF. Glover
uses the difference of two gamma functions, one to capture the main response and
the other to capture the late undershoot. That is, the HRF is modelled by

(1) e (52) () () e

where ¢ is the time in seconds and p; = a;b; is the time to the peak. In repeated
stimulus experiments, £(t) is then convolved with the time course of the stimuli.
This model can be made more flexible by expanding (t) as a Taylor series and
convolve the time course with —x(t) — tOk(t)/0t instead (Worsley 2000).

In our formulation, this means that the mark m! is now given by m! = {ay, as, by,
ba, ¢, 1}, where [ describes the duration of the activation. The number of unknown
parameters in the mark can be reduced by using the results from Glover (1999). For
auditory response, the parameters were fit to a; = 6,a5 = 12,6y = by = 0.9 and
c = 0.35. Motor response gave the result a; = 5,a, = 12,6y = 1.1, = 0.9 and
¢ = 0.4. An example is shown in Figure 4.

Py Py |

Figure 4: Gamma response function  (dashed) and the cor-
responding integrated response function g (solid).

3.2 Spatial activation

The simplest model for the spatial activation is a symmetric Gaussian bell function

h(y;m?) = 61 exp <— H2y9”22) : (4)

where m? = (01,60y), 01,05 >0 and || - || is the Euclidean norm in X'
This can be extended as follows. Let m? = (6;,0,) where 6; > 0 and O, is a
p X p positive definite matrix (p = 2 or 3). The spatial activation function now



becomes .
h(y;m?) = 0y exp (—§yT@2‘1y) : (5)

where y is assumed to be a column vector and (-)” stands for transpose, see also
Hartvig (2002).
32

4 The underlying spatio-temporal point process

In this section, we derive moment relations for the observed MR signal Z,,, under
various assumptions on the spatio-temporal point process W = {[t;, z;;m;]}. The
unmarked point process will be denoted by ® = {[t;, x;]}. We also discuss specific
models for W.

4.1 The mean value relation

We denote the intensity measure for ® by A and let ®(A), A € B([0,T] x X), be
the number of unmarked points [t;, ;] in A. Then,

A(A) = EB(A).

If U(A x B) denotes the number of marked points [t;, z;; m;] with [t;, z;] € A and
m; € B, A€ B([0,T]xX) and B € B(M), then the intensity measure of the marked
point process is defined by

An(Ax B) =E¥(A x B).

Since Ap,(- x B) << A, there exists for each (u,y) € [0,7] x X a probability
distribution P, , on (M, B(M)) such that

Am(A x B) = / Py (B)A(du, dy),

see also (Stoyan et al. 1995, p. 108). Note that P,, can be interpreted as the
distribution of the mark at (u,y). Using the Campbell-Mecke theorem for marked
point processes, we find

BZu = ot [ [ il yim)Puy(am)Aldu, dy).
[0,T|xX J M
The mean value relation can be further simplified if

A=Ay x Ay (6)

and
P,, =P, x P.. (7)



Here, Ay and Ay are measures on ([0,77, B([0,77])) and (X, B(X)) while P; and P;
are probability measures on (M, B(M,)) and (My, B(My)), respectively. A model
satisfying (2), (6) and (7) will be called separable. For a separable model, we have

EZtm = g + atﬁﬂ?a (8)

a = /OT /Ml gt —u;mY)PHdm") Ay (du)

/ /M e =yt Pm?) s,

The product specification (6) is satisfied for the repeated stimulus experiment
described in Section 2. Here, A; is a discrete measure with weight 1int;,i =1,... k,
and the temporal component of (8) reduces to

ay = Z/M — t;;m") P (dm"). 9)

For the simple response function specified in Section 3.1.1, Ptli is concentrated in [;,
the known duration of the 7th activation, and

where

and

a = g(t—t;m)) (10)

is known. The mean value specification is a linear regression.
For a nonstimulus experiment, it seems natural to assume that

A = cvg x Ay, (11)

where ¢ > 0 is the temporal intensity of the activations and v is Lebesgue measure

on [0,T]. Then,
T
o = c/ / g(t —u;m") PH(dm")du.
0 M1

If P! does not depend on u and the time point ¢ is free of edge affects such that
{fueR:g(t—u;m")>0}C[0,T],

then
T
= c/ / g(t — u;mbYduP'(dm?)
M
= / / (v;m")dv P (dm')
M
= cEa; (M
where

on(ml) = / " glosm)d

o0

and M*! is a random mark, distributed according to P'. Accordingly, the parameter
oy does not depend on t and the same is true for EZ,,.
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4.2 The covariance structure

In contrast to first-order properties, the covariance structure of 7, depends on the
specific choice of point process model. The covariance can be expressed in terms of
the so-called second-order factorial moment measure, see Stoyan et al (1995, p. 111
and onwards)

Let us here study the case of a marked point process ¥ = {[t;, x;; m;]} with
conditional independent marks, such that conditionally on ® = {[t;, ;]}, {m;} are
independent and m; ~ P, ,,. Then,

E( me (ti, T, mi)ft’x/ (tz% MO mi’))

i

= / / fea(u, y;m) foar (w, y; m) Py (dm) A(du, dy)
[0,7]xx J M

+ / / / / Fuo(aty g3 1) fiat (s 1) P (di) Py (di)
[0,T]xx J[0,T|xX JM JM

x o (du, dy, du', dy'),
where a(? is the second-order factorial moment measure for ®, which is defined for
A, A" € B([0,T] x X) by

aP(Ax A)=ED> 1{[ti,z;] € A, [tr,z4] € A'}.
il

It follows that
COV(th,Zt/J/)
= / / Jea(w, y3m) fyar (w, y; m) Py y(dm) A(du, dy)
0.7]xx J M

+/ / / / Jra(u, y;m) fo o (W y's M) Py (dim) Py o (dim)
[0,T|xX J[0,T]xX JM J M
x [a@(du, dy, du', dy') — A(du, dy)A(dv, dy')]

+1{(t,z) = (t',2)}o?. (12)

The second-order factorial moment measure o? is equal to A x A if ® is a Poisson
point process, cf. Stoyan et al (1995, p. 44). If

o@ (du, dy, du’, dy') — Mdu, dy)A(du', dy') > 0,

then pairs of activations are more likely to occur jointly at (u,y) and (u',y’) than
for a Poisson point process with intensity measure A.
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4.3 Specific point process models

In this section, the covariance structure of {Z;,} is studied under various types of
spatio-temporal point process models.

Example 4.1 (Poisson point process). Suppose that model (1) is satisfied, where
® = {[t;, z;]} is a Poisson point process on [0, 7] x X’ with conditionally independent
marking. An example is shown in Figure 5, left.

Since a® = A x A in this case, we find using (12)

Cov(Ziz, Zyw) :/ / fio(u, y;m) frra (w, y; m) Py, (dm)A(du, dy)

[0,T]xXx J M

+ 1{(t,x) = (t',2')}o?. (13)
For (t,x) # (', 2'), the correlation between Z;, and Z,, becomes

Itm t'x!

p(tht?Zt/l“/) = [[txtx +0—2]1/2[[t/ 't /+U ]1/2’

where

It:c,t’:c’ = / / ftm(uy Y; m)ft’a:’(uu Y, m)Pu,y(dm)A(d57 dy)
[0,T|xX J M
For a separable process ((2), (6) and (7) are satisfied), we get
COV (tha Zt’x/) = pt,t’Tx,x’ + ﬂ{(ta .’B) = (tla xl) Oia
where .
Pri = / / g(t —uymb)g(t' —u;m') P, (dm')A1(ds)
0 My

and

Toar :/ / h(x — y;m?)h(x’ — y;m?) P} (dm?) Ao (dy).
X J Mo

In the case of a nonstimulus experiment with (11) satisfied, we get, if P! does
not depend on wu, for time points t,t' free of edge effects

T
po=c [ [ gt = uimtgle — usm) P dm'
0 My

= c/ / gt —u;mYg(t' —u;m')duP (dm')
My

/ / (v;mYg(v+ |t — t|;m")duP(dm')
My
= cEay(|t' — t|; Ml)

say, where
aaltim’) = [ glosmglo+ tim!do

and M! is a random mark distributed according to P!. It follows that the covariance
between Z;, and Zy,, depends on ¢t and ¢’ only via |t —#|.
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We cannot use this simple Poisson model to describe correlation between distant
activation centres. For instance, suppose that

2
h(y;m2) — 91 exp (_ HyH ) 7

204

where 61,65 > 0. Then, under the assumption that #; and 6y do not depend on the

oentien o =yl + 12’ =y
T — + ||z —
= [ (607 exp(— 1" T As(dy). (14)

The parameter 7, , will be small if Ay is concentrated around x and 2’ but the
distance between x and 2’ is large.

In the next two examples, we present point process models that can describe
long-distance-dependencies.

Example 4.2 (Independent spatial and temporal point patterns). As before, we
consider the model in (1), now with W = {[t;, z;;m;, m3]}. We assume that ¥; =
{[t;;m{]} and Wy = {[x;; m7]} are independent. An example with ¥y and W, Poisson
is shown in Figure 5, middle.
We assume that (2) is satisfied. Then, since ¥; and W, are independent, (6) and
(7) also hold and the model is separable. We have
Lty = Ho + Ath + 02Etz,

where

A= Zg(t —t;;m;) and B, = Z h(z — x;;m?) (15)

( J
are independent. The covariance is of the form
COV(th, Zt’x/) = COV(At, At/) COV(BI, B:t/) + COV(At, At/)ﬂxﬁx’
+ aay Cov(By, By) + 1{(t, ) = (', 2')}o>.

For a repeated stimulus experiment, A; is deterministic and the expression for
the covariance reduces to
Cov(Ziy, Zyw) = oy Cov(By, By) + 1{(t,z) = (', 2')}o?

x?

where oy takes the form (9) or (10), depending on the specific assumption on the
HRF. If the temporal process {t;} is Poisson and conditionally on {t;}, {m}} are
independent and m} ~ P}, we get

Cov (A, Ay) = pry.

Similarly, if the spatial process is Poisson with conditionally independent marking
Cov(By, By) = Ty -

If both processes are Poisson with conditionally independent marking, we thus have

COV(Zm, Zt’x’) = pt,t’Tx,x’ + pt,t’ﬂmﬁx’ + atat’Tx,x’ + ﬂ{(t7 l’) = (tlu I/)}Ui.

12



More generally, if both processes {t;} and {z;} have conditionally independent
marking, {¢;} is Poisson and {z;} is a general point process with second-order fac-
torial moment measure o?, then

COV<Ztm7 Zt’m’) - [Pt,t’ + atat’][Tm,m’ + 533,33’]
+ pt,t’ﬂxﬁx’ + 1{(t7 .T) = (tlazl)}o—ia (16)

where

O :/ // / h(a:—y;mQ)h(a:’—y’;le)PyQ(de)P;,(dmy)
X JX J Mo J Msg
x [P (dy, dy') — As(dy)As(dy)].

Note that 0, ,» = 0 if {x;} is Poisson.

Let us suppose that P! does not depend on u. For a nonstimulus experiment
with (11) satisfied, (16) reduces to the following expression, for time points ¢,t’ free
of edge effects,

COV(Zt:w Zt’:c’) - CEQ2(|t/ - t|; Ml)[Tx,x’ + 5:5,:5’ + Bmﬁ:c’]
+ A[Eay (MY 1o + 0pw] + 1{(t,z) = (¢, 2)}o2. (17)

If 7, . is of the form (14), we get for x, 2’ with large mutual distance for a spatial
Poisson process

COV(tha Zt’x/) ~ CEa2(|t/ - t|a Ml)ﬂxﬁx’

Example 4.3 (Conditional independent spatial processes). The spatio-temporal
process is given by ¥ = {[t;, z;;; m},mfj]}. Conditionally on the temporal process
Wy = {[t;;m]}, the spatial processes Wo; = {[x;;; m7;|} are independent and identi-
cally distributed with second-order factorial moment measure o?. It is not difficult
to show that if (2) is satisfied, then U is separable.

Under the model of conditional independent spatial processes, the covariance is
of the form

COV(Zt:m Zt’x’) - COV(Aty At’)ﬁxﬁx’ + Pt COV(Bxy Bx’)
+ ﬂ{(tv I) = (t,,l’,)}O'g,

with the notation of the previous example. For a repeated stimulus experiment, A;
is deterministic and the expression for the covariance reduces to

COV(th, Zt’,m’) = Pt/ COV(Bxy Bx’) + ﬂ{(tu ZE) - (t,7 J],)}O'i.
If instead the temporal process is Poisson, the covariance is of the form
COV(tha Zt’x/) = Pt,t' [Tx,x/ + 5x,x’ + 6159:’] + 1{(t7 $) = (tla .T,)}O'i, (18)

again with the notation of the previous example. An example with ¥; and ¥,
Poisson is shown in Figure 5, right.
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Figure 5: Spatio-temporal Poisson process (left), independent spatial and temporal Poisson
processes (middle), and conditionally independent Poisson processes (right). The associ-
ated intensity functions are shown in gray scale.

5 Statistical inference

5.1 Spatial smoothing

In the analysis of fMRI data, spatial smoothing is often performed in order to
reduce the noise in the data. Suppose the data is smoothed by replacing Z,, with
Zm = Zze x, Wa—aZtz, Where X, is a neighbourhood around z. We suppose that
X, = Xy + . Furthermore, w,, y € Ay, satisfy w, > 0 and ZyGXO wy = 1. If {Z,}
satisfy (1) and (2), then

where

the function ¢ is simply g,

h(v; m?) = Z wuh(v + u;m?),

u€eXp

~2 E : 2 2
gx - wuo-x—i—u‘

ueXy

and

Our model is therefore closed under smoothing except for the fact that smoothing
introduces correlated errors.

5.2 Inference based on the mean value relation

In this subsection, we will discuss within the framework of a separable model as in
(2) the estimation of the intensity measure A of the spatial point process, using the
general mean value relation (8). We will assume that the marks are identical for all
points in which case

EZi, = Mz + atﬁxa
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where .
o= [ glt = simt)u(as)
0
and

B = /Xh(w —y;m?) Ay (dy).

We only consider time points free of edge effects.

In what follows, we let o = a4 in a standard experiment (see (10)) while a; = 1
in a nonstimulus experiment (see (11)). Note that for fixed m! the parameters ay
are known. Likewise, we let Ay = A in a standard experiment and Ay = cay(mb)Ay
in a nonstimulus experiment where

o
ap(m') = / g(u;m")du.
—0o0
Also, we assume that p, is known and we let p, = 0. The mean value relation can
then be written as B
Eth = &tﬂxa
where

B = /Xh(x — y;m?) Ay (dy).

We will consider the estimation of Ay (or equivalently Kg) under the assump-
tion that A, is a discrete measure concentrated in z;,7 = 1,..., N, with masses
Xa(x;) = Ao({z;}), 5 =1,...,N. Let us suppose that we have discretely observed
data in time with spacing A

{ZiA’xIi:i0+1,...,i0+n7$€X},

where all time points are free of edge effects. A simple estimation procedure is to
estimate (3, by the regression estimate

Zx = Z &(iOJri)AZ(iOJri)A,x/ Z &?z’o—ki)A
i=1 =1

and for each m! and m? minimize

N

> |2 - ﬁhm ol (19)

=1

with respect to {Xg(.’ﬂj)}, subject to the condition Xz(ﬂfj) > 0 for all j. Note that
in a nonstimulus experiment, Ay and ¢ cannot be separated, using this estimation
procedure. B
The variance of Z, may, however, depend on z. As an example, let us con-
sider a repeated stimulus experiment with Poisson distributed activation centres as
described in Example 4.2. Then,
- 1 )

VZy = Too + =505
20 O‘%ioﬂ'm
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An unbiased estimate of o2 is

n

R 1 =
Ui = n—1 Z(Z(io—l—i)A,a: - a(i0+i)AZx)2'
i=1

Furthermore, a discretized version of 7, , is

N
Tex = Z h(l’ - Zy; m2)2)‘2(‘%‘j)'
j=1

The unweighted sum of squares may then be replaced by

N

N
So[Ze = 3 bl — 2 ale))] VZ,
j=1

=1

where we insert the derived form of VZ;Z. and the estimate 62 . This sum of squares
should be minimized with respect to Ay for fixed m! and m?.

As another example, let us consider a nonstimulus experiment with independent
temporal and spatial Poisson point processes. Then, Z, = Z., and, using (17) with
0z = 0, we find

n—1
= C

VZ, = 3 nas (0; ml) +2 ZZl(n — 1) an(iA; ml)} [Tz@ + ﬁi]

2 1 2

+ ar(m' )’ 1p . + o

The empirical variance

n

> Zigriynw — Za)?

i=1

1
n—1

~
Ogo =

can be used to estimate o2 but the situation is now more complicated.
Generally, if Cov(Z,, Zi,) only depend on ¢ and t' via |t — /|,

COV(tha Zt’,x’) = O_x,x’(lt - t/‘)a

say, then o, . = 0,,,/(0) can be estimated by

. 1 O . .
Oz = n—1 Z(Z(io+i)A,x - Z-x)<Z(i0+i)A,x’ - Z-x’)a (20)
=1

where
_ 1 <&
Ly = E Zl Z(ioJri)A,x'

This estimate is, however, biased because of correlations inside the time series. We
thus have

B(6sa) = Gasr — ﬁ >0 = )0 (id). (21)
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Using (17), (20) and (21), we find that

—_

2 —

E(6,.) =c a(0;m') — m

(n —i)ag(iA; ml)] [wa + ﬁﬂ + o2

=1

The variance of Z., can therefore be written as

1
VZ,= EE(&I’I) + czal(ml)QTx@ + (n —i)ag(iA; ml)[Tx@ + ﬁg]

n(n —1) 4

=1

The unweighted sum of squares may be replaced by

_ 2 _
Z[ — caq(m Zh xj;mQ)AQ(xj)} /VZ.mi
and minimized with respect to {\a(z;)} for each fixed ¢, m* and m?.

5.3 Inference based on covariances

In Greicius et al. (2003), the average time series from one brain region is used as
explanatory variable in the analysis of the time variation in other regions of the
brain. This type of analysis can be justified within the modelling framework of the
present paper.

Let us concentrate on the conditional independent processes, presented in Ex-
ample 4.3. Let us consider a nonstimulus experiment, with a Poisson process as
temporal process and let the marks be identical for all points. For time points ¢, '
free of edge effects, we then have, cf. (18),

Cov(Ziy, Zy o) = cEa2(|t —t); M)
Tx o / / z —y:mA)h(z’ —y';m?)a@ (dy, dy')
In particular, if 7, . is of the form (14), we get for z, 2’ with large mutual distance
Cov(Ziy, Zyp ur) = cBay(0; M1) / / h(z —y:mH)h(z' —y';m?)a® (dy, dy).
xJx
The slope of the regression of Z, ,» on Z,,
COV(th, th’)/VZtary

is thus for fixed x and varying 2’ proportional to

/ / h(z —y;m?)h(z’ — y'sm?)a® (dy, dy').
X JX

If h(u;m?) is concentrated around u = 0, a plot of the slopes will reveal 2/ € X
for which '® (dx, dz') is large. Recall that a® (dx,dz’) can be interpreted as the
probability of having simultaneously an activation at x and z’.

17



6 A simulation study

We have simulated data from the model in (1) with independent spatial and temporal
Poisson point patterns as in Example 4.2. The object of the simulation study was
the analysis of a nonstimulus experiment. Thus, we gave the temporal intensity
function a constant value, A\;(t) = ¢ for all ¢ € [0,100], while the spatial activation
pattern comprised activated areas of various sizes, shapes and peak intensity. The
HRF was given by an integral (sum) of Gaussian densities as in Section 3.1.1 with
m! = | = 5 and the spatial activation was modelled by a symmetric Gaussian bell
function as in Section 3.2 with m? = (6;,60y) = (4,4). Further, the errors were
standard Gaussian distributed, e, ~ A(0,1), and we set o2 to be equal to 10% of
the baseline signal.

The activation pattern is shown in Figure 6, with the realization of the temporal
activity left and the arranged spatial activity right. Two time series from the sim-
ulation are shown in Figure 7, one is from an activated area and one from an area
with no activation. The activity pattern in the former clearly follows the temporal
activity pattern shown in Figure 6 (left). Figure 8 shows the development of the
activity over time. The upper left figure shows the activity at time ¢ = 10, the upper
middle figure shows the activity at time ¢ = 20, and so on.

2 25
15 20
15
10
05
5
0

0 50 100
Time

[y

Figure 6: The realization of the temporal activity used in the simulation (left) and the
spatial activity (right). The HRF was modelled by a sum of Gaussian functions with mark
m! =5 and the SAF was modelled by a Gaussian bell function with m? = (4,4). See the
main text for more details.

VR VANE

0 20 40 60 80 100
Time

A AN

0 20 40 60 80 100
Time

Figure 7: Hlustration of time series data from the simulation. Left: simulated data at time
t = 20. Right: time series of respectively an active (top) and a nonactive (bottom) voxel.

18



Figure 8: Development of the activity over time. From left to right and top to bottom:
the activity at time t = 10,20, ..., 90.

We have estimated the spatial intensity function Ay, using two different methods.
In Section 6.1, we used the method based on the general mean value relation as
described in Section 5.2. In Section 6.2, we assumed one of the activated areas,
Xy C X, to be known and we searched for other areas in X', functionally connected
to Ap. That is, we estimated Ay in X'\ Xy using covariances. This method is similar
to the inference discussed in Section 5.3.

6.1 Estimation of )\ using mean value relations

We used the method described in Section 5.2 with a slight change, as not all the
time points in the simulation were free of edge effects. Following the notation in
Section 5.2, we let

T
ay = / g(t —s;mb)ds
0

and .
A2 = CA2 .
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The parameter @; is still known, but depends on ¢ (the dependence is only slight
for ¢ near the endpoints of the interval [0,100]). We then continued as described in
Section 5.2 and for fixed m' and m?, we minimized (19).

This method gave us an estimate Ao of Ay up to a constant of proportionality.
We scaled )y such that 0 < 5\2(331) < 1forall : = 1,...,N, with x; being the
midpoint of each voxel (pixel). Each point x; was defined to be an activity centre
if 7; < Ay(xy), where r; ~ U([0,1]), i = 1,...,N. The spatial activity was then
constructed by placing Gaussian bell functions on top of each activity centre. In
order to eliminate outliers, we constructed 100 such activation patterns and used
the mean value of these as our estimate for the spatial activation pattern. Figure 9
shows the estimated activation pattern for m! = 5 and m? = (4,4) (right) together
with the true activation pattern (left). The method gives an estimate of the correct
activation pattern, up to multiplication with a constant.

25
20
15
10
5

Figure 9: The true spatial activation pattern (left) and the estimated spatial activation
pattern (right) with marks m! =5 and m? = (4,4).

BN WA OO N ©

In order to test the sensitivity of the method towards changes in the marks, we
minimized (19) for different values of m! and m?. To make the estimated patterns
comparable, we rescaled each estimated spatial activation pattern so that the max-
imum peak intensity for each estimate coincided with the maximum peak intensity
of the true activation pattern. Table 1 shows the L?-distances between the estimates

and the true values, ||B — B|| = (Z]\i (B,, — Bmi)Q)l/Q, for different values of m!

=1
and m?. Here, B, is the intensity of the true activation pattern at voxel x and B,
the rescaled estimated intensity.

6.2 Estimation of \; using covariances

For data under the model used in the simulation we have, cf. (17),

Cov(Ziy, Ziyr) = cag(() m'
[+ / / v — g m? (e — o m®)As(dy)Aaldy')

+ oy (m' )1y + 1z = 2'}o?,

for a time point ¢ free of edge effects and fixed marks m = (m!, m?). In particular,
as T, is of the form (14), we get for x, 2’ with large mutual distance

Cov(Ziy, Zyar) & cozg(();ml)/ / h(z — y; m*)h(z" — y'; m?) Ay (dy) Ao (dy).
xJx
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Table 1: L2-distances between the true spatial activation pattern and
the rescaled estimated spatial activation for different values of m! = 1{
and m? = (01,0,). The data set has N = 1681 voxels.

[ 6 6%  |B-D|
) 4 4 15.5493
2 4 4 16.8920
8 4 4 14.4175
) 2 4 15.4486
) 6 4 15.8929
) 4 2 14.9534
5 4 6 26.8073

We thus get, as in Section 5.3, that the slope of the regression of Z;,» on Z,,,
COV(Ztma Ztm’)/VZtm

is for fixed z and varying 2’ proportional to

/X/Xh(x —y;m*)h(2' — o'y m?) s (dy) Aa(dy'),

Assume we have given an activated area, X, in X and wish to find other areas
with functional connection to &Aj. Based on the calculations above, it is thus reason-
able to search for these areas using analysis based on covariances. Figure 10 shows
the slope of the regression of Z;,» on Z;, for the simulated data, where z is the point
in X with maximum intensity.

“ 0.8
0.6
0.4
' 0.2
®

Figure 10: The slope of the regression of Z;,» on Z;, for a fixed point z € X and all 2’ € X.
The point x, shown as a star in the figure, is the point in X with maximum intensity.

o

Under the independent Poisson model, used in the simulation, we can also es-
timate the spatial activation, using the covariances. It follows from (17), (20) and
(21), that the mean value of the empirical covariance estimate (20) is given by

E(é-x,a:’) = 07(7”1) [Tx,x’ + 61:53:’] + ﬂ{{L‘ - ZE/}O'i,

where

—

2

m (n —i)ag(iA;m”),

=1

y(m') = an(0;m') —
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for time points ¢ free of edge effects and fixed marks m = (m', m?), as before. As
T . 1s of the form (14), we get for z, 2’ with large mutual distance

E<5-x,ac’) ~ Cry<m1)ﬁmﬁx"

Assume that an activity centre Xy C X with Ny points is known. Then, for 2’
with large mutual distance from all points = € A},

N
1 . _
E<F@ > Guw) & (MBS (@ — i m)da(ws), (22)
TEX =1
where 1

This expression is linear in Ay if we regard 3. as an unknown constant. We can thus
use least squares methods to estimate Ao(z) for € X \ A, up to a constant, as in
the previous section.

We supposed the upper middle activity centre in Figure 6 (right) to be known.
We then used (22) to obtain an estimate Ay(z) of Ao(z) = ey(m')BAa(x) for all
x € X'\ Xy. Given the estimate of the spatial intensity function, the spatial activity
was reconstructed as in the previous section. The results for m! =5 and m? = (4, 4)
are shown in Figure 11. As before, the method finds the correct activation areas,
but the intensities are only kown up to a multiplication with a constant.

12
20

10
15
10
5

Figure 11: The true spatial activation pattern (left) and the estimated spatial activation
pattern (right) for the marks m! = 5 and m? = (4,4). The upper middle activity centre
in Figure 6, denoted by AXj in the text above, is not shown, as it is assumed known and
thus not estimated.

[«

o
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N

As in the previous section, we have tested the sensitivity of the method towards
changes in the marks. The procedure is the same as before, except that here, we
only tested for sensitivity towards changes in m?. Changes in the mark m' will
only influence the factor 7 in (22). Table 2 shows the resulting distance for different
values of m?. Note that the results can not be directly compared to the results
in Table 1 since we only consider estimation of the spatial activation for points in

X\ X
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Table 2: L2-distances between the true spatial activation pattern and
the rescaled estimated spatial activation for different values of m! = 1{
and m? = (01,6>). The data set X \ Xy has N — Ny = 1516 data points.

[ 6 6%  |B-D|
5 4 4 10.1205
5 2 4 6.7982
5 6 4 9.7661
5 4 2 10.6322
5 4 6 20.0038

7 Discussion

In fMRI experiments, data may have a more complicated structure than the one
predicted by our model, cf. e.g. Hartvig (2002). An extended model will most likely
include a drift component d,

th = Uz + dtx + Z ft:t(t’i7 Zi; mz) + OxEtz, (23)

cf. Genovese (2000). This component describes the slow drifts in the static magnetic
field during the experiment and residual motion not accounted for by prior motion
correction. Often, the drift is removed using filtering, before any further analysis of
the data, cf. Friston el al. (2000), or included in a general linear model, cf. Friston
et al. (1995). It should also be part of an initial analysis to examine whether the
data should be transformed. In Hartvig (2002), log-transformed signal intensities
are analyzed by a model as in (23) with 02 = ¢®. Note that the variance of the
untransformed intensities will then depend on ¢ and .

In the present paper we have mainly used the simple model described in Sec-
tion 3.1.1 for the temporal activity, one reason being that we want to focus on the
spatial modelling. In Genovese (2000), models for the HRF are reviewed, including
a model based on splines. In Purdon et al. (2001), a new model for a physiologically
based hemodynamic response is described.

We have assumed that the errors {e;,} are mutually independent. It is here
important to consider more general error models. In particular, the noise is often
autocorrelated in time, as emphasized in Worsley (2000). In Hartvig (2002), a
separable covariance structure is described. Let ¢ = {e, : t =1,...,T, 2 € X} be
the noise term in (23) regarded as a | X' | x7T" matrix. Then,

£~ N|X|XT(O7O'2F®E)7 (24)

where ® denotes the Kronecker product and where I" and Z are | X | x | X' | and
T x T correlation matrices. For each data set, it is then possible to fit an ARMA
model to the empirical temporal and spatial correlations separately. However, data
analysis suggests that a model with a non-separable covariance structure is more
appropriate (Hartvig 1999). One such model is that proposed by Lange and Zeger
(1997), where the voxel time series are considered in the frequency domain, and
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different spatial covariance models are fitted to different frequencies. Such a noise
model increases the computational complexity substantially.

It still remains to study more systematically explicit point process models that
can describe how activities in different regions af the brain are related (serially, in
parallel). In particular, it is of interest to include time delays in the modelling. For
modelling the spatial point process {z;}, Taskinen (2001) has suggested a cluster
point process. Note also that the point process term

Z Fin(ti, wi5m5)

of (23) has the form of the random intensity field of a shot noise Cox process if ¥ is
Poisson, see e.g. Mgller (2003).

From an applied point of view, an important next step is to design nonstimulus
experiments along the lines described in Greicius et al. (2003) and analyze the data,
using the modelling framework presented in this paper. Note that in contrast to
the method described in Hartvig (2002), we aim at estimating the intensity surface
rather than actually finding the positions of the activation centres.

The statistical analysis described in the present paper, based on mean value and
covariance relations, is not very demanding from a computational point of view. It
is of interest to study inference based on the complete likelihood. With a specific
model for the errors € and the point process of activations ¥, the joint density of
the MR intensities Z and the point process ¥ can be derived, using that

p(z,v) = p(z[Y)p().

Since W is not observed, this is a missing data problem. The marginal density of Z

p(2) = Ep(z, V)
can be found, using Monte Carlo methods. For more details, see Mgller and Waage-
petersen (2004, Section 8.6).
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