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Abstract

In the present paper we study the statistical properties of local stereological
estimators of particle volume. It is shown that the variance of the estimators can be
decomposed into the variance due to the local stereological estimation procedure
and the variance due to the variability in the particle population. It turns out
that these two variance components can be estimated separately, from sectional
data. We present further results on the variances that can be used to determine
the variance by numerical integration for particular choices of particle shapes.

Keywords: local stereology, marked point process, model-based setting, star-shaped set,
variance

1 Introduction

One of the important unsolved problems in stereology concerns the stereological estima-
tion of particle size distributions without specific assumptions about particle shape. It
has been known for some time how to estimate stereologically the mean particle volume
for particles of varying shape, cf. Jensen (1998). The resulting distribution of estimated
particle volumes has been used as an estimate of the distribution of the true particle
volumes. It is clearly important to be able to judge when such a procedure is justified.

The particular case of estimating the volume-weighted mean particle volume has
recently been treated in Cabo and Baddeley (2003). It is here shown that an estimator
based on planar observation is one order of magnitude more efficient than the traditional
one based on observation along lines. In the present paper, we concentrate on the
ordinary (unweighted) particle volume distribution. It is shown that an estimator of
mean particle volume based on planar observations is superior to one based on line
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observations, especially for elongated particles. The variance of the estimator can be
decomposed into the variance due to the stereological estimation procedure and the
variance due to the variability in the particle volumes. We will show how to estimate
these variance components separately, from sectional data. If the variance due to the
stereological estimation procedure is small compared to the variance due to the variability
in the particle volumes, the distribution of estimated particle volumes can be regarded
as an estimate of the distribution of the true particle volumes.

In Section 2, we define the particle model by means of marked point processes. In Sec-
tion 3, local stereological estimators of Hausdorff measure are presented. Explicit results
concerning the variance of local volume estimators are discussed in Section 4. Particular
particle shapes are treated in Section 5 while Section 6 deals with the estimation of the
variance components.

2 Marked point processes

In this section we describe the particle model which is defined by means of marked point
processes. For more details, we refer to Stoyan et al. (1995). Let Ψm = {[Xi; Ξi]} be a
marked point process such that Xi is a point in Rn and Ξi belongs to the space Md of d-
dimensional differentiable manifolds in Rn with finite d-dimensional Hausdorff measure.
We assume that O ∈ Ξi. The point Xi then serves as a reference point of Xi + Ξi, the
i-th particle.

The marked point process Ψm will be assumed to be stationary, i.e. Ψm + x =
{[Xi + x; Ξi]} has the same distribution as Ψm for every x ∈ Rn. Stationarity of Ψm

implies stationarity of the unmarked point process Ψ = {Xi}. Denote by λ its intensity
and assume that 0 < λ < ∞. Let SO(n, Lr) be the subgroup of SO(n) consisting of
rotations keeping an r-dimensional linear subspace Lr fixed. Then, Ψm is said to be
invariant under rotations in SO(n, Lr) if BΨm = {[BXi; BΞi]} and Ψm have the same
distribution for all rotations B ∈ SO(n, Lr).

The intensity measure of the marked point process is defined as

Λm(A× U) = E
∑

i

1A(Xi)1U(Ξi), A ∈ B(Rn), U ∈ B(Md),

where 1A(·) stands for the indicator function of the set A and B denotes the Borel
σ-algebra. The stationarity of Ψm implies the following decomposition

Λm(A× U) = λV (A)Pm(U), A ∈ B(Rn), U ∈ B(Md),

where V = λn is the volume and Pm is the mark distribution. By Ξ0 we denote a random
manifold with distribution Pm. If Ψm is invariant under rotations in SO(n, Lr), then BΞ0

has the same distribution as Ξ0 for all B ∈ SO(n, Lr).

3 Local stereological estimators

Local stereological estimators are based on information from section planes in Rn through
a reference point of the particle. In this section, we present the actual form of the
estimators for a generic particle K ∈ Md with reference point at the origin O. Then

2



a section plane of dimension p is a p-dimensional linear subspace (for brevity called p-
subspace) of Rn, p = 0, 1, . . . , n. For comprehensive exposition of local stereology, see
Jensen (1998).

There are various forms of the local estimators, depending on the restriction put on
the p-subspace. Denote by Ln

p,Lr
the set of p-subspaces containing a fixed r-subspace Lr,

0 ≤ r < p ≤ n. Let λd
n be the d-dimensional Hausdorff measure in Rn and let us use

the short notation dxd instead of λd
n(dx). Note that the ordinary Lebesgue measure is

λn
n = λn. For K ∈Md, the local stereological estimator of λd

n(K), based on a p-subspace
Lp ∈ Ln

p,Lr
, d− n + p ≥ 0, has the form, cf. Jensen (1998, (5.24)),

m
(n,d)
p,Lr

(K, Lp) =
σn−r

σp−r

∫
K∩Lp

‖πL⊥r
x‖n−pG(Tan[K,x], Lp)

−1 dxd−n+p, (1)

where σn = 2πn/2/Γ(n/2) is the surface area of the unit sphere Sn−1 in Rn, πL⊥r
is the

orthogonal projection onto L⊥r and G(Tan[K, x], Lp) is the so-called G-factor defined in
Jensen (1998, Definition 2.9). Note that in the case d = n, G(Tan[K, x], Lp) = 1 for
arbitrary Lp.

In a design-based setting, (1) is an unbiased estimator of λd
n(K). Thus, let µn

p,Lr
be

the unique measure on Ln
p,Lr

, invariant under rotations from SO(n, Lr), satisfying

µn
p,Lr

(Ln
p,Lr

) = c(n− r, p− r),

where
c(n, p) =

σnσn−1 · · ·σn−p+1

σpσp−1 · · ·σ1

.

In what follows, we will write dLn
p,Lr

as short for µn
p,Lr

(dLp). By an isotropic p-subspace
in Rn, containing the fixed r-subspace Lr, we mean a random p-subspace with constant
density with respect to µn

p,Lr
. Then, if K satisfies the regularity conditions stated in

Jensen (1998, Proposition 5.4) and L̃p is an isotropic p-subspace containing Lr, the local

estimator m
(n,d)
p,Lr

(K, L̃p) is an unbiased estimator of λd
n(K), i.e.

λd
n(K) =

∫
Ln

p,Lr

m
(n,d)
p,Lr

(K, Lp)
dLn

p,Lr

c(n− r, p− r)
. (2)

Example 1. For K ∈ M3 in R3 there are three local stereological estimators of the
volume V (K),

m
(3,3)
2,O (K, L2) = 2

∫
K∩L2

‖x‖ dx2, (3)

m
(3,3)
1,O (K, L1) = 2π

∫
K∩L1

‖x‖2 dx1, (4)

m
(3,3)
2,L1

(K, L2) = π

∫
K∩L2

‖πL⊥1
x‖ dx2. (5)

The estimators (3) and (4) are related by a so-called Rao-Blackwell procedure. We
have

m
(3,3)
2,O (K, L2) = E

[
m

(3,3)
1,O (K, L̃1) | L2

]
, (6)

if L̃1 is an isotropic line in L2.
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For later reference, we also present the local estimator of λd
n(K)2,

m̃
(n,d)
p,Lr

(K, Lp) =
σn−rσn−r−1

σp−rσp−r−1

∫
K∩Lp

∫
K∩Lp

∇r+2(e1, . . . , er, x1, x2)
n−p

×
2∏

i=1

G(Tan[K,xi], Lp)
−1

2∏
i=1

dxd−n+p
i , (7)

where 1 ≤ r + 1 < p ≤ n, d − n + p ≥ 0 and ∇q(y1, . . . , yq) denotes q-dimensional
Hausdorff measure of the parallelepiped spanned by the vectors y1, . . . , yq. Assuming

that K satisfies the regularity conditions from Jensen (1998, Theorem 5.6), m̃
(n,d)
p,Lr

(K, L̃p)

is an unbiased estimator of λd
n(K)2 if L̃p is an isotropic p-subspace, containing Lr.

Example 2. For d = n = 3, p = 2 and r = 0, the estimator of V (K)2 has the form

m̃
(3,3)
2,O (K, L2) = 2π

∫
K∩L2

∫
K∩L2

∇2(x, y) dy2 dx2

and ∇2(x, y) is twice the area of the triangle with vertices O, x and y.

4 The variance of local estimators

We will now return to the model-based case, described in Section 2. We let Ξ0 be a
generic random particle, distributed according to Pm and denote by Em the expectation
with respect to this distribution. Let Lp(0) be a fixed p-subspace in Rn, containing an
r-subspace Lr, 0 ≤ r < p ≤ n, d− n + p ≥ 0.

Below, we give explicit results for the second moment of m
(n,d)
p,Lr

(
Ξ0, Lp(0)

)
. For this

purpose, the following proposition is very useful.

Proposition 1. Let Pm be invariant under rotations in SO(n, Lr). For fixed Lp(0) ∈
Ln

p,Lr
, the estimator m

(n,d)
p,Lr

(
Ξ0, Lp(0)

)
has the same distribution as m

(n,d)
p,Lr

(Ξ0, L̃p), where

L̃p is an isotropic p-subspace containing Lr and Ξ0 and L̃p are independent.

Proof. The result follows from the fact that for any non-negative measurable function h,

Em h
(
m

(n,d)
p,Lr

(
Ξ0, Lp(0)

))
= Em

∫
Ln

p,Lr

h
(
m

(n,d)
p,Lr

(Ξ0, Lp)
) dLn

p,Lr

c(n− r, p− r)
.

The left-hand side can be rewritten using the invariance of Pm under rotations in
SO(n, Lr) and Jensen (1998, Lemma 8.4),

Em h
(
m

(n,d)
p,Lr

(
Ξ0, Lp(0)

))
= Em h

(
m

(n,d)
p,Lr

(
BT Ξ0, Lp(0)

))
= Em h

(
m

(n,d)
p,Lr

(Ξ0, BLp(0))
)

,

where B ∈ SO(n, Lr). From invariant measure theory there exists an invariant proba-
bility measure αn

(r) on SO(n, Lr). Note that Ln
p,Lr

= {BLp(0) : B ∈ SO(n, Lr)} and∫
SO(n,Lr)

g(BLp(0)) αn
(r)(dB) =

∫
Ln

p,Lr

g(Lp)
dLn

p,Lr

c(n− r, p− r)
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for any non-negative measurable function g on Ln
p,Lr

. Thus,

Em h
(
m

(n,d)
p,Lr

(
Ξ0, Lp(0)

))
=

∫
SO(n,Lr)

Em h
(
m

(n,d)
p,Lr

(Ξ0, BLp(0))
)

αn
(r)(dB)

= Em

∫
SO(n,Lr)

h
(
m

(n,d)
p,Lr

(Ξ0, BLp(0))
)

αn
(r)(dB)

= Em

∫
Ln

p,Lr

h
(
m

(n,d)
p,Lr

(Ξ0, Lp)
) dLn

p,Lr

c(n− r, p− r)
.

When convenient we use the short notation m(Ξ0) for m
(n,d)
p,Lr

(
Ξ0, Lp(0)

)
and m(Ξ0, L̃p)

for m
(n,d)
p,Lr

(Ξ0, L̃p). Using Proposition 1 and (2), we get

Em m(Ξ0) = E m(Ξ0, L̃p) = Em λd
n(Ξ0). (8)

Moreover, the relation (2) for a fixed Ξ0 can be written as

E
[
m(Ξ0, L̃p) | Ξ0

]
= λd

n(Ξ0),

almost surely, and for the variance of m(Ξ0), we get

varm m(Ξ0) = var m(Ξ0, L̃p)

= Em var
[
m(Ξ0, L̃p) | Ξ0

]
+ varm E

[
m(Ξ0, L̃p) | Ξ0

]
= Em var

[
m(Ξ0, L̃p) | Ξ0

]
+ varm λd

n(Ξ0)

≥ varm λd
n(Ξ0).

Hence,
varm λd

n(Ξ0) ≤ varm m(Ξ0). (9)

Generally, two random variables with the same expectation and variance doesn’t have to
be equal almost surely. But in our situation we can show that the equality of variances
suffices.

Proposition 2. Let Ξ0 be a typical manifold with distribution Pm which is invariant
under rotations in SO(n, Lr). Then varm λd

n(Ξ0) = varm m(Ξ0) if and only if m(Ξ0) =
λd

n(Ξ0) almost surely.

Proof. The equality in (9) happens if Em var
[
m(Ξ0, L̃p) | Ξ0

]
= 0 which can be rewritten

(using the independence of Ξ0 and L̃p) as∫
Md

∫
Ln

p,Lr

(
m(K0, Lp)− λd

n(K0)
)2 dLn

p,Lr

c(n− r, p− r)
Pm(dK0) = 0.

This in turn implies that m(K0, Lp) = λd
n(K0) for (Pm × µn

p(r))-a.a. (K0, Lp). It can be

deduced that for µn
p(r)-a.a. Lp(0) we have m(K0) = λd

n(K0) for Pm-a.a. K0 ∈ Md. We
would like to show this for all p-subspaces Lp(0).

Let us suppose that there exists a subspace Lp(0) and a set A(Lp(0)) ∈ B(Md)
with Pm(A(Lp(0))) > 0 such that m(K0, Lp(0)) 6= λd

n(K0) for K0 ∈ A(Lp(0)). For any
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Lp ∈ Ln
p,Lr

, we can find B ∈ SO(n, Lr) such that Lp = BLp(0). Since m(K0, Lp(0)) =
m(BK0, BLp(0)), see Jensen (1998, Lemma 8.4), we have m(BK0, Lp) 6= λd

n(K0) for
K0 ∈ A(Lp(0)). Therefore, m(K0, Lp) 6= λd

n(K0) for K0 ∈ A(Lp) = B−1A(Lp(0)). Thus,
m(K0, Lp) 6= λd

n(K0) on the set A = {(K0, Lp) : K0 ∈ A(Lp), Lp ∈ Ln
p,Lr

}. But from the
invariance of Pm under rotations in SO(n, Lr) we obtain Pm(A(Lp)) = Pm(A(Lp(0))) > 0
which means that (Pm × µn

p(r))(A) > 0 and this leads us to a contradiction.

If varm m(Ξ0) = varm λd
n(Ξ0), the Hausdorff measure of the manifold is determined

from the local section without error. Such local stereological estimators are exact, i.e. the
variance of the estimator is created only by the randomness of particles. The simplest
example of a particle with exact local volume estimator is a ball.

Proposition 3. Let Ξ0 be an n-dimensional ball in Rn centred at O with probability one.
Then

varm m
(n,n)
p,Lr

(
Ξ0, Lp(0)

)
= varm V (Ξ0). (10)

Proof. If K = bn(O,R) is an n-dimensional ball of radius R with centre at the origin,
then for all Lp ∈ Ln

p,Lr
,∫

K∩Lp

‖πL⊥r
x‖n−p dxp =

∫
· · ·
∫

{x2
1+···+x2

p≤R}

(x2
r+1 + · · ·+ x2

p)
n−p

2 dxp · · · dx1.

Since the right-hand side is ωnR
n σp−r

σn−r
, where

ωn = λn(bn(O, 1)) =
π

n
2

Γ
(

n
2

+ 1
)

is the volume of the unit ball in Rn, it follows that m(K, Lp) = λn(K). Applying
Proposition 1, (10) follows immediately.

In Jensen and Petersen (1999) the class of particles having an exact volume estimator
(called quasi-spherical bodies) is studied.

By the similar reasoning as in the previous proof we can show that a sphere has exact
surface area estimator.

Proposition 4. Let Ξ0 be an (n − 1)-dimensional sphere in Rn with centre O almost
surely. Then

varm m
(n,n−1)
p,Lr

(Ξ0, Lp(0)) = varm λn−1
n (Ξ0).

Proof. It can be shown that G(Tan[K, x], Lp) = 1 if K is an (n− 1)-dimensional sphere
in Rn and x ∈ K ∩ Lp. Now the proof proceeds along the same lines as the proof of
Proposition 3, the integration over a p-dimensional ball is replaced by the integration
over a (p− 1)-dimensional sphere.

Remark 1. Lower dimensional spheres are not necessarily quasi-spherical. For example,
let us consider n = 3, d = 1, p = 2 and r = 0. Then the local estimator of λ1

3(Ξ0) has
the form

m
(3,1)
2,O (Ξ0, L2(0)) =

4R

sin α
,

where R is the radius of Ξ0 and α is the angle between L2(0) and the plane containing
the circle Ξ0.
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The local estimator (1) can be simplified if K is star-shaped at O, i.e. K ∩ L1 is a
line-segment for all L1 ∈ Ln

1 . Let ρK(ω) denote the radial function of K,

ρK(ω) = max{c : cω ∈ K}, ω ∈ Sn−1,

cf. Gardner (1995, p. 18). Let for ω ∈ Sn−1,

ρn,K(ω) =

{
ρK(ω)n + ρK(−ω)n for O ∈ K,∣∣|ρK(ω)|n − |ρK(−ω)|n

∣∣ for O 6∈ K,

be the n-chord function of the set K at O, cf. Gardner (1995, Definition 6.1.1). Further-
more, let

ρ̃n,K(Lp) =
1

2p

∫
Sn−1∩Lp

ρn,K(ω) dωp−1

be the section function, cf. Gardner (1995, Chapter 7).

Proposition 5. Let K be a star-shaped set at O. Then

m
(n,n)
p,Lr

(K, Lp) =
σn−r

σp−r

1

2n

∫
Sn−1∩Lp

ρn,K(ω)‖πL⊥r
ω‖n−p dωp−1. (11)

Proof. Using the polar decomposition of Lebesgue measure we obtain∫
K∩Lp

‖πL⊥r
x‖n−p dxp =

1

2

∫
Sn−1∩Lp

∫
K∩span{ω}

‖x‖n−1‖πL⊥r
ω‖n−p dx1 dωp−1

=
1

2n

∫
Sn−1∩Lp

ρn,K(ω)‖πL⊥r
ω‖n−p dωp−1.

In particular, for r = 0, the local stereological estimator is proportional to the section
function

m
(n,n)
p,O (K, Lp) =

ωn

ωp

ρ̃n,K(Lp).

Our aim is now to derive some explicit results for the second moment of m(Ξ0).
This will give an easy way of finding varm m(Ξ0) (without simulation) for particular
choices of shapes of Ξ0 and will give insight into what kind of shapes of Ξ0 result in an
estimator with large variance. In what follows we always assume that Ξ0 is invariant
under rotations in SO(n, Lr).

Proposition 6. Let Ξ0 be a symmetric and star-shaped set at O. Then for the local
estimator with d = n, p = 1 and r = 0 we have

Em m
(n,n)
1,O (Ξ0, L1(0))

2 = ω2
n Em

∫
Sn−1

ρΞ0(ω)2n dωn−1

σn

,

Proof. Since Ξ0 is star-shaped at O, we see from (11) that the local estimator is propor-
tional to the n-chord function,

m
(n,n)
1,O (Ξ0, span{ω}) =

ωn

2
ρn,Ξ0(ω), ω ∈ Sn−1.

Using the symmetry of Ξ0 (ρΞ0(ω) = ρΞ0(−ω)) and Proposition 1 we obtain the stated
result.
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Sometimes an alternative expression of Em m
(n,n)
1,O (Ξ0, L1(0))

2 can be useful.

Proposition 7. Let Ξ0 be symmetric and star-shaped set at O. Then for the local
estimator with d = n, p = 1 and r = 0 we have

Em m
(n,n)
1,O (Ξ0, L1(0))

2 = 2ωn Em

∫
Ξ0

‖x‖n dxn.

Proof. The formula in Proposition 6 can be rewritten as

Em m(Ξ0)
2 = ω2

n Em

∫
Sn−1

∫
Ξ0∩span{ω}

n‖x‖2n−1 dx1 dωn−1

σn

= 2ωn Em

∫
Ln

1,O

∫
Ξ0∩L1

‖x‖2n−1 dx1 dLn
1,O

= 2ωn Em

∫
Ξ0

‖x‖n dxn,

where in the last step we have used Jensen (1998, Proposition 4.1) with g(x) = ‖x‖n.

Remark 2. The assumptions of the previous two propositions are not restrictive as they
may appear. If Ξ0 is not a symmetric and star-shaped set, we can define an equivalent
symmetric star-shaped set star(Ξ0), cf. Jensen (2000), by

ρstar(Ξ0)(ω) = ω−1/n
n m

(n,n)
1,O (Ξ0, span{ω})1/n, ω ∈ Sn−1.

Obviously, m(Ξ0) = m(star(Ξ0)), thus Proposition 6 and Proposition 7 can be used for
any Ξ0 if Ξ0 is replaced by star(Ξ0) in the right-hand side of Propositions 6 and 7.

Now we turn to the case p ≥ r + 2.

Proposition 8. For p ≥ r + 2 the second moment of the local estimator is

Em m
(n,d)
p,Lr

(
Ξ0, Lp(0)

)2
=

σn−rσp−r−1

σn−r−1σp−r

Em

∫
Ξ0

∫
Ξ0

(
1−

〈
πL⊥r

x

‖πL⊥r
x‖

,
πL⊥r

y

‖πL⊥r
y‖

〉2
)−n−p

2

dxd dyd.

Proof. Under the regularity conditions of Jensen (1998, Theorem 5.6), we know that

Em m(Ξ0)
2 =

σ2
n−r

σ2
p−r

Em

∫
Ln

p,Lr

∫
Ξ0∩Lp

∫
Ξ0∩Lp

‖πL⊥r
x‖n−pG(Tan[Ξ0, x], Lp)

−1

× ‖πL⊥r
y‖n−pG(Tan[Ξ0, y], Lp)

−1 dxd−n+p dyd−n+p
dLn

p,Lr

c(n− r, p− r)
.

Using the generalized Blaschke-Petkantschin formula (Jensen (1998, Theorem 5.6)) with

g(x, y) =
‖πL⊥r

x‖n−p‖πL⊥r
y‖n−p

∇2(πL⊥r
x, πL⊥r

y)n−p
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Table 1: Variances of the local area estimator based on a line through O, chosen as the
centre of gravity.

Ξ0 varm m
(2,2)
1,O (Ξ0, L1(0))

rectangle with sides of lengths a, b π
6

E ab(a2 + b2)− (E ab)2

ellipse with semiaxes of lengths a, b π2

2
E ab(a2 + b2)− π2(E ab)2

equilateral triangle with the side of length a π
√

3
24

E a4 − 3
16

(E a2)2

we get (d− n + p ≥ 0)

Em m
(n,d)
p,Lr

(
Ξ0, Lp(0)

)2
=

σn−rσp−r−1

σn−r−1σp−r

Em

∫
Ξ0

∫
Ξ0

‖πL⊥r
x‖n−p‖πL⊥r

y‖n−p

∇2(πL⊥r
x, πL⊥r

y)n−p
dxd dyd.

Notice that due to the regularity conditions ∇2(πL⊥r
x, πL⊥r

y) = 0 on a set of (λd
n × λd

n)-
measure zero and the integral on the right-hand side is well-defined. The result now

follows immediately from ∇2(x, y) = (‖x‖2‖y‖2 − 〈x, y〉2)1/2
.

Note that the second moment of m
(n,d)
p,Lr

(
Ξ0, Lp(0)

)
does not depend on the G-factor.

For n-dimensional particles the formula for the variance given in Proposition 7 was
expressed through integrals over Sn−1 ∩ L⊥r in Jensen and Petersen (1999). Finally, we
consider the special case of star-shaped particles and r = 0.

Proposition 9. Let Ξ0 be a star-shaped set at O with O ∈ Ξ0 almost surely. Suppose
that p ≥ 2. Then

Em m
(n,n)
p,O (Ξ0, Lp(0))

2

=
σnσp−1

4n2σn−1σp

Em

∫
Sn−1

∫
Sn−1

ρn,Ξ0(ω1)ρn,Ξ0(ω2)
(
1− 〈ω1, ω2〉2

)−n−p
2 dxn dyn.

Proof. The result follows immediately from Proposition 8 and the following formulation
of polar decomposition of Lebesgue measure∫

K

g

(
x

‖x‖

)
dxn =

1

2

∫
Sn−1

∫
span{ω}

1K(x)g(ω)‖x‖n−1 dx1 dωn−1.

5 Examples

In this section we use the results from Section 4 to find explicit expressions of the variance
of local stereological estimators for specific particle shapes.

5.1 The planar case

For n = d = 2, p = 1 and r = 0, the variance can easily be determined, using Proposition
6 or Proposition 7 for various shapes of Ξ0. In Table 1 we give the formulas for three
particular choices of Ξ0.

9



5.2 Triaxial ellipsoids

We suppose that Ξ0 is an ellipsoid centred at O and with semiaxes of lengths a, b and c.
In R3 there are three local stereological volume estimators, namely (3), (4) and (5).

For p = 1 the second moment of m
(3,3)
1,O (Ξ0, L1(0)) can be written as (using Proposition

6 and spherical coordinates)

8π

9
E

∫ π

0

∫ π
2

−π
2

(
cos2 θ cos2 ϕ

a2
+

cos2 θ sin2 ϕ

b2
+

sin2 θ

c2

)−3

cos θ dθ dϕ (12)

or in the form

8π

9
E abc

∫ π

0

∫ π
2

−π
2

(
a2 cos2 θ cos2 ϕ + b2 cos2 θ sin2 ϕ + c2 sin2 θ

)3/2
cos θ dθ dϕ, (13)

where we used Proposition 7 and the transformation

x = (ar cos θ cos ϕ, br cos θ sin ϕ, cr sin θ)T , r ∈ (0, 1), θ ∈ (−π

2
,
π

2
), ϕ ∈ (0, 2π).

If we suppose that there exist constants a0, b0, c0 and a non-negative random variable %
such that a = %a0, b = %b0 and c = %c0 (i.e. the typical particle shape is fixed, only size
and direction are random), then the variance of the local estimator becomes

varm m(Ξ0)
2 = V 2

0

(
κ E %6 −

(
E %3

)2)
, (14)

where V0 = 4π
3

a0b0c0 is the volume of an ellipsoid with semiaxes a0, b0, c0 and the constant
κ can be determined from either (12) or (13) by means of numerical integration.

For p = 2 and r = 0 we can proceed in similar way. From Proposition 9 we have

Em m
(3,3)
2,O (Ξ0, L2(0))

2 =
2

9π
Em

∫
S2

∫
S2

(
1− 〈ω1, ω2〉2

)− 1
2

× ρΞ0(ω1)
3ρΞ0(ω2)

3 dω2
1 dω2

2.

Note that there is a mistake in Jensen (2000), the constant 8
π3 should be replaced by 1

8π3 .
For fixed Ξ0 the double integral can again be computed numerically. The formula (14)
still holds, the values of κ for several choices of ratios a0/b0 and b0/c0 are summarized
in Table 2. We have also computed κ for an intermediate estimator, usually called the
nucleator, cf. Gundersen (1988),

m̄
(3,3)
1,O (Ξ0) =

1

2

[
m

(3,3)
1,O (Ξ0, span{ω1}) + m

(3,3)
1,O (Ξ0, span{ω2})

]
,

where ω1 ∈ S2 ∩ L2 is an isotropic direction in an isotropic plane L2 and ω2 ∈ S2 ∩ L2

is orthogonal to ω1. Our approach based on numerical integration enables more precise
results than those obtained by simulation in Jensen (2000).

Higher values of κ mean higher variance caused by the local stereological estimation.
For ball (κ = 1) we have an exact estimator with

varm m(Ξ0) = V 2
0 var %3 = varm λ3(Ξ0).

10



Table 2: The values of κ from (14) for three types of volume estimators and various
shapes of ellipsoids.

a0/b0 b0/c0 m
(3,3)
1,O (Ξ0) m̄

(3,3)
1,O (Ξ0) m

(3,3)
2,O (Ξ0)

1 1 1 1 1
1 2 1.34440 1.10854 1.07945
1 4 2.43264 1.58048 1.26608

2 1 1.51757 1.16635 1.11835
2 2 2.60921 1.63012 1.31307
2 4 5.03481 2.79692 1.59320

4 1 4.42495 2.45371 1.59821
4 2 8.51728 4.44465 2.03585
4 4 16.87915 8.60156 2.56130

Note that the error is larger for prolate spheroids (b = c) than for the corresponding
oblate spheroids (a = b). In view of (6), it is not surprising that smaller values of error
are obtained for the local estimator based on plane sections.

In the remainder of this subsection we consider the last local volume estimator (5).
Obviously, it depends on the choice of the fixed line L1 (usually called vertical axis)
relative to the ellipsoid. We assume that the vertical axis has the same direction as one
of the semiaxes of the ellipsoid (say the one of length c). Then the profile Ξ0 ∩ L2(0)

is a planar ellipse with semiaxes of length A and c. Hence, the local estimator has the
following form

m
(3,3)
2,L1

(Ξ0, L2(0)) = π

∫ 2π

0

∫ 1

0

A2cr2| cos ϕ| dr dϕ =
4π

3
A2c.

Let α be the angle between L2(0) and the semiaxis of length a. Then A can be expressed
as the function of a, b and α and the second moment of m(Ξ0) is

E m
(3,3)
2,L1

(Ξ0, L2(0))
2 =

16π2

9
c2 E

∫ π

0

1(
cos2 α

a2 + sin2 α
b2

)2 dα

=
8π2

9
E abc2(a2 + b2).

For fixed shape of Ξ0 the constant κ in (14) does not depend on c0,

κ =
a2

0 + b2
0

2a0b0

.

For the values mentioned in Table 2 we get κ = 1 if a0/b0 = 1, κ = 1.25 if a0/b0 = 2 and
κ = 2.125 if a0/b0 = 4.

5.3 Other spatial particles

A table similar to Table 2 can be determined for other choices of particle shape.
As an example, let Ξ0 be obtained by scaling the prototype cuboid with edges of

lenghts a0, b0, c0. It means that Ξ0 is an isotropically oriented cuboid with edges of

11



Table 3: The values of κ for various shapes of cuboids.

a0/b0 b0/c0 m
(3,3)
1,O (Ξ0) m

(3,3)
2,O (Ξ0)

1 1 1.15338 1.01883
1 2 1.52818 1.10735
1 4 2.72926 1.31183

2 1 1.70178 1.15148
2 2 2.87074 1.36691
2 4 5.49895 1.67056

4 1 4.75547 1.68498
4 2 9.07151 2.16437
4 4 17.93156 2.72906

lengths %a0, %b0, %c0, where % is a non-negative random variable. Then (14) holds with
V0 = a0b0c0 and κ can be calculated numerically (see Table 3). The obtained values are
slightly larger than for ellipsoids.

As the next example consider a regular tetrahedron of random size. For the estimator
based on line section κ = 1.20049 and for the estimator based on plane section κ =
1.01775.

5.4 Higher dimensions

If n > 3 we do not always have to use numerical integration in order to derive the explicit
formula for the variance. For instance, if Ξ0 is an ellipsoid in R4 with semiaxes a1, a2,
a3, a4, then

varm m
(4,4)
1,O (Ξ0, L1(0))

=
1

8
π4 E a1a2a3a4

(
1

6

4∑
i=1

a4
i +

1

12

( 4∑
i=1

a2
i

)2
)
− 1

4
π4 (E a1a2a3a4)

2 .

This result can be derived from Proposition 7, using elliptical coordinates and lengthy
but straightforward calculations.

6 Estimation of variances

It is interesting to find estimators of the variances σ2
m = varm m

(n,d)
p,Lr

(
Ξ0, Lp(0)

)
and

σ2
λ = varm λd

n(Ξ0), separately, from sectional data. First we introduce ratio-unbiased

estimators of µ = Em λd
n(Ξ0), α2

m = Em m
(n,d)
p,Lr

(
Ξ0, Lp(0)

)2
and α2

λ = Em λd
n(Ξ0)

2, respec-
tively.

Let W be a fixed bounded Borel set in Rn with positive volume. We consider a sample
of particles Xi + Ξi with Xi in the sampling window W . Then the local estimator is
determined from the central section (Xi +Ξi)∩ (Xi +Lp(0)) for each sampled particle. In
order to be in accordance with (1) we can think that the centred particle Ξi is sectioned
by a fixed p-subspace Lp(0) ∈ Ln

p,Lr
, i.e.

m
(n,d)
p,Lr

(Xi + Ξi, Xi + Lp(0)) = m
(n,d)
p,Lr

(Ξi, Lp(0)).
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In what follows we assume that the mark distribution Pm of a stationary marked point
process Ψm is invariant under rotations in SO(n, Lr). It can be shown that (see Jensen
(1998, Proposition 8.5))

µ̂ =
∑

i

1W (Xi)m
(n,d)
p,Lr

(Xi + Ξi, Xi + Lp(0))/Ψ(W )

is a ratio-unbiased estimator of mean particle Hausdorff measure

Em λd
n(Ξ0) =

∫
Md

λd
n(K) Pm(dK).

The proof is based on Campbell’s formula for marked point processes (see Stoyan et al.
(1995, Section 4.2)) and (8).

Using (7), we can estimate the second moment in the mark distribution, i.e. Em λd
n(Ξ0)

2.
Let Ξ0 satisfy the regularity conditions from Jensen (1998, Theorem 5.6), and let Lp(0)

be a fixed p-subspace in Rn, containing Lr, 1 ≤ r + 1 < p ≤ n, d − n + p ≥ 0. Jensen
(1998, Proposition 8.7) states that if W is a bounded Borel set with positive volume,
then

α̂2
λ =

∑
i

1W (Xi)m̃
(n,d)
p,Lr

(Xi + Ξi, Xi + Lp(0))/Ψ(W )

is a ratio-unbiased estimator of Em λd
n(Ξ0)

2.

We can also estimate Em m
(n,d)
p,Lr

(
Ξ0, Lp(0)

)2
by

α̂2
m =

∑
i

1W (Xi)m
(n,d)
p,Lr

(Xi + Ξi, Xi + Lp(0))
2/Ψ(W ).

This estimator is again ratio-unbiased, as can be easily seen from Campbell’s formula
for marked point processes.

The problem is how to estimate

µ2 =
(
Em m

(n,d)
p,Lr

(
Ξ0, Lp(0)

))2

=
(
Em λd

n(Ξ0)
)2

.

As long as we restrict ourselves to the case of independently marked point process (i.e.
the Ξi are independent and identically distributed and independent of Ψ),

1

Ψ(W ) (Ψ(W )− 1)

∑
i6=j

1W (Xi)1W (Xj)m(Xi + Ξi)m(Xj + Ξj)

is an unbiased estimator of
(
Em λd

n(Ξ0)
)2

. Accordingly,

σ̂2
m =

1

Ψ(W )− 1

∑
i

(m(Xi + Ξi)− µ̂)2 (15)

and

σ̂2
λ = α̂2

λ − (µ̂)2 +
1

Ψ(W )− 1

(
α̂2

m − (µ̂)2
)

(16)

are unbiased estimators of σ2
m = varm m(Ξ0) and σ2

λ varm λd
n(Ξ0), respectively.
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In the general case we propose the following estimator of σ2
m,

σ̂2
m =

∑
i,j

1W (Xi)1W (Xj)1[h0,∞)(‖Xi −Xj‖) (m(Xi + Ξi)−m(Xj + Ξj))
2

V ((W −Xi) ∩ (W −Xj))

2
∑
i,j

1W (Xi)1W (Xj)1[h0,∞)(‖Xi −Xj‖)
V ((W −Xi) ∩ (W −Xj))

, (17)

with an appropriate choice of h0 ≥ 0. Using Campbell’s formula it is easy to show

that σ̂2
m is ratio-unbiased if m(Xi + Ξi) and m(Xj + Ξj) are independent whenever

‖Xi −Xj‖ ≥ h0. The estimate of σ2
λ has then the form

σ̂2
λ = σ̂2

m − α̂2
m + α̂2

V . (18)

In applications, the distribution of estimated particle volumes (or other size pa-
rameters) has been used as an estimate of the true particle volume distribution. This
procedure is justified if the variance due to the stereological estimation procedure is
small compared to the variance due to the variability in the particle population. We can
estimate both variances from central sections using (15) and (16) or (17) and (18). If
the estimates are closed we can expect that the distribution of estimated sizes will be
close to the true size distribution. The practical implications of this observation will be
investigated elsewhere.
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