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Pregroupoids and their enveloping groupoids

Anders Kock

Abstract

We prove that the forgetful functor from groupoids to pregroupoids has
a left adjoint, with the front adjunction injective. Thus we get an envelop-
ing groupoid for any pregroupoid. We prove that the category of torsors is
equivalent to that of pregroupoids. Hence we also get enveloping groupoids
for torsors, and for principal fibre bundles.

Introduction

The present note advocates the algebraic notion of pregroupoid as a natural context
in which to study and compare groupoids, principal fibre bundles, torsors, bitorsors.
The aim has been to provide a theory which is functorial, and can immediately
be interpreted in a wide variety of categories, in particular, in all toposes. Hence,
the construction principle “choose a base point” is not used, since it violates not
only functorality, but also violates the choice principles available in toposes, where
“non-empty” (= inhabited) objects may have no “points” (= global sections). One
motivation I had for looking for such a theory, was to have an adequate, purely
algebraic, framework for studying connections in principal fibre bundles, cf. [9], in
the context of synthetic differential geometry, where topos methods are crucial.

The main construction in this framework is the construction of an “enveloping
groupoid” X+ of a pregroupoid X. It in fact provides a left adjoint for the forgetful
functor from groupoids to pregroupoids, and the unit for the adjunction is injective,
whence the choice of the adjective “enveloping”. In particular, the functor X 7→ X+

is faithful. – As a special case, the construction provides an enveloping groupoid of
any principal fibre bundle.

The enveloping groupoid construction can be described without the notion of
pregroupoid; this was in fact done in [9] (for the case of principal fibre bundles).

An essential ingredient in the construction of X+ is the Ehresmann “edge groupoid”
XX−1 of a principal fibre bundle X. This edge groupoid construction was carried
out in the context of pregroupoids in [7] (but in a less equational manner). The
functor X 7→ XX−1, however, unlike X 7→ X+, is not an adjoint, and is not faith-
ful.

I want to acknowledge a heated but fruitful e-mail exchange with Ieke Moerdijk
in the Summer and Fall of 2002, on some of the topics of the present paper and [9].
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1 Equational theory of pregroupoids

We consider a groupoid G = G1 ⇒ G0. For any two subsets A ⊆ G0 a nd B ⊆ G0,
we let G(A, B) denote the set of arrows ∈ G1 whose domain is in A and whose
codomain is in B. If A = B, this carries structure of groupoid, the full subgroupoid
on A, which thus here is denoted G(A, A).

There are evident book-keeping maps

d0 : G(A, B)→ A and d1 : G(A, B)→ B.

In G, we compose from left to right, denoting composition by ◦. Then com-
position in G, together with the book-keeping maps, provide X = G(A, B) with
a certain partially defined algebraic structure: a ternary operation denoted yx−1z,
defined whenever d1(x) = d1(y) and d0(x) = d0(z), (and then d0(yx−1z) = d0(y)
and d1(yx−1z) = d1(z)). Namely

yx−1z := y ◦ x−1 ◦ z.

The reader may find the following display useful. The vertices are elements of A
and B, respectively (with A-objects in the left hand column, B-objects in the right
hand column).
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The following equations trivially hold for this ternary operation (whenever the
expressions are defined):

xx−1z = z (1)

yx−1x = y (2)

(“unit laws”),
vy−1(yx−1z) = vx−1z (3)

(yx−1z)z−1w = yx−1w, (4)

(“concatenation laws”). The reason for the latter name is motivated by the following
diagrammatic device (also used in [7]):

We indicate the assertion that u = yx−1z by a diagram

x y

z u = yx−1z
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Here, the single lines connect elements in X which have same codomain, double
lines connect elements with same domain. Quadrangles that arise in this way, u =
yx−1z, we shall call good quadrangles, and (3) (resp. (4)) then expresses that good
quadrangles may be concatenated horizontally (resp. vertically). The display of (3)
in terms of quadrangles in fact is

vx y

z u = yx−1z

We proceed to make some purely equational deductions from (1), (2), (3), (4),
which we take as axioms for the notion of pregroupoid. To be specific, we pose

Definition 1 A pregroupoid (“on A, B”) is an inhabited set X equipped with surjec-
tions α : X → A, β : X → B and with a partially defined ternary operation, denoted
yx−1z, defined whenever β(x) = β(y) and α(x) = α(z); and then α(yx−1z) = α(y)
and β(yx−1z) = β(z); and the equations (1), (2), (3), (4) are supposed to hold.

(In [7], essentially the same notion was considered, but from a less equational
viewpoint).

Since the “primitive” operation yx−1z has three variables, equations quickly are
equations in five or more variables, and therefore it is convenient to denote the
variables x1, x2, . . . So the basic operation is x1x

−1
2 x3 (note that x1 corresponds to

y, x2 to x). In fact, to make the notation even more lightweight, we may drop the
“x” in x1, x2, . . . and instead just use the symbols 1, 2, . . . So for instance, (3) is

41−1(12−13) = 42−13. (5)

– The first equational consequence of the axioms is an “associative law”:

(12−13)4−15 = 12−1(34−15) (6)

(provided the book-keeping makes the expressions meaningful, i.e. provided β(1) =
β(2), α(2) = α(3), β(3) = β(4), α(4) = α(5)).

For, (12−13)3−1(34−15) equals (12−13)4−15, by (3), and equals 12−1(34−15) by (4).
Next, we have

21−1(12−13) = 3. (7)

For, if we put 4 = 2 in (5), we get 21−1(12−13) = 22−13 which is 3, by (1). Similarly,
from (4) and (2), we get

(12−13)3−12 = 1. (8)

In the diagrammatic form of quadrangles, as above, these two equations express
the following symmetry property for good quadrangles, which we shall use without
further comment in the “graphical” calculations that follow.

Proposition 1 The mirror image og a good quadrangle in a horizontal line, or in
a vertical line, is again a good quadrangle. (So the “Four-Group” acts on the set of
good quadrangles.)
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Proof. Assume we have a good quadrangle

2 1

3 4

so 4 = 12−13. The fact that the reflection in a horizontal line is a good quadrangle
is the assertion that 1 = 43−12, or, by the assumption on 4, that 1 = (12−13)3−12,
which is just (8). The assertion about reflection in a vertical line similarly follows
from (7).

We shall use the graphical calculus with good quadrangles to establish the fol-
lowing equation

6(34−15)−12 = 65−1(43−12); (9)

again the book-keeping conditions are assumed to make the expression meaningful;
these conditions are stated in diagrammatic form in the diagram

5
u

v 2

6

w

4 3

Assume that all the three displayed quadrangles are good. (These three quadrangles
are constructed out of the data of the entries 2, 3, 4, 5, 6, by first constructing u, and
then v and w.) So u = 34−15, and also v = 43−12 (concatenate the two left hand
quadrangles). So by concatenating the two top quadrangles, we get

w = 65−1v = 65−1(43−12);

on the other hand, the upper right quadrangle expresses that

w = 6u−12 = 6(34−15)−12;

comparing, we get (9).

Let us call a pair (x, z) with α(x) = α(z) a vertical pair. The (horizontal)
concatenation property for good quadrangles, together with (1) and one of the sym-
metries mentioned in the Proposition, imply that we get an equivalence relation ∼=v

on the set of vertical pairs, namely

(x, z) ∼=v (y, u) iff u = yx−1z,

(geometrically: (x, z) and (y, u) form the vertical sides of a good quadrangle). Note
that if (x, z) ∼=v (y, u), then β(x) = β(y) and β(z) = β(u). The equivalence class of
(x, z) is denoted x−1z. The set of such equivalence classes is denoted X−1X.
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Similarly, let us call a pair (x, y) with β(x) = β(y) a horizontal pair. The
(vertical) concatenation property for good quadrangles, together with (2) and one
of the symmetries mentioned in the Proposition, imply that we get an equivalence
relation ∼=h on the set of horizontal pairs, namely

(x, y) ∼=h (z, u) iff u = yx−1z,

(geometrically: (x, y) and (z, u) form the horizontal sides of a good quadrangle).
Note that if (x, y) ∼=h (z, u), then α(x) = α(z) and α(y) = α(u). The equivalence
class of (x, y) is denoted yx−1. The set of such equivalence classes is denoted XX−1.

We proceed to derive some equations that involve “fractions” yx−1 ∈ XX−1 and
x−1z ∈ X−1X. Among these is

(12−13)4−1 = 1(43−12)−1. (10)

By definition of the equivalence relation that defines XX−1, this means

1 = (12−13)4−1(43−12).

But for the right hand side here, we have that it equals (12−13)3−12 (using (3)),
which in turn by (4) equals 12−12, which is 1, by (2). – Similarly, one proves

(43−12)−15 = 2−1(34−15). (11)

2 Enveloping groupoid of a pregroupoid

Since the notion of pregroupoid is purely algebraic (except for the surjectivity re-
quirement for α and β), it is clear how to organize pregroupoids into a category (it
will be upgraded into a 2-category in Section 4): if

A �
α

X
β

- B

and

A′ �
α′

X ′ β′
- B′

are pregroupoids, a morphism ξ from the first to the second consists of maps ξ0 :
A → A′, ξ1 : B → B′ and ξ : X → X ′ commuting with the structural maps and
preserving the ternary operation. It is usually harmless to omit the subscripts and
just write ξ for all three maps in question.

In the following, “groupoid” means “inhabited groupoid”. There is an evident
functor

groupoids → pregroupoids

taking the groupoid G = G1 ⇒ G0 to the pregroupoid G(G0, G0), (so the ternary
operation yx−1z is given by y ◦ x−1 ◦ z).

Theorem 1 This functor has a left adjoint; the front adjunction is injective.
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Proof/construction. Given a pregroupoid X = (A ← X → B), we construct
a groupoid X+ whose set of objects is the disjoint sum of A and B. Thus the set of
arrows will be a disjoint sum of four sets,

X+(A, A), X+(B, B), X+(A, B), X+(B, A).

We first describe these sets with their book-keeping maps d0 and d1, and then we
describe the composition ◦:

X+(A, A) := XX−1; d0(yx−1) := α(y), d1(yx−1) := α(x)

X+(B, B) := X−1X; d0(x
−1z) := β(x), d1(x

−1z) := β(z)

X+(A, B) := X; d0(x) := α(x), d1(x) := β(x);

and finally X+(B, A) is to be another copy of X, which we will denote X−1. An
element x of X will be denoted x−1 when considered in this copy of X. Thus we
put

X+(B, A) := X−1; d0(x
−1) := β(x), d1(x

−1) := α(x) .

The fact that the book-keeping maps for yx−1 and x−1z are well defined follows
from the remarks at the end of Section 1.

Here is the description of the composition in the form of a multiplication table.
We compose from left to right; the type of the left hand factor left hand factor is
listed in the column on the left, the type of the right hand factor in the row on the
top.

A→ A A→ B B → A B → B
A→ A 12−1 ◦ 34−1 12−1 ◦ 3

:= (12−13)4−1 := 12−13
A→ B 1 ◦ 2−1 1 ◦ 2−13

:= 12−1 := 12−13
B → A 3−1 ◦ 21−1 2−1 ◦ 3

:= (12−13)−1 := 2−13
B → B 3−12 ◦ 1−1 2−13 ◦ 4−15

:= (12−13)−1 := 2−1(34−15)

We proceed to check that the operation ◦ thus defined is associative. There are 16
cases to be considered, namely one for each 4-letter word in the letters A and B. All
these cases follow directly from the defining equations in the table, together with
equtions already derived for the ternary operation yx−1z. The cases AAAA, AAAB,
AABB, ABBB and BBBB were in effect dealt with, from a different viewpoint, in
[7]. In terms of equations, the case AAAB, for instance, is proved as follows:

(12−1 ◦ 34−1) ◦ 5 = (12−13)4−1 ◦ 5 = (12−13)4−15,

using two definitions from the table, and

12−1 ◦ (34−1 ◦ 5) = 12−1 ◦ (34−15) = 12−1(34−15),

likewise using two definitions from the table; but these two expressions are equal by
virtue of (6).
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The cases not dealt with in [7] are those eleven 4-letter words that involve the
phrase BA. We proceed with these (eleven) cases.

AABA : 12−1 ◦ 3 ◦ 4−1 =

{
(12−13) ◦ 4−1 = (12−13)4−1

12−1 ◦ 34−1 = (12−13)4−1

where here, and in the following similar calculations, the first line indicates the
bracketing (x ◦ y) ◦ z, the second the bracketing x ◦ (y ◦ z).

ABAA : 1 ◦ 2−1 ◦ 34−1 =

{
12−1 ◦ 34−1 = (12−13)4−1

1 ◦ (43−12)−1 = 1(43−12)−1

and these are equal by (10).

BAAA : 2−1 ◦ 34−1 ◦ 56−1 =

{
(43−12)−1 ◦ 56−1 = (65−1(43−12))−1

2−1 ◦ (34−15)6−1 = (6(34−15)−12)−1

and these are equal by (9).

ABAB : 1 ◦ 2−1 ◦ 3 =

{
12−1 ◦ 3 = 12−13
1 ◦ 2−13 = 12−13

(This is the crucial case for the comparison of the pregroupoid X and its enveloping
groupoid X+ !)

ABBA : 1 ◦ 2−13 ◦ 4−1 =

{
(12−13) ◦ 4−1 = (12−13)4−1

1 ◦ (43−12)−1 = 1(43−12)−1

and these are equal by (10).

BAAB : 2−1 ◦ 34−1 ◦ 5 =

{
(43−12)−1 ◦ 5 = (43−12)−15
2−1 ◦ (34−15) = 2−1(34−15)

and these are equal by (11).

BABA : 2−1 ◦ 3 ◦ 4−1 =

{
2−13 ◦ 4−1 = (43−12)−1

2−1 ◦ 34−1 = (43−12)−1

BBAA : 2−13 ◦ 4−1 ◦ 56−1 =

{
(43−12)−1 ◦ 56−1 = (65−1(43−12))−1

2−13 ◦ (65−14)−1 = ((65−14)3−12)−1

and these are equal by (6).

BABB : 2−1 ◦ 3 ◦ 4−15 =

{
2−13 ◦ 4−15 = 2−1(34−15)
2−1 ◦ (34−15) = 2−1(34−15)

BBAB : 2−13 ◦ 4−1 ◦ 5 =

{
(43−12)−1 ◦ 5 = (43−12)−15
2−13 ◦ 4−15 = 2−1(34−15)

and these are equal by (11).

BBBA : 2−13 ◦ 4−15 ◦ 6−1 =

{
2−1(34−15) ◦ 6−1 = (6(34−15)−12)−1

2−13 ◦ (65−14)−1 = ((65−14)3−12)−1

and these are equal by (9) and (6).
These calculations prove that the composition ◦ is associative. To prove the

existence of units for X+, we use that α : X → A and β : X → B were assumed
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surjective. For a ∈ A ⊆ A + B, pick an element x ∈ X with α(x) = a. Then xx−1

will serve as a unit for the object a; for, we have

xx−1 ◦ uv−1 = (xx−1u)v−1 = uv−1,

using (1). Also,
yz−1 ◦ xx−1 = (yz−1x)x−1 = y(xx−1z)−1,

by (10) (put 3 = 4). Now use (1) to get yz−1 back. Finally xx−1 ◦ u = xx−1u = u,
by (1) again.

Similarly, one proves that x−1x is a unit for the object b = β(x) ∈ B ⊆ A + B.
Inverses are also almost tautologically present: yx−1 has xy−1 as an inverse; for

yx−1 ◦ xy−1 = (yx−1x)y−1 = yy−1,

using (2). Similarly, z−1x and x−1z are mutually inverse; and finally, x as an arrow
a→ b, has x−1 : b→ a as inverse.

This proves that X+ is a groupoid.
The set X+(A, B) is by construction of X+ just the given pregroupoid X, so

that we have an injective mapping η from X to the (set of arrows of) X+. Since
y ◦ x−1 ◦ z = yx−1z (cf. the case ABAB in the above proof), η is a morphism of
pregroupoids into the underlying pregroupoid of X+, so it just remains to check
its universal property. A pregroupoid homomorphism from A ← X → B into the
underlying pregroupoid of a groupoid G = G1 ⇒ G0, consists of φ0 : A → G0,
φ1 : B → G0, and a map φ : X → G1. The maps φ0 and φ1 together define a map
A + B → G0, which is the object part of the desired functor φ : X+ → G. The
value of φ on arrows is forced to be φ(x) = x (since we require φ composed with η
to give φ), and then the remaining three cases are also forced if we want φ to be a
functor:

φ(x−1) := (φ(x))−1, φ(xz−1) := φ(x) ◦ φ(z)−1, φ(yx−1) := φ(y) ◦ φ(x)−1,

and it is clear from the defining formulas (from the table) that φ preserves compo-
sition, and also clearly identities. This proves the Theorem.

Because X embeds into the groupoid X+, we propose the name enveloping
groupoid of X for it. It is analogous to the enveloping associative algebra of a
Lie algebra in the sense that all equations concerning the ternary operation yx−1z
can be checked under the assumption that yx−1z is actually y ◦ x−1 ◦ z for the
(associative) composition ◦ of a groupoid. We have utilized this principle in the
calculations concerning connections in principal fibre bundles, cf. [9], (where the
name comprehensive groupoid was used for what we here call enveloping groupoid).

The set of objects of the enveloping groupoid X+ contains the sets A and B
as subsets. With respect to these subsets it has a certain property, namely it is
A-B-transitive; by this we mean that to every a ∈ A there exists a b ∈ B and an
arrrow a→ b; and to every b ∈ B, there exists an a ∈ A and an arrow a→ b. The
first assertion is an immediate consequence of the surjectivity of α : X → A, the
second of the surjectivity of β.
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3 Pregroupoids and torsors

If G is a groupoid with object set A, and α : X → A is a map, there is a well
known notion of (left) action of G on X: if g is an arrow in G and x ∈ X satisfies
α(x) = d1(g), then g · x ∈ X is defined and α(g · x) = d0(g). Unit and associative
laws are assumed. Then X becomes the set of objects of a groupoid, the action
groupoid of the action; the arrows are pairs (g, x) with d1(g) = α(x).

There is an evident category of left groupoid actions: an object is a pair consisting
of a groupoid G = (G1 ⇒ A) and a map α : X → A on which G acts; and a
morphism (G, X → A) → (G′, X ′ → A′) is a pair consisting of a functor G → G′

and a map X → X ′, which is compatible with the structural maps X → A and
X ′ → A′, and with the actions.

The category of right groupoid actions is defined similarly.
Finally, there is a category of bi-actions: an object consists a span of maps

A �
α

X
β

- B

and a pair of groupoids G and H acting on the left and right on X → A and
X → B, respectively, and so that the two actions commute with each other (A
being the object set of G, B the object set of H).

The category of left torsors is a full subcategory of the category of left groupoid
actions. We take the notion of torsor in the generality which was given to it by
Duskin [2]. We say that the an action by G on X → A makes X into a G-torsor if
X → A is surjective, and the action groupoid is an equivalence relation. Also, X,
or equivalently A, is assumed to be inhabited (“non-empty”). So for x, y ∈ X, there
is at most one g ∈ G1 with g · x = y; such g, then, may be denoted yx−1.

Consider a left G-torsor structure on α : X → A. Since the action groupoid is
an equivalence relation on X, we may consider its quotient β : X → B. We say that
X → A is a left G-torsor over B, or that B is the orbit set of the left G-torsor. We
may write B = X/G.

The category of right torsors is defined similarly as a full subcategory of the
category of right actions. Finally, a bitorsor is a bi-action on a span A ← X → B,
which is a left torsor and a right torsor, and so that the structural map X → B is a
quotient map for the action groupoid (equivalence relation) for the left action, and
X → A is a quotient map for the action groupoid for the right action. The category
of bitorsors is then defined as the full subcategory of the category of biactions
consisting of bitorsors.

We denote the three categories thus described

lTORS, rTORS, and lrTORS,

respectively.
If K is a groupoid, and A and B are inhabited subsets of its object-set, then the

set X := K(A, B) carries a left action by the groupoid K(A, A), by precomposition,
(with α = d0 : X → A as book-keeping map). If K is A-B-transitive in the sense
described at the end of the previous section, this G(A, A)-action is in fact a torsor.
For, α : X → A is surjective, by the A-B-transitivity assumption, and to any
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x, y ∈ K(A, B) there exists at most one g ∈ K(A, A) with g · x = y. There exists
such g precisely when x and y have same codomain (assumed to be in B), and so
B is the orbit set of this torsor X (surjectivity of X → B follows again by the
A-B-transitivity).

Similarly, K(A, B) carries a right action, by post-composition, by the groupoid
K(B, B), and is in fact a right torsor, under assumption of A-B-transitivity. It is
in fact a K(A, A)-K(B, B)-bitorsor. For, the actions commute, by the associativity
of composition in K.

In [7], we sketched (Example p. 199) how a torsor gives rise to a pregroupoid.
We shall extend this result by showing that this construction is in fact a description
of an equivalence between the category of pregroupoids (as described in Section 2),
and each of the three categories lTORS, rTORS and lrTORS.

We first recall the passage (functor) from left torsors to pregroupoids. Let G be
a groupoid, acting on the left on α : X → A (A being the set of objects of G), and
assume that it makes X into a torsor with orbit set B (with quotient map denoted
β : X → B). The action is denoted by a dot.

If now β(x) = β(y), they are in the same orbit for the action, and since the action
is free (by the torsor condition), there is precisely one g ∈ G with g · x = y. This
g may therefore be denoted by a proper name, we call it yx−1, so that yx−1 ∈ G is
characterized by

yx−1 · x = y.

We note that d1(yx−1) = α(x), and d0(yx−1) = α(y). If now z ∈ X has α(z) = α(x),
yx−1 · z makes sense, and α(yx−1 · z) = d0(yx−1) = α(y). Also, by construction, z
and yx−1 · z are in the same orbit for the action, so β(z) = β(yx−1 · z). Thus, if we
put

yx−1z := yx−1 · z,
we have defined a ternary operation on X with the correct book-keeping for a pre-
groupoid. We proceed to check the four equations (1)-(4). First, xx−1 is the identity
arrow at α(x), by the unitary law of the G-action. So xx−1 · z = z, by the unitary
law of the G-action, hence xx−1z = z, proving (1). The equation (2), on the other
hand, is just the defining equation for yx−1.

Next consider x, y, z, v ∈ X with β(x) = β(y) = β(v) and α(x) = α(z) (the
reader may want to refer to the graphic display – a double quadrangle – of precisely
these book-keeping conditions, in Section 1 above). Then

vy−1(yx−1z) = vy−1 · (yx−1 · z) = (vy−1 ◦ yx−1) · z,

using the defining equations (twice) for the first equality sign, and the assiociative
law for the G-action for the second (composition in G denoted by ◦). On the other
hand

vx−1z = vx−1 · z
by definition, so (3) will follow by proving

vy−1 ◦ yx−1 = vx−1.

By the freeness of the action, it suffices to prove

(vy−1 ◦ yx−1) · x = vx−1 · x.
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The left hand side is by the associative law of the action the same as vy−1 ·(yx−1 ·x),
which is v, by two applications of the defining equations for the “fractions” of the
form yx−1; the right hand side is also v, by one such defining equation. This proves
(3).

Finally, consider x, y, z, w ∈ X with β(x) = β(y) and α(x) = α(z) = α(w).
First, we claim that (yx−1z)z−1 = yx−1; since the action is free, it suffices to see
that (yx−1z)z−1 · z = yx−1 · z. But both sides of this equation are equal to yx−1z.
So

(yx−1z)z−1w = ((yx−1z)z−1) · w = yx−1 · w = yx−1w,

proving (4). Note that no equational assumptions (unitary or associative law of
action) were used in the proof of (2) and (4).

It is clear that a morphism of left torsors, in the sense explained above, gives
rise to a morphism of pregroupoids, so that the construction described is actually a
functor

cl : lTORS → pregroupoids. (12)

(For a left torsor X → A with orbit set X → B, the pregroupoid constructed is a
pregroupoid on A, B.)

Similarly, we have a functor cr : rTORS → pregroupoids.
On the other hand, the envelope construction provides a functor

pregroupoids→ groupoids,

X 7→ X+. If A ← X → B is a pregroupoid, then X+ is a groupoid with object
set A + B, and so we may form the X+(A, A)-X+(B, B)-bitorsor X+(A, B) by the
recipe in the beginning of the present Section. So the construction of enveloping
groupoid gives also gives rise to a functor

pregroupoids
env

- lrTORS.

Finally, there are the two obvious forgetful functors

lrTORS
Ur - lTORS lrTORS

Ul - rTORS

forgetting the right and left action, respectively.
We collect the functors described here together in the diagram

lrTORS
Ul - rTORS

lTORS

Ur

?

cl

- pregroupoids

cr

?

env
- lrTORS.

Theorem 2 All functors exhibited here are equivalences. Any endofunctor com-
posed of functors (=cyclic composite) exhibited here is isomorphic to the relevant
identity functor. The square commutes on the nose. The cyclic composite (13)
(below) is, on the nose, the identity functor on the category of pregroupoids.
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In the next Section, we shall describe yet another category equivalent to these,
namely the category of (groupoid-) fibrations over the groupoid I (=the generic
invertible arrow). – Note that among the four categories proved equivalent in the
Theorem, the category of pregroupoids is the most “compact”, in the sense of in-
volving least data; this is why it is possible to have certain strict equalities between
functors with values in the category of pregroupoids.

Proof. We first prove that the square commutes. Let A ← X → B be a
bitorsor for left and right actions of the groupoids G = G ⇒ A and H = H ⇒ B,
respectively. The two pregroupoids constructed by the two functors cl ◦ Ur and
ct ◦ Ul both have A → X → B for its underlying sets, so it suffices to see that the
two ternary operations on X agree. Consider x, y, z satisfying the relevant book-
keeping conditions for formation of the two possible yx−1z. So there are (unique)
arrows g ∈ G and h ∈ H so that g · x = y and x · h = z. Then g · z = (yx−1z)l

and y · h = (yx−1z)r (with (yx−1z)l, resp. (yx−1z)r, denoting the ternary operation
coming from the left, respectively right, torsor structure). We then have

(yx−1z)l = g · z = g · (x · h) = (g · x) · h = y · h = (yx−1z)r,

using for the middle equality sign that the two actions commute with each other.
We next prove that the composite

pregroupoids
env

- lrTORS
Ur - lTORS

cl - pregroupoids (13)

is the identity functor (on the nose). Starting with a pregroupoid A← X → B, the
composite of the two first functors here gives the left X+(A, A)-torsor X+(A, B) =
X, with ternary operation given in terms of the composition ◦ in X+. But the
composition of arrows from A to A with arrows from A to B in X+ are precisely
defined by the ternary operation in X, cf. the entry with address (1, 2) in the table
which defines the composition ◦.

Next, we prove that the composite

lTORS
cl - pregroupoids

env
- lrTORS

Ur - lTORS (14)

is isomorphic to the identity functor on lTORS (a similar statement holds for
rTORS). Given a left G-torsor A ← X, with X → B as orbit set, the underlying
object of the “new” torsor is again A← X, so we just have to provide isomorphisms
between the acting groupoids, in this case G ∼= X+(A, A) (compatible with the
actions). The object sets of both G and X+(A, A) are A. The isomorphism on the
arrow sets is given by sending g : a → a′ into yx−1 where y = g · x, x ∈ X any
element of X over the codomain of the arrow g. The passage the other way takes
a “fraction” yx−1 to the unique arrow g with g · x = y (as also anticipated by the
notation yx−1 which we used for this g in the discussion of torsors).

The same argument, applied twice (once on the left and once on the right) proves
that the composite

lrTORS
Ur - lTORS

cl - pregroupoids
env

- lrTORS

12



is isomorphic to the identity functor on lrTORS. So the three functors displayed
here provides a “cycle” of three arrows, with all three cyclic composites isomorphic
to the identity functor of the respective vertex. So all three of them are equivalences.
Similarly, also cr and Ul are equivalences. This proves the Theorem.

Corollary 1 There is an adjoint equivalence

lTORS
ad

- rTORS

Namely, take ad to be the composite

lTORS
cl - pregroupoids

env
- lrTORS

Ul - rTORS

The quasi-inverse is constructed similarly (replace all l’s by r’s and conversely). It
may also be denoted ad. – This ad-equivalence is classical, and plays (at least in the
case of bitorsors over groups) an important role in Giraud’s book, [4] III.1, where
the notation ad also appears.

A torsor (right, say) (G, X → B), where B = 1 (and thus G is just a group) is
usually called a principal G-bundle over A, where A is the orbit set. The construc-
tion of the adjoint groupoid ad(X), or gauge groupoid XX−1, which is a groupoid
with A as object set, is classical, due to Ehresmann, [3]. In our context, it appears
as a full subgroupoid of X+, which in this case is a groupoid with A+B = A+1 as
object set. Note that the functor X 7→ X+ is faithful (since X+ contains X as a sub-
set), whereas X → XX−1 is not. A description of the enveloping (=comprehensive)
groupoid X+ for the case of principal bundles was given in [9]. The construction
there was carried out without the notion of pregroupoid; but then the naturality
and symmetry of the construction is not so visible.

4 Fibrations over I

We discuss fibered categories E → B, see e.g. [4] for this notion. It is well known
that the fibres of such a fibration are groupoids if and only if all arrows in E are
cartesian. For fixed base category B, we thus get the category of such “fibrations-
in-groupoids” over B. If B happens to be itself a groupoid, then the total category
E of a fibration-in-groupoids is also a groupoid. We let I denote the groupoid
containing the “generic invertible arrow”, in other words, I has two objects a0 and
b0, and besides the two identity arrows, it has one arrow i : a0 → b0 and one arrow
i−1 : b0 → a0, and no other arrows. It can be described in very many ways; for
instance, it is the enveloping groupoid of the terminal pregroupoid 1 = 1← 1→ 1.

The following result is an application of the enveloping groupoid.

Theorem 3 The category of bitorsors (hence also the category of pregroupoids, by
Theorem 2) is equivalent to the category of fibrations-in-groupoids over I with in-
habited total category.
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Proof. Given a fibration γ : X → I. Let A be the set of objects a in X with
γ(a) = a0, and B the set of objects in X with γ(b) = b0. If X is inhabited, then so
are both A and B. Then X is A-B transitive, in the sense of Section 2 (end). For,
given b ∈ B, take a (cartesian) arrow over i with codomain b; it will be an arrow
from an object in A to b. Similarly for a given object a ∈ A (utilize i−1). Therefore,
X(A, B) is a X(A, A)-X(B, B)-bitorsor. Conversely, given a G-H bitorsor X (where
the object sets of G and H are A and B, respectively). Consider it as a pregroupoid
X on A, B via the functor from bitorsors to pregroupoids, described in Theorem 2.
Its enveloping groupoid X+ is a groupoid with object set A + B. We get a functor
γ : X+ → I, easily described ad hoc (mapping each a ∈ A to a0 etc.); alternatively
apply the (left adjoint) functor (−)+ : pregroupoids → groupoids to the unique
pregroupoid morphism X → 1.

We note that if X → I is an inhabited fibration, then the inclusion of either of
the two fibres, i.e. the “end” groupoids X(A, A) and X(B, B), is an equivalence of
categories. For, they are clearly full and faithful, and essential surjectivity follows
from the A-B transitivity.

However, the functor which to a fibration X → I associates the groupoid in
either end, say X(A, A) is not an equivalence; it is not even faithful.

Now the category of inhabited fibrations-in-groupoids over I is in an evident way
a 2-category; the 2-cells are just natural transformations. Thus, the components of
the 2-cells (natural transformations) are vertical arrows. In particular, 2-cells are
invertible. Since the inclusions of each of the two end-groupoids (or edge groupoids)
are equivalences, it follows that a 2-cell between two functors over I is completely
given by its components on the objects in the a0-end, or by its components on the
objects in the b0-end. In particular, enriching the category of principal bundles
(over varying groups) into a 2-category only amounts to considering the category of
groups as a 2-category in the standard way (2-cells being given by “conjugation by
an element in the codomain group”).

From the equivalence of the Theorem follows that there is a 2-dimensional struc-
ture (with all 2-cells invertible) on the category of pregroupoids, and the rest of this
section just consists in making this 2-dimensional structure explicit.

So consider two inhabited fibrations X→ I and X′ → I, and two functors f and
g : X→ X′ over I, and let τ : f → g be a natural transformation. Denote by A and
B the set of objects in X over a0 and b0, respectively, and similarly A′ and B′ in
X′. The functor f , being a functor over I, induces maps A→ A′ and B → B′, these
maps are also just denoted f . Similarly the maps A→ A′ and B → B′ induced by
g are denoted g. Finally, let X be the pregroupoid X(A, B) on A, B, and similarly
for X ′ on A′, B′.

Consider for a ∈ A the arrow τa : f(a)→ g(a) in X′(A, A). For any u : g(a)→ b
(b an object ∈ B′; such u exist by A′- B′-transitivity of X′), let t(a, u) : f(a) → b
denote τa ◦ u. Then of course τa = t(a, u) ◦ u−1. Note that u ∈ X ′. Similarly, for
b ∈ B, τb : f(b)→ g(b) may be written τb = v−1 ◦ s(b, v), where s(b, v) is v ◦ τb. Note
that v ∈ X ′.
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The reader may find the following display helpful:

f(a) a
v

- f(b)

g(a)

τa

?

u
- b

t(a, u)

-

g(b)

τb

?

s(b, v) -

Now t and s are (partially defined) maps which satisfy three equations, and
together, encode the information of the 2-cell τ in pure pregroupoid terms. Precisely,
t(a, u) is defined whenever α′(u) = g(a) (α′ denoting domain formation X ′ → A′);
and then α′(t(a, u)) = f(a), β′(t(a, u)) = β′(u), where β′ : X ′ → B′ is codomain
formation. Similarly, s(b, v) is defined whenever β′(v) = f(b), and then β′(s(b, v)) =
g(b), α′(s(b, v)) = α′(v). The following equations hold (assuming that the book-
keeping conditions make them meaningful); we omit the sign ◦ for composition in
X and X′:

t(a, g(x)) = s(b, f(x)) (15)

t(a, u)v−1w = t(a, uv−1w) (16)

wu−1s(b, v) = s(b, wu−1v) (17)

The equation (15) just follows from the naturality of τ with respect to x : a → b.
For, consider the commutative naturality square (expressing naturality of τ with
respect to x : a→ b)

f(a)
f(x)

- f(b)

g(a)

τa

?

g(x)
- g(b)

τb

?
-

(18)

The diagonal makes both triangles commute, and their commutativity express that
the diagonal is, respectively, t(a, g(x)) and s(b, f(x)), which thus are equal.

For the equation (16), both sides are equal τa ◦ u ◦ v−1 ◦ w, and for (17), both
sides are equal to w ◦ u−1 ◦ v ◦ τb.

We now show that the data of such t and s, satisfying the three equations, come
from a unique natural transformation τ .

To define τa for a ∈ A, pick by A-B-transitivity an arrow u : g(a)→ b and put

τa := t(a, u) ◦ u−1.

That this is independent of the choice of u is an immediate consequence of (16).
Similarly,

τb := v−1 ◦ s(b, v)

for some v : a→ f(b); this is independent of choice of v by (17). It remains to check
naturality of the τ thus constructed. Now, τ is natural with respect to arrows a→ b
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(for a ∈ A, b ∈ B); this follows from (15), by chosing u := g(x), v := f(x) in the
defining equations for τa and τb, respectively (contemplate (18), now with the two
expressions in (15) as diagonal).

But arrows of the form a → b (for a ∈ A, b ∈ B) generate X as a groupoid, so
therefore, naturality of τ with respect to such arrows implies naturality with respect
to all arrows in X.

5 Examples

Let A and B be two smooth manifolds of dimensions n and k, say, with n ≥ k, and
consider a geometric distribution D on A of codimension equal to the dimension k
of B. Let X be the set of all 1-jets of maps from A to B with D as kernel. Precisely,
for each a ∈ A, consider the set Xa of 1-jets at a of maps f : A→ B such that the
kernel of dfa : Ta(A) → Tf(a)(B) is the linear subspace Da ⊆ Ta(A). For dimension
reasons, then, dfa is surjective. Let X be the disjoint union of all the Xa’s. Then X
is born with a map α : X → A, but is also comes with a map β : X → B, namely
to the 1-jet of f at a, asssociate f(a) ∈ B. (Actually X is a submanifold of the
standard jet manifold J1(A, B) of 1-jets of maps from A to B.)

We shall equip this A ← X → B with a ternary operation making it into a
pregroupoid. So let x, y and z be 1-jets with D as kernel, in the sense explained,
represented by functions f, g and h. Assume α(x) = α(z), = a, say, and β(x) =
β(y), = b, say. Since daf and dah are surjective linear maps with the same kernel
Da, there is a unique bijective linear map κ : Tf(a)B → Th(a)B with daf ◦ κ = dah
(composing from left to right). By the Inverse Function Theorem, there is locally
around f(a) a smooth map k with df(a)k = κ. We put yx−1z equal to the 1-jet
af a′ = α(y) of the composite g ◦ k. This makes sense, since g(a′) = f(a) by the
book-keeping assumption β(y) = β(x).

The verification of the four equations is straightforward. – The edge groupoids
of this pregroupoid are the following: X−1X is the groupoid of all invertible 1-jets
b→ b′ from B to itself; XX−1 is the groupoid of 1-jets a→ a′ from A to itself which
“take D into D”, i.e. 1-jets at a of functions F such that dFa : Ta(A) → Ta′(A)
maps Da into Da′ .

This latter groupoid also occurs as edge groupoid of a principal GL(k) bundle
Y over M , namely the bundle of surjective linear maps TaA → Rk with D as
kernel. But note that there is no natural way of mapping the pregroupoid X to
the pregroupoid Y ; in fact, such a map would amount to a framing of the tangent
bundle of B.

Pregroupoids A ← X → B with both A and B equal to the 1-point set were
considered in [5] under the name pregroups. The two edge groupoids are in this case
just groups; in fact two groups which are isomorphic, but not canonically isomorphic,
unless they are abelian. Picking an element in X will provide a specific isomorphism
between the two edge groups.

My contention is that the notion of pregroup is simpler than that of group. In
fact, in some cases, it precedes the notion of group in the process of understanding.
How many ways can you put three pigeons into three pigeon holes? Without knowing
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anything about neither pigeons nor mathematics, most people will, after a moments
reflection, be able to answer “six”. This number of ways (or this set of ways, as
mathematicians prefer to say) carries canonically the structure of pregroup (being
a set of bijections from one set to another), but does not carry structure of group.
The two edge groupoids are of course both “the” symmetric group S3, namely the
group of permutations of the given three pigeons, respectively of the three given
pigeon holes. What is a permutation of three pigeons? “Put the white pigeon in
the place where the grey pigeon was, and put the grey pigeon in the place where
. . . ”. Not a very natural thing to do, and in any case is equivalent to describing
permutations in terms of the places the pigeons were occupying, before and after
the permutation. These places may as well be called “pigeon holes”, and then we
are precisely describing the elements of the pigeon-permutation group in terms of
fractions yx−1 made out of the pregroup.

A more mathematical version of this comment is the following: What is “the”
symmetric group in three letters? What is the sense of the definite article “the”?
The group of permutations of the three letters A, a, and α is not the same as
the group of permutations of the three letters b, c, d; these groups are not even
canonically isomorphic (which in mathematics is sufficient justification for using the
definite article). For, an isomorphism between them depends on choosing a bijection
between the two three-letter sets; a different choice may change the constructed
isomorphism by a conjugation. This means that “the symmetric group in three
letters” is well defined only in the category of groups and conjugation classes of
group homomorphisms, i.e., “the symmetric group in three letters” is an object in
the category of “liens”, or “bands”, in the termonology of [4] resp. [2].
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