W THIELE CENTRE

FOR APPLIED MATHEMATICS IN NATURAL SCIENCE

Algorithms to estimate the rose of directions
of a spatial fiber system

o
Eﬁ?-’ +  Markus Kiderlen and Andreas Pfrang

Research Report No. 01 | January 2005



Algorithms to estimate the rose of
directions of a spatial fiber system

This Thiele Research Report is also Research Report number 451 in
the Stochastics Series at Department of Mathematical Sciences,
University of Aarhus, Denmark.






ALGORITHMS TO ESTIMATE THE ROSE OF DIRECTIONS
OF A SPATIAL FIBER SYSTEM

MARKUS KIDERLEN AND ANDREAS PFRANG

Markus Kiderlen, DEPARTMENT OF MATHEMATICAL SCIENCES, UNIVERSITY OF AARHUS,
NY MUNKEGADE, DK-8000 AARHUS C, DENMARK, KIDERLEN@IMF.AU.DK

Andreas Pfrang, INSTITUTE OF APPLIED PHYSICS, UNIVERSITY OF KARLSRUHE, D-76128
KARLSRUHE, GERMANY, ANDREAS.PFRANG@PHYSIK.UNI-KARLSRUHE.DE

ABSTRACT. Anisotropy of a stationary fibre process in three dimensional space can
equivalently be quantified by the directional measure (which is up to normalization
the rose of directions), the rose of intersections and the associated zonoid. The best
accessible quantity is the rose of intersections, as its values can be estimated by count-
ing intersections of the fibres with lower dimensional test sets. Three non-parametric
algorithms to estimate the directional measure, based on this information, are inves-
tigated. We also present estimators for the associated zonoid, which turns out to be
an intuitive tool for visualization. The methods are applied to two different carbon
fibre architectures and to simulated data.

1. INTRODUCTION

The analysis of spatial systems of fibres is a frequent problem in biology, metallogra-
phy and other applied sciences. Mathematically, these structures are often modeled as
stationary fibre processes. The most basic characteristic of a stationary fibre process
is the length density Ly, which is the mean total length of all fibres in an observation
window of unit volume. Of course, this characteristic does not give any information
about preferred directions of the process. To describe anisotropy of the process, there
are three quantities in common use. Although, theoretically, all three describe the same
first order characteristics of the fibre process, they differ considerably from a practical
point of view. The first is the so called rose of (tangent-) directions R, which is a mea-
sure on the unit sphere in R3. It is the distribution of the fibre tangent at a randomly
chosen “typical” point of the fibre system. The preferred directions of a fibre system
are, loosely speaking, just the directions where R carries most of its mass. R is often
not directly accessible, as an estimation of R would require the measurement of spatial
directions inside the sample. The second quantity is the rose of intersections ~, which
is a function on the unit sphere. For a unit vector u, y(u) is the mean number of inter-
section points of the fibre process with a test window of unit area placed in a plane with
normal u. (Due to the stationarity this mean number only depends on the orientation,
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but not on the location of plane and probe.) The estimation of the rose of intersec-
tions (at least at a finite number of normal directions wuy, ..., uy) is a straightforward
counting procedure of intersection points with lower dimensional test sets. The third
way to describe anisotropy is a three dimensional set, the so called associated zonoid
Z (or Steiner compact) of the fibre process. Z is convex, symmetric with respect to
the origin and has the property that its support function is v; for details, see below.
Although this definition of Z is rather indirect, we will see later that it can be used to
visualize the directional information in an intuitive way.

If the fibre process is isotropic, then R is the rotation invariant probability measure
on the sphere, 7 is a constant and Z is a ball. It is not necessary to reconstruct R or
Z to detect anisotropy, as the easily accessible function 7 also indicates anisotropy. A
reconstruction of R is needed, if preferred directions are to be specified, e.g. for the
purpose of quality control or if the fibre process is to be simulated to derive statistical
properties of the given fibre system. The simplest model of a stationary fibre process
is a Poisson process of line segments of unit length, which is determined by the two
parameters R and Ly . Therefore, a simulation approach requires the estimation of
these two quantities. In this note we compare three methods to reconstruct R and
Ly from blurred measurements of the rose of intersections in finitely many directions
and illustrate this approach with an application to carbon fibre data. In addition, we
visualize the directional properties using the associated zonoid.

Several methods have been introduced in the two-dimensional case, where the rose
of directions is a distribution on the unit circle (or, using the natural parametrization,
on the interval [0,27)), the rose of intersections is derived from intersection counts
with test lines and the associated zonoid is a planar convex set. For surveys of these
approaches see e.g. [16] or [12].

For fibre processes in three dimensional space, parametric methods have been sug-
gested. There are also approaches which assume that R has a smooth density (for
example, a finite sum of spherical harmonics). For an overview of those methods we
refer to [7, p. 7]. More recently, non-parametric methods have been developed which
yield maximum likelihood estimators for R, see [7], [9], [5, Section 9]. We will adopt
this latter approach here and compare a least squares estimator with estimators based
on the use of the EM algorithm and a linear program approach. After a more formal
description of the notions in Section 2, we will describe the estimators of Ly, R and Z
in Section 3. Section 4 is devoted to the application of the theory to a process of spatial
carbon fibres. In Section 5 reconstruction from simulated data is used to illustrate the
isotropic case. Section 6 concludes with some practical recommendations.

2. NOTATION AND PRELIMINARIES

We will now give a brief and more formal introduction to the notions and results
that are needed later. For details the reader is referred to [16]. We assume that the
system of fibres to be analyzed is a realization of a fibre process X, i.e. a collection
of random fibres (smooth curves of finite length in three dimensional space R?) with
the property that any bounded set only hits finitely many fibres. We also assume that
X is homogeneous or stationary, meaning that the statistical properties of X do not
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change if X is translated. A direction is a unit vector, that is an element of the unit
sphere S? in R3. We introduce the directional measure n of X, which combines the
rose of direction and the length density in one measure: Let W C R? be an observation
window (a measurable set) of unit volume. For an origin-symmetric measurable set A
of directions let 7(A) be the mean total length of the union of all fibre points in W
with normalized tangent vector in A. This definition is independent of W and gives
rise to a measure 1 on S?, which is even (i.e.  carries the same mass on a set and
on its reflection at the origin). The total mass of 1 is, by definition, Ly = n(S?%). If
0 < Ly < oo, we can normalize n and obtain the rose of directions:
n()

R(:) = I
Identifying a unit vector with the line, which is the linear span of this vector, we
could consider R as a distribution on the space of all straight lines through the origin.
This is sometimes done in the literature (e.g. in [16, p. 297]), but we prefer here the
interpretation as even distribution on the unit sphere S%. Note that the algorithms,
which will be described later, naturally yield an estimator for n, and we therefore
describe the estimation of n5. Clearly, if 7} is such an estimator, then 7)(.5?) is an estimator
for Ly and 7/7(S?) is an estimator for R.

For an arbitrary measure p on S? let 7 (p, -) be the function given by

T u) = / ol duv),  ue S,
g2

where

U -V = UV + UV + U3V3
is the usual inner product of u = (uy, ug,u3) and v = (vq,v2,v3). As u and v are both
unit vectors, u - v is the cosine of the angle between u and v. The integral transform
7 (u, -) is therefore called cosine transform of . The rose of intersections ~y, which was
defined in the introduction, obeys

(1) y(u) =T (nu), uweS™

It is well known that the cosine transform determines any even measure uniquely, so
v and n carry the same directional information. To introduce the associated zonoid, we
need to describe a compact convex set analytically: For a compact convex set K C R3
containing the origin and a unit vector u let h(K,u) be the distance of the origin 0 to
the supporting plane at K with outer normal u, see Figure 1. h(K, ) is called support
function of K and determines K uniquely. If K and K’ are two compact convex sets,

K+ K ={a+d|a€eK, d €K'}
denotes Minkowski addition and oK = {aa|a € K} scaling of K with a > 0, we have

(2) haK +d'K',-) = ah(K, ) + o'h(K',-), a, o > 0.
To give some examples, we note that K is a ball centered at the origin if and only if
h(K,-) is constant. If K = [—wv,v] is the line segment with endpoints —v and v, then

h(K,u) = |u-v|. In view of (2) and (1), this shows that v is the support function
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FIGURE 1. The definition of the support function h(K,-) in the case of
a planar convex set K.

of a convex body Z = Z(X), which can be considered as a “continuous Minkowski
sum” of line segments. Sets with this property can be approximated arbitrarily well
by finite Minkowksi sums of line segments and are called zonoids. A convex set is
uniquely determined by its support function and vice versa, so Z, v and 7 carry the
same directional information.

The following connection between projections of the associated zonoid Z and pro-
jected thick sections of the underlying fibre process X follows directly from the defini-
tions. Let u € S? be given and let x|L be the orthogonal projection of z € R? on the
plane L with normal u. The support function of the projection Z|L is just the rose
of intersections +, restricted to the unit circle in L. If S is a thickened plane parallel
to L of thickness 1, then (X N S)|L is a stationary fibre process in L and its (two
dimensional) associated zonoid is Z|L. This is true if the set of points in (X N S)|L
that are projections of more than one point of X N .S has length measure zero. The
latter assumption is satisfied for example, if the rose of directions has a density with
respect to the natural invariant measure on the sphere, or if the fibres are mutually
independent.

The next section describes, how n and Z can be estimated from finitely many mea-
surements of .

3. RECONSTRUCTION ALGORITHMS

We assume that estimators of the rose of intersections are known for finitely many
normal directions: Let wug, ..., u; (not necessarily pairwise different) unit vectors and
let 4; be an estimator for y(u;) derived from intersection counts. To be more specific, we
assume that for each ¢ we have chosen a test window of given area F' > 0 in a plane with
normal u; and counted the number n; of fibre intersections with this window. Then
4; = n;/F is an unbiased estimator of y(u;). The assumption that all test windows
have the same area F' can be omitted, but we assume it for notational convenience.
We will later also need the summarized data obtained by averaging all 4; for which the
corresponding directions wu; coincide: To describe this formally assume that the tuple
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of directions (u1, ..., uy) is ordered
(uh sy Umyy Umy 415 -+« Umgy - - - a“m,;_ﬁ—la ) umfc)

in such a way that uq, ..., u,, all coincide (up to sign), but are different form all others,
Uy +1s - - - Um, all coincide (up to sign) but are also different from all others, and so on.

Then k is the number of different directions and setting my = 0, we can put
S :
(3) §; o= S j=1,... k.
ms; —Mmj—q
If all directions are pairwise linear independent, then, of course, k =k and 5; =7, for
alle =1,..., k. Asnotation for the normal direction corresponding to the measurement
¥j, we will use ;= Up,,, j=1,..., k.

The key idea of reconstruction algorithms is the following: In view of (1), we want
to find a measure p on the unit sphere, whose cosine transform in directions uy, . .., u
best fits to the corresponding measurements 4, ...,9%. The measure p can then be
considered as an estimator for 1. The three algorithms we will present here specify the
notion of best fit in different ways: The LSQ-method considers a best fit in the least
squares sense:

k

minimize 3 — T (1, u))?
n ;(v (11, ui))

subject to  p is some even measure on S2.

The optimization problem (4) is infinite dimensional. For an implementation, it must
be discretized. Amazingly, this can be done in a loss-free way. Let V' = {%vy,..., +v,}

be the set of nodes associated to {us, ..., ux}. Each v; is of the form
Ui X Uyt
N Us # :I:U'/7
[Ji > wir| Z Z

where a x b is the cross product of a,b € R® and ||la|| = v/a - a is the usual Euclidean
norm of a. Let M(V) be the set of all finite even measures with support in V. If
€ M(V), then for any set A C 5%, we have

(5) p(A) = D7 T (3,,(A) + .., (4) .

Jj=1

where §, is the Dirac measure on v € S? which means that 6,(A) is 1 if v € A and
0 otherwise. The variables o; > 0 are the total masses of p at the points +v;, j =
1,...,m. (As p is even, half of this mass must be attributed to v; and the other half
to —v;.) Thus, p € M(V) is determined by the numbers aq, ..., a,,. It follows e.g.
from [7, Corollary 1] that among all solutions of (4) there is at least one in M(V), so
the optimal objective function value is not changed if we include the extra assumption
w e M(V) in (4). Using the special form (5) of u € M(V), the optimization problem
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reads

=1

k m 2
minimize i — Y ajlv; - uz|)
subject to Q1yeeey Q> 0.

This is a quadratic program, which can be solved using standard software. Let a4, ..., &,
be a solution of (LSQ), and 7j.sg € M(V') be the measure attributing mass &;/2 to v;
and —v;, j =1,...,m. Then, frgq is called least squares estimator for n and coincides
with the estimator /i, of [5, Algorithm NoisyRoseLSQ).

Best fit to the given measurements must not necessarily be measured in the least
squares deviation. Instead, best fit can be understood in the sense of information
theory. One possibility is to minimize the I;-divergence of the vector of observations
p= (%1, ...,9) and the vector of expected values p = (7 (p, uy),..., 7T (1, u)), where
1 is an estimator for 1. The I-divergence is closely related to the Kullback-Leibler
divergence, see Appendix A. This approach, together with the loss-free discretization
explained above, leads to the optimization problem

k m m
minimize Z(Z a;lv; - w —%ln(Zaﬂvj uz|)>
(EM) p P

i=1
subject to  aq,...,q,, > 0.

Let a,..., &, be a solution of (EM), and gy € M(V) be the measure attributing
mass &;/2 to v; and —v;, j = 1,...,m. Then, gy is called EM estimator for n,
as (EM) can be solved numerically using the iterative EM algorithm. This algorithm
is based on the idea of a two phase method (estimation and maximization) in each
iteration step, see [7] for more details on this algorithm and properties of the estimator.
(EM) can also be solved using Markov chain Monte Carlo simulations, an approach
that was suggested in [11].
In [7] another estimator is introduced, which is based on the linear program

k

minimize Z (’% — Z Oéj|’l)j . &Z|)

i=1 j=1

(LP) m 3

subject to Y aylvy | <5, i=1,....k,
7j=1

a1,y > 0.

In the same way as above, a measure 7,p € M(V) can be constructed from a solution
of (LP). npp is called LP estimator. This estimator is geometrically motivated: The
associated zonoid of the fibre process lies (approximately) in the polytope

k
i=1
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and 7 (7p, -) is the support function of a zonoid which lies inside P and has the largest
possible values in the measurement directions. This interpretation also explains, why
we work here with the summarized data (%; instead of 4;): If we formulated (LP) with
the original data, then, for any direction w;, only the minimal value of ¥, |41, Ym,
would be taken into account and the other values would be ignored. If the linear
program (LP) is solved with the simplex algorithm, it yields a solution with at most
k positive components. Simulations indicate that, in general, (LP) tends to find a
solution with even fewer support points.

The motivation for the LS(Q) estimator comes from the following observation: If the
measurements 71, ..., are stochastically independent and Gaussian with joint vari-
ance o2, then the LSQ estimator is a maximum likelihood estimator. Note that the
maximum likelihood problem is non-parametric, as the “parameter” is a measure on
the sphere. It can be shown that the estimator is strongly consistent. This means that
the estimator converges almost surely to n, if the number of normal directions tends to
infinity (and the directions are suitably chosen on the sphere). This was shown in [9].
In [5] this result was strengthened, giving even the speed of convergence under slightly
stronger assumptions.

The Gaussian assumption is justified if the numbers of intersections of fibres with the
test planes are high. Otherwise a model working with integer valued variables would
be more appropriate, as the estimators 4; are derived from counts. If, for instance,
the underlying fibre process is a Poisson process of line segments, then the counts are
Poisson distributed variables. If the intersection counts are stochastically independent
Poisson variables, then the EM estimator is a maximum likelihood estimator. Strong
consistency for this estimator was shown in [7].

If there is a measure p that fits to all measurements (i.e. the measurement vector
(1 -, 3) and (7 (p,u1), ..., T (u,ux)) coincide), then the sets of solutions of (LSQ),
(EM) and (LP) coincide, too. This means that in the case where the input data are
very close to the exact values, all three solutions are equally good.

In the following, let /) be one of the estimators 7rsq, Ngm or frp. Then, 7 is of
the form (5) with (aq,..., ) = (d1,...,d&y). Thus, 1 has the property that its
cosine transforms in directions uy, . . ., u approximate the measurements 7y, . . ., . best
possible in the specified sense. This can also be expressed in the following way: Let
S1,...,S¢ be all the non-degenerate line segments in [—d&jvy, Giv1), ..., [—QmUm, QU]
and let Y be a stationary Poisson process of line segments with intensity 1 where only
the line segments si,...,s, occur and they occur with equal probability 1/¢. Then,
among all possible roses of intersections, the rose of intersections of Y best fits to the
observed rose of intersections of X in the directions uq, ..., us.

It is not difficult to derive an estimator Z of the associated zonoid from 7: With the
notation introduced in the last paragraph, we set

(7) Z =5 +...+ s

The consistency results of the estimators for n carry over to Z: under the same as-
sumptions that assure consistency of 7, the set Z converges to Z almost surely (in the
Hausdorff metric). Alternative to this approach one might think to reconstruct the
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associated zonoid more directly by using the known approximate values of the rose
of directions and the fact that they are support function values of Z. One could for
example use @ in (6) as estimator for Z. But this reconstruction is not very stable.
Typically, one may obtain a singleton with positive probability. A more robust estima-
tion Z of Z could be obtained by minimizing the deviation of h(Z,-) from the given
data 4(uq),...,%(ux) in a least squares sense. This, however, requires to solve a com-
plicated optimization problem given by [5, Algorithm NoisySupportLSQ]. Both, Q and
7., approximate the zonoid Z by a convex set, which is symmetric at the origin but not
a zonoid.They are therefore unsatisfactory. The fact that there are origin-symmetric
compact convex sets which are not zonoids, discriminates the higher dimensional set-
ting from the two dimensional case treated in [13], see [7] for details. In the following,
the associated zonoid will be estimated using (7). Due to (2), the support function of
7 is given by

¢ k

h(Z,U)zh(Zsi,v) :Zai|ui~v|=’7(ﬁ,v), ve S
i=1 i=1
We will apply all three estimation procedures to two different carbon fibre architec-

tures, as described in the next section.

4. APPLICATION TO CARBON FIBRE ARCHITECTURES

4.1. Experimental setting. A carbon fibre preform was infiltrated with pyrolytic
carbon consisting of sp? hybridized carbon. The preform (Sintec, Halblech, Germany)
consisted of high tenacity carbon fibres. The preform was a stack of alternating layers:
layers of type A consist of nearly parallel fibres, whereas layers of type B are made up of
nearly isotropically oriented carbon fibres. The preform was pressed into the reaction
volume of the reactor mainly applying pressure in the stacking direction.

The infiltration was carried out in a hot wall reactor at a temperature of 1095°C'
from pure methane at a methane pressure of 20 kPa. An infiltration time of 120 h
was chosen. The gas flow was adjusted to reach a maximum residence time of 0.1 s at

F1GURE 2. Polarized light micrographs of intersection plane 1 showing
fibre architectures of type A (left) and type B (right). The image size is
150pum x150pm. The black dots in the right image mark fibers.
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the end of the fibre preform. The residence time is defined as the time the gas needs
from its entrance of the hot reaction zone to the point where the deposition of pyrolytic
carbon takes place. After infiltration a cuboid was cut from the felt: the height of the
cuboid in stacking direction (or z-direction) was 5 mm, the area perpendicular to the
stacking direction was 18mmx5mm (in x-direction and y-direction, respectively). The
residence time at the investigated part of the sample was 0.025 s. Differently oriented
intersection planes (compare Table 1) were prepared by polishing using the cuboid as
starting point. The intersection planes were polished using silicon carbide paper with
an average grain size of 10um (FEPA 2400) in the final stage. This grain size allows a
clear differentiation of the carbon fibers from the surrounding pyrolytic carbon matrix
in polarized light microscopy.

Light microscopy was carried out on these polished planes using a DM LM Microscope
(Leica, Wetzlar, Germany) equipped with polarizer and analyzer. Imaging conditions
were chosen to allow for a maximum contrast between carbon fibres and surrounding
pyrolytic carbon matrix (for details of the polarized light microscopy of pyrolytic carbon
see [1] and [4]). Images of a surface area of 310umx240um were acquired. An example
of the light microscopy data is shown in Fig. 2 for intersection plane 1. A section of
type A is shown on the left, one of type B on the right. The fibers were marked in the
image files by dots manually (see right image in Fig. 2) and then counted manually.
The summarized results of this counting procedure are given in Tables 1 and 3 (j = 1).
The number of investigated images per direction was chosen larger for lower fibre counts
area and smaller for higher fibre counts per area.

4.2. The estimators. In the following we present the results of the estimation for
the three different estimators. The EM algorithm ran 2000 iterations. As mentioned in
Section 3 we were using the summarized data (3) for the LP estimator. To calculate the
representation of the associated zonoids from the estimators of 1, we used the Mathe-
matica notebook from www.georgehart.com/zonohedra/zonohedrification.html, see also
6].

We first consider the fibre process of type A. The measurements which served as
input are summarized in the first four columns of Table 1. The second column lists the
measurement directions (i.e. the normals of the intersection planes that where used).
For legibility, here and in the following, we do not normalize the normal directions.
The third column shows the number of measurements in the given direction and the
third column shows the arithmetic mean of these measurements. For readability, we
present only the summarized data although the LS(Q estimator and the EM estimator
both depend on all 47 individual measurements. ;From the three algorithms we get
three estimators 7 for n as output. For all three of these, 93% of the total mass is
concentrated on the direction (1,0,0) (and its antipodal). The remaining mass is then
partitioned to 3 to 7 other point pairs in V. The LP estimator has the smallest support
with 4 pairs of points. An illustration of the directional measure on the sphere is given
in Figure 3, left. As the three estimators coincide in all relevant aspects, we only show
the LSQ estimator. The spherical representations of the other two estimators appear
to be identical.
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No. direction # meas. Cosine transform of
7 ﬂj mj; —mj_ ’%’ ﬁLSQ NEM NLp
1 (-1,1,0) 2 5270 4241 4232 3740
2 (1,1,0) 2 5365 4418 4385 3824
3 (0,1,1) 8 173 173 173 173
4 (0,1-1) 8 158 189 160 158
5 (1,-1-1) 4 3272 3587 3536 3188
6 (-1,-1,1) 3 3580 3637 3637 3178
7 (-1-1-1) 3 3424 3578 3526 3066
8 (1,-1,1) 3 2919 3340 3374 2919
9 (0,0,1) 0 — 233 228 233

10 (0,1,0) 9 127 217 131 127

11 (1,0,0) 3 5710 6031 6071 5281

TABLE 1. Comparison of the empirical rose of intersections with the
cosine transforms of the estimators for the fibre system of type A in
mm/mm?.

To evaluate the quality of the estimators, the (summarized) empirical rose of inter-
sections is compared with the cosine transforms of the estimators in Table 1. Recall
that 7 (7, -) is the rose of intersections of a fibre process for which 7 is the directional
measure. The deviations from the empirical measurements are most expressed in the
case of the LP estimator: its cosine transform underestimates several measurements
considerably. (By construction, an over-estimation is not possible.) This indicates that
the geometric construction underlying the LP estimator is not well suited in the case
of large measurement errors. The estimated associated zonoid, based on 7)g¢ is shown
in Figure 3, right. It has the shape of a very thin cylindrical object with main axes
parallel to the x-axes. Like the spherical representation of 7, it reflects very clearly the
high preference of the direction +(1,0,0). This observation corresponds very well to
the specification of the material, which states that the fibres in the type A architecture
are nearly parallel.

Ly(LSQ) Ly(EM) Ly(LP) Ly(iso) Ly(voronoi)
6231 6195 0448 6000 2810

TABLE 2. Estimators for the length density for type A in mm/mm? in
comparison with two usual estimators.

The estimators for the length density Ly, which are just the total masses of the
estimators for 7, are given in Table 2. The last two columns of this table are usual
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estimators for the length density, obtained using the formula

k
Ly =2) A,
=1

where Aq, ..., \; are nonnegative weights summing up to 1. For [:V(z'so), all weights
are equal to 1/ I;, which gives an unbiased estimator for Ly under the assumption that
the fibre process is isotropic. This assumption is not satisfied here, but the estimator is
reasonable, as the normal directions are quite evenly spread on S2. For Ly (voronoi), \;
is the relative area of the spherical voronoi cell of @; generated by the set {4, ..., 4z} on
S?2. This estimator does not require isotropy, see e.g. [10, p.116]. The estimator fLV(LP)
is considerably smaller than all other estimators of Ly, which is again due to the above
mentioned fact that 7z p is very sensitive to measurements that are considerably smaller
than their mean.

mm/mm?
2880
2000

Z

1000 -

0l v i

Z
y X

FiGURE 3. Type A fibre architectures: Spherical representation of the
LSQ-estimator for n (left) and the estimator for the associated zonoid
derived from it (right). The bounding box for the latter has a side length
of 6070 mm.
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No. direction # meas. Cosine transform of
7 ﬂj mj; —mj_ ’%’ ﬁLSQ NEM NLp
1 (-1,1,0) 12 531.9 526.5 533.6 525.8
2 (1,1,0) 8 538.1 584.0 603.3 538.1
3 (0,1,1) 8 587.0 508.1 492.3 376.0
4 (0,1,-1) 8 497.6 4955 491.6 409.1
5 (1,-1-1) 8 394.7 403.3 398.1 394.7
6 (-1,-1,1) 8 458.8 450.2 455.0 458.8
7 (-1-1-1) 8 602.2 554.6 535.8 474.0
8 (1,-1,1) 8 485.8 487.1 478.9 464.0
9 (0,0,1) 9 60.0 134.6 749 60.0

10 (0,1,0) 7 518.5 584.0 621.2 518.6

11 (1,0,0) 7 543.6 543.6 543.6 543.6

TABLE 3. Comparison of the empirical rose of intersections with the
cosine transforms of the estimators for the fibre system of type B in
mm/mm?.

a; for
J Uj NLsqQ Tem  7Lp
1 +(0,0,1) 265 4.9 0
2 £(1,1,0) 270.8 289.5 225.3
3 £(1-1,1) 0 0 574
4 +(1-1,0) 200.8 220.5 179.9
5 £(-1,1,1) 218 0 0
6 +(1,0,0) 1109 112.6 220.6
7T +(1,1,1) 0 1.1 0
8 +£(1,0,1) 1278 984 186
9 +(0,1,0) 241.6 260.3 208.7

TABLE 4. Type B architecture: The support points and corresponding
masses of the estimated directional measures 71sq, Ny and fpp corre-
sponding to eqn. (5) in mm/mm?.

We turn to the fibre process of type B. The input data and the cosine transforms of the
estimators are summarized in Table 3. As the estimators of 7 now show a more different
behavior, we also give a list of the estimated masses and their support directions in Table
4. All other directions in V' did not carry mass for any of the estimators. In Figure 4
the spherical representation of 7,59 and and the derived estimator Z are shown. Like
NLsq, this convex set shows that the anisotropy is by far less expressed than in the case
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of the fibre architecture of type A. In Figure 5, projections of Z on axis-parallel planes
are shown. As mentioned at the end of Section 1, these sets can be interpreted as
associated zonoids of planar fibre processes obtained as projected thick sections of X.
The projection on the x-y-plane (Figure 5, left), has the approximate shape of a disk,
which indicates that this fibre architecture is almost isotropic with respect to rotations
around the z-axis. According to the specification, the fibres are nearly isotropic, which
implies that the associated zonoid should be close to a ball. This does not fit to our
estimator Z. A possible explanation is that isotropy is destroyed when the preform is
pressed (in z-direction) into the reactor. This would also explain, why isotropy holds
(approximately) in the x-y plane.

For comparison we show the associated zonoids derived from 7gy; and 7y p in Figure
6. All three estimators for Z have approximately the same shape, but the one derived
from the LP solution is slightly smaller than the others.

mm,/mm?
135
100
Z
50
0 y x

FIGURE 4. Type B fibre architectures: Spherical representation of the
LSQ-estimator for 7 (left) and the estimator for the associated zonoid
derived from it (right). The bounding box for the latter has a side length
of 620 mm.

- G -

X X y

F1GURE 5. Projections of the associated zonoid in Figure 4, right, on
axes-parallel planes.
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FiGUureE 6. Type B fibre architectures: Estimators for the associated
zonoid derived from the EM estimator (left) and the LP estimator (right).
The bounding boxes have side lengths 621 mm and 544 mm, respectively.

A

Ly(LSQ) Ly(EM) Ly(LP) Ly(iso) Ly (voronoi)
1000 987 910 1044 1028

TABLE 5. Estimators for the length density for type B in mm/mm?3.

The estimators of the length density are listed in Table 5. The following consider-
ations show that the estimators for the length density are in correspondence with the
nominal mean fibre length per unit volume: As the the overall fibre volume fraction of
the preform is 20 % and the fibres have a diameter of approximately 9um, a very rough
estimate for the length density of the preform, containing both, type A and type B lay-
ers, is 3144 mm/mm3. Taking into account that the layers of type B cover about double
the volume than type A layers, the LSQ solutions yield the estimation 2744 mm/mm?,
and the EM estimations yield 2723mm/mm3. Both numbers are acceptable approxi-
mations. The corresponding value for LP is 2423 mm/mm?, which is still reasonable,
but probably an underestimation.

5. APPLICATION TO SIMULATED ISOTROPIC DATA

Finally, we used unblurred exact data to estimate the directional measure and the
associated zonoid of an isotropic fibre process of length density 1000 mm/mm3. As
input for the algorithms, we used values of the exact rose of intersections for the same
directions, which were used for the carbon fibre architecture of type A, see Table 1.
To make the procedures comparable, we did not use direction number 9, as there were
no measurements available for the carbon fibre process. In all other directions, the
exact value 500 mm =2 was used as input for the algorithms. With this input, the
sets of solutions of (LSQ), (EM) and (LP) are the same, but the different algorithms
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find diverse estimators. The cosine transforms of all three estimators fit exactly to the
corresponding given data. The estimators for the length density (total masses of 7)) are
listed in Table 6.

Ly(LSQ) Ly(EM) Ly(LP) Ly(iso) Ly(voronoi)
1051 1065 1099 1000 1000

TABLE 6. Estimators for the length density for the simulated data in mm/mm?3.

mm,/mm? mm,/mm?
60 120
40 80
Z Z
20 40
0 v . 0-

FIGURE 7. Exact isotropic data: Spherical representation of the LSQ
estimator 7sq (left) and the LP estimator 7 p (right).

FIGURE 8. Exact isotropic data: The estimated associated zonoids de-
rived from 7sq (left) and 7.p (right). The side lengths of the bounding
boxes are 1022 mm and 1414 mm?, respectively.
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In Figure 7, the LSQ and the LP estimator are shown; the corresponding estimators
of Z derived from 7rsq and 7pp are illustrated in Figure 8. As the EM estimator
does not show any features qualitatively different from the LSQ estimator, fg, is not
shown here. This example indicates that the estimators for 1 do not clearly indicate
isotropy, as they are concentrated on finitely many points with masses that are not
equal. In particular, n;p is misleading, as it indicates anisotropy which is not present.
The reason for this behavior lies in the fact that the number of normal directions is very
small and that the simplex algorithm, which was used to solve (LP), prefers solutions
with few support points. Although 7 (7j.p, ) coincides with the given value 500 in all
measurement directions, it takes the value 707 in direction (0,0, 1). This can also be
seen from the estimated associated zonoid derived from 7.p (Figure 8, right): This
zonotope looks too extended in z-direction. In contrast to this, the estimator in Figure
8, left, is a good approximation of the ball of radius 500, thus reflecting isotropy rather
clearly. This example indicates that the information contained in just ten values of the
rose of intersections is too small to give a hint on isotropy. Of course, the situation is
even more involved if the measurements are blurred.

6. CONCLUSION

We have shown that all three estimators for the directional measure (and their derived
estimators for the associated zonoid) are useful to indicate anisotropy of a stationary
fibre process. This is even true, if the number of measurements is very small, provided
that the anisotropy is expressed and the measurement errors are small. On the other
hand, it is very difficult to distinguish isotropic and slightly anisotropic processes if the
number of normal directions is small. For simulation examples with a higher number
of normal directions, see [7]. Considering the comparison between the different esti-
mators, the LP estimator has clearly the weakest performance, as it tends to produce
estimators of 17 which have few support points and therefore might indicate preferred
directions that are not present. In addition, 9 p becomes worse, if the number of mea-
surement directions increases, which was already noted in [7]. One way out is the use
of smoothing neighboring measurements before using them as input for (LP), as sug-
gested in [13] for the planar case, but these methods of course also destroy information
present in the data and introduce new parameters whose optimal choice is nontrivial.
We therefore recommend to use either the LSQ or the EM estimator in applications.
If the input measurements are known to be (approximately) Poisson distributed, then
Newm is to be preferred, as it is tailor-made for this situation. In all other cases, the LSQ
estimator is a good choice: From a theoretical point of view, this is true as the mean
number of intersection points in a lower dimensional test window is approximately nor-
mal distributed if the area of the window is large. From a practical point of view, the
LSQ estimator is easier to implement than the EM estimator, as it uses only standard
algorithms.

The three estimators are particularly useful, whenever there is no a priory information
on preferred directions available. In contrast to the established parametric estimators
(which usually work with spherical distributions that are rotationally symmetric), the
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presented estimators can also handle multi modal directional measures. As their im-
plementation is relatively simple, they can be used in practical applications, whenever
enough values for the rose of intersections are available.

Acknowledgments: The authors would like to thank S. Lichtenberg, G. Schoch and
K.J. Hiittinger for the infiltration of the preform and helpful remarks and I. Walter for
cutting the sample.

APPENDIX A. THE I;—DIVERGENCE

When introducing the EM estimator, we made implicit use of the [;—divergence. The
purpose of this appendix is a short introduction to this notion. Properties, generaliza-
tions and applications can be found in [8].

Let p = (p1,...,px) and p = (p1, - .., pr) be two vectors in k-dimensional space, where
the components of p are non-negative and those of p are positive. The I, —divergence of
p and p is defined by

k R
A . b
Li(p,p) = Z <pi hl; —Di +pi) :

i=1 !
This is a special case of [8, Definition 2.4 and (1.1)], where the underlying measure p is
the counting measure on {1,...,k}. If p and p are probability vectors, then

k .

R .o D
Li(p,p) = Zpi In 5
i=1 ’

is the Kullback-Leibler divergence of p and p, which is also called log-likelihood ratio
statistic. The Kullback Leibler divergence is not a distance function, as it is neither
symmetric nor does it satisfy the triangle inequality, but I;(p, p) = 0 holds if and only
if p = p. It plays an important role in information theory. It is also used for goodness-
of-fit statistics based on counting the occurrence of certain events and on comparing
the resulting relative frequencies with the according expectations. This indicates a
connection to our procedure of estimating the directional measure from intersection
counts.
For a measure p given by (5), we have

T(p,u) = Zaj|vj -, u € S*.
j=1
pr = (T(/’L7u1)7 s 7T(lu’7uk)) and ﬁ - (’717 s 7/3/]6)7 then

m k
LG =Y (ijrvj gl - wn(zg’; oy |)> £3 4 ngi - 1)
j=1 i=1

k
i=1

coincides with the objective function in (EM) up to addition of a term, which does not
depend on the unknowns oy, ..., a,, > 0.
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