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A SOLUTION TO HAMMER’S X-RAY RECONSTRUCTION
PROBLEM

RICHARD J. GARDNER AND MARKUS KIDERLEN

Abstract. We propose algorithms for reconstructing a planar convex body K from
possibly noisy measurements of either its parallel X-rays taken in a fixed finite set of
directions or its point X-rays taken at a fixed finite set of points, in known situations
that guarantee a unique solution when the data is exact. The algorithms construct a
convex polygon Pk whose X-rays approximate (in the least squares sense) k equally
spaced noisy X-ray measurements in each of the directions or at each of the points.

It is shown that these procedures are strongly consistent, meaning that, almost
surely, Pk tends to K in the Hausdorff metric as k → ∞. This solves, for the first
time in the strongest sense, Hammer’s X-ray problem published in 1963.

1. Introduction

In 1963, Hammer [14] published the following problem.

Suppose there is a convex hole in an otherwise homogeneous solid and that X-ray
pictures taken are so sharp that the “darkness” at each point determines the length
of a chord along an X-ray line. (No diffusion, please.) How many pictures must be
taken to permit exact reconstruction of the body if:

a. The X-rays issue from a finite point source?
b. The X-rays are assumed parallel?

From a modern perspective, Hammer’s questions are clearly geometrical variants of
the sort of problems considered in computerized tomography, the science behind the
CAT scanner used in most major hospitals. Hammer’s X-ray problem was a major
inspiration for the development of geometric tomography, the area of mathematics
dealing with the retrieval of information about a geometric object from data con-
cerning its sections, or projections, or both. A full survey of geometric tomography
is provided in [7], from Chapters 1 and 5 of which we present the following short
summary of the contributions to Hammer’s X-ray problem relevant for the present
paper.

The earliest papers concern Hammer’s question (b). The (parallel) X-ray of a
convex body K in the direction u is the function giving the lengths of all the chords
of K parallel to u. (See Section 2 for a formal definition and other notation and
terminology.) The uniqueness aspect of question (b) is equivalent to asking which
finite sets of directions are such that the corresponding X-rays distinguish between
different convex bodies. Simple examples show that there are arbitrarily large sets of
directions that do not have this desirable property and that no set of three directions
does. A complete solution was found by Gardner and McMullen [10] (see also [7,
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Chapter 1]). A corollary of their result is that there are sets of four directions in
S1 such that the X-rays of any planar convex body in these directions determine it
uniquely among all planar convex bodies. It was shown in [10] that a suitable set of
four directions is one such that the corresponding set of slopes has a transcendental
cross-ratio. Clearly this is an impractical choice of directions. However, Gardner and
Gritzmann [8] showed that further suitable sets of four directions are those whose
set of slopes, in increasing order, have a rational cross-ratio not equal to 3/2, 4/3,
2, 3, or 4. It follows that if w1 = (1, 0), w2 = (2, 1), w3 = (0, 1), and w4 = (−1, 2),
for example, then the directions ui = wi/‖wi‖, i = 1, . . . , 4 are such that X-rays in
these directions determine planar convex bodies. (Many other practical choices are
possible, of course.)

The corresponding uniqueness problem in higher dimensions can be solved by taking
four directions, as specified above, all lying in the same 2-dimensional plane. Since the
corresponding X-rays determine each 2-dimensional section of a convex body parallel
to this plane, they determine the whole body.

The (point) X-ray of a convex body K at a point p is the function giving the lengths
of all the chords of K lying on lines through p. The uniqueness aspect of Hammer’s
question (a) is not completely solved, but it is known that a planar convex body K
is determined uniquely among all planar convex bodies by its X-rays taken at

(i) (Falconer [3], [4] and Gardner [5]) two points such that the line through them
intersects K and it is known whether or not K lies between the two points (for a
precise statement, see [7, Theorem 5.3.3]);

(ii) (Falconer and Gardner; see [7, Theorem 5.3.6]) three points such that K lies in
the triangle with these points as vertices;

(iii) (Gardner [6]) any set of four collinear points whose cross ratio is restricted as
in the parallel X-ray case above;

(iv) (Volčič [21]) any set of four points in general position.
Except in the case of (i), little is known about the uniqueness problem for point

X-rays in higher dimensions.
It is clear from their phrasing that Hammer’s questions are directed not just to

issues of uniqueness, but also to the actual reconstruction of an unknown convex
body from its X-rays taken in a finite set of directions or at a finite set of points
that guarantees a unique solution. As far as we know, three such algorithms have
been proposed for parallel X-rays. The first, due to Kölzow, Kuba, and Volčič [15],
suffers from some serious deficiencies (see the discussion in [15] and [7, Note 1.2]).
The second algorithm, proposed independently by Gardner and by Volčič (see [7,
pp. 47–51]), makes some restrictive assumptions about the convex body and lacks a
proof of convergence even under these assumptions. Finally, Brunetti and Daurat [2]
suggest an algorithm that, like that in [15], is based on discretization, but they do
not prove that it converges. For point X-rays, Falconer [3] (see also [7, Note 5.3])
gives a reconstruction algorithm for case (i) above. The only other algorithm seems
to be that of Lam and Solmon [16] for the purpose of reconstructing a convex polygon
from an X-ray at a single point, using a priori information about the location of the
polygon relative to the point; the algorithm does not apply to general planar convex
bodies.

The purpose of this paper is to present new algorithms for reconstructing planar
convex bodies from their parallel or point X-rays, in situations that guarantee a unique
solution when the data is exact. The algorithms are inspired by a least-squares op-
timization procedure used previously for reconstructing homogeneous objects from
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noisy X-ray data in a program developed by an electrical engineer, A. S. Willsky, and
his students, from the early 1980’s. This program was motivated by applications such
as nondestructive testing (locating cracks in nuclear reactor cooling pipes, etc.), and
medicine (nearly homogeneous regions such as kidneys and airspaces between organs).
The articles [12] and [17] are representative of such work.

The mainly Fourier-transform-based algorithms of computerized tomography pro-
duce an approximate image of a density function. Of course, in practise one can only
measure a finite number of values of each X-ray, and increasing this number will im-
prove the image. However, for the class of density functions, there is a fundamental
lack of uniqueness that in general also requires X-rays to be taken in more directions
to enhance the image. This lack of uniqueness remains even in the class of compact
sets. Algorithms in the just-cited papers arising from Willsky’s program often recon-
struct planar convex bodies, but they do not exploit the uniqueness results that hold
for this restricted class.

One important feature of the present paper is that uniqueness results for convex
bodies are utilized, so that fixed finite (and small) sets of X-rays are involved in the re-
construction, rather than the varying, and possibly large, number of X-rays employed
in computerized tomography. Complete proofs of convergence are provided (a feature
rather rare in the geometric tomography literature), solving, in a strong sense, Ham-
mer’s X-ray problem. Moreover, unlike all algorithms previously proposed for solving
Hammer’s problem, ours still work when the data is noisy, and our convergence proofs
apply also in this case. To be more specific, the algorithms take as input k equally
spaced noisy X-ray measurements of the unknown planar convex body K0 in each of
the fixed directions or at each of the fixed points, and produce a convex polygon Pk

that, almost surely, converges in the Hausdorff metric to K0 as k →∞. The noise is
modeled in the traditional way by adding independent N(0, σ2) random variables.

In [9], the present authors and Milanfar apply techniques from the theory of em-
pirical processes (see [20], for example) to obtain not only convergence proofs, but
also rates of convergence, for algorithms for reconstructing convex bodies from data
of different types, namely support and brightness functions. This application requires
certain entropy estimates that, for now at least, seem very difficult to obtain for X-ray
data, an extra obstacle being the lack of a suitable stability result (see, for example,
[7, Problem 1.5]).

The parallel X-ray algorithm is presented in Section 3 and the proof of its conver-
gence occupies Section 4. The point X-ray algorithm and the proof that it converges
are the subject of Section 6. For simplicity, the latter algorithm is designed for the
case (ii) of uniqueness discussed above, but it can easily be adapted for cases (i), (iii),
and (iv) as well. In Section 5, we propose a modified parallel X-ray algorithm and
prove that it also converges. This modified algorithm is expected to perform better
in some situations, including when the data is exact. A similar modification to the
point X-ray algorithm would be a routine matter. We stress, however, that this pa-
per focuses on theory; a thorough investigation into the practical aspects, including
implementation and testing, will be the subject of another article.

2. Definitions and notation

As usual, Sn−1 denotes the unit sphere, B the unit ball, o the origin, and ‖ · ‖ the
norm in Euclidean n-space Rn. (We shall restrict to n = 2 after this section.) A
direction is a unit vector, that is, an element of Sn−1. If u is a direction, then u⊥ is
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the (n− 1)-dimensional subspace orthogonal to u and lu is the line through the origin
parallel to u. If x, y ∈ Rn, then x · y is the inner product of x and y, and [x, y] is the
line segment with endpoints x and y.

We denote by ∂A and int A the boundary and interior of a set A, respectively. If A
is a Borel set in Rn, then V (A) is its n-dimensional Lebesgue measure.

If X is a metric space and ε > 0, a finite set {x1, . . . , xm} is called an ε-net in X if
for every point x in X, there is an i ∈ {1, . . . ,m} such that x is within a distance ε
of xi.

Let Kn be the family of compact convex sets in Rn. A convex body in Rn is a
compact convex set with nonempty interior. Let Kn

o be the family of convex bodies in
Rn and let Kn(A) (or Kn

o (A)) be the family of compact convex sets (or convex bodies,
respectively) contained in the subset A of Rn.

If K ∈ Kn, then

hK(x) = max{x · y : y ∈ K},
for x ∈ Rn, is its support function. Any K ∈ Kn is uniquely determined by its support
function. We can regard hK as a function on Sn−1, since hK(x) = ‖x‖hK(x/‖x‖) for
x 6= o. The Hausdorff distance δ(K, L) between two sets K, L ∈ Kn can then be
conveniently defined by

δ(K, L) = ‖hK − hL‖∞,

where ‖ · ‖∞ denotes the supremum norm on Sn−1.
The treatise of Schneider [18] is an excellent general reference for convex geometry.
Let K be a compact convex set in R2, let u ∈ S1, and let v ∈ S1 be orthogonal to

u such that {u, v} is oriented in the same way as the usual orthonormal basis {e1, e2}
for R2. The (parallel) X-ray of K in the direction u is the function XuK defined by

XuK(t) =

∫
lu+tv

1K(y)dy,

for t ∈ R, where 1K denotes the characteristic function of K. The (point) X-ray of
K at a point p ∈ R2 is the function XpK defined by

XpK(u) =

∫
lu+p

1K(y)dy,

for u ∈ S1. It will be convenient to identify a unit vector u ∈ S1 with its polar angle
θ, 0 ≤ θ < 2π, and regard XpK also as a function of θ.

3. The algorithm for parallel X-rays

For parallel X-rays, we shall assume throughout that the unknown convex body
K0 ∈ K2

o(B), i.e. that K0 is contained in the unit disk B in R2. This assumption can be
justified on both purely theoretical and purely practical grounds. If the measurements
are exact, then from the supports of the X-rays, a bounded polygon can be constructed
that contains K0. On the other hand, in practise, an unknown object whose X-rays
are to be measured is contained in some known bounded region. In either case, one
may as well suppose that K0 is a subset of B.

Let ui, i = 1, . . . , 4, be any fixed set of four directions in S1 such that any planar
convex body is determined by its X-rays in these directions. (We have given a specific
example of a practical set of such directions in the introduction.) For i = 1, . . . , 4
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and a given k ∈ N, the X-rays Xui
K0 of K0 are measured at equally spaced points

tj ∈ [−1, 1], j = 1, . . . , k, with t1 = −1 and tk = 1. The measurements

(1) M
(i)
j = Xui

K0(tj) + N
(i)
j ,

i = 1, . . . , 4, j = 1, . . . , k are noisy, the N
(i)
j ’s being independent normal N(0, σ2)

random variables.
Before describing our algorithm, we need some notation, and to keep this under

control, we shall for a while regard k as fixed, even though later it will vary. For
i = 1, . . . , 4, let vi be orthogonal to ui, where the orientation of {ui, vi} is the same
as {e1, e2}. For i = 1, . . . , 4, j = 1, . . . , k, and s ∈ R define the point

qij(s) = sui + tjvi

on the line lui
+ tjvi. If

(2) zk = (x11, y11, x12, y12, . . . , x1k, y1k, x21, y21, . . . , x4k, y4k) ∈ [−1, 1]8k,

we define P [zk] = conv T , where

(3) T =
4⋃

i=1

k⋃
j=1

{qij(xij), qij(yij) : qij(xij) 6= qij(yij)} .

Then P [zk] is a convex polygon with at most 8k vertices, each lying on one or more
lines corresponding to the beams of the X-rays along which measurements are taken.

In the definition of T , pairs of points qij(xij) and qij(yij) are omitted if they coincide.
The reason for this is that if a measurement line lui

+ tjvi does not intersect K0, then
it is desirable that it also does not intersect P [zk] = conv T . Since this feature may
introduce some instability in practise, we propose in Section 5 a modified algorithm
from which it has been removed. This modified algorithm is certainly applicable when
the data is exact and very likely in other situations as well.

Algorithm NoisyXrayLSQ

Input: k ∈ N; vectors ui ∈ Sn−1, i = 1, . . . , 4 and reals tj ∈ [−1, 1], j = 1, . . . , k, as
specified above; noisy X-ray measurements

M
(i)
j = Xui

K0(tj) + N
(i)
j ,

for i = 1, . . . , 4 and j = 1, . . . , k, of an unknown planar convex body K0 ∈ K2
o(B),

where the N
(i)
j ’s are independent normal N(0, σ2) random variables.

Task: Construct a convex polygon Pk that approximates K0.

Action: Solve the following least squares problem:

(4) min
zk∈[−1,1]8k

4∑
i=1

k∑
j=1

(
M

(i)
j −Xui

P [zk](tj)
)2

.

If ẑk is a solution of (4), let Pk = P [ẑk] be the output.

By construction, Pk is contained in the convex hull of the union of four centered
squares Si, i = 1, . . . , 4, where Si has center at o, side length 2, and one side parallel
to ui. Hence Pk ⊂

√
2B, but in general, we do not have Pk ∈ K2(B). Using the

assumption K ⊂ B, one could also consider P [ẑk] ∩B as an output of the algorithm.
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We shall not do so, as this would lead to a non-polygonal approximation. Alterna-
tively, it would be easy to modify the constraint zk ∈ [−1, 1]8k in (4) so as to ensure
that P [ẑk] ⊂ B. Neither modification would affect the main result.

In general, (4) may not have a solution. To avoid unnecessary complications, we
postpone a detailed discussion of this issue until Remark 4.7 at the end of the next
section.

The justification of our formulation of the optimization problem comes from the
next lemma, where it is shown that any output of Algorithm NoisyXRayLSQ best
approximates the given X-ray measurements among all compact convex sets in

√
2B.

The (infinite-dimensional) optimization problem (5) below corresponds to finding the
maximum likelihood estimator in the parameter space K2(

√
2B) for the unknown

convex body K0 under the given assumptions.

Lemma 3.1. Let k ∈ N and let K0 ∈ K2
o(B). If ẑk is any solution of (4), then

Pk = P [ẑk] is a solution of the problem

(5) min
K∈K2(

√
2B)

4∑
i=1

k∑
j=1

(
M

(i)
j −Xui

K(tj)
)2

.

Proof. Assume that Pk is not a solution of (5). Then there is a K ∈ K2(
√

2B) giving
a strictly smaller objective function value in (5). For i = 1, . . . , 4 and j = 1, . . . , k
let Zij = (lui

+ tjvi) ∩ ∂K. If Zij is empty, let xij = yij = 0. Otherwise, we have
either Zij = {qij(xij), qij(yiy)} or Zij = [qij(xij), qij(yij)] for some (possibly identical)
xij, yij ∈ R. Define zk ∈ [−1, 1]8k as in (2), T as in (3), and P [zk] = conv T . Then
P [zk] ⊂ K and

(lui
+ tjvi) ∩K = (lui

+ tjvi) ∩ P [zk],

whenever the left-hand side is not a singleton, in which case the right-hand side is
empty. It follows that

Xui
K(tj) = Xui

Pk[zk](tj),

for i = 1, . . . , 4 and j = 1, . . . , k. Therefore the objective function value in (5) is
unchanged if we replace K by P [zk]. But then the objection function value in (4)
is strictly smaller for this P [zk] than for P [ẑk], a contradiction to the definition of
P [ẑk]. �

4. Proof of convergence

Let f0(t) = 2
√

1− t2, −1 ≤ t ≤ 1, and let G be the class of all nonnegative functions
g on [−1, 1] that are concave on their supports and such that g ≤ f0. Note that for
each u ∈ S1, we have

(6) G = {XuK : K ∈ K2(B)}.
For each k ∈ N, define a pseudonorm | · |k on G by

(7) |g|k =

(
1

k

k∑
j=1

g(tj)
2

)1/2

, g ∈ G.

For K ∈ K2
o(B), u ∈ S1, and a vector N = (N1, . . . , Nk) of independent N(0, σ2)

random variables, let

(8) Ψk(K, u,N) =
1

k

k∑
j=1

XuK(tj)Nj.
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Lemma 4.1. Let k ∈ N and let K0 ∈ K2
o(B). If Pk is an output from Algo-

rithm NoisyXrayLSQ as stated above, then

(9)
1

2

4∑
i=1

|Xui
K0 −Xui

Pk|2k ≤
4∑

i=1

Ψk

(
Pk, ui,N

(i)
)
−

4∑
i=1

Ψk

(
K0, ui,N

(i)
)
,

where N(i) = (N
(i)
1 , . . . , N

(i)
k ), i = 1, . . . , 4.

Proof. By Lemma 3.1, Pk is a solution of (5). Therefore

4∑
i=1

k∑
j=1

(
M

(i)
j −Xui

Pk(tj)
)2

≤
4∑

i=1

k∑
j=1

(
M

(i)
j −Xui

K0(tj)
)2

.

Substituting for M
(i)
j from (1) and rearranging, we obtain

4∑
i=1

k∑
j=1

(Xui
K0(tj)−Xui

Pk(tj))
2 ≤ 2

4∑
i=1

k∑
j=1

(Xui
Pk(tj)−Xui

K0(tj)) N
(i)
j .

In view of (7) and (8), this is the required inequality. �

The main part of the proof of convergence consists in showing that, almost surely,
the term on the left-hand side of the inequality in the statement of the previous lemma
converges to zero as k →∞. Some technical lemmas are required.

Let K be any convex body in R2 and let ε > 0. Define the inner parallel body
K 	 εB by

K 	 εB = {x ∈ R2 : x + εB ⊂ K}.
Then

K 	 εB =
⋂

y∈εB

(K − y),

so the inner parallel body is convex. For further properties, see [18, pp. 133–137].

Lemma 4.2. If K ∈ K2
o(B) and 0 < ε < 1, then

V (K)− V (K 	 εB) < 4πε.

Proof. Suppose first that K	 εB2 contains at most one point. Then V (K	 εB2) = 0
and any ball contained in K has a radius at most ε, i.e., the inradius of K is less or
equal to ε. For an arbitrary convex body L in R2 with inradius r, Bonnesen proved
that

(10) V (L) + πr2 ≤ rS(L),

where S(L) denotes the perimeter of L. (Hadwiger [13] gives a short proof of (10)
and Bokowski [1] provides a generalization to n dimensions.) Since K ⊂ B implies
S(K) ≤ 2π, we obtain

(11) V (K)− V (K 	 εB) = V (K) < 2πε.

Now suppose that K	εB contains at least two points, and let Kε = (K	εB)+εB.
If it is not empty, the interior of the set K \Kε consists of at most countably many
disjoint components, whose closures we may label Ci, i ∈ N. (There may only be
finitely many.) Note that K is the union of Kε and Ci, i ∈ N, and all these sets have
disjoint interiors.
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For each i, there is a point xi ∈ ∂(K 	 εB) such that the boundary of Ci consists
of two arcs, one contained in ∂K and one, Ai say, in ∂(εB + xi). Then the arcs
Ai − xi ⊂ ∂(εB), i ∈ N, have disjoint relative interiors. Let

Q = εB ∪
∞⋃
i=1

(Ci − xi),

and note that the sets in this union have disjoint interiors and that Q is convex. Since
K ⊂ B, a translate of Q is contained in B. By (10) with L and r replaced by this
translate of Q and ε, respectively, we obtain

V (Q) < εS(Q)− πε2 < 2πε

and hence

(12) V (K) = V (Kε)+
∞∑
i=1

V (Ci) = V (Kε)+V (Q)−V (εB) < V (Kε)+2πε−ε2V (B).

Using (12) together with the concept of mixed volumes and their monotonicity (see,
for example, [7, Section A.3]), we conclude that

V (K)− V (K 	 εB) < V (Kε)− V (K 	 εB)− ε2V (B) + 2πε

= 2εV (K 	 εB,B) + 2πε

≤ 2εV (B) + 2πε = 4πε. �

Lemma 4.3. Let 0 < ε < 1 be given. Then there is a finite set {(gL
i , gU

i ) | i =
1, . . . ,m} of pairs of functions in G such that

(i) ‖gU
i − gL

i ‖1 ≤ ε for i = 1, . . . ,m and
(ii) for each g ∈ G, there is an i ∈ {1, . . . ,m} such that gL

i ≤ g ≤ gU
i .

Proof. Let 0 < ε < 1 and u ∈ S1, and note that by (6) we have G ⊂ L1([−1, 1]).
Since K2(B) with the Hausdorff metric is compact, there is an ε/(7π)-net {K1, . . . ,
Km} in K2(B). For each i = 1, . . . ,m, let KU

i = (Ki + (ε/(7π))B) ∩ B and KL
i =

Ki 	 (ε/(7π))B. Define gU
i = XuK

U
i and gL

i = XuK
L
i , i = 1, . . . ,m. By (6), both gU

i

and gL
i belong to G, i = 1, . . . ,m.

We first prove (ii). Let g ∈ G. By (6), there is a K ∈ K2(B) such that g =
XuK. Choose i ∈ {1, . . . ,m} such that δ(K,Ki) ≤ ε/(7π). Since K ⊂ B and
K ⊂ Ki + (ε/(7π))B, we have K ⊂ (Ki + (ε/(7π))B) ∩B = KU

i . Also, we have

(Ki 	 (ε/(7π))B) + (ε/(7π))B ⊂ Ki ⊂ K + (ε/(7π))B,

yielding KL
i = Ki	(ε/(7π))B ⊂ K. These facts imply that gL

i ≤ g ≤ gU
i , as required.

It remains to prove (i). Applying Lemma 4.2 with ε replaced by ε/(7π), and using
again mixed volumes and their monotonicity, we obtain

‖gU
i − gL

i ‖1 =

∫ 1

−1

(
gU

i (t)− gL
i (t)

)
dt

≤ V
(
Ki +

ε

7π
B

)
− V (Ki 	

ε

7π
B)

= V (Ki) +
2ε

7π
V (Ki, B) +

( ε

7π

)2

V (B)− V
(
Ki 	

ε

7π
B

)
< 4π

ε

7π
+

2ε

7π
π +

( ε

7π

)2

π < ε.

This proves the claim. �
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By analogy with [20, Definition 2.2], we refer to a finite set {(gL
i , gU

i )| i = 1, . . . ,m}
of pairs of functions in G satisfying (i) and (ii) of Lemma 4.3 as an ε-net with bracketing
for the class G.

The following lemma is a version of the strong law of large numbers that applies
to a triangular family, rather than a sequence, of random variables. While its proof
follows standard arguments (see, for example, [19, Theorem 1, p. 388]), we are unable
to find it explicitly stated in the literature and so provide the details.

Lemma 4.4. Let Xjk, k ∈ N, j = 1, . . . , k, be an independent family of random
variables, each with zero mean. If there is a constant C such that

E
(
X4

jk

)
≤ C, k ∈ N, j = 1, . . . , k,(13)

then, almost surely, we have

(14)
1

k

k∑
j=1

Xjk → 0

as k →∞.

Proof. Let ε > 0, let k ∈ N, and let Ak(ε) be the event

Ak(ε) =

{∣∣∣∣1k
k∑

j=1

Xjk

∣∣∣∣ > ε

}
.

By Markov’s inequality,

(15) P (Ak(ε)) ≤
E

[(∑k
j=1 Xjk

)4]
(kε)4

=
αk

(kε)4
,

say. By Jensen’s inequality for integrals (see, for example, [7, (B.8), p. 367]) and (13),
we have

E
(
X2

jk

)
≤

(
E

(
X4

jk

))1/2 ≤ C1/2,

for j = 1 . . . , k. Using this, independence, the fact that the random variables have
zero mean, and (13), we obtain

αk = E

[( k∑
j=1

Xjk

)4]
=

4∑
i=0

(
4

i

)
E

[(k−1∑
j=1

Xjk

)4−i]
E

(
X i

kk

)
= αk−1 + 6E

[(k−1∑
j=1

Xjk

)2]
E

(
X2

kk

)
+ E

(
X4

kk

)
= αk−1 + 6E

(
X2

kk

) k−1∑
j=1

E
(
X2

jk

)
+ E

(
X4

kk

)
≤ αk−1 + 6(k − 1)C + C.

Together with α1 ≤ C, induction gives αk ≤ 6Ck2. Now (15) implies

P (Ak(ε)) ≤
6C

ε4
k−2,

yielding
∞∑

k=1

P (Ak(ε)) < ∞.
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The Borel-Cantelli lemma gives P (lim supk→∞Ak(ε)) = 0, and this is equivalent to
the almost sure convergence in (14). �

We shall need to examine Algorithm NoisyXRayLSQ for varying k ∈ N. In view of
this, we relabel the measurements from (1) as

(16) M
(i)
jk = Xui

K0(tjk) + N
(i)
jk ,

for i = 1, . . . , 4, j = 1, . . . , k, and k ∈ N, where the tjk’s, j = 1, . . . , k, are equally

spaced points in [−1, 1] with t1k = −1 and tkk = 1, and the N
(i)
jk ’s are independent

normal N(0, σ2) random variables.

Lemma 4.5. Let ρ > 0, let u ∈ S1, and let Njk, k ∈ N, j = 1, . . . , k, be independent
N(0, σ2) random variables. Then, almost surely,

sup
K∈K2(ρB)

Ψk(K, u,Nk) → 0

as k → ∞, where for each k ∈ N, Ψk(K,u,Nk) is defined by (8) with N = Nk =
(N1k, . . . , Nkk) and tj = tjk.

Proof. We may assume without loss of generality that ρ ≥ 1. Let 0 < ε < 1 and let
{(gL

i , gU
i ) : i = 1, . . . ,m} be an ε-net with bracketing for G, as provided by Lemma 4.3.

Let u ∈ S1, let K ∈ K2(ρB), and define g = Xu((1/ρ)K) ∈ G. Then ρg(t/ρ) =
XuK(t) for all t ∈ [−1, 1]. Choose i ∈ {1, . . . ,m} such that gL

i ≤ g ≤ gU
i . Define

N+
jk = max{Njk, 0} and N−

jk = N+
jk −Njk for k ∈ N and j = 1, . . . , k. Then for k ∈ N,

we have

Ψk(K, u,Nk) =
ρ

k

k∑
j=1

g(tjk/ρ)N+
jk −

ρ

k

k∑
j=1

g(tjk/ρ)N−
jk

≤ ρ

k

k∑
j=1

gU
i (tjk/ρ)N+

jk −
ρ

k

k∑
j=1

gL
i (tjk/ρ)N−

jk

≤ ρWk(ε),

where

Wk(ε) = max
i=1,...,m

{
1

k

k∑
j=1

gU
i (tjk/ρ)N+

jk −
1

k

k∑
j=1

gL
i (tjk/ρ)N−

jk

}
is independent of K. Consequently,

(17) sup
K∈K2(ρB)

Ψk(K, u,Nk) ≤ ρWk(ε),

for all 0 < ε < 1.
Fix i ∈ {1, . . . ,m}, and let

Xjk = gU
i (tjk/ρ)N+

jk − gU
i (tjk/ρ)E(N+

jk),

for k ∈ N and j = 1, . . . , k. Since gU
i (tjk/ρ) ≤ f0(tjk/ρ) ≤ 2, it is easy to check that

the random variables Xjk satisfy the hypotheses of Lemma 4.4. By (14), we obtain,
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almost surely,

lim
k→∞

1

k

k∑
j=1

gU
i (tjk/ρ)N+

jk = lim
k→∞

1

k

k∑
j=1

gU
i (tjk/ρ)E(N+

jk)

=
1

2

∫ 1

−1

gU
i (t/ρ) dt E(N+

11).

=
ρ

2

∫ 1/ρ

−1/ρ

gU
i (t) dt E(N+

11).

The same argument applies when Xjk is defined by Xjk = gL
i (tjk/ρ)N−

jk−gL
i (tjk/ρ)E(N−

jk).
Therefore, almost surely,

lim
k→∞

Wk(ε) =
ρ

2
max

i=1,...,m

{∫ 1/ρ

−1/ρ

gU
i (t) dtE(N+

11)−
∫ 1/ρ

−1/ρ

gL
i (t) dtE(N−

11)

}
.

Since the variable N11 has zero mean, E(N−
11) = E(N+

11). Also, by Lemma 4.3(i) we
have ‖gU

i − gL
i ‖1 ≤ ε and by Lemma 4.3(ii) we may assume that gU

i − gL
i ≥ 0, for

i = 1, . . . ,m. We conclude that

lim
k→∞

Wk(ε) ≤
ρ

2
max

i=1,...,m

∫ 1

−1

(gU
i (t)− gL

i (t)) dtE(N+
11) ≤

ρ

2
E(N+

11)ε,

almost surely. Therefore, almost surely, for each s ∈ N we have

(18) lim
k→∞

Wk(1/s) ≤ ρE(N+
11)/(2s).

Let ε0 > 0, and let s ∈ N be such that ρ2E(N+
11)/(2s) < ε0. Then, by (17) and (18),

almost surely, there is a k0 ∈ N such that for all k ≥ k0, we have

sup
K∈K2(ρB)

Ψk(K, u,Nk) ≤ ρ2E(N+
11)/(2s) < ε0.

This proves the lemma. �

Theorem 4.6. Let k ∈ N and let K0 ∈ K2
o(B). If Pk is an output from Algo-

rithm NoisyXrayLSQ as stated above, then, almost surely,

(19) lim
k→∞

δ(K0, Pk) → 0,

as k →∞.

Proof. Let i ∈ {1, . . . , 4}, and relabel the measurements in Algorithm NoisyXrayLSQ

as in (16). By Lemma 4.1 (with N(i) = N
(i)
k = (N

(i)
1k , . . . , N

(i)
kk )) and Lemma 4.5 (with

u = ui, ρ =
√

2 and Nk = N
(i)
k ), we obtain, almost surely,

(20) |Xui
K0 −Xui

Pk|k → 0,

as k → ∞. Fix a realization for which (20) holds for i = 1, . . . , 4. As Pk ⊂
√

2B for
each k, Blaschke’s selection theorem implies that Pk converges to K0 in the Hausdorff
metric if and only if the only accumulation point of the sequence (Pk) is K0. Let
Q ⊂

√
2B be an arbitrary accumulation point of (Pk) and let (Pk′) be a subsequence

converging to Q. If we can show that for i = 1, . . . , 4,

(21) |Xui
K0 −Xui

Pk′|2k′ →
1

2

∫ 1

−1

(Xui
K0(t)−Xui

Q(t))2 dt
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as k′ →∞, then (20) implies

‖Xui
K0 −Xui

Q‖2 = 0,

and hence
Xui

K0 = Xui
Q,

for i = 1, . . . , 4. Our choice of the directions ui then ensures that K0 = Q, as required.
It remains to prove (21). Let i ∈ {1, . . . , 4}. Define Fk′ = Xui

K0 − Xui
Pk′ and

F = Xui
K0 − Xui

Q. Since Pk′ converges to Q as k′ → ∞, it is easy to show that
Fk′ converges uniformly to F on any compact subset of [−1, 1] not containing the two
points in the boundary Z of the support of Xui

Q. Fix ε > 0 and let Zε be the set of
all t ∈ [−1, 1] having distance less than ε from Z. Then

|Fk′|2k′ =
1

k′

k′∑
j=1

F 2
k′(tjk′)1[−1,1]\Zε(tjk′) +

1

k′

k′∑
j=1

F 2
k′(tjk′)1Zε(tjk′),

where the first term converges to

1

2

∫
[−1,1]\Zε

F 2(t) dt

by the uniform convergence of Fk′ to F . Noting that Zε is the union of two intervals
of length 2ε and that |Fk′| ≤ 2

√
2, we see that the second term is asymptotically

bounded by 16ε. Hence

lim sup
k′→∞

∣∣∣∣|Fk′|2k′ −
1

2

∫ 1

−1

F 2(t)dt

∣∣∣∣ ≤ 1

2

∫
Zε

F 2(t)dt + 16ε ≤ 32ε.

This implies (21) and the proof is complete. �

Remark 4.7. When the X-ray measurements are exact, the existence of a solution
ẑk of (4) and hence an output Pk of Algorithm NoisyXrayLSQ is guaranteed. This
is a consequence of the proof of Lemma 3.1, when K is replaced by K0. When the
measurements are noisy, however, there may not be a solution of (4), as the following
example shows.

For simplicity consider just two directions, e1 = (1, 0) and e2 = (0, 1); the example

can easily be modified for the four directions above. Let k = 5 and let M
(1)
3 = 1,

M
(1)
j = 0 for j = 1, 2, 4, 5, M

(2)
j = 1 for j = 2, 3, 4, and M

(2)
j = 0 for j = 1, 5. Let

0 < ε < 1/2 and let Kε be the rectangle [−1/2, 1/2]× [−1/2 + ε, 1/2− ε]. Then

2∑
i=1

5∑
j=1

(
M

(i)
j −Xei

Kε(tj)
)2

= 6ε2.

The minimum in the corresponding version of (4) could therefore only be zero, so if
there were a solution, the argument of Lemma 3.1 shows that there would be a convex
body K such that

2∑
i=1

5∑
j=1

(
M

(i)
j −Xei

K(tj)
)2

= 0.

But then K meets the three vertical lines le2 and le2 ± e1/2 in line segments of length
1 and meets each of the two horizontal lines le1± e2/2, if at all, in a single point. This
is clearly impossible.

Note however that it is sufficient for our convergence proof that in (4) there is a
z∗k ∈ [−1, 1]8k that yields an objective function value close to the infimum. Specifically,
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if f(zk) is the objective function in (4), suppose that for sufficiently large k, there is
a z∗k ∈ [−1, 1]8k such that

f(z∗k) ≤ inf
zk∈[−1,1]8k

f(zk) + εk,

for some εk > 0. Then Lemma 4.1 holds for Pk = P [z∗k] when εk is added to the right-
hand side of (9). If εk → 0 as k →∞, then Theorem 4.6 still holds for Pk = P [z∗k].

In practise, of course, solving (4) would require nonlinear optimization software
that already implement procedures for stopping when close to a minimum.

5. A modified parallel X-ray algorithm

We again suppose that K0 ∈ K2
o(B) and the directions ui, i = 1, . . . , 4 are as

before. Let the support of the X-ray Xui
K0 be [ai, bi], i = 1, . . . , 4. In this section

we assume that it is possible to find, from the X-ray measurements (16), intervals
[aik, bik] ⊂ [−1, 1] such that aik → ai and bik → bi as k →∞, i = 1, . . . , 4. Note that
this assumption is certainly fulfilled if the data is exact, because in this case one can
take aik and bik to be the smallest and largest values, respectively, of tjk such that
Xui

K0(tjk) > 0. It will very likely also be satisfied even when the data is noisy, via
suitable averaging and thresholding of the measurements, and we plan to investigate
this in a future study.

Let Hik be the strip bounded by the parallel lines lui
+ aikvi and lui

+ bikvi, for
i = 1, . . . , 4 and k ∈ N. Then Hik → Hi, where Hi is the strip containing K0 and
bounded by lines parallel to ui supporting K0, i = 1, . . . , 4. Let

Rk =
4⋂

i=1

Hik,

for k ∈ N. Then the Rk’s are (possibly empty or degenerate) convex polygons that
converge to the convex polygon ∩k

i=1Hi circumscribing K0.
For each i = 1, . . . , 4 and k ∈ N, let Jik denote the set of contiguous indices j

such that the line lui
+ tjkvi meets Rk. We consider the modified version of Algo-

rithm NoisyXRayLSQ in which the measurements M (i)
jk are restricted to j ∈ Jik. This

simply means that we are only using, for each i = 1, . . . , 4, the X-ray Xui
K0 on those

equally spaced lines parallel to ui that meet the convex polygon Rk.

Fix a k ∈ N. For i = 1, . . . , 4 and j ∈ Jik, L
(i)
jk = (lui

+ tjkvi) ∩ Rk is a (possibly
degenerate, but nonempty) chord of Rk. Let

S
(i)
jk = {s ∈ R : qij(s) = sui + tjkvi ∈ L

(i)
jk} ⊂ [−1, 1].

The vector zk is defined as in (2), except that only double indices ij with j ∈ Jik

are used, and the values of xij and yij (which, as earlier, actually depend on k) are

restricted to S
(i)
jk . Thus the total number of components of zk is now

ck = 2
4∑

i=1

|Jik|,

which is no more than 8k and in general less, and zk belongs in general to a strict
subset Fk of [−1, 1]ck . Then let P [zk] = conv T , where instead of (3) we define

(22) T =
4⋃

i=1

⋃
j∈Jik

{qij(xij), qij(yij)} .
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A crucial difference here is that we no longer omit pairs of points qij(xij) and qij(yij)
(which, as earlier, also actually depend on k) if they coincide. As before, P [zk] is a
convex polygon with at most ck vertices, each lying on one or more lines corresponding
to the reduced set of beams of the X-rays along which measurements are taken into
consideration.

The task and action of the modified algorithm is the same as before, with the
corresponding modified version of (4), namely,

(23) min
zk∈Fk

4∑
i=1

∑
j∈Jik

(
M

(i)
jk −Xui

P [zk](tjk)
)2

.

If ẑk is a solution of (23), we denote by Pk = P [ẑk] the output of this modified
algorithm.

For each k ∈ N, let Hk be the set of compact convex sets contained in Rk and
meeting each of the lines lui

+ tjkvi, i = 1, . . . , 4 and j ∈ Jik. Note that by its
construction, we have P [zk] ∈ Hk and hence Pk ∈ Hk for each k. The following
lemma corresponds to Lemma 3.1.

Lemma 5.1. Let k ∈ N and let K0 ∈ K2
o(B). If ẑk is any solution of (23), then

Pk = P [ẑk] is a solution of the problem

(24) min
K∈Hk

4∑
i=1

∑
j∈Jik

(
M

(i)
jk −Xui

K(tj)
)2

.

Proof. Assume that Pk is not a solution of (24). Then there is a K ∈ Hk giving a
strictly smaller objective function value in (24). For i = 1, . . . , 4 and j ∈ Jik, let
Zij = (lui

+ tjkvi)∩∂K. By the definition of Hk, Zij cannot be empty, so either Zij =

{qij(xij), qij(yiy)} or Zij = [qij(xij), qij(yij)] for some (possibly identical) xij, yij ∈ S
(i)
jk .

Use these values of xij and yij to define zk ∈ Fk, T as in (22), and P [zk] = conv T .
Then

(lui
+ tjkvi) ∩K = (lui

+ tjvi) ∩ P [zk].

It follows that

Xui
K(tj) = Xui

Pk[zk](tj),

for i = 1, . . . , 4 and j ∈ Jik. Therefore the objective function value in (24) is un-
changed if we replace K by P [zk]. But then the objection function value in (23)
is strictly smaller for this P [zk] than for P [ẑk], a contradiction to the definition of
P [ẑk]. �

Let k ∈ N. On each chord L
(i)
jk , i = 1, . . . , 4, j ∈ Jik, of Rk defined above that is

disjoint from K0, choose the point nearest to K0, and let Kk be the convex hull of
K0 ∩ Rk and all the points chosen in this way. Clearly Kk ∈ Hk for each k. We also

have Kk → K0 as k →∞, because the distance from L
(i)
ij to K0 converges to zero as

k →∞, for i = 1, . . . , 4 and j ∈ Jik.
By Lemma 5.1, Pk is a solution of (24). Since Kk ∈ Hk, we have

4∑
i=1

∑
j∈Jik

(
M

(i)
jk −Xui

Pk(tjk)
)2

≤
4∑

i=1

∑
j∈Jik

(
M

(i)
jk −Xui

Kk(tjk)
)2

.
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Substituting for M
(i)
jk from (16) and rearranging, we obtain, in notation used earlier,

1

2

4∑
i=1

|Xui
K0 −Xui

Pk|2k ≤
4∑

i=1

Ψk

(
Pk, ui,N

(i)
k

)
−

4∑
i=1

Ψk

(
Kk, ui,N

(i)
k

)
(25)

+
1

2

4∑
i=1

|Xui
K0 −Xui

Kk|2k .

The bound (25) replaces (9) in Lemma 4.1.

Theorem 5.2. Let k ∈ N and let K0 ∈ K2
o(B). If Pk is an output from the modified

version of Algorithm NoisyXrayLSQ, then, almost surely,

lim
k→∞

δ(K0, Pk) → 0,

as k →∞.

Proof. Let i ∈ {1, . . . , 4}. Since Kk → K0, we have

|Xui
K0 −Xui

Kk|k → 0,

as k →∞. By (25) and Lemma 4.5 (with u = ui, ρ =
√

2 and Nk = N
(i)
k ), we obtain,

almost surely,

|Xui
K0 −Xui

Pk|k → 0,

as k →∞. The rest of the proof is exactly the same as that of Theorem 4.6. �

Of course, Remark 4.7 also applies to the above modified algorithm.

6. The algorithm for point X-rays

In this section, we give an algorithm similar to that in Section 3, but designed for
the purpose of reconstructing convex bodies from point X-rays. The basic idea is
quite similar to the parallel X-ray case, so rather than giving full details, we supply
only those that are necessary once Section 3 has been understood.

We shall assume throughout that the unknown convex body K0 ∈ K2
o(E), where E

is a fixed equilateral triangle inscribed in B. Let pi, i = 1, 2, 3, be the vertices of E, so
that by [7, Theorem 5.3.6], any planar convex body contained in E is determined by
its X-rays at these points (case (ii) of the introduction). For i = 1, 2, 3 and k ∈ N, the
X-rays Xpi

K0 of K0 are measured at equally spaced angles θjk, j = 1, . . . , k, where by
rotating the domains of these functions, we may assume that θjk ∈ [0, π/3], θ1k = 0,
and θkk = π/3. The measurements

(26) M
(i)
jk = Xpi

K0(θjk) + N
(i)
jk ,

for i = 1, 2, 3 and j = 1, . . . , k, are noisy, the N
(i)
jk ’s being independent normal N(0, σ2)

random variables.
A less formal description of the algorithm should suffice. Similarly to the parallel

X-ray case, a vector zk, now with 3k pairs of nonnegative real components xij and yij,
is used to define pairs of points qij(xij) and qij(yij) (which, as earlier, actually depend
on k) lying on the line lθjk

+ pi, where we are identifying the angle θjk with the unit
vector in this direction. By restricting xij and yij suitably, we can further ensure that
all these points lie in E; let Fk be the set of corresponding vectors zk. The set T is the
union of the qij(xij)’s and qij(yij)’s except for those such that qij(xij) = qij(yij), and
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P [zk] = conv T . The algorithm is the same as Algorithm NoisyXrayLSQ except that
input consists of the point X-ray measurements (26) and the least squares problem is

(27) min
zk∈Fk

3∑
i=1

k∑
j=1

(
M

(i)
jk −Xpi

P [zk](θjk)
)2

.

If ẑk is a solution of (27), let Pk = P [ẑk] be the output of the algorithm.
With a proof essentially the same as that of Lemma 3.1, we have that if ẑk is any

solution of (27), then Pk = P [ẑk] is a solution of the problem

(28) min
K∈K2(E)

3∑
i=1

k∑
j=1

(
M

(i)
jk −Xpi

K(θjk)
)2

.

Let G be the class of all functions on [0, π/3] that are X-rays XoK(θ) of convex
bodies K contained in the triangle E0 with vertices o, (

√
3, 0), and (

√
3/2, 3/2) con-

gruent to E. Note that if K ∈ K2
o(E), we can regard Xpi

K, i = 1, 2, 3, as members of
G by rotating their domains as above.

For each k ∈ N, define the pseudonorm | · |k on G by

|g|k =

(
1

k

k∑
j=1

g(θjk)
2

)1/2

, g ∈ G.

The functions Ψk(K, p,N), p ∈ R2, are defined analogously to (8). With a proof
similar to that of Lemma 4.1, using the fact that Pk is a solution of (28), we obtain
the corresponding bound,

(29)
1

2

3∑
i=1

|Xpi
K0 −Xpi

Pk|2k ≤
3∑

i=1

Ψk

(
Pk, pi,N

(i)
)
−

3∑
i=1

Ψk

(
K0, pi,N

(i)
)
.

Lemma 4.3 still holds, exactly as stated there with the new class G just defined,
but for the proof the following lemma is needed.

Lemma 6.1. Let H1 and H2 be convex bodies with H1 ⊂ int H2 ⊂ E0. Then∫ π/3

0

(XoH2(θ)−XoH1(θ)) dθ ≤ 2

(
2π

3
(V (H2)− V (H1))

)1/2

.

Proof. It is easy to see that the annular region A = H2 \ int H1 can be expressed as
the union of two closed regions A1 and A2, disjoint except on their boundaries, such
that

Aj = {(r, θ) ∈ R2 : sj(θ) ≤ r ≤ tj(θ), 0 ≤ θ ≤ π/3},
for some (at least piecewise) continuous functions sj and tj, j = 1, 2. Now for j = 1, 2,
the Cauchy-Schwarz inequality yields∫ π/3

0

(tj(θ)− sj(θ)) dθ ≤
(∫ π/3

0

(tj(θ)− sj(θ))
2 dθ

)1/2(∫ π/3

0

12 dθ

)1/2

≤
(

π

3

∫ π/3

0

(
tj(θ)

2 − sj(θ)
2
)

dθ

)1/2

=

(
2πV (Aj)

3

)1/2

≤
(

2πV (A)

3

)1/2

.

The inequality in the statement of the lemma follows immediately. �
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The proof of the new version of Lemma 4.3 runs as follows. Let 0 < ε < 1 and
note that G ⊂ L1([0, π/3]). Since K2(E0) with the Hausdorff metric is compact,
for any c > 0 there is an c ε2-net {K1, . . . , Km} in K2(E0). For each i = 1, . . . ,m,
let KU

i = (Ki + c ε2B) ∩ E0 and KL
i = Ki 	 c ε2B. Define gU

i (θ) = XoK
U
i (θ) and

gL
i (θ) = XoK

L
i (θ), for 0 ≤ θ ≤ π/3 and i = 1, . . . ,m. Then both gU

i and gL
i belong

to G, i = 1, . . . ,m. The proof of (ii) of the new version Lemma 4.3 is as before, so
it remains to prove (i). Using Lemma 6.1 with H1 = KL

i and H2 = KU
i , and the

estimates employing mixed volumes at the end of Lemma 4.3, we obtain

‖gU
i − gL

i ‖1 =

∫ π/3

0

(
gU

i (θ)− gL
i (θ)

)
dθ

≤ 2

(
2π

3

(
V (Ki + c ε2B)− V (Ki 	 c ε2B)

))1/2

< 2

(
2π

3
7πc ε2

)1/2

< ε,

for sufficiently small c.
The rest of the proof of convergence for the point X-ray algorithm now routinely

follows that for Algorithm NoisyXrayLSQ in Section 4. We remark only that the
proof of Lemma 4.5 uses a homogeneity property for the parallel X-ray of ρK, which
does not hold for the point X-ray. However, as K0 and Pk are subsets of E ⊂ B, the
point X-ray version of Lemma 4.5 is only needed for ρ = 1, and in this case the proof
is essentially the same. We obtain the following result.

Theorem 6.2. Let k ∈ N and let K0 ∈ K2
o(E). If Pk is an output from the point

X-ray version of Algorithm NoisyXrayLSQ outlined above, then, almost surely,

lim
k→∞

δ(K0, Pk) → 0,

as k →∞.

Again, Remark 4.7 also applies to the point X-ray algorithm.
The algorithm and proof of convergence would be easy to adapt to the other cases

(i), (iii), and (iv) in the introduction for which uniqueness results for point X-rays are
available. For these it should be assumed that the unknown convex body K0 ∈ K2

o(B),
as for parallel X-rays, and the points in T should be restricted to B to avoid use of
the homogeneity property of Lemma 4.5 mentioned above.
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