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Abstract

This paper shows how to use realised kernels to carry out efficient feasible infer-
ence on the ex-post variation of underlying equity prices in the presence of simple
models of market frictions. The issue is subtle with only estimators which have
symmetric weights delivering consistent estimators with mixed Gaussian limit the-
orems. The weights can be chosen to achieve the best possible rate of convergence
and to have an asymptotic variance which is close to that of the maximum like-
lihood estimator in the parametric version of this problem. Realised kernels can
also be selected to (i) be analysed using endogenously spaced data such as that
in databases on transactions, (ii) allow for market frictions which are endogenous,
(iii) allow for temporally dependent noise. The finite sample performance of our
estimators is studied using simulation, while empirical work illustrates their use in
practice.
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1 Introduction

In the last five years the harnessing of high frequency financial data has lead to substan-
tial improvements in our understanding of financial volatility. The idea behind this is to
use quadratic variation as a measure of the ex-post variation of asset prices. Estimators
of increments of this quantity can allow us, for example, to improve forecasts of future
volatility and estimate parametric models of time varying volatility. The most commonly
used estimator of this type is the realised variance (e.g. Andersen, Bollerslev, Diebold,
and Labys (2001), Meddahi (2002) and Barndorff-Nielsen and Shephard (2002)), which
the recent econometric literature has shown has good properties when applied to 10 to
30 minute return data for frequently traded assets.

A weakness with realised variance is that it can be unacceptably sensitive to market
frictions when applied to returns recorded over shorter time intervals such as 1 minute, or
even more ambitiously, 1 second (e.g. Zhou (1996), Fang (1996) and Andersen, Bollerslev,
Diebold, and Labys (2000)). In this paper we study the class of realised kernel estimators
of quadratic variation. We show how to design these estimators to be robust to certain
types of frictions and to be efficient.

The problem of estimating the quadratic variation is, in some ways, similar to the
estimation of the long-run variance in stationary time series. For example, the realized
variance is analogous to the sum-of-squares variance estimator. The moving average
filter of Andersen, Bollerslev, Diebold, and Ebens (2001) and Hansen, Large, and Lunde
(2005) and the autoregressive filter of Bollen and Inder (2002), are estimators that use
pre-whitening techniques — see also Bandi and Russell (2005a). Äıt-Sahalia, Mykland,
and Zhang (2005) and Oomen (2005) propose parametric estimators. The two scale
estimator of Zhang, Mykland, and Aı̈t-Sahalia (2005) was the first consistent nonpara-
metric estimator for stochastic volatility plus noise processes. It is related to the earlier
work of Zhou (1996) on scaled Brownian motion plus noise. The multiscale estimator
of Zhang (2006) is more efficient than the two scale estimator. An alternative is due to
Large (2005), whose alternation estimator applies when prices move by a sequence of
single ticks. Finally, Delattre and Jacod (1997) studied the effect of rounding on realised
variances.

More formally, our interest will be in inference for the ex-post variation of log-prices
over some arbitrary fixed time period, such as a day, using estimators of realised kernel
type. In order to focus on the core issue we represent this period as the single interval
[0, t]. For a continuous time log-price process X and time gap δ > 0 our flat-top realised
kernels take on the following form

K̃(Xδ) = γ0(Xδ) +
H∑

h=1

k

(
h − 1

H

) {
γh(Xδ) + γ−h(Xδ)

}
.

Here the non-stochastic k(x) for x ∈ [0, 1] is a weight function and the h-th realised
autocovariance is

γh(Xδ) =
n∑

j=1

(
Xδj − Xδ(j−1)

) (
Xδ(j−h) − Xδ(j−h−1)

)
,

with h = −H, . . . ,−1, 0, 1, . . . , H and n = ⌊t/δ⌋. We will think of δ as being small and
so Xδj − Xδ(j−1) represents the j-th high frequency return, while γ0(Xδ) is the realised
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variance of X. Here K̃(Xδ)−γ0(Xδ) is the realised kernel correction to realised variance
for market frictions.

We show that if k(0) = 1, k(1) = 0 and H = cn2/3 then the resulting estimator is
asymptotically mixed Gaussian, converging at rate n1/6. Here c is a estimable constant
which can be optimally chosen as a function of k, the variance of the noise and a function
of the volatility path, to minimise the asymptotic variance of the estimator. The special
case of a so-called flat-top Bartlett kernel, where k(x) = 1−x, is particularly interesting
as its asymptotic distribution is the same as that of the two scale estimator.

When we additionally require that k′(0) = 0 and k′(1) = 0 then by taking H = cn1/2

the resulting estimator is asymptotically mixed Gaussian, converging at rate n1/4, which
we know is the fastest possible rate. When k(x) = 1 − 3x2 + 2x2 this estimator has the
same asymptotic distribution as the multiscale estimator.

We use our novel realised kernel framework to make three innovations to the liter-
ature: (i) we design a kernel to have an asymptotic variance which is smaller than the

multiscale estimator, (ii) we design K̃(Xδ) for data with endogenously spaced data, such
as that in databases on transactions (see Renault and Werker (2005) for the importance
of this), (iii) we cover the case where the market frictions are endogenous. All of these
results are new and the last two of them are essential from a practical perspective.

Clearly these realised kernels are related to so-called HAC estimators discussed by,
for example, Gallant (1987), Newey and West (1987), and Andrews (1991). The flat-top
of the kernel, where a unit weight is imposed on the first autocovariance, is related to the
flat-top literature initiated by Politis and Romano (1995) and Politis (2005). However,
the realised kernels are not scaled by the sample size, which has a great number of
technical implications and makes their analysis subtle.

The econometric literature on realised kernels was started by Zhou (1996) who pro-

posed K̃(Xδ) with H = 1. This suffices for unbiasedness under a simple model for
frictions where the population values of higher-order autocovariances of the market fric-
tions are zero. However, the estimator is inconsistent. Hansen and Lunde (2006) use
realised kernel type estimators, with k(x) = 1 for general H to characterize the second
order properties of market microstructure noise. Again these are inconsistent estimators.
Some analysis of the finite sample performance of a type of inconsistent realised kernel
is provided by Bandi and Russell (2005b), who focus on the selection of H in the case
where k(x) = 1 − x, the Bartlett kernel.

In Section 2 we detail our notation and assumptions about the efficient price process,
market frictions and realised kernels. In Section 3 we give a central limit theory for
γh(Xδ). Section 4 then looks at the corresponding properties of realised kernels. In
Section 5 we study the effect irregularly spaced data has on our theory and extend the
analysis of realised kernels to the case where the noise is temporally dependent and
endogenous. Section 6 performs a Monte Carlo experiment to assess the accuracy of our
feasible central limit theory. In Section 7 we apply the theory to some data taken from
the New York stock exchange and in Section 8 we draw conclusions. A lengthy Appendix
details the proofs of the results given in the paper.
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2 Notation, definitions and background

2.1 Semimartingales and quadratic variation

The fundamental theory of asset prices says that the log-price at time t, Yt, must, in a
frictionless arbitrage free market, obey a semimartingale process (written Y ∈ SM) on
some filtered probability space

(
Ω,F , (Ft)t≥T ∗ , P

)
, where T ∗ ≤ 0. Introductions to the

economics and mathematics of semimartingales are given in Back (1991) and Protter
(2004). It is unusual to start the clock of a semimartingale before time 0, but this raises
no technical difficulty and eases the exposition. We think of 0 as the start of an economic
day and sometimes it is useful to use data from the previous day. Alternatively we could
define γh(Xδ) as using data from time 0 to t by changing the range of the summation
to j = H + 1 and n − H and then scaling the resulting estimator. All the theoretical
properties we discuss in this paper would then follow in the same way as here.

Crucial to semimartingales, and to the economics of financial risk, is the quadratic
variation (QV) process of Y ∈ SM. This can be defined as

[Y ]t = p− lim
n→∞

tj≤t∑

j=1

(
Ytj − Ytj−1

)2
, (1)

(e.g. Protter (2004, p. 66–77) and Jacod and Shiryaev (2003, p. 51)) for any sequence
of deterministic partitions 0 = t0 < t1 < · · · < tn = T with supj{tj+1 − tj} → 0 for
n → ∞. Discussion of the case of stochastic spacing {tj} will be given in Section 5.1.

The most familiar semimartingales are of Brownian semimartingale type (Y ∈ BSM)

Yt =

∫ t

0

audu +

∫ t

0

σudWu, (2)

where a is a predictable locally bounded drift, σ is a càdlàg volatility process and W
is a Brownian motion. For reviews of the econometrics of this type of process see, for
example, Ghysels, Harvey, and Renault (1996) and Shephard (2005). If Y ∈ BSM then

[Y ]t =

∫ t

0

σ2
udu.

In some of our asymptotic theory we also assume, for simplicity of exposition, that

σt = σ0 +

∫ t

0

a#
u du +

∫ t

0

σ#
u dWu +

∫ t

0

v#
u dVu, (3)

where a#, σ# and v# are adapted càdlàg processes, with a# also being predictable and
locally bounded and V is Brownian motion independent of W . Much of what we do here
can be extended to allow for jumps in σ, following the details discussed in Barndorff-
Nielsen, Graversen, Jacod, and Shephard (2006), but we will not address that here.

2.2 Assumptions about noise

We write the effects of market frictions as U , so that we observe the process

X = Y + U, (4)
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and think of Y ∈ BSM as the efficient price. Our scientific interest will be in estimating
[Y ]t. In the main part of our work we will assume that Y ⊥⊥ U where, in general, A ⊥⊥B
denotes that A and B are independent. From a market microstructure theory viewpoint
this is a strong assumption as one may expect U to be correlated with increments in Y .
However, the empirical work of Hansen and Lunde (2006) suggests this independence
assumption is not too damaging statistically when we analyse data in thickly traded
stocks recorded every minute. In Section 5.3 we will show realised kernels are consistent
when this assumption is relaxed.

Furthermore we mostly work under a white noise assumption about the U process
(U ∈ WN ) which we assume has

E(Ut) = 0, Var(Ut) = ω2, Var(U2
t ) = λ2ω4, Ut ⊥⊥ Us

for any t, s, λ ∈R
+. This white noise assumption is unsatisfactory from a number of

viewpoints (e.g. Phillips and Yu (2006) and Kalnina and Linton (2006)) but is a useful
starting point if we think of the market frictions as operating in tick time (e.g. Bandi
and Russell (2005c), Zhang, Mykland, and Aı̈t-Sahalia (2005) and Hansen and Lunde
(2006)). A feature of U ∈ WN is that [U ]t = ∞. Thus U /∈ SM and so in a frictionless
market would allow arbitrage opportunities. Hence it only makes sense to add processes
of this type when there are frictions to be modelled. In Section 5.2 we will show our
kernel can be made to be consistent when the U ∈ WN assumption is dropped. This
type of property has been achieved earlier by the two scale estimator of Aı̈t-Sahalia,
Mykland, and Zhang (2006).

2.3 Defining the realised autocovariation process

We measure returns over time spans of length δ. Define, for any processes X and Z,

γh(Zδ, Xδ)t =
n∑

j=1

(
Zjδ − Z(j−1)δ

) (
X(j−h)δ − X(j−h−1)δ

)
,

h = −H, . . . ,−1, 0, 1, 2, . . . , H.

We call γh(Xδ) = γh(Xδ, Xδ) the realised autocovariation process, while noting that

γh(Xδ) = γh(Yδ) + γh(Uδ) + γ̃h(Yδ, Uδ),

where γ̃h(Yδ, Uδ) = γh(Yδ, Uδ) + γ−h(Yδ, Uδ). (5)

The case of realised QV has a special notation [Xδ] = γ0(Xδ). The daily increments of
this process are called realised variances, their square root the realised volatility. Realised
volatility has a very long history. It appears in, for example, Rosenberg (1972), Merton
(1980) and French, Schwert, and Stambaugh (1987), with Merton (1980) making the
implicit connection with the case where δ ↓ 0 in the pure scaled Brownian motion plus
drift case. For more general processes a closer connection between realised QV and QV,
and its use for econometric purposes, was made in Andersen, Bollerslev, Diebold, and
Labys (2001), Comte and Renault (1998) and Barndorff-Nielsen and Shephard (2002).
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2.4 Defining the realised kernel

We study the realised kernel

K̃(Xδ) = γ0(Xδ) +
H∑

h=1

k

(
h − 1

H

)
γ̃h(Xδ), γ̃h(Xδ) = γh(Xδ) + γ−h(Xδ), (6)

when k(0) = 1 and k(1) = 0, noting that K̃(Xδ) = K̃(Yδ) + K̃(Uδ) + 2K̃(Yδ, Uδ).
Throughout we will write, using ⊺ to denote a transpose,

γ(Xδ) = {γ0(Xδ), 2γ1(Xδ), . . . , 2γH(Xδ)}⊺ ,

γ̃(Xδ) = {γ0(Xδ), γ̃1(Xδ), . . . , γ̃H(Xδ)}⊺ ,

γ̃(Yδ, Uδ) = (γ0(Yδ, Uδ), γ̃1(Yδ, Uδ), . . . , γ̃H(Yδ, Uδ))
⊺ .

An implication of our analysis will be that the asymmetric kernel

K(Xδ) = γ0(Xδ) + 2
H∑

h=1

k

(
h − 1

H

)
γh(Xδ) (7)

is inconsistent and so should be avoided in high frequency financial econometrics.

2.5 Maximum likelihood estimator of QV

In order to put non-parametric results in context, it is helpful to have a parametric
benchmark. In this subsection we recall the behaviour of the maximum likelihood (ML)
estimator of σ2 = [Y ]1 when Yt = σWt and where the noise is Gaussian. All the results
we state here are already known.

Given Y ⊥⊥ U and taking t = 1 it follows that



X1/n − X0

X2/n − X1/n
...

X1 − X(n−1)/n


 ∼ N







0
0
...
0


 ,

σ2

n
I +




2ω2 • • •
−ω2 2ω2 • •

0 −ω2 2ω2 •
...

. . . . . . . . .





 .

Let σ̂2
ML and ω̂2

ML denote the ML estimators. Their asymptotic properties are given
from classical results about the MA(1) process. By adopting the expression given in
Aı̈t-Sahalia, Mykland, and Zhang (2005, Proposition 1) to our notation, we have that
for ω2 > 0

{
n1/4

(
σ̂2

ML − σ2
)

n1/2
(
ω̂2

ML − ω2
)

}
L→ N

(
0,

(
8ωσ3 0

0 2ω4

))
. (8)

This shows that σ̂2
ML converges at quite a slow rate. This is a familiar result from the

work of, for example, Stein (1987) and Gloter and Jacod (2001a, 2001b).
The special case where there is no market microstructure noise, (i.e. the true value

of ω2 = 0) results in faster rates of convergence for σ̂2
ML, since

n1/2
(
σ̂2

ML − σ2
) L→ N

(
0, 6σ4

)
. (9)

When ω2 is also known a priori to be zero, and so is not estimated, then

n1/2
(
σ̂2

ML − σ2
) L→ N

(
0, 2σ4

)
. (10)
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3 Central limit theory for γ(Xδ) and γ̃(Xδ)

3.1 Core result

Here we will study the large sample behaviour of the contributions to γ(Xδ). These

results will be used in the next Section to derive the properties of K̃w(Xδ) and so to select

k to produce good estimators of [Y ]. Throughout this paper
Ls→ will denote convergence

in law stably, which will be discussed in some detail in a moment.

Theorem 1 Suppose that Y ∈ BSM and (3) holds, then as δ ↓ 0 for the Y component
alone

δ−1/2




[Yδ]t −
∫ t

0
σ2

udu
γ1(Yδ)

...
γH(Yδ)




Ls→ MN

(
0, A ×

∫ t

0

σ4
udu

)
, A =




2 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1


 .

Here MN denotes a mixed normal distribution and γh(Yδ) − γ−h(Yδ) = Op(δ).

If U ∈ WN and Y ⊥⊥ U then γ̃(Yδ, Uδ)
Ls→ MN (0, 2ω2[Y ]B), where B is a (H +1)×

(H + 1) symmetric matrix with block structure

B =

(
B11 B12

B21 B22

)
, B22 =




2 • • •
−1 2 • •
. . . . . . . . . •
· · · 0 −1 2


 ,

B11 =

(
1 •
−1 2

)
, B21 =




0 −1
0 0
...

...
0 0


 ,

B12 = B⊺

21. Here B22 is a (H − 1) × (H − 1) symmetric matrix.
Finally, when U ∈ WN and writing n = ⌊t/δ⌋, for n ≥ H

E {γ(Uδ)} = E {γ̃(Uδ)} = 2ω2n (1,−1, 0, 0, . . . , 0)⊺ ,

Cov {γ(Uδ)} = 4ω4 (nC + D) , Cov {γ̃(Uδ)} = 4ω4
(
nC + D̃

)
. (11)

Here the (H + 1) × (H + 1) symmetric matrices C, D and D̃ have block structure

C =

(
C11 C12

C21 C22

)
, D =

(
D11 D12

D21 D22

)
, D̃ =

(
D̃11 D̃12

D̃21 D̃22

)
,

where the (H − 1) × (H − 1) and (H − 1) × 2 dimensional matrices are

C22 =




6 • • • •
−4 6 • • •
1 −4 6 • •
0 1 −4 6 •
...

. . . . . . . . . . . .




, C21 =




1 −4
0 1
0 0
...

...
0 0




,
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D22 =




−2 • • • •
2 −2 • • •
−1 2 −2 • •
0 −1 2 −2 •
...

. . . . . . . . . . . .




, D21 =




−1 2
0 −1
0 0
...

...
0 0




,

D̃22 =




−7 • • • • •
6 −10 • • • •
−2 8 −13 • • •
0 −2.5 10 −16 • •
...

...
. . . . . . . . .

...
0 0 · · · −H

2
2H −3H − 1




, D̃21 =




−1 4
0 −3

2

0 0
...

...
0 0




,

where C12 = C⊺

21, D12 = D⊺

21 and D̃12 = D̃⊺

21. The 2 × 2 matrices C11, D11 and D̃11 are

C11 =

(
1 + λ2 −2 − λ2

−2 − λ2 5 + λ2

)
, D11 =

(
−λ2/2 1 + λ2/2

1 + λ2/2 −2

)
,

D̃11 =

(
−λ2/2 λ2/2 + 1

λ2/2 + 1 −λ2/2 − 7/2

)
.

Lastly γh(Uδ)t − γ−h(Uδ)t = Op(1).

3.2 Comments

3.2.1 Stable convergence

The concept and role of stable convergence may be unfamiliar to some readers and we
therefore add some words of explanation. The concise mathematical definition is as
follows. Let X#

n denote a sequence of random variables defined on a probability space
(Ω,F , P ). Then we say that X#

n converges stably in law if there exists a probability
measure µ on (Ω × R,F×B) (where B denotes the Borel σ-algebra on R) such that
for every bounded random variable V on (Ω,F , P ) and every bounded and continuous
function f on R we have that, for n → ∞,

E
(
V f

(
X#

n

))
→

∫
V (ω) f (x) µ (dω, dx) .

If X#
n converges stably in law then, in particular, it converges in distribution (or in

law or weak convergence), the limiting law being µ (Ω, ·). Accordingly, one says that
X#

n converges stably to some random variable X# if there exists a probability measure
µ, as above, such that X# has law µ (Ω, ·). This concept and its extension to stable
convergence of processes is discussed in Jacod and Shiryaev (2003, pp. 512–518). For
earlier discussions see, for example, Rényi (1963), Aldous and Eagleson (1978), Hall and
Heyde (1980, pp. 56–58) and Jacod (1997). An early use of this concept in econometrics
was Phillips and Ouliaris (1990). It is used extensively in, for example, Barndorff-Nielsen,
Graversen, Jacod, and Shephard (2006).

However, this formalisation does not reveal the key property of stable convergence

which is that X#
n

Ls→ X# stably implies that for any random variable Z, the pair (Z,X#
n )
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converges in law to
(
Z,X#

)
. Consider the following simple example of the above result.

Let

X#
n = δ−1/2

(
[Yδ]t −

∫ t

0

σ2
udu

)

and Z =
√∫ t

0
σ4

udu. Our focus is on X#
n /

√
Z and our convergence in law stably implies

that

δ−1/2

(
[Yδ]t −

∫ t

0

σ2
udu

)
/

√∫ t

0

σ4
udu

L→ N(0, 2). (12)

Without the convergence in law stably, (12) could not be deduced. The following Lemma
is helpful in using this concept.

Lemma 1 Let Y #
n and Z#

n (n = 1, 2, . . . ) be sequences of random variables, defined
on some probability space (Ω,F , P ), and suppose that Y #

n converges stably to a random

variable Y # and that Z#
n converges in probability to 0, i.e. we have Y #

n
Ls→ Y # and

Z#
n

p→ 0 for n → ∞. (Here Y # may be defined on an extension of (Ω,F , P ).) Then

X#
n = Y #

n + Z#
n

Ls→ Y #.

3.2.2 Related results

The asymptotic distribution

δ−1/2 ([Yδ]t − [Y ]t)
Ls→ MN

(
0, 2

∫ t

0

σ4
udu

)
(13)

appears in Jacod (1994), Jacod and Protter (1998) and Barndorff-Nielsen and Shephard
(2002). This estimator has the efficiency of the ML estimator (10) in the pure Brownian
motion case.

The extension of the limiting results to deal with more general realised autocovari-
ances is new. We do this here in terms of the γ̃h = γh + γ−h as they will be key later

δ−1/2




[Yδ]t −
∫ t

0
σ2

udu
γ̃1(Yδ)

...
γ̃H(Yδ)




Ls→ MN


0,




2 0 · · · 0
0 4 · · · 0
...

...
. . .

...
0 0 · · · 4


 ×

∫ t

0

σ4
udu


 .

We now turn our attention to some simple kernels. The most interesting special case
is

δ−1/2 ([Yδ]t + γ̃1(Yδ) − [Y ]t)
Ls→ MN

(
0, 6

∫ t

0

σ4
udu

)
, (14)

which achieves the bound (9).
The main impact of the noise is through the γ̃(Uδ) term. The mean and variance of

[Uδ] = γ0(Uδ) was studied by, for example, Fang (1996), Bandi and Russell (2005c) and
Zhang, Mykland, and Aı̈t-Sahalia (2005). Note that both the mean and variance of [Uδ]
explode as n → ∞. Of course these features are passed onto [Xδ] making it inconsistent,
thus motivating this literature. The bias of [Uδ] is exactly balanced by that of γ̃1(Uδ), so
producing the unbiased but inconsistent estimator [Xδ]+ γ̃1(Xδ) with (e.g. Zhou (1996))
E([Uδ] + γ̃1(Uδ)) = 0 and Var([Uδ] + γ̃1(Uδ)) = 4ω4 (2n − 1.5).

9



4 Behaviour of kernels

4.1 Core result

In this Section we derive the asymptotic behaviour of arbitrary realised kernels. In
Section 4.3 we derive a way of choosing the number of terms to use in the kernel, which
is indexed by ω2 and

∫ t

0
σ4

udu. Subsequently we provide estimators of these quantities,
implying the feasible asymptotic distribution of the realised kernel can be applied in
practice to form confidence intervals for [Y ].

The asymptotic behaviour of the realised kernel is determined by the asymptotic
behaviour of quadratic forms in the A, B, C and D or D̃ matrices.

Theorem 2 Write

w =

(
1, 1, k

(
1

H

)
, . . . , k

(
H − 1

H

))
⊺

.

Assume that the kernel weight function k(x) is four times continuously differentiable and
write, as usual, derivatives using primes. As H increases, so the flat-top kernels have

w⊺Aw = Hk0,0
• + O(1),

w⊺Bw = −H−1
{
k′(0) + k0,2

•

}
+ O(H−2),

w⊺Cw = H−2
{
k′(0)2 + k′(1)2

}
+ H−3

{
k′′′(0) + k0,4

•

}
+ O(H−4),

w⊺Dw = λ2/2 − 2H−1
{
k′(0) + k0,2

•

}
+ O(H−2),

w⊺D̃w = −H−1

{
k′(0) +

1

2
k′(0)2 + k0,2

•

}
+ O(H−2),

where

k0,0
• =

∫ 1

0

k(x)2dx, k0,2
• =

∫ 1

0

k(x)k′′(x)dx, k0,4
• =

∫ 1

0

k(x)k
′′′′

(x)dx.

The λ2 term in w⊺Dw cannot be forced to zero either as H → ∞ or n → ∞. This
means that the asymmetric realised kernels (7) are always inconsistent unless λ = 0.

From now on we entirely focus on K̃(Xδ).
The large n and large H asymptotic distribution of

K̃(Xδ) −
∫ t

0

σ2
udu

is mixed normal with a zero mean and variance of

4Hn−1k0,0
• t

∫ t

0

σ4
udu − 4H−1

{
k′(0) + k0,2

•

} {
2ω2

∫ t

0

σ2
udu + ω4

}
(15)

+ 4ω4n
[
H−2

{
k′(0)2 + k′(1)2

}
+ H−3

{
k′′′(0) + k0,4

•

}]
− 4ω4H−1 1

2
k′(0)2.

If we now relate H to n there is an important special case. When

k′(0) = 0 and k′(1) = 0, (16)

10



then setting H = cn1/2 we produce the result

n1/4

{
K̃(Xδ) −

∫ t

0

σ2
udu

}

Ls→ MN

[
0, 4ck0,0

• t

∫ t

0

σ4
udu

− 8c−1k0,2
• ω2

(∫ t

0

σ2
udu +

ω2

2

)
+ 4ω4c−3

{
k′′′(0) + k0,4

•

}]
. (17)

We saw in (8) that this is the best rate of convergence that can be achieved for this
problem.

Whether or not (16) holds, when we set H = cn2/3 we have

n1/6

{
K̃(Xδ) −

∫ t

0

σ2
udu

}
Ls→ MN

[
0, 4ck0,0

• t

∫ t

0

σ4
udu + 4ω4c−2

{
k′(0)2 + k′(1)2

}]
. (18)

If (16) does hold then we get the very simple result that

n1/6

{
K̃(Xδ) −

∫ t

0

σ2
udu

}
Ls→ MN

(
0, 4ck0,0

• t

∫ t

0

σ4
udu

)
. (19)

4.2 Special cases with n1/6

When H = cn2/3 we have the asymptotic distribution given in (18). For this class of
kernels the value of c which minimises the asymptotic variance in (18) is

c = d
ω4/3

(
t
∫ t

0
σ4

udu
)1/3

, where d =

[
2 {k′(0)2 + k′(1)2}

k0,0
•

]1/3

.

Then the lower bound for the asymptotic variance is

4dω4/3

(
t

∫ t

0

σ4
udu

)2/3 [
k0,0
• + d−3

{
k′(0)2 + k′(1)2

}]
= 6dk0,0

• ω4/3

(
t

∫ t

0

σ4
udu

)2/3

. (20)

Hence dk0,0
• controls the asymptotic efficiency of estimators in this class.

Three flat-top cases of this setup are analysed in Table 11. The flat-top Bartlett
kernel puts k(x) = 1 − x, Epanechnikov kernel puts k(x) = 1 − x2, while the second
order kernel has k(x) = 1 − 2x + x2. The Bartlett kernel has the same asymptotic
distribution as the two scale estimator. It is more efficient than the Epanechnikov kernel
but less good than the second order kernel.

4.3 Special cases with n1/4

When H = cn1/2 the asymptotic distribution is given in (17). Given preliminary esti-
mates of ω2,

∫ t

0
σ2

udu and
∫ t

0
σ4

udu it is a simple matter to numerically find a value of c
which minimises the asymptotic variance. To gain some understanding think of Y = σW

1The results on specific k functions in this Section were calculated using the computer algebra package
Maple.
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k(x) k(0) k(1) k′(0) k′(1) k0,0
• d dk0,0

•

Bartlett 1 − x 1 0 −1 −1 1
3

2.28 0.763

2nd order 1 − 2x + x2 1 0 −2 0 1
5

3.42 0.683

Epanechnikov 1 − x2 1 0 0 −2 8
15

2.46 1.31

Table 1: Properties of some n1/6 flat-top realised kernels. Bartlett kernel has the same
asymptotic distribution as the two scale estimator. dk2

• measures the relative asymptotic
efficiency of the realised kernels in this class.

and t = 1, while we will ignore the ω2/2 as it will have a small impact. Then the task
simplifies to minimising

4σ4
(
ck0,0

• − 2c−1k0,2
• ξ + ξ2c−3f

)
,

where ξ = ω2/σ2 and f = k′′′(0) + k0,4
• . Writing x = c2 the first order condition is

k0,0
• x2 + 2k0,2

• ξx − 3ξ2f = 0. Taking the square root of the positive root yields

ĉ =
ω

σ
d, d =

√
1

k0,0
•

{
−k0,2

• +

√(
k0,2
•

)2
+ 3k0,0

• f

}
.

At this optimal point the asymptotic variance is

4
(
dk0,0

• − 2d−1k0,2
• + d−3f

)
σ3ω = gσ3ω.

From (8) we should expect that g ≥ 8.

k(x) k0,0
• k0,2

• f d g

Cubic kernel 1 − 3x2 + 2x3 0.371 −1.2 12 3.68 9.04

5-th order kernel 1 − 10x3 + 15x4 − 6x5 0.391 −1.42 17.1 3.70 10.2

6-th order kernel 1 − 15x4 + 24x5 − 10x6 0.471 −1.55 22.8 3.97 12.1

7-th order kernel 1 − 21x5 + 35x6 − 15x7 0.533 −1.71 31.8 4.11 13.9

8-th order kernel 1 − 28x6 + 48x7 − 21x8 0.582 −1.87 43.8 4.31 15.7

Parzen

{
1 − 6x2 + 6x3 0 ≤ x ≤ 1/2

2(1 − x)3 1/2 ≤ x ≤ 1
0.269 −1.5 24 4.77 8.54

Tukey-Hanning {1 + cos(πx)} /2 0.375 −1.23 12.1 3.70 9.18

Mod. Tukey-Hanning {1 − cos π (1 − x)2}/2 0.218 −1.71 41.7 5.74 8.29

Table 2: Properties of some n1/4 flat-top realised kernels, where f = k′′′(0) + k0,4
• . The

cubic kernel has the same asymptotic distribution as the multiscale estimator. g mea-
sures the relative asymptotic efficiency of the realised kernels in this class — 8 being the
parametric efficiency bound.

Eight flat-top cases of this setup are analysed in Table 2. The first is derived by
thinking of a cubic kernel k(x) = 1 + ax + bx2 + dx3, where a, b, d are constants. We
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can choose a, b, d by imposing the conditions (16) and that k(0) = 1 and k(1) = 0.
The resulting cubic kernel has k(x) = 1 − 3x2 + 2x3, which has some of the features of
cardinal cubic splines (e.g. Park and Schowengerdt (1983)) and quadratic mother kernels
(e.g. Phillips, Sun, and Jin (2003)). It is also noteworthy as it has the same asymptotic
distribution as the multiscale estimator. The flat-top Tukey-Hanning kernel puts k(x) =
{1 + cos(πx)} /2. Another interesting estimator is the flat-top Parzen kernel2, which
places

k(x) =

{
1 − 6x2 + 6x3 0 ≤ x ≤ 1/2
2(1 − x)3 1/2 ≤ x ≤ 1.

We call our final k the modified Tukey-Hanning kernel

k(x) =
{
1 − cos π (1 − x)2} /2. (21)

Table 2 shows that the performance of the Tukey-Hanning kernel is almost identical to
that of the cubic kernel. The Parzen kernel outperforms the cubic kernel, but is not as
good as (21). Both kernels fail to reach the parametric efficiency bound, but are very
close and tend to select more lags than the cubic kernel.

It is important to ask whether the approximation suggested by Theorem 2 and our
special cases thereof provides a useful guide to finite sample behaviour? Table 3 gives
Var

{
n1/4K̃(Xδ)

}
/ω listed against n in the Brownian motion plus noise case for a variety

of values of ω2 when σ = 1. The most empirically realistic value for ω2 is around 0.001
for the types of data we study later in this paper. The Table also includes results for
an optimal selection of k, computed numerically. This indicates that there does exist
a realised kernel which can achieve the ML efficiency bound of 8 in this case. More
generally the Table shows that the asymptotics provides a good approximation to the
finite sample case, especially when n is over 1, 000 and when ω2 is moderate to large.
The Table also shows that even though the Bartlett kernel converges at the slow n1/6

rate, it is only mildly inefficient even when n is 4, 000. When ω2 is small the asymptotic
variance provides a poor approximation in all cases unless n is 4, 000 or so. Of course, in
that case the realised kernels are quite precise as the asymptotic variance is proportional
to ωσ3.

4.4 Non-flat-top kernels

The flat-top constraint is imposed on these kernels to make them unbiased. If we remove
the flat-top constraint then the realised kernel becomes

K(Xδ) = γ0(Xδ) +
H∑

h=1

k

(
h

H

) {
γh(Xδ) + γ−h(Xδ)

}
,

where we assume k(0) = 1 and k(1) = 0. Now the bias in the Bartlett case k(x) = 1− x
is O(n/H) = O(n1/3). In the cubic case it is O(n/H2) = O(1), which is better but
not satisfactory. To remove the flat-top condition we need a kernel which is a higher

2The Parzen kernel is not everywhere differentiable and so the above formulas do not immediately
apply. However, we can simply split the integrals into (0, 1/2) and (1/2, 1) and carry out the integrals
over those regions. Using this argument delivers the results we give here.
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ω2 = 0.1 ω2 = 0.01

n Opt Mod Par 3-rd Bart Opt Mod Par 3-rd Bart

256 8.52 9.11 9.39 9.60 10.7 9.63 10.6 10.8 10.7 10.6
1, 024 8.30 8.76 9.03 9.37 11.9 8.73 9.43 9.73 9.81 10.3
4, 096 8.19 8.58 8.85 9.26 13.9 8.34 8.86 9.13 9.40 10.9
16, 384 8.14 8.49 8.76 9.21 16.8 8.17 8.58 8.84 9.22 12.5
65, 536 8.12 8.45 8.71 9.19 20.6 8.08 8.44 8.70 9.13 14.8
1, 048, 576 8.10 8.41 8.68 9.17 31.9 8.02 8.33 8.59 9.07 22.2
∞ 8.29 8.54 9.04 ∞ 8.29 8.54 9.04 ∞

ω2 = 0.001 ω2 = 0.0001
n Opt Mod Par 3-rd Bart Opt Mod Par 3-rd Bart

256 15.1 15.4 16.2 16.1 16.9 38.7 38.8 38.8 38.8 38.8
1, 024 10.8 11.8 12.1 12.1 11.7 21.0 21.1 21.2 23.2 21.5
4, 096 9.22 10.0 10.3 10.4 10.5 13.2 14.0 15.0 14.9 14.0
16, 384 8.55 9.19 9.47 9.61 10.4 10.1 11.1 11.6 11.3 11.0
65, 536 8.26 8.73 9.00 9.31 11.3 8.93 9.69 10.0 10.0 10.2
1, 048, 576 8.06 8.40 8.66 9.10 15.8 8.20 8.64 8.90 9.25 11.9
∞ 8.29 8.54 9.04 ∞ 8.29 8.54 9.04 ∞

Table 3: Flat-top realised kernels. V ar
{
n1/4K̃(Xδ)

}/
ω listed against n. Asymptotic

lower bound is 8. ‘Opt’ refers to k selected numerically to minimise the finite sample
variance of an unbiased realised kernel. ‘3-rd’ refers to 1 − 3x2 + 2x3. ‘Mod’ denotes
modified Tukey-Hanning (21).
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ω2 = 0.01 ω2 = 0.001 ω2 = 0.0001 ω2 = 0.01 ω2 = 0.001 ω2 = 0.0001

n Var Bias2 Var Bias2 Var Bias2 Var Bias2 Var Bias2 Var Bias2

5-th order kernel 6-th order kernel

256 9.97 5.28 8.34 33.1 13.8 4.19 11.9 0.10 13.1 1.33 13.8 4.19
1, 024 10.1 3.47 9.74 45.4 10.7 33.5 12.0 0.02 12.3 1.22 13.1 15.8
4, 096 10.2 1.97 10.0 34.9 9.90 189 12.0 0.00 12.0 0.48 11.5 43.0
16, 384 10.2 1.05 10.1 31.0 9.88 461 12.1 0.00 12.0 0.11 12.1 10.4
65, 536 10.2 0.57 10.2 17.2 10.1 322 12.1 0.00 12.0 0.02 12.0 3.41
262, 144 10.2 0.29 10.2 9.07 10.2 254 12.1 0.00 12.0 0.00 12.0 0.71
1, 048, 576 10.2 0.15 10.2 4.65 10.2 138 12.1 0.00 12.0 0.00 12.0 0.11
∞ 10.2 0.00 10.2 0.00 10.2 0.00 12.1 0.00 12.1 0.00 12.1 0.00

7-th order kernel 8-th order kernel

256 13.6 0.00 14.7 0.27 13.8 4.19 15.0 0.00 15.9 0.05 13.8 4.19
1, 024 13.8 0.00 13.8 0.09 15.5 6.88 15.5 0.00 15.1 0.00 17.4 2.80
4, 096 13.9 0.00 13.7 0.01 12.7 8.80 15.6 0.00 15.3 0.00 13.8 1.66
16, 384 13.9 0.00 13.8 0.00 13.7 0.55 15.7 0.00 15.6 0.00 15.1 0.02
65, 536 13.9 0.00 13.9 0.00 13.7 0.05 15.7 0.00 15.6 0.00 15.6 0.00
262, 144 13.9 0.00 13.9 0.00 13.9 0.00 15.7 0.00 15.7 0.00 15.6 0.00
1, 048, 576 13.9 0.00 13.9 0.00 13.9 0.00 15.7 0.00 15.7 0.00 15.7 0.00
∞ 13.9 0.00 13.9 0.00 13.9 0.00 15.7 0.00 15.7 0.00 15.7 0.00

Table 4: Finite sample value of V ar{n1/4K̃(Xδ)}/ω listed against n and scaled squared
bias for various order cases. In the n=256 case, when ω2 is very small H is selected to
be zero and so the realised kernel becomes the RV.

polynomial near zero and is symmetric, so the bias becomes negligible. For this we add
the additional constraint that k′′(0) = k′′(1) = 0. Simple polynomials of this type

k(x) = 1 + axj + bxj+1 + cxj+2, j = 3, 4, . . .

yield c = − (j + j2) /2, b = 2j + j2, a = −1 − 3j/2 − j2/2. Examples of this include

k(x) =





1 − 10x3 + 15x4 − 6x5, j = 3
1 − 15x4 + 24x5 − 10x6, j = 4
1 − 21x5 + 35x6 − 15x7, j = 5
1 − 28x6 + 48x7 − 21x8, j = 6.

(22)

The bias of these estimators is O(n/Hj) = O(n−(j−2)/2) which has no impact on its
asymptotic distribution when j ≥ 3 and should become more robust in finite samples as
j increases. We call the j-th case the j + 2-th order kernel. Table 2 shows that these
estimators are less efficient than (21) realised kernel. Table 4 shows the corresponding
finite sample behaviour for this realised kernel. In addition to the scaled variance, we
also report the scaled squared bias

{
n1/4

(
EK̃(Xδ) − 1

)}2 /
ω = 4n5/2ω3

[
2

{
1 − k

(
1

cn1/2

)}]2

.
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The Table shows the bias is small when ω2 is large and so does not create a distortion
for the inference procedure for this realised kernel. However, for small ω2 the bias
dramatically swamps the variance and so inference would be significantly affected.

4.5 Estimation of
∫ t

0 σ4
udu and ω2

Some of our limit theories depend upon integrated quarticity
∫ t

0
σ4

udu and the noise’s
variance ω2. We now discuss estimators of these quantities.

To estimate ω2 Oomen (2005) suggested using the unbiased ω̃2 = −γ̃1(Xδ)/2n, while,
for example, Bandi and Russell (2005a) suggest ω̂2 = [Xδ]/2n which has a bias of∫ t

0
σ2

udu/2n. Using Theorem 1 we have that

Var
{
n1/2

(
ω̃2 − ω2

)}
= ω4

(
5 + λ2

)
, Var

{
n1/2

(
ω̂2 − ω2

)}
= ω4

(
1 + λ2

)
.

In the Gaussian case λ2 = 2, and so ω̃2 and ω̂2 have variances which are around 3.5
and 1.5 times that of the ML estimator in the parametric case given in (8). Although
it is possible to derive a kernel style estimator to estimate ω2 efficiently, we resist the
temptation to do so here as the statistical gains are minor.

Estimating integrated quarticity reasonably efficiently is a tougher problem than
estimating QV. We do not know of any existing research which has solved this problem.
Define the subsampled squared returns, for some δ# > 0,

x2
j,. =

1

S

S−1∑

s=0

(
Xδ#(j+ s

S ) − Xδ#(j−1+ s
S )

)2

,

j = 1, 2, . . . , n. This allows us to define a bipower variation estimator of integrated
quarticity

{
Xδ# , ω2; S

}[2,2]
=

(
δ#

)−1
⌊t/δ#⌋∑

j=1

(
x2

j,. − 2ω2
) (

x2
j−2,. − 2ω2

)
, n =

⌊
t/δ#

⌋
.

The no noise case of this statistic was introduced by Barndorff-Nielsen and Shephard
(2004) and Barndorff-Nielsen and Shephard (2006) and studied in depth by Barndorff-
Nielsen, Graversen, Jacod, and Shephard (2006). See also Mykland (2006).

Detailed calculations show that when δ# is small and S is large then the conditional

variance of {Xδ# , ω2; S}[2,2]
is approximately 72ω8n3/S2, which needs n3/2/S → 0 for

consistency3. An interesting research problem is how to make this type of estimator
more efficient by using kernel type estimators. For now we use moderate values of n and
high values of S in our Monte Carlos and empirical work.

The finite sample performance of our estimator can be improved by using the in-

equality
∫ t

0
σ4

udu ≥ 1
t

(∫ t

0
σ2

udu
)2

. This is useful as we have a very efficient estimator of

3Let

εj =
1

S

S−1∑

s=0

[(
Uδ#(j+ s

S ) − Uδ#(j−1+ s

S )

)2

− 2ω2

+ 2
(
Uδ#(j+ s

S ) − Uδ#(j−1+ s

S )

) (
Yδ#(j+ s

S ) − Yδ#(j−1+ s

S )

)]
,
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∫ t

0
σ2

udu. Thus our preferred way of estimating integrated quarticity is

ÎQδ,S = max

[
1

t

(
K̃(Xδ)

)2

,
{
Xδ# , ω̂2; S

}[2,2]
]

.

5 Relaxing some of the assumptions

5.1 Effect of endogenous and stochastically spaced data

So far our analysis has been based on measuring prices at regularly spaced intervals of
length δ. In some ways it is more natural to work with returns measured in tick time
and so it would be attractive if we could extend the above theory to cover stochastically
spaced data. The convergence result inside QV is known to hold under very wide con-
ditions that allow the spacing to be stochastic and endogenous. This is spelt out in, for
example, Protter (2004, pp. 66-77) and Jacod and Shiryaev (2003, p. 51). It is impor-
tant, likewise, to be able to derive central limit theorems for stochastically spaced data
without assuming the times of measurement are independent of the underlying BSM.
This is emphasised by Renault and Werker (2005) in both their theoretical and empirical
work.

Let Y ∈ BSM and assume we have measurements at times tj = Tδj, j = 1, 2, . . . , n,
where 0 = t0 < t1 < · · · < tn = T1 and where T is a stochastic process of the form Tt =∫ t

0
τ 2

udu, with τ having strictly positive, càdlàg sample paths. Then we can construct a
new process Zt = YTt

, so at the measurement times Zδj = YTδj
j = 1, 2, . . . , n. Performing

the analysis on observations of Z made at equally spaced times then allows one to analyse
irregularly spaced data on Y . The following argument shows that Z ∈ BSM with spot
volatility σTt

τ t and so the analysis is straightforward. In particular, the feasible CLT

then

R =

[ n∑

j=1

(
x2

j,. − 2ω2
) (

x2
j−2,. − 2ω2

)]
−

n∑

j=1

y2
j,.y

2
j−2,. =

n∑

j=1

y2
j,.εj−2 +

n∑

j=1

εjy
2
j−2,. +

n∑

j=1

εjεj−2

≃
n∑

j=1

εj

(
y2

j−2,. + y2
j+2,.

)
+

n∑

j=1

εjεj−2.

Now

Var

( n∑

j=1

εj

(
y2

j−2,. + y2
j+2,.

)
|Y

)
≃ 12ω4

S

n∑

j=1

(
y2

j−2,. + y2
j+2,.

)2
= O(n−1S−1).

So

Var(R|Y ) ≃ Var

( n∑

j=1

εjεj−2|Y
)

=

n∑

j=1

Var (εjεj−2|Y ) + 2nCov (εjεj−2, εj−1εj−3|Y )

=

n∑

j=1

E
(
ε2

j |Y
)
E

(
ε2

j−2|Y
)

+ 2nCov (εjεj−2, εj−1εj−3|Y )

≃
n∑

j=1

{
8ω4

S
+

8ω2

S

(
y2

j

)
.

} {
8ω4

S
+

8ω2

S

(
y2

j−2

)
.

}
+

n

S2
2
(
2ω2

)2
+ · · ·

=
72ω8n

S2
+ O(S−2).
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is implemented by recording data every 5 trades, say, but then analysing it as if the
spacing had been equidistant.

Write Z = Y ◦T and St =
∫ t

0
σ2

udu. We assume that Y and T are adapted to a common
filtration Ft, which includes the history of the paths of Tu and Y ◦Tu for 0 ≤ u ≤ t. This
assumption implies that σu− is in Ft for 0 ≤ u ≤ Tt. Recall the key result (e.g. Revuz
and Yor (1999, p. 181)) [Z] = S ◦ T , while Z ∈ Mloc. The following proposition shows
that [Z] is absolutely continuous and implies by the martingale representation theorem
that Z is a stochastic volatility process with spot volatility of σTt

τ t.

Proposition 1 Let υt = σTt
τ t and

Υt =

∫ t

0

υ2
udu. (23)

Then υ is a càdlàg process and Υ = S ◦ T .

The implication of this for kernels is that we can write

Zt =

∫ t

0

aTu
τudu +

∫ t

0

σTu
τudB#

u ,

where B# is Brownian motion. Hence if we define a tick version of the kernel estimator

γh(Zn)t =

⌊t/δ⌋∑

j=1

(
Y ◦ Tδj − Y ◦ Tδ(j−1)

) (
Y ◦ Tδ(j−h) − Y ◦ Tδ(j−h−1)

)
,

K̃(Zn)t = γ0(Zn)t +
H∑

h=1

k

(
h − 1

H

) {
γh(Zn)t + γ−h(Zn)t

}
,

then the theory for this process follows from the previous results. Thus using the sym-
metric kernel allows consistent inference on [Z]t = [Y ]Tt

.

5.2 Effect of serial dependence

So far we have assumed that U ∈ WN . Now we will relax this assumption by considering
kernels of the type

K(Xδ) =
H∑

h=−H

k

(
h

H

)
γh(Xδ),

where as usual we write k(0) = 1 and k(±1) = 0. To analyse these kernels it is helpful
to write γh =

∑n
i=1 UiUi−h.

Proposition 2 Suppose U has a zero mean. If as H → ∞
H∑

h=−H

ah,HUh = Op(1), for any
H∑

h=−H

a2
h,H = O(1),

then

H∑

h=−H

k

(
h

H

)
γh(Uδ) =

H∑

h=−H

k

(
h

H

) (
2γh − γh−1 − γh+1

)
+ Op(H

−1/2).
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Further, suppose k is twice continuously differentiable, then

H∑

h=−H

k

(
h

H

)
γh = − n

H2

H∑

h=−H

k′′

(
h

H

) (
1

n
γh

)
+ Op(nH−3) + Op(H

−1/2). (24)

Proposition 3 We assume k′′ (0) = 0 and that U is an AR(1) process with persistence
parameter ρ, then

√
n

H

(
H∑

h=−H

k′′

(
h

H

) (
1

n
γh

))
d→ N

{
0, 4ω4 1 + ρ2

1 − ρ2

∫ 1

0

k′′(x)2dx

}
.

This means that
H∑

h=−H

k

(
h

H

)
γh = Op

(
n1/2

H3/2

)
+ Op

( n

H3

)
+ Op(H

−1/2).

So if H = cn1/2 then

H∑

h=−H

k

(
h

H

)
γh = Op

(
n−1/4

)
.

If we assume that Y ⊥⊥ U then temporal dependence in U makes no difference to the
asymptotic behaviour of γh(Uδ, Yδ) as δ ↓ 0 for the limit behaviour is driven by the local
martingale difference behaviour of the increments of the Y process. The above results
mean that if H = cn2/3 then K(Uδ) = Op(n

−1/3) which implies that this term has no
impact on the asymptotic distribution of K(Xδ). The same is not true when H = cn1/2,
since then K(Uδ) = Op(n

−1/4) and so the rate of convergence of the realised kernel is not
changed by serial dependence, but the asymptotic distribution is altered.

5.3 Endogenous noise

One of our key assumptions has been that Y ⊥⊥ U , that is the noise can be regarded as
an exogenous process. Hence it is interesting to ask if our realised kernels continue to be
consistent when U is endogenous. We do this under a simple linear model of endogeneity

Uδi =
H∑

h=0

βh

(
Yδ(i−h) − Yδ(i−1−h)

)
+ U δi,

where Y ⊥⊥ U and for simplicity we assume that U ∈ WN . Now

γh(Yδ, Uδ) =
H∑

j=0

βjγh+j(Yδ) −
H∑

j=0

βjγh+j+1(Yδ) + γh(Yδ, U δ).

Hence our asymptotic methods for studying the distribution of realised kernels under
exogenous noise can be used to study the impact of endogenous noise on realised kernels
through the limit theory we developed for γh(Yδ) and γh(Yδ, U δ). In particular

γh(Yδ, Uδ) − γh(Yδ, U δ) =





β0[Y ] + Op(n
−1/2), h = 0,

−β0[Y ] + Op(n
−1/2), h = −1,

Op(n
−1/2), |h| 6= 1.

Hence flat-top kernels will be robust to this type of endogenous noise. An alternative
approach to dealing with endogenous noise has been independently proposed by Kalnina
and Linton (2006) using multiscale estimators.
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6 Simulation study

6.1 Goal of the study

In this Section we report simulation results which assess the accuracy of the feasible
asymptotic approximation for the realised kernel. A much more thorough analysis is
provided in a Web Appendix to this paper available from www.hha.dk/~alunde/bnhls/

bnhls.htm.
Before we turn our attention to feasible asymptotic distributions, we note the Web

Appendix also reports on the accuracy of K̃(Xδ) as an estimator of
∫ t

0
σ2

udu and ÎQδ,S

as an estimator of
∫ t

0
σ4

udu. The raw estimator K̃(Xδ) may be negative, in which case
we always truncate it at zero (the same technique is used for ML estimators of course).
The Web Appendix shows this occurrence is extremely rare, even for small sample sizes,
but increases with ω2.

In this short section our focus will be assessing the infeasible and feasible central
limit theories for K̃(Xδ)−

∫ t

0
σ2

udu. Throughout we simulate over the time interval [0, 1].

We recall the asymptotic variance of K̃(Xδ)1 is given in (15) which we write as ̟ here.
This allows us to compute the asymptotic pivot

Traw =
K̃(Xδ)1 −

∫ 1

0
σ2

udu√
̟

L→ N(0, 1).

An alternative is to use the delta method and base the asymptotic analysis on (e.g.
Barndorff-Nielsen and Shephard (2002) and Goncalves and Meddahi (2004))

Tlog =
log

{
K̃(Xδ)1 + d

}
− log

{∫ 1

0
σ2

udu + d
}

√
̟/

{
K̃(Xδ)1 + d

} L→ N(0, 1).

The presence of d ≥ 0 allows for the possibility that K̃(Xδ)1 may be truncated to be

exactly zero. By selecting d = 0.12 we have the property that K̃(Xδ)1 +d is not negative
in any of our Monte Carlo experiments. In our simulations we have taken d = 0.2.

In the infeasible case our simple rule-of-thumb for the choice of H is H∗ =
5.74ω

√
n/[Y ]1, which immediately gives us ̟ for in this case we assume knowledge

of the path of σ. In practice this is less interesting than the feasible version, which
puts Ĥ∗ = 5.74ω̂

√
n/[Xδ∗ ]1, where [Xδ∗ ]1 is the realised variance estimator based on

low frequency data, such as 10 minute returns, which should not be too sensitive to
market frictions. Having selected H, in the feasible case we can then compute K̃(Xδ)

and ÎQδ,S and so plug these into ̟, replacing
∫ 1

0
σ2

udu and
∫ 1

0
σ4

udu respectively. Monte

Carlo results reported in the Appendix suggest taking S =
√

n in computing ÎQδ,S.

6.2 Simulation design

Recall we simulate over the time interval [0, 1]. We normalize one second to be 1/23400,
so that the interval [0, 1] is thought to cover 6.5 hours. The X process is generated using
an Euler scheme based on N = 23, 400 of intervals. We then construct sparsely sampled
returns Xi/n −X(i−1)/n, based on sample sizes n. In our Monte Carlo designs n takes on
the values 195, 390, 780, 1, 560, 4, 680, 5, 850, 7, 800, 11, 700 and 23, 400. The case of 1
minute returns is when n = 390.
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We consider the following SV model, which was also simulated by e.g. Huang and
Tauchen (2005) and Goncalves and Meddahi (2004)

dYt = µdt+σtdWt, σt = exp (β0 + β1τ t) , dτ t = ατ tdt+dBt, corr(dWt, dBt) = ρ.

Here ρ is a leverage parameter. To make the results comparable to our constant volatility
simulations reported in our Appendix we impose that E (σ2

t ) = 1 by setting β0 = β2
1/(2α).

We utilize the fact that the stationary distribution τ t ∼ N
(
0, (−2α)−1) to restart the

process each day. In these experiments we set µ = 0.03, β1 = 0.125, α = −0.025 and
ρ = −0.3. The variance of σ is comparable to the empirical results found in e.g. Hansen
and Lunde (2005). Finally, the market microstructure effects are modelled through ω2.
This is varied over 0.0001, 0.001 and 0.01, the latter being regarded as a very large effect
indeed. These values are taken from the detailed study of Hansen and Lunde (2006).

6.3 Results

Table B.1 shows the Monte Carlo results for the infeasible asymptotic theory for Traw,
knowing a priori the value of ̟. We can see from the Table that the results are rather
good, although the asymptotics are slightly underestimating the mass of the distribution
in the tails. The mean and standard deviations of Traw show that the T-statistic is slightly
overdispersed.

Table B.2 shows the results for the feasible asymptotic theory for Traw. This indicates
that the asymptotic theory does eventually kick in but it takes very large samples for
it to provide anything like a good approximation. The reason for this is clearly that
it is hard to consistently well approximate the integrated quarticity empirically. This
result is familiar from the literature on realised volatility where the same phenomena is
observed.

Table B.3 shows the results for the log version of the feasible theory based on Tlog.
The accuracy of the asymptotic predictions does not seem to change very much with ω2

and is much better than in the Traw case. For small sample sizes extreme quantiles suffer
from important distortions, but generally the asymptotics perform extremely well.

7 Empirical study

7.1 Analysis of General Electric trades in 2004

In this subsection we implement our efficient, feasible inference procedure for the daily
increments of [Y ] for the realised kernel estimator on trades of General Electric (GE)
shares carried out on the New York Stock Exchange in 2004. A more detailed analysis,
including a comparison with results based on data from 2000 and on 29 other major
stocks, is provided in our Web Appendix. We should note that the variance of the noise
was around 10 times higher in 2000 than in 2004 and so looking over both periods is
instructive. This Appendix also details the cleaning we carried out on the data before it
was analysed and the precise way we calculated all of our statistics.

Our realised kernel will be implemented on returns recorded every k trades, where k
is selected each day so that there are approximately 360 observations a day4. This means

4As our sample size is quite large it is important to calculate it in tick time in order not to be
influenced by the bias effect discussed by Renault and Werker (2005) caused by sampling in calender
time.
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Figure 1: Confidence intervals for the daily increments to [Y ] for General Electrics (GE)
in November 2004. Rectangles denote the 95% confidence intervals based on 20 minute
returns using the Barndorff-Nielsen and Shephard (2002) feasible realised variance in-
ference method. The other interval corresponds to our realised kernel, sampling in tick
times so the period over which returns are calculated is roughly 60 seconds.

that on average these returns are recorded every 60 seconds. This inference method will
be compared to the feasible procedure of Barndorff-Nielsen and Shephard (2002), which
ignores the presence of market microstructure effects, based on returns calculated over
20 minutes within each day. This baseline was chosen as Hansen and Lunde (2006)
has suggested that the Barndorff-Nielsen and Shephard (2002) method was empirically
sound when based on that type of interval for thickly traded stocks.

General Electric shares are traded very frequently on the NYSE. A typical day re-
sults in between 1, 500 and 6, 000 trades. For this stock Hansen and Lunde (2006) have
presented detailed work which suggests that over 60 second intervals it is empirically
reasonable to assume that Y and U are uncorrelated and U is roughly a white noise
process. Hence the main assumptions behind the inference procedure for our efficient
kernel estimator are roughly satisfied and so we feel comfortable implementing the feasi-
ble limit theory on this dataset. We should note that on all the days in 2004 our realised
kernel estimator of the daily increments of [Y ] was positive. In the 2004 sample period,
we found ω̂2 = [X1min]/2n to be very small and it was used to calculate Ĥ∗ and ̟. Due
to the positive bias in ω̂2, this will result in conservative confidence intervals.

Figure 1 shows daily 95% confidence intervals (CIs) for the realised kernel for Novem-
ber 2004 using the modified Tukey-Hanning weights (21) with H = cn1/2. Also drawn
are the corresponding results for the realised variance. We can see the realised kernel
has much shorter CIs. The width of these intervals does change through time, with them
tending to be slightly wider in high volatility periods. Over the entire year there are
only 3 days when the CIs do not overlap.
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Day Trans Lower RV20m Upper n Lower KV60s Upper k n H ω̂2

1 4631 0.48 0.83 1.46 20 0.55 0.76 1.07 13 357 4 0.0016
2 4974 0.62 1.19 2.28 20 0.83 1.16 1.63 14 356 4 0.0025
3 4918 0.51 0.92 1.63 20 0.73 1.01 1.42 14 352 4 0.0021
4 5493 0.26 0.52 1.03 20 0.43 0.60 0.85 16 344 4 0.0013
5 5504 0.65 1.26 2.44 20 1.24 1.72 2.38 16 344 3 0.0028
8 4686 0.25 0.46 0.85 20 0.31 0.45 0.66 14 335 4 0.0014
9 4923 0.38 1.05 2.95 20 0.58 0.80 1.11 14 352 3 0.0014

10 4970 0.29 0.55 1.07 20 0.39 0.55 0.77 14 355 4 0.0013
11 4667 0.27 0.71 1.91 20 0.37 0.51 0.72 13 359 4 0.0011
12 4822 0.17 0.32 0.60 20 0.23 0.33 0.48 14 345 4 0.0009
15 4681 0.38 0.80 1.72 20 0.52 0.72 1.02 14 335 4 0.0015
16 4526 0.31 0.54 0.93 20 0.47 0.65 0.91 13 349 4 0.0011
17 5477 0.77 1.39 2.51 20 0.79 1.10 1.52 16 343 3 0.0018
18 4738 0.24 0.41 0.68 20 0.36 0.51 0.73 14 339 4 0.0014
19 5224 0.83 1.73 3.62 20 0.96 1.32 1.81 15 349 3 0.0019
22 5359 0.39 0.72 1.33 20 0.55 0.75 1.04 15 358 3 0.0012
23 5405 0.47 0.97 1.99 20 0.75 1.03 1.41 15 361 3 0.0016
24 4626 0.19 0.36 0.68 20 0.51 0.80 1.26 13 356 3 0.0013
29 4709 0.59 1.17 2.31 20 1.00 1.39 1.93 14 337 3 0.0023
30 4719 0.32 0.74 1.71 20 0.64 0.90 1.27 14 338 4 0.0018

Table 5: Inference for General Electric (GE) volatility in November 2004. Trans denotes
the number of transactions on that day. RV20m is the daily [X20 minutes]. KV60s denotes

K̃th2
w (Xap. 1 min), that is the corresponding corresponding realised kernel calculating re-

turns every k observations. n is the sample size per day, H is the number of lags in the
kernel and ω̂2 = [X1min; 60]/2n.

Table 5 shows the details of these results for November 2004. The estimates of ω2

are very small, ranging from about 0.001 to 0.003. These are in the range of the small
to medium levels of noise set out in our Monte Carlo designs discussed in the previous
Section. The Table shows the sample size for the realised kernel, which is between 335
and 361 intervals of roughly 60 seconds. Typically each interval corresponds to about 15
trades. It records the daily selected value of H that ranges from 3 to 4, which is rather
modest and is driven by the fact that ω2 is quite small.

Table 6 provides summary statistics for some alternative estimators over the entire
year. This suggests the other realised kernel estimators have roughly the same average
value and that they are quite tightly correlated. The Table also records the summary
statistics for the realised variance computed using 20, 5, 1 minute and 10, and 1 second
intervals. The last two of these estimators show a substantially higher mean. Interest-
ingly, the realised QV based on 5 minute sampling is most correlated with the realized
kernels. This is in line with the optimal sampling frequencies for the realised QV re-
ported in Bandi and Russell (2005a). The realised kernels have a stronger degree of
serial dependence than our benchmark realised QV, [X20 minutes]. This point suggests the
realised kernel may be useful when it comes to forecasting, extending the exciting work
of Andersen, Bollerslev, Diebold, and Labys (2001). The high serial dependence found
in the realised QVs based on the high sampling frequencies suggests a strong dependence
in the bias components of these estimators.
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Figure 2: Four estimators for the daily increments to [Y ] for General Electrics in Novem-
ber 2004. The intervals are the confidence intervals for our realised Modified Tukey-
Hanning kernel based on returns sampled roughly every 60 seconds. The triangles denote
the subsampled version of this realised kernel. Diamonds denote our modified Tukey-
Hanning kernel based on all trades, circles represents [X20 minutes; 1200] (calculates RV
over 20 minutes returns, averaged over 1200 times, just changing the initial place prices
are recorded). Squares (TSRV (K, J) - aa) denote the bias adjusted Aı̈t-Sahalia, Mykland,
and Zhang (2006, eq. (4.22)) two scale estimator.

7.2 Speculative analysis

The analysis in the previous subsection does not use all of the available data efficiently,
for the realised kernel is computed only on every 15 or so trades. This was carried out so
that the empirical reality of the GE data matched the assumptions of our feasible central
limit theory, allowing us to calculate daily confidence intervals. In this subsection, we
give up on the goal of carrying out inference and simply focus on estimating [Y ] by
employing all of the data. The results in Section 6 suggest our efficient realised kernel
can do this, even though the white noise assumption and independence of Y and U are
no longer empirically well-grounded assumptions. For these robust estimators we select
H = cn2/3, where we use the same values for c as in the previous subsection. Inevitably
then, the results in this subsection will be more speculative than those given in the
previous analysis.

We calculate the realised kernel using every trade on each day, based on returns
sampled roughly every 60 seconds, or by applying the kernel weights to returns sampled
every trade. The time series of these estimators are drawn in Figure 2, together with the
corresponding bias corrected two scale estimator and a subsampled version of the realised
variance estimator using 5 minute returns, where the degree of subsampling was selected
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to exhaust the available data. For the sake of comparison, we also include the confidence
intervals from Figure 1. Figure 2 shows that realised kernels give very similar estimates
– on some days the estimates are almost identical. The uncorrected two scale estimators
and the bias corrected two scale estimator based on white noise are quite biased, but
the two scale estimator based on being robust to the white noise assumption5 (denoted
TSRV(K,J)-aa) seems in line with the results for the realised kernels and the subsampled
RV estimators. Table 7 provides summary statistics of these estimators. The realised
kernels are pretty robust to choice of the design of the weights.

8 Conclusions

In this paper we have provided a detailed analysis of the accuracy of realised kernels as
estimators of quadratic variation when an efficient price is obscured by simple market
frictions. We show how to make these estimators consistent and derive central limit
theorems for the estimators under various assumptions about the kernel weights. Such
estimators can be made to converge at the fastest possible rate and are very close to
being efficient. They can be made robust to dynamics in the noise process, robust to
endogenous market frictions and robust to endogenous spacing in the timing of the data.
The last two of these features are new to this literature.

Our efficient feasible central limit theory for our estimators performed satisfactorily
in Monte Carlo experiments designed to assess finite sample behaviour. Our kernel was
shown to be consistent under rather broad assumptions on the dynamics of the noise
term. We have applied the estimator empirically, using 60 second return data on General
Electric transaction data for 2004. Feasible inference for our realised kernel is compared
with that for a simpler realised variance estimator based on 20 minute returns. The
empirical results suggest that the realized kernel estimator is more accurate. Its serial
correlation suggests that the realized kernel may be useful for forecasting, following
Andersen, Bollerslev, Diebold, and Labys (2001).

There are many possible extensions to this work, e.g. multivariate versions of these
results which deal with the scrambling effects discussed by, for example, Hayashi and
Yoshida (2005), Bandi and Russell (2005c), Zhang (2005), Sheppard (2005), Voev and
Lunde (2005) and Griffin and Oomen (2006) and derive an asymptotically efficient choice
of kernel under temporal dependence in U .

5In empirical work we found this statistic to be sensitive to the choice of K. To be consistent with our
empirical findings J has to be about 15 (yielding returns measured roughly over 1 minute). Aı̈t-Sahalia,
Mykland, and Zhang (2006) show K has to much larger than J , but their automatic selection formula
for K typically selects K smaller than J , so we initially imposed K ≥ 2J . That was not enough to get
good empirical results and so we finally imposed K ≥ 5J , which worked well in practice.
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Appendix A: Proofs

Proof of Theorem 1. Throughout we take t = 1 and so δ = 1/n for the other cases
follow trivially.
PURE BSM CASE. Write yj = Yj/n − Y(j−1)/n, then the terms we need to study
are

∑n
j=1 y2

j ,
∑n

j=1 yjyj+1, . . . ,
∑n

j=1 yjyj+H . This can be written in the form of a set of
multipower variation statistics (e.g. Barndorff-Nielsen, Graversen, Jacod, and Shephard
(2006))

n∑

j=1

H∏

k=0

gl,k(yj+k) =
n∑

j=1

gl(yj, yj+1, . . . , yj+H), l = 0, 1, 2, . . . , H,

by selecting the functions gl,k appropriately. In particular, writing gl,k into a matrix form

g(x) =




x2
0 1 1 · · · 1

x0 x1 1 · · · 1
x0 1 x2 · · · 1
...

...
. . . . . .

x0 1 1 · · · xH




, x ∈ R
H+1.

We satisfy all the conditions in Barndorff-Nielsen, Graversen, Jacod, Podolskij, and
Shephard (2006) except there the gl,k(x) are assumed all to be even functions. To see
that for our specific form of g this assumption of evenness does not matter, we will look
solely at the

∑n
j=1 yjyj+1 statistic. The other terms then follow immediately by the same

argument.
We think of the bipower variation statistic

1

n

n∑

j=1

g2,1

(√
nyj

)
g2,2

(√
nyj+1

)
,

where g2,1(x0) = x0 and g2,2(x1) = x1. Then using the notation of Barndorff-Nielsen,
Graversen, Jacod, Podolskij, and Shephard (2006) that ρσ(h) = E (h (x) |σ2), x|σ2 ∼
N(0, σ2) we note that ρσ(g2,1) = ρσ(g2.2) = 0, which enormously simplifies the task.
Inspection of their proof shows two steps use this assumption. It is used on page 67,
where various features of their zn

i are defined and studied. In our case zn
i = 0 and so

they follow immediately.
The only non-trivial step involves their equation (4.12) applied to the bipower case

which is presented in the first equation of their Proposition 4.2. This corresponds to
checking condition (7.29) in Jacod and Shiryaev (2003). The sole task then is satisfied
if we can show

n∑

j=1

E
(
ζn

j wj|F j−1

n

)
p→ 0,

(actually converging to a continuous process would be enough) where we define

ζn
j =

1√
n

g2,1(βj−1)g2,2(β
′

j−1),
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with βj =
√

nσ j−1

n
wj, β

′
j =

√
nσ j−1

n
wj+1, and wj = W j

n
−W j−1

n
. Thus ζn

j =
√

nσ2
i−2
n

wj−1wj.

Clearly

n∑

j=1

E
(
ζn

j ∆n
j W |F j−1

n

)
=

1√
n

n∑

j=1

σ2
j−2

n

(
∆n

j−1W
)

=
1√
n

∫ 1

0

σ2
udWu + op(n

−1/2)
p→ 0.

Hence the result holds.
This implies then that Barndorff-Nielsen, Graversen, Jacod, Podolskij, and Shephard

(2006) result holds and so

δ−1/2




[Yδ]t −
∫ t

0
σ2

udu
γ1(Yδ)

...
γH(Yδ)




Ls→ MN

(
0,

∫ t

0

A(σu, g)du

)

where

Al,k(σ, g) = Cov
{
gl(x), gk(x)|σ2

}
, x|σ2 ∼ N(0, σ2I)

= σ4Cov {gl(x), gk(x)} , x ∼ N(0, I).

Simple calculations based on the normal distribution delivers the result immediately.
THE CROSS TERM. Be implicit about the dependence on δ, then we can express
γ0(Yδ, Uδ) and γ̃h(Yδ, Uδ) as

n∑

j=1

yj(Uj − Uj−1) =
n∑

j=1

(yj − yj+1) Uj + Op(n
−1/2)

n∑

j=1

yj(Uj−h − Uj−h−1 + Uj+h − Uj+h−1)

=
n∑

j=1

(yj+h − yj+h+1 + yj−h − yj−h−1)Uj + Op(n
−1/2).

Then the result follows immediately as γh(Yδ) = Op(n
−1/2) for |h| > 0.

PURE NOISE CASE. The expectation and covariance of γ(Uδ) and γ̃(Uδ) can be
computed in the following way. We write the terms into uncorrelated items

[Uδ] =
n∑

j=1

(Uj − Uj−1)
2 =

n∑

j=1

U2
j +

n∑

j=1

U2
j−1 − 2

n∑

j=1

UjUj−1

= 2
n−1∑

j=1

U2
j − 2

n−1∑

j=1

UjUj−1 +
(
U2

n + U2
0 − 2UnUn−1

)
.

γ1(U) =
n∑

j=1

(Uj − Uj−1) (Uj−1 − Uj−2)
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=
n∑

j=1

UjUj−1 −
n∑

j=1

U2
j−1 −

n∑

j=1

UjUj−2 +
n∑

j=1

Uj−1Uj−2

= 2
n−1∑

j=1

UjUj−1 −
n−1∑

j=1

UjUj−2 −
n−1∑

j=1

U2
j

+
(
−UnUn−2 + UnUn−1 + U0U−1 − U2

0

)
.

γ2(U) =
n∑

j=1

(Uj − Uj−1) (Uj−2 − Uj−3)

=
n∑

j=1

UjUj−2 −
n∑

j=1

Uj−1Uj−2 −
n∑

j=1

UjUj−3 +
n∑

j=1

Uj−1Uj−3

= 2
n−1∑

j=1

UjUj−2 −
n−1∑

j=1

UjUj−1

−
n−1∑

j=1

UjUj−3 + (−UnUn−3 + UnUn−2 + U0U−2 − U0U−1) .

The relevant covariance matrix can then be computed straightforwardly.
Finally, we show that end effects matter in the pure noise case. For simplicity we

consider solely the h = 1 case. Writing n = ⌊t/δ⌋

γ1(Uδ) = 2
n−1∑

j=1

UjδU(j−1)δ −
n−1∑

j=1

UjδU(j−2)δ −
n−1∑

j=1

U2
jδ + G1

γ−1(Uδ) = 2
n−1∑

j=1

UjδU(j−1)δ −
n−1∑

j=1

UjδU(j−2)δ −
n−1∑

j=1

U2
jδ + G−1,

with end effects: G1 = −UnδU(n−2)δ + UnδU(n−1)δ + U0U(−1)δ − U2
0 , and G−1 =

−U(n+1)δU(n−1)δ +U(n+1)δUnδ +U1δU0 −U2
nδ. The terms U2

0 and U2
nδ differ and they never

go away as n gets large. ¤

Proof of Lemma 1. Recall that Y #
n

Ls→ Y # means that for any bounded random vari-
able V on (Ω,F , P ) and any bounded continuous function f , as n → ∞, E

{
V f

(
Y #

n

)}
→

E
{
V f

(
Y #

)}
.

To show that X#
n

Ls→ Y # it suffices to verify that for any given V and f , as above,

E
{
V f

(
X#

n

)}
− E

{
V f

(
Y #

n

)}
→ 0. (B.1)

Now, let c and c′ be constants such that |V | ≤ c < ∞ and |f | ≤ c′ < ∞, then
∣∣E

{
V f

(
X#

n

)}
− E

{
V f

(
Y #

n

)}∣∣ ≤ E
{
|V |

∣∣f
(
X#

n

)
− f

(
Y #

n

)∣∣}

≤ cE
{∣∣f

(
X#

n

)
− f

(
Y #

n

)∣∣} .

By the assumed properties of Y #
n and Z#

n , to any ε > 0 there exists an n0 and a finite
closed interval I such that for any n > n0 we have Pr

{
Y #

n /∈ I or X#
n /∈ I

}
< ε and

hence, for n > n0,

E
{∣∣f

(
X#

n

)
− f

(
Y #

n

)∣∣} ≤ c′ε + E
{∣∣f

(
X#

n

)
− f

(
Y #

n

)∣∣1{Y #
n ∈I and X#

n ∈I}
}

.

32



Since f is uniformly continuous on I there exists a δ = δ (ε) such that

|f (x) − f (y)| < ε for all x, y ∈ I with |x − y| < δ.

Next, take n′
0 > n0 and so large that P

{∣∣Z#
n

∣∣ ≥ δ
}

< ε provided n > n′
0. Then, for

such n

E
{∣∣f

(
X#

n

)
− f

(
Y #

n

)∣∣1{Y #
n ∈I and X#

n ∈I}
}

≤ c′ε + E
{∣∣f

(
X#

n

)
− f

(
Y #

n

)∣∣1{Y #
n ∈I and X#

n ∈I}1{|Z#
n |<δ}

}

≤ c′ε + E
{∣∣f

(
X#

n

)
− f

(
Y #

n

)∣∣1{|Z#
n |<δ}

}
≤ c′ε + ε.

All in all we therefore have that
∣∣E

{
V f

(
X#

n

)}
− E

{
V f

(
Y #

n

)}∣∣ ≤ c (2c′ε + ε) for n > n′
0

from which (B.1) follows. ¤

Proof of Proposition 1. The càdlàg property of υ follows by direct argument. Further,
by Lebesgue’s Theorem, the integral (23) is the same whether interpreted as a Riemann
integral or a Lebesgue integral. With the latter interpretation we find

Υt =

∫ t

0

σ2
Tu

τ 2
udu =

∫ t

0

σ2
Tu

dTu =

∫ Tt

0

σ2
udu = S ◦ Tt.

¤

Proof of Theorem 2. Write w = (w⊺, v⊺)⊺ where w = (1, 1)⊺ and v is a (H − 1) × 1

vector. Then the variances of Kv(Uδ) and K̃v(Uδ) are, respectively,

V = 4ω4 {nVC(v) + VD(v)} , Ṽ = 4ω4
{
nVC(v) + V eD(v)

}
, (B.2)

where, for a generic matrix E which splits as before into blocks E11, E21, E22,

VE(v) = w⊺E11w + 2v⊺E21w + v⊺E22v.

Likewise, under Y ∈ BSM the conditional variance of K̃v(Yδ, Uδ) given Y is

Var
{

K̃v(Yδ, Uδ)|Y
}

= 2ω2VB(v)[Y ] + O(δ),

and we have that

n1/2

√
t
(
3 + 2

∑H
h=2 v2

h

)
(

K̃v(Yδ) −
∫ t

0

σ2
udu

)
Ls→ MN

(
0, 2t

∫ t

0

σ4
udu

)
. (B.3)

We study the large sample behaviour of v⊺A22v, v⊺B22v, v⊺C22v, v⊺D22v.

v⊺A22v =
H∑

i=1

v2
i ,

v⊺B22v = v1(2v1 − v2) +
H−1∑

i=2

vi(−vi−1 + 2vi − vi+1) + vH(−vi−1 + 2vi),
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v⊺C22v = v1(6v1 − 4v2 + v3) + v2(−4v1 + 6v2 − 4v3 + v4)

+
H−2∑

i=3

vi(vi−2 − 4vi−1 + 6vi − 4vi+1 + vi+2)

+ vH−1(vH−3 − 4vH−2 + 6vH−1 − 4vH) + vH(vH−2 − 4vH−1 + 6vH),

−v⊺D22v = v1(2v1 − 2v2 + v3) + v2(−2v1 + 2v2 − 2v3 + v4)

+
H−2∑

i=3

vi(vi−2 − 2vi−1 + 2vi − 2vi+1 + vi+2)

+ vH−1(vH−3 − 2vH−2 + 2vH−1 − 2vH) + vH(vH−2 + 2vH−1 − 2vH).

v⊺D̃22v = v1 {−7v1 + 6v2 − 2v3} + v2

{
6v1 − 10v2 + 8v3 −

5

2
v4

}

+
H−2∑

h=3

vh

{
−h + 1

2
vh−2 + 2(h + 1)vh−1 − (3h + 4)vh + 2(h + 2)vh+1

− h + 3

2
vh+2

}

+ vH−1

{
−H

2
vH−3 + 2HvH−2 − (3H + 1)vH−1 + 2(H + 1)vH

}

+ vH

{
−H + 1

2
vH−2 + 2(H + 1)vH−1 − (3H + 4)vH

}
.

End-Effects: First we study the end-effects. We have the following table of coefficients

k(0) k′(0)δ k′′(0)δ2 k′′′(0)δ3 k′′′′(0)δ4

v1 = k(δ) 1 1 1
2

1
6

1
24

v2 = k(2δ) 1 2 4
2

8
6

16
24

v3 = k(3δ) 1 3 9
2

27
6

81
24

v4 = k(4δ) 1 4 16
2

32
6

128
24

from which it follows that

2v1 − v2 = k(0) − k′′(0)δ2 − k′′′(0)δ3 + O(δ4) = 1 + O(H−2)

2v1 − 2v2 + v3 = k(0) + k′(0)δ + 3
2
k′′(0)δ2 + O(δ3)

= 1 + k′(0)H−1 + O(H−2)

−2v1 + 2v2 − 2v3 + v4 = −1 + O(H−2)

6v1 − 4v2 + v3 = 3 + k′(0)H−1 − 1

2
k′′(0)H−2 +

1

6
k′′′(0)H−3 + O(H−4)

−4v1 + 6v2 − 4v3 + v4 = −1 + O(H−4),

−7v1 + 6v2 − 2v3 = −3k(0) − k′(0)δ − 1

2
k′′(0)δ2 + O(δ3),

6v1 − 10v2 + 8v3 −
5

2
v4 = 3/2k(0) − k′′(0)δ2 + O(δ3).
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Similarly,

k(1) k′(1)δ k′′(1)δ2 k′′′(1)δ3 k′′′′(1)δ4

vH 1 0 0 0 0

vH−1 = k(1 − δ) 1 −1 1
2

−1
6

1
24

vH−2 = k(1 − 2δ) 1 −2 4
2

−8
6

16
24

vH−3 = k(3δ) 1 −3 9
2

−27
6

81
24

such that (k(1) = 0)

vH−1 = 7 − k′(1)δ + 1
2
k′′(1)δ2 − 1

6
k′′′(1)δ3 + O(δ4)

vH−3 − 4vH−2 + 6vH−1 = − k′(1)δ − 1
2
k′′(1)δ2 − 1

6
k′′′(1)δ3 + O(δ4)

vH−3 − 2vH−2 + 2vH−1 = − k′(1)δ − 3
2
k′′(1)δ2 + O(δ3)

−1
2
vH−3 + 2vH−2 − 3vH−1 = 1

2
k′(1)δ + 1

4
k′′(1)δ2 + O(δ3)

and

vH−1(vH−3 − 2vH−2 + 2vH−1) = δ2k′(1)2 + δ3k′(1)k′′(1) + O(δ4)

vH−1(vH−3 − 4vH−2 + 6vH−1) = − δk′(1)
{
−k′(1)δ − 1

2
k′′(1)δ2 + O(δ3)

}

+ 1
2
k′′(1)δ2

{
−k′(1)δ + O(δ2)

}

= k′(1)2δ2 + O(δ4)

B End-Effects v1(2v1 − v2) = 1 + k′(0)δ + O(δ2).

C End-Effects

v1 (6v1 − 4v2 + v3) = 1
{
3 + k′(0)δ − 1

2
k′′(0)δ2 + 1

6
k′′′(0)δ3 + O(δ4)

}

+ k′(0)δ
{
3 + k′(0)δ − 1

2
k′′(0)δ2 + O(δ3)

}

+ 1
2
k′′(0)δ2

{
3 + k′(0)δ + O(δ2)

}
+ 1

6
k′′′(0)δ3 {3 + O(δ)}

= 3 + 4k′(0)δ +
{
k′(0)2 + k′′(0)

}
δ2 + 2

3
k′′′(0)δ3 + O(δ4),

and

v2 (−4v1 + 6v2 − 4v3 + v4) =
{
1 + 2k′(0)δ + 4

2
k′′(0)δ2 + 8

6
k′′′(0)δ3 + O(δ4)

}

×
{
−1 + O(δ4)

}

= − 1 − 2k′(0)δ − 2k′′(0)δ2 − 4
3
k′′′(0)δ3 + O(δ4),

which add up to

v1 (6v1 − 4v2 + v3) + v2 (−4v1 + 6v2 − 4v3 + v4)

= 2 + 2k′(0)δ +
{
k′(0)2 − k′′(0)

}
δ2 − 4

6
k′′′(0)δ3 + O(δ4).

The last end-term is vH−1(vH−3 − 4vH−2 + 6vH−1 − 4vH) = k′(1)2δ2 + O(δ4).
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D End-Effects

v1(2v1 − 2v2 + v3) + v2(−2v1 + 2v2 − 2v3 + v4) = 1 + 2k′(0)δ

− 1 − 2k′(0)δ + O(δ2) = O(δ2)

vH−1(vH−3 − 2vH−2 + 2vH−1 − 2vH) = k′(1)2δ2 + O(δ4).

D̃ End-Effects:

v1 {−7v1 + 6v2 − 2v3} = −
{
k(0) + k′(0)δ + O(δ2)

}{
3k(0) + k′(0)δ + O(δ2)

}

= −3 − 4k′(0)δ + O(δ2),

v2

{
6v1 − 10v2 + 8v3 − 5

2
v4

}
=

{
k(0) + 2k′(0)δ + O(δ2)

}

×
{

3
2
k(0) − k′′(0)δ2 + O(δ3)

}

= 3
2

+ 3k′(0)δ + O(δ2),

vH−1

{
−H

2
vH−3 + 2HvH−2 − (3H + 1)vH−1

}

= vH−1δ
−1

{
−1

2
vH−3 + 2vH−2 − 3vH−1

}
− v2

H−1,

vH−1δ
−1

{
−1

2
vH−3 + 2vH−2 − 3vH−1

}
=

(
−k′(1)δ + 1

2
k′′(1)δ2 + O(δ3)

)

× δ−1
{

1
2
k′(1)δ + 1

4
k′′(1)δ2 + O(δ3)

}

= − 1
2
k′(1)2δ + 0 × k′(1)k′′(1)δ2 + O(δ3),

−v2
H−1 = −

{
−k′(1)δ + O(δ2)

}2
= −k′(1)2δ2 + O(δ3).

So the total contribution from end-effects is −3
2
−

{
k′(0) + 1

2
k′(1)2

}
δ + O(δ2).

Summations: From the following table of coefficients,

k(x) k′(x)δ k′′(x)δ2 k′′′(x)δ3 k′′′′(x)δ4

k(x − 2δ) 1 −2 4
2

−8
6

16
24

k(x − δ) 1 −1 1
2

−1
6

1
24

k(x) 1 0 0 0 0

k(x + δ) 1 1 1
2

1
6

1
24

k(x + 2δ) 1 2 4
2

8
6

16
24

we find that the terms in the summation expressions are given by

k(x + δ) − 2k(x) + k(x − δ) = δ2k′′(x) + O(δ4)

k(x + 2δ) − 4k(x + δ) + 6k(x) − 4k(x − δ) + k(x − 2δ) = δ4k′′′′(x) + O(δ6)

k(x + 2δ) − 2k(x + δ) + 2k(x) − 2k(x − δ) + k(x − 2δ) = 2δ2k′′(x) + O(δ4).

Thus

1

H
v⊺A22v =

1

H

H∑

i=1

v2
i →

∫ 1

0

k2(x)dx
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v⊺B22v = 1 + k′(0)H−1 − H−1

∫ 1

0

k(x)k′′(x)dx + O(H−2)

= 1 + H−16/5 + O(H−2)

v⊺C22v = 2 + 2k′(0)H−1 + H−2
{
k′(0)2 + k′(1)2 − k′′(0)

}
− H−3 4

6
k′′′(0)

+ H−3

∫ 1

0

k(x)k
′′′′

(x)dx + O(H−4)

v⊺D22v = − 2H−1

∫ 1

0

k(x)k′′(x)dx + O(H−2) = H−112/5 + O(H−2).

The term for D̃22 is slightly more involved.

− h + 1

2
vh−2 + 2(h + 1)vh−1 − (3h + 4)vh + 2(h + 2)vh+1 −

h + 3

2
vh+2

= −h

2
{vh−2 − 4vh−1 + 6vh − 4vh+1 + vh+2}

− 1

2
{vh−2 − 4vh−1 + 8vh − 8vh+1 + 3vh+2}

= −h

2
{vh−2 − 4vh−1 + 6vh − 4vh+1 + vh+2}

− 1

2
{vh−2 − 4vh−1 + 6vh − 4vh+1 + vh+2}

− {vh − 2vh+1 + vh+2}

= −h

2
δ4k′′′′(x) + O(δ4) − δ2k′′(x) + O(δ4).

So

H−2∑

h=3

vh

{
−h + 1

2
vh−2 + 2(h + 1)vh−1 − (3h + 4)vh + 2(h + 2)vh+1 −

h + 3

2
vh+2

}

= −δ

∫
k(x)k′′(x)dx − 1

2
δ2

∫
xk(x)k′′′′(x)dx + O(δ3).

Other Terms: Finally we obtain

w⊺C11w = 1, w⊺B11w = 1, w⊺D11w = λ2/2, w⊺D̃11w = −3/2,

w⊺C12v = −3v1 + v2 = −2 + H−1k′(0) + 1
2
H−2k′′(0) + 5

6
H−3k′′′(0) + O(H−4)

w⊺B12v = −v1 = −1 − H−1k′(0) + O(H−2)

w⊺D12v = v1 − v2 = −H−1k′(0) + O(H−2).

w⊺D̃12v = 3v1 − 3/2v2 = 3/2 − 3/2k′′(0)δ2 + O(δ3).

Combining the results yields the formula given in the Theorem.

Proof of Proposition 2. Ignore the notation δ. Now

n∑

i=1

(Ui − Ui−1)(Ui−h − Ui−h−1) = 2
n∑

i=1

UiUi−h −
n∑

i=1

UiUi−h−1 −
n∑

i=1

UiUi−h+1
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+ U0(U−h − U−h+1) − Un(Un−h − Un−h+1).

Hence

H∑

h=−H

k
(

h
H

)
γh(Uδ) =

H∑

h=−H

k
(

h
H

) {
2γ̄h(Uδ) − γ̄h−1(Uδ) − γ̄h+1(Uδ)

}

+ U0

H∑

h=−H

k
(

h
H

)
(U−h − U−h+1)

− Un

H∑

h=−H

k
(

h
H

)
(Un−h − Un−h+1).

Next we show that the last two terms are Op(H
−1/2). We have

H∑

h=−H

k
(

h
H

)
(U−h − U−h+1) =

H∑

h=−H

k
(

h
H

)
U−h −

H+1∑

h=−H+1

k
(

h−1
H

)
U−h

=
H∑

h=−H+1

{
k

(
h
H

)
− k

(
h−1
H

)}
U−h,

since k (−1) UH−k (1) U−H−1 = 0 by the properties of k(x). Defining k(x) = 0 for |x| ≥ 1
allows us to sum from −H, i.e.

∑H
h=−H

{
k

(
h
H

)
− k

(
h−1
H

)}
U−h. So

H∑

h=−H

k
(

h
H

)
U0(U−h − U−h+1) = H−1/2 × U0 ×

{
H−1/2

H∑

h=−H

k
(

h
H

)
− k

(
h−1
H

)

1/H
U−h

}
,

which is Op(H
−1/2) since ah,H = H1/2

{
k

(
h
H

)
− k

(
h−1
H

)}
is such that

H∑

h=−H

a2
h,H = H−1

H∑

h=−H

{
k

(
h
H

)
− k

(
h−1
H

)

1/H

}2

→
∫ 1

−1

{k′(x)}2
dx.

The proof for the other term is very similar.

Now we move to showing (24). We have

H∑

h=−H

k

(
h

H

)
γh =

H∑

h=−H

k

(
h

H

) (
2γh − γh−1 − γh+1

)
+ Op(H

−1/2)

=
H∑

h=−H

γh

{
2k

(
h

H

)
− k

(
(h − 1)

H

)
− k

(
(h + 1)

H

)}

+ Op(H
−1/2)

= − n

H2

H∑

h=−H

k′′

(
h

H

)(
1

n
γh

)
+ Op(nH−3) + Op(H

−1/2).

¤
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Proof of Proposition 3. Now we assume k′′ (0) = 0 then

− n

H2

∑

|h|≤H

k′′

(
h

H

)(
1

n
γh

)
= − n

H3

∑

|h|≤H

k′′′ (0) |h|
(

1

n
γh

)
+Op

( n

H3

)
= Op

( n

H3

)
.

This leaves us thinking of

∑

H≥|h|>H

k′′

(
h

H

)(
1

n
γh

)
.

From Bartlett (1946) we know that for k > h

√
n

(
1
n
γh

1
n
γk

)

L→ N

((
0
0

)
, ω4

∞∑

j=−∞

(
ρ2

j + ρj+hρj−h ρjρj+(k−h) + ρj+kρj−h

ρjρj+(k−h) + ρj+kρj−h ρ2
j + ρj+kρj−k

))

where ρj denotes the population autocorrelation. In the AR(1) case, with persistence
parameter |ρ| < 1 then it is well known that this simplifies to

√
n

(
1
n
γh

1
n
γk

)
L→ N

((
0
0

)
, 2ω4

(
1 ρk−h

ρk−h 1

)
1 + ρ2

1 − ρ2

)
,

noting
∑∞

j=−∞ φ2j = (1 + ρ2) / (1 − ρ2) .The impact of the serial dependence is that

√
n

H

( ∑

H≥h>H

2k′′

(
h

H

)(
1

n
γh

))
L→ N

{
0, 4ω4 1 + ρ2

1 − ρ2

∫ 1

0

k′′(x)2dx

}
.

This implies

− n

H2

∑

|h|≤H

k′′

(
h

H

) (
1

n
γh

)
= Op

(
n1/2

H3/2

)
.

Overall we have Op

(
n1/2H−3/2

)
+ Op(nH−3) + Op

(
H−1/2

)
. Placing H = cn1/2 delivers

a term which is Op

(
n−1/4

)
. ¤
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Appendix B: Tables with simulation results

Table B.1: Summary Statistics for infeasible Traw where ̟ is known.

ω2 = 0.01, number of reps. = 150000

No. obs H
∗
simple Mean Stdv. 0.5% 2.5% 5% 95% 97.5% 99.5%

195 13.3 0.001 1.035 0.06 1.13 3.50 93.35 95.86 98.50

390 18.6 −0.001 1.057 0.14 1.69 4.27 93.26 95.79 98.41

780 26.0 −0.001 1.077 0.25 2.09 4.84 93.16 95.77 98.43

1560 36.6 −0.002 1.103 0.41 2.56 5.43 92.99 95.67 98.38

4680 63.1 −0.000 1.163 0.68 3.19 6.28 92.59 95.35 98.10

5850 70.5 −0.003 1.180 0.76 3.31 6.44 92.47 95.21 98.04

7800 81.3 −0.001 1.204 0.87 3.58 6.69 92.37 95.11 97.88

11700 99.5 −0.004 1.242 1.01 3.92 7.19 92.12 94.83 97.68

23400 140.4 −0.003 1.329 1.41 4.67 8.05 91.44 94.26 97.23

ω2 = 0.001, number of reps. = 150000

No. obs H
∗
simple Mean Stdv. 0.5% 2.5% 5% 95% 97.5% 99.5%

195 4.54 −0.001 0.999 0.12 1.40 3.67 94.12 96.61 98.94

390 6.21 −0.000 1.001 0.18 1.70 4.05 94.28 96.75 99.09

780 8.58 0.000 0.999 0.22 1.87 4.27 94.42 96.93 99.19

1560 11.9 0.000 1.003 0.26 2.04 4.49 94.45 96.99 99.23

4680 20.3 −0.000 1.007 0.36 2.21 4.71 94.55 97.01 99.27

5850 22.6 0.001 1.007 0.35 2.24 4.75 94.52 97.04 99.29

7800 26.0 −0.001 1.010 0.33 2.28 4.84 94.51 97.06 99.24

11700 31.8 −0.000 1.009 0.37 2.38 4.85 94.57 97.12 99.31

23400 44.8 −0.001 1.017 0.43 2.37 5.01 94.46 97.06 99.29

ω2 = 0.0001, number of reps. = 150000

No. obs H
∗
simple Mean Stdv. 0.5% 2.5% 5% 95% 97.5% 99.5%

195 1.75 −0.000 0.998 0.17 1.63 3.97 94.32 96.75 99.07

390 2.30 −0.000 0.999 0.25 1.86 4.22 94.47 96.95 99.20

780 3.06 0.000 0.998 0.28 1.98 4.49 94.61 97.10 99.26

1560 4.11 −0.001 1.000 0.31 2.12 4.59 94.65 97.11 99.30

4680 6.76 −0.001 1.002 0.39 2.23 4.79 94.71 97.24 99.36

5850 7.50 0.001 1.000 0.40 2.22 4.74 94.72 97.30 99.41

7800 8.58 −0.001 1.005 0.40 2.34 4.84 94.69 97.21 99.37

11700 10.4 −0.002 1.001 0.42 2.30 4.81 94.81 97.29 99.36

23400 14.5 −0.003 1.004 0.46 2.45 4.92 94.78 97.28 99.43

Summary Statistics for the infeasible Traw under stochastic volatility. The first column

defines the sampling frequency. The second gives the average values of H∗. Columns 3 and 5

present the mean and the standard deviation of the statistics. The remaining 6 columns give

the simulated quantiles of distribution.
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Table B.2: Summary Statistics for feasible Traw, estimating ̟ from the data.

ω2 = 0.01, number of reps. = 150000

No. obs H
∗
simple Mean Stdv. 0.5% 2.5% 5% 95% 97.5% 99.5%

195 8.32 −0.220 1.094 3.12 6.89 10.1 98.50 99.64 99.99

390 11.6 −0.188 1.066 2.53 6.05 9.12 97.90 99.38 99.98

780 16.2 −0.155 1.047 2.01 5.29 8.36 97.39 99.11 99.94

1560 22.6 −0.131 1.044 1.78 4.94 8.02 96.83 98.75 99.88

4680 38.8 −0.102 1.059 1.47 4.63 7.71 95.89 98.08 99.68

5850 43.4 −0.099 1.059 1.38 4.53 7.64 95.77 97.96 99.61

7800 50.0 −0.094 1.068 1.40 4.49 7.63 95.45 97.76 99.54

11700 61.1 −0.087 1.083 1.38 4.63 7.85 95.12 97.42 99.37

23400 86.2 −0.079 1.116 1.44 4.71 8.05 94.26 96.83 99.03

ω2 = 0.001, number of reps. = 150000

No. obs H
∗
simple Mean Stdv. 0.5% 2.5% 5% 95% 97.5% 99.5%

195 4.31 −0.232 1.065 2.88 6.45 9.59 98.67 99.69 99.99

390 5.79 −0.177 1.027 2.11 5.25 8.24 98.08 99.40 99.97

780 7.95 −0.138 1.003 1.60 4.52 7.49 97.64 99.18 99.95

1560 11.0 −0.112 0.995 1.29 4.08 6.89 97.19 98.93 99.91

4680 18.7 −0.083 0.992 0.97 3.54 6.29 96.58 98.56 99.83

5850 20.8 −0.077 0.991 0.94 3.47 6.24 96.52 98.53 99.82

7800 23.9 −0.073 0.994 0.90 3.41 6.24 96.36 98.44 99.78

11700 29.2 −0.065 0.993 0.83 3.34 6.07 96.27 98.38 99.77

23400 41.1 −0.056 1.001 0.79 3.20 5.92 95.93 98.14 99.70

ω2 = 0.0001, number of reps. = 150000

No. obs H
∗
simple Mean Stdv. 0.5% 2.5% 5% 95% 97.5% 99.5%

195 2.78 −0.210 1.031 2.54 5.95 9.00 99.19 99.88 100.00

390 2.77 −0.160 0.994 1.70 4.68 7.62 98.34 99.55 99.99

780 3.23 −0.118 0.975 1.22 3.87 6.69 97.62 99.14 99.93

1560 4.20 −0.086 0.974 0.96 3.44 6.14 96.94 98.79 99.87

4680 6.86 −0.059 0.977 0.74 3.01 5.63 96.45 98.48 99.78

5850 7.61 −0.052 0.976 0.71 2.91 5.54 96.35 98.42 99.76

7800 8.71 −0.049 0.982 0.72 2.93 5.55 96.18 98.28 99.72

11700 10.5 −0.045 0.979 0.67 2.81 5.35 96.16 98.22 99.72

23400 14.7 −0.037 0.985 0.66 2.81 5.38 95.87 98.08 99.71

Summary Statistics for feasible Traw under stochastic volatility. The first column defines the

sampling frequency. The second gives the average values of H∗. Columns 3 and 5 present the

mean and the standard deviation of the statistics. The remaining 6 columns give the

simulated quantiles of distribution.
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Table B.3: Summary Statistics for feasible Tlog, estimating ̟ from the data.

ω2 = 0.01, number of reps. = 150000

No. obs H
∗
simple Mean Stdv. 0.5% 2.5% 5% 95% 97.5% 99.5%

195 8.32 −0.094 1.003 0.84 3.38 6.35 96.10 98.17 99.67

390 11.6 −0.085 1.007 0.80 3.24 6.11 95.76 97.91 99.61

780 16.2 −0.070 1.008 0.70 3.02 5.86 95.58 97.73 99.54

1560 22.6 −0.060 1.018 0.64 3.03 5.87 95.19 97.54 99.46

4680 38.8 −0.046 1.046 0.71 3.14 6.07 94.55 97.05 99.23

5850 43.4 −0.046 1.049 0.66 3.12 6.11 94.50 96.98 99.14

7800 50.0 −0.043 1.061 0.68 3.25 6.16 94.33 96.79 99.07

11700 61.1 −0.041 1.078 0.75 3.39 6.46 94.08 96.54 98.85

23400 86.2 −0.037 1.117 0.83 3.67 6.87 93.32 96.01 98.52

ω2 = 0.001, number of reps. = 150000

No. obs H
∗
simple Mean Stdv. 0.5% 2.5% 5% 95% 97.5% 99.5%

195 4.31 −0.153 1.004 1.49 4.36 7.33 97.31 98.89 99.87

390 5.79 −0.118 0.992 1.16 3.76 6.54 96.90 98.68 99.81

780 7.95 −0.093 0.982 0.92 3.34 6.12 96.67 98.54 99.78

1560 11.0 −0.076 0.983 0.77 3.13 5.81 96.37 98.36 99.75

4680 18.7 −0.057 0.986 0.68 2.90 5.53 95.98 98.08 99.67

5850 20.8 −0.053 0.985 0.65 2.91 5.49 95.90 98.07 99.67

7800 23.9 −0.051 0.990 0.63 2.86 5.55 95.81 98.01 99.63

11700 29.2 −0.045 0.990 0.59 2.85 5.47 95.76 98.00 99.62

23400 41.1 −0.039 0.999 0.61 2.79 5.43 95.48 97.78 99.59

ω2 = 0.0001, number of reps. = 150000

No. obs H
∗
simple Mean Stdv. 0.5% 2.5% 5% 95% 97.5% 99.5%

195 2.78 −0.142 0.981 1.38 4.20 7.05 98.01 99.35 99.97

390 2.77 −0.114 0.970 1.01 3.51 6.23 97.33 99.01 99.91

780 3.23 −0.085 0.963 0.78 3.05 5.67 96.85 98.67 99.82

1560 4.20 −0.061 0.967 0.64 2.86 5.36 96.36 98.36 99.74

4680 6.86 −0.043 0.974 0.57 2.58 5.16 96.03 98.17 99.68

5850 7.61 −0.037 0.973 0.55 2.56 5.06 95.96 98.12 99.67

7800 8.71 −0.035 0.980 0.56 2.61 5.12 95.82 97.99 99.63

11700 10.5 −0.033 0.978 0.54 2.53 5.02 95.84 97.98 99.62

23400 14.7 −0.027 0.984 0.55 2.59 5.08 95.61 97.86 99.64

Summary Statistics for feasible Tlog under stochastic volatility, using d = 0.2. The first column

defines the sampling frequency. The second gives the average values of H∗. Columns 3 and 5

present the mean and the standard deviation of the statistics. The remaining 6 columns give

the simulated quantiles of distribution.
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Mean Std. (HAC) ρ([̂Y ], K̃) acf(1) acf(2) acf(5) acf(10)

Modified Tukey-Hanning kernel (H = cn1/2)

K̃th2
w (Xap. 1 min) 0.962 0.568 (1.195) 1.000 0.34 0.32 0.28 0.08

Parzen kernel (H = cn1/2)

K̃par
w (Xap. 1 min) 0.962 0.570 (1.197) 1.000 0.34 0.32 0.27 0.08

Cubic kernel (H = cn1/2)

K̃cub
w (Xap. 1 min) 0.959 0.568 (1.192) 1.000 0.34 0.32 0.27 0.08

5th order kernel (H = cn1/2)

K̃5th
w (Xap. 1 min) 0.971 0.558 (1.186) 0.999 0.35 0.32 0.28 0.08

8th order kernel (H = cn1/2)

K̃8th
w (Xap. 1 min) 0.965 0.578 (1.212) 0.995 0.34 0.32 0.27 0.09

Top-Flat Bartlett kernel (H = cn2/3)

K̃bart
w (Xap. 1 min) 0.963 0.562 (1.184) 0.997 0.34 0.31 0.27 0.07

Simple RV

[X20 minutes] 0.879 0.524 (1.008) 0.832 0.28 0.24 0.26 0.06
[X5 minutes] 0.948 0.518 (1.100) 0.954 0.36 0.34 0.26 0.10
[X1 minutes] 0.941 0.382 (0.919) 0.887 0.44 0.40 0.38 0.11
[X10 seconds] 1.330 0.389 (1.142) 0.803 0.60 0.56 0.51 0.32
[X1 second] 2.183 0.569 (1.828) 0.733 0.69 0.66 0.57 0.48

Table 6: Summary statistics for six realised kernels based on returns measured every
K trades, where K is selected such that over the day returns on average roughly spans
60 seconds. Also given are the RV, computed using 20, 10, 1 minute, 10 and 1 second
returns. Note that RV statistics based on 1 second returns is the same as RV statistics
based on all trades. acf denotes serial correlation. The correlation is between the various
RV statistics and our Modified Tukey-Hanning kernel.
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Mean Std. (HAC) ρ([̂Y ], K̃) acf(1) acf(2) acf(5) acf(10)

Modified Tukey-Hanning kernel (H = cn1/2)

K̃th2
w (Xap. 1 min) 0.962 0.568 (1.195) 1.000 0.34 0.32 0.28 0.08

Modified Tukey-Hanning kernel (inefficient rate H = cn2/3)

K̃th2
w (X1 tick) 0.945 0.521 (1.127) 0.990 0.37 0.31 0.30 0.08

Parzen kernel (inefficient rate H = cn2/3)

K̃par
w (X1 tick) 0.947 0.524 (1.133) 0.990 0.37 0.31 0.30 0.08

Cubic kernel (inefficient rate H = cn2/3)

K̃cub
w (X1 tick) 0.948 0.528 (1.142) 0.991 0.37 0.32 0.30 0.08

5th order kernel (inefficient rate H = cn2/3)

K̃5th
w (X1 tick) 0.951 0.531 (1.148) 0.989 0.37 0.31 0.30 0.08

8th order kernel (inefficient rate H = cn2/3)

K̃8th
w (X1 tick) 0.954 0.573 (1.207) 0.998 0.34 0.31 0.27 0.09

Simple RV subsampled
[X20 minutes; 1200] 0.885 0.516 (1.036) 0.933 0.27 0.27 0.27 0.08
[X5 minutes; 300] 0.943 0.503 (1.088) 0.984 0.37 0.32 0.30 0.08
[X1 minutes; 60] 0.942 0.376 (0.921) 0.899 0.46 0.43 0.38 0.12

ZMA (2005)

TSRV (K, 1) 0.544 0.321 (0.711) 0.842 0.40 0.34 0.29 0.05
TSRV (K, 1) - adj 0.596 0.353 (0.784) 0.854 0.40 0.34 0.29 0.04

AMZ (2006)

TSRV (K,J) 0.736 0.436 (0.929) 0.944 0.33 0.35 0.28 0.11
TSRV (K,J) - aa 0.946 0.560 (1.194) 0.944 0.33 0.35 0.28 0.11

Table 7: Summary statistics: First the realised Modified Tukey-Hanning kernel using
approximate 1 minute returns. Then, five realised kernels which also appear in Table 6,
but now they are computed using the inefficient rate and based on all available trades.
Next, subsampled versions of simple RV statistics based on 20, 5 and 1 minute returns.
For instance, the subsampled [X5 minutes; 300] calculates RV over 5 minutes, averaged
over 300 times, just changing the initial place prices are recorded. Under ZMA (2005)
the two scale RV estimators suggested in Zhang, Mykland, and Aı̈t-Sahalia (2005, eq.
(55) and (64)) are listed. The AMZ (2006) are two scale estimators (see Aı̈t-Sahalia,
Mykland, and Zhang (2006, eq. (4.4) and (4.22))) designed to be robust to deviations
from i.i.d. noise. These authors also proposed the second estimator (their equations (64)
and (4.22)), which scales the first estimator, to overcome the finite sample bias of TSRV.
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