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Abstract

We study the statistical properties of the star-shaped approximation of in vitro

tumor profiles. The emphasis is on the two-point correlation structure of the radii

of the tumor as a function of time and angle. In particular, we show that spatial

two-point correlators follow a cosine law. Furthermore, we observe self-scaling

behaviour of two-point correlators of different orders, i.e. correlators of a given

order are a power law of the correlators of some other order. This power-law

dependence is similar to what has been observed for the statistics of the energy-

dissipation in a turbulent flow. Based on this similarity, we provide a Lévy based

model that captures the correlation structure of the radii of the star-shaped tumor

profiles.

PACS: 87.18.Hf, 89.75.Da, 02.50.Ey

KEYWORDS: Lévy bases, growth models, tumor growth, self scaling, correlators

1 Introduction

The medical term cancer refers to a wide variety of different tumor species, each with
specific characteristics. A realistic modelling framework for tumor growth may be a
valuable tool, not only for understanding the underlying dynamics, but also as a support
for grading the malignancy of tumor tissue. The interest of the problem has led to the
formulation of numerous growth models [1, 2, 3, 4] (and references therein).

There are several works where the fractal dimension of tumors has been measured
with the aim to classify and determine their malignant nature [2, 5]. The tumor boundary
has a fractal nature, and its morphology can be characterized by a fractal dimension.
The fractal dimension is closely related to the roughness of the surface. In general, the
roughness of the interface between the tumor and the non-tumor region is an indicator
of whether the tumor is likely to become infiltrative or not. Tumors whose interfaces are
very rough are seen to be more aggressive [5].

The fractal dimension is a very rough characteristic of the complexity of tumor pro-
files. Apparently very different profiles have the same fractal dimension (in particular,

∗The author is much indebted to A. Brú and co-workers for allowing to use their data sets. This

work was supported by the Carlsberg Foundation.
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any smooth profile has the fractal dimension 1). In this paper, we propose the use of
correlators as a measure of complexity that characterizes the dynamics of tumor profiles
in more detail. In this approach, a growing tumor is modelled as a stochastic process in
space and time. The description of a tumor as a stochastic process is justified by the
adaptability of biological systems to a changing environment, which in turn implies their
sensitivity to local variations of many dynamically relevant parameters. In a complex
systems like a growing tumor local conditions may be expected to change randomly with
time. Thus stochastic effects are always present [6].

To account for the statistical properties of tumor profiles we propose a modelling
framework that is based on the integration with respect to a homogeneous Lévy basis.
A similar approach proved useful for the modelling of the turbulent energy dissipation
field [7, 8]. The strength of the Lévy based modelling framework lies in the fact that it
allows to analytically control the correlation structure of the model in accordance with
experimental findings.

In Section 2 we briefly describe the type of data we use for our statistical analysis.
In particular we introduce the description of an in vitro growing tumor profile as a
star-shaped object. Correlators are introduced in Section 3 and it is shown that spatial
correlators of tumor profiles follow a cosine law. In addition, spatial correlators have the
property of self-scaling, i.e. correlators of a given order are a power law of correlators
of some other order. These striking statistical properties of a growing tumor are the
basis for the formulation of the modelling framework which is presented in Section 4.
Section 5 shows some results from numerical simulations that illustrate the potential of
the proposed model in generating typical tumor profiles. Section 6 concludes.

A T t0 a h φ0

t=21 -0.021 21 19 0.04 -0.033 0.19

t=25 -0.019 25 17 0.02 -0.033 0.19

t=55 -0.021 18 4 0.01 -0.067 0.23

Table 1: Parameters A (in units [radiants]−1), T and t0 (in units of the finite step size ∆t),
a and h (in units [∆t]−1[radiants]−1 where ∆t is the finite step size) for the simulation
of the star-shaped radii rt(φ) at times t = 21, 25, 55 (in units of the finite step size ∆t).
The parameters for the Gaussian background field Z are µ = 0.1 and σ2 = 1.

2 Description of the data

The data we use for our statistical analysis of tumor profiles are snapshots of a growing
brain tumor in vitro. The details of the set-up of such in vitro experiments may be found
in [2]. The experimental conditions allow cells to grow mainly on a plate surface, thus
the tumor can be considered a two-dimensional system. Here we are mainly interested
in the boundary of the growing tumor. We approximate this boundary as a star-shaped
profile with radial function

Rt(φ) = max{R : c0 + Reφ ∈ Yt} (1)

where Yt denotes the two-dimensional domain occupied by the tumor at time t, c0

denotes the centre of mass of the tumor at time t = 0 and eφ is the unit vector in
direction φ ∈ [0, 2π].
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Figure 1: Star-shaped approximation of the tumor (in microns) at times t =
5, 21, 25, 31, 45, 51, 55, 69, 73 (in hours).

Figure 1 shows an example of such star-shaped profiles at various times t, originally
analyzed in [2]. We observe structures at very different scales with strongly localized
outbursts of different size. Due to the unrestricted growth of the tumor in in vitro
experiments we can expect the profiles to be statistically isotropic. A comparison of
these star-shaped profiles with the original profiles as observed in the experiment [2]
shows that (1) approximates the growing tumor to a high accuracy. For the star-shaped
approximation, we neglect details of the tumor profiles where small regions of non-tumor
tissue are surrounded by tumor cells.

For the stochastic modelling of profiles we normalize the radial function

rt(φ) ≡
Rt(φ)

E{Rt(φ)}
, (2)

where E{ } denotes the expectation and E{Rt(φ)} is the mean radius at time t, assumed
to be independent of φ. Thus, E{rt(φ)} = 1 for all times t. For the estimation of
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expectations, we perform spatial averaging. Because of the normalization, we focus on
the development of the shape of the tumor.

3 Spatial correlators

The profiles in Figure 1 reveal structures at very different scales. A complete description
of the multi-scale structure of the tumor at time t requires, in principle, the knowledge
of all mixed moments of the form

E{rt(φ1) · . . . · rt(φn)}, 1 ≤ n ≤ N, (3)

where 2π/N denotes the angular resolution of the profiles. Here, we restrict the analysis
of the spatial variation of rt(φ) to two-point correlators of order (n1, n2)

cn1,n2(t, ∆φ) ≡
E{rt(φ)n1rt(φ + ∆φ)n2}

E{rt(φ)n1}E{rt(φ + ∆φ)n2}
. (4)

It is to note that the spatial correlators cn1,n2(t, ∆φ) do not depend on φ for statistically
isotropic profiles.

3.1 The cosine law

Figure 2 shows the logarithm of the estimated spatial correlators cn1,n2(t, ∆φ) with
(n1, n2) = (1, 1) at various times t with 0 ≤ ∆φ ≤ π. Spatial correlators are mono-
tonically decreasing on [0, π] with c1,1(π/2) = 1 for most of the times that are displayed
in Figure 2. One can distinguish two different regimes for the behaviour of spatial cor-
relators. For not too small angular distances ∆φ > φ0(t) and most of the times t it is
reasonable to fit a cosine behaviour (shown as the solid line in Figure 2)

log(cn1,n2(t, ∆φ)) = bn1,n2(t) cos(∆φ), ∆φ > φ0(t) (5)

with a time dependent amplitude bn1,n2(t). For the small angular distances ∆φ < φ0(t) we
observe deviations from the cosine behaviour (5). Similar results hold for the higher order
spatial correlators (see Figure 4(a)). Irrespective of the order (n1, n2), spatial correlators
cn1,n2(t, ∆φ) follow the cosine law (5). In the following we refer to the angle φ0(t), that
marks the validity of the cosine behaviour (5), as the critical angle. The property of
self-scaling of correlators in Section 3.2 then shows that φ0(t) does not depend on the
order (n1, n2).

The estimated amplitudes b1,1(t) used in Figure 2 are displayed in Figure 3 as a
function of time t. For the times t = 5, 31, 73 the spatial correlators in Figure 2 show a
considerable scatter which results in the lowest three values of the estimated amplitudes
b1,1(t). For the remaining times, there is no clear time dependence of b1,1(t).

The cosine behaviour (5) for ∆φ > φ0(t) can be rewritten, using the definition (4),
as

E{rt(φ)n1rt(φ + ∆φ)n2} = An1,n2(t) exp

{

ln1,n2(rt(φ), rt(φ + ∆φ))

Ln1,n2(t)

}

(6)

with a time dependent amplitude An1,n2(t) = E{rn1
t }E{rn2

t }, a time dependent scale
Ln1,n2(t) = E{rn1

t }E{rn2
t }/bn1,n2(t) and a time dependent distance function

ln1,n2(rt(φ), rt(φ + ∆φ)) = 〈E{rn1
t }eφ, E{r

n2
t }eφ+∆φ〉 , (7)
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Figure 2: Logarithm of spatial correlators c1,1(t, ∆φ) as a function of ∆φ (radiants) of
the star-shaped tumor at times t = 5, 21, 25, 31, 45, 51, 55, 69, 73 (in hours). The solid
lines are of the form b1,1(t) cos(∆φ).
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Figure 3: Estimated amplitude b1,1(t) at times t = 5, 21, 25, 31, 45, 51, 55, 69, 73 (in
hours).
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where 〈 〉 denotes the Euclidean scalar product. Here we use the abbreviation E{rn1
t } =

E{rt(φ)n1} for statistically isotropic profiles. Written in the form (6), the cosine be-
haviour (5) is equivalent to exponential decay where the correlation is caused by the
projection of E{rn1

t }eφ on E{rn2
t }eφ+∆φ.

3.2 Self-scaling of correlators

The structure of (5) as a product of an order-dependent factor bn1,n2(t) and an angle-
dependent factor cos(∆φ) immediately implies that, for ∆φ > φ0(t), correlators of a
given order (n1, n2) are a power law of correlators of some other order (m1, m2)

cn1,n2(t, ∆φ) = (cm1,m2(t, ∆φ))kt[m1,m2;n1,n2]. (8)

This property is called self-scaling of correlators. The self-scaling exponents
kt[m1, m2; n1, n2] are independent of ∆φ and given by

kt[m1, m2; n1, n2] =
bn1,n2(t)

bm1,m2(t)
. (9)

Figure 4 confirms the self-scaling relation (8) for t = 55. We clearly observe that
plotting log(cn1,n2(t, ∆φ)) as a function of log(cm1,m2(t, ∆φ)) results in a straight line
through the origin with constant slopes kt[m1, m2; n1, n2]. Similar results hold for all
times t that are displayed in Figure 2.

It is important to note that the self-scaling relation (8) holds for all angular distances
∆φ, including the deviations from the cosine behaviour (5) below the critical angle φ0(t).
Therefore, we may expect the deviations from (5) at small angular distances to be of the
form

log(cn1,n2(t, ∆φ))− bn1,n2(t) cos(∆φ) = dn1,n2(t)ft(∆φ), ∆φ < φ0(t), (10)

where the amplitude dn1,n2(t) does not depend on ∆φ and the function ft(∆φ) does not
depend on the order (n1, n2). Furthermore, the validity of (8) below the critical angle
implies φ0(t) being independent of the order (n1, n2) (see Figure 4(a)). For the small
scale amplitudes dn1,n2(t) we get, using (8)-(10),

dn1,n2(t)

dm1,m2(t)
=

bn1,n2(t)

bm1,m2(t)
= kt[m1, m2; n1, n2]. (11)

Figure 5 shows the estimated self-scaling exponents kt[m1, m2; n1, n2] as a function of
time t. The self-scaling exponents can be assumed to be independent of time t for all
orders (n1, n2) and (m1, m2) that are displayed in Figure 5. Furthermore, we get to high
accuracy

ln (cn1,n2(t, ∆φ))

ln (cm1,m2(t, ∆φ))
= kt[m1, m2; n1, n2] =

n1n2

m1m2

. (12)

This simple expression for the self-scaling exponents is the basic motivation for modelling
the radius process rt(φ) as the exponential of a Gaussian process in Section 4.2.

Combining (12) with (11) implies the factorization

bn1,n2(t) = bn1,n2B(t) (13)

and
dn1,n2(t) = dn1,n2D(t) (14)

into order-dependent factors bn1,n2 = dn1,n2 = n1n2 and time-dependent amplitudes B(t)
and D(t), respectively.
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Figure 5: Self-scaling exponents kt[m1, m2; n1, n2] as a function of time t (in hours). The
solid lines denote the values (n1n2)/(m1m2).

4 A Lévy based modelling framework

The self scaling property (8) is also observed for the statistics of the energy dissipation
in turbulent flows [8]. Moreover, the dynamics of the energy dissipation in turbulent
flows reveal a multi-scale structure with strongly localized bursts that are similar, at
least qualitatively, with the corresponding strong fluctuations of the tumor profiles. In
the turbulence context, a general modelling framework that accounts for the strong
variability of fluctuations and the self-scaling behaviour of correlators is based on the
integration with respect to Lévy bases [7, 8]. Thus, it is natural to apply this Lévy based
modelling framework also to the dynamics of the tumor profiles.

4.1 The general modelling framework

This Section defines the general framework we use for modeling star-shaped tumor pro-
files defined by the normalized radial function rt(φ). In Section 4.2 we will specify the
model in more detail, adapted to specific tumor dynamics.

The basic notion is that of an independently scattered random measure (i.s.r.m) on
continuous time-space, R × R. These measures associate a random number with any
subset of R × R. Whenever two subsets are disjoint, the associated numbers are inde-
pendent, and the measure of a disjoint union of sets almost certainly equals the sum of
the measures of the individual sets. For a mathematically more rigorous definition of
i.s.r.m.’s and their theory of integration, see [7, 9, 10].

Independently scattered random measures provide a natural basis for describing un-
correlated noise processes in space and time. A special class of i.s.r.m.’s is that of
factorisable and homogeneous Lévy bases, where the distribution of the measure of each
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set is infinitely divisible and does not depend on the location of the subset. In this
case, it is easy to handle integrals with respect to the Lévy basis using the well-known
Lévy-Khintchine and Lévy-Ito representations for Lévy processes. Here, we state the
result and point to [7] for greater detail and rigour.

Let Z be a factorisable and homogeneous Lévy basis on R × R such that Z(A) is
infinitely divisible for any A ⊂ R× R. Then we have the fundamental relation

E

{

exp

{
∫

A

h(a)Z(da)

}}

= exp

{
∫

A

K[h(a)]da

}

, (15)

where h is any integrable deterministic function, and K denotes the cumulant function
of Z(da), defined by

K[ξ]da = ln E {exp {ξZ(da)}} . (16)

The usefulness of (15) is obvious: it permits explicit calculation of the correlation function
of the integrated and h-weighted noise field Z(da) once the cumulant function K[h(a)]
is known.

In particular, we define a spatio-temporal radial process rt(φ) on R× [0, 2π] as

rt(φ) ≡ exp

{
∫

At(φ)

h(t, φ; t′, φ′)Z(dφ′, dt′)

}

, (17)

where the so-called ambit sets At(φ) ⊂ R× [0, 2π] are defined in a cyclic way.
We define general spatio-temporal correlators cn1,n2(φ, t; ∆φ, ∆t) as

cn1,n2(φ, t; ∆φ, ∆t) ≡
E{rt(φ)n1rt+∆t(φ + ∆φ)n2}

E{rt(φ)n1}E{rt+∆t(φ + ∆φ)n2}
(18)

The definition (18) of general spatio-temporal correlators coincides with the definition
(4) for spatial correlators for ∆t = 0 and omitting the variable φ on the left hand side
of (18) for a statistically isotropic process rt(φ).

Using (15), we immediately get

cn1,n2(φ, t; ∆φ, ∆t) = exp

{
∫

A(t,φ;∆t,∆φ)

K[φ, t; ∆φ, ∆t; φ′, t′]dt′dφ′

}

, (19)

where

K[φ, t; ∆φ, ∆t; φ′, t′] = K[n1h(t, φ; t′, φ′) + n2h(t + ∆t, φ + ∆φ; t′, φ′)]

−K[n1h(t, φ; t′, φ′)]−K[n2h(t + ∆t, φ + ∆φ; t′, φ′)]
(20)

and
A(t, φ; ∆t, ∆φ) = At(φ) ∩At+∆t(φ + ∆φ) (21)

is the overlap of the ambit sets associated to the points (t, φ) and (t+∆t, φ+∆φ). Similar
relations hold for correlators involving more than two spatio-temporal positions. In the
Lévy based framework (17), modelling of a certain correlation structure for the spatio-
temporal process rt(φ) reduces to specifying the background field Z, the weight-function
h and the ambit sets At(φ) such that (19) holds. These three degrees of freedom of the
modelling framework (17) can be chosen arbitrarily and independently, which allows for
modelling of a wide range of correlation structures.
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4.2 The log-normal model

The form of the spatial correlators (5) and the values of the self-scaling exponents (12)
for the tumor profiles are the fundamental statistical properties that specify the structure
of the general modelling framework (17) in more detail.

As the model for the dynamics of the normalized radii rt(φ) of the star-shaped ap-
proximation of tumor profiles we propose

rt(φ) = exp

{

a(t)

∫ t−t0(t)

t−T (t)

∫ φ+π

φ−π

cos(φ− φ′)Z(dt′ × dφ′)

+h(t)

∫ t

t−t0(t)

∫ φ+gt(t′)

φ−gt(t′)

Z(dt′ × dφ′)

}

,

(22)

where Z is a normal Lévy basis, i.e. the random numbers Z(dt×dφ) are distributed ac-
cording to a Gaussian law with mean µdtdφ and variance σ2dtdφ. The assumption about
the Gaussianity of Z implies log(rt(φ)) to have a Gaussian distribution. Figure 6 shows
the logarithm of the density of log(rt) at time t = 55. There is considerable scatter but
the Gaussian distribution (solid line) seems to be a reasonable approximation. Similar
results hold for all times t that are displayed in Figure 1. Figure 7 shows the estimated
mean µt and variance σ2

t of log rt as a function of time. The normalization E{rt} = 1
and the ansatz (22) implies σ2

t /2 + µt = 0 which is confirmed by the estimated values of
µt and σ2

t and can be seen as supporting the assumption of a Gaussian bachground field
Z.

As we will show below, the first term on the right hand side of (22) is responsible for
the validity of the cosine law (5) and the second term on the right hand side of (22) is
associated with the deviations from the cosine law at small angular distances. We call
the first term on the right hand side of (22) the large scale term and the second term of
the right hand side of (22) the small scale term.

The ambit set associated with the large scale term is assumed to be a rectangular
of the form [t − T (t), t − t0(t)] × [φ − π, φ + π]. The deterministic function T (t) as

10



10 30 50 70−
0.

00
7

−
0.

00
4

10 30 50 70

0.
00

4
0.

00
8

0.
01

2

µ
t

σ
2 t

t(a) (b) t

Figure 7: (a) Estimated mean µt and (b) estimated variance σ2
t at times t =

5, 21, 25, 31, 45, 51, 55, 69, 73 (in hours).

t

t′

t− t0(t)

t− T (t)

φφ−π φ+πφ−φ0(t)/2 φ+φ0(t)/2 φ′

-

6

h(t)

a(t) cos(φ− φ′)

•
��

��
φ + gt(t

′ − t + t0(t))

rt(φ)

Figure 8: Illustration of the ambit set associated to rt(φ) according to the ansatz (22).
The regions of different weight functions h(t) and a(t) cos(φ− φ′) are indicated.
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the maximum of the temporal extension of the large scale ambit set in the past can be
interpreted as the decorrelation time of the radius process and t0(t) as the decorrelation
time of the small scale term.

The ambit set associated with the small scale term is assumed to be determined by a
deterministic and monotonically decreasing function gt defined on [0, t0(t)] and satisfying
gt(t0(t)) = 0. The small scale ambit set at (φ, t) is

{(φ′, t′) : −gt(t
′ − t + t0(t)) ≤ φ′ − φ ≤ gt(t

′ − t + t0(t))}, (23)

with cyclic definition in the angle. The large scale term extends over the whole full
circle. These two parts of the ambit set are weighted differently according to the deter-
ministic functions a(t) cos(φ− φ′) and h(t) for the large scale term and the small scale
term, respectively. Figure 8 illustrates the shape of the ambit set together with the
corresponding weight functions.

The choice of the form of the ambit set and the weight function of the large scale term
in (22) is motivated by the cosine law (5). Using (19) for ∆t = 0, it is straightforward
to show that with the ansatz (22) the spatial correlators follow the observed cosine
behaviour (5) with deviations at small scales, caused by the small scale term in (22)

ln (cn1,n2(t, ∆φ)) = dn1,n2(t)ft(∆φ)1[0,2gt(0)](∆φ) + bn1,n2(t) cos(∆φ), (24)

where the large scale amplitude bn1,n2(t) is given by

bn1,n2(t) = n1n2a(t)2π (T (t)− t0(t)) . (25)

The small scale amplitude dn1,n2(t) has the form

dn1,n2(t) = n1n2h(t)2 (26)

and we set

ft(∆φ) = Vt(∆φ) =

∫ g
(−1)
t

(∆φ/2)

0

(2gt(s)−∆φ)ds (27)

where Vt(∆φ) is the overlap of the ambit sets of the small scale terms separated by the

angular distance ∆φ. Here, g
(−1)
t denotes the Inverse of the bounding function gt. The

amplitude of the cosine law (5) is solely determined by the weight function a(t) and the
temporal extension T (t)− t0(t) of the large scale term. The deviations from the cosine
law at scales ∆φ < φ0(t) only depend on the weight function h(t) and the overlap Vt(∆φ)
of the small scale ambit sets. The critical angle φ0(t) is given by

φ0(t) = 2gt(0), (28)

independent of the order (n1, n2).
The modelling potential of the ansatz (22) for the dynamics of tumor profiles lies in

the fact that the cosine behaviour at large scales can be modelled independently of the
deviations at the small scales. In particular, a suitable choice of the bounding function
gt(s) allows to model any monotonically decreasing overlap Vt(φ) and, consequently, any
monotonically decreasing deviation dn1,n2(t)ft(∆φ).

The cosine law at the large scales is associated with the large scale ambit set, that
correlates rt(φ) with the radii at all angular positions. In contrast, the term causing the
deviations at small angular distances is associated with the strongly localized small scale
ambit set, correlating rt(φ) with the radii inside a narrow angular domain [φ−φ0, φ+φ0].
This separation of scales involves the same Gaussian background field Z which implies
the order-dependent factor n1n2 for bn1,n2(t) and dn1,n2(t). As a consequence, the model
(22) reproduces the empirical values of the self-scaling exponents (12).
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4.3 Inference of the model parameters

The model (22) for the normalized radii of the tumor profiles involves 7 parameters that
can be chosen independently and arbitrarily.

The background normal Lévy basis Z is characterized by the mean µ and the variance
σ2. We can always set σ2 = 1 since any other choice can be absorbed in the definition of
the weight functions a(t) and h(t). Thus we are left with 6 parameters, namely µ, the
weight functions a(t) and h(t), the decorrelation times T (t) and t0(t) and the bounding
function gt, where we identify 2gt(0) = φ0(t). These parameters can all be inferred
from spatio-temporal two-point correlators (18) of orders (1, 1), using the isotropy of the
profiles, and the law of log(rt).

The logarithm of the normalized radius is distributed according to a Gaussian distri-
bution with mean

µt = µh(t)Vt(0) (29)

and variance
σ2

t = πa(t)2 (T (t)− t0(t)) + h(t)2Vt(0). (30)

Note that the mean µt only depends on the parameters of the small scale term.
From temporal correlators (18) with ∆φ = 0 we infer the decorrelation time T (t+∆t)

as (see Figure 8)

T (t + ∆t) = min{∆t > 0 : log(c1,1(φ, t, 0, ∆t)) = 0}. (31)

The critical angle φ0(t) = 2gt(0) can be estimated from the small scale behaviour of
spatial correlators (18) with ∆t = 0 as

φ0(t) = 2gt(0) = min{∆φ > 0 : log(c1,1(φ, t, ∆φ, 0))− b1,1(t) cos(∆φ) = 0}, (32)

where b1,1(t) is inferred as the amplitude of the large scale cosine behaviour of spatial
correlators.

Next, we assume
φ0 = sup{φ0(t) : t > 0} < π, (33)

which is clearly true for the star-shaped tumor profiles (see Figure 2 and Figure 4(a)).
Having in mind that for ∆φ > φ0 the small scale ambit sets do not contribute to the
overlap of the ambit sets associated to space-time points (φ, t) and (φ + ∆φ, t + ∆t), we
get the temporal extension t0(t) of the small scale ambit set for ∆φ > φ0 as

t0(t) = T (t + Tmin)− Tmin (34)

where
Tmin = min{∆t > 0 : log(c1,1(φ, t, ∆φ, ∆t)) = 0}. (35)

For the estimation of the bounding function gt we assume Vt(∆φ) to be differentiable
with respect to ∆φ. We abbreviate the deviations from the cosine law, using (26) and
(27), as

Y (t, ∆φ) = d1,1(t)ft(∆φ) = h2(t)Vt(∆φ). (36)

Combining (36) for ∆φ = 0 with (29) gives

Y (t, ∆φ) =
µ2(Y (t, 0))2

µ2
t

Vt(∆φ) (37)
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and, using (27), we finally get an expression for gt(s) = gt(s, µ), depending on µ,

g
(−1)
t (∆φ/2)µ2 =

∂(µ2
t Y (t, ∆φ)/(Y (t, 0))2)

∂∆φ
. (38)

The relation (38) only depends on µt and Y (t, ∆φ) that can be obtained from spatial
correlators of order (1, 1). The mean µ of the background Lévy basis Z can be found
from the condition

g
(−1)
t (0, µ) = t0(t). (39)

It remains to infer the weight functions a(t) and h(t). Using the estimates for gt and
µ we may calculate the volume of the small scale ambit set (27) and from (29) we get

h(t) =
µt

µVt(0)
. (40)

The weight function a(t) of the cosine term can easily be obtained from the estimated
amplitude of the cosine law (5) as

a(t) =

√

b1,1(t)

π (T (t)− t0(t))
. (41)

In summary all parameters of the dynamical model (22) can, in principal, be esti-
mated from the law of log(rt) and the spatio-temporal two point correlators of order
(1, 1).

5 Simulation

The data set we analyze in this paper does not have the quality to allow to perform
a proper estimation of the parameters of the dynamical model (22), as outlined in the
previous Section. The temporal resolution of the data set is insufficient to infer the
decorrelation times T (t) and t0(t). Moreover, we only have access to one realisation of
the tumor profile at a fixed time t. Therefore, the above outlined way to estimate the
parameters of the small scale term of the dynamical model is not feasible.

To overcome these shortcomings associated with the quality of the data at hand, we
restrict the simulations to a simplified version of the model (22). For the small scale
ambit set we assume a triangular shape determined by

gt(s) =
φ0(t)

2
−

φ0(t)

2t0(t)
s, s ∈ [0, t0(t)]. (42)

For the specification of the remaining model parameters we only use the estimated values
of µt, σ2

t and b1,1(t) and the form of the estimated spatial correlators c1,1(∆φ). The
parameters µ, T (t) and t0(t) are used as free parameters.

For the small scale deviations from the cosine behaviour (5) we get for the triangular
small scale ambit set (42) the relation

Y (t, ∆φ) =
A(t)2

4C(t)
∆φ2 + A(t)∆φ + C(t), (43)
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Figure 10: Simulation of the star-shaped tumor (arbitrary units) using the model (22)
with a triangular small scale ambit set at times t = 21, 25, 55 (in units of the finite step
size ∆t) with parameters µ = 0.1 and σ2 = 1. The remaining parameters are listed in
Table 1.

where A(t) = h(t)2t0(t) and C(t) = h(t)2φ0(t)t0(t)/2. The amplitude C(t) can be
rewritten using (30) and (41) as C(t) = σ2

t − b1,1(t). Thus, the small scale deviations
only depend on A(t)

Y (t, ∆φ) =
A(t)2

4(σ2
t − b1,1(t))

∆φ2 + A(t)∆φ + (σ2
t − b1,1(t)). (44)

We fit this form of the small scale deviation Y (t, ∆φ) to the estimated spatial correlators
for ∆φ ≤ φ0(t) and vary the critical angle φ0(t) such that Y (t, ∆φ)1[0,φ0(t)]+b1,1(t) cos∆φ
is continuous at ∆φ = φ0(t). Figure 9 shows the results for t = 55.

The parameters a(t) and h(t) are calculated using (41) and (40). Table 1 lists the
estimated parameters of the model (22) with the triangular small scale ambit set for the
times t = 21, 25, 55.

For the simulations we discretize all integrals in (22) with a finite step size ∆t = 1
and an angular step size 2π/N , N = 1000, which corresponds to the angular resolution
in Figure 1. The free parameters µ, T (t) and t0(t) were tuned in a way such that the
simulated profiles resemble the tumor profiles by visual inspection.
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Figure 10 shows the simulated tumor profiles at times t = 21, 25, 55. The simulated
profiles are reasonably similar to the tumor profiles in Figure 1. We obtain structures
at very different scales comparable to the multi-scale structure in Figure 1. We restrict
the simulations to times t = 21, 25, 55 since the assumption of a triangular small scale
ambit set and a constant mean µ for the background field Z does not produce reasonable
profiles for all times t. Therefore, the assumption of a triangular small scale ambit set
should only be seen as an illustrating example.

Figure 11(a) shows the logarithm of the spatial correlators at time t = 55 and the
corresponding approximations bn1,n2(t) cos ∆φ. A comparison of Figure 11(a) with Fig-
ure 4(a) shows that the simulated amplitudes bn1,n2(t) differ from the corresponding
estimated amplitudes. This difference may reflect the error in estimating the amplitudes
bn1,n2(t).

Figures 11(b-d) show the self-scaling behaviour of the spatial correlators as estimated
from the simulated data. The estimated slopes kt[m1, m2; n1, n2] follow the relation (12)
to a comparable accuracy as in Figure 5. The relation (12) can also be inspected from
Figure 11(a) where the amplitudes bn1,n2(t) are approximately equidistant (see also Figure
4(a)).

The simulations show the ability of the modelling framework not only to reproduce
the essentials of the correlation structure of tumor profiles, but also its potential to gen-
erate typical profiles. The overall appearance of the simualted profiles strongly depends
on the form of the small scale ambit set. The assumption of a triangular ambit set is
given as an example, a more detailed statement about the shape of the small scale ambit
set can only be gained by analyzing larger data sets.

6 Conclusion

We presented a stochastic model for the dynamics of star-shaped planar tumor profiles.
This type of modelling is embedded in a general Lévy based modelling framework, that
allows to analytically control the spatio-temporal correlation structure. For tumor pro-
files, spatial correlators are mainly characterized by a cosine law at large scales with
deviations at scales below a critical angle. Furthermore, correlators of different orders
have the property of self-scaling. The observation of these striking statistical properties
are an essential and original part of this paper. Assuming a Gaussian Lévy basis, the
cosine law at large scales and the numerical values of the selfscaling exponents are in-
trinsic statistical properties of the proposed model. The deviations at small scales can
be modelled independently and arbitrarily. With this degree of freedom, we believe that
a higher quality of profile data will allow to model tumor profiles in greater detail.

The modelling framework (22) has been defined for the normalized radius rt(φ).
However, it equally applies to the modelling of the non-normalized radius Rt(φ). The
definition of correlators is invariant under rescaling with the mean radius and the calcu-
lations in Section 4.3 and Section 5 do not use the normalization condition E{rt(φ)} = 1.
Going from rt(φ) to Rt(φ) is equivalent to replacing h(t) with h(t)− log(E{Rt(φ)})/Vt(0)
(see (29)), keeping all other parameters unchanged.

In the present contribution we have dealt with tumor evolution in homogeneous
media without specific anatomic constraints. Such homogeneous media can be taken to
represent soft tissues, such as those in the brain. Inhomogeneous and non-isotropic media
with specific boundary conditions can also be incorporated into the general modelling
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kt[1, 3; n1, n2] log c1,3(t, ∆φ).
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framework (17). For instance, identifying rt(φ) in (17) with the non-normalized radius
Rt(φ) and choosing the weight-function h(t, φ, t′, φ′) to be localized around φ = φ0 will
result in growth that is predominantly in direction φ0.

For the application to characterize different types of tumors and the grading of the
malignancy within one type of tumor, we believe that the analysis of the correlation
structure in terms of spatio-temporal correlators may yield useful criteria for diagnosis
purposes. In particular, the deviations of spatial correlators from the cosine law at small
scales are strongly related to the roughness of the profiles at small scales and as such
reflect the malignancy and the potential of the tumor being infiltrative [5].
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