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Abstract

To a risk model an independent perturbation process is added. If the perturbation
process is Brownian motion, Lundberg inequalities and Cramér-Lundberg approx-
imations can be proved. Also the asymptotic behaviour of the ruin probability
in the case of heavy claims can be obtained. If, the perturbation is a Lévy pro-
cess, ladder epochs and ladder heights can be defined. In the stationary case, the
distribution of the ladder height are obtained.
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1 Introduction

Risk processes were introduced by Lundberg [14]. He introduced the classical risk
process
Nt
Cr=>Y Yi—ct (1.1)
i=1
where {N;} is a Poisson process with rate A, {Y;} is a sequence of iid positive
random variables, independent of { N;}, and ¢ > 0 is the premium rate. We work on
a complete probability space (£, F,IP). We denote by G the distribution function
of the claim sizes, by pu = IE[Y] its expected value and by My (r) = IE[e™] its
moment generating function. This process was also investigated by Cramér [3]. In

this context one is mainly interested in the ruin probabilities

U(u) = ]P[st%) Cy > u|l =1P[r(u) < o0



where the ruin time 7 = 7(u) is defined as 7(u) = inf{t > 0: C; > u}.

From random walk theory it follows that ¥(u) = 1 for all u if ¢ < Au. We
therefore assume the net profit condition ¢ > Ay, which implies that ¢(u) < ¥ (0) =
Au/e. We first discuss the light-tail case. Assume that there exists a solution R # 0
to the equation A(My (R)—1) = cR. If R exist it is unique and positive and following

Lundberg inequalities hold:
c_e " <ah(u) < cpe ™ (1.2)

where 0 < ¢ < ¢t < 1, see [15]. If, moreover, My, (R) < oo then c_ > 0 and there
exits a constant ¢* such that

Plu) ~ e (13
where f(u) ~ g(u) means that lim, . f(u)/g(u) = 1. Equation (1.3) is called the
Cramér-Lundberg approximation.

For heavy-tailed claim size distributions the situation is quite different. A dis-
tribution function G is called subezponential if G*2(x) ~ 2G(x), where G(x) =
1—G(x). We write then G € S. By Gy(z) = p~* [ G(y) dy we denote the integrated
tail distribution. Note that Gr(z) is the distribution function of the ladder-heights.
The following result was proved by Embrechts and Veraverbeke [7]. Assume Gy € S.
Then

Mo ). (1.4)

U(u) ~

The above results can be generalized to many other risk models, see for instance

c— A\t

[12], [15], [18] and [1].

The classical risk model is of course only an idealization of the real world. The
linear premium income means for example that the insurance portfolio is always of
the same size and that interest and inflation cancel each other. For this reason,

Gerber [11] perturbed the process by Brownian motion and considered
Nt

=1



The perturbation can be seen as a fluctuation of the premium income, of the return
earned from investment, a fluctuation of the environment determining the claim
sizes or claim intensities or fluctuation in the administration costs. Here {B;} is
a Brownian motion with E[B;] = 0 and IE[B?] = 2t. (1.5) is the process we want
to investigate in this review paper. In Section 2 we will consider the light-tail case
and find Lundberg estimates as well as Cramér-Lundberg approximations in the
perturbed classical risk model as well as more general models. The heavy-tailed case
will be treated in Section 3. There are basically two possibilities to get heavy-tails:
heavy-tailed claim sizes (Section 3.1) and perturbation by processes with heavy tails
(Section 3.2). This paper gives a survey over the topic, and will therefore contain
only a few new results. Most of the results will not be proved here. The interested

reader will find the proofs in the original papers.

Below we will work with martingales. For this purpose we need a filtration {F;},
which we will assume to be the smallest right-continuous filtration such that the
processes {C;} and {B;} are adapted. If we Markovize the process the filtration has
to be slightly increased in order that the additional processes, as for instance {\;}
also are adapted. Note that we do not complete {F;}. This is necessary in order

that we will be able to change the measure.

Remark. The perturbation considered in this paper is an independent process
added to the risk process. Another possibility would be to perturb the parameters
and the claim size distribution in a risk process. Such perturbations were considered

in [13]. |

2 Cramér-Lundberg theory

In this section we will start by considering the classical risk model perturbed by

Brownian motion. We will use martingales to find Lundberg’s inequalities and the



Cramér-Lundberg approximation. In the same way one can obtain the results in
other perturbed risk models as well. We will construct the martingales as in [10],

but follow the approach of [17].

2.1 The classical model

From Markov process theory we know that if {f(X;)} is a martingale, then the

function f(z) has to fulfil the equation

71w —ef @+ A([ St nde - s@) 0. @)

see also [11]. If there is a function f(z) with f(z) = 0 for z < 0 fulfilling (2.1) for
x> 0 and lim,_ ., f(z) = 1, then f(u) =1 —(u). This gives a possibility to find

¥ (u) numerically. We try a function of the form f(x) = e®® for all z. This yields
"’ R* — cR+ A(my(R) — 1) =0. (2.2)

We call a positive solution R to (2.2) the adjustment coefficient. By direct verifica-
tion it follows that the process {ef*t} is indeed a martingale. Next we define the

new measure @), on F; by

Q,[A] = Ep[ef™X; A].

This measure is independent of ¢, i.e. Q|7 = @, for s > t. Moreover, the measure
can be extended to a measure on F. We therefore just write @) instead of @Q,. If T’
is a stopping time and A C {T" < oo} then also Q[A] = Ep[e?*T; A] holds. For an
introduction to change of measure techniques see for instance [15] or [17].

Under the measure @ the process {X;} remains a perturbed risk model. The
parameters are ¢ = ¢ — 2°R, A = AMy(R) and dG(z) = e dG(z)/My(R). From
(2.2) it follows that Aji = AMi(R) > ¢ — 2n*R = & Hence the net profit condition

is not fulfilled and Q[T < oo] = 1. We can now express the ruin probability in terms



of the new measure @)
Y(u) = Ep[e™ e ™ 1 < o0] = Egle ;7 < 00] = ]EQ[e_R(XT_“)] e R (2.3)

Now we can find Lundberg’s inequalities. The upper bound was already proved in

[4]-
Proposition 2.1. Let {X;} be a classical risk model perturbed by diffusion. Then
c_e T < ap(u) < e

where
ef G ()
o inf W)
TS [T e dG (y)
and xo = sup{z > 0: G(x) < 1}.

Proof. From the definition of 7 the upper Lundberg bound v (u) < e F* follows
immediately. Consider now the lower bound. Ruin can happen in two ways, by
a jump over u or by the diffusion reaching the level u. If ruin occurs by diffusion

then e~ F(Xr—u)

= 1. If ruin occurs by a jump then e BXr=%) < 1 Let us therefore
assume that ruin occurs by a jump. If we condition on © — X, = x then the claim

Y, leading to ruin must be larger than z. Thus
Egle P9 |y — X, = 2] = Egle *Y =9 | Y > 4.
This yields the lower bound

IEQ [G_R(XT_U)] > inf ]EQ [e_R(Y_I) | Y > .T] .

r<xo

The right-hand side is c_. O

As in [4] we could consider the events “ruin occurs by diffusion” and “ruin occurs
by jump” separately. Define ¥.(u) = IP[r(u) < 0o, X, = u] and ¢4(u) = P[r(u) <

00, X; > ul. Then we find the following result.



Proposition 2.2. Let {X;} be a classical risk model perturbed by diffusion. Then
Ve(u) = Q[X, = u] e, c Q[X, > ule ™ < y(u) < e, Q[X, > uje

where c_ is given in Proposition 2.1 and

T :17<£0 fxoo efrdG(y) =

Proof. We find
Yo(u) = Egle P&~ X = y]e ™ = Q[X, = u]e T
and
Ya(u) = Bele X~ X > uf e = Eg[e B9 | X, > ] Q[X, > u]e™ .

The proof follows now as in Proposition 2.1. O

We now turn to the Cramér-Lundberg approximation. In order to prove the
Cramér-Lundberg approximation we need to define ladder epochs. Because for u = 0
we have 7(u) = 0, we cannot take 7(0) as the ladder epoch. Following [4] we define

the first ladder time as
7 =inf{T; : X7, >sup{X;: 0 <t <T;}}, (2.4)

the time at which a jump leads to a new maximum of the process. The variables {T;}
denote the jump times of {IV;}. We define the part of the ladder height due to the
diffusion L, = sup{X; : 0 <t < 7} and the part due to the jump L; = X, — L,

see also Figure 3.1. We now can prove the Cramér-Lundberg approximations.

Proposition 2.3. (Dufresne and Gerber (1991)) Let {X,} be a classical risk

model perturbed by diffusion. Then

c=M—n’R g,
MM (R) —c— 2°R ©

772R —Ru
Vel ~ g —e—apr® 0 Vel



Proof. Under @ let H(z,y) be the joint distribution function of (L., Ls), H. be
the distribution function of L., Hy be the distribution function of L; and H be the
distribution function of L. + Ls. Then the function f.(u) = Q[X, = u] fulfils the

renewal equation

fow) = 1 — Hyfu) + / " 2)di ().

The function fy(u) = Eg[e™ X =%); X > v fulfils

fatw = [ [ e @y + [ fiu—a) ali ).

The result follows now from the key renewal theorem. For the details see [17] and

[15]. O

2.2 More general models

We now turn to more general models. We will introduce the different models and

give the results. For the details the reader should consult [10] and [17].

2.2.1 Sparre-Andersen model

We now assume that {V;} is a renewal process, whereas {Y;} is still an iid sequence
independent of {N;}. We denote the inter-arrival distribution by F' and let T" be a
random variable with distribution F. The mean value of T is denoted by A~!, and
we let A = 0 if IE[T] = co. The distribution of 7} is denoted by Fj, which may be
different from F. A special case is the stationary renewal risk model, where A > 0
and Fy(z) = Fr(z) = A [ F (y) dy. We assume the net profit condition ¢ > Au. The
adjustment coefficient R is the strictly positive solution to My (R) My (n?R? — cR) =
1, if such a solution exists. Here My (r) = IE[e"’]. We assume that R exists. Denote
by V; = Tn,+1 —t the time remaining to the next claim. Then the process {(X;, V;)}

is a Markov process.



Remark. It would be more natural to consider the process {(X;, W;)} with
Wy = t — T}, denoting the time elapsed since the last claim. But it turns out,
that the corresponding martingale is much more complicated. Even though for our
process the filtration {F;} gives now information about the unobservable event of
the next claim, the filtration has no influence on the results, that are much simpler

to obtain with the present Markovization. [ |

The process
{Ly = (M, (0’ R* = cR)) 1l el Ity (2.5)

is a martingale, see [10]. As before, we use it to change the measure Q[A] =
Ep[L; A] for A € F;. The measure can be extended to a measure on F.

Under @ the process {X;} is again a perturbed renewal risk process. The pa-
rameters are dG(z) = Mp(n>R? — cR)e™ dG/(x), dF(t) = My (R)e F—Bt qF(t),
¢=c—2*R and AFy(t) = (My, (n?R? — ¢R)) el F*=cR)t A [ (t). Moreover, under
@ the process has positive drift, i.e. Q[r < oo] = 1.

The ruin probabilities can now be expressed as
e(u) = Mg (1*R? — cR)Eq[e=T Ve, X — 0] e v (2.6)
and

Ya(u) = My (n*R? — cR)My (R)Eg[e *¥ %), X, < 0]e . (2.7)

We see that the expression for 1.(u) needs information about V.. This can be a
problem. If namely 7T is heavy-tailed, it will be difficult to find an estimate for the
expected value. We therefore need a technical condition. For a discussion on this
condition see [6].
Assumption 2.1. Assume that
b= inf Eple & D=0 175 21> 0,
z<to

where ty = sup{t > 0: F(t) < 1}.



Proposition 2.4. (Furrer and Schmidli (1994)) Let {X;} be a perturbed

renewal process. Assume R is well-defined. Then

My, (P*R? — cR)My (R)Q[X, > uje_ e ™ < ahy(u)

where c_ and c, are given in Proposition 2.2. If moreover Assumption 2.1 holds

then

Mr, (772R2 — cR)Q[X; =1 e < Ye(u) < My, (772R2 — cR)Q[X; = u}bil e

Proposition 2.5. (Schmidli (1995)) Let {X,;} be a perturbed renewal process.
Assume R is well-defined, M;,(R) < oo and Assumption 2.1 holds. Then there exist

constants C, and C, independent of the distribution of T} such that

Ve(w) ~ CMyy (P R? — cR) ™™ g(u) ~ CyMy, (n*R* — cR) e™

The constant Cy can be expressed in terms of the distribution of (L., Ly) defined as
in Section 2. This is, however, not explicit because the ladder-height distribution is

not known.

2.2.2 Bjork-Grandell model

In this section we consider a Cox risk model. Let {(A;,0;)} be a sequence of in-
dependent random vectors. For ¢ > 2 the distribution of (A;,0;) is F(¢,t), the
distribution of (A, 01) is denoted by Fi(¢,t). We assume A; > 0 and o; > 0. In

order to avoid trivialities, IP[Ay > 0] > 0. The A’s denote the intensity levels, the



o’s the length of the time a certain intensity holds. Let ¥q = 0 and ¥; = ¥,_1 + 0;.
Welet Ay = Ajand V, =%, —tif ¥, 1 <t < 3;. The process {NV;} is now a Cox
point process (doubly stochastic point process) with intensity {\;}. By (A, o) we
denote a generic random vector with distribution F'(¢,¢). We assume the net profit
condition clE[o] > E[Ac]pu.

The adjustment coefficient R is the strictly positive solution to ¢(0, R) = 1,

where

(,b(/lg, T) = ]E[e(A(MY(T)_1)+T]2T2—CT‘—’19)0'] )
Let ¢y (0, 1) = ey (N=Dtr*r*~er=0)o1] Then the process

is a martingale provided ¢;(0, R) < co. We again define the measure @Q on F; via

the Radon-Nikodym derivative L.

Analogously to Section 2.2.1 one obtains the following results, see also [19].

Assumption 2.2. Assume that

b = essinf inf
AEB t<tp

where B = [0, (cR — n?R?)/(My(R) — 1)) and ty = sup{t : P[o >t | A] > 0}.

]

Proposition 2.6. (Furrer and Schmidli (1994)) Let {X;} be a perturbed
Bjork-Grandell model and assume that R is well-defined. Under Assumption 2.2

there exists a constant ¢(Fy) such that
be(u) < c(F)QX =ule™™, ta(u) < c(F)esQX, > ufe™
where c, is given in Proposition 2.2. If both

d d
— — 2.
dr¢(0’ T) . < oo and dr¢1(0’ T) . < 00 (2.9)

10



then there exist a constant é¢(Fy) such that

Y(u) > &(Fy)e

Proposition 2.7. (Schmidli (1997)) Let {X;} be a perturbed Bjork-Grandell
model and assume that R is well-defined, Assumption 2.2 and (2.9) hold. Then

there exist constants C. and Cy independent of Fy(¢,t) such that

Q/Jc( ) c¢1 (0 R) 7Ru T/Jd(U) ~ Cd¢1(0, R) e*R“ .

2.2.3 Markov modulated risk model

Let {Z:} be a continuous-time Markov chain with state space £ = {1,..., J} where
J is some natural number. Denote the intensity matrix by A. The stationary
initial distribution is denoted by 7. Let A; be some non-negative numbers. The
process {/V;} is a Cox point process with intensity process {Az}. A claim arriving
at time ¢ has distribution Gz (x), where G;(z) are some distribution functions.
Given {Z; : t > 0}, the claim sizes are mutually conditionally independent and
conditionally independent of the arrival times. We assume the net profit condition
c > Z;-Izl miAift; where p; = fooo xdF;(x) is the mean value of a claim arriving in
state .

Denote by S(r) the diagonal matrix with entries S;;(r) = X\ (M;(r)—1)—cr—+n*r?,
where M;(r fo e dF;(x) is the moment generating function for claims arriving
in state 7. Let L(r) = A + S(r). Then the matrix eL ™ has strictly positive

entries. Thus the spectral radius e’(") of eL® is the Perron-Frobenius eigenvalue

11



and the corresponding (right) eigenvector n(r) = (n:(r),...,ns(r))T has strictly
positive entries. In order to simplify notation we norm the eigenvector such that
2;3]21 mini(r)] = 1. The function 6(r) is log-convex. The adjustment coefficient is
the strictly positive solution to #(R) = 0, if such a solution exists. Let n; = n;(R).
The process

Nz, Rrx
L, — LAY 2.10
'~ Blng) (2.10)

is then a martingale. We define the new measure @) on F; with Radon-Nikodym

derivative dQ)/dIP = L;. This measure can be extended to the whole o-algebra F.
Under @ the process {(Z;, X;)} is again a perturbed Markov modulated risk model.
The parameters under @ are /~\Z~j = (n;) ;A for i # 7, Q[Zy = i) = nilP[Zy =
il /Ep[nz], N = MM;i(R), dGi(z) = e dGy(z)/M;(R) and & = ¢ — 27°R. As in the
cases discussed before, the process has negative safety loading, and therefore ruin

occurs almost surely under ®. We get the formulae

ve(u) = Eplnz|Eel(nz, )™ Xy =ule™™, (2.11)

Valu) = EplzlEqlnz,) e "5 X, > ule ™. (2.12)

This yields the Lundberg inequalities.

Proposition 2.8. (Schmidli (1995)) Let {(Z;, X;)} be a perturbed Markov

modulated risk model. Then

Ep[n2,| Q[ X, = u] P < () < IEJP[??ZO]Q[XT = 1 o—Ru
maxn”; min7;
and
c_Ep[nz,|QX, > ule ™ < ¢q(u) < ey Bplng,|Q[X, > ule ™
where
c_ = min inf eRxéi(w) C. = max su eRzéi(x)
T i a<ay [P dGi(y) R = A [ et dGy(y)
and z; = sup{z > 0 : G;(z) < 1}. O

12



Moreover, from the key renewal theorem the Cramér-Lundberg approximation fol-

lows.

Proposition 2.9. (Schmidli (1995)) Let {(Z;, X;)} be a perturbed Markov
modulated risk model. There are constants C.. and Cy such that 1, ~ C.JEp[nz,|e ™"
and g ~ CylEp[nz,]e” . Moreover, Cy > 0 and C,. > 0 if and only if M!(R) < oo

for all © such that \; > 0. O

This concludes the discussion of the small claim case.

3 The heavy-tailed case

In practice, actuaries are mostly concerned about large claims. They speak about
large claims if 20% of the portfolio are responsible for 80% or more of the aggregate
claim. As a worst case scenario the Pareto distribution often is used to model the
claim sizes, as for instance in property insurance. For motor insurance the log-
normal distribution is popular. These two distributions are examples from the class

S of subexponential distributions. This is one possibility to consider heavy tails.

On the other hand, it is also possible that the perturbation is responsible for
heavy tails. For instance if the perturbation process is an a-stable Lévy motion, the
perturbation process leads to a heavy-tail. It seems unrealistic that the perturbation
process is heavier than the underlying (unperturbed) risk process. Indeed, it would
be very strange if the investment risk or the risk of the fluctuations in the portfolio
would be larger than the insurance risk. However, we will in the discussion below

not exclude this case.

13



3.1 The subexponential case

Let us now assume that the claim sizes are heavy-tailed. This case was first consid-
ered in the special case of a classical risk model perturbed by Brownian motion by
Veraverbeke [22]. His result was based on Corollary 3.4. Similar results were also

proved by Schlegel [16]. We assume here that {B;} is a Brownian motion.

Because below we want to compare the ruin probability of a perturbed model
with the ruin probability of the corresponding unperturbed model we will use the
notation v, (u) to indicate the unperturbed model. Sometimes we will change the

premium density. In order to indicate which premium we use we will write ¥, (u, c).

In the lemma below we recall some properties of subexponential distributions.

Lemma 3.1.

i) Let G € S. Then

for any y € RR.
ii) Let G € S. For any ¢ > 0 one has G (7)e® — 00 as ¥ — 00.

iii) Let G; € S and Gy be an arbitrary distribution function. For some ¢ € [0, 00)
suppose Go(x)/G1(x) — c. Then Gy * Gy (z)/G1(z) — 1+ ¢ Ifc > 0 then
Gy € S.

iv) Let G € 8. Then G*"(x) ~ nG (x) for all n € IN.

v) Let G € S. For any € > 0 there is a constant D = D(e) such that for alln € N
and all x > 0 we have G*"(z) < D(1 +¢)"G (). O

Motivated by the result of [22] we conjecture that the ruin probability is of the

form a constant times the integrated tail distribution of the claim sizes. In Ver-

14



averbeke’s result the constant is continuous in ¢. This motivates the conditions in

Proposition 3.1 below. But we first need the following

Lemma 3.2. Assume that there exists an o > 0 such that

U—00

lim /“ Uy(u — x)ae™ da /1, (u) = 1.
0

Then
Uy (u — )

lim ———==1.

Proof. It is no loss of generality to assume that = > 0. Then by Fatou’s Lemma

for any sequence {u,} converging to infinity

Un,

1 = lim Uu(uy — x)ae™ da /1y, (uy,)
n—oo 0
> / Jin Yelin =) | s g,
0 mn—oo ¢u(un)

> / ae”dxr =1.
0

Assume the assertion were wrong. Then there would be a sequence (u,) and an

o > 0 such that

By the monotonicity of v, the above must hold for all x > z,. But then

>a>1.

/ h_m wae_ax d.fE Z 1 — e—airo + ae—al‘o > 1
0 n—oo ¢u(un)

which would be a contradiction. a
We now can state the following

Proposition 3.1. Consider the perturbed risk model { X;} with premium density c
fulfilling the net profit condition and its corresponding unperturbed model. Assume
the ultimate ruin probabilities 1, (u,c’) of the unperturbed model with premium

density ¢ fulfils the following two conditions:

15



u

i) lim | ¥,(u—z,)ae™dz/b,(u,) =1 for any o > 0 and all ¢ in a neigh-

uU—0o0 0

bourhood of c.

Then
_op(u)
Jim ba(u) L.

Proof. From Lemma 3.2 we conclude that

- /
fim =)y

u—oo Yy (u, )
for all € IR and ¢’. This implies that

. e—au
lim —— =0,

e 5, (u, )

see [5, p.336]. Let

N1 Yu(u, )
M= B e

Choose an € > 0 such that the net profit condition for the premium rate ¢ — ¢ is

fulfilled. Let
M,(c) = %upZY —ct+nB;

t>0

be the maximum of a perturbed risk model and M,(c) be the maximum of the
corresponding unperturbed process. Let Z(e) be an independent exponentially dis-
tributed random variable with parameter €/n?. Note that Z(¢) has the same distri-
bution as the maximum of the process (nB; — ¢t). Then

<sup<ZY (c—e )+sup(77Wt—st)iMu(c—s)%—Z(e)

t>0 t>0

where < means equal in distribution. Thus

“Yyu—z,c—€) e __ 0 Ceu/r?
P(u) < Yy (u,c—e) T euluc—o) ?e M da 4 emEm

16



Dividing by v, (u, ¢) and letting u — oo yields

lim < f(c—e
u=00 Py (u, C) (e=e)
and because ¢ was arbitrary
— ()
lim 1.
U—00 Q/Ju(u c)

Analogously

>sup<ZY (c+¢) )—sup(—nVVt—gt)gMu(c—l—e)—Z(e).

>0 >0
This can be written as

Y (u+x,c+e) Cp—
0 ZZJu(U,C‘f— 8) 772

() = Yu(u,c +€)

Analogously, using the bounded convergence theorem, it follows that

)

w0 Yu(U, €) ~

We conclude the discussion of subexponential claims with three examples of non-
classical risk models that were discussed in [10] and [17]. The examples shall only
illustrate how Proposition 3.1 can be applied. It is, of course, possible to treat
a much larger class of risk processes. For results in the unperturbed case see for

instance [1].

3.1.1 Perturbed Sparre Andersen model

Using Proposition 3.1 Veraverbeke’s [22] result becomes easy to prove and can readily

be extended to the Sparre Andersen model.

17



Corollary 3.1. Let (X;) be a perturbed Sparre Andersen model. Assume that

the distribution G is subexponential. Then under the net profit condition ¢ > A\

O ORI,
1m — = .
U—00 GO(U) c — )\M

Proof. It is proved in [7] that the formula would be correct if 1)(u) is replaced by
¥y, (u). The first condition of Proposition 3.1 is easy to check and the second one

follows from Lemma 3.1. Thus the assertion follows from Proposition 3.1. O

3.1.2 Perturbed Bjork-Grandell model

Using Proposition 3.1 the main difficulty is to prove the result in the unperturbed
case. We consider here only the case of subexponential claim sizes. The cases with
subexponential intensity levels and negative safety loading for a subexponential time
length follow similarly from the results in the unperturbed case discussed in [1] and

21].

Corollary 3.2. Let (X;) be a perturbed Bjork-Grandell model. Assume that both

G and G are subexponential distributions and that there exists an € > 0 such that
Elexp{e/;0;}] < co. Then under the net profit condition cE|o;| > pE[A;0]

v(w) __ pBAo]
u=o Go(u)  cBloi] — pE[Aioi]

Proof. It follows from [1] that the assertion holds if ¥ (u) is replaced by 1, (u).

The assertion follows now as in the proof of Corollary 3.1. O

3.1.3 Perturbed Markov modulated risk model

Consider now the Markov modulated risk model. Let G be distribution function

such that B
lim Cil(w) =a; € [0,00)

for all 7+ < J.
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Corollary 3.3. Let

J
a = ZWZ/\ZO(Z/(—AZZ) >0
=1

and assume the net profit condition ¢ > Z;le midipi. If Gr(x) € S then, indepen-

dently of the initial distribution of 7,

P (u) i

lim = =

w=oo Go(u)  (c— 300, Nipwi) o, mi/ (—Aa)

where = [;° G (z) dx.

Proof. For the unperturbed case the result is proved in [1]. The assertion follows

now as in the proof of Corollary 3.1. O

3.2 Perturbation by Lévy processes

Let us now assume that {B;} is a Lévy process. For the approach used in this
section we have to assume that { B;} has no downward jumps. Moreover, we assume
[E[|B;|] < oo and that any drift of the perturbation process is included in the
premium rate ¢, i.e. IE[B;] = 0. Such a perturbation was considered by Furrer [§]
and [9]. He let {B,} be an a-stable Lévy motion. A cadlag process {B;} is called a

(standard) a-stable Lévy motion if

ii) {B:} has independent increments,

iii) For 0 < s < ¢, B; — By has a stable distribution with parameters a € (0, 2],
o= (t—s)Y* B€[-1,1], ie. the characteristic function of B; — B, is
—o®|r|*(1 —ifsignrtan(ra/2)), if a # 1,

log IE[e"(Br=B:)] —
—olr|(1 +i62/msignrIn|r|), if a =1.
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Le¢

Figure 3.1: Modified ladder heights

If @ = 2 we get Brownian motion, as considered before. In this case # has no
influence. If a < 2 then we have to assume § = 1, otherwise the process would
have downward jumps. Moreover, IE[|B;|| < oo implies a > 1. But note that in this
section we allow Lévy processes much more general than a-stable Lévy motions, as
for example mixtures of a-stable Lévy motions, compound Poisson processes and

limits of compound Poisson processes.

As unperturbed risk model we consider a general stationary and ergodic risk
model. This means that we have to start the renewal risk model, the Bjork-Grandell
model or the Markov modulated risk model in its stationary state. More specifically,
let M = {(T},Y;, M;)} be a stationary and ergodic marked point process where T;
is the i-th claim occurrence time and the corresponding mark (Y;, M;) is the claim
size and an environmental variable with values in some Polish space (E,&). For
example, in a Bjork-Grandell model M; = (Ar,, V), the intensity and the time left
until the next change of the intensity, in a Markov modulated model, M; = Zr,. In

a Sparre Andersen model no environmental marks are needed, hence F = {0}.
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The process {N;} in (1.5) is defined as Ny = > .°) To<z,<;. The claim intensity
of the process is A = IE[V;] and the mean of a typical claim is u = A" 'E[3 N, Yi].
We assume the net profit condition Ay < c¢. Note that, in contrast to the models

considered before, we allow here Ay = ¢, the case of no drift. As in Section 2.1 we

define the modified ladder epoch 7, by (2.4), the ladder heights as

L.=sup{X;:0<t <7}, Ls=X

T+

— L., (3.1)

the variable Z, and the claim leading to a new ladder height, and the environmental

variable at the ladder time by
Z+ - Lc - S(T+)_, U_|_ - Z+ + Ld, M+ - MN-,—+- (32)

These variables are illustrated in Figure 3.1. The variables Ly, Z.,U,, M, are only

well-defined on {7} < oo}, whereas L, is also defined on {7} = oo}.

In order to formulate Proposition 3.2 below we need the Palm distribution IP° of
M. For an introduction of Palm measures see [15]. Intuitively, the Palm distribution
can be seen as conditioning on the event that there is a claim at ¢ = 0. In the special
case of a Sparre Andersen model, P’ is the ordinary case, i.e. Fy(z) = F(z). We

find the following distributions.

Proposition 3.2. (Schmidli (1998)) For (., {4,z >0 and A € £ we have

Py <00, Le > ley Ly > Ly, Zy > 2] = c "AN1—H(L,)) P°[Uy > z, My € A]dx
Lyg+z
and
]P[T+ = 00, L.> gc] = (1 - C_l)\ﬂ)(l - H(£c)) >
where H (x) is the distribution function of sup,>,nB; — ct. O
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Remarks.

i) A first result of the above type was proved in [4]. Here IP[1} < 00, L. > (., Lq >

ii)

iii)

iv)

ly] and P[4 = o0, L. > {.| was found for a classical risk model perturbed by

Brownian motion.

The results remain true for the unperturbed case, i.e. if n = 0. In this case H(x)

is degenerate. This result was proved in [2].

Note that the distribution of L. does not depend on {7, < co}. Moreover, its
distribution is independent on the point process M and depends only on the
perturbation process and the premium density. The probability P[r, < oo is
Au/c and depends only on some basic characteristics of the point process and not
on the perturbation process. The conditional distribution of Ly, Z,, U, and M,
given 7, < oo does not depend on perturbation process. The joint distribution

is completely determined by the distribution of a typical mark.

As it follows from the proof of the result in [20], it is important that the process
starts in its stationary state, that the perturbation process is a Lévy process
independent of the marked point process and that it has no downward jumps.
One therefore cannot expect such a result to hold if one of the assumptions is

violated. [ |

Proposition 3.2 is in particular interesting if one considers a perturbed classical risk

model. The following Pollaczek-Khinchin formulae hold.

Corollary 3.4. Let M be a compound Poisson process. Then

o0

) = (= () 0 -y e ),

v = 3 () (G ) — G O W),

n=0
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[e.°]

walw) = (L) GO« 1) = G« 1)

Proof. At the time 7. the process is in its stationary state, thus ladder times
T_$_2),T_$_3), ... can be defined. Thus the number of ladder epochs has a geometric

distribution. The formulae follow readily. O

Let us now consider two examples.

3.2.1 Perturbation by Brownian motion

This example is from [4]. If {B,} is a Brownian motion then H (z) = e~¢/"". Taking

Laplace transforms in Corollary 3.4 gives

e dy = A== My(—9)) + s’

/0 V(e du = == o — A1 = My(=s) (3.3)
> —su o 5772

/O ve(we ™ du = — s — M1 = My (—s)) (3.4)

ey — A= (1= My(=9))
/0 Yg(u)e ™" du = cs + 7% — N1 — My (—3)) (3.5)

The above transformations yield explicit formulae if My (r) is a rational function
i.e. the claim size distribution is of matrix exponential type, for instance phase
type. In this case, the Laplace-transforms (3.3)—(3.5) are rational functions and can

therefore be inverted explicitly. An example is discussed in [4].

3.2.2 Perturbation by a-stable Lévy motion

This example is from [8], see also [9]. Suppose now that {B(t)} is an a-stable
Lévy motion with a € (1,2). Then H (z) = 377 (I(1 + (a — 1)n)) " }(—a)rale-n

«

where a = ccos(m(1 — «a/2))n~®. Note that o = 2 yields the exponential function
considered in Section 3.2.1. We consider now the asymptotic behaviour of ¢ (u).
First, the asymptotic behaviour of H(x) is H(z) ~ (al'(2 — a))" 'z, We

consider three cases for the asymptotic behaviour of G(x).
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Case H(x) = o(Gr(z)) and G;(z) € S. From Lemma 3.1 it follows that G *
H(z) € S and that 1 — G« H* ™D () < 1 — G5 s« H* 04D () < D(1 + )+
for some 0 < € < ¢/(An) and some D. From Lemma 3.1, from Corollary 3.4 and

from the bounded convergence theorem we find that

() ~ datu) ~ —E ). (36

In particular, ¥.(u)/G;(u) — 0, i.e. for large initial capital it is unlikely that ruin

is caused by the perturbation.

Case G(x) ~ kx~ @Y. Note that the condition is equivalent to G (z) ~ pr(a —
Da~. In this case 1 — Gy * H(z) ~ (k + (al'(2 — @)) )z~ Y implying that
Gr* H(z) € S. As above the bounded convergence theorem can be applied. From

Corollary 3.4 and Lemma 3.1 we find

Apal (2 —
rApal'( oz)—i—cu_@_l)’

3.7
vlu) (c—Ap)al'(2 — ) (37)
~ ¢ —(a—-1)
’k‘:)\/'[’ —(a-1)

a(u) — )\Mu : (3.9)

In this case ruin can be caused by the perturbation or by a claim.

Case G(r) = o(x~(®=V). Similarly as above we get

lu) ~ (w) ~ ——— T - weh(3.10)

H ~
c— A\ () (c— Ap)al’(2 — «)
In particular, ¥4(u)u®"t — 0, i.e. for large initial capital it is unlikely that ruin is

caused by a claim.
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