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1 Introduction

In this paper we review papers which simultaneously cover two important modeling tools.

This is on one hand the class of network flow problems, which for several reasons

are among the most studied and applied operations research models. They can be used

to tackle a large set of real-world problems and occur as important building blocks and

subproblems in complex models. Furthermore, they possess nice theoretical properties

such as the integrality of its basic solutions. Network flow problems are known to be

solvable by special algorithms which deal even with large scale problems in moderate

computing time.

On the other hand we consider problems with more than one objective. As in the

case of network flow problems, these multiple objective optimization problems are very

important as modeling tool, since very few real-world problems have only a single objective

to be taken into account. In general, these objectives will be in conflict, such that there

is no solution which simultaneously optimizes all objectives. Therefore one is generally

interested to find solutions which have the property that none of the objectives can be

improved without worsening one of the other. Finding all or a suitable subset of these

Pareto or efficient solutions is the goal of multiple objective optimization.

Given the importance and the wealth of literature which exists for both of these prob-

lem classes it is surprising that relatively few authors have worked on combining them

to consider multiple objective network flow problems. But network flow problems are in-

herently multiple objective in nature. Applications within transportation planning faces

conflicting criteria like minimization of cost for selected routes, minimization of arrival

times at the destination points, minimization of deterioration of goods, maximization of

safety, etc. Since these applications typically require flow values to be integer, one also

has a prominent example showing the need to deal with integer multiple objective opti-

mization problems. Network flow problems are obviously a very good starting point for

this research, since the network flow feasibility polyhedron is known to have the integrality

property.

To initiate more research in this - in our opinion - very important but neglected area,

we review in this paper theoretical results and solution algorithms for the class of multiple

objective minimum cost flow problems. We have chosen not to consider any of the vari-

ous special cases of the minimum cost network flow problem (shortest path, assignment,

transportation problem, etc.). All of these subclasses have received considerable attention

in the operations research or - more specific - in the network design and routing literature

and deserve their own reviews, since there exist various algorithms exploiting the special

structure of those problems. For excellent existing reviews we refer the interested reader,

for instance, to [CM86, CM93, UT94, Skr00]. Although some of these survey papers in-

clude sections on the general multiple objective minimum cost flow problem, we consider

it necessary to deal with this subject by itself to be able to elaborate more extensively on

some details which could be of interest to the reader.

We tried our best to include all relevant literature which is available as publication

in a journal or as report via internet. But we apologize in advance to any author whose

paper we left out unintendedly.
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The paper is organized as follows. In Section 2 we briefly introduce the standard

notation from multiple objective programming and network flow theory. A review of

exact and approximate methods for the continuous multiple objective minimum cost flow

problem is given in Section 3. Section 4 contains a discussion of the same topics for the case

of integer valued flows. In Section 5 we summarize the results on compromise solutions.

In Section 6 we summarize all results in tabular form and conclude the paper by pointing

out some current lines of research.

2 Multiple Objective Linear Programs and Network Flows

The goal of this section is to introduce terminology and basic results well-known from

multiple objective linear programming and network flow theory. For a more thorough

introduction to these topics appropriate references are Steuer [Ste86], Ehrgott [Ehr00]

and Ahuja, Magnanti, and Orlin [AMO93].

2.1 Multiple Objective Linear Programs

A multiple objective linear program (MOLP) is given by

min Cx

s.t. x ∈ X
(MOLP)

where C = (c1, . . . , cp)T with rows c1, . . . , cp denotes a p × m linear objective matrix,

x ∈ R
m the vector of variables, and X the set of feasible solutions, subsequently called the

decision space. For MOLPs, this set is a polyhedron, i.e.,

X := P := {x ∈ R
m : Ax = b, x ≥ 0}

where A is an n×m constraint matrix and b ∈ R
n the right-hand side vector. We refer to

Y := CX := {y := Cx ∈ R
p : x ∈ X}.

as the objective space. By adding integrality requirements to the variables in X we obtain

a multiple objective linear integer program (MOLIP). For both MOLP and MOLIP we

assume that the objective functions are conflicting, that is, we exclude the existence of an

ideal solution x ∈ X which minimizes all p objectives simultaneously.

Minimizing a vector-valued objective function needs some more explanation since there

is no canonical ordering defined in R
p for p ≥ 2. Throughout this article we use the Pareto

concept of optimality for MOLPs and MOLIPs which is based on the following two binary

relations < and ≤ . Let y1, y2 ∈ R
p. Then

y1 ≤ y2 :⇔ y1
k ≦ y2

k ∀ k = 1, . . . , p and y1 6= y2

y1 < y2 :⇔ y1
k < y2

k ∀ k = 1, . . . , p.

A point y2 ∈ R
p is called dominated by y1 ∈ R

p if y1 ≤ y2. The Pareto cone is defined as

R
p

≧
:= {y ∈ R

p : y ≧ 0}.
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According to the Pareto concept of optimality, the efficient or Pareto set, XE, and

the weakly efficient or weakly Pareto set, XwE, are defined as

XE := {x ∈ X : there exists no x̄ ∈ X : Cx̄ ≤ Cx}

XwE := {x ∈ X : there exists no x̄ ∈ X : Cx̄ < Cx}.

The images of these sets under the vector-valued linear mapping C

YN := CXE and YwN := CXwE

are called the nondominated set and the weakly nondominated set, respectively. In Figure

1 examples of nondominated and dominated objective vectors are indicated by crosses and

dots, respectively. Following the terminology of Steuer [Ste86] we use the denotation

Z≥ := conv(YN ) + R
p

≧

(the shaded grey area of Figure 1) where conv is the convex hull operator. For MOLP

and MOLIP the efficient frontier is defined as the set {y ∈ conv(YN ) : conv(YN ) ∩ (y +

(−R
p

≧
)) = y}. For MOLP the efficient frontier is identical with the set YN . In the case of

p = 2 objectives, the efficient frontier of MOLP is known to be piecewise linear and convex.

Its breakpoints are the extreme nondominated points which are images of extreme efficient

solutions in the decision space. For MOLIP the efficient frontier is the nondominated set

of its continuous relaxation. If a nondominated objective vector is on the efficient frontier

it is called a supported nondominated objective vector. Otherwise it is an unsupported

nondominated objective vector. We shall denote the corresponding solutions in decision

space supported efficient solutions and unsupported efficient solutions, respectively. It is

important to notice that for MOLP only supported efficient solutions exist, whereas for

MOLIP unsupported efficient solutions may exist even if the constraint matrix for the

considered MOLIP instance is totally unimodular.

It is well known, that each supported efficient solution for MOLP can be found as an

optimal solution to the weighted sum problem, min {λCx : x ∈ X}, for a certain λ ∈]0, 1[p

(Geoffrion [Geo68] and Isermann [Ise74]).

Two different notions of connectivity based on topology and graph theory, respectively,

are used in the context of multiple objective programming.

We call a set S topologically connected if there does not exist nonempty open sets S1 and

S2 such that S ⊆ S1∪S2 and S1∩S2 = ∅. For MOLP the efficient set XE and the efficient

frontier YN are topologically connected as shown by Naccache [Nac78] and Warburton

[War83], respectively. In contrast, neither XE nor YN are topologically connected for

MOLIP.

Let G = (N ,A) denote the adjacency graph of MOLP where N is the set of efficient

basic feasible solutions. An edge between two nodes of N is included in A if and only if

the corresponding efficient basic feasible solutions can be obtained from each other by a

single pivot operation. Isermann [Ise79] showed that the adjacency graph G of MOLP is

connected. This graph theoretical connectivity property of the set of all basic solutions

in XE makes it possible to find the entire efficient and nondominated sets by simple pivot

exchange arguments for MOLPs (see Figure 2).
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c1x

c2x

Z≥

Figure 1: Z≥ for a biobjective linear integer program with nondominated (cross) and dom-

inated (dot) objective vectors. Unsupported nondominated objective vectors are located

in its interior.

The same figure illustrates that the adjacency graph is, in general, not connected for

the integer version MOLIP. Consequently, it is not possible for MOLIPs to generate the

efficient set by ”traveling” across the adjacency graph only. This result was shown in the

special case of biobjective shortest path problems by Przybylski, Gandibleux, and Ehrgott

[PGE05]. Obviously, it is depending on the definition of the adjacency graph in the integer

case. Other definitions of the node and edge set may salvage connectivity. Investigations

on suitable definitions and the algorithmic consequences are currently under research.
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Figure 2: Illustration of adjacency graph: connectedness for MOLP (left) and disconnect-

edness for MOLIP (right).

5



2.2 Minimum Cost Flow Problem

Consider a directed network G = (N,A) with node set N and arc set A. Let n = |N | and

m = |A|. Each arc (i, j) ∈ A is associated with a nonnegative lower and a positive upper

bound capacity referred to as lij and uij, respectively. Let b ∈ Z
n be a vector of demand

(if bi < 0, i ∈ N) and supply (if bi > 0, i ∈ N) satisfying
∑

i∈N bi = 0. If bi = 0 for some

i ∈ N , node i is a transshipment node. A function x : A → R is called a (network) flow if

it satisfies the flow conservation constraints

∑

{j:(i,j)∈A}

xij −
∑

{j:(j,i)∈A}

xji = bi for all i ∈ N,

and the capacity constraints

lij ≤ xij ≤ uij for all (i, j) ∈ A.

The set of all flows satisfying the flow and the capacity constraints is the flow polyhe-

dron, denoted Pflow. Results from classic network flow theory are not part of this survey.

In particular, we will freely apply well-known results as the relation between basic flows

and trees, the optimality criterion using negative cycles and the resulting cycle cancelling

algorithm, shortest augmenting paths and path algorithms, the out-of-kilter procedure

etc.

The multiple objective minimum cost flow problem (MMCF) can be concisely stated

as the following mathematical program:

min{(c1, . . . , cp)T x : x ∈ Pflow} (MMCF)

where c1, . . . , cp ∈ R
m are nonnegative integer cost vectors. Note that the objective

function Cx = (c1, . . . , cp)T x is composed of p linear functions whereas the decision space

remains the same as for the classic minimum cost flow problem, subsequently denoted

MCF. Obviously, MCF is a special case of MMCF (with p = 1) and MMCF is a special

case of MOLP. Another special case which is addressed in most papers on MMCF is

the biobjective minimum cost flow problem (BMCF). MMCF is in general a continuous

problem, i.e., the flows xij may take on fractional values. If we want to enforce integrality

we solve the multiple objective minimum cost integer flow problem (MMCIF)

min{(c1, . . . , cp)T x : x ∈ Xflow}

where Xflow := Pflow ∩ Z
m.

(MMCIF)

Both MMCF and MMCIF become easy if the componentwise ordering is replaced

by the lexicographical ordering. In the latter, two vectors are compared by looking at

the first component in which they differ. The order of this component then defines the

lexicographical order of the vectors. Virtually all algorithms for the classic minimum cost

flow problem can be carried over to the lexicographical minimum cost flow problem (see,

for instance, in a more general context, Hamacher [Ham80] or Calvete and Mateo [CM95]).
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For the bicriteria minimum cost flow problem Ruhe [Ruh88a] uses a pathological graph

introduced by Zadeh [Zad73] to show that there can be an exponential number of extreme

nondominated objective vectors on the frontier, which makes even the continuous case

intractable in general. Furthermore, BMCF is known to be a generalization of the bicriteria

shortest path problem (BSP) which is NP-hard and has a #P-complete decision problem.

These results obviously carry over to MMCF. More on general complexity results can be

found in the book of Ehrgott [Ehr00].

3 Continuous Multiple Objective Minimum Cost Flow

Problem

Similar to the situation in linear programming, there are many more papers on the contin-

uous multiple objective minimum cost flow problem MMCF than on its integer counter-

part. An obvious reason is that some of the techniques of MOLP can just be specialized

to MMCF. In the first section papers are considered which aim at computing all efficient

solutions. Methods for finding a representative system for the efficient set are discussed

in the second section.

3.1 Exact Methods

The papers reviewed in this section present algorithms for finding the entire set of efficient

solutions of BMCF – either in decision space or in objective space ([MP84, LP91, PHL92,

SNGM00, SNGM03]). We found no papers on an exact solution method for MMCF

with more than two objectives. All but one paper ([SNGM03]) exploit the topological

connectivity of the set of efficient solutions.

Since MMCF is a special case of MOLP, the graph theoretical connectivity result of

Isermann [Ise79] holds as well. Basic feasible solutions of MMCF (subsequently called

basic flows) correspond to spanning trees ([AMO93]) and a pivot operation corresponds

to the insertion of a non-tree edge into the tree and the deletion of an edge in the tree.

Hence, two basic feasible flows are adjacent if their tree representations have n − 2 arcs

in common. Due to the graph theoretical connectivity property for MMCF, one can start

with an arbitrary efficient basic feasible flow and obtain the entire efficient frontier by

iteratively performing network pivot operations, i.e., by exchanging one arc in trees at a

time.

Entering a nonbasic arc (u, v) in the tree representation of an efficient basic flow xk

yields a unique cycle W along which δuv units of flow can be send before a new basic

feasible flow xl is obtained. Note δuv = min {rij : (i, j) ∈ W} equals the minimal capacity

of the arcs in W in the incremental graph G(xk). The only flow change between xk and xl

is on the arcs of this unique cycle. Only the introduction of nonbasic arcs that have out-

of-kilter status with respect to at least one of the criteria can lead to other efficient flows

([Ehr99]). If two adjacent basic feasible flows xk and xl are both efficient, then so are all

of their convex combinations. Any such convex combination can be found for δuv > 0 by

sending a suitable amount of flow 0 ≤ ∆ < δuv through the cycle. In terms of polyhedral
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structure of MMCF this corresponds to moving along the efficient edge connecting xk and

xl in Pflow ([LP91]).

Malhotra and Puri [MP84] provide a generalization of the out-of-kilter method to

solve BMCF with a uniform capacity for all arcs, i.e., uij = u for all arcs (i, j) ∈ A. As the

authors state, this idea can be modified to address general BMCF. The efficient frontier

is built in a left-to-right fashion, starting with the lexicographical minimum for the first

objective (see Figure 1). Due to the definition of a lexicographical minimal flow, all arcs are

in-kilter with respect to the first objective. But, since by our general assumption BMCF

does not have an ideal point some arcs are out-of-kilter for the second objective. The

algorithm strives for an efficient flow with all arcs being in-kilter for the second objective,

i.e., a lexicographical minimal flow for the second objective. Therefore, for a given flow

the arcs being out-of-kilter for the second objective (and in-kilter for the first objective)

are said to be eligible arcs. For each eligible arc Pareto cycles including this arc are found

in the incremental graph of the current flow and added to the current flow. The obtained

flows are argued to be efficient points on the frontier of BMCF. This argumentation can

easily be seen to be wrong and in fact not only the generation of dominated objective

vectors but also possible oversights of extreme points on the efficient frontier might occur.

Even for the small network given by Malhotra and Puri themselves it can be seen that

an extreme nondominated objective vector exists, which is not found by the proposed

algorithm. The incorrect output of the algorithm is partly due to the fact that only one

set of dual node variables (node prices) is introduced.

This mistake is corrected by – among others – Lee and Pulat [LP91], Pulat et al.

[PHL92] and Sedeño-Noda and González-Mart́ın [SNGM00] who use one set of dual vari-

ables for each objective. These papers are based on the following idea of Gass and Saaty

[GS55] and its generalization by Geoffrion [Geo67]. BMCF is formulated as the parametric

programming problem P (λ):

min f(x) =
(

c1 + λc2
)

x

s.t. x ∈ Pflow

(P (λ))

where 0 ≤ λ ≤ ∞ (or δ ≤ λ ≤ φ where δ and φ are suitably chosen lower and upper

bounds). It is well known, that all optimal solutions for P (λ) are efficient solutions

of BMCF, and that conversely all efficient solutions of BMCF can be found as optimal

solutions of some P (λ) problem [Geo67].

Similar to [MP84], the algorithm by Lee and Pulat [LP91] implements a revised

version of the out-of-kilter method. Initially uniform weights are placed on both objectives

and the resulting single objective minimum cost flow problem, min{(c1+c2)x : x ∈ Pflow} is

solved by the out-of-kilter method after which the flow is adjusted to be basic by a rerouting

procedure or node price adjustment procedure. Then from this compromise solution the

frontier is searched to the left by considering arcs that are out-of-kilter with respect to

the first objective and to the right by considering arcs that are out-of-kilter for the second

objective. To perform the move from one basic flow to another the labeling procedure

from the single criterion out-of-kilter method is modified and a procedure for ensuring the

attainment of a basic feasible flow is applied. The arc entering the basis is chosen upon

a determination of the smallest ratio between reduced costs for the two criteria. This
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corresponds to choosing an arc that results in the steepest slope of the line between two

consecutive points on the efficient frontier. Since it is mistakenly believed that efficient

basic feasible flows necessarily yield extreme nondominated objective vectors, the authors

neglect to focus on the case of multiple nonbasic arcs having the same minimal value

of the ratio of the two reduced costs. Consequently, possible nonextreme nondominated

objective vectors are generated.

The algorithm of Pulat, Huarng, and Lee [PHL92] is conceptually the same as the

one by Malhotra and Puri, since it again utilizes adjacency results for searching the frontier

in a left-to-right fashion. Apart from the addition of a second set of node prices another

distinction is that Pulat et al. use the network simplex method to solve BMCF in its

parametric programming formulation P (λ). Pulat et al. realize that some efficient basic

feasible flows may not correspond to extreme nondominated objective vectors. However,

since the authors aim at a complete description of all efficient basic feasible flows, in case

of several arcs yielding a minimal ratio of the reduced costs, all of them are introduced in

the current basic feasible flow. As noted above, all nonbasic efficient flows can be found

by sending flow in the unique cycle between any two adjacent efficient basic feasible flows.

Hence, a complete description of all efficient basic feasible flows is required to find an

explicit expression for the entire efficient set.

Sedeño-Noda and González-Mart́ın [SNGM00] build on the ideas of the three

preceding papers. P (λ) is solved in a left-to-right fashion using the network simplex

method for the single criterion optimizations. The desired output of the algorithm is

the set of extreme nondominated objective vectors. In each iteration from a list S of

arcs yielding the minimal ratio of the reduced costs one arc is chosen to enter the basic

tree of the current efficient basic feasible flow x. This will result in a new efficient basic

feasible flow, x̂ which corresponds either to an extreme nondominated objective vector or

a nonextreme nondominated objective vector. The former case is identified if all other arcs

in S fulfill the optimality condition of the second objective, and in this case the obtained

point is stored. In the latter case, arcs violating the optimality condition for the second

objective still exist in S, and one of these is introduced into the basic tree of x̂ yielding a

new efficient basic feasible flow. If the list S is empty, an extreme nondominated objective

vector has been identified, and a new list of arcs is built. The algorithm stops, if no more

arcs are out-of-kilter with respect to the second objective.

The papers reviewed above all exploit the topological connectivity of the efficient set. In

contrast, Sedeño-Noda and González-Mart́ın [SNGM03] modify a method proposed

by Aneja and Nair [AN79], which iteratively applies the weighted sum problem. The

method was originally designed for the bicriteria transportation problem. The method

by Sedeño-Noda and González-Mart́ın starts by finding the two lexicographical minima.

For each two identified consecutive points on the frontier a search for additional extreme

nondominated objective vectors in the triangle between these points and the corresponding

local ideal point (c1⋆

, c2⋆

), is performed using Lagrangian theory and the network simplex

method. The algorithm finds the extreme point closest to the line between the ideal point

and some appropriately chosen aspiration level vector z with zk > ck⋆

, k = 1, 2. Whenever

a new point is identified two new areas are introduced for future search. The output of

the procedure is the set of all extreme nondominated objective vectors.
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Four of the five described algorithms have been implemented, all using NETGEN

[KNS74] as problem generator. In fact, three of the algorithms have been implemented by

Sedeño-Noda and González-Mart́ın on the same sample sets making a direct comparison

possible [LP91, SNGM00, SNGM03]. In total 180 networks (five replications of 36 setups)

with the number of nodes ranging between 25 and 40, the number of arcs ranging from

100 to 400 and the cardinality of maximum capacity on the arcs ranging from 10 to 100000

were considered. For these examples, the method by Sedeño-Noda and González-Mart́ın

[SNGM00] proved superior in all instances. The method by Sedeño-Noda and González-

Mart́ın [SNGM03] performs better than the method by Lee and Pulat [LP91] for sparse

networks. Pulat et al. [PHL92] test their algorithm on 90 networks grouped in three

different setups with the number of nodes ranging from 10 to 100 and the number of arcs

ranging from 30 to 500.

3.2 Approximate Methods

As mentioned in Section 2.2, Ruhe [Ruh88a] shows that the exact computation of the

efficient frontier is, in general, intractable, since there may exist an exponential number

of extreme nondominated objective vectors. Therefore, several approaches are proposed

to find representative subsets of the efficient frontier. All these approaches aim at the de-

velopment of computationally appealing algorithms. The literature following this thought

can be divided into two groups: The first group argues for the computation of a limited

number of points leading to a final preferred solution in reasonable computation time. We

have chosen to present this group in Section 5 along with the algorithms finding com-

promise solutions for MMCIF. The second group approximates the frontier as a whole

with provable good quality. All approaches in the second group are applicable to BMCF

only and utilize sets L and U which ”sandwich” the efficient frontier (see Figure 3), i.e.,

YN ⊆
(

(L + R
2
≧
) ∩ (U + (−R

2
≧
))

)

.

YN

U

L

Figure 3: Illustration of sandwich idea.

All articles that use the sandwich idea for BMCF follow the algorithm of Burkard,

Hamacher, and Rote [BHR91] for approximating univariate convex functions f : R →

[a, b]. We therefore present next this idea in its general framework.

10



It is assumed that for any t ∈ [a, b] the left and right derivatives f−(t) and f+(t)

are obtainable. Let a = t1 < t2 · · · < tn = b be a finite partition of the interval [a, b].

We refer to ti, i = 1, . . . , n, as breakpoints. Two piecewise linear functions l(t) and u(t)

approximate f(t) from above and from below, where

u(t) := f(ti) +
f(ti+1)− f(ti)

ti+1 − ti
(t− ti) (1)

l(t) := max{f(ti) + f+(ti)(t− ti), f(ti+1) + f−(ti+1)(t− ti+1)} (2)

for ti ≤ t ≤ ti+1, i = 1, 2, . . . , n − 1. At any stage of the algorithm, l(t) and u(t) satisfy

l(t) ≤ f(t) ≤ u(t) for all t ∈ [a, b].

The error of the current approximation is measured in [BHR91] by max{u(t) − l(t) :

t ∈ [a, b]}. Let tl and tr be two consecutive breakpoints in the current partition satisfying

t∗ ∈ [tl, tr] where t∗ = arg max{u(t)− l(t) : t ∈ [a, b]}. Thus, [tl, tr] is an interval with the

largest error. A new breakpoint tnew := tr−tl
2 is added to the current, finite partition of the

interval [a, b] and the value f(tnew) is found. This choice of the new breakpoint is referred

to as the interval bisection rule. The approximating functions l(t) and u(t) are updated

due to Equations (1) and (2). This scheme is iteratively repeated until the error of the

approximation falls below a prescribed value. It is shown that the approximating functions

l(t) and u(t) converge uniformly to f(t). Furthermore, the error of the approximation

decreases quadratically with the number of breakpoints and, given an accuracy level, an

upper bound on the number of breakpoints needed for satisfying this accuracy level can

be obtained.

When transferring the interval bisection rule to BMCF, one objective function is

treated as the independent variable t. The other objective function plays the role of f(t).

In other words, one objective function is considered a convex function of the other objec-

tive function. Note that evaluating f(tnew) for some given tnew corresponds to minimizing

one objective function subject to a fixed value of the other objective function (which is

known as the ε-constraint method). In terms of BMCF this means solving MCFs with

one additional side constraint.

Ruhe [Ruh88b] (see also the monography [Ruh91] of Ruhe) introduces the Hausdorff

distance between the lower and upper approximation to measure the error of the approx-

imation. For L := {(t, l(t)) | t ∈ [a, b]} and U := {(t, u(t)) | t ∈ [a, b]} the Hausdorff

distance between L and U is

d(L,U) := max
{

sup
x∈L

inf
y∈U

||y − x||2, sup
y∈U

inf
x∈L

||y − x||2
}

.

In contrast to the error measure in [BHR91], the Hausdorff distance is invariant under

rotation and does not favor one objective function over the other.

In Ruhe [Ruh88b] new breakpoints are generated by applying the so-called chord rule,

which was originally introduced by Aneja and Nair [AN79] in the context of computing

the efficient extreme points of a bicriteria transportation problem. Given an interval [tl, tr]

with the maximal error, the new breakpoint is computed by tnew := arg min(f(t) − k · t)

where k is the slope of the upper approximating function u(t), t ∈ [tl, tr].
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Using the chord rule for the approximation of YN for BMCF, a weighted sum problem

(which corresponds to solving MCF) has to be solved in each iteration which is in general

easier than solving an ε-constraint problem.

Fruhwirth, Burkard, and Rote [FBR89] introduce two new rules, the angle bisec-

tion and the slope bisection rule for generating breakpoints. As in the chord rule, the

new breakpoint is tnew := arg min(f(t) − k · t), but the rules vary in the choice of the

parameter k. For the angle bisection rule, k equals the slope of the bisector of the outer

angle of the triangle formed by the graphs (t, u(t)) and (t, l(t)), t ∈ [tl, tr]. In case of the

slope bisection rule, k is the mean of the slopes of the two piecewise linear functions that

determine u(t) in [tl, tr].

For chord, angle bisection and slope bisection rule, the error decreases quadratically

with the number of breakpoints. Consequently, an upper bound on the number of MCF

evaluations can be derived to obtain a given accuracy level when applying any of the three

rules (see [Ruh88b] and [FBR89]).

Fruhwirth, Burkard, and Rote [FBR89], Burkard, Rote, Ruhe, and Sieber [BRRS89],

and Ruhe [Ruh91] report on numerical studies comparing different partition rules. The

chord rule and the angle bisection rule are compared with a special implementation of

the angle bisection rule which exploits the bound on the number of MCFs that have to

be solved to construct an approximation with a desired accuracy level. A primal network

simplex algorithm is employed to solve the occuring MCFs. Nine network instances were

generated with n = 100, 400, 800 and m = 10n. Capacities and costs for the arcs were

taken independently at random from the intervals [10, 500] and [1, 500], respectively. The

special implementation of the angle bisection rule outperforms the angle bisection as well

as the chord rule in terms of memory and time consumption.

A derivative-free modification of the sandwich approximation approach was proposed

by Yang and Goh [YG97]. For each interval [ti, ti+1], the upper approximating function

is computed as in Equation (1). The lower approximating function consists of a piecewise

linear function that is parallel to the upper approximation. New breakpoints are computed

with the chord rule. The algorithm is applied to bicriteria quadratic minimum cost flow

problems.

In Ruhe and Fruhwirth [RF90] the sandwich algorithm is used in order to compute

an ε-optimal approximation for BMCF. Here, a subset S ⊂ Pflow is called ε-optimal if for

all x ∈ Pflow there is a solution x̂ ∈ S such that cix̂ ≤ (1+ε)cix for i = 1, 2. In their pseudo-

polynomial time algorithm Ruhe and Fruhwirth modify the rule for determining additional

breakpoints. Instead of solving only one MCF as in all previous sandwich algorithms, two

MCFs are solved in each iteration. Two general questions are addressed: Given a value

ε, an ε-optimal set of small cardinality is determined, and, given the cardinality of S, an

ε-optimal set having a high level of accuracy is computed. Ruhe and Fruhwirth compare

two realizations of their algorithm numerically. Networks are generated with n = 600 and

m = 6000, 9000, 12000 and n = 900 and m = 9000, 18000, respectively. The results are

averaged over twenty instances for each of the five network sizes. Capacities and costs

are chosen randomly distributed in [500, 5000] and [1, 1500], respectively. The numerical

study shows that already for relatively small sized approximating sets the accuracy level

is quite high.
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4 Integer Multiple Objective Minimum Cost Flow

Problem

All approaches for finding all integer efficient solutions of MMCIF address problems with

two objective functions only and comprise two phases:

Phase 1: Find all supported integer efficient flows.

Phase 2: Find all unsupported integer efficient flows.

Some of the articles concentrate on Phase 1 only. These approaches can be considered as

approximations of the integer nondominated set. Analogously to the structure in Section

3, these approximate approaches are discussed in Section 4.2, while the exact approaches

are discusssed in Section 4.1. When presenting the latter group of papers, we, therefore,

focus on Phase 2 only assuming that Phase 1 has already been solved. Several general ideas

are employed to implement Phase 2. Firstly, structural results are used such as the fact

that each efficient flow is an extreme efficient solution of BMCIF with modified capacities.

Secondly, it is observed that consecutive supported solutions on the efficient frontier define

”triangles of interest” restricting the search area for undiscovered nondominated points.

Thirdly, well-known concepts from different research areas like the ε-constraint method and

the branch-and-bound method are combined and applied in the biobjective flow context.

Three approaches for finding all efficient/nondominated points for BMCIF are presented

subsequently. Although literature shows that two of them lack in argumentation, they

contain a thorough analysis of some structural properties of BMCIF and therefore, we

have chosen to present their main ideas.

In the beginning of Section 4.1 we discuss some general results for BMCIF which will

be needed in describing algorithms in Sections 4.1 and 4.2.

4.1 Exact Methods

Lee and Pulat [LP93] elaborate on the cycle relationship among basic feasible flows and

investigate the structure of solutions of BMCIF. Let xt and xt+1 be two efficient basic

solutions of BMCF with objective vectors yt and yt+1 which are topologically adjacent in

YN . Due to the total unimodularity of the constraint matrix, xt and xt+1 are integral.

Consider the basic tree T of xt and let (u, v) be the nonbasic arc whose inclusion in T

yields xt+1. It is well-known that the union of T and (u, v) contains a unique cycle. Let

δuv ∈ N denote the maximum amount of flow that can be sent along this cycle. The

number of supported integer nondominated nonextreme points on the line connecting yt

and yt+1 equals δuv − 1. Furthermore, such integer points are equidistant from each other

[PHL92, LP93]. Figure 4 illustrates this result. Here, δuv = 3. Augmenting the cycle

induced by (u, v) by 1 and 2 units results in the points P and Q, respectively.

Let (i, j) 6= (u, v) be a nonbasic arc in the bases of xt and xt+1 whose arc flow xij is

equal to its lower bound lij. Assume it is feasible to introduce arc (i, j) into the bases of

xt and xt+1. Let xt′ and xt+1′ be the resulting flows when sending one unit of flow along

the cycles originating from adding arc (i, j) to the basic trees of xt and xt+1, respectively.

Then, xt′ and xt+1′ are efficient flows for a modified BMCF with respect to an increased
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lower bound l′ij := lij +1 (see Figure 4). Note that the bases of xt and xt′ (xt+1 and xt+1′)

are the same. Hence, it is possible to introduce the nonbasic arc (u, v) in the basis of xt′

to obtain xt+1′ .

Let yk := Cxk for k = t, t′, t + 1, and t + 1′. It is shown in Lee and Pulat [LP93] that

the slopes of the two lines joining yt and yt+1 and yt′ and yt+1′ , respectively, are equal.

Furthermore, the number of integer flows lying on each of these lines differ by at most

one. The distances between these integer points lying on the parallel lines are the same.

In Figure 4 the number of points on the line connecting yt′ and yt+1′ is one less than the

number of points on the line connecting yt and yt+1. The distances between points on

these lines are equal, e.g., ||yt′ −R||2 = ||yt − P ||2.

Note that these results can be generalized when increasing the lower bound lij of

nonbasic arc (i, j) by more than one unit assuming feasibility is maintained. These gen-

eralizations are indicated by the dashed lines in Figure 4.

Obviously, analogous arguments can be used if xij = uij instead of xij = lij.

yt+1

yt+1

y
t

t

y

P

Q

R

Figure 4: Illustration of the structure of Y.

Based on this idea, Lee and Pulat [LP93] prove that any efficient integer flow x̂ ∈ XE

can be obtained as a supported efficient solution with respect to modified lower and upper

capacities on some arcs. Ehrgott [Ehr99] generalizes this result to MMCFs with more than

two objectives.

Lee and Pulat [LP93] assume that all extreme nondominated points and all other sup-

ported nondominated points are explicitly known. The results above are used to compute

candidate points located inside the triangles defined by consecutive supported nondomi-

nated points. Instead of explicitly testing all combinations of modified lower and upper

capacities, an implicit search for efficient flows is performed.

For each supported integer efficient extreme point xt it is checked whether a nonbasic arc

(i, j) 6= (u, v) can enter the basic tree of xt possibly leading to an unsupported efficient

solution xt′ . Integer points on the line that connects yt′ and yt+1′ are generated as well.

Rules are established that exclude nonbasic arcs from consideration which yield candi-

dates being dominated by previously found candidates. For example, it is observed that if

yt′ ∈ yt + R
2
≧

and the number of integer points on the line connecting yt′ and yt+1′ is less
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than or equal to the number of integer points on the line connecting yt and yt+1, then all

points resulting from introducing (i, j) to the basic tree of xt are dominated (see Figure

5). Thus, not all feasible flows are generated – i.e. the search is, indeed, implicit. After all

yt+1

yt+1

y
t

t

y

P

Q

R

Figure 5: Illustration of a rule eliminating dominated points.

candidates have been generated by checking all supported efficient extreme points and all

possible nonbasic arcs, a filtering process deletes dominated points from the candidate set.

It is claimed that the remaining points are nondominated and all nondominated points

have been found. The algorithm was implemented and tested on six different problem

setups. The number of nodes and arcs vary between 10 to 20 and 20 to 50, respectively.

Five different instances have been randomly generated and solved for each setup. For more

details, the reader is referred to the PhD thesis of Lee [Lee89].

Huarng, Pulat, and Ravindran [HPR92] extend the algorithm of Lee and Pulat

focusing on degeneracy phenomena.

Sedeño-Noda and González-Mart́ın [SNGM01] claim that the algorithm stated in

[LP93] is incorrect. They argue that Lee and Pulat might miss some efficient flows since

their algorithm introduces only two nonbasic arcs (i, j) and (u, v) at a time whereas more

than two arcs are needed in general.

Sedeño-Noda and González-Mart́ın use a left-to-right approach starting with the efficient

solution that is optimal with respect to objective function c1 to find unsupported efficient

integer flows. Each efficient flow found by the algorithm is associated with a set of nonbasic

candidate arcs the introduction of which might possibly yield an unsupported efficient flow.

Filtering rules similar to those in [LP93] are utilized to reduce the number of nonbasic

arcs in these candidate sets that are stored for further investigation. In each iteration, a

new integer efficient flow xnew is obtained by adding a nonbasic arc (i, j) to the basic tree

of a previously found efficient flow xold. The left-to-right approach requires that Cxnew

has the smallest c1-value among all undiscovered nondominated objective vectors. This is

implemented by checking all known efficient flows with nonempty candidate sets. Among

all combinations of known efficient flows and nonbasic candidate arcs, the one yielding

the nondominated objective vector with smallest c1-value is chosen. The candidate set

of xold is assigned to xnew while the arc (i, j) is deleted from the candidate set of xold.

Doing this, ensures that combinations of nonbasic variables are taken into account when
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searching for unsupported nondominated points. The procedure stops when all candidate

sets are empty.

F J

A

B

C

H

D

E

G

Figure 6: Illustration of the algorithm by Sedeño-Noda and González-Mart́ın.

Figure 6 illustrates the algorithm: Suppose that points A, B, and C are the points

obtained after Phase 1. The candidate nonbasic arcs associated with point A yield points

D, E, and F . In the first iteration, point D is generated since it has smallest c1-value

among all undiscovered nondominated points. The candidate set of D is the same as the

one of A as indicated by the dashed arrows. [SNGM01] do not investigate the points G,

H, and J any further, since these points are dominated.

In their numerical tests, 180 random samples are generated with 10 to 25 nodes and 20

to 100 arcs. Sedeño-Noda and González-Mart́ın observe that the number of unsupported

nondominated objective vectors increases with the size of the networks. In their study,

some 90% of all efficient flows are unsupported.

Przybylski, Gandibleux, and Ehrgott [PGE05] show the incorrectness of the

approach suggested by Sedeño-Noda and González-Mart́ın, since the latter authors implic-

itly assume that the adjacency graph is connected. But [PGE05] give a counterexample

proving that the graph theoretical connectivity property does not hold for BMCIF. They

conclude that it is not possible to find all nondominated objective vectors for BMCIF by

a straightforward application of the network simplex algorithm.

The result of [PGE05] indicates that a different definition of an adjacency graph is

needed to establish the graph theoretical connectivity result for MMCIF. One way to do

this is based on the result of Hamacher, Pedersen, and Ruzika [HPR05]. They prove

that any efficient flow x can be obtained from another efficient flow x′ by addition of

an efficient incremental circulation from the incremental graph of x′. Furthermore, it is

shown that no such addition of an efficient flow and an efficient circulation can return a

non-efficient flow. Hence the modified adjacency graph containing all integer efficient flows

is complete and thus trivially connected. Current research focuses on a characterization

of a minimal set of incremental flows which are sufficient to maintain this connectivity

property. By the result of [PGE05] it is known that cycle flows do not suffice.
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Figueira [Fig02] proposes a branch-and-bound approach to find all nondominated

objective vectors for BMCIF. Each pair of extreme nondominated objective vectors defines

a triangle in the objective space where unsupported nondominated objective vectors may

be located. Each of these triangles are searched for unsupported nondominated objective

vectors in a left-to-right approach. The efficient flows found by the algorithm are stored in a

list L with decreasing c2-values. The ε-constraint problem P1 is solved using a branch-and-

bound method to decide whether there are unsupported nondominated objective vectors

having c2-values less than the first element x̂ and larger than the second element in the

list L.

min c1x

s.t. c2x ≤ c2x̂− 0.5

x ∈ Xflow

(P1)

All subproblems occuring in the branch-and-bound procedure are stored in a list W .

Problem P1 is the current problem and its continuous relaxation is solved. Let xrel denote

the optimal value of the relaxed problem. If xrel is integer, the optimal solution of P1 is

found and xrel is known to be efficient. If not, branching is performed to find an integer

solution as described in the following. Note that yrel = Cxrel is a vector located on

the efficient frontier and can thus be determined by sending a fractional value along the

cycle that connects the two nondominated extreme points in the triangle of interest. Let

(u, v) denote the arc that defines this cycle. Two new problems P2 and P3 are set up

by introducing to P1 the constraints luv ≤ xuv ≤ ⌊xrel
uv ⌋ and ⌊xrel

uv ⌋ + 1 ≤ xuv ≤ uuv,

respectively. The costs of the continuous relaxations of P2 and P3 are computed using the

network simplex algorithm. Both problems are added to the list W and branching is now

performed on these two problems. Three rules are set up for fathoming: A subproblem is

discarded from consideration when it has no feasible solution or when its cost is greater

than the cost of the current best solution. If a subproblem Pi has an integer solution with

a cost lower than the cost of the current best solution, then all subproblems having a cost

greater than the cost of Pi are removed from W and the solution of Pi becomes the current

best solution. The algorithm iterates until an optimal integer solution to problem P1 is

found. Whenever an optimal solution of P1 is found, the first element of L is deleted. If

the solution of problem P1 is a new efficient solution, it is inserted in the front of L and

the algorithm proceeds.

4.2 Approximate Methods

Two lines of thoughts are distinguishing the authors providing a representation set for the

solutions of MMCIF. Some interpret this problem as the calculation of all integer efficient

points on the efficient frontier [LP91, Nik98]. Others compute only a limited amount of

compromise solutions [CM96, Ehr99, Ham95, MG98, Nik01, Nik03]. The latter group of

papers will be reviewed in Section 5.

Compared with algorithms looking for all efficient solutions of BMCIF, papers dealing

with the determination of the integer flows on the efficient frontier of BMCF face a concep-

tually easier task. In fact, all integer flows on the efficient frontier can be found by methods
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designed for solving the continuous BMCF only involving considerations of network cycles

already discussed in Section 3, in particular using the ideas of [LP91, PHL92].

Lee and Pulat [LP91] extend their algorithm for determining all efficient extreme

points in decision space for the continuous BMCF to find all integer efficient points on

the efficient frontier. While moving from one efficient extreme point solution, xt with

objective value yt to the topologically adjacent xt+1 with objective value yt+1 an integer

value δuv is sent along the nonbasic arcs (u, v). All intermediate integer points, It, on the

frontier line piece [yt, yt+1] are determined as

It = yt + α
yt+1 − yt

δuv

, where α = 1, . . . , δuv − 1.

Nikolova [Nik98] develops an algorithm finding all supported integer efficient solutions

of BMCF with a designated source node s and sink node t. A flow of q units are to be

shipped from s to t. She proves that each supported efficient solution of BMCIF with flow

value q can be obtained as a sum of a basic feasible solution x with flow value v(x) = q,

and a Pareto circulation flow of value 0 in the incremental graph G(x). The description

of the algorithm offers no details on how to apply the weighted sum method.

5 Finding Compromise Solutions

A group of authors refer to the theoretical complexity of generating all efficient solutions

of MMCF and MMCIF proven by Ruhe [Ruh88a]. The difficulty faced by a decision

maker to choose from a large set of offered efficient flows is also discussed. Based on this

insight, several methods for generating only a limited amount of compromise solutions are

proposed.

Obviously, it is easy to compute just a single efficient solution, since lexicographical

minimum cost flows are known to be efficient. Although an arbitrary lexicographic solution

is in general not a good compromise, Calvete and Mateo ([CM95] and [CM96]) elaborate

on this idea.

[CM96] deduct complementary slackness optimality conditions for the lexicographi-

cal ordering and specify two algorithms for finding a lexicographical minimum cost flow:

lexicographical generalizations of the out-of-kilter method and of the primal-dual method

([AMO93]). Numerical comparisons (using test networks with 2, 3, 5 and 15 objective func-

tions and n and m varying between 27 and 102 and 250 and 1000, respectively) between

these algorithms indicate that the out-of-kilter algorithm outperforms the primal-dual

method. An application in water resource planning is discussed.

A sequential approach for solving the lexicographic MMCF problem is introduced in

[CM96]. First, the network flow problem regarding the objective function with the highest

priority is solved by using some MCF algorithm. The flow on arcs having non-zero reduced

costs is fixed to the current value. This ensures that the current flow remains optimal for

the objective function currently under consideration throughout the algorithm. The flow

structure is still preserved when fixing variables. The new network flow problem is then

solved regarding the objective function with the second highest priority, and so on. This

iterative procedure terminates when all objective functions have been considered or when
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the flow is fixed to some value on every arc. Two different strategies for fixing flow on arcs

are specified and numerically compared using the same instances as in Calvete and Mateo

[CM95]. The solution obtained with either of the algorithms by Calvete and Mateo is a

supported integer efficient optimal flow.

Nikolova [Nik01, Nik03] develops two interactive algorithms for finding an integer

compromise solution of MMCF with side constraints. In [Nik01] the side constraints are

imposed initially by a decision maker but may be altered during the algorithm to obtain

feasibility. In [Nik03] the side constraints are imposed during the algorithm.

Nikolova [Nik03] initially finds a solution of the weighted sum method with equal

weights. In each iteration of the algorithm the decision maker is asked to classify which

criteria should be improved, which criteria can be worsened and which criteria should be

kept at the same value. Exploiting the same ideas of fixing flow on arcs and reducing the

considered network as Calvete and Mateo [CM96], smaller MMCFs and BMCFs are solved

using the weighted sum method and a left-to-right approach resembling the one found in

Pulat et al. [PHL92], respectively. The identified flow is a supported integer efficient flow.

Nikolova [Nik01] solves in each iteration of the interactive algorithm a BMCF by a

left-to-right approach. The two objectives to be considered are a weighted sum of already

considered objectives and an objective for which the decision maker’s constraints have not

been fulfilled, respectively. If infeasibility is revealed during the algorithm the decision

maker is asked to change the requirements. The obtained solution is a supported integer

efficient flow.

Hamacher [Ham95] develops a polynomial time algorithm for solving the K best

integer MCF. This algorithm is extended to a solution procedure for the max ordering

(MO) flow problem that minimizes the worst of the single objective functions. Considering

as before p objectives to be minimized simultaneously and letting Xflow denote the set of

integer feasible flows for the flow problem the MO flow problem can formally be stated as

min
x∈Xflow

max
q=1,...,p

cqx, where cqx =
∑

{(i,j)∈A}

xijc
q
ij .

It is noted that there exists at least one flow which is both a MO flow and efficient. The

crucial part of the developed ranking algorithm is to obtain the second best solution, y

for a MCF given the best solution, x. This is achieved utilizing the network structure by

determination of a proper minimal cycle, C in the incremental graph of x, G(x). This

cycle is added to x yielding y. The tree structure of the algorithm is built by consecutive

changes of lower and upper arc bounds, ensuring intactness of the network structure. By

applying the ranking method for a weighted sum of the p objectives a lower bound for the

MO flow problem is improved iteratively until an integer MO solution has been identified.

Ehrgott [Ehr99] extends the ideas of Hamacher in the search for a solution to the in-

teger lexicographical max ordering network flow problem. A lexicographical max ordering

solution is known to be a max ordering flow as well as a Pareto flow.

This is based on the fact that if x1, . . . , xK are the K best flows with respect to

the first objective, i.e., c1x1 ≤ c1x2 ≤ · · · ≤ c1xK ≤ c1x ∀x ∈ Xflow. Then c1xK >

minx∈Xflow
maxq=1,...,p cqx implies that all max ordering solutions are contained in {x1, . . . ,

xK}.
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Therefore, Ehrgott proposes to identify the lexicographical max ordering solution by

applying the ranking method for MCF of [Ham95] followed by a suitable sorting and

selection of the obtained solutions.

Mustafa and Goh [MG98] find an integer efficient compromise solution of BMCIF

and for the tricriteria MCIF problem (TMCIF). The software package DINAS [OSZ92],

originally designed for solving transshipment problems involving facility location, is used

to find a non-integral efficient compromise solution. An integral solution of BMCIF is

obtained by rounding all non-integral flow values on arcs to their nearest integer value.

This is justified by the fact that non-integrality in an efficient solution for the bicriteria

case can only occur on a unique cycle between two adjacent efficient extreme points with

objective vectors on the efficient frontier. Only in the case where the deviation from the

nearest integer value is 1/2, the cycle needs to be traced to get the correct flow direction

on the arcs. The rounding process corresponds to sliding to the nearest integer point

on the efficient frontier, and hence the identified solution is a supported integer efficient

flow. The result is generalized to TMCIF obtaining also an efficient supported solution.

The proposed algorithm is applied to the practical problem of assigning courses to faculty

members.

Figueira, M’Silti, and Tolla [FMT98] provide an interactive method for finding a

robust solution of MMCIF. An initial solution is found applying the augmented weighted

Tchebycheff method [SC83, Ste86]. When using the augmented weighted Tchebycheff

method as a scalarization technique, a single objective MCF with side constraints has

to be solved. The obtained solution is presented to the decision maker, who builds an

indifference area using thresholds around the obtained nondominated point in the objective

space. Further points located in the indifference area are identified by a heuristic method

based on Lagrangian duality and subgradient techniques. The authors claim to be able to

perform a test of the quality of the obtained solutions from the decision maker’s point of

view without explicitly knowing the decision maker’s utility function. The outcome of the

algorithm is the most robust solution of the ones in the indifference area. This solution

need not be an efficient flow for MMCF. The algorithm was implemented and tested on

bicriteria transportation problems with 200 nodes and the number of arcs ranging between

1308 and 2900.

The method by Sedeño-Noda and González-Mart́ın [SNGM03] that finds all effi-

cient extreme points for BMCF (described in Section 3.1), consists of multiple application

of a subroutine performing guided search. As pointed out in [SNGM03], this subroutine

on its own serves as a solution method for generating an efficient extreme point located

in a desired region of the objective space.

Sun [Sun03] investigates computational efficient algorithms for generating not only one

but a finite number of nondominated solutions with the augmented weighted Tchebycheff

method. The network simplex method with side constraints proposed by Chen and Saigal

[CS77] is capable of solving the occuring MCFs with side constraints. Three strategies are

proposed to produce good starting solutions for this special network simplex algorithm:

1. The weighted sum method.

2. The Tchebycheff method.
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3. A sequential combination of the weighted sum method and the Tchebycheff method,

i.e., a solution obtained with the weighted sum method is used as a starting solution

for the Tchebycheff method.

The optimal solution of the three strategies is transformed into an initial basic feasible

flow for the augmented weighted Tchebycheff problem. The network simplex method with

side constraints uses the starting solution and solves the augmented weighted Tchebycheff

problem to optimality.

The three strategies are numerically compared with the alternative of applying the

network simplex method with side constraints directly. For testing, networks with p = 3, 5,

and 7 criteria and n = 100, 200, 300, 400, 500 and m = 20n are generated. Costs are taken

randomly from the interval [1, 15], while all lower capacities are set to be zero and the upper

capacities are randomly chosen from the interval [100, 500]. For each of the 15 parameter

setups, 10 instances are solved. Strategy 3 outperforms the other algorithms with respect

to CPU times in almost all test problems which is due to a reduced number of iterations

needed by the special simplex method for network problems with side constraints.

6 Conclusion

In this paper, we have reviewed papers dealing with multiple objective minimum cost flow

problems both in the continuous (MMCF) and the integer version (MMCIF).

To make a direct comparison of the solution procedures for the multiple objective min-

imum cost flow problem possible, the main features of the reviewed articles are concisely

listed in Table 3. For this purpose, we adapt the classification scheme of Ehrgott and

Gandibleux [EG02]. The articles are grouped analogously as in Sections 3 to 5 and listed

in alphabetical order within each group. Table 3 has six columns. In the first column,

we refer to the article under consideration. The number of objective functions in this

article is listed in the second column. Here, we distinguish between approaches designed

for biobjective (denoted by 2) and general multiple objective problems (denoted by p).

Note that all articles consider sum objectives. The third and fourth column provide in-

formation about the type of the problem and the applied solution methods, respectively.

Tables 1 and 2 explain the abbreviations used in these columns. In the last two columns,

a ”+” indicates that examples are included in the paper and that the algorithm has been

implemented by the authors, respectively.

Most of the approaches to find all efficient flows (exact methods) are of theoretical

rather than practical interest: Since the number of efficient flows is, in general, exponential

in the size of the network, an explicit enumeration of all efficient flows is out of the question.

This is also true, if one is interested in an analytic (implicit) description of all efficient

flows using only extreme efficient flows, since their number is exponential as well.

For the continuous problem MMCF, algorithms for finding a representative set of all

efficient flows (approximate methods) generate results with quality guarantees. All of these

algorithms are based on the sandwich idea. A corresponding approach for the integer case

MMCIF, is missing in the current literature, but will be discussed in the forthcoming

paper of Hamacher, Pedersen, and Ruzika [HPR05].
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An important problem which is not well understood at this point of time is the graph

theoretical connectivity in MMCIF. If the adjaceny graph has node set N equal to all

integer efficient flows and arc setA defined by (i, j) ∈ A if and only if flow i can be obtained

by flow j through a change along a single cycle, then the results of Przybylski, Gandibleux,

and Ehrgott [PGE05] show the non-connectivity of this graph. An open problem is to find

a reasonable definition of node adjacency which establishes connectivity. Obviously, the

adjacency definition of Hamacher, Pedersen, and Ruzika [HPR05] using efficient residual

flows is just a first step in this research area.

An important observation in the multiple objective flow literature is the fact that

almost all papers deal exclusively with the case of two objectives. Obviously, this is due

to the fact that the efficient frontier has in this situation the form of a piecewise linear

function, which is easy to describe and to analyze. The question, which results can be

generalized to more than two objectives is currently under research.

Entry Explanation

E Finding the efficient set

e Finding a subset of the efficient set

SE Finding the supported efficient solutions

Ê Finding an approximation of the efficient set

lex Solving the lexicographical problem

MO Solving the max ordering problem

lexMO Solving the lexicographical max ordering problem

C Finding a compromise solution

Table 1: Entries for Problem Type.

Entry Explanation

SP Exact algorithm specifically designed for the problem

BB Algorithm based on branch and bound

εC Algorithm based on the ε-constraint method

IA Interactive method

A Approximate algorithm with worst case performance bound

LP Method based on linear programming

Table 2: Entries for Solution Method.
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Paper Number of Problem Solution Example Implemented

Objectives Type Method

Continuous MMCF

[BRRS89] 2 Ê A − +

[FBR89] 2 Ê A − +

[LP91] 2 E SP + −

[MP84] 2 E SP + −

[PHL92] 2 E LP + +

[Ruh91] 2 Ê A + +

[Ruh91] 2 E SP + +

[RF90] 2 Ê A − +

[SNGM00] 2 E LP + +

[SNGM03] 2 E SP + +

Integer MMCF

[Fig02] 2 E SP/BB/εC + −

[HPR92] 2 E SP + +

[LP91] 2 SE SP − −

[LP93] 2 E SP + +

[Nik98] 2 SE SP − −

[SNGM01] 2 E SP + +

Compromise solutions

[CM95] p lex SP + +

[CM96] p lex SP + +

[Ehr99] p lexMO SP + −

[FMT98] p C IA + +

[Ham95] p MO SP − −

[MG98] 2(3) C SP + −

[Nik01] p C SP/IA − −

[Nik03] p C SP/IA − −

[SNGM03] 2 C SP + −

[Sun03] 2 e SP − +

Table 3: Table 3: Classification for the reviewed papers.
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[SNGM01] A. Sedeño-Noda and C. González-Mart́ın. An algorithm for the biobjective

integer minimum cost flow problem. Computers and Operations Research,

28:139–156, 2001.
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