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A topological Maslov index for 3-graded Lie groups

Karl-Hermann Neeb, Bent Ørsted

Abstract. Motivated by the generalization of the Maslov index to tube domains

and by numerous applications of related index function in infinite-dimensional

situations, we describe in this paper a topologically oriented approach to an

index function generalizing the Maslov index for bounded symmetric domains of

tube type to a variety of infinite-dimensional situations containing in particular

the class of all bounded symmetric domains of tube type in Banach spaces. The

framework is that of 3-graded Banach–Lie groups and corresponding Jordan triple

systems.

Introduction

Let D be a finite-dimensional bounded symmetric domain of tube type and
S its Shilov boundary. In [CØ01] and [Cl04] J. L. Clerc and the second author
have defined a function

µ: S3 → Z

called the Maslov index which is invariant under the action of the identity
component H := Aut(D)0 on the set S3 of triples in the Shilov boundary.
Their index function generalizes in particular the classical Maslov index, which
is obtained if D is the open unit ball in the space Symn(C) of complex symmetric
matrices and Aut(D)0 = Sp2n(R) is the symplectic group. In this case S can be
identified with the set of Lagrangian subspaces of a 2n -dimensional symplectic
vector space W and the Maslov index is an integer τ(L1, L2, L3) defined for
L1, L2, and L3 ∈ S . For the applications to boundary value problems for
differential operators and corresponding index theories, it is important to allow
W to be infinite-dimensional; but also for W = R2n with the standard symplectic
form, the Maslov index plays a non-trivial role, and our approach offers new
insight in this case as well. In the classical situation, this means we can identify
S with the set of unitary symmetric matrices.

Motivated by the generalization of the Maslov index to tube domains and by
numerous applications of related index function in infinite-dimensional situations
(cf. [CLM94]), we describe in this paper a topologically oriented approach to an
index function generalizing the Maslov index for bounded symmetric domains of
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tube type to a variety of infinite-dimensional situations containing in particular
the class of all bounded symmetric domains of tube type in Banach spaces.

We start with the following group theoretic setup. We consider a Banach–
Lie group G endowed with an involution τ and whose Lie algebra g is endowed
with a 3-grading g = g−1 ⊕ g0 ⊕ g1 arising as the eigenspace decomposition of
some ad E , E ∈ g0 , and reversed by τ . We then call (G, adE, τ) an involutive
3-graded Lie group.

We have subgroups G± and G0 of G corresponding to g± and g0 , and
we thus obtain a homogeneous manifold X := G/G0G− into which we embed
the Banach space V := g1 by the map x 7→ exp xG0G− . The involution τ and
the 3-grading provide on V the structure of a Jordan triple by

{x, y, z} := 1
2 [[x, τ.y], z].

If the operator Q(x): y 7→ {x, y, x} on V is invertible, we call the element x
invertible and we say that e ∈ V is a tripotent if {e, e, e} = e . We now write S
for the set of invertible tripotents in V . If S is non-empty, then τ induces an
involution τX on X such that S = V ∩Xτ is the set of τX -fixed points in the
open subset V of X . We make the assumptions

(A1) H := Gτ
0 ⊆ G+G0G− (where Gτ

0 denotes the identity component of Gτ ),
and that

(A2) S is invariant under the action of H on X .

A pair (z, w) ∈ V 2 is called quasi-invertible if exp(−τ.w) exp z ∈ G+G0G−

(this can also be expressed directly in Jordan theoretic terms). For a quasi-
invertible pair we defined BG(z, w) ∈ G0 by exp(−τ.w) exp z ∈ G+BG(z, w)−1G− .
We write V 3

⊤ for the set of all quasi-invertible triples in V and consider the func-
tion

dG: V 3
⊤ → G0, (x, y, z) 7→ BG(x, y)BG(z, y)−1BG(z, x)BG(y, x)−1BG(y, z)BG(x, z)−1.

For S3
⊤ := S3 ∩ V 3

⊤ we show that dG(S3
⊤) ⊆ Z(G0)

τ and that the assumption

(A3) dG(S3
⊤) = {1}

is always satisfied for a quotient of the identity component G0 of G by a
discrete central elementary abelian 2-subgroup. For the group GL2(A) over
a hermitian Banach-∗ -algebra (A, ∗) we only have to factor the subgroup {±1}
(see Section II). The main goal of Section I is the definition of an index map

µG: S3
⊤ → π1(G

0)

assigning to a quasi-invertible triple in S a homotopy class of a loop in the group
G0 . This map is obtained by showing that [0, 1] → V 3, t 7→ (ts1, ts2, ts3) is a
path in V 3

⊤ , so that composing it with dG yields a loop in G0 whose homotopy
class is defined to be µG(s1, s2, s3) .

We show in Section II that all infinite-dimensional bounded symmetric
domains D of tube type are covered by our setup, where S is the corresponding
“Shilov boundary”. This observation builds heavily on results of W. Kaup and
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H. Upmeier (cf. [Up85]). If, in addition, D is finite-dimensional, then we can
compose dG with the determinant function det: GL(V ) → C

× and the natural
representation ρV : G0 → GL(V ) to obtain a map det ◦ρV ◦ dG: V 3

⊤ → C
× which

leads to a map
µ̃G: S3

⊤ → π1(C
×) ∼= Z.

Up to a constant factor, this map is the Maslov index defined in [CØ01].

From its definition it is almost obvious that µG is constant on the connected
components of S3

⊤ , and in Section III we show that these connected components
coincide with the orbits of H on S3

⊤ . We further show that each orbit contains
a triple of the form (e,−e, σ) with Q(e)σ = −σ . In Section IV we then turn to
the calculation of the index function. This is eventually reduced to the case of
the group SL2(C)/{±1} by observing that spanR{e, σ} is a Jordan sub-triple of
V isomorphic to C with {x, y, z} = xyz and then using functorial properties of
the index map. The outcome is the interesting result that

µG(e,−e, σ) = [χσ] with χσ ∈ Hom(T, G0), χσ(t + Z) = expG(πt[τ.e, σ]).

In the last Section V we calculate the Maslov index for several classes of
examples. If V = A is a hermitian Banach-∗ -algebra and S = U(A) its unitary
group, then a triple (s1, s2, s3) ∈ S3 is quasi-invertible if and only if all differences
sj − sk are invertible. So our index function assigns to each such triple a loop in
the group G0 ∼= (A× × A×)/{±1} whose homotopy class is invariant under the
action of the group H = U1,1(A, ∗)0 , and each triple is conjugate to one of the
form (1,−1, i(1 − 2p)) , where p is a hermitian projection in A . Therefore the
index map leads to a map

π0(Idem(A, ∗)) → π1(G
0), [p] 7→ [γp], where Idem(A, ∗) := {p ∈ A: p = p2 = p∗}

and [γp] denotes the homotopy class of the projection loop defined by γp(t+Z) =
e2πitp in U(A) . In this case D = U1,1(A, ∗).0 is the unit ball for the largest C∗ -
seminorm on A . This is a symmetric Banach manifold, but it is bounded if and
only if A is a C∗ -algebra. For complex Banach algebras the projection loop
construction leads to the Bott map

β: K0(A) → K2(A) = lim
−→

π1(GLn(A)), [p] 7→ [γp]

and the main point in Bott periodicity is that this map is an isomorphism (cf.
[Kar78]). It would be very interesting to see if there are deeper connections
between our index function µG and topological K -theory for Banach algebras,
in particular for real Banach algebras.

It is remarkable that our setup never needs that G is a complex group or
that V is a complex vector space. All the results in the present paper remain
valid in the real setting, hence in particular for the “Shilov boundaries” of real
bounded symmetric domains, but the geometric implications for this setting will
be investigated in a future paper.
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Our approach to the index function µG via involutive 3-graded Lie groups
is closely related to the geometry of inner 3-filtrations and 3-gradings developed
in [BN04a], from where we use several results. To keep this paper reasonably
self-contained, we included an appendix on basic results on Jordan triples used
throughout and also a second appendix on the basic notions concerning inner 3-
filtrations of Lie algebras. The theory in [BN04a] is algebraic, it even works over
fields of positive characteristic 6= 2, 3. Thinking of the index µG as a Jordan
algebra version of the Bott map, it would be interesting to see if there is an
algebraic variant of µG which is related to the Laurent polynomial constructions
in the algebraic K -theory of rings.

I. The index function for quasi-invertible triples

In this section we introduce involutive 3-graded Banach–Lie groups and
discuss the assumptions (A1-3) mentioned in the introduction. We shall use
Cayley transforms associated to invertible tripotents to show that for each quasi-
invertible triple (s1, s2, s3) ∈ S3

⊤ the line segment connecting it to (0, 0, 0)
consists of quasi-invertible triples. With this information we can define the index
function µG: S3

⊤ → π1(G
0) .

Three graded involutive Lie groups

Definition I.1. An inner 3-grading of a Lie algebra g is a 3-grading g =
g−1⊕g0⊕g1 for which the derivation D ∈ der(g) defined by gj = ker(D− j idg)
for j = 1, 0,−1, is inner. Then the elements E ∈ g0 with D = adE are called
grading elements. Note that g±2 = {0} implies in particular that the spaces
g± := g±1 are abelian subalgebras of g .

A pair (G, D) of a Banach–Lie group G and an inner derivation D ∈ ad g

is called a 3-graded Lie group if the eigenspaces gj := ker(D−j idg) , j = −1, 0, 1,
define a 3-grading.

A triple (G, D, τ) consisting of a 3-graded Banach–Lie group (G, D) and
an involutive automorphism τ of G whose differential L(τ) reverses the grading,
i.e., L(τ).gj = g−j for j = −1, 0, 1, is called an involutive 3-graded Lie group.

Proposition I.2. Let (G, D) be a 3-graded Banach–Lie group. The subgroups

G± := exp g±, G0 := {g ∈ G: (∀j) Ad(g)gj = gj} = {g ∈ G: Ad(g)D = D Ad(g)}

and P± := G±G0 have the following properties:

(1) P+ ∩ P− = G0 , P± ∩G∓ = {1} and P± ∼= G± ⋊ G0 . All these groups are
complemented Lie subgroups of G .

(2) The multiplication map G+ × G0 × G− → G, (x, y, z) 7→ xyz is a diffeo-
morphism onto an open subset of G .
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(3) X := G/P− is a homogeneous Banach manifold and the map g1 → X, x 7→
exp xP− is a diffeomorphism onto an open subset.

(4) The orbits of the identity component G0 of G coincide with the connected
components of X .

(5) For the inner 3-filtrations f± = (g±, g± + g0) of g we have Gf± = P± and
hence an embedding

(1.1) X → F , gP− 7→ g.f−

of X into the set F of inner 3-filtrations of g .

Proof. (1) Since G0 preserves the grading of g , it normalizes the subgroups
G± , so that P± are groups.

We consider the two inner 3-filtrations

f+ := (g+, g+ + g0) and f− := (g−, g− + g0)

defined by the 3-grading of g (cf. Appendix B for the definitions concerning
inner 3-filtrations). For a 3-filtration f = (f1, f0) let

Gf := {g ∈ G: Ad(g).f0 = f0, Ad(g).f1 = f1}

denote its stabilizer subgroup in G . Then we clearly have P± ⊆ Gf± .

On the other hand each element g ∈ Gf+ also stabilizes the subset f⊤+ =
{e ∈ F : e⊤f+} of all inner 3-filtrations of g transversal to f+ . According to
[BN04a, Th. 1.6(2)], the group G+ acts transitively on the set f⊤+ containing f− .

Hence there exists an element g+ ∈ G+ with g.f− = g+.f− . Then g−1
+ g.f± = f±

implies that g−1
+ g also preserves the 3-grading given by

g+ = f+,1, g− = f−,1 and g0 = f+,0 ∩ f−,0.

Therefore g−1
+ g ∈ G0 , so that g ∈ g+G0 ⊆ P+ . This shows that P+ = Gf+ and

likewise we get P− = Gf− . From that we obtain

P+ ∩ P− = Gf+ ∩Gf− = G0.

Let E ∈ g0 be a grading element, i.e., gj is the j -eigenspace of ad E .
Then we have for x ∈ g+ the relation

Ad(expx).E = ead x.E = E − [x, E] = E + x.

Since this element is contained in g− + g0 = f−,0 if and only if x = 0, we get

G+ ∩ P− = G+ ∩Gf− = {1},

and likewise G− ∩ P+ = {1} .

From P± = Gf± we derive in particular that P± and G0 are Lie subgroups
of g with the Lie algebras p± = g+ +g0 which are the normalizers of the flags f±
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on the Lie algebra level ([Ne04, Lemmas IV.11, IV.12]). Clearly the Lie algebras
of all these subgroups have closed complements because

g = p+ ⊕ g− = p− ⊕ g+ = g0 ⊕ (g+ + g−).

This means that they are complemented Lie subgroups.

(2) follows immediately from (1), the Inverse Function Theorem, and the
fact that the map

(G+
⋊ G0)×G− → G, (x, y, z) 7→ xyz−1

is an orbit map for a smooth action of the group (G+ ⋊ G0)×G− on G .

(3) follows from (1) and (2).

(4) We know from (3) that the orbit of the base point in X under G+ is
open. Hence the orbit of a point gP− under the group gG+g−1 is open, and
since all subgroups gG+g−1 are contained in G0 , all orbits of G0 in X are open.
This implies that the G0 -orbits in X are the connected components.

(5) follow from the proof of (1).

Lemma I.3. For v ∈ g1 and w ∈ g−1 the following are equivalent

(1) exp w exp v ∈ G+G0G− .

(2) The operators

B+(v, w) := idg1
+ad v ad w +

1

4
(ad v)2(ad w)2 ∈ End(g1)

and

B−(w, v) := idg−1
+adw ad v +

1

4
(adw)2(ad v)2 ∈ End(g−1)

are invertible.

Proof. Consider the map η: G → X, g 7→ gP− and identify g1 with the
open subset G+.P− ⊆ X . Then η−1(g1) = G+G0G−. Therefore exp w exp v ∈
G+G0G− is equivalent to (expw).v ∈ g1 , and the assertion follows from [BN04a,
Cor. 1.10].

Definition I.4. Let (G, D, τ) be an involutive 3-graded Banach–Lie group.
We also write τ for its derivative on the Lie algebra g . Then τ(gj) = g−j , j =
−1, 0, 1, and the space V := g+ carries a Jordan triple structure given by

{x, y, z} := 1
2 [[x, τ.y], z]

(Theorem A.5). Using Proposition I.2(3), we think of V as an open subset of
the homogeneous space X and view X as a conformal completion of the Jordan
triple V .
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We call an element x ∈ V invertible if the operator

Q(x): V → V, y 7→ Q(x)(y) := {x, y, x}
is invertible and write V × for the set of invertible elements in V . For x ∈ V ×

the (Jordan triple) inverse is defined by

x♯ := Q(x)−1.x.

The elements of the set

S := {x ∈ V ×: x♯ = x} = {x ∈ V ×: {x, x, x} = x}
are called involutions or invertible tripotents (cf. Definition A.1).

Definition I.5. (a) We have seen above that the multiplication map G+ ×
G0×G− → G is a diffeomorphism onto an open subset of the group G . Therefore
we have smooth maps

pj : G
+G0G− → Gj with g = p+(g)p0(g)p−(g) for g ∈ G+G0G−.

For z ∈ g1 and g ∈ G with g exp z ∈ G+G0G− we define

JG(g, z) := p0(g exp z) ∈ G0.

The function JG is called the universal automorphy factor of G .

(b) For g ∈ G we put g∗ := τ(g)−1 and for x ∈ g we put x∗ := −τ.x . For
w ∈ g1 and g = (exp w)∗ = exp w∗ ∈ G− we then set

BG(z, w) := JG

(
(expw)∗, z)−1 = p0

(
(exp w)∗ exp z

)−1 ∈ G0

whenever expw∗ exp z ∈ G+G0G− . According to Lemma I.3, this happens if
and only if the Bergman operators

B(v, w) := B+(v, w∗) = idV +ad v ad w∗ +
1

4
(ad v)2(ad w∗)2

= idV +ad v ad w∗ +
1

4
(ad v)2 ◦ τ ◦ (adw)2 ◦ τ = idV −2v�w + Q(v)Q(w)

and B(w, v) are invertible. In this case the pair (v, w) ∈ V 2 is called quasi-
invertible and we write v⊤w to denote quasi-invertibility. This notation is
motivated by the fact that, in terms of Appendix B, quasi-invertibility of (v, w)
is equivalent to (exp(−τ.w) exp v.f−)⊤f+ , which means that the 3-filtration
exp v.f− is transversal to the 3-filtration exp(τ.w).f+ = τX(expw.f−) .

(c) We write

V 2
⊤ := {(x, y) ∈ V 2: B(x, y), B(y, x) ∈ GL(V )}

for the set of quasi-invertible pairs in V , and V 3
⊤ := {(x, y, z) ∈ V 3: (x, y), (y, z), (x, z) ∈

V 2
⊤} for the set of quasi-invertible triples. For the set S of involutions in V we

put S2
⊤ := S2 ∩ V 2

⊤ and S3
⊤ := S3 ∩ V 3

⊤. We then consider the functions

cG: V 3
⊤ → G0, cG(x, y, z) := BG(x, y)BG(z, y)−1BG(z, x)

and dG: V 3
⊤ → G0, (x, y, z) 7→ cG(x, y, z)cG(x, z, y)−1 with

dG(x, y, z) = BG(x, y)BG(z, y)−1BG(z, x)BG(y, x)−1BG(y, z)BG(x, z)−1.

Lemma I.6. For a quasi-invertible pair (v, w) in V and the adjoint represen-
tation ρV : G0 → GL(V ) of G0 on g1 = V we have B(v, w) = ρV (BG(v, w)).

Proof. This follows from the proof of Theorem 2.10 in [BN04a].
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Lemma I.7. The functions BG , JG and dG have the following properties:

(1) For z ∈ V and g, g′ ∈ G with g′.z, gg′.z ∈ V we have JG(gg′, z) =
JG(g, g′.z)JG(g′, z). In particular JG(g−1, g.z) = JG(g, z)−1 for z ∈ V and
g.z ∈ V .

(2) If g.z, τ(g).w ∈ V , then BG(g.z, τ(g).w) = JG(g, z)BG(z, w)JG(τ(g), w)∗.
(3) BG(w, z) = BG(z, w)∗ for exp w∗ exp z ∈ G+G0G− .

(4) dG(z1, z3, z2) = dG(z1, z2, z3)
−1 .

(5) dG(z1, z2, z3) = BG(z1, z2)BG(z3, z2)
−1dG(z3, z1, z2)BG(z3, z2)BG(z1, z2)

−1.

(6) dG(g.z1, g.z2, g.z3) = JG(g, z1)dG(z1, z2, z3)JG(g, z1)
−1 for g ∈ Gτ with

g.zj ∈ V for j = 1, 2, 3 .

(7) For g ∈ Gτ , (v, w) ∈ V 2
⊤ and g.(v, w) ∈ V 2 we have g.(v, w) ∈ V 2

⊤.

Proof. The elementary proof of (1)-(3) can be found in [Ne99, Lemma XII.1.9].

(4) follows from

dG(z1, z3, z2) = cG(z1, z3, z2)cG(z1, z2, z3)
−1 =

(
cG(z1, z2, z3)cG(z1, z3, z2)

−1
)−1

= dG(z1, z2, z3)
−1.

(5) follows from

dG(z1, z2, z3) = BG(z1, z2)BG(z3, z2)
−1BG(z3, z1)BG(z2, z1)

−1BG(z2, z3)BG(z1, z3)
−1

= BG(z1, z2)BG(z3, z2)
−1

(
BG(z3, z1)BG(z2, z1)

−1BG(z2, z3)

BG(z1, z3)
−1BG(z1, z2)BG(z3, z2)

−1
)
BG(z3, z2)BG(z1, z2)

−1

= BG(z1, z2)BG(z3, z2)
−1dG(z3, z1, z2)BG(z3, z2)BG(z1, z2)

−1.

(6) follows from (2).

(7) From (2) we derive BG(g.z, .gw) = JG(g, z)BG(z, w)JG(g, w)∗ , and
therefore

B(g.z, g.w) = ρV (JG(g, z))B(z, w)ρV (JG(g, w)∗)

is invertible (Lemma I.6).

Proposition I.8. If S 6= Ø , then the involution τ induces an involution τX

on the homogeneous space X , and the following assertions hold:

(1) The fixed point set Xτ := {x ∈ X : τX(x) = x} is a submanifold of X .

(2) With respect to the embedding V →֒ X we have S = Xτ ∩ V.

(3) The group Gτ preserves the subset Xτ ⊆ X and the orbits of its identity
component H := Gτ

0 are the connected components of the manifold Xτ .

(4) For the transversality relation ⊤ of inner 3-filtrations and f ∈ Xτ the
subgroup exp(fτ1) of H acts transitively on the set Xτ ∩ f⊤ .

Proof. (1) In the proof of Proposition I.2 we have seen that P± coincide
with the stabilizers of the 3-filtrations f± := (g±, g±+ g0) , so that we obtain an
embedding of X into the set F of inner 3-filtrations of g by X → F , gP− 7→ g.f−
([BN04a, Th. 1.12]).
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Suppose now that e ∈ Xτ and that f ∈ e⊤ . Then τ(e1) = e1 , and from
τX(ead x.f) = ead τ.x.(τX .f) for x ∈ e1 it follows that τ acts on the affine space
e⊤ by an affine involution. Therefore it has a fixed point f . Then the affine
space f⊤ ⊆ X is an open subset containing e , and on this open set, the map τX

corresponds to the restriction τ |f1 . This shows that

(1.2) Xτ ∩ f⊤ = ead fτ

1 .e,

which is an affine subspace of the affine space f⊤ . Hence Xτ carries a natural
manifold structure given by the affine charts of the form Xτ ∩ f⊤ ∼= fτ1 .

(2) If τX denotes the restriction of the involution τ to X , considered as
a subspace of the set F of inner 3-filtrations of g , then Proposition B.2 implies
τ−1
X (V ) ∩ V = V × with τX(v) = v♯ for v ∈ V × . From that we immediately get

Xτ ∩ V = S .

(3) It is clear that the restriction of the action of the subgroup Gτ of G on
X preserves the set Xτ . For e ∈ Xτ we have seen in (1) that there exists some
τ -invariant f ∈ e⊤ such that ead fτ

1 .e is a neighborhoof of e . Since exp(fτ1) ⊆ H ,
all orbits of H in Xτ are open, hence coincide with the connected components.

(4) is an immediate consequence of (1.2) in the proof of (1).

Tripotents and partial Cayley transforms

In this subsection we introduce the partial Cayley transform Ce associated
to a Jordan tripotent, following the definition of O. Loos in [Lo77].

Definition I.9. (a) Let e ∈ V be a tripotent, f := τ(e) , h := [e, f ] and
ge := spanR{h, e, f} . Then

[h, e] = 2{e, e, e} = 2e and [h, f ] = τ [τh, e] = −τ [h, e] = −2τe = −2f,

so that ge
∼= sl2(R) is a 3-dimensional subalgebra of g with gτ

e = R(e + f) .

Write pSL2(R): S̃L2(R) → SL2(R) for the universal covering morphism of

SL2(R) and let η̃G
e : S̃L2(R) → G denote the unique homomorphism with

L(η̃G
e )

(
0 1
0 0

)
= e, L(η̃G

e )

(
0 0
1 0

)
= f and L(η̃G

e )

(
1 0
0 −1

)
= h.

The kernel of pSL2(R) is annihilated by every homomorphism of S̃L2(R) into the
unit group B× of some Banach algebra B because it factors through a homomor-
phism SL2(C) → (BC )× , where BC is the complexification of B . Therefore the
homomorphism Ad ◦η̃G

e factors through a homomorphism ηG
e : SL2(R) → Aut(g)

with ηG
e ◦ pSL2(R) = Ad ◦η̃G

e .

From

L(ηG
e ) ◦Ad

(
0 1
1 0

)
= τ ◦ L(ηG

e )(·) ◦ τ
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we derive on the group level that

ηG
e

( (
0 1
1 0

)
g

(
0 1
1 0

) )
= τηG

e (g)τ for g ∈ SL2(R).

(b) We define the partial Cayley transform by

Ce := ηG
e

( 1√
2

(
1 1
−1 1

) )
= exp

(π

4
ad(e− f)

)
∈ Aut(g).

If, in addition, e is invertible, we call Ce the associated Cayley transform.

Remark I.10. We keep the notation of the preceding definition and write
V = V2 ⊕ V1⊕ V0 for the eigenspace decomposition of V with respect to 2(e�e)
(cf. Lemma C.1).

(a) Let v ∈ V2 and w := τ(v) . Then [h, v] = 2v implies that [h, w] =
τ.[−h, v] = −2w . From that it easily follows that

M := spanR{w, [e, w], [e, [e, w]]}

is a ge -submodule of g equivalent to the adjoint module ([Bou90, Ch. VIII, §1,
no. 2, Prop. 1]).

(b) According to Lemma C.1, the tripotent e is invertible if and only
if V = V2 . Suppose this is the case. Then Q(e)2 = 2(e�e)2 − e�e =
idV (Lemma A.2(4)), so that (V, e, Q(e)) is an involutive unital Jordan alge-
bra (Proposition A.5). Moreover, 1

2h ∈ g0 is a grading element by Proposi-
tion C.4(1). We conclude that adh is diagonalizable on g , and since ad e and
ad f are nilpotent, the Lie algebra g is a locally finite ge -module, hence semisim-
ple by Weyl’s Theorem. Since the only eigenvalues of adh on g are {0,±2} , the
Lie algebra g is a direct sum of trivial and 3-dimensional ge -modules.

In the following lemma we collect some crucial properties of the partial
Cayley transform Ce .

Lemma I.11. For the partial Cayley transform associated to the tripotent e ∈
V the following assertions hold:

(1) C8
e = idg and if e is invertible, then C4

e = idg .

(2) Identifying V with a subset of X , for v ∈ V the condition Ce(v) ∈ V is
equivalent to the quasi-invertibility of (e, v) . For an element v ∈ V2 this
means that e− v is invertible in the unital Jordan algebra (V2, e) , and then

Ce(v) = (e + v)(e− v)−1.

(3) Ce(−e) = 0 , Ce(0) = Ce(f−) = e , Ce(e) = f+ and Ce(f+) = −e .

(4) On the subspace V2 ⊆ V we have C2
e ◦ τ = −Q(e) .

(5) τCeτ = C−1
e .
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Proof. (1) For I =

(
0 1
−1 0

)
the matrix 1√

2
(1 + I) ∈ SL2(R) is of order 8

and its square is I . Therefore the order of Ce is at most 8 and we have

C2
e = ηG

e

((
0 1
−1 0

) )
= exp

(π

2
ad(e− f)

)
.

If e is invertible, then g is a direct sum of trivial and 3-dimensional
simple sl2(R)-modules (Remark I.10(b)). On both types of modules the matrix(

0 1
−1 0

)
∈ SL2(R) acts like an involution, so that C2

e is an involution and

therefore C4
e = idg .

(2) From the decomposition

1√
2

(
1 1
−1 1

)
=

(
1 1
1 0

) (√
2 0

0 1√
2

) (
1 0
−1 1

)

in SL2(R) we derive in Aut(g) the decomposition

(2.1) Ce = exp(ad e) exp
(
(log

√
2) adh

)
exp(− ad f).

Since exp(ad e) exp
(
(log

√
2) adh

)
∈ Ad(P+) acts as an affine map on V ⊆ X ,

we see that Ce(v) ∈ V is equivalent to exp(−τ.e).v = exp(−f).v ∈ V , which
means that (e, v) is quasi-invertible (Definition I.5, Lemma I.3). If this is the
case, then

exp(−f).v = B(v, e)−1.(v −Q(v).e)

([BN04a, 2.8]). In the Jordan algebra V (e) we have Q(v).e = Q(v)Q(e).e =
P (v).e = v2 and

B(v, e) = idV −2L(v) + P (v),

and in the unital Jordan algebra V (e) ×R with the identity 1 := (0, 1) we have

1− 2L(x) + P (x) = P (1, 1)− 2P (1, x) + P (x, x) = P (1− x),

i.e., the quasi-invertibility of (x, e) is equivalent to the quasi-invertibility of x in
the Jordan algebra V (e) . In this algebra we have for any quasi-invertible pair
(v, e) :

exp(−f).v = P (1− v)−1.(v − v2) = (1− v)−1v.

For any element v in the unital Jordan algebra (V2, e) , the Cayley transform
therefore takes the form

Ce(v) = e + 2(e− v)−1v = (e− v + 2v)(e− v)−1 = (e + v)(e− v)−1.

(3) We have Ce(−e) = (e− e)(e− (−e))−1 = 0 and Ce(0) = e.

We further have in V , as a subset of X , the relation τX(e) = e♯ = e
(Proposition B.2), which leads to

exp(− ad f).e = exp(− ad τ.e).e = τX exp(− ad e)τX .e = τX exp(− ad e).e = τX .0 = τX .f− = f+,
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so that

Ce.e = exp(ad e) exp(log
√

2 ad h) exp(− ad f).e = exp(ad e) exp(log
√

2 adh).f+ = f+.

Moreover,

exp(− ad f).f+ = τX exp(− ad e)τX .f+ = τX exp(− ad e).f− = τX exp(− ad e).0

= τX .(−e) = (−e)♯ = −e,

and hence

Ce.f+ = exp(ad e) exp(log
√

2 ad h) exp(− ad f).f+

= exp(ad e) exp(log
√

2 ad h).(−e) = e + 2(−e) = −e.

(4) Let v ∈ V2 . According to Remark I.10(a), for w := τ.v the space
M := spanR{w, [e, w], [e, [e, w]]} is a ge -submodule of g isomorphic to ge with
the adjoint representation. From the relation

(
0 1
−1 0

) (
0 −1
0 0

) (
0 −1
1 0

)
=

(
0 0
1 0

)

we obtain

Ad(exp(e− f)) ◦ 1
2 (ad e)2.f = Ad(exp(e− f)).(−e) = f,

and this leads to C2
e

(
1
2 (ad e)2

)
τ.v = −C2

e Q(e).v = τ.v .

(5) follows immediately from τ(e−f) = τ(e− τ(e)) = τ(e)−e = f −e and
Ce ∈ exp(R(e− f)) .

Proposition I.12. For any tripotent e ∈ V we have exp(gτ
e ).0 =]− 1, 1[·e in

V , considered as a subset of X . In particular we have ]− 1, 1[·S ⊆ H.0

Proof. We have seen above that (e, h, f) is an sl2 -triple, so that e + τ(e)

corresponds to the matrix

(
0 1
1 0

)
and e to the matrix

(
0 1
0 0

)
. To calculate

exp(t(e + τ(e)).0 in V ⊆ X , we observe that

exp

(
0 t
t 0

)
=

(
cosh t sinh t
sinh t cosh t

)
∈ exp(Rf + Rh) ·

(
1 tanh t
0 1

)
,

which leads to exp(t(e+τ(e))).0 = tanh t·e, and from that the assertion follows.

Consider the following assumptions on the involutive 3-graded group

G :

(A1)D := H.0 ⊆ V , i.e., H ⊆ G+G0G− .

(A2) H.S ⊆ V .

(A3) dG(S3
⊤) = {1} .

Condition (A1) is well-known from the setting of groups of Harish-Chandra
type. In view of Proposition I.8, condition (A2) is equivalent to the invariance
of the subset Xτ ∩ V under the action of the group H .
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Proposition I.13. ρV ◦ dG(S3
⊤) = {1} . In particular, (A3) is satisfied if G0

acts faithfully on V .

Proof. For (x, y, z) ∈ S3
⊤ we derive from Lemma A.10(2) the relation

B(x, y) = B(x, y♯) = Q(x− y)Q(y)−1,

so that we get with Lemma I.6

ρV (dG(x, y, z)) = B(x, y)B(z, y)−1B(z, x)B(y, x)−1B(y, z)B(x, z)−1

= B(x, y−1)B(z, y−1)−1B(z, x−1)B(y, x−1)−1B(y, z−1)B(x, z−1)−1

= Q(x− y)Q(z − y)−1Q(z − x)Q(y − x)−1Q(y − z)Q(x− z)−1

= Q(y − x)Q(z − y)−1Q(x− z)Q(y − x)−1Q(z − y)Q(x− z)−1 = 1,

where the last equality follows from Proposition A.7.

In Proposition IV.4 below we shall use the results of Section III on H -
orbits in S3

⊤ to see that the preceding result can be sharpened considerably to
the observation that dG(S3

⊤) ⊆ Z(G0) .

In the following we shall also see interesting examples where (A3) is satisfied
and G0 does not act faithfully on V . This holds in particular for the group
G = GL2(A)/{±1} , where A is a hermitian Banach-∗ -algebra (cf. Example II.6
below).

Lemma I.14. If (A1) is satisfied, then for each v ∈ V with H.v ⊆ V we have
D ×H.v ⊆ V 2

⊤. If, in addition, (A2) holds, then D × (D ∪ S) ⊆ V 2
⊤.

Proof. Suppose that (A1) is satisfied, i.e. D = H.0 ⊆ V and let v ∈ V
with H.v ⊆ V . For h1, h2 ∈ H and h1.0 ∈ D it now follows that (h1.0, h2.v) is
quasi-invertible because (0, h−1

1 h2.v) is quasi-invertible (Lemma I.7(7)).

If, in addition, H.S ⊆ V , then the preceding argument applies with v = 0
or v ∈ S , and the assertion follows.

Definition I.15. Suppose that (A1-3) hold. For (x, y, z) ∈ S3
⊤ we consider

the continuous curve

αx,y,z: [0, 1] → V 3, t 7→ (tx, ty, tz),

starting at (0, 0, 0) and ending at (x, y, z) ∈ S3
⊤ . Proposition I.12 and Lemma I.14

now implies that im(αx,y,z) is contained in the open subset V 3
⊤ of V 3 , so that

the curve
dG ◦ αx,y,z: [0, 1] → G0, t 7→ dG(tx, ty, tz),

is defined. Since dG(0, 0, 0) = 1 and dG(x, y, z) = 1 by (A3), this curve is a loop
in G0 .

We thus obtain a map

µG: S3
⊤ → π1(G

0), (x, y, z) 7→ [dG ◦ αx,y,z].

For reasons to be explained later, we call this map the topological (Maslov)
index. Since the path αx,y,z depends continuously on the triple (x, y, z) , this
map is constant on the connected components of S3

⊤ , hence induces a map
π0(S

3
⊤) → π1(G

0).
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We shall see in Example IV.2 below that for the case where D ⊆ V is
a finite-dimensional irreducible bounded symmetric domain of tube type, the
index map µG can be used to obtain the Maslov index by composing with the
homomorphism det ◦ρV : G0 → C

× to obtain a map

π1(det ◦ρV ) ◦ µG: S3
⊤ → π1(C

×) ∼= Z.

Proposition I.16. The index map µG: S3
⊤ → π1(G

0) is an alternating func-
tion with values in the abelian group π1(G

0) , i.e.

µG(xσ(1), xσ(2), xσ(3)) = µG(x1, x2, x3)
sgn(σ) for (x1, x2, x3) ∈ S3

⊤, σ ∈ S3.

Proof. From Lemma I.7(4) we immediately derive that [αx,y,z] = [α−1
x,z,x] =

[αx,z,x]−1.

We further get from Lemma I.7(5) a continuous path β: [0, 1] → G0 with

αy,z,x = β · αx,y,z · β−1,

and this loop in G0 is homotopic to the loop αx,y,z , which leads to [αy,z,x] =
[αx,y,z]. Since the symmetric group S3 is generated by the cycle (1 2 3) and the
transposition (2 3), the assertion follows.

II. Bounded symmetric domains and hermitian Banach-∗-algebras

In this section we discuss two large classes of groups for which our assump-
tions (A1-3) are satisfied. The groups of the first class are the complexifications
G of the identity component Aut(D)0 of the group of biholomorphic maps of a
bounded symmetric domain D in a Banach space, and the second class contains
the groups GL2(A)/{±1} for a hermitian unital Banach-∗ -algebra A . In this
case the corresponding domain D is bounded if and only if A is a C∗ -algebra.

Bounded symmetric domains in Banach spaces

Let V be a complex Banach space and D ⊆ V be a bounded symmetric
domain, i.e., a bounded open connected subset such that for each z ∈ D there
exists an involution jz ∈ Aut(D) , the group of biholomorphic mappings of D ,
such that z is an isolated fixed point of jz . The group Aut(D) carries a natural
Banach–Lie group structure such that the transitive action on D is real analytic
([Up85, Th. 13.14]). According to Kaup’s Riemann Mapping Theorem ([Ka83],
[Up85, Th. 20.23]), there is a norm on the space V such that D is biholomorphic
to the open unit ball in V . Therefore we assume from now on that

D = {z ∈ V : ‖z‖ < 1}.
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The identity component H := Aut(D)0 of Aut(D) carries a natural Banach–Lie
group structure such that the transitive action of H on D is real analytic.

We think of L(H) as a Lie algebra of holomorphic vector fields on the
domain D ⊆ V . It is shown in [Up85, Th. 18.17] that the elements of L(H) are
polynomial vector fields of degree at most 2 and that

g := L(H) + iL(H)

carries a natural structure of a centerfree 3-graded Banach–Lie algebra on which
there is a grading reversing antilinear involution τ for which L(H) = gτ . The
grading is given by the degree of vector fields, where gj consists of vector fields
of degree 1 − j . Since the unit ball D is in particular cicular, g contains the
Euler vector field corresponding to the function E(z) = z on V , which defines
the grading of g . We conclude that the grading of g is inner.

We then consider the complex Banach–Lie group

G := Aut(g)0.

Then L(G) = der g = ad g ∼= g (cf. [Up85, Lemma 9.9]) and the involution τ
on g induces by conjugation an involution, also denoted τ , on G . We thus
obtain a situation as discussed in Section I, where we considered a Banach–
Lie group G endowed with an involution τ reversing an inner 3-grading on g .
Clearly H = Aut(D)0 = Gτ

0 follows from the equality of the Lie algebras of both
subgroups of G .

In this case the orbit H.0 of the base point 0 ∈ V ∼= g1 in the homogeneous
space X = G/P− coincides with the bounded symmetric domain D ([Up85,
Th. 20.20]). Therefore our assumption (A1) is satisfied.

Theorem II.1. The closure D of D in V also is a closed subset of X .

Proof. Since X = G/P− is a quotient space and the inverse image of D
in G is the product set exp(D)P− = exp(D)G0G−, it suffices to show that
Y := exp(D)G0G− is a closed subset of G .

Let U ⊆ G be an open identity neighborhood with U ·U contained in the
open subset G+G0G− . If 0 ∈ V is identified with the base point P− of the
homogeneous space X = G/P− , then this implies that UU.0 ⊆ V .

Since D ⊆ V is a bounded subset and adE |g1
= idg1

, there exists a t > 0
with

exp(−tE).D ⊆ U.0.

For the identity neighborhood U ′ := exp(tE)U exp(−tE) of G we then obtain

U ′.D = exp(tE)U exp(−tE).D ⊆ exp(tE)UU.0 ⊆ V,

i.e., U ′ exp(D)G0G− ⊆ G+G0G−, so that

exp(D)G0G− ⊆ U ′ exp(D)G0G− ⊆ G+G0G−.

Since the open subset G+G0G− is homeomorphic to the topological product
G+ ×G0 ×G− , it follows that

exp(D)G0G− = (expD)G0G−

is the closure of (expD)G0G− in G .
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By continuity we now obtain immediately

Corollary II.2. H.D ⊆ D ⊆ V and in particular H.S ⊆ V .

Proposition II.3. If S 6= Ø , i.e., D is a bounded symmetric domain of tube
type, then the assumptions (A1-3) are satisfied for the involutive 3-graded group
(G, adE, τ) .

Proof. Assumption (A1) follows from the realization of D as a bounded
domain in V ⊆ G/P− . The preceding corollary implies that (A2) is satisfied.
Further (A3) will follow from the fact that the representation of G0 on V is
faithful (Proposition I.13). To verify that this representation is faithful, let
g ∈ G0 act trivially on V . Then the adjoint action, which corresponds to
the action of g on a set of vector fields on V , is trivial. Therefore G ⊆ Aut(g)
implies g = 1 . This proves that (A1-3) are satisfied.

Hermitian Banach-∗-algebras

Definition II.4. A Banach-∗-algebra is a pair (A, ∗) of a complex Banach
algebra together with an antilinear isometric antiisomorphism ∗ . It is called
hermitian if the spectra of hermitian elements are real.

The following simple lemma will be helpfull in evaluating dG(S3
⊤) for the

group GL2(A) .

Lemma II.5. Let (R, e) be a unital ring and a, b, c ∈ R with a+b+c = 0 and
b ∈ R× . Then

ab−1c = cb−1a.

Proof. The relation a + b + c = 0 implies that ab−1 + cb−1 = −e , so that
ab−1 and cb−1 commute, and the assertion follows from ab−1cb−1 = cb−1ab−1

by multiplying with b from the right.

Example II.6. Let (A, ∗) be a hermitian Banach-∗ -algebra. First we consider
G := GL2(A) with the involution τ given by

τ

(
a b
c d

)
=

(
a∗ −c∗

−b∗ d∗

)−1

and whose fixed point set is denoted U1,1(A, ∗) := GL2(A)τ . Its Lie algebra
g = gl2(A) is 3-graded with

g+ =

(
0 A
0 0

)
, g0 =

(
A 0

0 A

)
and g− =

(
0 0

A 0

)
.
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Since E :=

(
1 0
0 −1

)
is a grading element, the grading is inner. On the Lie

algebra level we have

τ

(
a b
c d

)
=

(
−a∗ c∗

b∗ −d∗

)
,

showing that τ reverses the grading. The corresponding Jordan triple product
in A ∼= g+ is given by

{x, y, z} = 1
2 (xy∗z + zy∗x).

On the group level we have

GL2(A)+ =

(
1 A
0 1

)
, GL2(A)0 =

(
A× 0

0 A×

)
and GL2(A)− =

(
1 0

A 1

)
.

Then

GL2(A)+ GL2(A)0 GL2(A)− =
{(

a b
c d

)
∈ GL2(A): d ∈ A×

}
,

and any matrix in this set decomposes as

(
a b
c d

)
=

(
1 bd−1

0 1

) (
a− bd−1c 0

0 d

) (
1 0

d−1c 1

)
.

From (
1 0

−w∗ 1

) (
1 z
0 1

)
=

(
1 z

−w∗ 1− w∗z

)

we obtain

BG(z, w) =

(
1− z(1− w∗z)−1(−w∗) 0

0 1− w∗z

)−1

=

(
1− zw∗ 0

0 (1− w∗z)−1

)
.

Next we calculate dG on quasi-invertible unitary triples (s1, s2, s3) . For
unitary elements z, w ∈ S quasi-invertibility means that 1−w∗z = 1−w−1z is
invertible, which means that w−z is invertible. Therefore all differences sj−sk ,
j 6= k , are invertible. Since

(s1 − s2) + (s2 − s3) + (s3 − s1) = 0,

Lemma II.5 leads to

(1− s1s
∗
2)(1− s3s

∗
2)
−1(1− s3s

∗
1)(1− s2s

∗
1)
−1(1− s2s

∗
3)(1− s1s

∗
3)
−1

= (1− s1s
−1
2 )(1− s3s

−1
2 )−1(1− s3s

−1
1 )(1− s2s

−1
1 )−1(1− s2s

−1
3 )(1− s1s

−1
3 )−1

= (s2 − s1)(s2 − s3)
−1(s1 − s3)(s1 − s2)

−1(s3 − s2)(s3 − s1)
−1

= −(s1 − s2)(s2 − s3)
−1(s3 − s1)(s1 − s2)

−1(s2 − s3)(s3 − s1)
−1 = −1
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and we likewise get

(1− s∗2s1)
−1(1− s∗2s3)(1− s∗1s3)

−1(1− s∗1s2)(1− s∗3s2)
−1(1− s∗3s1)

= (1− s−1
2 s1)

−1(1− s−1
2 s3)(1− s−1

1 s3)
−1(1− s−1

1 s2)(1− s−1
3 s2)

−1(1− s−1
3 s1)

= (s2 − s1)(s2 − s3)
−1(s1 − s3)(s1 − s2)

−1(s3 − s2)(s3 − s1)
−1 = −1.

This shows that

dG(s1, s2, s3) =

(
−1 0
0 −1

)
.

Let σC∗ denote the largest C∗ -seminorm on A , i.e., σC∗(a) = ‖η(a)‖ if
η: A → C∗(A) is the universal map into the universal enveloping C∗ -algebra
C∗(A) of A . From [Bi04, Lemma 8.2.7] we know that the orbit of H = Gτ

0 in
X is contained in A and coincides with the convex open set

D = {a ∈ A: σC∗(a) < 1}.

For the invertible tripotent e := 1 ∈ A we have Q(e)a = a∗ , so that

S = U(A) = {a ∈ A×: a∗ = a−1}.

We claim that if g =

(
a b
c d

)
∈ U1,1(A, ∗) and z ∈ A with σC∗(z) ≤ 1,

then cz + d ∈ A×, which implies that g.z = (az + b)(cz + d)−1 is contained in
V = A , and hence that (A1) and (A2) are satisfied.

If A is a C∗ -algebra, then D is the open unit ball in A , and the transitivity
of the holomorphic action of H on D implies that it is a bounded symmetric
domain. From Corollary II.2 above we know that in this case the closure of D
in X coincides with the closure of D in V which is invariant under the action
of H .

This argument can be carried over to a general hermitian Banach ∗ -algebra
as follows. Since η induces homomorphisms

GL2(A) → GL2(C
∗(A)) and U1,1(A, ∗) → U1,1(C

∗(A), ∗),

we conclude from the case of C∗ -algebras that η(cz + d) = η(c)η(z) + η(d)
is invertible in C∗(A) , which in turn implies that cz + d is invertible in A
because the property η−1(C∗(A)×) = A× characterizes hermitian Banach ∗ -
algebras (cf. [Bi04, Prop. 2.7.5], see also [Pt70/72] for the Banach version of
Biller’s results).

The domain D is bounded if and only if the natural homomorphism η: A →
C∗(A) is an embedding, i.e., if and only if A is a C∗ -algebra.

As an immediate consequence of the discussion in Example II.6, we obtain
the following theorem:
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Theorem II.7. If (A, ∗) is a hermitian Banach-∗-algebra, then

τ

(
a b
c d

)
=

(
a∗ −c∗

−b∗ d∗

)−1

and E :=

(
1 0
0 −1

)
define an involutive 3-graded Banach–Lie group (GL2(A), adE, τ)

satisfying (A1/2). If we write 1 ∈ M2(A) for the identity matrix, then the group
G := GL2(A)/{±1} satisfies (A1-3) with respect to the induced involution.

III. Connected components and H -orbits in S3
⊤

We have already seen that the group H acts on Xτ in such a way that its
orbits are the connected components (Proposition I.8). Under the assumption
(A2), the set S is a union of such H -orbits. In the following we shall use this
correspondence to get a better description of the connected components in S3

⊤ .
In particular, we shall see that they coincide with the orbits of H in S3

⊤ and that
each orbit contains a triple of the form (e,−e, σ) with σ∗ = Q(e)σ = −σ in the
unital involutive Jordan algebra (V, e, Q(e)) . Since σ is an invertible tripotent,
the latter condition implies that

σ = Q(σ)σ = −Q(σ)Q(e)σ = −P (σ)σ = −σ3

and therefore σ2 = −e . In the following we put V± := {v ∈ V : v∗ = Q(e)v =
±v} .

Lemma III.1. Let e ∈ S and Ce ∈ Aut(g) denote the corresponding Cayley
transform. For v ∈ V and v∗ = Q(e)v we have

τ(Ce.v) = −Ce.v
∗ and τ(C−1

e .v) = −C−1
e .v∗.

In particular Ce.v, C−1
e .v ∈ gτ if v∗ = −v , where Ce.v refers to the linear action

of Ce on g . The corresponding element g := exp(C−1
e .v) ∈ H satisfies

g.(−e) = C−1
e (v) = (v − e)(e + v)−1.

Moreover, e + v is invertible whenever v∗ = −v .

Proof. The first equality follows from

τ ◦ Ce = C−1
e ◦ τ = C3

e ◦ τ = −Ce ◦Q(e)

on V (Lemma I.11(1),(4),(5)), and we likewise obtain on V the relation τ◦C−1
e =

Ce ◦ τ = −C−1
e Q(e).

From Lemma I.11(3) we know that Ce(−e) = 0 for the action of Ce on
X , so that we obtain for g = exp(C−1

e .v) ∈ H that

C−1
e (v) = C−1

e ead v.0 = C−1
e ead vCe.(−e) = exp(C−1

e .v).(−e) = g.(−e) ∈ S.

In particular e + v is invertible (Lemma I.11(2)).
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Lemma III.2.

(1) The action of H on D ∪ S preserves quasi-invertibility.

(2) If e ∈ S , then the stabilizer He of e in H acts transitively on {f ∈ S: e⊤f} .
(3) If g is complex and τ is antilinear, then (e, f) ∈ S2

⊤ implies f ∈ H.e .

(4) For (e, f) ∈ S2
⊤ we have H.(e, f) = {(a, b) ∈ S2

⊤: a ∈ H.e} .
(5) The H -orbit of (e, x, y) ∈ S3

⊤ contains an element of the form (e,−e, z)
and

{z ∈ S: z⊤± e} = Ce(V− ∩ V ×).

Proof. (1) follows from Lemma I.14.

(2) According to Proposition I.8, we have S = Xτ∩V . Further (z, w) ∈ V 2
⊤

is equivalent to the transversality of the 3-filtrations exp z.f− and τ(exp w.f−)
(cf. Definition I.5(b)). For z, w ∈ S ⊆ Xτ this is equivalent to the quasi-
invertibility of (z, w) . Hence

{f ∈ S: e⊤f} ⊆ (exp e.f−)⊤,

and Proposition I.8(2) implies that He = Hexp e.f− acts transitively on (exp e.f−)⊤ .

We also give a second proof of (2) which is more direct and uses (1):
The quasi-invertibility of (e, f) implies that e − f is invertible in the unital
involutive Jordan algebra (V, e, Q(e)) , so that x := Ce(f) ∈ X is an element
of V (Lemma I.11(2)). We have

x∗ = Ce(f)∗ = ((e+f)(e−f)−1)∗ = (e+f∗)(e−f∗)−1 = Ce(f
∗) = Ce(f

−1) = −Ce(f) = −x

(Lemma A.11), so that g := exp(C−1
e .x) ∈ H satisfies g.(−e) = C−1

e .x = f
(Lemma II.1). We further get with Lemma I.11(3) in X ⊆ F :

g.e = C−1
e ead xCe(e) = C−1

e ead x.f+ = C−1
e .f+ = e.

(3) For e ∈ S we consider the 3-dimensional subalgebra ge = spanC{e, τ(e), [e, τ(e)]} ⊆
g . Then E := 1

2
[e, τ(e)] is a grading element with τ(E) = −E (Proposi-

tion C.4), and τ(iE) = iE implies that T ∼= exp(iRE) ⊆ H . We therefore
obtain −e ∈ exp(iRE).e ⊆ H.e, and the assertion follows from (2) and e⊤− e .

(4) In view of (1), each element (a, b) ∈ S2 of the form (g.e, g.f) satisfies
a ∈ H.e and b⊤a .

If, conversely, a = g.e and b⊤a , then (g−1.b, g−1.a) = (g−1.b, e) , so that
(2) implies the existence of h ∈ He with h.f = g−1.b , and then h.(e, f) =
(e, g−1.b) = g−1.(a, b) implies (a, b) ∈ H.(e, f) .

(5) From (2) it follows that the H -orbit of (e, x, y) contains an element
of the form (e,−e, z) . Then z is a unitary element in the involutive unital
Jordan algebra (V, e, Q(e)) with involution v∗ := Q(e)v . The quasi-invertibility
of (z,±e) is equivalent to the invertibilty of z ± e in the Jordan triple V
(Lemma A.9) and hence in the unital Jordan algebra (V, e) . Therefore e−(−z) =
e + z is invertible, and we put v := −Ce(−z) = C−1

e (z) to obtain an element
v ∈ V with Ce(v) = z . We further obtain with Lemma A.11(1):

v∗ = (−Ce(−z))∗ = −Ce(−z)∗ = −Ce(−z∗) = −Ce(−z−1)

= −Ce((−z)−1) = −(−Ce(−z)) = Ce(−z) = −v,
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so that v ∈ V− . If, conversely, v ∈ V ×
− , then e − v is invertible (Lemma III.1)

and z := Ce(v) ∈ S is a unitary element for which z + e is invertible. Since v
is invertible, Lemma A.11 implies that z = Ce(v) lies in the domain V × + e of
Ce , so that also e− z is invertible, and hence (e,−e, z) ∈ S3

⊤ .

Remark III.3. (a) The preceding lemma shows in particular that (e, f) ∈ S2
⊤

implies that f ∈ S−e = −Se , where Se denotes the connected component of S
containing e . For (e, f, g) ∈ S3

⊤ we even conclude that Se = S−g = Sf = S−e =
Sg. This leads to the disjoint decomposition

S3
⊤ =

⋃

e

(Se)
3
⊤,

so that it is no loss of generality if we consider only a fixed connected component
Se of the set S and study the index map on the subset (Se)

3
⊤ of S3

⊤ .

(b) For G = PSL2(R) = SL2(R)/{±1} with grading derivation

D = ad

(
1 0
0 −1

)
and τ

(
a b
c d

)
=

(
a −c
−b d

)−1

we have
V ∼= R with {x, y, z} = xyz and S = {±1}.

Here S2
⊤ = {(1,−1), (−1, 1)} and the connected group H acts trivially. In this

case we have S1 = {1} 6= {−1} = S−1 .

Lemma III.4. Fix e ∈ S and consider the associated Cayley transform C :=
Ce ∈ Aut(g) . Then the involution τC := CτC−1 ∈ Aut(g) satisfies:

(1) τC preserves the 3-grading of g .

(2) τC = τC2 , where τ and C2 are commuting involutions of g .

(3) The Lie subalgebra l := C(gτ ) = gτC

is adapted to the 3-grading of g and
τ -invariant.

(4) τC |V = −Q(e) .

(5) For the stabilizer group He,−e , the identity component L := (GτC

)0 and

CG = exp
(

π
4
(e− f)

)
∈ G we have

Ad(CG) = C and L0 := L ∩G0 = CG ·He,−e · (CG)−1.

Proof. (1) With Lemma I.11 we get in X ⊆ F :

τC(f−) = τC(0) = CτX(−e) = C(−e) = 0 = f− and τC(f+) = CτX(e) = C(e) = f+.

Therefore τC fixes the two filtrations f± and hence the corresponding 3-grading
of g .

(2) With Lemma I.11 we get τC = CτC−1 = C2τ = τC−2 = τC2, so that
the two involutions τ and C2 commute.

(3) That l is adapted to the 3-grading of g follows directly from (1). Since
τ and τC commutes by (2), l is τ -invariant.

(4) follows from Lemma I.11(4).

(5) The relation Ad(CG) = C is immediate from the definitions. Further
C(±e) = f± and CGH(CG)−1 = L lead to L0 = L∩Gf± = CG ·He,−e ·(CG)−1.
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Proposition III.5. Let σ: G×M → M be a smooth action of the Banach–Lie
group G on the Banach manifold M and Tσ: TG×TM → TM its tangent map.
If g.p := Tσ(1, p)(g× {0}) = Tp(M) , then the orbit G.p of p is open.

Proof. For a smooth map f : N → M between Banach manifold for which
the differential df(x): Tx(N) → Tf(x)(M) is surjective, the image of f is a
neighborhood of f(x) ([De85, Cor. 15.2]).

The condition g.p = Tp(M) means that the differential of the orbit map
G → M, g 7→ g.p in g = 1 is surjective, so that the aforementioned fact implies
that the orbit G.p is a neighborhood of p . This implies that G.p is open.

Proposition III.6. All orbits of (L0)0 in V ×
− := V− ∩ V × are open.

Proof. From Lemma III.4(4) we immediately get V− ⊆ l1 . Let v ∈ V ×
− ⊆ l1

be an invertible element. Then v−1 ∈ V ×
− and

v♯ = Q(v)−1v = Q(e)v−1 = −v−1 ∈ V− ⊆ l1.

Therefore V−�v♯ = [V−, τ(v♯)] ⊆ [l1, l−1] ⊆ l0. Since the map

V− → V−, x 7→ (x�v♯).v = {v, v♯, x} = (v�v♯).x = x

is bijective (cf. Lemma A.4(1)), the orbit map l0 → V−, x 7→ x.v is surjective,
and Proposition III.5 implies that the orbit L0

0.v in V− is open.

In general the group L0 , resp., He,−e is not connected, so that the orbits
of this group may also be unions of several connected components in V ×

− . If, f.i.
G = GL2(A)/{±1} for a hermitian Banach-∗ -algebra A , then

C = Ad
( 1√

2

(
1 1

−1 1

) )
and C2 = Ad

((
0 1

−1 0

) )

lead to

τC

(
a b
c d

)
=

(
0 1

−1 0

)(
−a∗ c∗

b∗ −d∗

) (
0 −1

1 0

)
=

(
−d∗ −b∗

−c∗ −a∗

)
,

so that

L0 = (G0)τC

=
{(

a 0
0 ±a−∗

)
: a ∈ A×

}
/{±1} ∼= (A×/{±1})⋊

{
±

(
1 0

0 −1

) }
,

which is not connected if A× is not connected.

Proposition III.7. The orbits of H in S , S2
⊤ and S3

⊤ are open, hence
coincide with the connected components.

Proof. That the orbits of H in S are open follows from Proposition I.8.

For (e, f) ∈ S2
⊤ , Lemma III.2(4) implies H.(e, f) = S2

⊤ ∩ (H.e × S), and
since H.e is open in S , it follows that H.(e, f) is open in S2 .
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Let (e, g, f) ∈ S3
⊤ . In view of Lemma III.2(5), we may assume that f = −e .

So it remains to see that if f⊤± e , then H.(e,−e, f) is open in S3 .

Conjugating everything with the Cayley transform C = Ce , we are lead
to the quasi-invertible triple (C(e), C(−e), C(f)) = (f−, f+, z) with z ∈ V ×

−
(Lemma III.2, Corollary B.3)

We have to show that the orbit of the group L0 in SC := C(S) ⊆ XτC

is
open. The Lie algebra l = C(h) is adapted to the grading of g (Lemma III.4),
so that

lf± = l± ⊕ l0 and lf+,f− = l0.

The argument in the proof of Proposition III.6 shows that the map l0 → V, x 7→
x.z is surjective, and since l0 is the kernel of the surjective map

l → Tf+(SC)× Tf−(SC) = l1 ⊕ l−1, x 7→ x.(e,−e) = (x+, x−),

we see that the map l → Tf+(SC)× Tf−(SC)× Tz(S
C) is surjective. In view of

Proposition III.5, this implies that the L -orbit of (f+, f−, z) in (SC)3 is open
and therefore that the H -orbit of (e,−e, f) in S3 is open.

So far we have seen that the H -orbits in S3
⊤ coincide with the con-

nected components and that each such orbit contains an element of the form
(e,−e, C(v)) for some v ∈ C(V ×

− ) . With the aid of the following lemma, we
shall be able to reduce this further to the case where v2 = −e .

Lemma III.8. Let (A, e, ∗) be a real unital involutive Banach algebra and
z ∈ A− such that λz + e is invertible for each λ ∈ R . If, in addition, z is
invertible, then there exists a hermitian element x = x∗ ∈ A with −z2 = ex .

Then σ := ze−
1
2

x ∈ A×− satisfies σ2 = −1 and σ lies in the same connected
component of A×− as z .

Proof. The assumption e+λz ∈ A× for λ ∈ R× implies that (z−λe)(z+λe) =
z2 − λ2e is invertible, so that Spec(−z2)∩]−∞, 0[= Ø.

Let AC denote the complexification of (A, ∗) , endowed with the antilinear
involution given by (x + iy)∗ := x∗ − iy∗. On the open subset

Ω := {w ∈ AC : Spec(w)∩]−∞, 0] = Ø}

we then have a holomorphic logarithm function

log: Ω → AC , log(w) =
1

2πi

∮

γ

log(ζ)(ζ1− w)−1 dζ,

where γ is a piecewise smooth cycle in C\]−∞, 0] with winding number 1 in each
point of Spec(w) ([Ru73, Ths. 10.20, 10.38]). In view of Spec(w∗) = Spec(w),
the domain Ω is invariant under the involution, and we have

log(w)∗ = − 1

2πi

∮

γ

log(ζ)(ζ1− w∗)−1 dζ.
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Since the winding number of γ in each point of Spec(w) is −1, we obtain

log(w)∗ =
1

2πi

∮

γ

log(ζ)(ζ1− w∗)−1 dζ = log(w∗).

Therefore x := log(−z2) is a hermitian element of AC lying in the commu-
tant of z . A similar argument applies to the antilinear involution τ : AC → AC

with A = {a ∈ AC : τ(a) = a} and shows that τ(log w) = log τ(w) for w ∈ Ω,
hence in particular x ∈ Aτ

C
= A . We clearly have ex = −z2 .

For σt := e−t
1
2xz = ze−t

1
2x we obtain

σ∗t = z∗e−t
1
2x = −ze−t

1
2x = −σt and σ2

1 = e−xz2 = −e.

For each t ∈ R the element e−txz lies in A×− , so that z and σ1 lie in the same
connected component of A×− .

Theorem III.9. If the involutive 3-graded Lie group (G, D, τ) satisfies
(A1/2), then each connected component of S3

⊤ contains an element of the form
(e,−e, σ) with σ∗ = −σ and σ2 = −e .

Proof. From Lemma III.2(5) we know that each connected component of S3
⊤

contains an element of the form (e,−e, C(v)) with v ∈ V ×
− . Let A ⊆ (V, e)

denote the closed unital Jordan subalgebra generated by v and v−1 . In view of
[Jac68, Ch. I, Sect. 11, Th. 13], A is a commutative associative algebra, hence a
commutative Banach algebra in which v is invertible. Further v∗ = −v implies
that A is invariant under the involution, hence an involutive Banach algebra.

We now consider the analytic map

η: R → V, λ 7→ (e− λv)−1.

There exists an ε > 0 such that the Neumann series
∑∞

n=0 λnvn converges to
(e − λv)−1 for |λ| < ε . This implies that η(λ) ∈ A for all these λ . Since η
is analytic and A is a closed subspace of V , we conclude with the Principle of
Analytic Continuation that im(η) ⊆ A , hence that e− λv is invertible in A for
all λ ∈ R .

Now Lemma III.8 applies to the element v ∈ A , and we find an element
σ ∈ A×− in the same connected component as v , satisfying σ2 = −e . Eventually
Lemma III.2(5) implies that (e,−e, C(σ)) lies in the same connected component
of S3

⊤ as (e,−e, C(v)) . Further σ2 = −e leads to σ(e − σ) = σ − σ2 = σ + e,
which means that C(σ) = (e + σ)(e− σ)−1 = σ . This completes the proof.
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IV. Evaluating the index map

In the preceding section we have reduced the problem to calculate the index
function µG: S3

⊤ → π1(G
0) to triples of the form (e,−e, σ) with σ2 = −e in the

unital Jordan algebra (V, e) . The next step is to calculate the index function on
these triples explicitly by showing that µG(e,−e, σ) is represented by the group
homomorphism

χσ: T ∼= R/Z → G0, t + Z 7→ expG(πt[σ, τ.e]).

Applying the representation ρV : G0 → GL(V ) , this leads to the loop

T ∼= R/Z → G0, t + Z 7→ eπt2L(σ) = P (eπtσ).

To obtain the explicit formula for the index, we first investigate func-
toriality properties of the index and then calculate it explicitly for the group
SL2(C)/{±1} .

Remark IV.1. (a) Let U and G be 3-graded Lie groups and ϕ: U → G a
homomorphism of Lie groups compatible with the 3-grading.

We then have

ϕ(U±) = ϕ(exp u±) = expL(ϕ)u± ⊆ exp g± = G± and ϕ(U0
0 ) ⊆ G0

0.

For a subset M ⊆ G we write CG(M) for the centralizer of M in G and
for a subset M ⊆ Aut(g) we write CG(M) := Ad−1(CAut(g)(M)) for the set of
all those elements g ∈ G for which Ad(g) commutes with M . This means that
for a grading element E ∈ g0 we have G0 = CG(ad E) . If there is a grading
element EU ∈ u0 for which EG := L(ϕ)EU is a grading element of g , then we
thus obtain

ϕ(U0) = ϕ(CU (ad EU )) ⊆ CG(ad EG) = G0.

Then ϕ induces a map U+U0U− → G+G0G− compatible with the pro-
jection maps pG

j : G+G0G− → Gj in the sense that

pG
j ◦ ϕ = ϕ ◦ pU

j , j = +, 0,−.

For z ∈ u+ and w ∈ u− the condition expw exp z ∈ U+U0U− therefore
implies

(expL(ϕ)w)(expL(ϕ)z) ∈ G+G0G−,

which shows that L(ϕ) preserves quasi-invertibility, and for such pairs we have

ϕ ◦ pU
0 (exp w exp z) = pG

0 ((expL(ϕ)w)(expL(ϕ)z)).
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(b) Now suppose, in addition, that U and G are involutive 3-graded Lie
groups and that ϕ ◦ τU = τG ◦ ϕ . Then we conclude that for quasi-invertible
pairs (z, w) ∈ u+ the pair (L(ϕ).z,L(ϕ).w)) is quasi-invertible with

ϕ(BU (z, w)) = BG(L(ϕ)z,L(ϕ)w).

This relation leads to

ϕ(dU (z1, z2, z3)) = dG(L(ϕ)z1,L(ϕ)z2,L(ϕ)z3)

for quasi-invertible triples (z1, z2, z3) ∈ (VU )3⊤ .

If U and G satisfy (A1-3), then we further get L(ϕ)(DU ) . To see that
L(ϕ) also maps SU into SG , we first observe that we have an induced map

ϕX : XU := U/U0U− → XG := G/G0G−

satisfying ϕX ◦ τU
X = τG

X ◦ ϕX for the corresponding involutions τU
X on XU and

τG
X on XG . Therefore ϕX maps the fixed point set of τX

U into the fixed point
set of τX

G . On the open subset VU ⊆ XU the map ϕX coincides with L(ϕ) , and

since SU = VU ∩ (XU )τX

U , we see that

L(ϕ)SU ⊆ SG.

Eventually this leads to the important relation

(4.1) π1(ϕ |U0) ◦ µU (s1, s2, s3) = µG(L(ϕ)s1,L(ϕ)s2,L(ϕ)s3)

for quasi-invertible triples (s1, s2, s3) ∈ (SU )3⊤ .

In the following we shall use the preceding remark as a tool to calculate
the index of special triples in S3

⊤ .

Lemma IV.2. Let e ∈ S and consider the corresponding unital involutive
Jordan algebra (V, e, Q(e)) . Suppose that σ ∈ V−∩S is an element with σ2 = −e .
Then E := Re + Rσ is a real involutive Jordan subalgebra of V isomorphic to
(C , 1) with the involution z∗ = z and

gE := E + τ(E) + [E, τ(E)] ∼= sl2(C)

with the 3-grading defined by the grading element

(
1 0
0 −1

)
and the antilinear

involution

τ

(
a b
c −a

)
=

(
−a c
b a

)
.

There is a unique morphism ηg
σ: sl2(C) → g of involutive Lie algebras with

ηg
σ

(
0 1
0 0

)
= e and ηg

σ

(
0 i
0 0

)
= σ.
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Proof. Clearly the map ηE : C → V, x + iy 7→ xe + yσ is a morphism
of involutive unital Jordan algebras, where the involution on C is complex
conjugation.

We recall from Theorem A.8 that gE is a Lie subalgebra of g . Since
gE is generated by E and τ(E) , its center zE coincides with the centralizer
zE of E + τ(E) , and the quotient g′E := gE/zE is an involutive 3-graded Lie
algebra whose 0-component has a faithful representation on E . From that it
easily follows that g′E is isomorphic to the Tits-Kantor-Koecher Lie algebra
TKK(E) = TKK(C) ∼= sl2(C) of the unital Jordan algebra C because it is
an A1 -graded Lie algebra (cf. [Ne03, Ex. I.9(a),(c) for more details). Since all
central extensions of the simple Lie algebra sl2(C) are trivial, we conclude that
zE ∩ [gE , gE ] = {0} , so that gE ∩ g0 = [E, τ(E)] implies zE = {0} and therefore
gE

∼= sl2(C) .

In Definition I.9 we have seen that the Lie algebra ge = span{e, τ(e), [e, τ(e)]}
with 1-dimensional grading spaces is isomorphic to sl2(R) with the involution

τe

(
a b
c d

)
=

(
−a c
b −d

)
.

Since the grading spaces gE ∩gj are complex one-dimensional, it follows that ge

is a real form of the complex Lie algebra gE .

Next we determine the involution τE on gE
∼= sl2(C) corresponding to the

restriction of τ to gE . Since the centroid

Cent(gE) = {ϕ ∈ End(g): (∀x ∈ gE) [ϕ, adx] = 0}

is isomorphic to C as an associative algebra, the involution τ induces a field
isomorphism τ ′ on Cent(gE) . The involution τE is complex linear if this
isomorphism is trivial and it is antilinear otherwise. We denote the scalar
multiplication with i on sl2(C) by i , which is considered as an element of
Cent(gE) . Then σ = i.e leads to τ.σ = τ ′(i)τ(e). From

−ie = −σ = Q(e)σ = 1
2 [[e, τ.σ], e] = −1

2 (ad e)2τ.σ = −1
2 (ad e)2τ ′(i)τ(e)

= −τ ′(i) 1
2
(ad e)2τ(e) = τ ′(i)Q(e)e = τ ′(i)e

we derive τ ′(i) = −i and hence that τE is antilinear.

Therefore τE is determined by its restriction to the real form ge , and hence

(
a b
c d

)
7→

(
−a c
b −d

)

is the involution on sl2(C) for which ηg
σ is a morphism of involutive Lie algebras.

Lemma IV.3. If G satisfies (A3), then the homomorphism η̃G
σ : SL2(C) → G

integrating ηg
σ maps −1 to 1 .
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Proof. Since A := C is a hermitian Banach-∗ -algebra with respect to z∗ := z ,
the discussion of the special case of hermitian Banach-∗ -algebras in Example II.6
implies that

dSL2(C )(1,−1, i) = −1 ∈ SL2(C).

Applying Remark III.1 to η̃G
σ , we conclude that dSL2(C)(1,−1, i) is mapped to

dG(e,−e, σ) = 1 .

Proposition IV.4. Suppose that the involutive 3-graded Lie group G satisfies
(A1/2). Then dG(S3

⊤) is contained in Z(G0)
τ and generates an elementary

abelian 2-group Γ which is discrete. The group G0/Γ satisfies (A1-3).

Proof. Since the connected components of S3
⊤ coincide with the H -orbits,

Theorem III.9 implies that for each quasi-invertible triple (s1, s2, s3) ∈ S3
⊤ there

exists an element g ∈ H and a triple of the form (e,−e, σ) with Q(e)σ = −σ
such that (s1, s2, s3) = g.(e,−e, σ). Then Lemma I.7(6) implies that

dG(s1, s2, s3) = JG(g, z1)dG(e,−e, σ)JG(g, z1)
−1.

To see that dG(s1, s2, s3) ∈ Z(G)τ is an involution, we may therefore assume
w.l.o.g. that (s1, s2, s3) = (e,−e, σ) with Q(e)σ = −σ .

Let ηg
σ: sl2(C) →֒ g denote the corresponding homomorphism of 3-graded

Lie algebras constructed in Lemma IV.2. From Example II.6 we know that

dSL2(C )(1,−1, i) = −1 ∈ SL2(C).

Applying Remark III.1 to the homomorphism η̃G
σ : SL2(C) → G integrating ηg

σ ,
we conclude that

dG(e,−e, σ) = η̃G
σ (dSL2(C)(1,−1, i)) = η̃G

σ (−1).

The involution on SL2(C) fixes −1 , which leads to dG(e,−e, σ) ∈ Gτ . Since g

decomposes as a direct sum of sl2(R)-modules isomorphic to the trivial and the
adjoint modules (Remark I.10(b)), we have Ad(η̃G

σ (−1)) = 1, so that η̃G
σ (−1) ∈

Z(G0) . Therefore dG(e,−e, σ) is a central τ -invariant involution in G0 .

Further Lemma I.7 implies that the map dG: S3
⊤ → Z(G0)

τ is constant on
the H -orbits and alternating.

The image of dG consists of central involutions, hence the group Γ it
generates is an elementary abelian 2-group. Since the Banach–Lie group G
contains no small subgroups, there exists an identity neighborhood U ⊆ G with
U ∩ Γ = {1} , so that Γ is discrete.

We conclude that Ĝ := G0/Γ is a Lie group with the same Lie algebra g ,
and since Γ is τ -invariant, this Lie group is involutive. Clearly (A1/2) also holds

for this quotient group, and dG(S3
⊤) ⊆ Γ leads to d

Ĝ
(S3
⊤) = {1} in Ĝ0 = G0

0/Γ.
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Definition IV.5. In the following we write ηG
σ : SL2(C)/{±1} → G for the

unique morphism of 3-graded involutive Lie groups with L(ηG
σ ) = ηg

σ whose
existence follows from the simple connectedness of SL2(C) and Lemma IV.3.

According to Remark IV.1, we have

µG(e,−e, σ) = π1(η
G
σ )µSL2(C )/{±1}(1,−1, i).

Therefore the calculation of the index map is essentially reduced to the calcula-
tion of the single case µSL2(C )/{±1}(1,−1, i).

The next proposition provides the index function for SL2(C)/{±1} .

Proposition IV.6. We consider the 3-graded involutive Lie group G :=
SL2(C)/{±1} which satisfies (A1-3) by Theorem II.7. We have an isomorphism

ρ: G0 =
{
±

(
z 0
0 z−1

)
: z ∈ C

×
}
→ C

×, ±
(

z 0
0 z−1

)
7→ z2

and identify π1(G
0) accordingly with π1(C

×) ∼= Z, where we use pC× : C →
C
×, z 7→ e2πiz as the universal covering map. In these terms we have

µG(1,−1,±i) = ∓1.

Proof. In the following we shall use the explicit formulas from the discussion
of hermitian Banach algebras in Example II.6. We have

BSL2(C )(z, w) =

(
1− zw 0

0 (1− zw)−1

)
,

which leads to

BG(z, w) = (1− zw)2

in terms of our identification of G0 with C
× . From that we further obtain for

quasi-invertible triples (z1, z2, z3) :

dG(z1, z2, z3) = (1− z1z2)
2(1− z3z2)

−2(1− z3z1)
2(1− z2z1)

−2(1− z2z3)
2(1− z1z3)

−2

=
(1− z1z2

1− z2z1

)2(1− z3z1

1− z1z3

)2(1− z2z3

1− z3z2

)2

.

We obtain in particular

dG(z1, z2, 0) =
(1− z1z2

1− z2z1

)2

and dG(1,−1, z3) =
(1− z3

1− z3

)2(1 + z3

1 + z3

)2

.

For the curve

α1: [0, 1] → C
3
⊤, t 7→ (t,−t, 0)
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from (0, 0, 0) to (1,−1, 0) this leads to dG(α1(t)) = (1− t2)(1− t2)−1 = 1. For
the path

α2: [0, 1] → C
3
⊤, t 7→ (1,−1,±ti)

from (1,−1, 0) to (1,−1,±i) we obtain

dG(α2(t)) =
(1∓ it

1± it

)2(1∓ it

1± it

)2

=
(1∓ it

1± it

)4

= e8i arg(1∓it).

This curve describes a loop in C
× corresponding to the element ∓1 ∈ Z ∼=

π1(C
×) .

Concatenating the two paths α1 and α2 , we obtain a path from (0, 0, 0)
to (1,−1,±i) which lies in the contractible set

D3

⊤ = {(z1, z2, z3) ∈ C
3: (∀j 6= k) |zj | ≤ 1, zjzk 6= 1}.

We conclude that this path is homotopic to the path

α3: [0, 1] → C
3
⊤, t 7→ (t,−t,±ti),

and this implies the assertion.

Theorem IV.7. Let e ∈ S and σ ∈ S with Q(e)σ = σ∗ = −σ . Then the
index of (e,−e, σ) is represented by the homomorphism

χσ: T = R/Z → G0, t 7→ expG(−πt[σ, τ.e])

and composing with the representation ρV on V leads to the homomorphism

ρV ◦ χσ: T = R/Z → GL(V ), t 7→ P (e−πtσ).

Proof. In terms of the Lie group structure, the index of (1,−1, i) for
SL2(C)/{±1} is represented by the loop

[0, 1] → SL2(C)0/{±1}, t 7→ exp

(
−πit 0

0 πit

)
.

In view of Remark IV.1, µG(e,−e, σ) can be represented by the homomorphism

R/Z → G, t + Z 7→ ηG
σ

(
exp

(
−πit 0

0 πit

) )
= expG(−πt[σ, τ.e])

because h = [e, τ.e] implies that ih = [ie, τ.e] = [σ, τ.e] (cf. Definition I.9).
Applying the representation ρV , we get the loop

R/Z → GL(V ), t + Z 7→ e−2πt(σ�e) = e−2πtL(σ) = P (e−πtσ)

in the unital Jordan algebra (V, e) . Here we use the relation P (ex) = e2L(x)

which holds in every Banach–Jordan algebra (cf. [FK94, Prop. II.3.4]).
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Proposition IV.8. Suppose that g is a complex Lie algebra and that τ
is antilinear. Then (V, e, Q(e)) is a complex unital Jordan algebra and the
involution Q(e)v = v∗ is antilinear. For each hermitian projection p = p∗ =
p2 ∈ V+ let

γp: R/Z → G0, t + Z 7→ exp(2πit[p, τ.p])

denote the corresponding projection loop, which is a group homomorphism. We
then have for the involution σ = e− 2p the projection loop formula

µG(e,−e,−iσ) = µG(e,−e,−ie)− [γp]

Proof. We have V− = iV+ , so that every unitary element in V− is of the form
iσ , where σ ∈ V+ is a hermitian involution. Then p := 1

2(e − σ) is a hermitian
idempotent in the Jordan algebra (V, e) with σ = e− 2p .

The index µG(e,−e,−iσ) can be calculated directly from the real τ -
invariant subalgebra generated by e and −iσ , which is isomorphic to sl2(C) . As
we have seen in Theorem IV.6, this leads to the one-parameter subgroup T → G0

corresponding to the element

π[iσ, τ.e] ∈ exp−1(1).

In particular, the index µG(e,−e,−ie) corresponds to the element

π[ie, τ.e] = πi[e, τ.e] ∈ exp−1(1),

and the difference is the element

(4.2) π[ie− iσ, τ.e] = πi[e− σ, τ.e] = 2πi[p, τ.e] = 2πi[p, τ.p],

which belongs to the Lie algebra gp := spanC{p, τ.p, [p, τ.p]} ∼= sl2(C) (cf.

Definition I.9), where h := [p, τ.p] corresponds to

(
1 0
0 −1

)
∈ sl2(C) which

satisfies exp(2πih) = 1 . From (4.2) we now derive the projection loop formula
because [e, τ.e] is central in g0 (Remark I.11).

V. The Maslov index for some examples

In this section we give more concrete formulas for the index function for
several classes of hermitian Banach-∗ -algebras and discuss the case of finite-
dimensional bounded symmetric domains.

Example V.1. We take a closer look at the index function for the case G =
GL2(A)/{±1} for a hermitian Banach-∗ -algebra.
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Then H = U1,1(A, ∗)0 and G0 = (A× × A×)/{±1} . Note that −1 ∈ A×0
follows from the connectedness of C

×1 . Therefore G0
0
∼= (A×0 ×A×0 )/{±1}, and

the covering map A×0 ×A×0 → G0
0 leads to an exact sequence

(5.1) π1(A
×)× π1(A

×) →֒ π1(G
0) →→ Z/2Z.

The exactness of this sequence follows from the long exact homotopy sequence
of the covering. We can also think of π1(G

0) as the set of homotopy classes of
paths γ: [0, 1]→ GL2(A) starting in 1 and ending either in 1 or −1 .

The Maslov index of a triple (e,−e,−iσ) , where σ is a hermitian involu-
tion, is given by the loop

χσ : R/Z → G0, t + Z 7→= expG(πit[σ, τ.e]).

More explicitly we have

[σ, τ.e] =
[(

0 σ
0 0

)
,

(
0 0
1 0

) ]
=

(
σ 0
0 −σ

)
,

and since σ is an involution, we have expG

(
πi

(
σ 0
0 −σ

) )
= 1.

Writing σ as 1−2p for a hermitian projection p , we get the decomposition
(

σ 0
0 −σ

)
=

(
1 0
0 −1

)
− 2

(
p 0
0 −p

)
,

and the latter element already leads to a loop in the group GL2(A) . In this sense
we get

[χσ] = [χ1]− ([γp],−[γp]),

where γp is the projection loop defined by p in A , where we consider the pair
([γp],−[γp]) as an element of π1(A

×)× π1(A
×) according to (5.1).

Example V.2. For the special case A = C(X, C) we have A× = C(X, C×) ,
and the exponential map

expA: C(X, C) → C(X, C×), f 7→ e2πif

is the universal covering of the identity component A×0 , consisting of all maps
X → C

× homotopic to a constant map. This shows that

π1(A
×) ∼= ker exp = C(X, Z).

On the other hand each hermitian projection p ∈ A is a continuous function
X → {0, 1} , so that the index of (1,−1,−iσ) is of the form

[χ1] + (p,−p) ∈ [χ1] + (C(X, Z)× C(X, Z)) ⊆ π1(G
0).

In this case S = U(A) = C(X, T) and

π0(S) ∼= π0(C(X, T)) ∼= [X, T] ∼= Ȟ1(X, Z)

is the set of homotopy classes of continuous maps X → T , resp., the first Čech
cohomology group.
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Example V.3. If, moreover, X is a finite set, so that A := C(X, C) ∼= C
n for

n := |X | , then C(X, Z) ∼= Zn and

G0 ∼= (C×)n × (C×)/{±1} ∼= C
2n/(2πiZ2n + πi(1, . . . , 1)) ∼= (C×)2n.

Here we see in particular that π1(G
0) is a free group, so that the sequence (5.1)

does not split.

Example V.4. Fix q ∈ [1,∞] and let H be an infinite-dimensional Hilbert
space. We consider the hermitian Banach-∗ algebra A := Bq(H) + C1 , where
Bq(H) is the ideal of B(H) consisting of all operators of Schatten class q . For
q = ∞ the ideal B∞(H) coincides with the space of compact operators on H .

We write
GLq(H) := (Bq(H) + 1) ∩GL(H)

for the group of all invertible operators in 1 + Bq(H) and recall that

π1(GLq(H)) ∼= lim
−→

π1(GLn(C)) ∼= Z

(cf. [Ne04, Ths. A.10/11]). Each projection loop corresponding to a 1-dimensional
subspace of H generates this group.

Since Bq(H) is an ideal of A complemented by C1 , we have

A× ∼= GLq(H)× C
×

and therefore
π1(A

×) ∼= π1(GLq(H))× Z ∼= Z
2.

Accordingly we write A× × A× ∼= GLq(H)2 × (C×)2 and

G0 ∼= GLq(H)2 ×
(
(C× ×C

×)/{±(1, 1)}
)

with

π1(G
0) ∼= Z

2 × {(n, m) ∈ 1
2Z

2: n−m ∈ 2Z}. ∼= Z
2 × (Z2 + Z

1
2 (1, 1)).

If p ∈ A is a hermitian projection, then either p or 1− p has finite rank.
If p has finite rank, then the corresponding projection loop γp satisfies

[γp] = tr p = dim(p.H) ∈ Z ∼= π1(GLq(H)).

If 1− p has finite rank, then p = (p− 1) + 1 leads to

[γp] = (tr(p− 1), 1) ∈ Z
2 ∼= π1(GLq(H))× π1(C

×).

Therefore the index of (1,−1,−i(1− 2p)) is given by

µG(1,−1,−i(1−2p)) =

{
(− tr p, trp, ( 1

2 , 1
2 )) for rk p < ∞

(− tr(p− 1), tr(p− 1), ( 1
2 , 1

2 )− (1,−1)) for rk p = ∞
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Example V.5. For von Neumann algebras, one has refined information on
the relation between projections and loops in A× (cf. [ASS71]): Let H be a
separable Hilbert space and A ⊆ B(H) a von Neumann algebra. Then the
following assertions hold:

(a) For two projections p, q ∈ Idem(A, ∗) the condition p ∼ q and 1− p ∼
1− q is equivalent to lying in the same path component of Idem(A, ∗) .

(b) π1(A
×) is generated by Hom(T, A×) and hence by the projection loops.

(c) If A is a factor of infinite type, then A× is simply connected.

(d) If A is a factor of type II1 , then π1(A
×) ∼= R , where π1(Z(A×)

corresponds to Z . For a projection p ∈ Idem(A, ∗) the projection loop γp then
corresponds to the element tr p ∈ [0, 1] ⊆ R ∼= π1(A

×) . In particular we have
[γp] = [γq] if and only if tr p = tr q ([ASS71, Th. 3.3])

Example V.6. If D is a finite-dimensional bounded symmetric domain of
tube type and H = Aut(D)0 , then the corresponding Jordan triple V contains
invertible tripotents. We assume that D is irreducible of rank r , i.e., H is a
simple Lie group of real rank r and G = HC .

Let us fix e ∈ S , so that (V, e, Q(e)) is a unital involutive Jordan algebra.
The real form V+ := {v ∈ V : v∗ = v} is a euclidean Jordan algebra. Therefore
the set V ×

+ of invertible hermitian elements and its connected components con-
tain the involutions of the form e− 2p , where p is a hermitian projection whose
rank lies in {0, 1, 2, . . . , r} . It follows in particular that there are r+1 connected
components (cf. [FK94]). In this case the index function is determined by its val-
ues on the triples (e,−e,−i(e− 2p)) , where p is a fixed hermitian projection of
rank k .

Since in this case the representation ρV is faithful, we have already seen
in Remark IV.7 that the homotopy class µG(e,−e,−i(e − 2p)) ∈ π1(G

0) is
represented by the loop

T = R/Z → GL(V ), t + Z 7→ e2πit · e−πit4(p�p) = e2πit(idV −2(p�p)).

In view of the Pierce decomposition of V , the operator 2p�p = 2p�e = 2L(p)
is diagonalizable with possible eigenvalues {0, 1, 2} , so that the formula above
defines indeed a loop. We further have

e2πit(idV −2(p�p)) = e2πitL(e−2p) = P (eπit(e−2p)).

For the determinant function det: GL(V ) → C
× and a linear endomorhism

D ∈ End(V ) with integral eigenvalues, composition of the loop t 7→ e2πitD

with det leads to the loop e2πit tr D in C
× , which corresponds to the element

trD ∈ Z ∼= π1(C
×) . For n := dimV we therefore get the function

π1(det) ◦ µG: S3
⊤ → π1(C

×) ∼= Z

with

(e,−e,−i(e− 2p)) 7→ trL(e− 2p) = n− 2 trL(p) = n− 2k
n

r
=

n

r
(r − 2k),

which is, up to the factor n
r , the Maslov index defined in [CØ01].
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Problem V. (a) Is µG a cocycle in the sense that

µG(z1, z2, z3) = µG(z1, z2, z4) + µG(z2, z3, z4) + µG(z1, z4, z3)?

(b) Is the index function invariant under the full group Gτ ? This would
follow if G0 acts trivially on π1(G

0) , but this is certainly not always the case
because G may be of the form G = G1 ×G2 with G2 ⊆ G0 and G2 can be any
Lie group.

If A is a hermitian Banach-∗ -algebra, then GL2(A)0 ∼= A× × A× . In
this case the problem from above leads to the question whether π0(A

×) act
trivially on π1(A

×) . This is not always the case, as we see for A = M2(R)
with the involution a 7→ a⊤ . In this case π0(A

×) = π0(GL2(R)) ∼= Z/2Z and
π1(A

×) = π1(GL2(R)) = π1(SL2(R)) ∼= Z , where the group π0(A
×) acts by

inversion on π1(A
×) .

Appendix A. Jordan triple systems and Jordan algebras

In this appendix we collect some basic facts on Jordan algebras and Jordan
triples over a field K with 2, 3 ∈ K× .

Definition A.1. (a) A vector space V over a field K is said to be a Jordan
triple system (JTS) if it is endowed with a trilinear map {·}: V × V × V → V
satisfying:

(JT1) {x, y, z} = {z, y, x} .

(JT2) {a, b, {x, y, z}} = {{a, b, x}, y, z} − {x, {b, a, y}, z}+ {x, y, {a, b, z}} for all
a, b, x, y, z ∈ V .

For x, y ∈ V we define operators x�y , Q(x) and Q(x, z) on V by

(x�y).z := {x, y, z}, Q(x)(y) := {x, y, x}, Q(x, z)(y) := {x, y, z}.

The Bergman operator of V is defined by

B(x, y) := 1− 2x�y + Q(x)Q(y).

We define the set of invertible elements of V by V × := {v ∈ V : Q(v) ∈
GL(V )} and the inversion map by V × → V ×, v 7→ v♯ := Q(v)−1.v. The elements
of the set

S := {v ∈ V ×: v♯ = v} = {v ∈ V ×: {v, v, v} = v}
are called involutions, resp., invertible tripotents.

Lemma A.2. If 3 ∈ K× and (V, {·, ·, ·}) is a Jordan triple system, then the
following formulas hold for x, y, z ∈ V :

(1) Q(x).{y, x, z} = {Q(x).y, z, x} = {x, y, Q(x).z} .
(2) Q(x)(y�x) = (x�y)Q(x) = Q(Q(x).y, x) .
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(3) [Q(x)Q(y), x�y] = 0 .

(4) 2(x�y)2 −Q(x)Q(y) = x�(Q(y)x) = (Q(x)y)�y .

(5) Q(x, Q(z)y) = 2(z�y)Q(x, z)−Q(z)(y�x) .

(6) Q(Q(x)y) = Q(x)Q(y)Q(x) .

(7) For x ∈ V × we have Q(x)−1 and (x♯)♯ = x .

(8) B(x, y)Q(x) = Q(x−Q(x).y) .

(9) B(x, y)Q(z)B(y, x) = Q(B(x, y).z) .

Proof. (1)-(5) can be found in [Ro00, Prop. I.2.1], (6) is [Ro00, Prop. I.4.1],
and (8),(9) are [Ro00, Props. I.5.1/2].

Theorem A.3. Suppose that 2, 3 ∈ K
× .

(a) If J is a Jordan algebra, then J is a Jordan triple system with respect
to

{x, y, z} = (xy)z + x(yz)− y(xz), i.e., x�y = L(xy) + [L(x), L(y)],

where we write L(x)y := xy for the left multiplications in J . We have

Q(x) = P (x) := 2L(x)2 − L(x2).

(b) If V is a Jordan triple system and a ∈ V , then

x ·a y := {x, a, y}
defines on V the structure of a Jordan algebra whose quadratic representation is
given by

P (v) := 2L(v)2 − L(v2) = Q(v)Q(a).

The Jordan triple structure determined by the Jordan product ·a is given by

{x, y, z}a = {x, {a, y, a}, z} = {x, Q(a).y, z}.
It coincides with the original one if Q(a) = 1 .

Proof. (cf. [Jac68, Ch. I, Sects. 8,12]) This is proved in [Ne03, Theorem C.4],
up to the formula for the quadratic representation, which follows from

P (v) = 2L(v)2 − L(v2) = 2(v�a)2 − (Q(v)a)�a = Q(v)Q(a)

(Lemma A.2(4)).

Lemma A.4. In a Jordan triple system V the following assertions hold:

(1) x�x♯ = idV for each x ∈ V × .

(2) S = {x ∈ V : x�x = idV } .
(3) Q(e)2 = idV holds for each e ∈ S .

Proof. (1) In view of Lemma A.2(2), we have

Q(x) = Q(x, x) = Q(x, Q(x)x♯) = (x�x♯)Q(x),

so that the invertibility of Q(x) implies (1).

(2), (3) If e ∈ S , then e = e♯ and (1) imply e�e = idV .

If, conversely, e�e = idV , then Q(e)e = {e, e, e} = e . Further Lemma
A.2(4) implies

2 idV −Q(e)2 = e�Q(e)e = e�e = idV ,

which leads to Q(e)2 = idV . Hence e is invertible and e♯ = Q(e)−1e = Q(e)e =
e .
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Proposition A.5. (a) Let (V, {·, ·, ·}) be a Jordan triple system and e ∈ S
an invertible tripotent. Then

ab := {a, e, b}, a∗ := {e, a, e}

defines on V the structure of an involutive Jordan algebra and the Jordan triple
structure can be reconstructed from (V, e, ∗) by

{x, y, z} = (xy∗)z + x(y∗z)− y∗(xz), x, y, z ∈ V.

The set S of involutions of the Jordan triple V coincides with the set

S = {v ∈ V : v∗ = v−1}

of unitary elements of the unital involutive Jordan algebra (V, e, ∗) .
(b) If (V, e, ∗) is a unital involutive Jordan algebra, then

{x, y, z} := (xy∗)z + x(y∗z)− y∗(xz), x, y, z ∈ V

defines a Jordan triple structure on V with

ab = {a, e, b} and a∗ = {e, a, e}.

Proof. (a) It follows from Theorem A.3 that ab := {a, e, b} defines on V a
Jordan algebra structure with multiplication maps L(a) = a�e . In particular
L(e) = e�e = idV , so that e is an identity of V . Moreover, Q(e)2 = idV follows
from Lemma A.4(3). Next

(a2)∗ = Q(e)Q(a)e = Q(e)Q(a)Q(e)e = Q(Q(e)a)e = Q(a∗)e = (a∗)2,

and polarization leads to (ab)∗ = a∗b∗ for a, b ∈ V.

Finally Theorem A.3(b) entails

(xy∗)z + x(y∗z)− y∗(xz) = {x, Q(e)y∗, z} = {x, Q(e)2y, z} = {x, y, z}.

The condition z ∈ S means z♯ = z , so that the description of the set S
in terms of the involutive Jordan algebra follows from (z♯)∗ = Q(e)Q(z)−1z =
P (z)−1z = z−1 .

Remark A.6. If a ∈ V × is invertible, then xy := {x, a♯, y} defines on V
the structure of a Jordan algebra with identity a because L(a) = a�a♯ = idV

(Lemma A.4).



38 Karl-Hermann Neeb, Bent Ørsted

Proposition A.7. Let V be a Jordan triple and a, b, c ∈ V with c ∈ V × and
a + b + c = 0 . Then

Q(a)Q(c)−1Q(b) = Q(b)Q(c)−1Q(a).

Proof. We consider the unital Jordan algebra (V, c) with the product xy :=
{x, c♯, y} (Remark A.6). Then the quadratic representation of this Jordan alge-
bra is given by

P (v) = Q(v)Q(c♯) = Q(v)Q(c)−1.

Therefore it suffices to show that P (a)P (b) = P (b)P (a). As b = −c − a and c
is the identity element, we have

P (b) = P (−c− a) = P (c + a) = P (c) + 2P (c, a) + P (a) = idV +2L(a) + P (a),

and this operator commutes with P (a) because L(a) commutes with L(a2) .

Theorem A.8. If g = g1 ⊕ g0 ⊕ g−1 is a 3-graded Lie algebra with an
involutive automorphism τ satisfying τ(gj) = g−j for j = 0,±1 , then V := g1

is a Jordan triple system with respect to {x, y, z} := 1
2

[
[x, τ.y], z

]
.

If E ⊆ V is a Jordan subtriple, then gE := E + τ(E) + [E, τ(E)] ⊆ g is a
τ -invariant 3-graded subalgebra.

Proof. The first part is contained in [Ne03, Theorem C.3].

For the second part, let E ⊆ V be a Jordan subtriple. Then the elements
[v, τw] ∈ g0 , v, w ∈ E , act on V as the operators v�w , hence preserve the
Jordan subtriple E . We conclude that [[E, τ(E)], E] ⊆ E , and by applying τ ,
we also obtain [[E, τ(E)], τ(E)]⊆ τ(E) . We further have

[[v, τw], [v′, τw′]] = [[[v, τw], v′], τw′] + [v′, [[v, τw], τw′]],

showing that [E, τ(E)] is a subalgebra of g0 . Therefore gE is a subalgebra of
g .

Lemma A.9. In a unital Jordan algebra (V, e) we have for invertible elements
v, w ∈ V × the relations

L(v−1) = P (v)−1L(v) = L(v)P (v)−1 and P (v−1+w−1) = P (w)−1P (v+w)P (v)−1.

Proof. First we observe that the canonical Jordan triple structure on V turns
it into a Jordan triple system with Q(x) = P (x) for all x ∈ V and L(x) = x�e
(Theorem A.3). Putting x = e , y = v and z = v−1 in Lemma A.2(5), we get
with Lemma A.4:

L(v−1) = v−1
�e = (Q(v)−1.v)�e = Q(e, Q(v−1).v) = 2(v−1

�v)Q(e, v−1)−Q(v−1)(v�e)

= 2Q(e, v−1)−Q(v−1)L(v) = 2L(v−1)−Q(v−1)L(v),
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and therefore L(v−1) = Q(v)−1L(v) (cf. [Jac68, Ch. I, Sect. 11, Th. 13]). Note
that the Jordan identity [L(v), L(v2)] = 0 means that Q(v) = P (v) commutes
with L(v) .

To derive the second identity, we first calculate

P (e + v−1)P (v) =
(
P (e) + 2P (e, v−1) + P (v−1)

)
P (v) = P (v) + 2L(v−1)P (v) + idV

= P (v) + 2L(v) + idV = P (e + v).

Now we consider the unital Jordan algebra (V, w) with the isotopic product
a ∗w b := {a, w−1, b} and the quadratic representation

P̃ (v) = Q(v)Q(w)−1 = P (v)P (w)−1

(Theorem A.3, Lemma A.4). Then we obtain with the formula in the preceding
paragraph and

P (w).v−1 = P (w)P (v)−1.v = P̃ (v)−1.v

the relation

P (v−1 + w−1) = P
(
P (w)−1.(P (w).v−1 + w)

)
= P (w)−1P (P (w).v−1 + w)P (w)−1

= P (w)−1P̃ (w + P (w).v−1) = P (w)−1P̃ (w + P̃ (v)−1.v)

= P (w)−1P̃ (w + v)P̃ (v)−1 = P (w)−1P (w + v)P (w)−1P (w)P (v)−1

= P (w)−1P (w + v)P (v)−1.

Lemma A.10. For invertible elements x, y in the Jordan triple V we have

(1) Q(x)Q(x♯ + y♯)Q(y) = Q(x + y) and

(2) B(x, y♯) = Q(x− y)Q(y)−1 .

Proof. (1) We consider on V the unital Jordan algebra structure defined by
ab := {a, x♯, b} with unit x (Remark A.6). Then the quadratic representation of
the unital Jordan algebra (V, x) is given by P (v) = Q(v)Q(x)−1 and the Jordan
inversion by v−1 = P (v)−1.v = Q(x)v♯ (Theorem A.3). Hence Lemma A.9 leads
to

Q(x)Q(x♯ + y♯)Q(x) = Q(Q(x)x♯ + Q(x)y♯) = Q(x + y♯) = P (x + y♯)Q(x)

= P (x + y)P (y♯)Q(x) = P (x + y)P (y)−1Q(x) = Q(x + y)Q(y)−1Q(x).

This completes the proof.

(2) In view of Lemma A.2(8) and (1), assertion (2) follows from

B(x, y♯) = Q(x−Q(x)y♯)Q(x)−1 = Q(x)Q(x♯ − y♯)Q(x)Q(x)−1

= Q(x)Q(x♯ − y♯) = Q(x− y)Q(y)−1.
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Lemma A.11. Let (V, e) be a unital Jordan algebra and V × the set of invert-
ible elements in V . Then the Cayley transform

C: V × + e → V × − e, z 7→ (e + z)(e− z)−1

is a bijective map with C−1(z) = −C(−z) which further satisfies

(1) C(z)−1 = C(−z) for z ± e ∈ V × and C2(z) = −z−1 if z, e− z ∈ V × .

(2) P (C(z)) = P (e + z)P (e− z)−1 for z − e ∈ V × .

(3) c(e,−e, z) = 4P (C(z))−1 for z ± e ∈ V × .

(4) d(e,−e, z) = P (C(z))−1P (C(z))∗ for z ± e ∈ V × .

Proof. (1) From

C(z) + e = (e + z + e− z)(e− z)−1 = 2(e− z)−1 ∈ V ×

we see that C(−C(z)) is defined, and an easy calculation leads to C(−C(z)) =
−z for z ∈ V × + e . This implies that −C is an involution of the subset V × − e
of V and that

C−1(z) = −C(−z) = −(e− z)(e + z)−1 = (z − e)(z + e)−1.

Moreover, if C(z) is invertible, then we have

C(z)−1 = (e− z)(e + z)−1 = C(−z),

showing also that this happens if and only if e± z are invertible. If z and z− e
are invertible, then z−1 − e is invertible and we get

C(z−1) = (e + z−1)(e− z−1)−1 = (z + e)(z − e)−1 = −C(z),

showing that C2(z−1) = C(−C(z)) = −z and therefore C2(z) = −z−1.

(2) For z − e ∈ V × we get with Lemma A.9:

P (C(z)) = P (C(z) + e− e) = P (2(e− z)−1 − e)

= P (e− 2(e− z)−1) = P (e− 1
2 (e− z))P (−1

2 (e− z))−1

= P ( 1
2(e + z))P (−1

2 (e− z))−1 = P (e + z)P (e− z)−1.

(3) In view of Lemma A.10(2), we have

c(e,−e, z) = B(e,−e)B(z,−e)−1B(z, e) = B(e,−e−1)B(z,−e−1)−1B(z, e−1)

= Q(e + e)Q(z + e)−1Q(z − e)Q(e) = P (2e)P (z + e)−1P (z − e)P (e)

= 4P (z − e)P (z + e)−1 = 4P (C(z))−1.

(4) is an immediate consequence of (3) and

d(e,−e, z) = c(e,−e, z)c(e, z,−e)−1 = c(e,−e, z)(c(e,−e, z)−1)∗
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Appendix B. Transversality of 3-filtrations

Let g be a Lie algebra over a field K not of characteristic 2 or 3. In this
appendix we shall explain some general fact on inner 3-filtrations of Lie algebras.
We shall closely follow the setup in [BN04a], from which we shall refine one result
that is crucial for the present paper.

Our basic objects are on the one hand 3-graded Lie algebras, i.e., Lie
algebras of the form g = g1 ⊕ g0 ⊕ g−1 satisfying the relations [gα, gβ] ⊂ gα+β

for α, β ∈ {−1, 0, 1} , and on the other hand 3-filtered Lie algebras, i.e., Lie
algebras g with a flag f : {0} = f2 ⊂ f1 ⊂ f0 ⊂ g of subalgebras such that
[fα, fβ] ⊂ fα+β . For simplicity we shall also write these flags as pairs f = (f1, f0) .
If g is 3-graded, then the 3-grading is the eigenspace decomposition for a unique
derivation D ∈ der(g) with D(X) = iX for X ∈ gi . The derivation D is called
the characteristic element of the grading, and if D = ad(E) , E will be called an
Euler operator. For a 3-grading g = g−1⊕g0⊕g1 with corresponding derivation
D there are two naturally associated filtrations f+ := f+(D) := (g1, g1⊕ g0) and
f− := f−(D) := (g−1, g−1 ⊕ g0) . We write

F = {f+(D) : D ∈ G}

for the space of inner 3-filtrations of g . The space F carries an interesting
geometric structure. First we have a transversality relation ⊤ on F ×F defined
by

e = (e1, e0) ⊤ f = (f1, f0) ⇔ g = e1 ⊕ f0 = f1 ⊕ e0.

A key result on the structure of 3-graded Lie algebras ([BN04a, Th. 1.6]) asserts
that the set of transversal pairs in F corresponds to the set of inner 3-gradings
of g , where the 3-grading associated to the pair (e, f) is determined by

(B.1) g1 = e1, g0 = e0 ∩ f0 and g−1 = f1.

For e ∈ F we write
e⊤ := {f ∈ F : e⊤f}

for the set of filtrations transversal to e .

The group Aut(g) acts naturally on F by g.(e1, e0) := (g.e1, g.e0) , preserv-
ing the transversality relation, and it also acts on G . For any inner 3-filtration
e and x ∈ e1 we have (ad x)3 = 0 because ad x(g) ⊆ e0 and (adx)2(g) ⊆ e1 .
Since 2 and 3 are invertible in K ,

ead x := 1 + adx + 1
2(ad x)2

defines an automorphism of g . In [BN04a] we show that the set e⊤ of filtrations
transversal to a given filtration e carries a natural structure of an affine space
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over K with translation group ead e1 ∼= (e1, +) which acts as a subgroup of Aut(g)
on F .

We fix an inner 3-grading g = g1⊕g0⊕g−1 of g and consider an involutive
automorphism τ of g with τ(gi) = g−i for i = −1, 0, 1. For the associated flags
f+ = (g1, g0 + g1) and f− = (g−1, g0 + g−1) this means that τ.f± = f∓ in F .
Hence the involution g 7→ τ.g := τgτ of Aut(g) preserves G(f+, f−) . We also
write gτ := τgτ to simplify the notation.

Definition B.1. On the vector space V := g1 we define by {x, y, z} :=
1
2 [[x, τ.y], z] the structure of a Jordan triple system (Theorem A.5). In terms of
Lie triple systems we then have on V the relations

Q(x).y = −1
2 (adx)2 ◦ τ and x�y = 1

2 ad[x, τ.y] |V = 1
2 ad x ad(τ.y) |V

which shows in particular that the set V × of invertible elements in the Jordan
triple V does not depend on the involution τ . The corresponding Bergman
operator is given by

B(x, y) = 1− 2x�y + Q(x)Q(y) = 1− ad x ad τ.y +
1

4
(adx)2(ad τ.y)2.

The following proposition is a slight refinement of [BN04a, 5.2].

Proposition B.2. Let τ be an involution of g with τ(gi) = g−i for i =
−1, 0, 1 and f± the corresponding two 3-filtrations. We identify the Jordan triple
V = g1 with the subset ead f+ .f− of F via the map v 7→ ead v.f− . Let τF denote
the involution of the set F induced by the involution τ . Then

τ−1
F (V ) ∩ V = V ×

is the set of invertible elements in V , and for v ∈ V × we have

τF (v) = v♯ = Q(v)−1.v.

Proof. With respect to the 3-grading of g , we write each automorphism
g ∈ Aut(g) as a matrix g = (gij) with gij ∈ Hom(gj , gi) . Let E ∈ g0 be such
that adE is a derivation defining the grading of g . For x ∈ V we define

dg(x) := (e− ad xg−1)11, cg(x) := (gead x)−1,−1 and ng(x) := (e− ad xg−1E)1.

In view of [BN04, Cor. 1.10, Th. 2.8], g.x ∈ V is equivalent to the invertibility
of dg(x) and cg(x) , and in this case

g.x = dg(x)−1ng(x).

For g := τ we have gij = 0 for i 6= −j , and therefore

dτ (x) := (e− ad xτ)11 = 1
2 (adx)2τ |g1

= −Q(x).
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Further
cτ (x) := (τead x)−1,−1 = τ 1

2
(adx)2 |g−1

= −τQ(x)τ |g−1
.

This shows that τF .x ∈ V is equivalent to x ∈ V × . Eventually the fact that τ
reverses the grading implies τ.E + E ∈ z(g) , so that

nτ (x) = (e− ad xτ.E)1 = (e− ad x.(−E))1 = [x, E] = −x.

We conclude that

τF (x) = dτ (x)−1nτ (x) = −Q(x)−1.(−x) = Q(x)−1.x = x♯.

Remark B.3. Let x ∈ V = g1 . Then the pairs (f+, f−) and (f+, ead x.f−)
are transversal, so that the triple (f+, f−, ead x.f−) is transversal if and only if
ead x.f− is transversal to f− , i.e., τF (ead x.f−) is transversal to f+ = τF(f−) . In
view of Proposition B.2, this is equivalent to x ∈ V × .

Appendix C. Tripotents and the Peirce decomposition

In this appendix we briefly discuss the Peirce decomposition of a Jordan
triple with respect to a tripotent e and the representation of the corresponding
sl2 -subalgebra on g .

Lemma C.1. (Peirce decomposition) For each tripotent e ∈ V the operator
2e�e is diagonalizability with eigenvalues in {0, 1, 2} , and for the corresponding
eigenspaces Vα we have

(C.1) {Vα, Vβ, Vγ} ⊆ Vα−β+γ .

The tripotent e is invertible if and only if V = V2 .

Proof. We put D := e�e . First Lemma A.2(4) leads to the relation

2(e�e)2 −Q(e)2 = e�(Q(e)e) = e�e,

and hence to

(C.2) 2D2 −D = Q(e)2.

On the other hand, Lemma A.2(2) yields Q(e) = DQ(e) = Q(e)D , so that
multiplication of (C.2) with D entails

2D3 −D2 = DQ(e)2 = Q(e)2 = 2D2 −D,

and further
0 = 2D3 − 3D2 + D = D(D − 1)(2D − 1).

Since the three roots of this polynomial are different, D is diagonalizable with
eigenvalues in {0, 1

2 , 1} . The relation (C.1) is a consequence of the fact that D
is a Lie triple derivation by (JT2).

If e is invertible, then Q(e)2 = 2D2−D = D(2D−1) is invertible, so that
D = idV , i.e., V = V2 . If, conversely, V = V2 , i.e., D = 1 , then Q(e)2 = idV

implies that Q(e) is an involution, hence invertible.

In the following g denotes a 3-graded Lie algebra with involution τ revers-
ing the grading and V = g1 carries the Jordan triple structure from Theorem A.8.
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Definition C.2. A triple (e, h, f) of elements of g is called an sl2 -triple if

[e, f ] = h, [h, e] = 2e and [h, f ] = −2f.

It is called a graded sl2 -triple if e ∈ g1 and f ∈ g−1 .

Lemma C.3. If e ∈ V = g1 is a tripotent, then (e, [e, τ.e], τ.e) is a graded
sl2 -triple.

Proof. We have [h, e] = 2{e, e, e} = 2e and [h, f ] = τ [τh, e] = −τ [h, e] =
−2τe = −2f.

Proposition C.4. Let g be a 3-graded Lie algebra.

(1) If x ∈ g1 is such that the linear map (ad x)2: g−1 → g1 is bijective, then
there exist unique elements y ∈ g−1 and h in g such that (x, h, y) is a
graded sl2 -triple. In this case 1

2
h ∈ g0 is a grading element.

(2) If (x, h, y) is a graded sl2 -triple such that 1
2h ∈ g0 is a grading element,

then (adx)2: g−1 → g1 is bijective.

Proof. (1) Our assumption implies that there exists a unqiue element y ∈ g−1

with −1
2(ad x)2.y = x . This implies already the uniqueness assertion. To prove

existence, we put h := [x, y] ∈ g0 . The definition of y then implies that

[h, x] = −(ad x)2.y = 2x.

Further
[x, [h, y]] = [[x, h], y] + [h, [x, y]] = [−2x, y] = −2h

leads to

−1

2
(adx)2.[h, y] = [x, h] = −2x,

and hence to [h, y] = −2y by the injectivity of (adx)2 on g−1 .

We recall the following formulas from elementary sl2 -theory ([Bou90, Ch. VIII,
§1, no. 1, Lemma 1]):

[adh, (adx)n] = 2n(adx)n, [adh, (ad y)n] = −2n(ad y)n

and
(C.3)
[ad y, (adx)n] = −n(ad x)n−1

(
ad h+(n−1) id

)
= −n

(
adh−(n−1) id

)
(adx)n−1.

For w ∈ g−1 we have (ad x)3.w = 0 and therefore

0 = ad y(adx)3.w = [ad y, (adx)3].w = −3(ad x)2
(
ad h + 21

)
.w.

Since (adx)2 | g−1
is injective, we get [h, w] = −2w . This further leads to

[h, (adx)2.w] = 2(adx)2.w and hence to [h, v] = 2v for all v ∈ g1 .
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This implies that [h, [g1, g−1]] = {0} and in particular [h, [x, g−1]] = {0} .
Since the map (adx)2: g−1 → g1 is bijective,

ad x |[x,g−1]: [x, g−1] → g1

also is bijective. Thus adx([x, g−1]) = g1 and hence

g0 = [x, g−1]⊕ (ker adx ∩ g0).

For z ∈ g0 ∩ ker adx the operators ad z and adx commutes, so that

(adx)2([y, z]) ∈ − ad z(ad x)2.y = −2 ad z.x = 0,

and therefore [y, z] = 0. This also implies that [h, z] = 0, and we conclude that
h ∈ z(g0) . Hence 1

2h is a grading element.

(2) For w ∈ g−1 the relations [y, w] = 0 and [h, w] = −2w imply that
w generates an at most 3-dimensional submodule for the Lie subalgebra gx :=
spanK{x, y, h} ([Bou90, Ch. VIII, §1, no. 1, Lemma 1]).

For n = 2 we get with (C.3) and [y, w] = 0:

ad y(adx)2.w = [ad y, (adx)2].w = −2(ad x)
(
adh + id

)
.w = 2 adx.w.

Therefore (adx)2.w = 0 implies [x, w] = 0, so that 0 = [h, w] = −1
2w . We

conclude that (adx)2 |g−1
is injective.

For w ∈ g1 the relations [h, w] = 2w and [x, w] = 0, together with the
relation
(C.4)
[adx, (ad y)n] = n(ad y)n−1

(
ad h− (n− 1) id

)
= n

(
ad h + (n− 1) id

)
(ad y)n−1

leads to

(ad x)2(ad y)2.w = (adx).[adx, (ad y)2].w = (adx).(2 ad y.w) = 2 ad[x, y].w = 4w,

and hence to w ∈ (adx)2(g−1) .
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