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Abstract

In the present paper, we show how spatio-temporal point process models
for functional magnetic resonance imaging (fMRI) data can be used in the
study of resting state networks in the human brain. The model explicitly
includes knowledge of the hemodynamic response to neuronal activation. Fully
Bayesian analysis of the model is described and an example of analysis of a
fMRI data set is given. Other methods of analysis of resting state networks
are also discussed.

Keywords: Bayesian inference, fMRI, hemodynamic response function,

Markov chain Monte Carlo, spatio-temporal point processes

1 Introduction

Cognitive psychologists and neuroscientists are presently very interested in the func-
tioning of the human brain during rest. One of the reasons is that analyses of data
obtained by functional magnetic resonance imaging (fMRI) indicate the existence
of resting state networks of regions in the human brain, cf. [3, 7, 8, 15] and ref-
erences therein. See also the collection of papers presented in the special issue of
Phil. Trans. R. Soc. from 2005 on ’Multimodal neuroimaging of brain connectivity’.
Changes of these networks under aging or disease have been reported ([5], [15]).

During an fMRI experiment the brain is scanned and represented as a set of
voxels. At each voxel a time series of MR signal intensities is recorded, showing
the local brain activity during the experiment. Time series from regions far apart
may show similar variation during rest, indicating the presence of a resting state
network. An example of such data, earlier analyzed in [3], is shown in Fig. 1. At
each voxel of a slice through the human brain, the MR signal intensity is shown at 12
equidistant time points of the scanning experiment. The person being scanned here
has not received any particular stimuli during the experiment but still covariation
between activities in different regions of the brain may appear. As we shall see,
there is evidence of covariation between activities in the three regions shown in
Fig. 3 below, but this is not immediate from Fig. 1. We will return to this example
at the end of the paper. Generally, modelling and statistical analysis of such data
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Figure 1: Development of the MR signal activity over time in a single slice through
the human brain. From left to right and top to bottom: the activity at time t =
12, 30, 48, . . . , 210 seconds.

constitute a major challenge because of a high level of noise and no prior knowledge of
time points of activation. Another complication is possible aliasing with respiratory
and cardiac cycles. The difficulties faced in such non-stimulus experiments are
much more serious than those met in more traditional experimental designs of fMRI
experiments with known periods of stimuli (‘on periods’) between periods of rest
(‘off periods’). Recently, experiments with a more continuous but known type of
stimulus has also been tried out, cf. [1, 2]. A good statistical review on design of
fMRI experiments may be found in [10].

The aim of this paper is to show how spatio-temporal point process models
for functional magnetic resonance imaging (fMRI) data can be used in the study
of resting state networks in the human brain. A more detailed account will be
published elsewhere [19].

2 Correlation analysis

The data from an fMRI experiment constitute a collection of time series

Ztx, t = t1, . . . , tm,

x ∈ X . Here, Ztx is the MR signal intensity at time t and voxel x. The time points
t1, . . . , tm are usually equidistant and belong to the interval [0, T ], where T is the
length of the experiment. The set X is a finite subset of R

2 or R
3 with N elements,

called voxels, representing a two dimensional slice or a three dimensional volume of
the brain.

In [8], the functional connectivity in the resting brain is studied by a simple
correlation analysis. A seed region X0 ⊂ X is selected and the correlation between
the average time series for this region

Z̄tX0
=

1

|X0|
∑

x∈X0

Ztx, t = t1, . . . , tm
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and the time series of any other brain voxel is calculated in order to find regions X1

interacting with X0. Here, | · | indicates number. Similarly, in [13], the average time
series is used as explanatory variable in a regression type of analysis of the time
variation in other regions of the brain. The software package SPM (Statistical Para-
metric Mapping), developed by the Wellcome Department of Imaging Neuroscience,
UCL, UK, can be used for such an analysis.

This analysis is attractive because it is simple. It does, however, require an a
priori expectation of the network pattern.

3 Independent component analysis

Independent component analysis (ICA) has become a very popular technique for
analyzing data from fMRI experiments without specific stimuli. A number of in-
teresting findings relating to specific resting state networks have been reported using
ICA ([3, 14, 15]). A special variant of the technique is called probabilistic indepen-
dent component analysis (PICA), cf. [7]. There were some early critiques of ICA,
see [9], but it seems now to be generally recognized in the neuroscience community
that ICA is a powerful nonparametric tool for studying resting state networks. A
good introduction to ICA can be found in [21]. This paper also contains a compre-
hensive list of references with specific guidance to the literature. Analysis of groups
of individuals by ICA is discussed in [4].

ICA is an explorative analysis, closely related to factor analysis and discriminant
analysis. The analysis is based on a model of the following type

Ztx = µx +

K
∑

k=1

AtkBkx + σǫtx.

Here, µx is the baseline signal at voxel x which can vary by a factor of 2-3 across the
brain. The number K of components is unknown. Furthermore, (A⋆k, Bk⋆), k =
1, . . . , K, are assumed to be independent. Software packages performing ICA are
available, e.g. the program FSL presented in [25]. An ICA analysis results in
estimates of temporal activation profiles {A⋆k} and spatial activation profiles {Bk⋆}
for each k. The estimated temporal profiles are shown together with their associated
power spectra. Only frequency components of a certain bandwidth are regarded as
having neuronal origin. High frequence components may be caused by cardiac or
respiratory activities, while very low frequence components are considered to be
drift. In an actual application, the estimated number K of components may be
quite large.

4 A model based on spatio-temporal point

processes

Especially amongst psychologists, there has recently been some criticism of ICA
analysis because such an analysis decomposes a particular type of activity in the
brain into a spatial activation map showing regions of the brain activated during the
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experiment and a temporal activation graph showing when the brain is activated
during the experiment. They are not particularly fond of this type of ‘product brain’.
Instead, a more dynamic type of analysis is asked for in order to be able to reveal
more complicated interaction phenomenon. For instance, a particular region of the
brain may only be active if a collection of other regions are active. An example of
this is the visual system which seems to have a very strong hierarchical structure,
see [17]. It may also be of interest to investigate whether the duration and extend
of activation may depend on the particular region of the brain studied. As we shall
see, this criticism can be met by using a spatio-temporal point process modelling
approach.

The model to be presented depends on well established knowledge on the hemo-
dynamic response which is a localized inflow of oxygenated blood to a region of the
brain with neural activity. This response causes an increase of the MR signal in-
tensity in the region in question. Its general temporal form has been reproduced in
many studies. First, the hemodynamic response increases to a peak value at about
4–7 seconds after a neuronal response and then it returns to baseline again a few
seconds after the neuronal impulse has ceased.

A neuronal activation at location y and time u will therefore contribute to the
observed MR signal intensity at y at the later time t > u by an amount proportional
to

g(t− u)

where g is a function with the properties described above. In particular, g(v) in-
creases to a maximal value for v equal to 4-7 seconds and then decreases to 0 after
the neuronal activation has stopped. A neuronal activity in voxel y is expected to
affect the activity at neighbour voxels in a similar way but less intensely. For a voxel
x, an activation at location y and time u will contribute to the observed MR signal
intensity at x at the later time t > u by the following amount

g(t− u)h(x− y),

where h(z) is a decreasing function of ‖z‖. The resulting model for the contribution
to the observed MR signal intensity at voxel x at time t caused by a neuronal
activation at voxel y at time u becomes

ftx(u, y;m) = g(t− u;m1)h(x− y;m2)

where m = (m1, m2) and m1 and m2 are model parameters, describing the duration
of a neuronal activation and its spatial extent.

The actual modelling of the hemodynamic response function g has been studied
intensively in the fMRI literature, see [6] and references therein. We will here adopt
a fairly simple but well-known model where the response is a Gaussian distributed
random variable with mean 6 sec (the delay) and variance 9 sec2. Accordingly, the
function g takes the form

g(u;m1) =

∫ m1

0

κ(u− v)dv,

4



Figure 2: Development of the activity over time in simulated data. From left to right
and top to bottom: the activity at time t = 2, 4, . . . , 24 time units. The activity
starts at times t = 1, 6, 8, clockwise from the top, and the marks are given by m1 = 5
time units and m2 = (10, 10) voxel units. The diameter of the circular disc is 40
voxel units. For more details, see the text.

where l is the temporal duration of the neuronal activation and

κ(t) =
1√
2π3

exp

(

− (t− 6)2

18

)

.

The spatial activation function is modelled by a Gaussian bell function

h(y;m2) = θ1 exp

(

−‖y‖2

2θ2

)

,

where m2 = (θ1, θ2).
In Fig. 2, we show the effect of superposition of three such activations. Here, X

is a digitized circular disc. The activation profile

{

3
∑

i=1

ftx(ti, xi;m) : x ∈ X
}

is shown for 12 equidistant time points. The time points and positions of the three
activations (ti, xi), i=1, 2, 3, are indicated in the legend of Fig. 2. The duration m1

and the spatial extent m2 are the same for all three activations.
In an fMRI experiment without specific stimuli, the activations occur at random

time points not known to the experimenter. It is natural to describe the activations
by a marked point process Ψ = {[ti, xi;mi]} on R×X with marks mi = (m1

i , m
2
i ) ∈

R
3
+. The resulting model for the observed MR signal intensity at time t and voxel x

becomes
Ztx = µx +

∑

i

ftx(ti, xi;mi) + σǫtx, (1)

where µx is the baseline signal at voxel x as above and ǫtx is an error term with
mean 0 and variance 1. The errors are expected to be correlated, see [20, 26]. It can
be shown that this spatio-temporal model is closed under local smoothing, cf. [19].
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Since the brain is not subjected to systematic stimuli under the fMRI experi-
ment, it is natural to assume (investigate) that the marked point process Ψ is time
stationary in the sense that

Ψt = {[ti + t, xi;mi]}

has the same distribution as Ψ for all t ∈ R. Then, the intensity measure Λ of the
unmarked point process is of the form

Λ = cν1 × Λ2,

where c > 0, ν1 is the Lebesgue measure on R and Λ2 is the intensity measure for
the spatial point process {xi}. Furthermore, time stationarity implies that the mark
distribution does not depend on the particular time point considered but it may still
depend on the location.

Under the resting state network hypothesis, the spatio-temporal point process Ψ
will show long-distance dependencies. Recall that each marked point [ti, xi;mi] may
be considered as a center of activation at location xi ∈ X starting at time ti and with
temporal and spatial duration described by mi. If two regions of the brain X0 and X1

interact, it is expected that activations occur almost simultaneously in X0 and X1.
Such interactions may be revealed, using a ayesian analysis, see Section 5 below.
The earlier modelling of a ‘product brain’ corresponds to the use of independent
spatial and temporal point processes such that

Ψ = {[ti, xj;m1
i , m

2
j ]},

where Ψ1 = {[ti;m1
i ]} and Ψ2 = {[xj ;m2

j ]} are independent. If the intensity measure
of Ψ2 is very concentrated in X0 and X1, then activations will appear simultaneously
in the two regions. This type of modelling of the dependency may appear somewhat
simplistic and a model based on conditional independence may be more natural.
Here,

Ψ = {[ti, xij ;m1
i , m

2
ij ]},

where, given Ψ1 = {[ti;m1
i ]}, Ψ2i = {[xij ;m2

ij ]} are independent and identically
distributed with an intensity measure concentrated in X0 and X1, say.

In accordance with the emerging belief of the existence of more than one resting
state network, it is natural to consider a point process model of the type Ψ =
⋃K
k=1 Ψk where Ψk, k = 1, . . . , K, are independent and refer to activities in the K

networks. If
Ψk = (Ψk1,Ψk2)

where Ψk1 = {[tki;m1
ki]} and Ψk2 = {[xkj;m2

kj]} are independent, then we obtain
the following model equation

Ztx = µx +
K

∑

k=1

AtkBkx + σǫtx, (2)

where
Atk =

∑

i

g(t− tki;m
1
ki) and Bkx =

∑

j

h(x− xkj ;m
2
kj).
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Note that (2) is actually an ICA model. The model may be analyzed by first
performing an ICA analysis and then analyzing the estimated components, using
point process theory.

In the next section we will discuss Bayesian inference of the spatio-temporal
point process model (1) and its parameters. A related model for repeated stimulus
experiments has been developed in [16], see also [12].

5 Bayesian inference

5.1 Prior distributions

Without loss of generality we can set µx = 0 in the following. The prior distribution
of Ψ will be that of a Poisson point process. A typical point will, for convenience,
be written as [t, x; (θ0, θ1, θ2)] ∈ R × X × R

3
+ so we write here θ0 instead of m1 for

the temporal duration of the neuronal activation. The intensity function of Ψ is
assumed to be of the form

λΨ(t, x; θ0, θ1, θ2) = λ(t, x)

2
∏

i=0

1{θi ∈ [ai, bi]},

where ai, bi, i = 0, 1, 2, are known positive constants. Note that there is no inter-
action between points in this prior distribution so interactions will appear in the
posterior distribution if they are present in the data.

We consider the restriction Ψ0 of Ψ to

Y = [T0−, T0+] ×X ×
2

∏

i=0

[ai, bi],

where the interval [T0−, T0+] has been chosen such that an activation occurring
outside this interval is very unlikely to affect the MR signal observed in [0, T ]. The
density of Ψ0 with respect to the unit rate Poisson point process on Y becomes

p(ψ0|λ, a∗, b∗) = exp
(

−
2

∏

i=0

(bi − ai)

∫

[T0−,T0+]×X

[λ(t, x) − 1]dtdx
)

×
∏

[u,y;θ0,θ1,θ2]∈ψ0

[

λ(u, y)

2
∏

i=0

1{θi ∈ [ai, bi]}
]

.

We will model the function λ by a piecewise constant function only depending
on location, i.e.

λ(t, x) =
K

∑

l=1

λl1{x ∈ Xl}.

Here, the disjoint sets Xl are supposed to be specified by the experimenter while the
parameters λl are unknown. The union of the sets Xl need not be the whole brain.
We can write the intensity function as

λ(t, x) = cλ2(x)
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where c > 0 and
∫

X

λ2(x)dx = 1.

Note that λ2 is on the following form

λ2(x) =

k
∑

l=1

πl
1{x ∈ Xl}

|Xl|

where πl > 0 and
∑k

l=1 πl = 1.

We will use non-informative priors for c, π = (π1, . . . , πk) and the error variance
σ2. The prior density of c will be specified as

p(c) =
1

(c+ − c−)
1{c ∈ [c−, c+]}

while the prior density of π is

p(π) =
1

vol(D)
1{π ∈ D},

where

D =
{

π ∈ R
k : πl > 0,

k
∑

l=1

πl = 1
}

.

The prior density of σ2 will be of the form

p(σ2) =
1

(σ+ − σ−)
1{σ ∈ [σ−, σ+]}.

5.2 The likelihood model

Let the data be denoted by

z = {ztx : t = t1, . . . , tm, x ∈ X}.

Then, the conditional density of z given c, π, ψ0 and σ is

p(z|ψ0, σ) = [2πσ2]−Nm/2 exp
(

− 1

2σ2
‖z − f(ψ0)‖2

)

, (3)

where

‖z − f(ψ0)‖2 =
∑

t,x

(

ztx −
∑

[ti,xi;θi0,θi1θi2]∈ψ0

ftx(ti, xi; θi0, θi1, θi2)
)2

.

This is the simplest choice of model, see also [20] and references therein. Note
that (3) does not depend on c and π.
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5.3 Posterior simulation

The posterior density will be of the following form

p(c, π, σ, ψ0|z) ∝ p(c)p(π)p(σ2)p(ψ0|c, π)p(z|ψ0, σ)

since the conditional density of ψ0 given c, π and σ only depends on c and π and
the conditional density of z given the remaining variables only depends on ψ0 and
σ. For the simulation from the posterior density we use a fixed scan Metropolis
within Gibbs algorithm where in each scan c, π, σ and ψ0 are updated in turn. For
a detailed description of algorithms of this kind, see [24]. The full conditional for c
is a Gamma distribution with restricted range while for k > 2 the full conditional
of π is a Dirichlet distribution. The full conditional of σ2 is an inverse Gamma
distribution with restricted range.

Finally, we need to simulate from

p(ψ0|c, π, z) ∝ cn(ψ0)

k
∏

l=1

π
nl(ψ0)
l exp

(

− 1

2σ2
‖z − f(ψ0)‖2

)

.

Note that this is in fact a pairwise interaction density. The point process is simulated
using a birth, death and move algorithm as described in Chapter 7 of [23].

5.4 An example

We consider here shortly a Bayesian analysis of a fMRI data set analyzed in [3] by
ICA analysis and illustrated in Fig. 1. In the Bayesian analysis performed here,
the values of θ⋆ and σ2 were fixed and equal to empirically assessed values. In
[3], evidence was found of a resting state network involving three regions of the
brain slice, the left and right motor cortices and a middle region. Those regions are
delineated in Fig. 3. In Fig. 4, we show the estimated two-dimensional posterior
density of time points of activation for pairs of regions from Fig. 3. All estimated
correlations are positive and significantly different from zero.

In Fig. 5, we show examples of observed time series and their estimated temporal
activation.
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Figure 3: Delineation of the three regions of interest, X1, a middle region, X2 that
includes the left motor cortex, and X3 that includes the right motor cortex.

0 0.01

0.01

(a)

0 0.01

0.01

(b)

0 0.01

0.01

(c)

Figure 4: Two-dimensional posterior densities of time points of activation for pairs
of regions delineated in Fig. 3. Regions X1 and X2 are shown in (a), X1 and X3 in
(b) and X2 and X3 in (c). Each point represents a time interval of 4 seconds.
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Figure 5: Time series from nine neighbouring voxels from the left motor cortex. In
each plot, the thick line is the true, preprocessed time series for that voxel and the
thin line is the estimated time series for the same voxel. The units on the x-axis are
given in seconds.
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