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ON INFINITESIMAL INCREASE OF VOLUMES OF
MORPHOLOGICAL TRANSFORMS

MARKUS KIDERLEN AND JAN RATAJ

Abstract. Let B (“black”) and W (“white”) be disjoint compact test sets in
Rd and consider the volume of all its simultaneous shifts keeping B inside and W
outside a compact set A ⊂ Rd. If the union B ∪W is rescaled by a factor tending
to zero, then the rescaled volume converges to a value determined by the surface
area measure of A and the support functions of B and W , provided that A is
regular enough (e.g. polyconvex). An analogous formula is obtained for the case
when the conditions B ⊂ A and W ⊂ AC are replaced with prescribed threshold
volumes of B in A and W in AC .

Applications in stochastic geometry are discussed. Firstly, the hit distribution
function of a random set with an arbitrary compact structuring element B is
considered. Its derivative at 0 is expressed in terms of the rose of directions and
B. An analogue result holds for the hit-or-miss function. Secondly, in a desing
based setting, different random digitizations of a deterministic set A are treated.
It is shown how the number of configurations in such a digitization is related to
the surface area measure of A as the lattice distance converges to zero.

Dedicated to Rolf Schneider on the occasion of his 65th birthday

1. Introduction

The idea to approximate the surface area of a set A ⊂ Rd by the volume increase
of its dilation with an infinitesimal ball,

(1) lim
ε→0+

Hd(A⊕ εBd)−Hd(A)

ε

(Bd stands for the Euclidean unit ball here) goes back to Minkowski. When the
unit ball Bd is replaced by a unit line segment of direction u ∈ Sd−1, (1) equals the
intersection density of ∂A with lines of direction u, which is representable as the
integral ∫

Sd−1

|u · n|Sd−1(A; dn)

with respect to the surface area measure Sd−1(A; ·) of A for certain classes of sets
with regular boundaries. This is used in stereology for the estimation of the surface
area measure. It is, however, well known that line intersection densities can give us
information only about the symmetrization Sd−1(A; ·) + Sd−1(−A; ·), and not about
Sd−1(A; ·) itself. Schneider [19] proposed a modified estimator involving the outer
normal direction of A at the intersection points with the test lines. Replacing Bd in

Key words and phrases. Surface area measure, dilation, erosion, hit-or-miss transform, volume-
threshold, digitization, contact distribution, compact structuring element, rose of direction.
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2 MARKUS KIDERLEN AND JAN RATAJ

(1) by a general (centered) convex body B, Rataj [14, Corollary 4.2] showed

(2) lim
ε→0+

Hd(A⊕ εB)−Hd(A)

ε
= 2

∫
Sd−1

h(B, n) Sd−1(A; dn),

for a class of UPR sets A, where h(B, n) is the support function of B; see also Hug
[5] for a similar result for A from the convex ring. It is not required here that B
is symmetric, as the centering condition only means that the Steiner point of B
coincides with the origin o. By a result of Schneider [18, p. 283], the integrals in
(2) determine Sd−1(A, ·) uniquely, if known for all centered convex bodies B. Hence
this result can be used to establish estimators for Sd−1(A, ·) from observations of
Hd(A⊕εB)−Hd(A) = Hd([A⊕εB]\A) for small ε and several test sets B. Corollary
2.(2) shows that (2) holds for arbitrary compact sets B 6= ∅, where h(B, ·) is the
support function of the convex hull of B. Motivated by mathematical morphology,
we replace the set (A⊕ εB) \ A by the hit-or-miss transform of A,

[A	 εB] \ [A⊕ εW ].

Here

A	B = {x ∈ Rd : x + B̌ ⊂ A}
is the dilation of A with B̌, i.e. the set of all translation vectors such that the
translation of B̌ = {−b : b ∈ B} is completely contained in A. The hit-or-miss
transform depends on A and on a pair of compact structuring elements (B, W ).
Kiderlen and Jensen [10] showed the asymptotic formula

(3) lim
ε→0+

1

ε
Hd
(
[A	 εB] \ [A⊕ εW ]

)
=

∫
Sd−1

(
− h(B̌ ⊕W, n)

)+
Sd−1(A, dn)

in the planar case (d = 2) for finite sets B and W . Here a+ = max{0, a} is the
positive part of a ∈ R. This result, which was originally formulated in terms of
random sets, holds in arbitrary dimensions and for all nonempty compact subsets
B, W of Rd; see Corollary 2.(3), below. We show in Proposition 5, that Sd−1(A, ·)
is determined, if the left hand side of (3) is known for all finite sets B and W . It
is actually enough to take only those pairs (B, W ) into account, for which B̌ ⊕W
has at most three elements. The asymptotic results (2) and (3) are special cases
of Theorem 1, where local versions and more involved combinations of erosions and
dilations are studied.

Given 0 < θ ≤ 1 and a Borel-measurable set Q ⊂ Rd of positive volume,
Molchanov [13] defines the set

A�θ Q = {x ∈ Rd : Hd
(
A ∩ (x + Q̌)

)
≥ θHd(Q)},

which is the set of all “locations” x such that the volume fraction of A-points in
x + Q̌ is at least θ. We call A �θ Q the volume-threshold set of A (with threshold
parameter θ and sampling element Q). We have

(4) A	Q ⊆ A�1 Q ⊆ A�θ Q ⊆ A⊕Q.

If A is topologically regular, then A �1 Q = A 	 Q for closed Q. This shows that
volume-thresholding defines a family of operations “between” erosion and dilation.
In Theorem 2 and its corollaries, we extend Theorem 1 to certain combinations of
dilations, erosions and volume-threshold sets.
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The last two sections are devoted to applications in random set theory and digi-
tal stereology. In Section 5, a (not necessarily stationary) random closed set Z is
considered. The hit distribution function with structuring element B at z ∈ Rd can
be defined by

HB(z, t) = P (Z ∩ (z + tB) 6= ∅ | z 6∈ Z).

We assume here o ∈ B. For star shaped B, this function coincides with the contact
distribution function, which is an important summary statistics and has been studied
extensively; see e.g. Hug & Last [6], Hug et al. [7], [9], Stoyan et al. [21]. For the
Boolean model, Molchanov [12] gives a survey of possible applications of this function
and Hug et al. [8] consider generalized contact distribution functions. Theorem 3
shows that under weak conditions, (2) transfers to random sets, where the left hand
side now involves the derivative of HB(z, ·) at t = 0 and the right hand side depends
on the (position dependent) rose of directions of Z. Similarly, Theorem 4 is the
random set counterpart of (3), expressing the derivative at t = 0 of the hit-or-miss
function

G(B,W )(z, t) = P (z + tB ⊆ Z, z + tW ⊆ Rd \ Z | z 6∈ Z)

in terms of an integral with respect to the rose of directions. Section 6 exemplifies
applications in design based digital stereology, where the set A of interest is assumed
to be deterministic and compact. In digital stereology, we assume that the set A
is not observable directly, but instead, only a digitization of A is available. In the
simplest case, the digitization of A is given by all points of a uniformly translated
random lattice in Rd that are contained in A: If Zd is the standard lattice and ξ is
a uniform random vector in the unit cube [0, 1]d, we assume that the (random) hit-
or-miss digitization A ∩ t(ξ + Zd) is observable, where t > 0 is a scaling parameter.
Now if B, W ⊂ Zd are non-empty and x ∈ t(ξ + Zd), then the indicator function

1{x+tB⊆A,x+tW⊆Rd\A}

can be determined from the digitization A∩t(ξ+Zd). The number Nt of all x ∈ t(ξ+
Zd) for which this indicator function is 1 can be seen as the number of occurrences
of point configurations which coincide up to lattice translations with (tB, tW ). As
the expected value of tdNt is Hd([A	 tB̌] \ [A⊕ tW̌ ]), (3) implies that td−1Nt is an
asymptotically unbiased estimator for∫

Sd−1

(
− h(B ⊕ W̌ , n)

)+
Sd−1(A, dn),

as the lattice distance t converges to 0. Theorem 5 states this result in a more general
form, where the standard lattice Zd is replaced by a general regular lattice L and
different digitization schemes are used. One of them is the so-called volume-threshold
digitization, which deserves particular emphasis, due to its practical importance: In
material sciences, computer tomography is an increasingly important tool to obtain
a digitization of a three-dimensional structure A in a non-invasive way. Standard
methods yield a gray-tone digitization of A, where the gray-value in a lattice point
p ∈ tZ3 corresponds (approximately) to the volume fraction of A in a voxel p + tQ
centered at p. In most cases, Q is just an axis parallel unit cube with midpoint at the
origin. To obtain a 0-1-image, this gray-tone digitization is then usually thresholded
with a threshold parameter θ between 0 and 1. Mathematically speaking, instead
of observing the hit-or-miss digitization, we observe the set [A �θ tQ] ∩ tZd. This
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explains, why our method yields asymptotic results for data obtained from tomogra-
phy. Hall & Molchanov [4] derived a result on volume estimation from [A�θtQ]∩tZd,
which we extend to a more general set class in Proposition 6.

At the beginning of this introduction, we mentioned the condition that A is sup-
posed to belong to a class of sets with sufficiently smooth boundary. As a rule,
weaker conditions on B require stronger smoothness conditions on A for the above
results to hold. For example, it follows from Hug et al. [9, equation (4.4)] that (2)
with B = Bd holds for a very large class of compact sets A. (To be precise it holds
for all compact sets A whose support measures all are finite signed measures; thus
excluding in particular certain fractal sets.) If B is assumed to be compact and
convex (with o in its interior), then (2) is known to hold for A in the convex ring;
see [6]. For general compact B, we will assume that A belongs to a class, which is for
brevity named the class of “gentle” sets, cf. Section 2; it encompasses topologically
regular sets from the convex ring (Proposition 2) and certain unions of sets with
positive reach (Propositions 1 and 3). A key tool in our investigations is a general
version of the Steiner formula in Hug et al. [9]. We recall a special case of this result
in Proposition 4, where it is applied to the boundary ∂A of the gentle set A.

2. Gentle sets

The setting is the Euclidean space Rd with scalar product u · v, u, v ∈ Rd. We
use the notation Hk for the k-dimensional Hausdorff measure in Rd, so that Hd is
the Lebesgue measure. We say that a vector u is tangent to A ⊂ Rd if there exists
a sequence ai → a, ai ∈ A \ {a}, and a sequence ri of positive numbers such that
ri(ai − a) → u, i → ∞. We denote by Tan (A, a) the tangent cone of A at a ∈ Rd

(this is always a closed cone). The normal cone to A at a, Nor (A, a), is the dual
cone to Tan (A, a), i.e.,

Nor (A, a) = {v ∈ Rd : u · v ≤ 0 for any u ∈ Tan (A, a)}.
The exoskeleton exo(A) of a closed set A ⊆ Rd is the set of all z ∈ Rd \ A

which do not have a unique nearest point in A. The set exo(A) is measurable
and its d-dimensional Hausdorff-measure is Hd(exo(A)) = 0. The metric projection
ξA : Rd \ exo(A) → A is defined so that ξA(a) ∈ A is the unique nearest point to a
in A. The reduced normal bundle of A is (see [9])

N(A) :=
{(

ξA(z),
z − ξA(z)

|z − ξA(z)|

)
: z 6∈ A ∪ exo(A)

}
.

(Note that N(A) is called normal bundle in [9]; we use the adjective ‘reduced’ in
order to avoid confusion with the unit normal bundle nor A, which will be defined
later.) We have N(A) ⊂ ∂A× Sd−1, where Sd−1 is the unit sphere in Rd. The reach
function of A,

δ(A; a, n) := inf{t ≥ 0 : a + tn ∈ exo(A)}
is positive for all (a, n) ∈ N(A). The reach of a set A (denoted reach A) is the
distance between A and its exoskeleton exo(A) (we set reach A = ∞ if exo(A) is
empty, which happens if and only if A is convex). If reach A > 0 then A is closed
and Tan (A, a) is a convex cone for any a ∈ A (see [1]).

Let A∗ = Rd \ A be the closure of the set-complement of A.
A set A ⊆ Rd is called topologically regular, if it is the closure of its interior and

A is called full-dimensional if its tangent cone Tan (A, a) is full dimensional (i.e., it
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spans the whole Rd) for Hd−1-almost all a ∈ A. We say that a closed set A ⊆ Rd is
gentle if

(i) Hd−1(N(∂A) ∩ (B × Sd−1)) < ∞, for all bounded Borel sets B ⊆ Rd,
(ii) for Hd−1-almost all a ∈ ∂A, there are non-degenerate balls Bi and Bo con-

taining both a with Bi ⊆ A and int Bo ⊆ Rd \ A.

If A is a closed gentle set, then A is full-dimensional due to (ii). A need not be
topologically regular (consider a singleton), but it satisfies Hd−1(A \ int A) = 0.
Furthermore, (ii) implies that the normalized vector n pointing from a to the mid-
point of Bo satisfies (a, n) ∈ N(A), and we have δ(A; a, n) > 0. As the balls Bi and
Bo must touch in a, we also have δ(A∗; a,−n) > 0 and n does not depend on the
special choice of Bi and Bo. We may therefore set n(A; a) := n and use henceforth
that the function n(A; ·) is defined Hd−1-almost everywhere on ∂A. In particular,
this implies that the positive boundary

∂+A := {a ∈ ∂A : (a, n) ∈ N(A) for some n ∈ Sd−1}
satisfies

(5) Hd−1(∂A \ ∂+A) = 0.

Let Cd−1(A, ·) be the image measure of Hd−1 on ∂A under the mapping a 7→
(a, n(A; a)) (this function is measurable, see [9, Lemma 6.3]). Cd−1(A, ·) vanishes
outside N(A).

The class of gentle closed sets is quite general, as we will see in the sequel. We
will discuss its connection to usual set classes: The class of UPR sets consists of all
closed subsets A of Rd which can be represented as locally finite unions A =

⋃∞
i=1 Ai

of sets with positive reach so that for any finite index set I,
⋂

i∈I Ai has positive
reach whenever it is non-empty. As convex bodies (compact convex subsets of Rd)
have positive reach, sets in the extended convex ring (locally finite unions of convex
bodies) are elements of UPR.

For A ∈ UPR, the (generalized) unit normal bundle nor A ⊂ ∂A × Sd−1 of A was
defined in [25, 16] as the support of the index function

iA(a, n) := 1A(a)
(
1− lim

r→0+

lim
s→0+

χ
(
A ∩B(a + ((r + s)n, r)

))
,

a ∈ Rd, n ∈ Sd−1 (B(y, t) denotes the closed ball of center y and radius t and χ
stands for the Euler-Poincaré characteristic). Note that if reach A > 0 then

nor A = N(A) = {(a, n) : a ∈ ∂A, n ∈ Sd−1 ∩ Nor (A, a)}.
The tangent cone of nor A is a (d − 1)-dimensional subspace at Hd−1-almost all
points (a, n) ∈ nor A with a basis(

1√
1 + ki(a, n)2

bi(a, n),
ki(a, n)√

1 + ki(a, n)2
bi(a, n)

)
, i = 1, . . . , d− 1,

where ki(a, n) ∈ (−reach A,∞] are the (generalized) principal curvatures and bi(a, n)
the corresponding principal directions of A at (a, n) (see [24, 16]). (We set 1√

1+∞2 = 0

and ∞√
1+∞2 = 1.)
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Remarks:

• Topologically regular UPR-sets need not be full-dimensional. As a counterex-
ample consider the set A = {(x, y) ∈ [0, 1] × R : |y| ≤ dist (x, C)2}, where
C is a compact totally disconnected subset of [0, 1] with positive Lebesgue
measure. (Indeed, if x 6∈ C and 0 < y < dist (x, C) then (x, y) ∈ int A which
shows that A is topologically regular. On the other hand, if x ∈ C then
Tan (A, (x, 0)) = R× {0}, hence A is not full-dimensional.)

• If A is a full-dimensional gentle UPR-set, the measure Cd−1(A, ·) is just the
usual curvature measure of A (of order (d− 1)).

Proposition 1. Any full-dimensional UPR-set A ⊆ Rd satisfies condition (ii).

Proof. Let A =
⋃

i Ai be a UPR-representation of a full-dimensional set A ∈ UPR.
Since the normal cone Nor (C, a) of a set C ⊆ Rd with positive reach has dimension
at most 1 at Hd−1-almost all boundary points a of C (see [1, §4.15 (3)]), we have
for Hd−1-almost all a ∈ ∂A,

dim Nor
(⋂

i∈I

Ai, a
)

= 1

for any index set I with a ∈
⋂

i∈I Ai. Fix such a point a ∈ ∂A and denote I0 = {i :
a ∈ Ai}. It has been shown in the proof of [15, Theorem 1] that A coincides at some
neighbourhood of a with the union of those sets Ai, i ∈ I0, with full-dimensional
tangent cones Tan (Ai, a). Let n ∈ Sd−1 be the unique unit normal vector of these
sets Ai at a.

We have δ(A; a, n) > 0 for Hd−1-almost all a ∈ ∂A by [15, Theorem 1], hence the
ball Bo = B(a + δ(A; a, n)n, δ(A; a, n)) has the desired property int Bo ⊆ Rd \ A.
We shall show the existence of a ball Bi from (ii).

Applying Lemma 1 below, we can assume that all the generalized principal cur-
vatures ki(a, n), i = 1, . . . , d− 1, exist and are finite at (a, n). A simple argument of
geometric measure theory yields that for almost all (a, n), ki(a, n), i = 1, . . . , d− 1,
are generalized principal curvatures of some of the sets

⋂
I Ai at (a, n) with full-

dimensional tangent cone at a. The proof is finished by applying Lemma 2 be-
low. �

Lemma 1. Let A ∈ UPR and denote by nor ∗A the set of all (a, n) ∈ nor A such that
the generalized principal curvatures ki(a, n), i = 1, . . . , d − 1, exist and are finite.
Then

Hd−1
(
∂A \ π0(nor ∗A)

)
= 0

where π0 is the coordinate projection (a, n) 7→ a.

Proof. The generalized principal curvatures ki(a, n), i = 1, . . . , d−1, exist at almost
all (a, n) ∈ nor A by [16, Proposition 2.4]. It follows also from the result mentioned
that the (d − 1)-dimensional Jacobian of π0 restricted to nor A vanishes at points
where at least one of the generalized principal curvatures is infinite. The assertion
follows hence by the area theorem [2, §3.2.22]. �

Lemma 2. Assume that reach A > 0 and that the generalized principal curvatures
ki(a, n), i = 1, . . . , d − 1, exist and are finite at a point (a, n) ∈ nor A such that
(a,−n) 6∈ nor A. Then there exists an ε > 0 such that B(a− εn, ε) ⊆ A.
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Proof. Fix some 0 < s < reach A and consider the parallel set As which has C1,1

smooth boundary. The (classical) principal curvatures of ∂As at b = a + sn exist
and equal

ks
i (b) =

ki(a, n)

1 + ski(a, n)
, i = 1, . . . , d− 1

(see [24]). Denote K = max{0, max1≤i≤d−1 ki(a, n)}; we have

ks
i (b) ≤

K

1 + sK
<

1

s
, i = 1, . . . , d− 1.

It follows from the basic differential calculus that, taking s < t < s+ 1
K

, there exists
a τ > 0 such that B(b − tn, t) ∩ B(b, τ) ⊆ As. Since clearly B(a, s) ∩ ∂As = {b},
the distance of B(a, s) \ B(b, τ) from ∂As is positive and, therefore, there exists an
ε > 0 with B(a− εn, s + ε) ⊆ As. It follows that B(a− εn, ε) ⊆ A, which completes
the proof. �

Proposition 2. Any topologically regular set from the convex ring is gentle.

Proof. Let A =
⋃

i Ai be a topologically regular set from the convex ring, with
convex bodies Ai. We shall first versify property (i). Since N(∂A) = N(A)∪N(A∗)
and it is well known that N(A) has locally finite (d − 1)-dimensional Hausdorff
measure, is is sufficient that the same holds for N(A∗). We shall show that

(6) (a, n) ∈ N(A∗) =⇒ (a,−n) ∈ nor
⋂
i∈I

Ai

for the index set I = {i : a ∈ Ai}. Since all the unit normal bundles nor
⋂

i∈I Ai

have locally finite (d− 1)-dimensional Hausdorff measure, (i) will follow.
Assume, for the contrary, that (6) is violated by some (a, n) ∈ N(A∗). We have

by definition B(a + δn, δ) ⊂ A for some δ > 0 and we can assume without loss of
generality that even B(a + δn, δ) ⊂

⋃
i∈I Ai for I = {i : a ∈ Ai}. As (a,−n) 6∈

nor
⋂

i∈I Ai, there exists a point b ∈
⋂

i∈I Ai with (b − a) · (−n) > 0. From the
convexity of the sets Ai it follows easily that the convex hull of B(a + δn, δ)∪{b} is
included in

⋃
i∈I Ai. But as a is an interior point of the convex hull of B(a+ δn, δ)∪

{b}, a is an interior point of A as well, which is a contradiction.
In order to verify (ii), it will be sufficient to show that A is full-dimensional and

apply Proposition 1. As topological regularity and full dimensionality are local
properties, we may assume A =

⋃m
i=1 Ai, where A1, . . . , Am are convex bodies. For

a fixed a ∈ A, we may assume that a ∈ A1 ∩ . . . ∩ Ak and a 6∈ Ak+1 ∪ . . . ∪ Am for
some k ∈ {1, . . . ,m}. As a ∈ int A, there is a non-empty open ball B contained in
A which does not hit Ak+1∪ . . .∪Am and thus B ⊆ A1∪ . . .∪Ak. Therefore at least
one of the sets A1, . . . , Ak must have an interior point. As a ∈ A was arbitrary, this
shows A =

⋃m
i=1,int Ai 6=∅ Ai. A convex body with interior points is full-dimensional,

and thus, A is full-dimensional, too. �

We conjecture that any full-dimensional UPR set fulfills (i). Currently we are
able to prove (i) for UPR-sets satisfying an additional condition. We say that sets

A1, . . . , Ak (k ≥ 2) with positive reach osculate if there exists a point a ∈
⋂k

i=1 Ai

and outer normal vectors ni ∈ Nor (Ai, a), not all of them being the zero vector, such

that
∑k

i=1 ni = o. Note that the last condition is equivalent to that the convex cone∑n
i=1 Nor (Ai, a) contains a line. Further, we say that A =

⋃
i Ai is a non-osculating

UPR representation provided that it is a UPR representation and the sets Ai, i ∈ I do
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not osculate for any finite index set I (cf. [16]). Note that any UPR set formed by a
stationary isotropic process of particles with positive reach admits a non-osculating
UPR representation (see [16, Remark 3.2]).

Proposition 3. Any UPR-set admitting a non-osculating UPR representation satis-
fies (i).

Proof. Let A =
⋃

i Ai be a non-osculating UPR representation. As in the proof of
Proposition 2, it will be sufficient to verify (6). If (6) were not true then there
would be a pair (a, n) ∈ N(A∗) and a vector v ∈ Tan (

⋂
i∈I Ai, a) with v · (−n) > 0,

where I = {i : a ∈ Ai}. Then, since A contains a ball B(a + δn, δ) for some δ > 0,⋃
i∈I Tan (Ai, a) = Rd. Since the sets Ai, i ∈ I, do not osculate, the convex cone∑n
i=1 Nor (Ai, a) contains no line. Hence, there is a vector, say u, forming an acute

angle with any vector from
∑

i∈I Nor (Ai, a). Then, of course, u cannot be tangent
to any of the sets Ai, a contradiction. �

A main tool for our considerations will be a far-reaching generalization of Steiner’s
formula, taken from Theorem 2.1 in [9], applied to ∂A (see also [9, Theorem 5.2]).
Here we use that Hd(∂A) = 0 if A is gentle. Let κk denote the volume of the unit
ball in Rk.

Proposition 4. If A is a closed gentle set then there are uniquely determined signed
measures µ0(∂A, ·), . . . , µd−1(∂A, ·) on Rd×Sd−1, vanishing outside N(∂A), with the
following property:

For any measurable bounded function f on Rd with compact support, we have

(7)

∫
Rd

f dHd =
d∑

i=1

iκi

∫
N(∂A)

∫ δ(∂A;a,n)

0

ti−1f(a + tn) dt µd−i(∂A; d(a, n)).

The signed measures µ0(∂A, ·), . . . , µd−1(∂A, ·) are called support measures of ∂A
and have locally finite total variation (due to [9, Corollary 2.5 and (2.13)] and the
assumptionHd−1(N(∂A)) < ∞), which allows to avoid the notion of reach measures.
The support measure of order (d − 1) is closely related to the (d − 1)-dimensional
Hausdorff-measure on ∂A. [9, Proposition 4.1 and Proposition 5.1] and (5) give

µd−1(∂A; ·) =
1

2

∫
∂A

1{(a,n(A;a))∈·} + 1{(a,−n(A;a))∈·}dHd−1(a),

where the function n(A; ·) was defined after the introduction of gentle sets. Hence,

(8) 2µd−1(∂A; ·) = Cd−1(A, ·) + C∗
d−1(A, ·),

where C∗
d−1(A, ·) is the image measure of Cd−1(A, ·) under the reflection (a, n) 7→

(a,−n).

3. Dilation- and erosion-volumes structured by compact sets

Given a compact subset M of Rd, denote M̌ = {−x : x ∈ M} and let

h(M, u) = h(conv M, u) = sup{y · u : y ∈ M}

be the support function of (the convex hull of) M .
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Theorem 1. Let A be a closed gentle set, C ⊂ Rd a bounded Borel set and B, W
and P, Q four non-empty compact subsets of Rd. Then

lim
ε→0+

1

ε
Hd
(
ξ−1
∂A(C) ∩

[
(A⊕ εP )	 εB

]
\
[
(A	 εQ)⊕ εW

])
(9)

= 2

∫
N(A)

1C(a)
(
h(P ⊕ Q̌, n)− h(B̌ ⊕W, n)

)+
Cd−1(A; d(a, n)).

Proof. It can be assumed without loss of generality that B∪W ∪P ∪Q is contained
in the ball B(o, 1/2). For ε > 0, we set

gε(z) = 1{z+εB̌⊆A⊕εP}1{z+εW̌⊆Rd\(A	εQ)}

and apply Proposition 4 to the function

f(z) =

{
1C(ξ∂A(z)) gε(z), z 6∈ exo(∂A),
0, z ∈ exo(∂A).

Clearly,

Hd
(
ξ−1
∂A(C) ∩

[
(A⊕ εP )	 εB

]
\
[
(A	 εQ)⊕ εW

])
=

∫
Rd

f dHd

is the left hand side of (7). We shall show that on the right hand side, all the
summands with i > 1 are of order o(ε) as ε → 0+, so that

lim
ε→0+

1

ε
Hd
(
ξ−1
∂A(C) ∩

[
(A⊕ εP )	 εB

]
\
[
(A	 εQ)⊕ εW

])
(10)

= 2 lim
ε→0+

∫
N(∂A)

1C(a)

∫ δ(∂A;a,n)

0

gε(a + tn)

ε
dt µd−1(∂A; d(a, n))

= 2 lim
ε→0+

∫
N(A)

1C(a)Gε(a, n) Cd−1(A; d(a, n)),

where we have used (8), N(A) ⊆ N(∂A) and the abbreviation

Gε(a, n) =

∫ δ(∂A;a,n)

−δ(∂A;a,−n)

gε(a + tn)

ε
dt.

Indeed, |gε| is bounded by 1 and since B 6= ∅ and P are contained in B(o, 1/2), the
support of gε is contained in A⊕B(o, ε). Hence we have∣∣∣∣∣

∫
N(∂A)

1C(a)

∫ δ(∂A;a,n)

0

ti−1 gε(a + tn)

ε
dt µd−i(∂A; d(a, n))

∣∣∣∣∣
≤ 1

ε

∫ ε

0

∫
N(∂A)

1C(a)ti−1|µd−i|(∂A; d(a, n)) dt

=
εi−1

i
|µd−i|(∂A; C × Sd−1)

and the total variation measure |µd−i|(∂A; C × Sd−1) is finite for any i since C is
bounded, thus the last expression tends to 0 with ε → 0+ whenever i > 1.

It remains to show that

(11) Gε(a, n) →
(
h(P ⊕ Q̌, n)− h(B̌ ⊕W, n)

)+
, ε → 0+,
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for Cd−1(A; ·)-almost all (a, n), and apply the Lebesgue dominated theorem. As A is
gentle and by the definition of Cd−1(A, ·), Cd−1(A; ·)-almost all (a, n) ∈ N(A) satisfy
δ+ := δ(A; a, n) > 0 and δ− := δ(A; a,−n) > 0. Fix such a pair (a, n) ∈ N(A) and
assume ε < min{δ+, δ−}/2. It follows from the definitions of δ+ and δ− that A has
no points inside the ball Bo of center a + δ+n and radius δ+, and that the ball Bi of
center a − δ−n and radius δ− is a subset of A. Fix p ∈ P with p · n = h(P, n) and
q ∈ Q with q · (−n) = h(Q,−n). As Rd \ (A	 εQ) = (Rd \ A)⊕ εQ, we have

(12) gε(z) ≥ 1{z+εB̌⊆Bi+εp}1{z+εW̌∈int Bo+εq}.

From the definition of the support function, and since B̌ − p lies in the unit ball,
the set εB̌ − εp is contained in the ball B(o, ε) intersected with the half-space
{y : y ·n ≤ εh(B̌, n)−εh(P, n)}. If z = a+tn and −δ− < t < −εh(B̌, n)+εh(P, n)−
(δ− −

√
δ2
− − ε2) then the first indicator function in (12) is 1. Similarly, the second

indicator function is 1, if z = a+tn and εh(W̌ ,−n)−εh(Q,−n)+(δ+−
√

δ2
+ − ε2) <

t < δ+; thus (12) implies

Gε(a, n) ≥
(
−h(B̌, n) + h(P, n)− h(W, n) + h(Q̌, n)

− ε−1(δ− −
√

δ2
− − ε2)− ε−1(δ+ −

√
δ2
+ − ε2)

)+

→
(
h(P ⊕ Q̌, n)− h(B̌ ⊕W, n)

)+
, ε → 0+.

Let w ∈ W̌ and b ∈ B̌ be such that w · (−n) = h(W̌ ,−n) and b · n = h(B̌, n).
Using A⊕ εP = Rd \

(
(Rd \ A)	 εP

)
, we see that

gε(z) ≤ 1{z+εb+εP̌⊆int Bo}1{z+εw+εQ̌⊆Bi}.

Similar arguments as above yield the upper bound

Gε(a, n) ≤
(
−h(B̌, n) + h(P, n)− h(W, n) + h(Q̌, n)

+ ε−1(δ− −
√

δ2
− − ε2) + ε−1(δ+ −

√
δ2
+ − ε2)

)+

→
(
h(P ⊕ Q̌, n)− h(B̌ ⊕W, n)

)+
, ε → 0+.

The proof is completed by applying the Lebesgue dominated theorem: The fact
that gε(z) ≤ 1(A⊕B(0,ε))∩(A∗⊕B(0,ε)(z) implies

0 ≤ 1C(a)Gε(a, n) ≤ 1C(a)
1

ε

∫ δ(∂A;a,n)

−δ(∂A;a,−n)

1{−ε≤t≤ε} dt ≤ 2 · 1C(a),

which yields a uniformly integrable upper bound. �

We give some particular cases of Theorem 1.

Corollary 1. Let A be a closed gentle set and C a bounded Borel set. Fix nonempty
compact subsets B, W and Q of Rd. Then
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(1) lim
ε→0+

1

ε
Hd
(
ξ−1
∂A(C) ∩ [A⊕ εQ] \ A

)
=

∫
N(A)

1C(a)h+(Q,n) Cd−1(A, d(a, n))

=

∫
N(A)

1C(a)h(Q ∪ {0}, n) Cd−1(A, d(a, n)),

(2) lim
ε→0+

1

ε

(
Hd(ξ−1

∂A(C) ∩ [A⊕ εQ])−Hd(ξ−1
∂A(C) ∩ A)

)
=

∫
N(A)

1C(a)h(Q, n) Cd−1(A, d(a, n)),

(3) lim
ε→0+

1

ε
Hd
(
ξ−1
∂A(C) ∩ [A	 εB] \ [A⊕ εW ]

)
=

∫
N(A)

1C(a)
(
− h(B̌ ⊕W, n)

)+
Cd−1(A, d(a, n)).

To show Corollary 1.(2), we used

Hd(D)−Hd(E) = Hd(D \ E)−Hd(E \D)

with D = ξ−1
∂A(C) ∩ [A ⊕ εQ] and E = ξ−1

∂A(C) ∩ A and applied Theorem 1. For a
compact gentle set A, the image measure Sd−1(A, ·) of 2Cd−1(A, ·) under the projec-
tion (a, n) 7→ n is finite. This measure is called surface area measure of A (of order
d− 1).

Corollary 2. Let A be a compact gentle set and B, W and Q nonempty compact
subsets of Rd. Then

(1) lim
ε→0+

1

ε
Hd
(
[A⊕ εQ] \ A

)
=

∫
Sd−1

h+(Q,n) Sd−1(A, dn)

=

∫
Sd−1

h(Q ∪ {0}, n) Sd−1(A, dn),

(2) lim
ε→0+

1

ε

(
Hd(A⊕ εQ)−Hd(A)

)
=

∫
Sd−1

h(Q,n) Sd−1(A, dn),

(3) lim
ε→0+

1

ε
Hd
(
[A	 εB] \ [A⊕ εW ]

)
=

∫
Sd−1

(
− h(B̌ ⊕W, n)

)+
Sd−1(A, dn).

In [15, Theorem 3], Corollary 2.(1) was shown for certain compact sets A ∈ UPR

and convex bodies P . In the planar case, Corollary 2.(3) was shown in [10] for
topologically regular sets in the convex ring and finite sets B and W . Notice that(

− h(B̌ ⊕W, ·)
)+

= h
(
{o} ∪ (B̌ ⊕W ), ·

)
− h

(
B̌ ⊕W, ·

)
can be written as difference of support functions.

We finish this section with a uniqueness result concerning the integrals in Corollary
2.(3). It implies that the left hand side of Corollary 2.(3) determines Sd−1(A, ·)
uniquely, if known e.g. for all finite sets B and W with #(B̌ ⊕W ) ≤ 3, or for all
pairs (B, W ), where one set is a singleton and the other is a (convex) triangle.

Proposition 5. Let µ and µ′ be two Borel-measures on Sd−1 such that

(13)

∫
Sd−1

(
− h(M, n)

)+
µ(dn) =

∫
Sd−1

(
− h(M, n)

)+
µ′(dn)
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for all M ⊂ Rd with at most three points. Then µ = µ′.

Proof. As h(M, ·) = h(conv M, ·), we may assume that M runs through the family of
(convex) triangles. Let C be an arbitrary non-degenerate triangle with the property
that

(14) µ(Nor(C, e) ∩ Sd−1) = µ′(Nor(C, e) ∩ Sd−1) = 0

for all edges e of C, where Nor(C, e) is the normal cone of C at a relative interior
point of e. Note that Nor(C, e) is a (relative open) half great sub-sphere. Let
v1, v2, v3 be the vertices of C and let Ni = Nor(C, vi). Fix i ∈ {1, 2, 3}. We have

1

ε

(
− h(C − (1− ε)vi, n)

)+ → {
−vi · n, if n ∈ Ni

0, if n 6∈ Ni

as ε → 0+ and the left hand side is bounded by (−vi · n)+, so (13) with M =
C − (1− ε)vi and the Lebesgue dominated theorem imply

(15)

∫
Ni

vi · n µ(dn) =

∫
Ni

vi · n µ′(dn).

If v ∈ R2 is arbitrary, we can chose three triangles C1, C2, C3 in a two-dimensional
plane parallel the affine hull of C with v as a vertex and Nor(Ci, v) = Ni. Applying
(15) to all three of these triangles with vi = v implies∫

Sd−1

v · n µ(dn) =

∫
Sd−1

v · n µ′(dn)

and hence

(16)

∫
Sd−1

n µ(dn) =

∫
Sd−1

n µ′(dn).

This implies that µ − µ′ can be written as difference of two surface area measures
by Minkowski’s existence theorem; see e.g. [18, Theorem 7.1.2.].

Now fix an arbitrary triangle T in a plane L. Circumscribe a triangle C ⊂ L with
vertices v1, v2, v3 6∈ T such that (14) holds. Recall that Ni = Nor(C, vi). We have(

− h(T − vi, n)
)+

= −1Ni
(n) h(T − vi, n) = −1Ni

(n) (h(T, n)− vi · n).

As integration of this equality with µ and µ′ leads to the same result, (15) implies∫
Ni

h(T, n) µ(dn) =

∫
Ni

h(T, n) µ′(dn).

Summation over i = 1, 2, 3 yields∫
Sd−1

h(T, n) (µ− µ′)(dn) = 0

for all triangles T . As µ−µ′ can be written as a difference of surface area measures,
a theorem of Schneider [17] (see also [18, p. 283]) implies µ = µ′, as required. �
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4. Volume-threshold sets

We turn to volume-threshold sets. Recall the definition

A�θ Q = {x ∈ Rd : Hd
(
A ∩ (x + Q̌)

)
≥ θHd(Q)},

where 0 < θ ≤ 1, A and Q are Borel sets in Rd and 0 < Hd(Q) < ∞. To introduce
a function, which takes the place of support functions in asymptotic results, some
further notation is needed. Let Hr,n be the half space

Hr,n = {x ∈ Rd : x · n ≤ r}.

It was noted in [4], that the function

fθ(Q, n) = sup{r ∈ R : Hd(H−r,n ∩Q) ≥ θHd(Q)}
= − inf{r ∈ R : Hd(Hr,n ∩Q) ≥ θHd(Q)}, n ∈ Sd−1,

has the symmetry property

(17) f1−θ(Q,n) = −fθ(Q,−n)

if 0 < θ < 1. It is also positively homogeneous, i.e. fθ(εQ, n) = εfθ(Q,n) for ε > 0.
We mention that in the case of a convex body Q with sufficiently smooth boundary
and if θ < 1 is close enough to 1, the function −fθ(Q, ·) is the support function of a
convex body. This convex body is called floating body of Q, see e.g. [23] for details.
For θ = 1, we have the following: if Q 6= ∅ is a topologically regular compact set but
otherwise arbitrary, then −f1(Q, ·) = h(Q, ·). More generally, consider an arbitrary
compact set Q with positive volume. It is easy to see that the positive homogeneous
extension of the function

n 7→ −f1(Q,n) = inf{r ∈ Rd | Hd(Hr,n ∩ Q̌) = 0}

is convex. [18, Theorem 1.7.1] implies that there is a convex body with support
function −f1(Q, ·). The intersection Q̃ of this convex body with Q satisfies Hd(Q̃) =
Hd(Q) and thus

(18) D �1 Q = D 	 Q̃ and −f1(Q, ·) = h(Q̃, ·),

where D ⊆ Rd is an arbitrary Borel set. This will be used later.

Gentle sets A have the property that in the neighborhood of almost every bound-
ary point a, the sets A and A∗ can be approximated by balls. These balls in turn
can be approximated by half spaces with a in their boundary, if only the local vol-
ume is of interest. The following Lemma shows the asymptotic behavior of such
an approximation for a given ball. It can either be shown by direct calculation or
derived from more general results (see the remarks in [4, p. 1525]).

Lemma 3. Let B ⊂ Rd be a ball (with positive radius) and a ∈ ∂B. Let n be the
outer unit normal of B at a and define the local volume deficit

γ(B, a; ε) := Hd
(
B(a, ε) ∩ (Ha·n,n \B)

)
.

Then γ(B, a; ε) = o(εd) as ε → 0+.



14 MARKUS KIDERLEN AND JAN RATAJ

Theorem 2. Fix 0 < θ ≤ 1, 0 < % ≤ 1 and a closed gentle set A. Let the measurable
set C ⊂ Rd be bounded. Let B, W, P, Q ⊂ Rd be non-empty compact sets and assume
Hd(P ) > 0 and Hd(Q) > 0. Then

lim
ε→0+

1

ε
Hd
(
ξ−1
∂A(C) ∩ [(A�θ εP )	 εB] \ [(A�% εQ)⊕ εW ]

)
(19)

= 2

∫
N(A)

1C(a)
(
fθ(P̌ , n)− f%(Q̌, n)− h(B̌ ⊕W, n)

)+
Cd−1(A; d(a, n)).

Proof. Consider first the case, where θ < 1 and % < 1. The cases where one or both
of these parameters are 1 will be discussed at the end of this proof. We may assume
that B ∪W ∪ P ∪Q ⊆ B(o, 1/2) holds. Put

gε(z) = 1{z+εB̌⊆A�θεP}1{z+εW̌⊆Rd\(A�%εQ)}

and apply Proposition 4 with f(z) = 1C(ξ∂A(z))gε(z), whenever z 6∈ exo(∂A) ∪ ∂A
(and f(z) = 0, otherwise). As the support of gε lies in the set A⊕B(o, ε), the same
arguments like in the proof of Theorem 1 imply

lim
ε→0+

1

ε
Hd
(
ξ−1
A (C) ∩ [(A�θ εP )	 εB] \ [(A�% εQ)⊕ εW ]

)
= lim

ε→0+

2

∫
N(A)

1C(a)Gε(a, n) Cd−1(A; d(a, n))

with Gε(a, n) =
∫ δ(∂A;a,n)

−δ(∂A;a,−n)
gε(a+tn)

ε
dt. We show that

Gε(a, n) →
(
fθ(P̌ , n)− f%(Q̌, n)− h(B̌ ⊕W, n)

)+
, ε → 0+

for Cd−1(A; ·)-almost all (a, n) ∈ N(A). Let (a, n) ∈ N(A). Like in the proof of
Theorem 1, we may assume that δ+ = δ+(A; a, n) and δ− = δ(A; a,−n) are positive
radii of balls Bo ⊆ A∗ and Bi ⊆ A with centers a + δ+n and a − δ−n, respectively.
Assume ε < min{δ+/2, δ−/2, θ, %}. As

A∗ �τ εQ ⊆ Rd \ (A�% εQ)

holds for all 1− % < τ < 1, we have

(20) gε(z) ≥ 1{z+εB̌⊆Bi�θεP}1{z+εW̌⊆Bo�1−%+εεQ}.

We will show that the first indicator function is 1, if z = a + tn with

(21) −δ− ≤ t ≤ εfθ(ε)(P̌ , n)− εh(B̌, n),

where

θ(ε) = θ +
γ(Bi, a;

√
2ε)

εdHd(P̌ )
.

Note that θ(ε) → θ according to Lemma 3 and thus fθ(ε)(P̌ , n) → fθ(P̌ , n), as

ε → 0+. Let b ∈ B̌ be arbitrary. If (21) holds, then

fθ(ε)(εP̌ , n) ≥ t + εh(B̌, n) ≥ t + εb · n.

In view of the definition of fθ(εP̌ , ·) we obtain θ(ε)Hd(εP̌ ) ≤ Hd
(
Ht+εb·n,n ∩ εP̌

)
,

which can be rewritten as

θHd
(
εP̌
)
≤ Hd

(
Ha·n,n ∩ (a + tn + εb + εP̌ )

)
− γ(Bi, a;

√
2ε).
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As tn + εb + εP̌ is contained in the cylinder (B(o, ε) ∩ n⊥) ⊕ [−(δ− + ε)n, εn], we
have a + tn + εb + εP̌ ⊆ B(a,

√
2ε) ∪Bi. The definition of γ(Bi, a; ·) implies

θHd
(
εP̌
)
≤ Hd

(
Bi ∩ (a + tn + εb + εP̌ )

)
and thus a + tn + εb ∈ Bi �θ εP . As b ∈ B̌ was arbitrary and z = a + tn, the first
indicator function in (20) is 1.

We now show that the second indicator function in (20) is 1 for z = a + tn if
εf%(ε)(Q̌, n) + εh(W, n) ≤ t ≤ δ+, where

%(ε) = %− ε− γ(Bo, a;
√

2ε)

εdHd(Q̌)
.

In view of (17), the condition on t implies

−f1−%(ε)(εQ̌,−n) ≤ t + εw · n

for all w ∈ W̌ . This gives Hd(Ht+εw·n,−n ∩ εQ̌) ≥ (1− ρ(ε))Hd(εQ̌) and implies

Hd
(
Ha·(−n),−n ∩ (a + tn + εw + εQ̌

)
− γ(Bo, a;

√
2ε) ≥ (1− ρ + ε)Hd(εQ̌).

As above, a+ tn+εW̌ ⊆ Bo�1−ρ+ε εQ can be concluded and the intermediate claim
is shown.

These considerations lead to the estimate

Gε(a, n) ≥
(
fθ(ε)(P̌ , n)− h(B̌, n)− f%(ε)(Q̌, n)− h(W, n)

)+
→
(
fθ(P̌ , n)− f%(Q̌, n)− h(B̌ ⊕W, n)

)+
, ε → 0+.(22)

An upper bound for Gε is obtained as follows: If w ∈ W̌ and b ∈ B̌ are such that
w · (−n) = h(W̌ ,−n) and b · n = h(B̌, n), then

gε(z) ≤ 1{z+εb∈Bo�1−θ+εεP}1{z+εw∈Bi�εQ}.

Treating the indicator functions as above, yields the same asymptotic bound as in
(22), but now from above. It remains to apply the Lebesgue dominated conver-
gence theorem: From (4) it follows that gε(z) ≤ 1(A⊕B(0,ε))∩(A∗⊕B(0,ε))(z) and thus
1C(a)Gε(a, n) ≤ 2 · 1C(a) is an integrable upper bound.

If one or both of the parameters θ and % are 1, the above proof does not work.
If, for example, θ = 1, then θ(ε) > 1 is not a threshold parameter. In this case,
however, one can replace Q by Q̃, which satisfies (18) and adapt arguments of the
proof of Theorem 1. In a similar way, the present proof can be extended to include
the case % = 1. �

Notice that the proof can easily be adapted to the case where either A�θ εP or
A �% εQ are replaced by A. This implies the first two statements of the following
Corollary.

Corollary 3. Let A be a closed gentle set and C ⊂ Rd a bounded Borel set. Fix
0 < θ ≤ 1 and nonempty compact subsets B, W and Q of Rd, where Hd(Q) > 0.
Then
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(1) lim
ε→0+

1

ε
Hd
(
ξ−1
∂A(C) ∩ [A�θ εQ] \ A

)
= 2

∫
N(A)

1C(a)f+
θ (Q̌, n) Cd−1(A; d(a, n)),

(2) lim
ε→0+

1

ε

(
Hd(ξ−1

∂A(C) ∩ [A�θ εQ])−Hd(ξ−1
∂A(C) ∩ A)

)
= 2

∫
N(A)

1C(a)fθ(Q̌, n) Cd−1(A; d(a, n)),

(3) lim
ε→0+

1

ε
Hd
(
ξ−1
∂A(C) ∩ [(A�θ εQ)	 εB] \ [(A�θ εQ)⊕ εW ]

)
= 2

∫
N(A)

1C(a)
(
− h(B̌ ⊕W, n)

)+
Cd−1(A; d(a, n)).

Corollary 4. Let A be a compact gentle set. Fix 0 < θ ≤ 1 and nonempty compact
subsets B, W and Q of Rd, where Hd(Q) > 0. Then

(1) lim
ε→0+

1

ε
Hd
(
[A�θ εQ] \ A

)
=

∫
Sd−1

f+
θ (Q̌, n) Sd−1(A; dn),

(2) lim
ε→0+

1

ε

(
Hd(A�θ εQ)−Hd(A)

)
=

∫
Sd−1

fθ(Q̌, n) Sd−1(A; dn),

(3) lim
ε→0+

1

ε
Hd
(
[(A�θ εQ)	 εB] \ [(A�θ εQ)⊕ εW ]

)
=

∫
Sd−1

(
− h(B̌ ⊕W, n)

)+
Sd−1(A; dn).

Corollary 4.(2) was shown for convex Q in [4] under considerably stronger regu-
larity conditions on A. Also in this paper, fθ(Q, ·) is explicitly determined for d = 2
and Q = [0, 1]2. Note that the right hand side of Corollary 4.(3) coincides with the
right hand side of Corollary 2.(3) and does in particular not depend on the threshold
parameter, nor on Q.

5. Applications in random set theory

The geometric results of the previous sections can be transferred to random closed
sets. For a general introduction to the theory of random sets, see the books [20] and
[21]. In the following, we consider random closed sets Z which are almost surely
gentle sets, but we do not assume stationarity. An integrability condition will be
needed and we require that condition (i) in the definition of gentle sets does not
only hold almost surely, but in mean:

(23) EHd(N(∂Z) ∩D × Sd−1) < ∞
for all bounded Borel sets D ⊂ Rd. If Z is stationary (or homogeneous), i.e. the
distribution of Z is invariant under all translations, it is enough to require (23) for
only one bounded set D with positive volume. If Z is a random set in the extended
convex ring, the usual integrability condition

E2N(Z∩K) < ∞ for all convex bodies K,

implies (23). Here, for a set M 6= ∅ in the convex ring, N(M) is the minimal number
of convex bodies needed, to represent M as their union, and N(∅) = 0.
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We follow [6] and [9] to introduce the necessary terminology. If (23) holds, then

Λd−1 = ECd−1(Z; ·)
is a locally finite (positive) measure, concentrated on Rd × Sd−1. It is called the
intensity measure of Cd−1(Z; ·). A disintegration of this measure yields

(24) Λd−1(d(z, n)) = R(z, dn)Λd−1(dz × Sd−1),

where R is a stochastic kernel from Rd to Sd−1. In [6], R is called (position depen-
dent) rose of direction or mean normal measure. Let

p(z) = P (z ∈ Z)

be the volume density of Z in z ∈ Rd and fix an arbitrary compact set B ⊂ Rd with
o ∈ B. If p(z) < 1, the hit distribution function at z with structuring element B is
defined by

HB(z, t) = P (Z ∩ (z + tB) 6= ∅ | z 6∈ Z)(25)

= P (z ∈ Z ⊕ tB̌ | z 6∈ Z).

For p(z) = 1, we set HB(z, t) = 1. Usually, B is assumed to be convex and to have
the origin in its interior. We do only require compactness and the weak condition
o ∈ B. The latter is not needed for the general definition, but it should be adopted
for reasons of intuition, as it implies z ∈ z + tB, so z can be seen as a “center” of
z + tB. The contact distribution function at z is defined as

H̃B(z, t) = P (dB(z) ≤ t | z 6∈ Z),

with the random variable

dB(z) = min{r ≥ 0 : Z ∩ (z + rB) 6= ∅};
see e.g. Hug & Last [6]. If B is star shaped with respect to the origin, then HB(z, t) =
H̃B(z, t). In the present general context, however, the latter definition is less general
than (25): let

starB =
⋃
b∈B

[0, b]

be the star-hull of B with respect to 0. As dB(z) = dstarB(z), we have

H̃B(z, t) = HstarB(z, t).

In particular, the results for HB(z, ·) easily transfer to H̃B(z, ·).

Theorem 3. Let B ⊂ Rd be a non-empty compact set with o ∈ B. Let Z be a.s. a
gentle set such that (23) holds for all bounded Borel sets D ⊂ Rd. If Λd−1(· × Sd−1)
is absolutely continuous with respect to Hd with density λd−1(·), then

t−1(1− p(z))HB(z, t)Hd(dz)
v−→ 2λd−1(z)

∫
Sd−1

h(B̌, n)R(z, dn)Hd(dz),

as t → 0+, where
v−→ denotes the vague convergence of measures.

The proof follows closely those of Theorem 4.1 and Corollary 4.6 in [6]. We do not
repeat it here, as similar arguments will be made explicit in the proof of Theorem 4,
below. Under the additional assumption that B is convex and o ∈ int B, Theorem
3 follows from [6, Theorem 4.1].
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If Z is stationary, then Λd−1 is invariant with respect to translations in its first
component, so it has the form

(λd−1Hd)⊗R,

with some constant λd−1 (the surface area density) and a probability measureR (the
rose of normal directions), a representation, which is in correspondence with (24).
Furthermore, HB(z, t) and p(z) are independent of z, so we write HB(t) = HB(0, t)
and p = p(0). The right sided derivative of HB(t) at t = 0 is denoted by H ′

B(0+).

Corollary 5. Let B ⊂ Rd be a compact set with o ∈ B. Let Z be stationary and
a.s. a gentle set such that (23) holds for D = [0, 1]d. Then

(1− p)H ′
B(0+) = 2λd−1

∫
Sd−1

h(B̌, n)R(dn).

We return to the general setting, where Z need not be stationary. Let B and W
be two non-empty compact subsets of Rd and o ∈ W . Motivated by mathematical
morphology, we introduce the hit-or-miss function G(B,W )(z, ·) with structuring pair
(B, W ) of Z at a location z ∈ Rd by

G(B,W )(z, t) = P (z + tB ⊆ Z, z + tW ⊆ Rd \ Z | z 6∈ Z)(26)

= P (z ∈ [Z 	 tB̌] \ [Z ⊕ tW̌ ] | z 6∈ Z)

whenever p(z) < 1. If p(z) = 1, we put G(B,W )(z, t) = 1. For stationary Z, the hit-
or-miss function does not depend on z ∈ Rd and we write G(B,W )(t) = G(B,W )(0, t).
In the above definition, we did not allow B = ∅. Formally, however, the first
definition in (26) still makes sense and we then have HW (z, ·) = 1 − G(∅,W )(z, ·).
However, the case B = ∅ will be excluded in what follows.

Theorem 4. Let B, W ⊂ Rd be two non-empty compact sets and o ∈ W . Let
Z be a.s. a gentle set such that (23) holds for all bounded Borel sets D ⊂ Rd. If
Λd−1(· × Sd−1) is absolutely continuous with respect to Hd with density λd−1(·), then

t−1(1− p(z))G(B,W )(z, t)Hd(dz)

v−→ 2λd−1(z)

∫
Sd−1

(
− h(B ⊕ W̌ , n)

)+R(z, dn)Hd(dz),

as t → 0+, where
v−→ denotes the vague convergence of measures.

If, in addition, Z is stationary, then

(27) (1− p)G′
(B,W )(0+) = 2λd−1

∫
Sd−1

(
− h(B ⊕ W̌ , n)

)+R(dn).

Proof. The proof uses ideas from the proofs of Theorem 4.1 and Corollary 4.6 in
[6]. Without loss of generality we may assume B, W ⊆ B(o, 1). If g : Rd → R is a
continuous function with compact support, we have∫

Rd

g(z)(1− p(z))G(B,W )(z, t)Hd(dz)

= E
[ ∫

Rd

g(z)1[Z	tB̌]\[Z⊕tW̌ ](z)Hd(dz)
]
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= E
[ ∫

Rd

(
g(z)− g(ξ∂Z(z))

)
1[Z	tB̌]\[Z⊕tW̌ ](z)Hd(dz)

]
+ E

[ ∫
Rd

g(ξ∂Z(z))1[Z	tB̌]\[Z⊕tW̌ ](z)Hd(dz)
]

= R1(t) + R2(t).

If z ∈ [Z	 tB̌] \ [Z⊕ tW̌ ], then z ∈ (Z⊕B(o, t)) \Z and thus |z− ξ∂Z(z))| ≤ t. Let
ε > 0 be an arbitrary real number, denote the support of g by supp g and define the
compact set D = supp g⊕B(o, 1). As g is uniformly continuous, there is 0 < tε ≤ 1
such that |g(z)− g(ξ∂Z(z))| ≤ ε for all z ∈ [Z 	 tB̌] \ [Z ⊕ tW̌ ] whenever t < tε. For
these t, we have due to Proposition 4

|R1(t)| ≤ ε EHd
(
ξ−1
∂Z(D) ∩ [Z 	 tB̌] \ [Z ⊕ tW̌ ]

)
≤ ε

d∑
i=1

iκiE
∫

N(∂Z)

1D(a)

∫ t

0

si−1 ds |µd−i|(∂Z; d(a, n))

≤ tε

d∑
i=1

κit
i−1E|µi|(∂Z; D × Sd−1).

In view of [9, (2.13) and Corollary 2.5] and (23), we obtain t−1|R1(t)| → 0, as
t → 0+. According to Corollary 1.(3), the integral in R2(t) satisfies

t−1

∫
Rd

g(ξZ(z))1[Z	tB̌]\[Z⊕tW̌ ](z)Hd(dz) →

→ 2

∫
N(Z)

g(z)
(
− h(B ⊕ W̌ , n)

)+
Cd−1(Z, d(z, n))

as t → 0+. In view of the dominating terms in the proof of Theorem 1 (which
implied Corollary 1.(3)) and (23), Lebesgue’s dominated convergence theorem allows
to interchange limit and expectation and we get

lim
t→0+

∫
Rd

g(z)t−1(1− p(z))G(B,W )(z, t)Hd(dz) =

= 2

∫
Rd×Sd−1

g(z)
(
− h(B ⊕ W̌ , n)

)+
Λd−1(Z, d(z, n)).

(24) and the fact that λd−1(·) is a density of Λd−1(Z, · × Sd−1) completes the proof
of the first claim. The stationary case is a direct consequence of this. �

6. Applications to design based digital stereology

The results for hit distribution functions (and also for hit-or-miss functions) of the
previous section can easily be transferred to the design based setting. We focus on
gentle sets A which are compact. Although boundedness is not needed, we assume
it here to keep notation concise. In the design based approach, the set A under
consideration (which was called Z in the last section) is deterministic and the prob-
ability pt that a randomly and uniformly translated structuring element z + tB hits
A, while z 6∈ A, is considered. An asymptotic formula for the first order behavior
of pt as t → 0+ is then directly obtained from Theorem 1 and its corollaries. The
inexact term of a “random and uniform translation” can easily be made precise by
choosing z in a sufficiently large set containing A ⊕ B̌ (when t ≤ 1), which avoids
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edge effects. We will not state these results here but rather show variants which are
particularly important in digital stereology.

We introduce the concept of systematic random sampling of sets. Let x1, . . . , xd

be a basis of Rd and let

L = {n1x1 + . . . + ndxd | n1, . . . , nd ∈ Z}

be the lattice generated by this basis. A given lattice L is generated by infinitely
many different bases, but the volume of the parallelepiped C = [o, x1]⊕ . . .⊕ [o, xd]
depends only on L and not on the basis chosen. This number is therefore denoted by
det L. If ξ is a uniform random variable in C, the random lattice ξ+L is a stationary
random closed set and we refer to it in what follows as a stationary random lattice, or
shorter a stationary lattice. Let D ⊆ Rd be an arbitrary Borel set and let #M denote
the number of elements of a set M . We consider different (random) digitizations
∆(D) of D. ∆(·) can be seen as a mapping from the Borel sets of Rd to finite subsets
of ξ + L. The most common digitization is ∆(D) = D ∩ (ξ + L). It is well known
that (det L) #∆(D) is an unbiased estimator for the volume of D:

(28) (det L) E#(D ∩ (ξ + L)) = (det L) E
∑

x∈ξ+L

1x∈D = Hd(D)

(a proof uses that {x + C : x ∈ L} is a tessellation of Rd). In (28), all points
of the randomly translated lattice are counted, which belong to D. We therefore
talk of systematic random point sampling. The digitization D ∩ (ξ + L) is called
(random) hit-or-miss digitization. In practice, other digitizations are used, as well.
For the pixel digitization, we think of each lattice point x as being the center of
small sampling window x + Q, where Q is some non-empty compact set, called the
sampling element. Often, Q is chosen to be the centered parallelepiped

[o, x1]⊕ . . .⊕ [o, xd]− (x1 + . . . + xd)/2

and then {x + Q : x ∈ L} forms a tessellation of Rd. (If L = Zd, d ∈ {2, 3}
and x1, . . . , xd is the standard basis of Rd, the sets x + [−1/2, 1/2]d, x ∈ L, are
called pixels or voxels, respectively). The pixel digitization D consists of all lattice
points x for which the corresponding window x + Q hits D and therefore can be
represented as (D ⊕ Q̌) ∩ (ξ + L). The hit-or-miss digitization is a special case of
the pixel digitization, as {o} is a possible choice for Q. (The pixel digitization is
closely related to the cell-covering digitization of D, which is by definition the family
of all cells x + Q for which x ∈ (D ⊕ Q̌) ∩ (ξ + L), if this family is a tessellation
of Rd, see e.g. [22]). A third digitization in use is the volume-threshold digitization
(D �θ Q) ∩ (ξ + L), already mentioned in the introduction.

We will refine the lattices by scaling them (together with the set Q) with a factor
t > 0. The resulting digitization is denoted by ∆t(·). We have ∆t(D) = t∆(1/tD)
for all measurable sets D. We first treat volume estimation. If A is a compact gentle
set and ∆(·) is the pixel digitization with compact sampling element Q 6= ∅, then
(28) and Corollary 2.(2) imply

(29) lim
t→0+

td(det L)E#∆t(A)−Hd(A)

t
=

∫
Sd−1

h(Q̌, n) Sd−1(A; n).

For the volume-threshold digitization, an analogue result can be stated.
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Proposition 6. Let A ⊂ Rd be a compact gentle set. Let ξ + L a stationary lattice
and let ∆ be the volume-threshold digitization with compact sampling element Q 6= ∅
and threshold-parameter 0 < θ ≤ 1. Then

lim
t→0+

td(det L)E#∆t(A)−Hd(A)

t
=

∫
Sd−1

fθ(Q̌, n) Sd−1(A; n).

Proof. From (28), we get

td(det L)E#∆t(A) = det(tL))E#
(
(A�θ tQ) ∩ t(ξ + L)

)
= Hd

(
A�θ tQ

)
.

Corollary 4.(2) implies the assertion. �

Proposition 6 was shown in [4] under stronger regularity conditions on A and it
was remarked that this result can be used to correct volume estimators of A based
on counting the points in ∆t(A), provided that t > 0 is small. In the same way, (29)
can be used to correct volume estimators for the pixel digitization.

Theorem 5. Let A be a full-dimensional compact gentle set. Let ξ +L a stationary
lattice, B, W ⊂ L two non-empty finite subsets of L and let ∆ either be the pixel
digitization or the volume-threshold digitization with compact sampling element Q 6=
∅ (and threshold-parameter θ). Then

Nt =
∑

x∈t(ξ+L)

1{x+tB⊆∆t(A),x+tW⊆t(ξ+L)\∆t(A)}, t > 0,

satisfies

(30) lim
t→0+

td−1(det L) ENt =

∫
Sd−1

(
− h(B ⊕ W̌ , n)

)+
Sd−1(A; n).

Proof. If ∆t(A) = (A ⊕ tQ̌) ∩ t(ξ + L) is the scaled pixel digitization, then (28)
implies

td(det L) ENt = det(tL)E#
[
(((A⊕ tQ̌)	 tB̌) \ ((A⊕ tQ̌)⊕ tW̌ )) ∩ t(ξ + L)

]
= Hd

(
[(A⊕ tQ̌)	 tB̌] \ [A⊕ t(Q̌⊕ W̌ )]

)
.

Replace the variables C, P , B , Q and W in Theorem 1 by A, Q̌, B̌, {0} and Q̌⊕W̌ ,
respectively, to obtain the assertion.

If ∆t(A) = (A�θtQ̌)∩t(ξ+L) is the scaled volume-threshold digitization, then(28)
implies

td(det L) ENt = Hd
(
[(A�θ tQ̌)	 tB̌] \ [(A�θ Q̌)⊕ tW̌ ]

)
and Theorem 2 gives the assertion. �

Theorem 5 states that td−1(det L) Nt is an asymptotically unbiased estimator for
the integral on the right hand side of (30). Note that Nt can be calculated alone
from the knowledge of the scaled lattice t(ξ + L) and the digitization ∆t(A). The
special case of Corollary 5, where ∆t(A) is the hit-or-miss digitization (Q = {o} in
the pixel digitization) and A is a topologically regular member of the convex ring,
has been shown for d = 2 (in a model based formulation) in [10] and (heuristically)
for d = 3 in [3].
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