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Abstract. The class of distributions on R generated by convolutions of Γ-distributions
and the one generated by convolutions of mixtures of exponential distributions are
generalized to higher dimensions and denoted by T (Rd) and B(Rd). From the Lévy
process {X(µ)

t } on Rd with distribution µ at t = 1, Υ(µ) is defined as the distri-
bution of the stochastic integral

∫ 1

0
log(1/t)dX

(µ)
t . This mapping is a generalization

of the mapping Υ introduced by Barndorff-Nielsen and Thorbjørnsen in one dimen-
sion. It is proved that Υ(ID(Rd)) = B(Rd) and Υ(L(Rd)) = T (Rd), where ID(Rd)
and L(Rd) are the classes of infinitely divisible distributions and of selfdecomposable
distributions on Rd, respectively. The relations with the mapping Φ from µ to the
distribution at each time of the stationary process of Ornstein–Uhlenbeck type with
background driving Lévy process {X(µ)

t } are studied. Developments of these results
in the context of the nested sequence Lm(Rd), m = 0, 1, . . . ,∞, are presented. Other
applications and examples are given.

Keywords: infinite divisibility; Lévy process; polar decomposition of Lévy measure;
selfdecomposability; stationary process of Ornstein–Uhlenbeck type; stochastic inte-
gral.

1. Introduction

For distributions on the positive real line, Thorin (1977a,b) introduced the smallest
class that contains all Γ-distributions and that is closed under convolution and conver-
gence, where convergence of distributions means weak convergence. He called distribu-
tions of this class generalized Γ-convolutions. This was in connection to his proof of
infinite divisibility of Pareto and lognormal distributions. In Bondesson’s monograph
(1992) the class is denoted by T . Subsequently Thorin (1978) considered the smallest
class on the real line R containing all generalized Γ-convolutions and closed under con-
volution, convergence, and reflection. We denote this class by T (R). Based on the work
of Steutel (1970), Bondesson (1981) studied the smallest class containing all mixtures
of exponential distributions and closed under convolution and convergence. He called
distributions of this class g.c.m.e.d. (generalized convolutions of mixtures of exponential
distributions). It is similarly extended to a class on R and we denote the extension by
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B(R). In Bondesson (1992) the class T (R) and the class of g.c.m.e.d. are denoted by
Te and T2, respectively; the class B(R) should not be confused with the class B there.

We study multi-dimensional analogues of the classes T (R) and B(R). We define them
as subclasses of the class ID(Rd) of infinitely divisible distributions on Rd such that their
Lévy measures have radial components having the same property as the part on R+ =
[0,∞) of the Lévy measures of distributions in T (R) and B(R), respectively. The class
T (Rd) is included in the class L(Rd) of selfdecomposable distributions on Rd but the
class B(Rd) is not. Precise definitions will be given in Section 2. The class T (Rd) is duly
called the Thorin class, as it is the analogue of T (Rd). Historically, Goldie (1967) proved
the infinite divisibility of mixtures of exponential distributions and Steutel (1967) found
the description of their Lévy measures. So it would be appropriate to call B(Rd) the
Goldie-Steutel-Bondesson class. We give a probabilistic characterization of these classes
on Rd by using a mapping Υ defined by a stochastic integral; Υ(µ) is the distribution

of
∫ 1

0
log(1/t)dX

(µ)
t , where {X(µ)

t } is the Lévy process on Rd with distribution µ at
t = 1. In one dimension this is the mapping introduced by Barndorff-Nielsen and
Thorbjørnsen (2002a,b, 2004a,b) in relation to the Bercovici–Pata bijection between
free infinite divisibility and classical infinite divisibility. We will prove that B(Rd)
and T (Rd) are the images by Υ of ID(Rd) and L(Rd), respectively. We will further
investigate the relation with the mapping Φ which is defined for µ ∈ IDlog(Rd), the
subclass of ID(Rd) consisting of the ones with finite log-moment, and which gives

the distribution Φ(µ) of
∫∞

0
e−tdX

(µ)
t . Both ΦΥ and ΥΦ are defined on IDlog(Rd);

they coincide and give another stochastic integral representation of T (Rd). In analogy
to the construction of the well-known nested sequence of subclasses Lm(Rd), m =
0, 1, . . . ,∞, of L(Rd) = L0(Rd), we define a new nested sequence of subclasses Tm(Rd),
m = 0, 1, . . . ,∞, of T (Rd) = T0(Rd) by using the property of the innovation parts.
Alternatively, the former sequence extended by adding ID(Rd) at the top and the
latter sequence extended by adding B(Rd) at the top can be generated from the top
members by iterating the mapping Φ each time after restriction to IDlog(Rd). We will
show that the latter extended sequence is the image by the mapping Υ of the former
extended sequence. Further we will describe Tm(Rd) by specifying the Lévy measures.
A characterization of T (Rd) and B(Rd) by using elementary Γ-variables and elementary
mixed-exponential variables in Rd, respectively, will also be given.

2. Main results

For any Rd-valued random variable X we denote its distribution by L(X). The
characteristic function and the cumulant function of a distribution µ on Rd are denoted
by µ̂(z) and Cµ(z), respectively. That is, Cµ(z) is a continuous function with Cµ(0) = 0
such that µ̂(z) = exp(Cµ(z)), z ∈ Rd; such a function Cµ(z) exists and is unique if
µ̂(z) 6= 0 for all z ∈ Rd. If µ = L(X), then Cµ(z) is also written as CX(z).

Any Lévy process {X(µ)
t : t > 0} on Rd uniquely induces an Rd-valued independently

scattered random measure {M (µ)(B) : B ∈ B0
[0,∞)} such that M (µ)([0, t]) = X

(µ)
t a.s.,

where B0
[0,∞) is the class of bounded Borel sets in [0,∞). Let f(t) be a real-valued func-

tion on [0,∞), M (µ)-integrable (also called {X(µ)
t }-integrable) in the sense of Urbanik

and Woyczynski (1967) and Rajput and Rosinski (1989) for d = 1 and of Sato (2004) for
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general d. Then M (f,µ)(B) =
∫

B
f(t)M (µ)(dt) (also written as

∫
B

f(t)dX
(µ)
t ) is defined

for all B ∈ B0
[0,∞) and {M (f,µ)(B) : B ∈ B0

[0,∞)} is again an Rd-valued independently

scattered random measure; furthermore, we have
∫

B
|Cµ(f(t)z)|dt < ∞ and

CM(f,µ)(B)(z) =

∫
B

Cµ(f(t)z)dt, z ∈ Rd. (2.1)

On [0,∞) the stochastic integral of f with respect to X
(µ)
t is defined as the limit in

probability of the integral on [0, s] as s → ∞ and written as
∫∞

0
f(t)dX

(µ)
t , whenever

the limit exists. Let

IDlog(Rd) =
{

µ ∈ ID(Rd) :

∫
|x|>2

log |x|µ(dx) < ∞
}

=
{

µ ∈ ID(Rd) :

∫
|x|>2

log |x| ν(µ)(dx) < ∞
}

,

where ν(µ) is the Lévy measure of µ. It is known (Jurek and Vervaat (1983), Sato and
Yamazato (1983), and Sato (1999)) that∫ ∞

0

e−tdX
(µ)
t

is definable if and only if µ ∈ IDlog(Rd), and that

L(Rd) = Φ(IDlog(Rd)), (2.2)

where

Φµ = Φ(µ) = L
(∫ ∞

0

e−tdX
(µ)
t

)
. (2.3)

The domain of definition of the mapping Φ is IDlog(Rd) and Φ is one-to-one. Another
characterization of Φµ is given in relation to the Langevin equation

dYt = dX
(µ)
t − Ytdt. (2.4)

The equation (2.4) has a stationary solution {Yt : t > 0} if and only if µ ∈ IDlog(Rd). If
µ ∈ IDlog(Rd), then a stationary solution {Yt} is unique, and L(Yt) = Φµ for all t > 0.
The process {Yt} is called a stationary process of Ornstein–Uhlenbeck type.

For any Borel set E in Rd, the class of Borel subsets of E is denoted by B(E). A
function defined on E is called measurable if it is B(E)-measurable. The unit sphere
in Rd is denoted by S = {ξ ∈ Rd : |ξ| = 1}.

We use the Lévy–Khintchine triplet (A, ν, γ) of µ ∈ ID(Rd) in the sense that

Cµ(z) = −1

2
〈z, Az〉+

∫
Rd

(
ei〈z,x〉 − 1− i〈z, x〉

1 + |x|2

)
ν(dx) + i〈γ, z〉, (2.5)

where A is a d×d symmetric nonnegative-definite matrix, ν is a measure on Rd called the
Lévy measure of µ, and γ ∈ Rd. A measure ν is the Lévy measure of some µ ∈ ID(Rd)
if and only if ν({0}) = 0 and

∫
Rd(|x|2∧1)ν(dx) < ∞. We sometimes denote an infinitely

divisible distribution µ with triplet (A, ν, γ) by µ(A,ν,γ).
We use the following polar decomposition of Lévy measures.
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Lemma 2.1. Let ν be the Lévy measure of some µ ∈ ID(Rd) with 0 < ν(Rd) 6 ∞.
Then there exist a measure λ on S with 0 < λ(S) 6 ∞ and a family {νξ : ξ ∈ S} of
measures on (0,∞) such that

νξ(B) is measurable in ξ for each B ∈ B((0,∞)), (2.6)

0 < νξ((0,∞)) 6 ∞ for each ξ ∈ S, (2.7)

ν(B) =

∫
S

λ(dξ)

∫ ∞

0

1B(rξ)νξ(dr) for B ∈ B(Rd \ {0}). (2.8)

Here λ and {νξ} are uniquely determined by ν in the following sense: if λ, {νξ} and
λ′, {ν ′ξ} both have properties (2.6)–(2.8), then there is a measurable function c(ξ) on S
such that

0 < c(ξ) < ∞, (2.9)

λ′(dξ) = c(ξ)λ(dξ), (2.10)

c(ξ)ν ′ξ(dr) = νξ(dr) for λ-a.e. ξ ∈ S. (2.11)

Rosinski (1990) has the same result, but without the uniqueness. Sometimes we
call λ and νξ in Lemma 2.1 the spherical component and the radial component of ν
respectively, as they are uniquely determined in the sense written above. The following
description of the Lévy measures of L(Rd) is well-known (see Sato (1999), Theorem
15.10).

Proposition 2.2. Let µ ∈ ID(Rd) and let ν be the Lévy measure of µ. Then µ ∈ L(Rd)
if and only if either ν = 0 or ν 6= 0 with a polar decomposition (λ, νξ) such that there
is a nonnegative function kξ(r) measurable in ξ and decreasing, right-continuous in r,
satisfying

νξ(dr) = kξ(r)r
−1dr for λ-a. e. ξ ∈ S. (2.12)

We call kξ(r) the k-function of µ ∈ L(Rd) or of its Lévy measure ν, as it is determined
by µ λ-a. e. up to multiplication of functions of ξ. The function

hξ(u) = lim
v↓u

kξ(e
−v)

is called the h-function of µ ∈ L(Rd) or of its Lévy measure ν.
Let us define T (Rd) and B(Rd).

Definition 2.3. The class T (Rd) is the collection of µ ∈ L(Rd) with Lévy measure ν
such that either ν = 0 or ν 6= 0 having k-function kξ(r) completely monotone in r for
λ-a.e. ξ, where λ is the spherical component of ν.

Definition 2.4. The class B(Rd) is the collection of µ ∈ ID(Rd) with Lévy measure ν
such that either ν = 0 or ν 6= 0 having polar decomposition (λ, νξ) such that

νξ(dr) = lξ(r)dr for λ-a. e. ξ ∈ S, (2.13)

where lξ(r) is measurable in ξ and completely monotone in r for λ-a.e. ξ.

We call lξ(r) the l-function of µ ∈ B(Rd) or of its Lévy measure ν. We can prove
that

B(Rd) ∩ L(Rd) % T (Rd). (2.14)
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Except the strictness, this is clear; the strictness will be proved in Section 3.
We introduce a mapping Υ.

Proposition 2.5. If f(t) is given by

f(t) =


0 for t = 0

log(1/t) for 0 < t 6 1

0 for t > 1,

(2.15)

then f(t) is {X(µ)
t }-integrable for every µ ∈ ID(Rd).

We write
∫ 1

0
log 1

t
dX

(µ)
t =

∫
[0,1]

f(t)dX
(µ)
t for f of (2.15).

Definition 2.6. For any µ ∈ ID(Rd), define

Υµ = Υ(µ) = L
(∫ 1

0

log
1

t
dX

(µ)
t

)
. (2.16)

Now we state two of our main results.

Theorem A. (i) The total image of the mapping Υ equals B(Rd). That is,

B(Rd) = Υ(ID(Rd)). (2.17)

(ii) Let µ ∈ ID(Rd) and µ̃ = Υµ and let ν and ν̃ be the Lévy measures of µ and µ̃,
respectively. Then

ν̃(B) =

∫ ∞

0

e−sν(s−1B)ds for B ∈ B(Rd). (2.18)

If ν 6= 0 and ν has polar decomposition (λ, νξ), then a polar decomposition of ν̃ is given

by λ̃ = λ and ν̃ξ(dr) = l̃ξ(r)dr with

l̃ξ(r) =

∫ ∞

0

s−1e−r/sνξ(ds). (2.19)

Theorem B. (i) The image of the class L(Rd) by the mapping Υ equals T (Rd). That
is,

T (Rd) = Υ(L(Rd)). (2.20)

(ii) Let µ ∈ L(Rd) and µ̃ = Υµ with Lévy measures ν and ν̃, respectively. If ν 6= 0
and ν has spherical component λ and k-function kξ(r), then ν̃ has spherical component

λ̃ = λ and k-function

k̃ξ(r) =

∫ ∞

0

kξ(rs
−1)e−sds =

∫
(0,∞)

e−rudk]
ξ(u). (2.21)

Here k]
ξ(u) is the right-continuous modification of kξ(u

−1).

In the one-dimensional case (d = 1), (2.20) was discovered by Barndorff-Nielsen and
Thorbjørnsen who also, in effect, noted that Υ(ID(R)) ⊂ B(Rd), but without being
aware of the connection to the class B(R); see Barndorff-Nielsen and Thorbjørnsen
(2004a,b).
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In proving Theorems A and B, we will show the following properties of the mapping
Υ.

Proposition 2.7. (i) The mapping Υ is one-to-one from ID(Rd) into ID(Rd).
(ii) For any µ ∈ ID(Rd),

CΥµ(z) =

∫ 1

0

Cµ

(
z log

1

t

)
dt, z ∈ Rd, (2.22)

with ∫ 1

0

∣∣∣∣Cµ

(
z log

1

t

)∣∣∣∣ dt < ∞. (2.23)

(iii) Υ(µ1 ∗ µ2) = Υµ1 ∗Υµ2 for µ1, µ2 ∈ ID(Rd).
(iv) Let µn ∈ ID(Rd) (n = 1, 2, . . .). If µn → µ, then µ ∈ ID(Rd) and Υµn → Υµ.

Conversely, if Υµn → µ̃ for some distribution µ̃, then µ̃ = Υµ for some µ ∈ ID(Rd)
and µn → µ.

(v) For µ ∈ ID(Rd) with triplet (A, ν, γ), Υµ has triplet (Ã, ν̃, γ̃) with expression

Ã = 2A, (2.24)

ν̃(B) =

∫ ∞

0

ν(s−1B)e−sds for B ∈ B(Rd), (2.25)

γ̃ = γ +

∫ ∞

0

e−ssds

∫
Rd

x

(
1

1 + s2|x|2
− 1

1 + |x|2

)
ν(dx)

= γ +

∫
Rd

x|x|2

1 + |x|2
ν(dx)

∫ ∞

0

e−ss(1− s2)

1 + s2|x|2
ds. (2.26)

(vi) The mapping Υ has the following alternative expressions:

Υµ = L
(∫ 1

0

log
1

1− t
dX

(µ)
t

)
, (2.27)

Υµ = L

(
lim
s↓0

∫ 1

s

X
(µ)
t

t
dt

)
. (2.28)

For another expression of T (Rd), we use the function e1(u) =
∫∞

u
e−ss−1ds and the

function e∗1(t) inverse to e1(u), that is, t = e1(u) if and only if u = e∗1(t).

Theorem C. (i) let µ ∈ ID(Rd). Then Υµ ∈ IDlog(Rd) if and only if µ ∈ IDlog(Rd).

(ii) The integral
∫∞

0
e∗1(t)dX

(µ)
t exists if and only if µ ∈ IDlog(Rd). If µ ∈ IDlog(Rd),

then

ΦΥ(µ) = ΥΦ(µ) = L
(∫ ∞

0

e∗1(t)dX
(µ)
t

)
. (2.29)

(iii) We have

T (Rd) = Φ(B(Rd) ∩ IDlog(Rd)) (2.30)

and

T (Rd) =

{
L
(∫ ∞

0

e∗1(t)dX
(µ)
t

)
: µ ∈ IDlog(Rd)

}
. (2.31)
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Let us recall the definition of selfdecomposability. A distribution µ on Rd is said to

be selfdecomposable, or µ ∈ L(Rd), if for each b > 1 there is a distribution ρ
(µ)
b such

that

µ̂(z) = µ̂(b−1z)ρ̂
(µ)
b (z). (2.32)

Note that ρ
(µ)
b is uniquely determined by µ and b and that ρ

(µ)
b ∈ ID(Rd). In connection

to the relation of L(Rd) and stationary processes of Ornstein–Uhlenbeck type, the

distribution ρ
(µ)
b is sometimes called the innovation part of µ. We define L0(Rd) = L(Rd)

and then, for m = 1, 2, . . ., define

Lm(Rd) = {µ ∈ L(Rd) : ρ
(µ)
b ∈ Lm−1(Rd) for all b > 1}. (2.33)

Let L∞(Rd) =
⋂

06m<∞ Lm(Rd) and let S(Rd) be the class of stable distributions on Rd.
Thus we get the nested sequence studied by Urbanik (1972), Sato (1980), and others:

ID(Rd) ⊃ L0(Rd) ⊃ L1(Rd) ⊃ L2(Rd) ⊃ · · · ⊃ L∞(Rd) ⊃ S(Rd). (2.34)

The class L∞(Rd) is the smallest class containing S(Rd) and being closed under con-
volution and convergence.

Corollary to Theorem C. We have

T (Rd) = {µ ∈ L(Rd) : ρ
(µ)
b ∈ B(Rd) for all b > 1}. (2.35)

Now we define the classes Tm(Rd), letting T0(Rd) = T (Rd) and, for m = 1, 2, . . .,

Tm(Rd) = {µ ∈ L(Rd) : ρ
(µ)
b ∈ Tm−1(Rd) for every b > 1}. (2.36)

Let T∞(Rd) =
⋂

06m<∞ Tm(Rd). In this way we get a decreasing sequence

B(Rd) ⊃ T0(Rd) ⊃ T1(Rd) ⊃ T2(Rd) ⊃ · · · ⊃ T∞(Rd) ⊃ S(Rd). (2.37)

The last inclusion is clear because, for any Gaussian distribution µ, ρ
(µ)
b is Gaussian,

and because, for any α-stable distribution µ with 0 < α < 2, µ ∈ L(Rd) with k-function

r−α and thus µ ∈ T (Rd) and ρ
(µ)
b is again α-stable.

Theorem D. The sequence (2.34) is transformed to the sequence (2.37) by the mapping
Υ, that is, (2.17) and

Tm(Rd) = Υ(Lm(Rd)) for m = 0, 1, . . . ,∞, (2.38)

S(Rd) = Υ(S(Rd)). (2.39)

Moreover we have

Tm(Rd) $ Lm(Rd) for m = 0, 1, . . . , (2.40)

T∞(Rd) = L∞(Rd), (2.41)

Tm+1(Rd) = Φ(Tm(Rd) ∩ IDlog(Rd)) for m = 0, 1, . . . ,∞, (2.42)

where we understand m + 1 = ∞ for m = ∞.

The relation (2.39) was shown in Barndorff-Nielsen and Thorbjørnsen (2002b) for
d = 1.

It is known that

Lm+1(Rd) = Φ(Lm(Rd) ∩ IDlog(Rd)) for m = 0, 1, . . . ,∞. (2.43)
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The assertion (2.42) is analogous to this. Thus Lm(Rd) and Tm(Rd) are the images of
ID(Rd) and B(Rd), respectively, by Φm+1, the (m + 1) st iteration of Φ. A description
of the domain of definition of Φm+1 and a stochastic integral representation of Φm+1

are known. See Jurek (1983), Sato and Yamazato (1983), and also Rocha-Arteaga and
Sato (2003) Theorems 46 and 49 and Remark 581.

The Lévy measures of Tm(Rd) may be characterized as follows.

Theorem E. Let m ∈ {0, 1, . . .}. Let µ ∈ ID(Rd). Then µ ∈ Tm(Rd) if and only if
µ ∈ L(Rd) and the Lévy measure ν of µ is either ν = 0 or ν 6= 0 having infinitely
differentiable h-function hξ(u) such that

h
(j)
ξ (u) > 0 for u ∈ R, 0 6 j < m, and h

(m)
ξ (− log r)

is completely monotone in r > 0, λ-a. e. ξ

}
(2.44)

where h
(j)
ξ is the jth derivative of hξ and λ is the spherical component of ν.

A characterization of B(Rd) and T (Rd) using mixed-exponential distributions and
Γ-distributions is as follows.

Definition 2.8. Call Ux an elementary mixed-exponential variable in Rd (resp. elemen-
tary Γ-variable in Rd) if x is a nonrandom nonzero vector in Rd and U is a real random
variable whose distribution is a mixture of a finite number of exponential distributions
(resp. a real Γ-distributed random variable).

Theorem F. The class B(Rd) (resp. T (Rd)) is the smallest class of distributions on
Rd closed under convolution and convergence and containing the distributions of all
elementary mixed-exponential variables in Rd (resp. of all elementary Γ-variables in
Rd).

Many examples of distributions in T (R) supported on R+ are given in Bondesson
(1992) and Steutel and van Harn (2004). As shown by Bondesson (1992), Theorem 7.3.1,
all normal variance mixtures where the law of the variance is a generalized Γ-convolution
belong to T (R). (Any such mixture equals the law at time 1 of a subordination of
Brownian motion by a generalized Γ-convolution subordinator.) We also note that if a
distribution µ on Rd is the direct product of distributions in T (R) (resp. B(R)), then
µ ∈ T (Rd) (resp. B(Rd)).

We will prove the results above in the sections that follow. In the final section we
will discuss several examples.

3. Proof of Theorems A and B

We prove Theorems A and B on the relationship of the classes B(Rd) and T (Rd)
with the mapping Υ. We also show the relation (2.14) of B(Rd), T (Rd), and L(Rd) and
Proposition 2.7 on properties of Υ.

Proof of Lemma 2.1. Let c =
∫

Rd(|x|2 ∧ 1)ν(dx) and let N be a random variable on

Rd with distribution c−1(|x|2∧1)ν(dx). Let R = |N | and Ξ = N/|N |. Define λ0 = L(Ξ)
and ν0

ξ (B) = c
∫

B
(r2 ∧ 1)−1P (R ∈ dr |Ξ = ξ), using the conditional distribution. Then

1In Line 4 of this remark, µm should be replaced by µ.
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λ0 and {ν0
ξ} satisfy (2.6)–(2.8) with the additional properties that λ0(S) = 1 and∫∞

0
(r2 ∧ 1)ν0

ξ (dr) = 1 for all ξ ∈ S.
The proof of the uniqueness is as follows. Let λ, {νξ} and λ′, {ν ′ξ} both satisfy

(2.6)–(2.8). Define a(ξ) =
∫∞

0
(r2 ∧ 1)νξ(dr) and a′(ξ) =

∫∞
0

(r2 ∧ 1)ν ′ξ(dr). By (2.7),
a(ξ) and a′(ξ) are positive for all ξ. We have a(ξ) < ∞ for λ-a. e. ξ and a′(ξ) < ∞ for
λ′-a. e. ξ, since

∫
S

a(ξ)λ(dξ) =
∫

S
a′(ξ)λ′(dξ) = c < ∞. For any B ∈ B(S),

cλ0(B) =

∫
{x : |x|−1x∈B}

(|x|2 ∧ 1)ν(dx) =

∫
B

a(ξ)λ(dξ) =

∫
B

a′(ξ)λ′(dξ).

Hence λ0, λ, and λ′ are mutually absolutely continuous. By the uniqueness of the
conditional distribution P (R ∈ dr |Ξ = ξ), we get

ca(ξ)−1νξ(dr) = ν0
ξ (dr) and ca′(ξ)−1ν ′ξ(dr) = ν0

ξ (dr) for λ0-a. e. ξ.

Letting c(ξ) = a(ξ)/a′(ξ) with appropriate modification on a set of λ0-measure 0, we
get (2.9)–(2.11). �

Remark 3.1. By the uniqueness of a polar decomposition of ν in the sense of Lemma
2.1, the properties of µ in Definitions 2.3 and 2.4 of T (Rd) and B(Rd) do not depend
on the choice of polar decompositions.

Remark 3.2. By an extension of Bernstein’s theorem to the case with a parameter,
for each µ ∈ B(Rd) there uniquely exists a family {Qξ : ξ ∈ S} of measures on (0,∞)
such that

Qξ(B) is measurable in ξ for each B ∈ B((0,∞)), (3.1)

lξ(r) =

∫
(0,∞)

e−ruQξ(du); (3.2)

see the proof of Lemma 3.3 of Sato (1980) for the details. Here we have used lξ(∞) = 0.
Since

∫
Rd(|x|2 ∧ 1)ν(dx) < ∞,∫

S

λ(dξ)

∫
(0,∞)

a(u)Qξ(du) < ∞, (3.3)

where

a(u) = u−3

∫ u

0

r2e−rdr + u−1e−u. (3.4)

Indeed we have
∫∞

0
(r2 ∧ 1)lξ(r)dr =

∫
(0,∞)

a(u)Qξ(du). Note that

a(u) ∼ u−1 as u ↓ 0 and a(u) ∼ 2u−3 as u ↑ ∞.

Thus (3.3) is equivalent to∫
S

λ(dξ)

∫
(0,∞)

(u−1 ∧ u−3)Qξ(du) < ∞. (3.5)

Similarly, for each µ ∈ T (Rd) there uniquely exists a family {Rξ : ξ ∈ S} of measures
on (0,∞) such that

Rξ(B) is measurable in ξ for each B ∈ B((0,∞)), (3.6)

kξ(r) =

∫
(0,∞)

e−ruRξ(du). (3.7)
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This time we have ∫
S

λ(dξ)

∫
(0,∞)

b(u)Rξ(du) < ∞, (3.8)

with

b(u) = u−2

∫ u

0

re−rdr +

∫ ∞

u

r−1e−rdr, (3.9)

since
∫∞

0
(r ∧ r−1)kξ(r)dr =

∫
(0,∞)

b(u)Rξ(du). We have

b(u) ∼ log(1/u) as u ↓ 0 and b(u) ∼ u−2 as u ↑ ∞

and hence (3.8) is equivalent to∫
S

λ(dξ)

∫
(1(0,1/2](u) log(1/u) + 1(1/2,∞)(u)u−2)Rξ(du) < ∞. (3.10)

Proof of (2.14). The inclusion T (Rd) ⊂ L(Rd) is evident from Proposition 2.2 and
Definition 2.3. If kξ(r) is completely monotone, then so is kξ(r)r

−1, since the product
of completely monotone functions is completely monotone. Hence T (Rd) ⊂ B(Rd).

For d = 1, let us construct µ ∈ B(R) ∩ L(R) such that µ 6∈ T (R). Let

k(r) = e−a1r − e−b1r + e−a2r, r > 0

with 0 < a1 < b1 < a2 and let l(r) = k(r)r−1. Then k(r) is not completely monotone,
since k(r) =

∫
(0,∞)

e−ruQ(du) with a signed measure Q such that Q({b1}) < 0. But l(r)

is completely monotone, since

l(r) =
e−a1r − e−b1r

r
+

e−a2r

r
=

∫ b1

a1

e−rudu +

∫ ∞

a2

e−rudu.

Hence the distribution µ given by µ̂(z) = exp
∫∞

0
(eizr − 1)l(r)dr is in B(R) \ T (R) (µ

is in fact a mixture of exponential distributions with parameters a1 and a2 by Steutel’s
theorem; see Sato (1999), Lemma 51.14, or Steutel and van Harn (2004), Chapter VI,
Proposition 3.4). We claim that for some choice of a1, b1, and a2, k(r) is decreasing so
that µ ∈ L(R). Indeed, let a1 = 1 − ε, b1 = 1, and a2 = 1 + ε with 0 < ε < 1. Then
k′(r) = e−r(1− f(r)) with f(r) = (1− ε)eεr +(1+ ε)e−εr. We have f(r0) = minr>0 f(r)
when e2εr0 = (1 + ε)/(1− ε). Hence f(r0) = 2(1 − ε2)1/2 → 2 as ε ↓ 0. It follows that
k′(r) < 0 for all r > 0 if ε is small enough. A d-dimensional example is given by taking
this k(r) for the radial component of a Lévy measure. �

Proof of Proposition 2.5. Let µ = µ(A,ν,γ). We use a general result (an analogue of
Theorem 2.7 of Rajput and Rosinski (1989)) for integrability of functions with respect
to an Rd-valued independently scattered random measure. In order to show that a

function f(t) is {X(µ)
t }-integrable, it suffices to show that, for any 0 < t0 < ∞,∫ t0

0

〈z, Az〉f(t)2dt < ∞,∫ t0

0

dt

∫
Rd

(|xf(t)|2 ∧ 1)ν(dx) < ∞,∫ t0

0

∣∣∣∣〈γ, zf(t)〉+

∫
Rd

(g(zf(t), x)− g(z, xf(t)))ν(dx)

∣∣∣∣ dt < ∞,
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where

g(z, x) = ei〈z,x〉 − 1− i〈z, x〉
/

(1 + |x|2). (3.11)

(The first condition is equivalent to
∫ t0

0
f(t)2dt < ∞ if A 6= 0.) Hence, in the case of

f(t) of (2.15), it suffices to show∫ ∞

0

〈z, Az〉s2e−sds < ∞, (3.12)∫ ∞

0

e−sds

∫
Rd

(|sx|2 ∧ 1)ν(dx) < ∞, (3.13)∫ ∞

0

e−s

∣∣∣∣〈γ, sz〉+

∫
Rd

(g(sz, x)− g(z, sx))ν(dx)

∣∣∣∣ ds < ∞. (3.14)

Among these (3.12) is evident; (3.13) follows from∫ ∞

0

e−sds

∫
Rd

(|sx|2 ∧ 1)ν(dx)

=

∫
Rd

|x|2ν(dx)

∫ 1/|x|

0

s2e−sds +

∫
Rd

ν(dx)

∫ ∞

1/|x|
e−sds ;

(3.14) follows from ∫ ∞

0

|〈γ, z〉|se−sds < ∞ (3.15)

and ∫ ∞

0

e−s

∣∣∣∣∫
Rd

(g(sz, x)− g(z, sx))ν(dx)

∣∣∣∣ ds < ∞; (3.16)

(3.15) is evident and (3.16) follows from∫ ∞

0

se−sds

∫
Rd

∣∣∣∣〈z, x〉( 1

1 + s2|x|2
− 1

1 + |x|2

)∣∣∣∣ ν(dx)

6 |z|
∫

Rd

|x|3

1 + |x|2
ν(dx)

∫ ∞

0

e−ss|1− s2|
1 + s2|x|2

ds

6 |z|I1

∫
|x|61

|x|3ν(dx) + |z|
∫
|x|>1

|x|I2(x) ν(dx),

where

I1 =

∫ ∞

0

e−ss(1 + s2)ds,

I2(x) =

∫ 1

0

sds

1 + s2|x|2
+

∫ ∞

1

e−ss3ds

1 + |x|2
=

log(1 + |x|2)
2|x|2

+

∫∞
1

e−ss3ds

1 + |x|2
.

No restriction on µ is needed. �

Proof of Proposition 2.7. We begin with a proof of (ii). The assertion (iv) will be
proved after (v).

(ii) The assertion Υµ ∈ ID(Rd) and (2.22)–(2.23) are consequences of general results

for {X(µ)
t }-integrable functions in Proposition 4.3 of Sato (2004). A direct check of

(2.23) is also possible because we have

|Re Cµ(z)|+ |Im Cµ(z)| 6 c0 + c2|z|2
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from (2.5) with positive constants c0, c2 depending on µ.
(i) It follows from (2.22)–(2.23) that

CΥµ(z) =

∫ ∞

0

Cµ(sz)e−sds (3.17)

and hence, for u > 0,

CΥµ(u−1z) = u

∫ ∞

0

Cµ(vz)e−uvdv.

That is, for each z ∈ Rd, u−1CΥµ(u−1z), u > 0, is the Laplace transform of Cµ(vz),
v > 0. Therefore Cµ(vz) is determined by CΥµ for almost every v > 0. Since Cµ(vz) is
continuous in v, it is determined for all v > 0. Now let v = 1 to get our assertion.

(iii) Obvious from {X(µ1∗µ2)
t } d

= {X(µ1)
t + X

(µ2)
t }, where {X(µ1)

t } and {X(µ2)
t } are

independent.
(v) By a general result (see Lemma 2.7 and Corollary 4.4 of Sato (2004)),

Ã =

∫ 1

0

(log(1/t))2dtA,

ν̃(B) =

∫ 1

0

dt

∫
Rd

1B(x log(1/t))ν(dx), B ∈ B(Rd),

γ̃ =

∫ 1

0

(
γ log

1

t
−
∫

Rd

x

(
log

1

t

)(
1

1 + |x|2
− 1

1 + |(log(1/t))x|2

)
ν(dx)

)
dt.

It follows that

Ã =

∫ ∞

0

s2e−sdsA,

ν̃(B) =

∫ ∞

0

ds

∫
Rd

1B(xs)ν(dx),

γ̃ =

∫ ∞

0

e−s

(
γs−

∫
Rd

xs

(
1

1 + |x|2
− 1

1 + |sx|2

)
ν(dx)

)
ds.

That is, (2.24)–(2.26) hold.
(iv) Assume that µn = µ(An,νn,γn) → µ = µ(A,µ,ν) as n → ∞. Then Cµn(z) → Cµ(z),

and tr An,
∫

(|x|2 ∧ 1)νn(dx), and |γn| are bounded. Since Υµn and Υµ have cumulant
functions expressed as in (2.22) or (3.17) and since we have already proved (v), we can
use the dominated convergence theorem to get CΥµn(z) → CΥµ(z), that is, Υµn → Υµ.

Conversely, assume that µ̃n = Υµn → µ̃. Let (Ãn, ν̃n, γ̃n) and (An, νn, γn) be the
triplets of µ̃n and µn. We claim that {µn} is precompact. The following conditions2 are

2There is an error in E 12.5 of Sato (1999); a condition corresponding to (3.20) should be added.
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necessary and sufficient for precompactness of {µn}:

sup
n

tr An < ∞, (3.18)

sup
n

∫
Rd

(|x|2 ∧ 1)νn(dx) < ∞, (3.19)

lim
l→∞

sup
n

∫
|x|>l

νn(dx) = 0, (3.20)

sup
n
|γn| < ∞. (3.21)

Since {µ̃n} is precompact, these four relations already hold with (An, νn, γn) replaced

by (Ãn, ν̃n, γ̃n). We denote them by (3.18)˜–(3.21)˜. Then (3.18) follows from (2.24)
and (3.18)˜; (3.19) follows from (3.19)˜ since, by (2.25),∫

Rd

(|x|2 ∧ 1)ν̃n(dx) =

∫ ∞

0

e−sds

∫
Rd

(|sx|2 ∧ 1)νn(dx)

=

∫
Rd

|x|2νn(dx)

∫ 1/|x|

0

s2e−sds +

∫
Rd

νn(dx)

∫ ∞

1/|x|
e−sds

>
∫
|x|61

|x|2νn(dx)

∫ 1

0

s2e−sds +

∫
|x|>1

νn(dx)

∫ ∞

1

e−sds;

(3.20) is obtained from (3.20)˜ because∫
|x|>l

ν̃n(dx) =

∫ ∞

0

e−sds

∫
|x|>l/s

νn(dx) >
∫ ∞

1

e−sds

∫
|x|>l

νn(dx).

To see (3.21), use (3.21)˜ and the estimate

sup
n

∣∣∣∣∫
Rd

x|x|2

1 + |x|2
νn(dx)

∫ ∞

0

e−ss(1− s2)

1 + s2|x|2
ds

∣∣∣∣ < ∞,

which is a consequence of (3.19) as in the proof of (3.16). This finishes the proof of
precompactness of {µn}. Now we can choose a convergent subsequence {µn′} of {µn}.
Thus there is µ ∈ ID(Rd) such that µn′ → µ. Hence Υµn′ → Υµ and Υµ = µ̃. It follows
from (i) that µ does not depend on the choice of the subsequence. Hence µn → µ.

(vi) Let Xt = X
(µ)
t . Let X ′

t = X1 −X(1−t)− for 0 6 t < 1. Then {X ′
t : 0 6 t < 1} is

a process identical in law with {Xt : 0 6 t < 1} (Proposition 41.8 of Sato (1999)). We
have ∫ 1

s

log
1

t
dX ′

t =

∫ 1−s

0

log
1

1− t
dXt,

and the function

f̃(t) =

{
log(1/(1− t)) for 0 6 t < 1

0 for t > 1

is {Xt}-integrable similarly to f(t). Hence (2.27).
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In order to show (2.28), first note that
∫ 1

s
log 1

t
dXt tends to

∫ 1

0
log 1

t
dXt a. s. as s ↓ 0,

since
∫

B
f(t)dXt, B ∈ B0

[0,∞), is an independently scattered random measure. By The-

orem 4.7 of Sato (2004),∫ 1

s

log
1

t
dXt =

∫ 1

s

dXt

∫ 1

t

1

u
du =

∫ 1

s

du

u

∫ u

s

dXt =

∫ 1

s

Xu

u
du−Xs log

1

s
.

It is known that Xs log(1/s) → 0 a. s. as s ↓ 0 (apply Proposition 47.11 of Sato (1999)

to the components of {Xt}). Therefore lims↓0
∫ 1

s
(Xu/u)du exists a. s. and (2.28) holds.

�

Proof of Theorem A. Let µ ∈ ID(Rd) and µ̃ = Υµ. Let ν and ν̃ be the Lévy measures
of µ and µ̃, respectively. Then (2.18) holds by Proposition 2.7 (v). Thus, if ν = 0,
then ν̃ = 0 and µ̃ ∈ B(Rd). Assume that ν 6= 0 and ν has polar decomposition (λ, νξ).
Then, for any nonnegative measurable function f ,∫

Rd

f(x)ν̃(dx) =

∫ ∞

0

e−sds

∫
Rd

f(sx)ν(dx) =

∫ ∞

0

e−sds

∫
S

λ(dξ)

∫ ∞

0

f(srξ)νξ(dr)

=

∫
S

λ(dξ)

∫ ∞

0

νξ(dr)r−1

∫ ∞

0

e−s/rf(sξ)ds =

∫
S

λ(dξ)

∫ ∞

0

f(sξ)l̃ξ(s)ds,

where l̃ξ(s) is defined by (2.19). Define a measure Q̃ξ by

Q̃ξ(B) =

∫ ∞

0

1B(r−1)r−1νξ(dr), B ∈ B((0,∞)).

Then Q̃ξ(B) is measurable in ξ and

l̃ξ(s) =

∫
(0,∞)

e−suQ̃ξ(du) for s > 0. (3.22)

Hence l̃ξ is completely monotone. Letting λ̃ = λ and ν̃ξ(dr) = l̃ξ(r)dr, we see that

(λ̃, ν̃ξ) is a polar decomposition of ν̃ and that µ̃ ∈ B(Rd).

Conversely, suppose that µ̃ ∈ B(Rd) with triplet (Ã, ν̃, γ̃). If ν̃ = 0, then µ̃ = Υµ with
µ = µ( eA/2,0,eγ) by Proposition 2.7 (v). Suppose that ν̃ 6= 0. Then, in a decomposition

(λ̃, ν̃ξ) of ν̃, we have ν̃ξ(dr) = l̃ξ(r)dr, where l̃ξ(r) is completely monotone in r and

measurable in ξ. Thus there are measures Q̃ξ on (0,∞) satisfying (3.22) such that

Q̃ξ(B) is measurable in ξ for each B ∈ B((0,∞)). Now define

νξ(B) =

∫
(0,∞)

1B(u−1)u−1Q̃ξ(du).

Then νξ is a measure on (0,∞) for each ξ and∫ ∞

0

f(r)νξ(dr) =

∫
(0,∞)

f(u−1)u−1Q̃ξ(du)

for all nonnegative measurable functions f on (0,∞). Notice that it follows that∫
(0,∞)

f(r)Q̃ξ(dr) =

∫ ∞

0

f(u−1)u−1νξ(du)
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for all nonnegative measurable functions f on (0,∞). Hence we have (2.19). Let λ = λ̃.
Then ∫

S

λ(dξ)

∫ ∞

0

(r2 ∧ 1)νξ(dr) =

∫
S

λ̃(dξ)

∫
(0,∞)

(u−2 ∧ 1)u−1Q̃ξ(du)

=

∫
S

λ̃(dξ)

(∫
(0,1]

u−1Q̃ξ(du) +

∫
(1,∞)

u−3Q̃ξ(du)

)
< ∞

by (3.5) for Q̃ξ in place of Qξ. Define ν by (2.8). Then ν is the Lévy measure of an
infinitely divisible distribution and we can check∫ ∞

0

e−sds

∫
Rd

f(sx)ν(dx) =

∫
Rd

f(x)ν̃(dx)

for all nonnegative measurable functions f on Rd. Define A and γ by (2.24) and (2.26)
and let µ = µ(A,ν,γ). Then Υµ = µ̃. Thus µ̃ ∈ Υ(ID(Rd)). This finishes the proof of
Theorem A. �

Proof of Theorem B. Let µ ∈ L(Rd) and µ̃ = Υµ. Let ν and ν̃ be the Lévy measures
of µ and µ̃, respectively. If ν = 0, then ν̃ = 0 and µ̃ ∈ T (Rd). Assume that ν 6= 0 and
let λ, νξ(dr) = kξ(r)r

−1dr be a polar decomposition of ν with k-function kξ(r). We
claim that µ̃ ∈ T (Rd). For any nonnegative measurable function f on Rd,∫

f(x)ν̃(dx) =

∫ ∞

0

e−sds

∫
f(sx)ν(dx) =

∫ ∞

0

e−sds

∫
S

λ(dξ)

∫ ∞

0

f(srξ)kξ(r)r
−1dr

=

∫ ∞

0

e−sds

∫
S

λ(dξ)

∫ ∞

0

f(rξ)kξ(rs
−1)r−1dr

=

∫
S

λ(dξ)

∫ ∞

0

f(rξ)r−1dr

∫ ∞

0

kξ(rs
−1)e−sds.

Define k̃ξ(r) by the first equality in (2.21). Let k]
ξ(u) = limu′↓u kξ(1/u

′). Notice that
limr→∞ kξ(r) = 0 for λ-a. e. ξ. Then

−
∫

1[a,∞)(v)dkξ(v) = lim
a′↑a

kξ(a
′) = k]

ξ(a
−1) =

∫
1(0,a−1](u)dk]

ξ(u)

=

∫
1[a,∞)(u

−1)dk]
ξ(u)

for all a > 0. More generally,

−
∫

(0,∞)

g(v)dkξ(v) =

∫
(0,∞)

g(u−1)dk]
ξ(u)

for any nonnegative measurable function g on (0,∞). Then

k̃ξ(r) = −
∫ ∞

0

e−sds

∫
(r/s,∞)

dkξ(v) = −
∫

(0,∞)

dkξ(v)

∫ ∞

r/v

e−sds

= −
∫

(0,∞)

e−r/vdkξ(v) =

∫
(0,∞)

e−rudk]
ξ(u). (3.23)

Since k]
ξ(u) is increasing, it follows that k̃ξ(r) is completely monotone. Hence µ̃ ∈ T (Rd).
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Conversely, suppose µ̃ ∈ T (Rd) with triplet (Ã, ν̃, γ̃). If ν̃ = 0, then µ̃ = Υµ with µ
Gaussian and hence µ̃ ∈ Υ(L(Rd)). Suppose ν̃ 6= 0. Then, we have a decomposition

(λ̃, ν̃ξ) of ν̃ with ν̃ξ(dr) = k̃ξ(r)r
−1dr, where k̃ξ(r) is completely monotone in r and

measurable in ξ. We have k̃ξ(r) =
∫

(0,∞)
e−ruR̃ξ(du) with R̃ξ(du) described in Remark

3.2. Define k]
ξ(u) = R̃ξ((0, u]), u > 0, and kξ(v) = limv′↓v k]

ξ(1/v
′), v > 0. Then kξ(v) is

right-continuous and decreasing in v. The calculation in (3.23) shows the first equality
in (2.21). Hence we have∫

Rd

f(x)ν̃(dx) =

∫ ∞

0

e−sds

∫
S

λ̃(dξ)

∫ ∞

0

f(srξ)kξ(r)r
−1dr

for all nonnegative measurable functions f(x). Define λ = λ̃ and

ν(B) =

∫
S

λ(dξ)

∫ ∞

0

1B(rξ)kξ(r)r
−1dr.

Then we have (2.25) and∫
Rd

(|x|2 ∧ 1)ν(dx) =

∫
S

λ(dξ)

∫ ∞

0

(r2 ∧ 1)kξ(r)r
−1dr

=

∫
S

λ̃(dξ)

∫ ∞

0

(r2 ∧ 1)k]
ξ(r

−1)r−1dr =

∫
S

λ̃(dξ)

∫ ∞

0

(r ∧ r−1)dr

∫
(0,r−1]

R̃ξ(du)

=

∫
S

λ̃(dξ)

(∫ 1

0

rdr

∫
(0,r−1]

R̃ξ(du) +

∫ ∞

1

r−1dr

∫
(0,r−1]

R̃ξ(du)

)
=

∫
S

λ̃(dξ)

(∫
(0,∞)

R̃ξ(du)

∫ 1∧(1/u)

0

rdr +

∫
(0,1]

R̃ξ(du)

∫ 1/u

1

r−1dr

)

=

∫
S

λ̃(dξ)

(
1

2

∫
(0,1]

R̃ξ(du) +
1

2

∫
(1,∞)

u−2R̃ξ(du) +

∫
(0,1]

log
1

u
R̃ξ(du)

)
< ∞

by using (3.10) for R̃ξ in place of Rξ. Hence, ν is the Lévy measure of a distribution.

Letting A = 1
2
Ã and choosing γ to satisfy (2.26), we have µ̃ = Υµ for µ = µ(A,ν,γ) ∈

L(Rd). �

4. Proof of Theorems C and D

We give the proofs of Theorems C and D together with some general results on
complete closedness in the strong sense.

Proof of Theorem C. (i) Let µ ∈ ID(Rd) and µ̃ = Υµ. Let ν and ν̃ be the Lévy
measures of µ and µ̃. We have∫

|x|>2

log |x|ν̃(dx) =

∫ ∞

0

e−sds

∫
|x|>2/s

log(s|x|)ν(dx)

=

∫
Rd

ν(dx)

∫ ∞

2/|x|
e−s log(s|x|)ds =

∫
Rd

h(x)ν(dx),

where

h(x) =

∫ ∞

2/|x|
e−s log s ds + e−2/|x| log |x|.
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Note that h(x) = o(|x|2) as |x| ↓ 0 and h(x) ∼ log |x| as |x| → ∞. Thus,∫
|x|>2

log |x|ν̃(dx) < ∞ if and only if
∫
|x|>2

log |x|ν(dx) < ∞.

(ii) If µ ∈ IDlog(Rd), then∫ ∞

0

|Cµ(e−tz)|dt < ∞ and CΦµ(z) =

∫ ∞

0

Cµ(e−tz)dt

(see the references given for (2.2) and (2.3)). If µ ∈ ID(Rd), then∫ ∞

0

e−s|Cµ(sz)|ds < ∞ and CΥµ(z) =

∫ ∞

0

e−sCµ(sz)ds

by (2.23) and (2.22). Let µ ∈ IDlog(Rd). Using Υµ ∈ IDlog(Rd) in (i), we have

CΦΥµ(z) =

∫ ∞

0

dt

∫ ∞

0

e−sCµ(e−tsz)ds, (4.1)

CΥΦµ(z) =

∫ ∞

0

e−sds

∫ ∞

0

Cµ(e−tsz)dt. (4.2)

We claim that ∫ ∞

0

e−sds

∫ ∞

0

|Cµ(e−tsz)|dt < ∞ for z ∈ Rd. (4.3)

If this is proved, then we can interchange the order of the integrations in (4.1) and (4.2)
and get ΦΥµ = ΥΦµ.

The proof of (4.3) is as follows. Let µ = µ(A,ν,γ). Then

|Cµ(z)| 6 1

2
(tr A)|z|2 + |γ||z|+

∫
|g(z, x)|ν(dx),

where g(z, x) is given by (3.11). Hence

|Cµ(e−tsz)| 6 I1 + I2 + I3 + I4

with

I1 =
1

2
(tr A)e−2ts2|z|2, I2 = |γ|e−ts|z|,

I3 =

∫
|g(z, e−tsx)|ν(dx), I4 =

∫
|g(e−tsz, x)− g(z, e−tsx)|ν(dx).

Finiteness of
∫∞

0
e−sds

∫∞
0

(I1 + I2)dt is straightforward. To deal with the similar inte-
grals of I3 and I4, note that

|g(z, x)| 6 cz|x|2/(1 + |x|2), (4.4)

with a constant cz depending on z, and that, for any a ∈ R,

|g(az, x)− g(z, ax)| = |〈az, x〉|
∣∣∣∣ |x|2

1 + |x|2
− |ax|2

1 + |ax|2

∣∣∣∣
= |〈az, x〉| |x|2|1− a2|

(1 + |x|2)(1 + |ax|2)
6 |z| |x|3(|a|+ |a|3)

(1 + |x|2)(1 + |ax|2)
.
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Then ∫ ∞

0

e−sds

∫ ∞

0

I3dt 6 cz

∫
Rd

ν(dx)

∫ ∞

0

e−sds

∫ ∞

0

(e−ts|x|)2

1 + (e−ts|x|)2
dt

= cz

∫
ν(dx)

∫ ∞

0

e−sds

∫ s|x|

0

u

1 + u2
du

=
cz

2

∫
ν(dx)

∫ ∞

0

e−s log(1 + s2|x|2)ds = J3, say.

Since log(1 + v) 6 c(v1(0,2](v) + (log v)1(2,∞)(v)) for v > 0 with an absolute constant c,
we have

J3 6
ccz

2

∫
Rd

|x|2ν(dx)

∫ √
2/|x|

0

e−ss2ds + ccz

∫
Rd

ν(dx)

∫ ∞

√
2/|x|

e−s(log s + log |x|)ds,

which is finite since
∫
|x|62

|x|2ν(dx) < ∞ and
∫
|x|>2

log |x|ν(dx) < ∞. Concerning I4,

we have ∫ ∞

0

I4dt 6 |z|
∫

Rd

|x|3

1 + |x|2
ν(dx)

∫ ∞

0

e−ts + e−3ts3

1 + e−2ts2|x|2
dt

= |z|
∫

Rd

|x|3

1 + |x|2
ν(dx)

∫ s|x|

0

u|x|−1 + u3|x|−3

(1 + u2)u
du

6
π

2
|z|
∫

Rd

|x|2

1 + |x|2
ν(dx) + |z|

∫
Rd

1

1 + |x|2
ν(dx)

∫ s|x|

0

u2du

1 + u2

= J4,1 + J4,2, say.

Then
∫∞

0
e−sJ4,1ds < ∞ is evident and∫ ∞

0

e−sJ4,2ds = |z|
∫

Rd

ν(dx)

1 + |x|2

∫ ∞

0

u2du

1 + u2

∫ ∞

u/|x|
e−sds

6 |z|
∫

Rd

ν(dx)

1 + |x|2

(∫ 1

0

u2e−u/|x|du +

∫ ∞

1

e−u/|x|du

)
= |z|

∫
Rd

|x|3

1 + |x|2
ν(dx)

∫ 1/|x|

0

u2e−udu + |z|
∫

Rd

|x|e−1/|x|

1 + |x|2
ν(dx) < ∞.

This finishes the proof of (4.3).
It follows from (4.1) and (4.3) that

CΦΥµ(z) =

∫ ∞

0

dt

∫ ∞

0

Cµ(uz)et−uet

du =

∫ ∞

0

Cµ(uz)e−uu−1du

= −
∫ ∞

0

Cµ(uz)de1(u) =

∫ ∞

0

Cµ(e∗1(t)z)dt, (4.5)∫ ∞

0

|Cµ(e∗1(t)z)|dt < ∞ (4.6)

for µ ∈ IDlog(Rd).
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The function e∗1(t) is {X(µ)
t }-integrable for every µ = µ(A,ν,γ) ∈ ID(Rd). This is

because, for each t0 ∈ (0,∞), the integrals∫ t0

0

〈z, Az〉e∗1(t)2dt,

∫ t0

0

dt

∫
Rd

(|xe∗1(t)|2 ∧ 1)ν(dx),∫ t0

0

|〈γ, z〉|e∗1(t)dt,

∫ t0

0

dt

∫
Rd

|g(e∗1(t)z, x)− g(z, e∗1(t)x)|ν(dx)

are finite. Indeed,∫ t0

0

dt

∫
Rd

(|xe∗1(t)|2 ∧ 1)ν(dx) =

∫ ∞

e∗1(t0)

e−ss−1ds

∫
Rd

(|xs|2 ∧ 1)ν(dx) < ∞

like (3.13), and finiteness of the other integrals is shown similarly. It follows from

(4.5) and (4.6) that, if µ ∈ IDlog(Rd), then
∫∞

0
e∗1(t)dX

(µ)
t exists and equals ΦΥµ in

distribution.
It remains to show that

∫∞
0

e∗1(t)dX
(µ)
t does not exists if µ ∈ ID(Rd) \ IDlog(Rd). It

is easy to see that

e1(s) ∼ e−ss−1 as s →∞, e1(s) ∼ log(1/s) as s ↓ 0.

Then we have

e∗1(t) ∼ ce−t as t →∞, e∗1(t) ∼ log(1/t) as t ↓ 0 (4.7)

with some positive constant c, for we have

lim
t→∞

e∗1(t)

e−t
= lim

s↓0

s

e−e1(s)
= lim

s↓0
ee1(s)+log s = exp

(∫ ∞

1

e−uu−1du−
∫ 1

0

(1− e−u)u−1du

)
,

lim
t↓0

e∗1(t)

log(1/t)
= lim

s→∞

s

− log e1(s)
= lim

s→∞

1

−e′1(s)/e1(s)
= lim

s→∞

e1(s)

e−ss−1
= 1.

Let µ ∈ ID(Rd) and suppose that
∫∞

0
e∗1(t)dX

(µ)
t exists and has distribution µ̃. Let

tn →∞ and denote µ̃n = L
(∫ tn

0
e∗1(t)dX

(µ)
t

)
. Then µ̃n → µ̃. Let ν̃n and ν̃ be the Lévy

measures of µ̃n and µ̃. Then
∫

f(x)ν̃n(dx) →
∫

f(x)ν̃(dx) for all bounded continuous
functions f vanishing on a neighborhood of 0 (Sato (1999) Theorem 8.7). Choose t0 > 0
such that e∗1(t) > ce−t/2 for t > t0. Since

ν̃n(B) =

∫ tn

0

dt

∫
1B(e∗1(t)x)ν(dx), B ∈ B(Rd),

where ν is the Lévy measure of µ, we get∫
|x|>1

ν̃n(dx) =

∫ tn

0

dt

∫
1{|x|>1/e∗1(t)}(x)ν(dx) >

∫ tn

0

dt

∫
1{|x|>2et/c}(x)ν(dx)

=

∫
Rd

ν(dx)

∫
(t0,tn]∩(0,log(c|x|/2))

dt →
∫
{log(c|x|/2)>t0}

(log(c|x|/2)− t0)ν(dx).

Hence
∫
|x|>a

log |x|ν(dx) < ∞ for some a, that is, µ ∈ IDlog(Rd).

(iii) is a consequence of (i) and (ii) combined with Theorems A and B. �

As in Maejima, Sato and Watanabe (1999), a class M of distributions on Rd is said
to be completely closed in the strong sense if it satisfies the following five conditions:
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(ccs1) M is a subclass of ID(Rd),
(ccs2) µ1, µ2 ∈ M implies µ1 ∗ µ2 ∈ M ,
(ccs3) µn ∈ M (n = 1, 2, . . .) and µn → µ imply µ ∈ M ,
(ccs4) if X is an Rd-valued random variable with L(X) ∈ M , then L(aX + b) ∈ M

for any a > 0 and b ∈ Rd,
(ccs5) µ ∈ M implies µs∗ ∈ M for any s > 0.

In the following we sometimes omit Rd in writing IDlog(Rd), Lm(Rd), or Tm(Rd).

Lemma 4.1. Let M be a class of distributions on Rd, completely closed in the strong
sense. Then the following statements are true.

(i) The classes Υ(M) and Φ(M ∩ IDlog(Rd)) are subclasses of M .
(ii) The classes Υ(M) and Φ(M ∩ IDlog(Rd)) are completely closed in the strong

sense.
(iii) Φ(M ∩ IDlog(Rd)) = {σ ∈ L(Rd) : ρ

(σ)
b ∈ M for all b > 1}, where ρ

(σ)
b is defined

by (2.32) with σ in place of µ.

Proof. (i) Let µ ∈ M and Xt = X
(µ)
t . Let σ = Υµ = L(I) where I =

∫ 1

0
log(1/t)dXt.

For any sn ↓ 0 let σn = L(In) where In =
∫ 1

sn
log(1/t)dXt. By Proposition 4.5 of Sato

(2004), In is the limit in probability of a sequence
∫ 1

sn
fm(t)dXt as m → ∞, where

fm(t) is a nonnegative step function for each m. We see that L
(∫ 1

sn
fm(t)dXt

)
∈ M

from (ccs2), (ccs4), and (ccs5). Thus σn ∈ M by (ccs3). As n → ∞, In tends to I in
probability and thus σn → σ. Hence σ ∈ M . Proof that Φµ ∈ M for µ ∈ M ∩ IDlog is
similar, using (2.3).

(ii) The properties (ccs1)–(ccs3) for Υ(M) follows from Proposition 2.7. To see (ccs4),

note that L
(
a
∫ 1

0
log(1/t)dX

(µ)
t +b

)
= L

(∫ 1

0
log(1/t)dX ′

t

)
, where {X ′

t} is a Lévy process

with L(X ′
1) = L(aX

(µ)
1 + b). Here we have used

∫ 1

0
log(1/t)dt = 1. To see (ccs5), note

that

sCΥµ(z) = s

∫ 1

0

Cµ(z log(1/t))dt =

∫ 1

0

Cµs∗(z log(1/t))dt.

Similarly we can prove (ccs1)–(ccs5) for Φ(M ∩ IDlog) except (ccs3). Proof of (ccs3)
for Φ(M ∩ IDlog) will be given after we show (iii).

(iii) Suppose that µ ∈ M ∩ IDlog and σ = Φµ. Use (2.2) and (2.3). Then σ ∈ L(Rd).

Notice that, for Xt = X
(µ)
t and b > 1,

b−1

∫ ∞

0

e−tdXt =

∫ ∞

0

e−(t+log b)dXt
d
=

∫ ∞

log b

e−tdXt,∫ ∞

0

e−tdXt =

∫ ∞

log b

e−tdXt +

∫ log b

0

e−tdXt,

and thus ρ
(σ)
b = L

(∫ log b

0
e−tdXt

)
. Hence ρ

(σ)
b ∈ M as in the proof of (i).

Conversely, suppose that σ ∈ L and ρ
(σ)
b ∈ M for all b > 1. Choosing µ ∈ IDlog with

Φµ = σ, we see that C
ρ
(σ)
b

(z) =
∫ log b

0
Cµ(e−tz)dt. Let gb(z) be the cumulant function

of (ρ
(σ)
b )(1/ log b)∗ ∈ M . Then gb(z) = (1/ log b)

∫ log b

0
Cµ(e−tz)dt, which tends to Cµ(z) as

b ↓ 1. Hence (ρ
(σ)
b )(1/ log b)∗ → µ and µ ∈ M .
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Now we give the proof that M̃ = Φ(M ∩ IDlog) has property (ccs3). Let σn ∈ M̃ and

σn → σ as n →∞. Then, by (iii), ρ
(σn)
b ∈ M . Since the characteristic function of ρ

(σn)
b

equals σ̂n(z)/σ̂n(b−1z), which tends to a continuous function σ̂(z)/σ̂(b−1z) as n → ∞,

ρ
(σn)
b tends to some ρ ∈ M . We have σ̂(z) = σ̂(b−1z)ρ̂(z). Hence σ ∈ M̃ again by (iii).

�

Proof of Corollary to Theorem C. By Lemma 4.1 (ii) it follows from Theorem A (i)
that B(Rd) is completely closed in the strong sense. Hence, by Lemma 4.1 (iii), we get
(2.35) from (2.30) of Theorem C. �

Proof of Theorem D. Let us prove (2.38). Although (2.43) and the complete closedness
in the strong sense of Lm(Rd) are known facts, it is more natural to reprove them and
to prove the complete closedness in the strong sense of Tm(Rd), together with the proof
of (2.38). For m = 0 (2.38) is already proved in Theorem B. To prove it for m = 1,
first note that L0 is completely closed in the strong sense by Lemma 4.1 (ii) and (2.2).
Hence so is T0 by (2.38) for m = 0. Lemma 4.1 (iii) says that L1 = Φ(L0∩ IDlog). Now
we have

T1 = Φ(T0 ∩ IDlog) = Φ(Υ(L0) ∩ IDlog) = Φ(Υ(L0 ∩ IDlog))

= ΥΦ(L0 ∩ IDlog) = Υ(L1),

using definition (2.36) of T1, Lemma 4.1 (iii), Theorem C (i), and Theorem C (ii),
consecutively. This is (2.38) for m = 1. Continuing this procedure, we get (2.38),
(2.42), (2.43), and the complete closedness in the strong sense of Lm(Rd) and Tm(Rd)
for all finite m. It follows that (2.38) holds also for m = ∞. Moreover (2.42) and (2.43)
also hold for m = ∞, since we get from (2.36)

T∞ = {µ ∈ L : ρ
(µ)
b ∈ T∞ for every b > 1},

and similarly for L∞.
Let us show (2.39). Denote by S(α, Rd) the class of α-stable distributions on Rd. It

is enough to show that

Υ(S(α, Rd)) = S(α, Rd). (4.8)

This is evident in the case α = 2 (Gaussian). Let µ ∈ S(α, Rd) with 0 < α < 2. Then
it has k-function kξ(r) = r−α. Thus by (2.21) Υµ has k-function

∫∞
0

r−αsαe−sds =

Γ(α + 1) r−α. Thus Υµ ∈ S(α, Rd). On the other hand, this shows that, for any
µ̃ ∈ S(α, Rd), there is a µ ∈ S(α, Rd) such that µ̃ = Υµ.

The assertion Tm ⊂ Lm for all finite m is a consequence of (2.38) and Lemma 4.1 (i).
But we have to show the inclusion is strict. Define

IDlogn(Rd) =

{
µ ∈ ID(Rd) :

∫
|x|>2

(log |x|)nµ(dx) < ∞
}

=

{
µ ∈ ID(Rd) :

∫
|x|>2

(log |x|)nν(µ)(dx) < ∞
}

,

for n = 1, 2, . . .. Let IDlog0(Rd) = ID(Rd). It is known that

Φ(IDlogn+1(Rd)) = L(Rd) ∩ IDlogn(Rd) for n = 0, 1, . . . , (4.9)

Lm(Rd) = Φm+1(IDlogm+1(Rd)) for m = 0, 1, . . . (4.10)
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(see the references given after (2.43)). The proof of (2.14) actually showed that

B ∩ L0 ∩ IDlogn % T0 ∩ IDlogn for n = 0, 1, . . . . (4.11)

Hence L0 ∩ IDlogn % T0 ∩ IDlogn for n = 0, 1, . . .. Applying Φ and using (2.42) and
(2.43), we get L1 ∩ IDlogn % T1 ∩ IDlogn for n = 0, 1, . . .. Repeating this, we have
Lm ∩ IDlogn % Tm ∩ IDlogn for m = 0, 1, . . . and n = 0, 1, . . .. For n = 0 this is (2.40).

The proof of (2.41) is as follows. It follows from Tm ⊂ Lm for finite m that T∞ ⊂ L∞.
On the other hand we know that S ⊂ T∞ and that T∞ is completely closed in the strong
sense. Since L∞ is the smallest class containing S and closed under convolution and
convergence, we have T∞ ⊃ L∞. �

5. Proof of Theorem E

For a > 0, let ∆a be the difference operator, ∆af(u) = f(u + a)− f(u), u ∈ R, and
let ∆n

a be its nth iteration. Clearly

∆n
af(u) =

n∑
j=0

(−1)n−j

(
n

j

)
f(u + ja)

for n = 0, 1, . . .. We say that a function f(u) is monotone of order n if

∆j
af(u) > 0 for any a > 0, u ∈ R, j = 0, 1, . . . , n.

When f is monotone of order n for all n = 0, 1, . . ., f is absolutely monotone. Then a
characterization of distributions in the class Lm(Rd) in terms of Lévy measures is given
as follows (Sato (1980)).

Proposition 5.1. Let µ ∈ L0(Rd) with Lévy measure ν such that ν = 0 or ν 6= 0 with
spherical component λ and h-function hξ(u).

(i) Let m ∈ {1, 2, . . .}. Then µ ∈ Lm(Rd) if and only if either ν = 0 or ν 6= 0 with
hξ(u) being monotone of order m + 1 in u for λ-a. e. ξ.

(ii) We have µ ∈ L∞(Rd) if and only if either ν = 0 or ν 6= 0 with hξ(u) being
absolutely monotone in u for λ-a. e. ξ.

Proof of Theorem E. Let us denote by T ′
m the class of µ ∈ L0 such that either ν = 0 or

ν 6= 0 with h-function satisfying (2.44). First, notice that condition (2.44) is equivalent
to the condition that

h
(j)
ξ (− log r) is completely monotone in r > 0 for j = 0, 1, . . . ,m, λ-a. e. ξ. (5.1)

Indeed, this clearly implies (2.44). On the other hand, if (2.44) holds, then
−(d/dr)(h(m−1)(− log r)) = h(m)(− log r)r−1 is completely monotone as the product
of two completely monotone functions, and thus h(m−1)(− log r) is itself completely
monotone since h(m−1) > 0, and so on. Since hξ(− log r) = kξ(r), we have T ′

0 = T0 by
Definition 2.3. Let us prove T ′

m = Tm for all finite m.
Part 1. (Proof that Tm ⊂ T ′

m.) Assume that 1 6 m < ∞ and let µ̃ ∈ Tm. By virtue
of (2.38) of Theorem D, there is µ ∈ Lm such that µ̃ = Υµ. Let ν and ν̃ be the Lévy
measures of µ and µ̃. If ν = 0, then ν̃ = 0 and µ̃ ∈ T ′

m. Assume that ν 6= 0 and let
kξ and hξ be the k-function and h-function of ν. For notational simplicity, we omit ξ
in kξ(r) and hξ(u). By Proposition 5.1, h is monotone of order m + 1, and by Lemma
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3.2 of Sato (1980), h is m− 1 times continuously differentiable, h(j) is nonnegative for
j = 0, 1, . . . ,m− 1, and h(m−1) is increasing and convex. Thus there exists the Radon–
Nikodým derivative h(m) of h(m−1) such that h(m) is nonnegative and increasing. We take
h(m) as a right-continuous function having left limits. We see that, for j = 1, . . . ,m, h(j)

is nonnegative, increasing, and satisfies h(j)(−∞) = 0 and h(j−1)(u) =
∫ u

−∞ h(j)(v)dv.
Let us use (2.21) of Theorem B (ii). Thus

k̃(r) =

∫
(0,∞)

e−rudh(log u). (5.2)

Define, for j = 1, 2, . . .,

ej(t) =

∫ ∞

t

ej−1(s)s
−1ds (5.3)

with e0(t) = e−t. This is definable, because we can inductively prove that ej−1(t) ∼
e−tt−(j−1) as t →∞. This definition is consistent with the definition of e1(t) in Section
2. We are now going to show that

k̃(r) =

∫
(0,∞)

ej(ru)dh(j)(log u) (5.4)

for j = 0, 1, . . . ,m.
By (5.2), (5.4) is true for j = 0. Suppose that (5.4) is true for some j < m. Then

k̃(r) =

∫ ∞

0

ej(ru)h(j+1)(log u)u−1du =

∫ ∞

0

ej(ru)u−1du

∫
(−∞,log u]

dh(j+1)(v)

=

∫
(−∞,∞)

dh(j+1)(v)

∫ ∞

ev

ej(ru)u−1du =

∫
(−∞,∞)

dh(j+1)(v)

∫ ∞

rev

ej(u)u−1du

=

∫
(−∞,∞)

ej+1(re
v)dh(j+1)(v) =

∫
(0,∞)

ej+1(ru)dh(j+1)(log u),

which is (5.4) for j + 1 in place of j. Hence (5.4) is true for j = 0, 1, . . . ,m. Thus the

h-function, h̃(u) = k̃(e−u), of ν̃ satisfies

h̃(− log r) =

∫
(0,∞)

ej(ru)dh(j)(log u)

for j = 0, 1, . . . ,m. Thus for any r1 < r2,∫ r2

r1

h̃′(− log r)r−1dr = −(h̃(− log r2)− h̃(− log r1))

= −
∫

(0,∞)

(ej(r2u)− ej(r1u))dh(j)(log u)

=

∫
(0,∞)

dh(j)(log u)

∫ r2

r1

ej−1(ru)r−1dr

=

∫ r2

r1

r−1dr

∫
(0,∞)

ej−1(ru)dh(j)(log u),

and hence

h̃′(− log r) =

∫
(0,∞)

ej−1(ru)dh(j)(log u), a. e. r > 0 (5.5)
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for j = 1, . . . ,m. Recall that h̃ is of C∞, because µ̃ ∈ Tm ⊂ T0. On the other hand,
the right-hand side of (5.5) is continuous and decreasing in r. Hence (5.5) holds for all
r > 0. Repeating this argument, we have, for 0 6 l 6 m,

h̃(l)(− log r) =

∫
(0,∞)

ej−l(ru)dh(j)(log u) for j = l, . . . , m.

Hence

h̃(l)(− log r) =

∫
(0,∞)

e−rudh(l)(log u) for l = 0, . . . ,m, (5.6)

which implies the complete monotonicity of h̃(l)(− log r), and thus µ̃ ∈ T ′
m.

Part 2. (Proof that T ′
m ⊂ Tm.) We use induction in m. We already know that

T ′
0 = T0. Given 1 6 m < ∞, assume that T ′

m−1 ⊂ Tm−1. Let µ̃ ∈ T ′
m. Then µ̃ ∈ T0

and we can find µ ∈ L0 such that µ̃ = Υµ. In order to show µ̃ ∈ Tm, it is enough
to show µ ∈ Lm, again by (2.38) of Theorem D. Let ν̃ and ν be the Lévy measures
of µ̃ and µ. If ν̃ = 0, then µ̃ and µ are Gaussian and µ ∈ Lm. Suppose ν̃ 6= 0.
Recalling the converse part in the proof of Theorem B, we can give the k-function of ν

as kξ(v) = limv′↓v k]
ξ(1/v

′) where k]
ξ(u) = R̃ξ((0, u]) and k̃ξ(r) =

∫
(0,∞)

e−ruR̃ξ(du). The

h-function hξ of ν is given by hξ(log u) = limu′↓u kξ(1/u
′) = R̃ξ((0, u]). Hence

h̃ξ(− log r) = lim
r′↑r

k̃ξ(r
′) =

∫
(0,∞)

e−rudhξ(log u).

Since µ̃ ∈ T ′
m ⊂ T ′

m−1, we have µ ∈ Lm−1 by the induction hypothesis. Thus

h̃(m−1)(− log r) =

∫
(0,∞)

e−rudh(m−1)(log u) (5.7)

by (5.6) of Part 1 (we are omitting ξ in the subscript). It follows from µ̃ ∈ T ′
m that,

for j = 0, . . . ,m, h̃(j)(− log r) is not only completely monotone but also h̃(j)(−∞) = 0.

Indeed, h̃(−∞) = 0 since k̃(∞) = 0, h̃′(−∞) = 0 since h̃(u2) − h̃(u1) =
∫ u2

u1
h̃′(u)du,

and so on. Therefore, there is a measure σ on (0,∞) such that

h̃(m)(log r) =

∫
(0,∞)

e−ruσ(du).

Now,

h̃(m−1)(− log r) =

∫ ∞

r

h̃(m)(− log u)u−1du =

∫ ∞

r

u−1du

∫
(0,∞)

e−uvσ(dv)

=

∫
(0,∞)

σ(dv)

∫ ∞

r

e−uvu−1du =

∫
(0,∞)

σ(dv)

∫ ∞

v

e−ruu−1du

=

∫ ∞

0

e−ruu−1σ((0, u])du.

This together with (5.7) implies that dh(m−1)(log u) = u−1σ((0, u])du. It follows that
the Radon–Nikodým derivative h(m)(u) of h(m−1)(u) exists and we have h(m)(log u) =
σ((0, u]). Hence h(m) is nonnegative and increasing, meaning that h is monotone of
order m + 1. Thus µ ∈ Lm, completing the proof. �
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Remark 5.2. It follows from Theorem E and (5.1) that µ ∈ T∞(Rd) if and only if
µ ∈ L(Rd) and the Lévy measure ν of µ is either ν = 0 or ν 6= 0 having h-function
hξ(u) such that

h
(j)
ξ (− log r) is completely monotone in r > 0 for all j = 0, 1, . . ., λ-a. e. ξ (5.8)

where λ is the spherical component of ν. The property (5.8) is equivalent to the
absolute monotonicity of hξ(u) in u, λ-a. e. ξ. We can prove this directly, but this is
also a consequence of T∞ = L∞ in (2.41) and of Proposition 5.1 (ii).

6. Proof of Theorem F

We prove the characterization of B(Rd) and T (Rd) by elementary mixed-exponential
variables and elementary Γ-variables in Rd.

Proof of Theorem F. Part 1. (Characterization of B(Rd).) Let B0 be the smallest
class of distributions on Rd closed under convolution and convergence and containing
the distributions of all elementary mixed-exponential variables in Rd. In order to prove
B0 = B(Rd), it is enough to check the following facts:

B(Rd) is closed under convolution and convergence, (6.1)

L(Ux) ∈ B(Rd) for all elementary mixed-exponential variables Ux in Rd, (6.2)

δx ∈ B0 for all x ∈ Rd, (6.3)

if µ = µ(0,ν,0) ∈ B(Rd), then µ ∈ B0, (6.4)

if µ = µ(A,0,0), then µ ∈ B0. (6.5)

Indeed, (6.1) and (6.2) imply B(Rd) ⊃ B0; (6.3)–(6.5) imply B(Rd) ⊂ B0.
Proof of (6.1). Closedness under convolution is evident. Since B(Rd) = Υ(ID(Rd)),

closedness under convergence is proved in Proposition 2.7 (iv). Moreover, by Lemma
4.1, B(Rd) is completely closed in the strong sense.

Proof of (6.2). Let

P (U ∈ B) =
n∑

j=1

cj

∫
B∩(0,∞)

aje
−ajsds, B ∈ B(R)

with cj > 0,
∑n

j=1 cj = 1, and 0 < a1 < · · · < an < ∞. Then, by Lemma 51.14 of Sato

(1999),

EeivU = exp

∫ ∞

0

(eivr − 1)l(r)dr, v ∈ R,

l(r) =

∫ ∞

0

e−ru

n∑
j=1

1(aj ,a′j)
(u)du

with a1 < a′1 < a2 < a′2 < a3 < · · · < an < a′n = ∞. Hence, for x ∈ Rd \ {0},

CUx(z) =

∫ ∞

0

(ei〈z,x〉r − 1)l(r)dr =

∫
S

δx/|x|(dξ)

∫ ∞

0

(ei〈z,ξ〉|x|r − 1)l(r)dr

=

∫
S

δx/|x|(dξ)

∫ ∞

0

(ei〈z,ξ〉r − 1)l(r/|x|)dr/|x|, z ∈ Rd.
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Therefore L(Ux) ∈ B(Rd).
Proof of (6.3) and (6.4). Let B0(R+) be the smallest class closed under convolution

and convergence and containing all finite mixtures of exponential distributions. Then
µ0 ∈ B0(R+) if and only if

Cµ0(v) =

∫ ∞

0

(eivr − 1)l(r)dr + ir0v, v ∈ R,

with r0 > 0 and with l(r) being completely monotone and satisfying
∫∞

0
(r∧ 1)l(r)dr <

∞ (Theorem 51.10 of Sato (1999)). Therefore, if l(r) is such a function and if µ ∈
ID(Rd) satisfying

Cµ(z) =

∫ ∞

0

(ei〈z,ξ0〉r − 1)l(r)dr + i〈z, ξ0〉r0, z ∈ Rd

with some ξ0 ∈ S and r0 > 0, then µ ∈ B0. Choosing l(r) = 0, we get (6.3).
Consider µ ∈ ID(Rd) such that

Cµ(z) =

∫
S

λ(dξ)

∫ ∞

0

(ei〈z,ξ〉r − 1)lξ(r)dr + i〈γ0, z〉, z ∈ Rd (6.6)

with γ0 ∈ Rd, lξ(r) completely monotone,
∫

S
λ(dξ)

∫∞
0

(r∧ 1)lξ(r)dr < ∞, and Supp (λ)
being a finite set. Then µ ∈ B0 by the discussion above.

Next consider µ ∈ ID(Rd) such that

Cµ(z) =

∫
S

λ(dξ)

∫ ∞

0

g(z, rξ)lξ(r)dr

with lξ(r) completely monotone and
∫

S
λ(dξ)

∫∞
0

(r2 ∧ 1)lξ(r)dr < ∞. Here g is the

function of (3.11). This is a general form of µ = µ(0,ν,0) ∈ B(Rd). Using Remark 3.2,
write

Cµ(z) =

∫
S

λ(dξ)

∫
(0,∞)

Qξ(du)

∫ ∞

0

g(z, rξ)e−rudr,

where we have (3.3) with a(u) of (3.4). We can choose finite measures λn and Qn,ξ

(n = 1, 2, . . .) such that Supp (λn) is a finite set for each n, Supp (Qn,ξ) is a finite set
for each n and ξ, and∫

S

λn(dξ)

∫
(0,∞)

a(u)f(u, ξ)Qn,ξ(du) →
∫

S

λ(dξ)

∫
(0,∞)

a(u)f(u, ξ)Qξ(du)

for any bounded continuous function f(u, ξ) on (0,∞)× S. Let

νn(B) =

∫
S

λn(dξ)

∫
(0,∞)

Qn,ξ(du)

∫ ∞

0

1B(rξ)e−rudr,

and let µn be such that Cµn(z) =
∫

g(z, x)νn(dx). Then, noticing that
∫

S
λ(dξ)

∫∞
0

(r ∧
1)lξ(r)dr < ∞ is equivalent to

∫
S

λ(dξ)
∫

(0,∞)
a0(u)Qξ(du) < ∞ with a0(u) =

u−2
∫ u

0
ve−vdv + u−1e−u (thus a0(u) ∼ u−1 as u ↓ 0 and a0(u) ∼ u−2 as u → ∞),

we see that Cµn(z) is of the form (6.6). Hence µn ∈ B0. Denote

fz(u, ξ) = a(u)−1

∫ ∞

0

g(z, rξ)e−rudr. (6.7)
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Then fz(u, ξ) is bounded and continuous in (u, ξ) ∈ (0,∞)× S, since∫ ∞

0

|g(z, rξ)|e−rudr 6 cz

∫ ∞

0

r2(1 + r2)−1e−rudr 6 cz

∫ ∞

0

(r2 ∧ 1)e−rudr = cza(u)

with cz of (4.4). Thus we have
∫

g(z, x)νn(dx) →
∫

g(z, x)ν(dx), that is, µn → µ.
Hence µ ∈ B0.

Proof of (6.5). Let µ = µ(A,0,0), the Gaussian distribution with mean 0 and covariance
matrix A. We claim that µ ∈ B0. We use the function fz(u, ξ) in (6.7). Let us show
that

lim
u→∞

fz(u, ξ) = −1
2
〈z, ξ〉2. (6.8)

Indeed,

fz(u, ξ) =
1

a(u)

∫ ∞

0

(ei〈z,ξ〉r − 1− i〈z, ξ〉r)e−rudr +
i〈z, ξ〉
a(u)

∫ ∞

0

r3

1 + r2
e−rudr

=
1

ua(u)

∫ ∞

0

(ei〈z,ξ〉r/u − 1− i〈z, ξ〉r/u)e−rdr +
i〈z, ξ〉
ua(u)

∫ ∞

0

(r/u)3

1 + (r/u)2
e−rdr,

and, since a(u) ∼ 2u−3 as u → ∞, the second term in the last expression tends to 0
and the first term tends to −(1/2)〈z, ξ〉2 because

ei〈z,ξ〉r/u − 1− i〈z, ξ〉r/u ∼ −(1/2)〈z, ξ〉2r2/u2

and

(ua(u))−1|ei〈z,ξ〉r/u − 1− i〈z, ξ〉r/u| 6 (1/2)|〈z, ξ〉|2r2

uniformly for large u. In addition to (6.8),

|fz(u, ξ)| 6 cz

a(u)

∫ ∞

0

r2

1 + r2
e−rudr 6

cz

ua(u)

∫ ∞

0

(r/u)2

1 + (r/u)2
e−rdr

6 czu
2

∫ ∞

0

r2

u2 + r2
e−rdr 6 2cz

for u so large that a(u) > u−3. Let X be a Gaussian random variable on Rd with
L(X) = µ and let

λ(B) = E(1B(X/|X|) |X|2) for B ∈ B(S).

Define µn as

Cµn(z) =

∫
S

λ(dξ)

∫
(0,∞)

δn(du)fz(u, ξ),

where δn is the δ-distribution located at n. Then µn ∈ B0 by (6.4) and

Cµn(z) =

∫
S

λ(dξ)fz(n, ξ) → −1

2

∫
S

〈z, ξ〉2λ(dξ).

This means µn → µ, since∫
S

〈z, ξ〉2λ(dξ) = E(〈z, X/|X|〉2|X|2) = E(〈z, X〉2) =
d∑

j,l=1

E(zjzlXjXl) = 〈z, Az〉.

Now we have µ ∈ B0.

27



Part 2. (Characterization of T (Rd).) We can give a proof similar to that for B(Rd).
Let T 0 be the smallest class of distributions on Rd closed under convolution and con-
vergence and containing the distributions of all elementary Γ-variables in Rd. This time
it is enough to check the following:

T (Rd) is closed under convolution and convergence, (6.9)

L(Ux) ∈ T (Rd) for all elementary Γ-variables Ux in Rd, (6.10)

δx ∈ T 0 for all x ∈ Rd, (6.11)

if µ = µ(0,ν,0) ∈ T (Rd), then µ ∈ T 0, (6.12)

if µ = µ(A,0,0), then µ ∈ T 0. (6.13)

The proof of (6.9) is similar to that of (6.1). If U is a real Γ-distributed variable,
then

EeivU = exp

∫ ∞

0

(eivr − 1)ae−brr−1dr, v ∈ R

with some a > 0 and b > 0 and, for any x ∈ Rd \ {0}, the elementary Γ-variable Ux
satisfies

CUx(z) =

∫ ∞

0

(ei〈z,x〉r − 1)ae−brr−1dr =

∫
S

δx/|x|(dξ)

∫ ∞

0

(ei〈z,ξ〉r − 1)ae−br/|x|r−1dr.

Hence (6.10).
To see δx ∈ T 0 for x 6= 0, note that

n|x|
∫ ∞

0

(ei〈z,x〉r − 1)e−n|x|rr−1dr = n|x|
∫ ∞

0

(ei〈z,x〉r/(n|x|) − 1)e−rr−1dr → i〈z, x〉

as n → ∞, since n|x|r−1(ei〈z,x〉r/(n|x|) − 1) tends to i〈z, x〉 boundedly by |〈z, x〉|. That
is, δx is approximated by distributions of elementary Γ-variables if x 6= 0. Evidently
δ0 ∈ T 0, since Uxn → 0 as xn → 0. Hence (6.11).

The proof of (6.12) is similar to that of (6.4). In this case a general µ = µ(0,ν,0) in
T (Rd) satisfies

Cµ(z) =

∫
S

λ(dξ)

∫
(0,∞)

Rξ(du)

∫ ∞

0

g(z, rξ)e−rur−1dr,

where Rξ satisfies (3.8) with b(u) of (3.9). Instead of fz(u, ξ) we use

hz(u, ξ) = b(u)−1

∫ ∞

0

g(z, rξ)e−urr−1dr,

which is bounded and continuous in (u, ξ) ∈ (0,∞)× S.
Finally, (6.13) is proved like (6.5), by using

lim
u→∞

hz(u, ξ) = −1
2
〈z, ξ〉2

for the function hz(u, ξ) above. �
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7. Examples

Example 7.1. Tempered stable distributions of Rosiński. Rosiński (2002) introduced
tempered stable distributions on Rd. His definition is as follows. Let 0 < α < 2. A
distribution µ on Rd is tempered stable if µ ∈ ID(Rd) with triplet (A, ν, γ) such that
A = 0 and

ν(B) =

∫
Rd

ρ(dx)

∫ ∞

0

1B(sx)s−α−1e−sds, B ∈ B(Rd), (7.1)

where ρ is a measure on Rd such that

ρ({0}) = 0 and

∫
Rd

|x|αρ(dx) < ∞. (7.2)

This is a generalization of tilted stable laws where ρ is concentrated on a sphere centered
at the origin. We can prove that a measure ν of the form (7.1) is the Lévy measure of
some infinitely divisible distribution if and only if ρ satisfies

ρ({0}) = 0 and

∫
Rd

(|x|2 ∧ |x|α)ρ(dx) < ∞. (7.3)

The condition (7.2) is stronger than (7.3) regarding the singularity of ρ around the
origin. Rosiński finds that ν, not identically zero, satisfies (7.1) together with (7.2) if
and only if ν has polar decomposition

ν(B) =

∫
S

λ(dξ)

∫ ∞

0

1B(rξ)r−α−1qξ(r)dr, (7.4)

where qξ(r) is completely monotone in r, measurable in ξ and satisfies

qξ(+∞) = 0 and

∫
S

qξ(0+)λ(dξ) < ∞. (7.5)

We can prove that, under the assumption that ν, not identically zero, satisfies (7.4)
with qξ(r) completely monotone in r, measurable in ξ, and qξ(+∞) = 0, then ν is the
Lévy measure of some infinitely divisible distribution if and only if∫

S

λ(dξ)

(∫
(0,1]

Qξ(du) +

∫
(1,∞)

uα−2Qξ(du)

)
< ∞, (7.6)

where Qξ(du) satisfies qξ(r) =
∫

(0,∞)
e−ruQξ(du). This condition is clearly weaker than∫

S
qξ(0+)λ(dξ) < ∞. Let us call α in (7.1)–(7.2) the index of the corresponding tem-

pered stable distribution µ. Following Rosiński, we denote by TS(α) = TS(α, Rd)
the class of tempered stable distributions on Rd with index α. Notice that, by the
representation (7.4)–(7.5), TS(α) ∩ TS(α′) consists only of δ-distributions if α 6= α′.

Rosiński studied Lévy processes {Xt} with L(X1) ∈ TS(α) and showed their func-
tional limit theorems for small t and for large t, their absolute continuity on path spaces
with respect to some α-stable Lévy processes, and their series representations.

Fix the dimension d arbitrarily. Omitting Rd in T (Rd), T1(Rd), L1(Rd) and so on,
we make the following statements.

(i) For every 0 < α < 2, TS(α) ⊂ T . This is obvious since r−αqξ(r) is completely
monotone whenever qξ(r) is.

(ii) If 1 6 α < 2, then TS(α) ⊂ T1.
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(iii) If 2/3 6 α < 2, then TS(α) ⊂ L2.
(iv) If 1/4 6 α < 2, then TS(α) ⊂ L1.
(v) Let 0 < α < 1/4. If µ is in TS(α) with qξ(r) = c(ξ)e−b(ξ)r for all ξ in a set of

positive λ-measure, where c(ξ) and b(ξ) are positive measurable functions of ξ, then
µ 6∈ L1 and consequently µ 6∈ T1.

The proof is as follows. Let µ ∈ TS(α). The k-function of µ is kξ(r) = r−αqξ(r). We
suppress the subscript ξ in kξ(r), hξ(u), qξ(r), and Qξ(dv). Then

h(u) = eαuq(e−u),

h′(u) = αeαuq(e−u)− e(α−1)uq′(e−u),

h′′(u) = α2eαuq(e−u)− (2α− 1)e(α−1)uq′(e−u) + e(α−2)uq′′(e−u),

h′′′(u) = α3eαuq(e−u)− (3α2 − 3α + 1)e(α−1)uq′(e−u)

+ 3(α− 1)e(α−2)uq′′(e−u)− e(α−3)uq′′′(e−u).

Recall that q(r) is completely monotone. If 1 6 α < 2, then h′(− log r) = αr−αq(r) −
r1−αq′(r) is completely monotone and hence µ ∈ T1 by Theorem E. We have h′(u) > 0
for all 0 < α < 2 and h′′(u) > 0 for 1/4 6 α < 2 since

h′′(− log r) = r−α[α2q(r)− (2α− 1)rq′(r) + r2q′′(r)]

= r−α

∫
(0,∞)

(α2 + (2α− 1)rv + r2v2)e−rvQ(dv)

= r−α

∫
(0,∞)

((rv + α− 1/2)2 + α− 1/4)e−rvQ(dv).

Thus µ ∈ L1 if 1/4 6 α < 2. If 0 < α < 1/4 and if q(r) is as is assumed in (v), then,
for ξ in a set of positive λ-measure,

h′′(− log r) = cr−α((rb + α− 1/2)2 + α− 1/4)e−rb < 0

for r = (1/2− α)/b and hence µ 6∈ L1. If 2/3 6 α < 2, then

h′′′(− log r) = r−α

∫
(0,∞)

[α3 + (3α2 − 3α + 1)rv + 3(α− 1)r2v2 + r3v3)e−rvQ(dv) > 0,

as we can check g(w) = α3 + (3α2 − 3α + 1)w + 3(α − 1)w2 + w3 is nonnegative for
w > 0, because g′(w) > 0 for w > 0 and g(0) > 0.

The simplest case of tempered stable distributions is given by µ on R with

Cµ(z) = c

∫ ∞

0

(eizx − 1)x−α−1e−bxdx

with 0 < α < 1 and positive constants c and b. This µ is the distribution of a tilted
stable subordinator at time 1. The relation with L1(R) of this was discussed in Maejima,
Sato and Watanabe (2000) p. 397. When α = 1/2 this gives an inverse Gaussian
distribution. Thus µ ∈ L1(R) and Υµ ∈ T1(R) for an inverse Gaussian µ.

Example 7.2. As mentioned near the end of Section 2, many examples of distributions
in T (R) supported on R+ are given in Bondesson (1992) and Steutel and van Harn
(2004). Distributions in T (R) with support R can be constructed by the transformation
Υ if we have selfdecomposable distributions with support R. For such selfdecomposable
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distributions as well as other examples, see Jurek (1997). We have discussed Tm. Since
we have several examples of distributions in Lm(R), m = 1, 2, with explicit densities,
we can construct concrete examples of distributions in Tm(R), m = 1, 2.

Let {Γ(a)
t } be a Γ-process with scale parameter a > 0, {Yt} a strictly α-stable subor-

dinator (0 < α < 1), and {Zt} a symmetric α′-stable Lévy process (0 < α′ 6 2). We
have, for t > 0,

P (Γ
(a)
t ∈ B) =

at

Γ(t)

∫
B∩(0,∞)

xt−1e−axdx, B ∈ B(R),

E(e−uYt) = exp(−btuα), u > 0,

E(eizZt) = exp(−ct|z|α′), z ∈ R,

where b and c are positive constants. The distribution of log Γ
(a)
t has density

(at/Γ(t)) exp(tx− aex), x ∈ R

for t > 0. Linnik and Ostrovskii (1977) (Chap. 2, Sect. 6, Example 3) shows that this
distribution is infinitely divisible with triplet (0, ν, γ) with

ν(dx) = 1(−∞,0)(x)|x|−1(1− ex)−1etxdx

and some γ (see also Jurek (1997) and Sato (1999) E 18.19). Thus L(log Γ
(a)
t ) ∈ L(R)

for all t > 0 and a > 0. Akita and Maejima (2002) showed the following.

(i) L(log Γ
(a)
t ) ∈ L1(R) for t > 1/2.

(ii) L(log Γ
(a)
t ) ∈ L2(R) for t > 1.

(iii) L(log Yt) ∈ L1(R) for t > 0.
(iv) L(log |Zt|) ∈ L1(R) for t > 0.
Applying the mapping Υ to these distributions, we get examples of T1(R) and T2(R).

In particular Υ(L(log Γ
(a)
t )) has Lévy measure

1(−∞,0)(x)

(∫ ∞

0

etx/s−s

1− ex/s
ds

)
dx

|x|
and belongs to T1(R) for t > 1/2 and to T2(R) for t > 1. The generating triplets of
L(log Yt) and L(log |Zt|) can be obtained by the method of the proofs of (iii) and (iv)
in Akita and Maejima (2002). They are purely non-Gaussian. The Lévy measure of
L(log Yt) is

1(0,∞)(x)
(e−αx − e−x)dx

(1− e−αx)(1− e−x)x

for any t > 0 if b = 1 and that of L(log |Zt|) is(
1(−∞,0)(x)

ex

1− e2x
+ 1(0,∞)(x)

e−α′x − e−2x

(1− e−2x)(1− e−α′x)

)
dx

|x|
for any t > 0 if c = 1. The explicit distributions for α = 1/2 and α′ = 1 are

P (log Yt ∈ B) =
t

2π1/2

∫
B

exp

(
−1

2
x− t2

4
e−x

)
dx for b = 1,

P (log |Zt| ∈ B) =
2t

π

∫
B

ex

e2x + t2
dx for c = 1.
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Recall that L(Yt) = L(1/Γ
(t2/4)
1/2 ) for this Yt with α = 1/2 and b = 1.

Example 7.3. Let {Xt} be Brownian motion on Rd with drift γ ∈ Rd, that is, {Xt} is
the Lévy process with L(Xt) = µ(tI,0,tγ), where I is the d× d unit matrix. Let {Zt} be
a subordinator such that L(Zt) is a generalized Γ-convolution (equivalently, L(Zt) is in
T (R) and has support in R+). Subordination of {Xt} by {Zt} gives a Lévy process {Yt}
on Rd. That is, Yt = XZt , where {Xt} and {Zt} are independent. Assume that L(Zt)
is not a δ-distribution. Let µt = L(Yt). In the case d = 1, Halgreen (1979) showed that
µt ∈ L(R) for any γ. Then Takano (1989, 1990) showed that in the case d > 2 one had
a different phenomenon; under some additional assumption on the so-called U -measure
of the generalized Γ-convolution L(Z1), he proved that, for any fixed t > 0, µt ∈ L(Rd)
if and only if γ = 0.

Generalized inverse Gaussian distributions are in the class of generalized Γ-convolutions
(Halgreen (1979)). If L(Zt) is a generalized inverse Gaussian, then the explicit expres-
sion of the density of L(Yt) using modified Bessel functions is obtained by Barndorff-
Nielsen (1977, 1978); the process {Yt} is referred to as a generalized hyperbolic motion,
the finite dimensional laws of {Yt} being of the generalized hyperbolic type.

Let us assume that {Zt} is the Γ-process with scale parameter 1. This is a special
case of the generalized inverse Gaussian. We have

µ̂t(z) = (1 + 2−1|z|2 − i〈γ, z〉)−t.

The expression of the density of µt, t > 0, mentioned above is in this case

c(t, γ)|x|t−(d/2)Kt−(d/2)((2 + |γ|2)1/2|x|) e〈γ,x〉

with c(t, γ) = 2(2π)−d/2Γ(t)−1(2 + |γ|2)−(t−(d/2))/2. Here Kt−(d/2) is the modified Bessel

function of the third kind with index t− (d/2). In particular, µ(d+1)/2 has density

c exp(−
√

2 + |γ|2 |x|+ 〈γ, x〉)

with a normalizing constant c. We can prove the following for every t > 0.
(i) Let d = 1. Then µt ∈ T (R) and µt 6∈ L1(R) (hence µt 6∈ T1(R)), irrespective of

whether γ = 0 or γ 6= 0.
(ii) Let d > 2. If γ = 0, then µt ∈ L(Rd), µt 6∈ T (Rd), and µt 6∈ L1(Rd). If γ 6= 0,

then µt 6∈ L(Rd) (hence µt 6∈ T (Rd)).
Proof of (i). Choose λ = δ+1 + δ−1. It is known that µt ∈ L with k-function

kξ(r) =

t exp
[
−(
√

2 + γ2 − γ) r
]

for ξ = +1

t exp
[
−(
√

2 + γ2 + γ) r
]

for ξ = −1.

Hence kξ(r) is completely monotone and µt ∈ T . The fact that µt 6∈ L1(R) is observed
by Maejima, Sato and Watanabe (2000) p. 397.

Proof of (ii). As is shown by Takano (1989), the Lévy measure of µt has polar
decomposition λ(dξ), νξ(dr) where λ is the Lebesgue measure on the (d−1)-dimensional
unit sphere S and

νξ(dr) = 2t e〈γ,ξ〉rLd/2(
√

2 + |γ|2 r)r−1dr (7.7)

with Ld/2(u) = (2π)−d/2ud/2Kd/2(u).
If γ 6= 0, then µt 6∈ L(Rd), which is a special case of Takano (1990).
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Now assume that γ = 0. Write p = d/2 and k(r) = rpKp(r). Since

k′(r) = −rpKp−1(r) < 0,

we have µt ∈ L(Rd) (this is also a consequence of the general result that subordination
of a strictly stable Lévy process by a selfdecomposable subordinator gives a selfdecom-
posable Lévy process). Furthermore,

k′′(r) = rpKp−2(r)− rp−1Kp−1(r) = 2−pr2p−2

∫ ∞

0

e−s−r2/(4s)s−p(2s− 1)ds

by the well-known integral representation of the modified Bessel function ((30.28) of
Sato (1999)). Since (here we use that d > 2)∫ 1/2

0

e−s−r2/(4s)s−p(2s− 1)ds → −∞ as r ↓ 0,

k′′(r) < 0 when r is small enough. Hence k(r) is not completely monotone and µt 6∈
T (Rd). For the function h(u) = k(e−u) we have

h′′(u) = k′′(e−u)e−2u + k′(e−u)e−u < 0 for some u,

and hence µt 6∈ L1(Rd).
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