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1. Introduction

Modelling of biological growth patterns is a field of mathematical biology that has
attracted much attention in recent years, see e.g. Chaplain et al. (1999) and Capasso
et al. (2002). The biological systems modelled are diverse and comprise growth
of plant populations, year rings of tree, capillary networks, bacteria colonies and
tumours. This paper deals with spatio-temporal models for such random growing
objects. Rather than giving a comprehensive review of the field, we will describe
some recent advances in the theory of spatial point processes and the theory of Lévy
bases that may renew growth modelling.

The first main group of models to be discussed are based on spatio-temporal
point processes and may be characterized as cellular models. We let Z = {(ti, ξi)}
be a spatio-temporal point process on S = R+ ×X where X is a bounded subset of
R

d with positive volume |X |. The object at time t is given by

Yt = ∪{Ξ(ξi) : (ti, ξi) ∈ Z, ti ≤ t},

where Ξ(ξi) ⊂ R
d is a random compact set at position ξi ∈ X . Note that Yt′ ⊆ Yt

for t′ ≤ t. The object Yt depends on Z only via the cumulative spatial point process
at time t

Xt = {ξi ∈ X : (ti, ξi) ∈ Z, ti ≤ t}.

Figure 1 shows an example of a growth pattern that may be modelled using this
framework. At six dates, the positions of a particular type of weed plant (Trifolium,
clover) are shown. These data are part of a larger data set that has been discussed
in Brix and Møller (2001).

We will study extensions of recent models for inhomogeneous spatial point pro-
cesses to a spatio-temporal framework, cf. Hahn et al. (2003) and references therein.
One approach is to identify spatio-temporal point process models for which the cu-
mulative spatial point process has specified properties like a given intensity function.
Another approach is to extend inhomogeneous spatial models to a spatio-temporal
framework, using conditional intensities, and study the induced models for the cu-
mulative point patterns. It should be noted that many of the inhomogeneous point

1This paper is a contribution to Séminaire Européen de Statistique 2004 on Statistics of Spatio-

Temporal Systems, 12–18 December 2004, Bernried, Germany.



Figure 1: The development of a particular type of weed plant (Trifolium,
clover) at six different time points. See Brix and Møller (2001)

patterns analyzed, using purely spatial models, are indeed cumulative point patterns.
In the case where Z is a spatio-temporal Poisson point process, the cumulative pro-
cess Xt is again Poisson and it is easy to control its statistical properties. As we
shall see the situation is more complicated in the non-Poisson case.

A second main group of models describes how the boundary of the object expands
in time. These models may be characterized as supracellular models. We will mainly
discuss growth models based on Lévy bases, cf. Barndorff-Nielsen and Schmiegel
(2004), Barndorff-Nielsen et al. (2003) and references therein. A great advantage
of these models is the possibility of controlling the correlation structure during the
growth process. One example of such a model describes the growth of a star-shaped
object, using its radial function. In the planar case, the radial function of Yt gives
the distance Rt(φ) from a reference point z to the boundary of Yt in direction
φ ∈ [−π, π). For such objects, we study the following model specification

Rt(φ) = exp
(

∫

At(φ)

ft(ξ, φ)Z(dξ)
)

,

where Z is a factorizable or a normal Lévy basis, At(φ) is a so-called ambit set
and ft(ξ, φ) is a deterministic weight function. Figure 2 shows an example of a
growth pattern that may be modelled using this framework. At nine time points,
the contours of a brain tumour cell island are shown. These data are part of a larger
data set that has been discussed in Brú et al. (1998).

In Section 2, models based on spatio-temporal point processes are presented
while models based on Lévy bases are dealt with in Section 3. Basic results for
spatio-temporal point processes are briefly reviewed in Appendix A.

2. Models based on spatio-temporal point processes

2.1. Set-up
Let Z = {(ti, ξi)} be a spatio-temporal point process on S = R+×X . We assume

that the projections of Z on X and R+ are both simple point processes (no multiple
points). In the following we let

Zt = {(ti, ξi) ∈ Z : ti ≤ t}
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Figure 2: Contours of a brain tumour cell island at nine
different time points. See Brú et al. (1998)

be the restriction of Z to St = (0, t]×X . Note that since Z is locally finite and St is
bounded, Zt is a finite random subset of St. The corresponding cumulative spatial
processes are denoted

X = {ξi : (ti, ξi) ∈ Z}, Xt = {ξ : (ti, ξi) ∈ Zt}.

Note that X and Xt are the projections of Z and Zt, respectively, on X , see also
Figure 3.

space

time
t

X

Figure 3: An illustration of the set-up. The points constitute the spatio-
temporal point process Z and the dashed lines indicate the projections
on X of points arrived before time t. The points in X constitute Xt.

Since the projection of Z on R+ is simple, the temporal part of the process
gives a natural ordering of the points that does not exist in general for a spatial
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point process. This feature will be used at various places in the following. Unless
otherwise stated, the numbering of the points of Z is such that

t1 < t2 < · · · < tn < · · ·

It will be assumed that Zt has a density gZt
with respect to the unit rate Poisson

point process on St. Because of the natural ordering of the time axis, there are
also alternative and perhaps more natural ways of specifying the distribution of Z.
Thus, the process can be defined by two families of conditional probability densities

{

pn(t | t(n−1), ξ(n−1)) : n ∈ N
}

(1)

and
{

fn(ξ | t(n−1), ξ(n−1), tn) : n ∈ N
}

(2)

with respect to the Lebesgue measure on R and R
d, respectively. Here and in what

follows we will use the short notation t(n), ξ(n) for

(t1, ξ1), . . . , (tn, ξn).

The density pn(· | t(n−1), ξ(n−1)) describes the distribution of the n-th time point
given the history of the whole process up to time tn−1, whereas the density fn(· |
t(n−1), ξ(n−1), tn) describes the distribution of the spatial point at time tn given the
history up to time tn−1 and the arrival time of the n-th point. The density pn(· |
t(n−1), ξ(n−1)) has support (tn−1,∞) while the density fn(· | t(n−1), ξ(n−1), tn) has
support X .

In Appendix A, it is shown for a general spatio-temporal point process how the
density of the process Zt can be expressed in terms of conditional densities. A proof
of this well-known result can be found in Daley and Vere-Jones (2002) on conditional
intensities and likelihoods for marked point processes. An alternative proof may be
found in Appendix A.

An alternative way of specifying a spatio-temporal point process model is in
terms of conditional intensities. For a sequence {(ti, ξi)} with

0 = t0 < t1 < · · · < tn < · · · ,

the conditional intensity is

λ?(t, ξ) = λg(t)f
?(ξ | t), if tn−1 < t ≤ tn,

where

λg(t) =
pn(t | t(n−1), ξ(n−1))

Sn(t | t(n−1), ξ(n−1))
, if tn−1 < t ≤ tn,

f ?(ξ | t) = fn(ξ | t(n−1), ξ(n−1), t), if tn−1 < t ≤ tn.

It can be shown that the density of Zt can be written as

gZt
(z) = exp

(

−

∫

St

[λ?(s, ξ) − 1]dsdξ
)

n
∏

i=1

λ?(ti, ξi), (3)

where
z = {(t1, ξ1), . . . , (tn, ξn)}, t1 < · · · < tn.

For further details, see Appendix A.
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2.2. The Poisson case
If Z is a Poisson point process, the conditional intensity function λ? is equal to

the unconditional intensity function λ, say, and the density of Zt with respect to the
unit rate Poisson point process is given by

gZt
(z) = exp

(

−

∫

St

[λ(s, ξ) − 1]dξds
)

n
∏

i=1

λ(ti, ξi).

The distribution of the cumulative spatial process Xt is also Poisson with intensity
function

λt(ξ) =

∫ t

0

λ(s, ξ)ds.

If the intensity function can be written as λ(t, ξ) = λ1(t)λ2(ξ), then

λt(ξ) = a(t)λ2(ξ),

where

a(t) =

∫ t

0

λ1(s)ds.

Thus, if the intensity function is of product form, the cumulative point pattern at
time t is a scaled version of a spatial template Poisson point process with intensity
function λ2(ξ).

In the Poisson case, the conditional densities are

pn(t | t(n−1), ξ(n−1)) = λg(t) exp
(

−

∫ t

tn−1

λg(s)ds
)

, t > tn−1,

and

fn(ξ | t(n−1), ξ(n−1), tn) =
λ(tn, ξ)

λg(tn)
, ξ ∈ X ,

where

λg(t) =

∫

X

λ(t, ξ)dξ.

Some of the mathematical models for tumour growth specify the development of
the intensity of cells in the tumour as a function of spatial position and time, i.e.
the cumulative intensity λt(ξ). An example of a simple model for the concentration
of cells at a spatial position ξ at time t is

λt(ξ) =
c

t
exp

(

ρt −
‖ ξ ‖2

Dt

)

, (4)

where ρ is the net rate of growth of cells, D is a diffusion coefficient and c is a
constant determining the size of the initial tumour, cf. e.g. Murray (2003). It is
easy to embed such a mathematical model in a Poisson framework. We let Z be a
spatio-temporal Poisson point process with cumulative intensity function (4). The
tumour at time t is modelled as

Yt = ∪{Bd(ξi, R) : (ti, ξi) ∈ Z, ti ≤ t}, (5)

5



Figure 4: Result of a simulation of the model (5), where Xt is a Poisson process
with intensity function (4), for t = 100, 160, 220, 280. The parameter values are
ρ = 0.01, D = 0.001, c = 5 · 103.

where Bd(ξi, R) ⊂ R
d is a ball centered at ξi with radius R > 0. A simulation of Yt

for which Z is Poisson with cumulative intensity function (4) can be seen in Figure
4. A more complicated model is obtained by associating random compact sets to
each point.

This cellular growth model can be regarded as a continuous version of the model
considered in Cressie and Hulting (1992). Their discrete model, proposed for mod-
elling of tumour growth, can be described as a sequence of Boolean models such
that the tumour Yt at time t is a union of independent random compact sets placed
at uniform random positions inside the tumour Yt−1 at time t − 1. Formally this
means

Yt = ∪{Ξ(ξi) : ξi ∈ Yt−1},

where {ξi} is a homogeneous Poisson point process in X and Ξ(ξi) is a random
compact set at position ξi. A related continuous model has recently been discussed
in Deijfen (2003). The object Yt is here a connected union of randomly sized balls
constructed from a spatio-temporal Poisson point process. It is shown that the
asymptotic shape of the object is spherical.

An advantage of the Poisson model is that many quantities are analytically
known. But Poisson points do not interact. In the following subsections, we will
describe models for spatio-temporal point processes with clustering or inhibition
between the points.

2.3. Cox processes
A spatio-temporal Cox process on S is a spatio-temporal Poisson point process

with a random intensity function Λ. Such a process exhibits clustering between
the points. The intensity function of a spatio-temporal Cox process is given by
λ(t, ξ) = EΛ(t, ξ) and the pair correlation function by

ρ((t, ξ), (s, η)) =
E(Λ(t, ξ)Λ(s, η))

EΛ(t, ξ)EΛ(s, η)
.

6



It is clear that Zt is a spatio-temporal Cox process on St driven by the restriction
Λt of Λ to St. The cumulative spatial process Xt is a Cox process on X driven by

Λt(ξ) =

∫ t

0

Λ(s, ξ)ds.

The intensity function of Xt is λt(ξ) = EΛt(ξ). It can be shown that for t′ ≤ t,
Xt′ has the same distribution as a process obtained by independent thinning of the
points in Xt with retention probability for a point located at ξ ∈ X given by

pt′,t(ξ) =
λt′(ξ)

λt(ξ)
.

A spatio-temporal Cox process with log-Gaussian intensity function has been used
with success in the analysis of weed data of the type shown in Figure 1, see Møller
et al. (1998); Brix and Møller (2001).

A particular example of a spatio-temporal Cox process is a spatio-temporal shot
noise Cox process Z driven by

Λ(t, ξ) =
∑

(u,c,γ)∈Φ

γk((u, c), (t, ξ)),

where k((u, c), ·) is a kernel (i.e. a probability density on S) and Φ is a Poisson
point process on S ×R+. A comprehensive treatment of the purely spatial case can
be found in Møller (2003). The process can be viewed as a cluster process since

Z|Φ ∼ ∪(u,c,γ)∈ΦUu,c,γ,

where Uu,c,γ, (u, c, γ) ∈ Φ, are independent spatio-temporal Poisson processes with
intensity functions

γk((u, c), (t, ξ)).

The cumulative spatial process Xt is also a cluster process of Cox-type since

Xt|Φ ∼ ∪(u,c,γ)∈ΦVu,c,γ,

where Vu,c,γ, (u, c, γ) ∈ Φ, are independent Poisson point processes on X with in-
tensity function

γ

∫ t

0

k((u, c), (s, ·))ds.

The spatio-temporal shot noise Cox processes may be used to model growth patterns
where several events occur almost simultaneously in time and space.

2.4. Markov point processes
In recent years, Markov models for inhomogeneous spatial point processes have

been studied quite intensively, see Stoyan and Stoyan (1998), Baddeley et al. (2000),
Jensen and Nielsen (2000), Hahn et al. (2003) and references therein. The majority
of the inhomogeneous models has been constructed by introducing inhomogeneity
into a homogeneous Markov point process X, defined on a bounded subset X of
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R
d. In this section, we will discuss extensions of these inhomogeneous point process

models to a spatio-temporal framework. In relation to growth, it is interesting to
construct spatio-temporal processes Z = {(ti, ξi)} with spatial inhibition between
the points.

We start by giving a short review of recently suggested inhomogeneous spatial
Markov point processes.

2.4.1. Inhomogeneous spatial point processes
In principle, any given homogeneous point process can be turned into an inho-

mogeneous point process by independent thinning with a retention probability p(ξ)
that depends on the location ξ ∈ X . As Baddeley et al. (2000) show, second order
functions as Ripley’s K-function can be defined for thinned point processes such that
they coincide with the corresponding second order functions of the original process.
However, thinning changes the interaction structure. Thus, if a very regular point
process is subjected to inhomogeneous thinning, regions of low intensity seem to
exhibit almost no interaction and look similar to a realization of a Poisson process.

Another method that is applicable on any process is to generate inhomogeneity
by a nonlinear transformation of the spatial coordinates. Jensen and Nielsen (2000)
prove that the process resulting from transformation of a Markov point process is
again Markov. Transformation does in general not preserve (local) isotropy of the
template process.

Ogata and Tanemura (1986) and Stoyan and Stoyan (1998) suggest to introduce
inhomogeneity into Markov or Gibbs models by location dependent first order in-
teractions. As an example, consider a Strauss template X on X with parameters
β > 0, γ ∈ [0, 1] and R > 0, which is defined by a density

fX(x) ∝ βn(x)γs(x), s(x) =
∑

{η,ξ}⊆x

1[0,R](‖η − ξ‖), (6)

with respect to the unit rate Poisson process on X . The resulting inhomogeneous
process has density

fX(x) ∝
∏

η∈x

β(η)γs(x), s(x) =
∑

{η,ξ}⊆x

1[0,R](‖η − ξ‖) (7)

with respect to the unit rate Poisson process on X . For such an inhomogeneous
process, the degree of regularity in the resulting process depends on the intensity as
in the case of thinning, described above.

An approach that preserves locally the geometry of the template model, in par-
ticular the degree of regularity and also isotropy, was introduced in Hahn et al.
(2003). It can be applied to models that are specified by a density with respect
to the unit rate Poisson process. The idea of the approach is that a location de-
pendent scale factor c(ξ) > 0 changes the local specification of the model such that
in a neighbourhood of any point ξ ∈ X , the inhomogeneous process behaves like
the template process scaled by the factor c(ξ). This is achieved by defining the lo-

cally scaled process Xc by a density f
(c)
Xc

with respect to an inhomogeneous Poisson

process of rate c(ξ)−d. The density f
(c)
Xc

is obtained (up to a normalizing constant)

8



from the template density fX by replacing all k-dimensional volume measures νk,
k = 0, 1, . . . , d, that occur in the definition of fX by their locally scaled counterparts
νk

c , where νk
c (A) :=

∫

A
c(u)−kνk(du) for all A ∈ Bd.

A locally scaled version of the Strauss process has thereby the density

f
(c)
Xc

(x) ∝ βn(x)γsc(x), sc(x) =
∑

{η,ξ}⊆x

1[0,R](ν
1
c ([η, ξ])), (8)

where ν1
c ([η, ξ]) :=

∫

[η,ξ]
c(u)−1ν1(du) is the locally scaled length of the segment

[η, ξ]. This modification applies to all Markov point processes where the higher
order interaction is a function of pairwise distances. The resulting inhomogeneous
point process is again Markov, now with respect to the neighbour relation

η ∼ ξ ⇐⇒ ν1
c ([η, ξ]) ≤ R.

Since evaluation of the integral in the locally scaled length measure may be compu-
tationally expensive in the general case, the scaled distance of two points may be
approximated by

ν1
c ([η, ξ]) ≈

‖η − ξ‖

(c(η) + c(ξ))/2
. (9)

Using (9) in (8), and adjusting the first order term in (8), we get the density fXc
of

Xc with respect to the unit rate Poisson process as

fXc
(x) ∝ βn(x)γsc(x)

∏

η∈x

c(η)−d, sc(x) =
∑

{η,ξ}⊆x

1[

0,
c(η)+c(ξ)

2
R

](‖η − ξ‖). (10)

As shown in Hahn et al. (2003), if the scaling function is slowly varying compared to
the interaction radius the local intensity in a point ξ of such a locally scaled process
is in good approximation proportional to c(ξ)−d. Figure 5 shows a realization of a
locally scaled Strauss process.

Figure 5: Result of a simulation from a locally scaled Strauss
process on [−1, 1]2, with parameters β = 100, γ = 0.01, R = 0.1,
and scaling function c(ξ) = 2‖ξ‖2 + 0.1.

9



2.4.2. Spatio-temporal extensions
One possibility is to perform backwards temporal thinning in a spatial Markov

point process X with intensity function λ, say. Let the resulting spatio-temporal
point process be denoted by

Z = {(tξ, ξ) : ξ ∈ X}.

If, conditionally on X, {tξ} are independent and tξ has density pξ, then the cumu-
lative process Xt has intensity function

λt(ξ) = λ(ξ)

∫ t

0

pξ(s)ds.

Furthermore, for all t′ ≤ t, Xt′ can be obtained from Xt by independent thinning,
with retention probability for a point located at ξ given by

pt′,t(ξ) =

∫ t′

0

pξ(s)ds

/
∫ t

0

pξ(s)ds.

Note that the special K−function defined in Baddeley et al. (2000) will be the same
for all processes Xt. Note also that the thinning, backwards in time, implies that
Xt may look Poisson-like for small t. If the original spatial point process X has the
property that any pair of points has a mutual distance of at least R, then any of
the cumulative spatial point processes Xt has the same property.

Below, we study thinning of a locally scaled spatial point process.

Example 2.1 Temporal thinning of a locally scaled Strauss process. Let c1 : R+ →
R and c2 : R

d → R be positive and bounded local scaling functions for time and
space, respectively. Let the density of X be a locally scaled Strauss process

fX(x) ∝ βn(x)γsc2(x)
∏

η∈x

c2(η)−d,

where
sc2(x) =

∑

{η,ξ}⊆x

1[0,R](ν
1
c2

([η, ξ])).

A birth time at ξ is distributed with a density which does not depend on ξ

pξ(t) ∝ c1(t)
−1, (11)

if t ∈ [0, T ], and pξ(t) = 0, otherwise.
Figure 6 shows a result of a simulation of a temporal thinning of such a locally

scaled Strauss process on [−1, 1]2 with β = 100, γ = 0.01, R = 0.1 and local scaling
function c2(ξ) = 0.2 + 4‖ξ‖2. The birth times have density given in (11) with
c1(t) = 0.2 + 0.05t and T = 12. The figure shows the corresponding cumulative
point patterns Xt′ for t′ = 2, 4, 8, 12.

Another possibility is specification of a spatio-temporal point process model in
terms of conditional intensities, see e.g. Hawkes (1971); Schoenberg et al. (2002) and
references therein. Here, the form of the conditional intensity may be motivated by
the form of the Papangelou conditional intensity for a purely spatial point process.
A local scaling example is given below.

10
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Figure 6: Result of a simulation of a backwards thinning of a locally
scaled Strauss process on [−1, 1]2. For details, see the text.

Example 2.2 Let c1 : R+ → R and c2 : R
d → R be positive and bounded scaling

functions for time and space, respectively. We define the spatio-temporal point
process Z by its conditional intensities,

λ?(t, ξ) =
βγsc2(ξ|ξ(n−1))

c1(t)c2(ξ)d
, tn−1 < t ≤ tn, ξ ∈ X ,

where

sc2(ξ | ξ(n−1)) =
n−1
∑

i=1

1[0,R](ν
1
c2

([ξ, ξi])).

In this case, the density of Zt is of the following form

gZt
(z) = exp

(

−
n

∑

i=1

∫ ti

ti−1

∫

X

(βγsc2(ξ|ξ(i−1))

c1(t)c2(ξ)d
− 1

)

dtdξ
)

n
∏

i=1

βγsc2(ξi|ξ(i−1))

c1(ti)c2(ξi)d

= exp
(

−

n
∑

i=1

∫ ti

ti−1

∫

X

(βγsc2(ξ|ξ(i−1))

c1(t)c2(ξ)d
− 1

)

dtdξ
)

βn(z)γ
Pn

i=1 sc2(ξi|ξ(i−1))

×
n

∏

i=1

1

c1(ti)c2(ξi)d
.

3. Lévy based growth models

In this section, we will discuss an alternative approach to modelling of growth for
a random star-shaped object. We will concentrate on the planar case. The model
describes how the boundary of the growing object expands in time. The basic notion
of this approach is Lévy bases.
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3.1. Set-up
This subsection provides a very brief overview of the theory of Lévy bases, in

particular, the theory of integration with respect to a Lévy basis. We will use
the following notation for the logarithm of the characteristic function of a random
variable X,

C{λ ‡ X} = log E(eiλX)

and we will refer to it as the cumulant function.
Let (R,A) be a measurable space. Let Z = {Z(A) : A ∈ A} be an independently

scattered random measure, i.e for every sequence {An} of disjoint sets in A, the
random variables Z(An) are independent and Z(

⋃

An) =
∑

Z(An) a.s. If Z(A) is
infinitely divisable for all A ∈ A, Z is called a Lévy basis.

When Z is a Lévy basis, the cumulant function of Z(A) can be written as

C{λ ‡ Z(A)} = iλa(A) −
1

2
λ2b(A) +

∫

R

(eiλx − 1 − iλ1[−1,1](x))U(dx, A), (12)

where a is a signed measure on A, b is a positive measure on A, U(dx, A) is a
Lévy measure on R for fixed A ∈ A and a measure on A for fixed dx. The Lévy
basis is said to have characteristics (a, b, U) and the measure U is referred to as the
generalised Lévy measure. The cumulant function (12) can also be expressed in an
infinitesimal form

C{λ ‡ Z(dξ)} = iλa(dξ) −
1

2
λ2b(dξ) +

∫

R

(eiλx − 1 − iλ1[−1,1](x))U(dx, dξ).

Without loss of generality we will assume that the measure U factorizes as

U(dx, dξ) = V (dx, ξ)µ(dξ),

where µ is some measure on R and V (dx, ξ) is a Lévy measure for fixed ξ. A Lévy
basis is called factorizable, if the Lévy measure V (·; ξ) does not depend on ξ. If a
Lévy basis is factorizable, then one can write

C{λ ‡ Z(dξ)} = iλa(dξ) −
1

2
λ2b(dξ) + C{λ ‡ Z ′}µ(dξ),

where Z ′ is an infinitely divisible random variable with cumulant function

C{λ ‡ Z ′} =

∫

R

(eiλx − 1 − iλ1[−1,1](x))V (dx).

If, moreover, µ is the Lebesgue measure, then Z is called homogeneous.
We will now give two examples of Lévy bases. These are the Poisson basis and

the normal Lévy basis. We assume that R = R
n and A = B(Rn).

Example 3.1 If Z is a Lévy basis on R, such that Z(A) ∼ Pois(Λ(A)) for all
A ∈ A (A bounded), Λ the Lebesgue measure on R, we call Z a Poisson basis. The
Poisson basis has characteristics (Λ, 0, U), where U(dx, dξ) = δ1(dx)Λ(ξ), so Z is
factorizable. Clearly the cumulant function of Z(A) is

C{λ ‡ Z(A)} = (eiλ − 1)Λ(A),

and the cumulant function of the random variable Z ′ is

C{λ ‡ Z ′} = (eiλ − 1 − iλ).

12



Example 3.2 If Z is a Lévy basis on R, such that Z(A) ∼ N(µΛ(A), σ2Λ(A)), we
call Z a normal Lévy basis. The normal Lévy basis has characteristics (µΛ, σ2Λ, 0)
and the cumulant function is

C{λ ‡ Z(A)} = iλµΛ(A) −
1

2
λ2σ2Λ(A).

The usefulness of the definitions above becomes clear in connection with the inte-
gration of measurable functions f with respect to a Lévy basis Z. We consider the
integral of a measurable function f on R with respect to a factorizable Lévy basis
Z. For simplicity we denote this integral by f • Z. For the theory of integration
with respect to independently scattered random measures, see Kallenberg (1989)
and Kwapien and Woyczynski (1992). A key result for many calculations is (subject
to minor regularity conditions)

C{λ ‡ f • Z} = iλ(f • a) −
1

2
λ2(f 2 • b) +

∫

C{λf(ξ) ‡ Z ′}µ(dξ). (13)

A similar result holds for the logarithm of the Laplace transform of f • Z,

K{λ ‡ f • Z} = C{−iλ ‡ f • Z} < ∞.

We have

K{λ ‡ f • Z} = λ(f • a) +
1

2
λ2(f 2 • b) +

∫

K{λf(ξ) ‡ Z ′}µ(dξ). (14)

If Z is a normal Lévy basis, Z(A) ∼ N(µΛ(A), σ2Λ(A)), one also has the following
equations

C{λ‡f •Z} =

∫

C{λf(ξ)‡Z ′}Λ(dξ), K{λ‡f •Z} =

∫

K{λf(ξ)‡Z ′}Λ(dξ), (15)

where Z ′ is a normal random variable with mean µ and variance σ2.

3.2. An exponential Lévy growth model for star-shaped planar objects
Let us consider a planar compact object with size and shape changing over time,

where the object at time t is denoted by Yt ⊂ R
2. In the following we will assume

that Yt is star-shaped with respect to a point z ∈ R
2 for all t. Then the boundary of

the object Yt can be determined by its radial function Rt = {Rt(φ) : φ ∈ [−π, π)},
where

Rt(φ) = max{r : z + r(cos φ, sinφ) ∈ Yt}, φ ∈ [−π, π).

The models we will consider here are based on the theory of Lévy bases and
integration with respect to those. In the following we will let R = R × S, where
S = [−π, π) and A be the Borel σ-algebra of R. The idea behind the following
definitions is based on the intuitive picture of an ambit set At(φ), associated to each
point (t, φ), which defines the causal correlation cone. The radius process Rt(φ) is
defined as the exponential of an integral of some weight function over the attached
ambit set, with respect to a factorizable or a normal Lévy basis.

13



Definition 3.3 Let Z be a factorizable or normal Lévy basis. The field of radius
vector functions R = {Rt(φ)} follows an exponential Lévy growth model if

Rt(φ) = exp
(

∫

At(φ)

ft(ξ; φ)Z(dξ)
)

.

The ambit set At(φ) ∈ A and the deterministic weight function fs(a; φ) must be
defined cyclically such that Rt(φ) is cyclic.

There are many interesting problems to study within this model framework.
Basically, it is the Lévy basis Z, the ambit sets At(φ) and the weight functions
ft(a; φ), which determine the growth dynamics. These three ingredients can be
chosen arbitrarily and independently which results in a great variety of different
growth dynamics.

In the following we will assume that we have a homogeneous factorizable Lévy
basis with a ≡ 0 and b ≡ 0 or a normal Lévy basis. Equations (13), (14) and
(15) allows us to calculate arbitrary n-point correlations. Here n-point correlations
cn(t1, φ1; . . . ; tn, φn) for arbitrary times t1, . . . , tn and angles φ1, . . . , φn are defined
as

cn(t1, φ1; . . . ; tn, φn) ≡ E(Rt1(φ1) · . . . · Rtn(φn)).

If we assume the correlations are finite, i.e. E{Rt1(φ1) · . . . · Rtn(φn)} < ∞, we get
from (14) and (15) the expression

cn(t1, φ1; . . . ; tn, φn) = exp

{
∫

R

K

[ n
∑

j=1

ftj (ξ, φj)1Atj
(φj)(ξ) ‡ y

]

µ(dξ)

}

. (16)

This is the basic relation for modelling a prescribed correlation structure in terms of
n-point correlations cn(t1, φ1; . . . ; tn, φn). Modelling of a given correlation structure
reduces to solving the above equation for the weight-function f and the shape and
size of the ambit sets At(φ). In practice this might be a complicated task, but for
special applications it is possible. Equation (16) also provides some useful geometric
interpretation of the correlation structure. This can most easily be seen for the
simple case of a constant weight-function ft(ξ, φ) ≡ f for all ξ, (t, φ) ∈ R. In this
case (16) reduces in second order n = 2 to

E(Rt(φ)Rt′(φ
′))

E(Rt(φ))E(Rt′(φ′))
=exp(K µ(At(φ) ∩ At′(φ

′))) (17)

where K = K[2f ‡ y] − 2K[f ‡ y]. For a constant weight function the modelling of
spatio-temporal two-point correlations reduces to the problem of finding ambit sets
At(φ) whose measure of the overlap µ(At(φ) ∩ At′(φ

′)) fulfills (17) (see Figure 7 for
an illustration). Note that only the measure of the overlap is involved and not the
shape of the overlap. Similar relations also hold for higher order correlations under
the assumption of a constant weight function f . All finite n-point correlations can
be expressed in terms of various overlaps of ambit sets.

Figure 8a shows a simulation from an exponential Lévy growth model with

At(φ) = {(s, θ) : t − T (t) ≤ s ≤ t, |θ − φ| ≤ Θ(t)},

14



Figure 7: Illustration of the overlap (shaded area) of two ambit sets
located at (t, φ) and (t′, φ′), respectively.

Figure 8: Comparison of a simulation of a log-normal model (a) with
in vitro tumour growth (b) at times t = 25, 45, 51 (arbitrary units).
Parameters of the simulation are µ = 0.11, σ = 0.01, T (t) = t/20,
Θ(φ) = π/90 and ft(φ) = 1. For details, see the text.

(t, φ) ∈ R, ft(ξ; φ) = f and Z a normal Lévy basis. The similarities between the
simulation and the observed in vitro growth pattern in Figure 8b are striking.

A similar type of field of stochastic processes has been used to model the statis-
tics of the energy dissipation in fully developed turbulence (Barndorff-Nielsen and
Schmiegel (2004), Barndorff-Nielsen et al. (2003), Schmiegel (2002), Schmiegel et al.
(2004)). Barndorff-Nielsen and Schmiegel (2004) also discusses the field of processes

15



Xt in more detail.

3.3. Other Lévy based growth models
For a factorizable positive Lévy basis Z on R we may also consider a linear Lévy

growth model given by

Rt(φ) =

∫

At(φ)

ft(ξ; φ)Z(dξ).

The ambit set At(φ) ∈ A and the positive deterministic weight function ft(ξ; φ),
which is assumed to be suitable for the integral to exist, must be defined cyclically
such that Rt(φ) is cyclic. One may also consider the following type of model

Rt(φ) = r0(φ) +

∫ t

0

∫

As(φ)

fs(ξ; φ)Z(dξ)ds. (18)

Note that under the model (18), we have that the time derivative of Rt(φ) is given
by

R′
t(φ) =

∫

At(φ)

ft(ξ; φ)Z(dξ). (19)
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Appendix A: Conditional densities and conditional intensities

Let Π be the unit rate Poisson point process on S and Πt the restriction of Π
to St. We let Ω be the set of all locally finite subsets of S and Ωt the set of finite
subsets of St. On Ωt, we use the σ−algebra At generated by

{z ∈ Ωt : n(z ∩ B) = k}, k ∈ N0, B ∈ Bt,

where Bt is the Borel σ-algebra on St.
We will first state the following basic result for the Poisson point process.

Lemma A.1 Let πt be the distribution of Πt and gt : (Ωt,At) → (R,B(R)) be a
Borel function. Then

∫

Ωt

gt(z)πt(dz) (20)

=
∞

∑

n=0

exp(−t|X |)

∫

X

· · ·

∫

X

∫ t

0

∫ t

t1

· · ·

∫ t

tn−1

gt({(t1, ξ1), . . . , (tn, ξn)})

×dtn · · · dt1dξn · · · dξ1,

where |·| denotes the Lebesgue measure on R
d.
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Proof of Lemma A.1. For the restriction Πt of the unit rate Poisson point process to
St, the number N of points (ti, ξi) in St is Poisson distributed with parameter t|X |
and conditionally on N = n, Πt is distributed as

{(t1, ξ1), . . . , (tn, ξn)}

where (ti, ξi), i = 1, . . . , n, are independent and uniform in St. It follows that

∫

Ωt

gt(z)πt(dz)

=

∞
∑

n=0

exp(−t|X |)
(t|X |)n

n!

∫

X

· · ·

∫

X

∫ t

0

· · ·

∫ t

0

g({(t1, ξ1), . . . , (tn, ξn)})

×
1

(t|X |)n
dtn · · ·dt1dξn · · ·dξ1

=
∞

∑

n=0

exp(−t|X |)

∫

X

· · ·

∫

X

∫ t

0

∫ t

t1

· · ·

∫ t

tn−1

g({(t1, ξ1), . . . , (tn, ξn)})

dtn · · ·dt1dξn · · · dξ1.

�

If Zt has density
gZt

(z), z ∈ Ωt

with respect to the unit rate Poisson point process Πt on St, then for A ∈ At,

P(Zt ∈ A) =

∫

A

gZt
(z)πt(dz) =

∫

Ωt

1[z ∈ A]gZt
(z)πt(dz)

and Lemma A.1 can be used to calculate the integral.
The density of Zt can be expressed in terms of the two families of conditional

densities (1) and (2), as shown in the proposition below.

Proposition A.2 Let

gn(t(n), ξ(n)) =

n
∏

i=1

pi(ti | t(i−1), ξ(i−1))fi(ξi | t(i−1), ξ(i−1), ti)

be the density of the first n points of Z. Then, the density of Zt with respect to Πt

is
gZt

(z) = exp(t|X |)gn(t(n), ξ(n))Sn+1(t | t(n), ξ(n)), (21)

if z ∈ Ωt is of the form

z = {(t1, ξ1), . . . , (tn, ξn)}, t1 < · · · < tn.

Here

Sn+1(t | t(n), ξ(n)) =

∫ ∞

t

pn+1(u | t(n), ξ(n))du, t > tn,

is the survival function of pn+1(· | t(n), ξ(n)).

17



Proof of Proposition A.2. Let N = n(Zt). Then, for A ∈ At,

P(Zt ∈ A)

=
∞

∑

n=0

P(Zt ∈ A, n(Zt) = n)

=

∞
∑

n=0

∫

R+×X

· · ·

∫

R+×X

1[{(t1, ξ1), . . . , (tn, ξn)} ∈ A]1[tn+1 > t]

gn+1(t(n+1), ξ(n+1))dtn+1dξn+1 · · · dt1dξ1

=

∞
∑

n=0

∫

X

· · ·

∫

X

∫ t

0

∫ t

t1

· · ·

∫ t

tn−1

1[{(t1, ξ1), . . . , (tn, ξn)} ∈ A]gn(t(n), ξ(n))

Sn+1(t | t(n), ξ(n))dtn · · · dt1dξn · · · dξ1.

Now Lemma A.1 implies the result. �

Another possibility is specification of the model in terms of the conditional in-
tensities. For an increasing sequence

(t1, ξ1), . . . , (tn, ξn), . . . , t1 < · · · < tn < · · · , (22)

we define the conditional intensity at (t, ξ) by

hn(t, ξ | t(n−1), ξ(n−1)) =
pn(t | t(n−1), ξ(n−1))fn(ξ | t(n−1), ξ(n−1), t)

Sn(t | t(n−1), ξ(n−1))
, (23)

for tn−1 < t ≤ tn (t0 = 0). If a realization of Z is represented as in (22), then

hn(t, ξ | t(n−1), ξ(n−1))dtdξ

can be interpreted as the conditional probability of observing a point at (t, ξ) given
the previous history of the process and a waiting time for the n-th point at least
uptil t. Note that the conditional intensity hn is the product of the hazard function
for the n-th time point given the history (t(n−1), ξ(n−1)) and the density of the n-th
spatial point given the history (t(n−1), ξ(n−1)) and the n-th time point.
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