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Dansk resumé

Lad G veere en sammenhaengende, semisimpel linezer algebraisk gruppe over et al-
gebraisk lukket legeme k. Sa virker G pa dens Lie algebra under den adjungerede
virkning. I afthandlingen betragter vi de nilpotente baner under denne virkning.
Geometrien af de nilpotente baners aflukning er gennem arene blevet undersggt
ngje, specielt om aflukningerne er normale. Hvis k er af karakteristik nul, er dette
spgrgsmal tidligere blevet besvaret nar G er af type A, B, C eller D. I 2003 klassi-
ficerede Eric Sommers de nilpotente baner med normal aflukning nar G er af type
Eg og karakteristikken af k er nul. I athandlingen viser vi at denne klassificering
ogsa geelder i god karakteristik nar G er enkeltsammenhaengende.

iii






Introduction

Let G be a connected, semi-simple linear algebraic group over an algebraically
closed field k. Then G acts on its Lie algebra g under the adjoint action. An
element x € g is called nilpotent if there exists a closed, unipotent subgroup H of
G such that = belongs to the Lie algebra of H. If x € g is nilpotent and g € G,
then also g.x is nilpotent, hence it makes sense to define nilpotent orbits inside g.

There are only finitely many such nilpotent orbits in g. In characteristic zero
and in characteristic p with p > 3(h — 1) where h is the Coxeter number of G, the
nilpotent orbits have been classified by Bala and Carter in [BC76a] and [BC76b].
The result was extended by Pommerening to good characteristic in [Pom80] in-
cluding some case by case studies. Recently Premet has given a conceptual proof
of the classification, cf. [Pre03].

The geometry of the closures of the nilpotent orbits has been studied for many
years. In particular a great deal of work has been put into deciding whether or
not the closures of the nilpotent orbits are normal. For example all adjoint orbits
have normal closure when G = SL,, or G = GL,,. When G is of type B, C' or D
and the characteristic is zero, the nilpotent orbits with normal closure have been
classified, and it turns out that not all orbits have normal closure. For more results
on normality one should consult the surveys in Section 8.6. in Jantzen’s part of
[JNO4] and in Section 7.20 in [Hum95].

In the paper [Som03] Eric Sommers characterizes which nilpotent orbits do
have normal closure and which do not when G is of type Eg and the characteristic
of k is zero. The aim of this thesis is to prove that the result remains valid when
the characteristic of k is a prime number p with p > 5, i.e. when the characteristic
of k is good for G. This is also our main result. In the notation of Bala-Carter the
result is:

Theorem 1. Let G be a connected, simply connected, semi-simple linear algebraic
group over an algebraically closed field k. Suppose G is of type Eg, and that the
characteristic of k£ is good for G. Then the following nilpotent orbits in g have
normal closure: EG; Eg(al), D57 EG((IQ,), D5(a1), As, A4 —+ Al, D4, D4(a1), D4,
245 + Ay, Ay +2A4, As, 3Aq, 244, 0.

The last five nilpotent orbits do not have normal closure: A4, Az + Ay, As,
2A5, As + Ay

We will use the same method as Eric Sommers in [Som03] to show normality.
The overall idea in Sommers’ paper is to start with the orbits of high dimension
and to work with orbits of lower and lower dimension. To be more precise we have
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a partial order < on the set of nilpotent orbits: If @ and O’ are two nilpotent
orbits, then we define @ < @’ if the closure of O is contained in the closure of
O'. Figure 1 shows the partial order on the set of nilpotent orbits in type Fg
in good characteristic. If we know that an orbit O has normal closure, we can
sometimes use this to prove that an orbit O" with @’ < O (i.e. O’ is below O in
the diagram) has normal closure. Often this smaller orbit @’ will be right below O
in the diagram. In the diagram the underlined orbits do not have normal closure,
whereas the rest of the orbits do have normal closure.

Figure 1: Orbit diagram, cf. Section 13 in [Car85].

The main ideas in [Som03] can be generalized to good characteristic. This
generalization will be described thoroughly. The tool is to turn the question about
normality into a question concerning cohomology groups where one can apply
various vanishing theorems. However Sommers applies a vanishing theorem by
Broer, Proposition 4 in [Som03], which is not valid in prime characteristic since
it relies on the Grauert-Riemenschneider vanishing theorem. We will avoid this
theorem by using a new method, see Example 3.15, and a vanishing theorem by
Broer which has been improved by H. H. Andersen.
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Summary

The thesis is structured as follows.

Chapter 1: In this chapter we settle the notation and state some well known
facts about algebraic groups. Then we introduce the adjoint orbits and discuss
when the orbit maps are separable. Furthermore we will define the nilpotent orbits
and look at various questions related to these orbits. Finally we introduce Levi
factors.

Chapter 2: We will explain the main method used to prove normality of the
closures of the nilpotent orbits. This is the same method as Sommers uses in
[Som03]. It turns out that a good way to look at the closures of the nilpotent
orbits is to consider certain subspaces V' C g satisfying that G.V is the closure of
a nilpotent orbit. Hence we can work with these subspaces instead of the nilpo-
tent orbits. The next step is to translate the normality question into a question
concerning cohomology groups (which depend on these V’s) and birationality of
certain morphisms. In Section 2.1 we will therefore describe some conditions under
which these morphisms are birational.

In Section 2.2 we will explain how the main ideas in [Som03] can be generalized
to good characteristic. This generalization will be described in detail. In particular
we will explain how to define some of these V’s. The V’s depend on weighted
Dynkin diagrams which are in one to one correspondence with nilpotent orbits.
This is explained in Premet’s paper [Pre03] in good characteristic. We will also
state a new result on birationality which relies on Premet’s work, see Lemma 2.8
and Corollary 2.9.

Let P be a parabolic subgroup of G. Richardson’s dense orbit theorem states
that there exists a unique dense P-orbit in the Lie algebra of the unipotent radical
of P. The complement of this orbit is therefore closed. In Section 2.3 we will
consider the irreducible components of this variety. We will use the results in a
new and easier way to prove that the non special orbit A5 has normal closure. All
the results in this section are new.

Chapter 3: Since the main method of proving normality was reduced to a
question concerning cohomology groups, we need some results about vanishing
cohomology groups. In [Som| Eric Sommers proves a proposition concerning co-
homology groups in characteristic zero, and he also states that the proposition
works in a more general setting, see Proposition 6 in [Som03]. Section 3.1 contains
a detailed proof of the proposition in this more general setting. This also includes
characteristic p > 0, but with a lower bound on p, see Proposition 3.3. The proof
builds on Lemma 3.4 which Eric Sommers proves in characteristic zero. Again his
proof works in characteristic p > 0 with a lower bound on p. Using a method based
on The Strong Linkage Principle as suggested by H. H. Andersen, the lemma has
been improved so it does not require this lower bound on p. This also improves
the bound on p in Proposition 3.3.
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In Section 3.2 we describe how H. H. Andersen has improved a vanishing the-
orem by Broer, Theorem 3.9.(iii) in [Bro94]. We explain a new method to obtain
vanishing cohomology groups using this vanishing theorem, see Example 3.15. Us-
ing the new method we can avoid a vanishing theorem by Broer, Proposition 6 in
[Som03], which is only valid in characteristic zero since it relies on the Grauert-
Riemenschneider vanishing theorem. When we use Example 3.15 in the actual
calculations in Chapter 4, we will do so by using a computer program that we
have developed for this purpose.

Chapter 4: In Chapter 4 we prove normality of orbit closures. The calculations
are quite similar to the calculations in [Som03], however we have included all details
to make the thesis independent of [Som03].

In [Som03] it is proved that the three non special nilpotent orbits As, 242+ Ay
and 3A4; have normal closure by using some reductions to SLg x SL3 x SLy or to
SLy x SLg x SLg. The calculations get very long and tedious, and the method is
probably hard to use if one wants to prove that a non special orbit in a group
of type F7 and FEg has normal closure. In order to avoid these calculations we
have used another method to prove the normality of the closure of As. The new
method uses that As has codimension two in the closure of Eg(as). Since 3A4;
has codimension two in the closure of As, the method will probably also work
for the orbit 3A;. Unfortunately there has not been enough time to finish all the
details for 347, and instead the original proof is included. The idea behind the
new method of proving normality of the closure of As; is due to Eric Sommers.

Chapter 5: Here we will show that the last five nilpotent orbits do not have
normal closure. This result is obtained directly from the result in characteristic
zero by introducing group schemes over Z and making base change.

Appendix A: Here the Java code for the computer program mentioned in the
review of Chapter 3 is presented. Furthermore the code for a program that has
been used for other calculations is included.
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Chapter 1

Preliminaries

In this chapter we have gathered well known results about linear algebraic groups
and nilpotent orbits. The main references are [Spr98|, [Hum?75], and Nilpotent
Orbits in Representation Theory by Jantzen in [JNO4].

1.1 Linear algebraic groups

Let k be an algebraically closed field, and let GG be a connected, semi-simple linear
algebraic group over k. Let T" be a maximal torus in G and B a Borel subgroup
containing T'. Let X*(T) respectively X.(T) denote the character respectively
cocharacter group of T, and let ® C X*(T') be the roots of G relative to T.

We have a pairing of characters and cocharacters

() : X*(T) x Xo(T) — Z.

For a root o € ® we let o € X,.(T') denote the corresponding coroot. A character
A € X*(T) is called dominant if

A\aYy>0 forall ae€ll
Now G acts on itself by conjugation, and for g € G we define
Int(g) : G — G by Int(g)(h) = ghg™".

Let g denote the Lie algebra of G, and let [—, —] denote the Lie bracket on g. Then
G acts on g under the adjoint action

Ad: G — GL(g)

where Ad(g) is the differential of Int(g). For ¢ € G and z € g, we will write g.x
for Ad(g)(x). Moreover the differential of Ad is

ad: g — gl(g)

where ad(z) = [z, —] for x € g.
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The Lie algebra g can be written as a direct sum

s=te (Pa)

acd

where t is the Lie algebra of T', and g,, is the root space
go ={z €g|Vt €T : Ad(t)(z) = t.x = a(t)x}.

Let U denote the unipotent radical of B, and let u denote its Lie algebra. Now
fix the negative roots of ® to correspond to the T-weights of u. Let &~ and &+
denote the set of negative and positive roots, respectively. Let IT denote the set of
simple (positive) roots.

Given a root o € ® there exists a unique connected T-stable subgroup U,
of G having Lie algebra g,. We will call U, a root group. Then there exists an
isomorphism wu, : k — U, such that tua(z)t™! = us(a(t)x) for all t € T and all
x € k. We call such a map an admissible isomorphism.

Let P be a parabolic subgroup of G, and let up denote the Lie algebra of the
unipotent radical of P. If I C II is a subset of simple roots, we will let P; denote
the corresponding parabolic subgroup containing B. Let ®; denote the set of roots
which are linear combinations of the roots in I. Then

Up, = 6}9 Ja-

acdP—\P;

Now Pr normalizes its unipotent radical, and hence up, is a P-stable submodule
of g under the adjoint action.

Let W be the Weyl group of G with respect to T'. For o € ® we let s, € W
denote the corresponding simple reflection in the Weyl group. The Weyl group W
acts on X*(T), and we write w(A) for the action of w € W on A € X*(T). In the
notation with coroots we have

sa(N) = A= (N a)a for ae® e X*T).
Now let
1
P = 5 Z «,
aedt

and define the “dot” action of W on X*(T") by
w-A=wA+p)—p for weW e X"(T). (1.1)

The group G is called simple as an algebraic group (or almost simple) if G is
non-commutative and has no closed connected normal subgroups other than itself
and the group consisting of the identity element in GG. Note that this is not the
same as being simple as an abstract group. The root system, ®, of G is irreducible
if and only if G is simple as an algebraic group.
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Let H be a closed subgroup in G. For x € g we define the centralizer of x in
H to be the group

Zu(v) ={g € H|Ad(g)(z)z = g.x = x}.

Let b denote the Lie algebra of H, then we also define the centralizer of  in b to
be

3p(z) = {z € plad(2)(z) = =}.

By a representation (or module) we will always mean a rational representation.
Let V be an H-representation. Then let V* denote the dual H-representation, let
S™V denote the n’'th symmetric power of V and A"V the n’th exterior power of
V. We will use the convention S™V =0 and A"V =0 when n < 0.

Let A € X*(T') = X*(B). Then X gives rise to a one dimensional B-represen-
tation with weight A. This representation will sometimes be denoted A.

1.2 Induced representations and vector bundles

Let H be a closed subgroup in G. We have the induction functor, Ind$ (—), which
to an H-representation gives a G-representation. Let RInd$(—) denote the right
derived functor of Ind% (—).

Let P be a parabolic subgroup in G, and let V' be a finite dimensional P-
representation. Then P acts on the right on G x V as (g,v)p = (gp,p~t.z) for
p € P,ge Gandx e V. Since G — G/P has local sections, the quotient of
G x V/P exists. We will write G x V for this quotient. Given (g,z) in G x V
we let [(g,7)] denote the image in G x V. Note that G acts on G x V via
g:l(¢";2)] = (99", 2)]-

The morphism

Gx"V - G/P givenby [(g,2)] — gP

makes G x? V into a vector bundle over G/P of rank equal to dim V. Let £(V)
denote the associated locally free sheaf of sections on G/ P, and let H'(G/P, L(V))
denote the i’th cohomology group of £L(V') on G/P. Then

HY(G/P,L(V)) = R'IndG(V)
and we will write H*(G/P, V) for these cohomology groups. We will use the con-
vention H'(G/P,V) =0if i <O0.

Assume furthermore that there exists a finite dimensional G-representation Z
such that V is a P-subrepresentation of Z. Let

Py ={(gP,z) € G/P x Z|g- .o e V1.

Then Py is closed in G/P x Z. Since G/P is projective, it is complete, and the
projection G/P x Z — Z is a closed morphism. Since the image of Py under
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this morphism equals G.V, we get that G.V is closed in Z. Moreover we have an
isomorphism

Gx"V =Py givenby [(g,2)]— (9P, g.2),
and hence the morphism
GxPV -GV givenby [(g,7)]+ gv (1.2)

is projective. Also note that this morphism is G-equivariant.
If X is a variety over k, we will let k[ X | denote the set of global regular functions
on X. With this notation we have

kG x" V]~ @ H(G/P,5"V*) (1.3)

n>0

as G-equivariant graded algebras.

1.3 Separability of orbit maps

Throughout this section G is still semi-simple. For x € g we can define the orbit
Ad(G).x = G.z of the adjoint action of G on g. These adjoint orbits are all even
dimensional. Take a look at the orbit map

G—-GxCyg

sending g to g.x. Later on we will need these morphisms to be separable and we
will therefore discuss when this is satisfied. By Section 9.1 in [Bor69] the following
are equivalent

1. The orbit map G — G.x is separable.
2. The induced morphism G/Z¢g(x) — G.x is an isomorphism.
3. The Lie algebra of Zg(x) equals 34(z).

In characteristic zero these conditions are always satisfied, but in prime charac-
teristic it is not an easy task to decide whether or not the conditions are satisfied.

In order to deal with the separability question and many more issues we will
need the notion of good characteristic for G. First we define the set of bad primes:

p = 2 is bad if the root system of G has a component not of type A.
p = 3 is bad if the root system of G has a component of exceptional type.
p =5 is bad if the root system of G has a component of type Ejs.

Then the characteristic char(k) of G is good if it is either zero or not a bad prime
for G.

Now conditions 1-3 above are satisfied under the following “standard hypoth-
esis”, see Section 2.9 in Jantzen’s part of [JNO04].

H1 The derived group of G is simply connected.



1.4. Nilpotent orbits 5

H2 The characteristic char(k) is good for G.
H3 The Lie algebra g admits a G-invariant non-degenerate bilinear form.

Since G is semi-simple, the derived group equals G, and H1 is equivalent to G
being simply connected. Now assume that G satisfies the following conditions

i. G is simply connected.
ii. G is simple as an algebraic group and not of type A.
iii. char(k) is good for G.

Then G satisfies the standard hypothesis, and in particular the orbit maps are
separable.

1.4 Nilpotent orbits

In this section we will also assume that G is semi-simple. Now we will define the
nilpotent orbits. An element x € g is called nilpotent if there exists a closed,
unipotent subgroup H of G such that = belongs to the Lie algebra of H, denoted
h. Let ¢ € G. Since H is a closed, unipotent subgroup of G, also gHg™ ! is a
closed, unipotent subgroup of G with Lie algebra Ad(g)h = g.h, and therefore
g.x is nilpotent. Now it makes sense to define an orbit G.x to be nilpotent if z is
nilpotent, i.e. if G.x consists of nilpotent elements. Actually there are only finitely
many nilpotent orbits in g.

Let NV denote the set of nilpotent elements in g, from above we know that N is
G-stable. We also know that A is closed in g. Remember that U is the unipotent
radical of the Borel subgroup B. Since U is a closed, unipotent subgroup of G, its
Lie algebra u consists of nilpotent elements and u C N. Therefore also G.u C N/,
but actually we have G.u = A. This implies that N is irreducible. Also remember
that dim N = 2dimu.

Notice that since there are only finitely many nilpotent orbits, and since N
is closed and irreducible, there exists a unique dense (and hence open) nilpotent
orbit in N, this orbit is called the regular nilpotent orbit in g and denoted Oyeg.
Now we will define a partial ordering < of the nilpotent orbits. Let @ and O’ be
nilpotent orbits in g. Then we define O" < O if the closure of O’ is contained in
the closure of O. For all nilpotent orbits O we have {0} < O < Oyeg where {0} is
the orbit consisting only of the point 0 € g.

One of the first normality results for closures of nilpotent orbits is the following
proposition which was proved by Kostant in characteristic zero, and generalized to
characteristic p > 0 by Veldkamp and Demazure. See Proposition 8.5. in Jantzen’s
part of [JNO4] for a proof.

Proposition 1.1. Assume that G satisfies the standard hypothesis H1-H3, or
that G is simply connected with char(k) good for G. Then the closure of Oyeq is
normal. But since the closure of O,eg equals AV, this implies that A is normal.

Now let U denote the set of unipotent elements in G. Then U is a closed
subgroup in G.
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Theorem 1.2. If char(k) is good for G, and G is simply connected, then there
exists a G-equivariant isomorphism between the unipotent variety ¢ and the nilpo-
tent variety N.

With a small modification this is a theorem by Springer, see Remark 6.1 in
Jantzen’s part of [JN04]. Now we can use results about the unipotent orbits in ¢/
to get results about the nilpotent orbits in A" and vice versa.

Theorem 1.3 (Richardson’s Dense Orbit Theorem). Let P be a parabolic sub-
group in G. Then there exists a unique dense P-orbit in up. If € up is an element
in this orbit, then

1. The closure of G.x equals G.up and G.x Nup = P.x.
2. dim(G.z) = 2dim(up).

3. Let Zg(x)? be the identity component of the centralizer of z in G. Then
ZG (.T)O g P.

An element x € up in the dense P-orbit is called a Richardson element.

A proof can be found in Theorem 5.2.3 (including the proof) and Corollary 5.2.4
in [Car85]. In [Car85] it is assumed that the characteristic of k is good for G, but
this is only required to make sure that there are finitely many nilpotent orbits in
g. Since there are only finitely many nilpotent orbits in g in all characteristics, we
do not need this assumption.

Note that if = is a Richardson element for P, then z is nilpotent since x € up,
and G.z is a nilpotent orbit.

As written in the introduction the finitely many nilpotent orbits in g have
been classified by Bala and Carter, cf. [BC76a] and [BC76b], when char(k) = 0 or
char(k) = p > 3(h — 1) where h is the Coxeter number of G. This classification
was extended to good characteristic by Pommerening in [Pom80]. He used some
case by case study, but Premet has given a conceptual proof in [Pre03]. The names
of the nilpotent orbits given by this classification are called Bala-Carter labels. In
the calculations in Chapter 4 we will use these names.

1.5 Levi factors

Let G be a connected linear algebraic group with unipotent radical R, (G). Then
R,(G) is normal in G. Let L be a reductive, closed subgroup in G. We call L a
Levi factor of G if G is the semidirect product as an algebraic group of L and
R, (G). In this case L is isomorphic to G/R,(G), and hence all Levi factors of G
are isomorphic.

If the characteristic of our ground field £ is zero, then every connected linear
algebraic group G has a Levi factor, see Section 0.8 and 3.14 in [BT65], also for the
next results. Then also two Levi factors of G are conjugate by a unique element
in R,(G). Furthermore we can describe the Levi factors of G — they are precisely
the centralizers of the maximal tori in the radical of G, i.e. the Levi factors of G
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are the subgroups of G of the form Zg(T) where T is a maximal torus in R(G)
where R(G) denotes the radical of G.

Remark: Remember that R(G) is the identity component of the intersection of
the Borel groups in G, and that R, (G) is the identity component of the intersection
of the unipotent parts of the Borel subgroups of G.

Lemma 1.4. Let 7 : G — G’ be a surjective morphism of connected linear
algebraic groups, and suppose the characteristic of k is zero. Then 7(R,(G)) =
R.(G"), and if L is a Levi factor of G, then (L) is a Levi factor of G'.

Proof. Since 7 is surjective, the image of a Borel subgroup in G is a Borel subgroup
in G’. And since all Borel subgroups are conjugate we can obtain every Borel
subgroup in G’ as the image under 7 of a Borel subgroup in G. Hence — by the
remark above the lemma — we have

7(R(G)) = R(G") and 7(R.(G)) = R.(G").

Let L be a Levi factor of G. Then L = Zg(T) for a maximal torus T C R(G).
But since 7 : R(G) — R(G") is surjective, w(T) is a maximal torus of R(G"), and
Ze(m(T)) is a Levi factor of G'. Clearly n(Zg(T)) C Zg(w(T')). But since Zg(T)
is a Levi factor of G, we have

G' =m(G) = n(Zg(T)Ru(G)) = 7(Za(T))Ru(G').
Let g € Ze/(n(T)) C G'. Then
g=hu where hen(Zg(T)) C Za(n(T)), ue R, (G,
and hence the element h='g = u belongs to Zg/ (7(T)) N R,(G'). But since

Za(m(T)) is a Levi factor, we get h™'g = 1 = u, and hence g = h € n(Zg(T)),
and we have proved that 7(Z¢(T)) = Za/ (w(T)). O

If the characteristic of k is prime, then Levi factors need not exist, and if they
exist, they need not be conjugate.






Chapter 2

Method

In this section we will in more detail describe a method which can be used to prove
that a nilpotent orbit has normal closure. Similarly we will explain a method which
can be used to prove that the closure of a nilpotent orbit is not normal. Since we
are interested in deciding whether or not the the nilpotent orbits have normal
closure, we will also describe a way to obtain the orbit closures in a different way.

Let V' C u be a closed subspace. If V' is P-stable for some parabolic subgroup P
containing B, then G.V is closed in g and hence affine. But V' consists of nilpotent
elements, so the elements of G.V are nilpotent. Thus G.V is irreducible, closed and
consists of nilpotent elements, and therefore it must equal the closure of a nilpotent
orbit. In the following we will therefore formulate the theory using “G.V’s”.

Let V1,Vo C u be closed subspaces stable under some parabolic subgroups
Py, P, containing B, respectively. As before G.V; and G.V, are affine. Because
V1 C V,, we have an inclusion i : G.V; — G.V5 and an injective morphism

j:GxB‘/l*)GXB‘/Q.
We also have (surjective) morphisms
7 GxBV, -G <PV, i=1,2.
We have projective morphisms
pi :GXPV, -GV, i=1,2,
and
pi:GxP Vv, -GV, i=1,2,

which are surjective and make the following diagram commutative

GxP V42— G xBV, L G xB Y, —2% G xP2 1

h p1 P2 d
p1 P2
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Taking global regular functions, we get a new commutative diagram

k(G xP v sz Gx Vi) PEA (G xP V3] %k (G x T2 V5

where p}, p5, p7 and p5 are injective and ¢* is surjective — remember that G.V; C
G.V is closed and that G.V5 is affine, so i* is the projection

k[G.Va] — k[GVA] = k[G.Va] /I(G. V1)

where I(G.V4) is the set of functions in k[G.V3] which vanish on G.V4.
Remember that

k(G xPV] =@ HG/B,S"V), i=1,2,
n>0

k(G xP V] = HG/P, SV, i=1,2,

n>0
by (1.3). But since V; is a P;-representation,
HY(G/B,S"V}) = H(G/P;,S"V}) forall n¢cZ,
and 7 is an isomorphism for i=1,2.
Lemma 2.1. If j* is injective, then G.V; = G.V5.

Proof. Assume that G.V; # G.V,. Then I(G.V7) # 0, so we can choose [ €
I(G.V1) \ {0}. Then i*(f) = 0, and hence

0=piod (f) =3 ops(f),
but this is a contradiction since j* and p3 are injective and f # 0. |
Lemma 2.2. Assume the following;:
1. G.V4 is a normal variety.
2. po is birational.
3. j* is surjective.
Then G.V; is also a normal variety.

Proof. Since ps is birational and G.V5 is normal, we have that p3 is an isomorphism,
cf. Lemma I1.14.5 in [Jan87]. Therefore p5 = 73 o p5 is an isomorphism, pj o i* =
J* o ps is surjective, and hence pj is surjective and thereby an isomorphism, i.e.

k[GVi] ~k[GxP V).

But G xB 1] is a non-singular variety, and thus k [G xB VJ is a normal ring. So
G.V; is affine and its coordinate ring is normal, hence G.V; is a normal variety. O
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Lemma 2.3. Assume the following;:
1. p; is birational.
2. j* is not surjective.

Then G.V; is not normal.

Proof. Assume for contradiction that G.V; is normal. Then since py is birational,
we know as before that pj is an isomorphism, and hence that pj = 77 o p} is an
isomorphism. But since ¢* is surjective, we get that pj o 7" = j* o p3 is surjective,
and therefore j* is surjective. But this is a contradiction, and G.V; cannot be
normal. O

When we are going to show that a nilpotent orbit has normal closure, we will
use Lemma 2.2. On the other hand if we want to show that another nilpotent orbit
do not have normal closure, we will use Lemma 2.3.

When we are going to use Lemma 2.2, we will have two orbits O and Os with
closures O; = G.V; and Oy = G.V; where Vi C V; as above (then 07 < 05). We
will be in the case where O, is normal and by using the lemma we will be able to
show that @ is normal.

Now we will describe how we can prove that j* is surjective or injective as
needed in Lemma 2.1 and Lemma 2.2. If we can show that

H°(G/B,S"Vy) — H°(G/B, S"Vy) (2.2)

is surjective (or injective) for all n, we have that j* is surjective (or injective) by
(2.1).

We will show that the map in (2.2) is surjective (or injective) by taking the
short exact sequence of B-representations

where V3 is the cokernel of the inclusion of V; into V5. We dualize this sequence
and get another short exact sequence of B-representations

O—>VY3*—>VY2*—>V1*—>O

If we take the Koszul resolution of this sequence, we get a new exact sequence of
B-representations, cf. [Jan87] Section 11.12.12,

. 'Sn_‘j‘/?* ® /\j‘/}’* e Sn—2‘/2* ® /\2‘/3* N

We can split the long exact sequence into short exact sequences. These short exact
sequences gives rise to long exact sequences in cohomology. Observing that some
of these cohomology groups vanish, we can often show that the map in (2.2) is
surjective or an isomorphism (and hence injective). In Chapter 3 we will describe
the different vanishing theorems we are going to use.

In order to use Lemma 2.2 and Lemma 2.3 we need to show that p; : Gx" V; —
G.V; is birational for ¢ = 1 or ¢ = 2.. In the next section the topic is therefore
birationality.
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2.1 Birationality

A morphism f : X — Y of irreducible varieties is called generically one to one if
there exists an open subset U C Y such that for all y € U the dimension of f~1(y)
is zero and f~!(y) consists of exactly one point.

Theorem 2.4. Let f: X — Y be a dominant morphism of irreducible varieties,
and assume that dim X = dim Y. Then f is birational if and only if f is separable
and generically one to one.

Proof. Let k(X) denote the function field of X, and let k(Y") denote the func-
tion field of Y. Then k(Y) C k(X) is a finite algebraic field extension, and from
Theorem 5.1.6 in [Spr98] we know that there exists an open subset U C Y such
that

1. For all y € U the dimension of f~1(y) is zero.

2. For all y € U the number of points in f~!(y) equals the separable degree,
[k(X) : k(Y)]s, of the extension k(Y) C k(X).

Assume that f is birational. Then k(X) = k(Y) and hence [k(X) : k(Y)]s = 1,
and f is generically one to one. Since k(X) = k(Y") the extension k(Y) C k(X) is
clearly separable generated, and f is separable.

If f is separable and generically one to one, we know that k(Y) C k(X) is
separable generated and that [k(X) : k(Y)]s = 1. Since k(Y") C k(X)) is algebraic
and separable generated, it is algebraic separable and

and f is birational. O

Lemma 2.5. Suppose G satisfies the standard hypothesis on page 4. Let V C g
be a subspace closed under the action of a parabolic subgroup P C G. Assume
that there exists an z € V' such that

1. dimG xP V =dimG.V.

2. The closure of G.x equals G.V.

3. Zg(x) C P.

4. GxNV = P.x.
Then the morphism

7:GxPV =GV

defined in (1.2) is birational.
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Proof. By Theorem 2.4 we only need to show that 7 is separable and generically
one to one because dimG x” V = dim G.V.
We start by proving separability. The orbit map

p:G—Gux

is separable since G satisfies the standard hypothesis on page 4. Let e denote
the neutral element in G. Since G.z is open in its closure, G.V, the tangent map
doe 1 g =T.(G) — T,(G.V) is surjective by Theorem 4.3.7 in [Spr98|. Now define
i:G— GxPVbyg— [(g,2)]. Then ¢ = moi: G — G.V, and on tangent spaces
we have dype = dmr(,s)) © die. Since dy. is surjective, also dm ,) is surjective,
and since G x* V is smooth and z € G.V is a simple point (since G.z is open in
G.V), this implies that 7 is separable by Theorem 4.3.6 in [Spr9§].

Now we will show that 7 is generically one to one. Since 7 is G-equivariant, and
G.z is open in G.V, it is enough to show that 71 () consists of exactly one point.
Clearly 7([(e, z)]) = e.x = z, and there is at least one point in 7~ (z). Now assume
that [(g,y)] € 7~ 1(z). Then z = 7([(g,vy)]) = gy, and y = g~ .o € G.aNV = Pa.
Hence there exists a p € P such that y = p.xz, and we have gp.x = g.y = =z.
Therefore gp € Zg(x) C P. Hence g € P, and we get

[(g:9)] = [(e; gp-x)] = [(e, )],

and 7~ 1(z) consists of exactly one point.
|

Corollary 2.6. Suppose G satisfies the standard hypothesis. Let P be a parabolic
subgroup in G, and let © € up be a Richardson element for P. If Zg(z) is con-
nected, then G x¥ up — G.up is birational

Proof. Since © € up is a Richardson element, we have by Richardson’s dense
orbit theorem that condition 2, 3 and 4 in Lemma 2.5 are satisfied. Furthermore
dim G.uup = 2dimup and therefore

dim G x" up = dim G — dim P + dimup
= 2dimup
= dimG.up

and condition 1 is satisfied. O

Note that we know that the morphism G x¥ up — G.up is birational if P is a
standard parabolic subgroup corresponding to a set of pairwise orthogonal short
simple roots, cf. Lemma 11 in [Tho00]. Here one uses the convention that all roots
are short if only one root length occur.
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2.2 Weighted Dynkin diagrams and Bala-Carter theory

In Section 2 on page 9 we have seen that given a closed subspace V' C u which is
P-stable for some parabolic subgroup P containing B, then G.V equals the closure
of some nilpotent orbit. But if we are given a nilpotent orbit O, we also want to
find a closed subspace V' C u such that

i. V is P-stable for some parabolic subgroup P containing B.
ii. The closure of O equals G.V.

This is done in Premet’s paper [Pre03]. To ensure that the conditions in Sec-
tion 2 in [Pre03] (and in particular in Theorem 2.3 in [Pre03]) are satisfied, we
will throughout Section 2.2 assume that G satisfies the standard hypothesis on
page 4. Since G is semi-simple this assumption implies that G does not contain a
component of type A, when char(k) = p > 0 and p divides n; this is exactly the
definition of char(k) being very good for G.

Before going into detail, we will explain what we are going to deal with in the
following sections. In [Pre03] Premet gives a new and uniform proof of the Bala-
Cater theorem in good characteristic and the Bala-Carter theorem gives a bijection
between the set of nilpotent orbits and the set of weighted Dynkin diagrams. Given
a weighted Dynkin diagram A, we let O(A) be the nilpotent orbit corresponding
to A under this bijection. Premet defines a one-parameter subgroup Aa € X, (7))
only depending on A. Then he introduces a corresponding parabolic subgroup
P(Aa) with B C P(Aa) and a closed subspace V(Aa) C u which is P(Aa)-stable.
Moreover it turns out that G.V(Aa) equals the closure of O(A), and hence V(Aa)
satisfies condition i and ii above.

In the following sections we will explain Premet’s results. We will also use his
results and Lemma 2.5 to prove that the morphism

G xPP2)V(AA) = GV(Aa) Cg givenby [(g,2)] — g.x (2.3)

is birational. This result on birationality will be used in the calculations in Chap-
ter 4 and Chapter 5 when we are going to use that the morphism p in Lemma 2.2
and Lemma 2.3 is birational.

In Section 2.2.4 we will explain how to generalize characteristic zero results to
good characteristic and this involves more than the work of Premet. In that section
we will also discuss the bijection mentioned above between the set of nilpotent
orbits and the set of weighted Dynkin diagrams.

2.2.1 Omne-parameter subgroups

Let A € X, (G) be a one-parameter subgroup. We assign to A a grading of the Lie
algebra g = ®;ezg(\, i) with

a(\, i) = {z € g|Ad\\(1))(z) = \(t).x = t'z for all t € k*}.

For ig € Z we also define g;, (\) = ®i<i, g(A, 7).
Remember that IT denotes the set of simple roots. Let A € X, (T) be a one-
parameter subgroup satisfying (o, A) > 0 for all @ € II. Such a one-parameter



2.2. Weighted Dynkin diagrams and Bala-Carter theory 15

subgroup is called II-dominant. Now define P()\) to be the subgroup of G given
by

PO\ = (T, Us|a € @ : (a,\) < 0). (2.4)

Since B = (T, U,|a € ®7), we see that B C P(A). In fact P(\) is the standard
parabolic subgroup containing B corresponding to the subset

I(\) = {a € I{a, \) = 0}.

Let Z(A) denote the Levi subgroup of P(\) containing T, and let U(A) denote the
unipotent radical of P(A). Then

Z\) =T, Usla € @: (o, \) =0)
U = (Upla € ®:(a,\) <0)

and P(A) = Z(A)U(XN). Moreover Z(\) is the centralizer in G of the image of
A k* — T. Clearly g(\,4) is Z(\)-stable, and g;,(\) is P(\)-stable. Let p(A), 3()\)
and u(A) be the Lie algebras of P(\), Z(A) and U (M) respectively. Then

p(A) =t (@<a,A>§o ga) ;N =t (69(&,»20 Ga) o u(A) =B any<o bo-

2.2.2 Chevalley groups

Remember that every connected, semi-simple linear algebraic group is isomorphic
to a Chevalley group (considered as an algebraic group), see [Ste68] p. 61. In order
to explain the theory in [Pre03] we will first make some well known observations
about Chevalley groups. The next paragraphs are mostly taken from Steinberg’s
book [Ste68] and Chapter 27 in [Hum78].

Each Chevalley group can be obtained in the following way. Let gc be a complex
semi-simple Lie algebra with root system ®. Let t¢ be a Cartan subalgebra in gc,
and IT be a set of simple roots in ®. Choose a Chevalley basis

B ={z,|a € ®} U {hy|a € IT}

with 2, € (g¢)a and h, € tc. Let V be a finite dimensional faithful gc-represen-
tation

m:gc — gli(V).

Let M be a corresponding admissible lattice in V' and let gz be its stabilizer in
gc. Then gz is a lattice in ge with basis {z]a € @} U{R/ |a € II} where b/, € tc.
Making base change to an algebraically closed field L we get an induced faithful
representation

79z @z L — gl(M ®z L).

Now the Chevalley group is a certain subgroup G, C GL(M ®gz L) generated by
some elements called x,(¢) where a € ® and ¢t € L, [Ste68] p. 21. The morphisms
Uq : L — G, sending t to x,(t) are admissible isomorphisms.
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Let Lie(Gr) denote the Lie algebra of G,. Since G, C GL(M ®y L), we have
Lie(Gr) C gl(M ®gz L). It turns out that Lie(Gp) is the image of 7r,. Hence

79z @z L — 7r(gz ®z L) = Lie(Gp)

is an isomorphism of Lie algebras, and we can identify Lie(G) with gz ®z L.
Under this identification the set

{2 @ lla € @} U{h,, @ l|a € I} C gz ®z L = Lie(Gy)

is a basis for Lie(G). Now we can choose a maximal torus 77, € Gy, such that
the Lie algebra of T7, is

Lie(T) = spany, (h,, ®z 1]« € II).

Now one can identify the roots of G with respect to T, with ®.

Note that if G, is simply connected, then the lattice generated by B is actually
gz and we may assume that hl, = h, for a € I, see Section A.2.5 in Borel’s part
of [MRO70].

Also notice that if L = C above, then under our identifications we have gc =
gz ®z C = Lie(G¢) and t¢ = Lie(Tg).

2.2.3 Weighted Dynkin diagrams

Now we are finally ready to follow [Pre03]. We keep our notation from the last
section, so gc is the complex semi-simple Lie algebra with root system ®. Now we
choose a faithful finite dimensional representation

m:gc — gl(V)

such that the corresponding Chevalley groups, G, are simply connected. If we let
L = k, we observe that our group G can be identified with the Chevalley group
G. Then the Lie algebra, g, of G is identified with gz ®z k. In the following we
will also consider the case L = C, i.e. the Chevalley group Gc.

Let z € gc be a nilpotent element. Then by classical theory z is Ad(Gc)-
conjugate to an element 2’ € gc such that 2’ is part of a standard triple {2/, h,y} C
gc with h € t¢ = Lie(T¢) and with r, := a(h) a nonnegative integer for all simple
roots o € II. Tt turns out that r, € {0,1,2}, see Proposition 5.6.6 in [Car85].
Furthermore we see that h € gz: Restricting 7 to the slo(C)-copy generated by
{z', h,y}, we see that the eigenvalues of h on V' are integers since V' is a direct sum
of irreducible sly(C)-representations, and hence h € gz. Therefore we can write
h =3 craha With g, € Z.

Now we are ready to define the weighted Dynkin diagram A(z) of z. It is
defined to be the Dynkin diagram of II with the number r, = a(h) attached to
the node corresponding to the simple root a. The weighted Dynkin diagram only
depends on z, see Proposition 5.6.7 in [Car85]. Also A(x) = A(z’) if and only
if z and 2’ are Ad(Gc)-conjugate. Let D(II) denote the set of weighted Dynkin
diagrams.
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Let A be a weighted Dynkin diagram. Then we will define a one-parameter
subgroup Aa € X.(T) by Aa =3 ci1 ¢ where o is the coroot corresponding
to the simple root o € II, and the ¢,’s are defined as above. Note that the ¢,’s
are uniquely determined by A, hence Aa only depends on A. We have {a, Aa) =
a(h) = rq for all simple roots a € II. Hence (o, Aa) > 0 for all simple roots « € II,
S0 Aa is a II-dominant one-parameter subgroup. Hence we can define the parabolic
subgroup P(Aa) as in equation (2.4).

Remember that Z(Aa) is the centralizer of the image of Aa : &k — T in G.
Since there are only finitely many nilpotent orbits in g it follows that there are
only finitely many Z(Aa)-orbits in g(Aa, —2), see Theorem E in [Ric85]. Hence
Z(Aa) has a unique dense open orbit in g(Aa, —2). We will call this dense orbit
9(Aa, —2)reg. Now let O(A) be the G-orbit G.g(Aa, —2)reg in g. We know that
g(Aa,—2) € u where u is the Lie algebra of the unipotent radical of the Borel
group B. Hence g(Aa, —2) consists of nilpotent elements, and O(A) is a nilpotent
orbit.

Since G satisfies the standard hypothesis, Theorem 2.3 in [Pre03] holds. We
state it here:

Theorem 2.7. Let « € g(Aa, —2)reg. Then the following hold:

(i) The centralizer Zg(x) is contained in P(Aa).

(i) Let Ca(Aa,z) = Zg(x) N Z(Aa). Then Ce(Aa,z) is a reductive group.
Moreover the centralizer Zg(x) is a semidirect product of Cg(Aa,x) and
Zuaa)(x) as algebraic groups, and Zy(y,)(x) is the unipotent radical of
Za(x). Hence Cg(Aa, z) is a Levi factor of Zg(z).

(iil) 3g(z) € p(Aa) and [p(Aa), 2] = g—2(Aa).

Actually Premet’s theorem states a bit more, but since we do not need that
part, and since it would require a lot of explanation, we have omitted that state-
ment. Note that McNinch has proved the theorem without the condition that G
satisfies the standard hypothesis, see Proposition 16 in [McNO04], but in the fol-
lowing lemma we still need G to satisfy the standard hypothesis since we need the
orbit maps to be separable.

We have a few remarks to the above notation. First note that P(Aa) is the
parabolic subgroup containing B corresponding to the subset

I()\A) = {Oz € H|<Oz, )\A> = 0}
={a €Ilr, =0}.
So given the weighted Dynkin diagram we can directly determine P(Aa). Next
remember that g_2(Aa) is P(Aa)-stable, and that r,, is the number in the weighted
Dynkin diagram A attached to the node corresponding to the simple root «a.

Finally we notice that up(,) denotes the Lie algebra of the unipotent radical of
P(Aa). If o € {0,2} for all simple roots a € II, then

g(Aa,—2) = @ ga = Up(An)-
aE@*\@IO\A)

Using Premet’s theorem above we can prove the following lemma
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Lemma 2.8. Let € g(Aa, —2)reg. Then the following hold:

(i) The orbit P(Aa).x is open and dense in g_s(Aa), and the closure of O(A) =
G.z equals G.g_2(Aa).

(ii) The dimension of G' x”(*2) g_5(\a) equals the dimension of G.g_s(Aa).
(iii) G.zN g_g()\A) = P()\A).l’

Proof. (i): First note that G.g_2(Aa) is closed in g since g_2(Aa) is P(Aa)-stable.
Therefore the closure of G.z is contained in G.g_s(Aa).

We need Theorem 2.7 to prove the other direction. By this theorem we know
that [p(Aa), 2] = g—2(Aa). Hence the morphism —ad(z) : p(Aa) — g—2(Aa) is
surjective. The rest of the proof of (i) follows from the proof of Proposition 5.7.3
in [Car85], but we include it here for completeness.

Since g_2(Aa) is P(Aa)-stable, we have a morphism ¢, : P(Aa) — g—2(Aa)
given by ¢.(p) = Ad(p)(z) = p.z. The differential of this morphism is the sur-
jective map —ad(z) : p(Aa) — g—2(Aa) from above, and by Theorem 4.3.6.(i)
in [Spr98] we know that ¢, is dominant and separable. In particular the orbit
P(Aa).x is a dense open subset of g_2(Aa). Consequently g_o(Aa) is contained in
the closure of G.z, and hence G.g_3(\a) is also contained in the closure of G.x.

(ii): Since O(A) = G.x is dense in G.g_2(Aa), we have

dim G.g_2(Aa) = dim O(A),
but from the proof of Theorem 2.6 in [Pre03] we have
dim O(A) = dim g — dim(g(Aa,0) & g(Aa, —1)).
Therefore
dim (G xP*2) g_»(\a)) = dim G — dim P(Aa) + dim g_2(Aa)
=dimg — dlmp()\A) + dim g_g()\A)
= dim g — dim(®i<0g(Aa, 1)) + dim(Di<—29(Aa, 7))
= dim O(4A),
(2.5)

and (ii) is satisfied.

(iii): Tt is clear that P(Aa).x C Gz Ng_2(Aa). Let y € Gz Ng_2(Aa). We
want to show that y € P(Aa).xz. Now y = g.x for some g € G, and G.x = G.y. We
have

dim(P(Aa).y) = dim P(Aa) — dim Zp(x,)(y)
> dim P(Ap) — dim Zg(y)
) —dim G + dim G.y
)

=dim P(Ap) —dimG +dim G.z
=dim P(Aa) — dim G + dim O(A)
= dimg_g()\A)

(
(
= dim P(A\a
(
(
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where the last equality follows by (2.5). But P(Aa).y € g_2(Aa), and therefore
dim(P(Aa).y) = dimg_2(Aa),

and the closure of the orbit P(Aa).y equals g_o(Aa). Hence P(Aa).y is open in
g—2(Aa). But similarly P(Aa).x is open in g_o(Aa ), and hence the orbits P(Aa).x
and P(Aa).y intersects, and y € P(A\a).2. O

A consequence of the lemma is the following corollary.
Corollary 2.9. The morphism
G xPO2) g (M) = G.g_2(Aa) given by [(g,y)] — gy
is birational.

Proof. This follows from Lemma 2.5, Lemma 2.8 and Theorem 2.7 (i). |

Now we are ready to define

VOa)i=g20a)= B  ga
acd
(a,)\A>§72

Then P(Aa), V(Aa) and O(A) satisty condition i and ii on page 14 by Lemma 2.8.
Moreover the morphism in (2.3) is birational by this corollary.

Now return to the case where the weighted Dynkin diagram A only consists
of the numbers 0 and 2. Then we have already seen that g_o(Aa) = up(r,). By
Lemma 2.8(i) we observe that elements in g(Aa, —2)reg are Richardson elements
in up()\A) for P()\A)

On the other hand if y € g(Aa, —2) is a Richardson element for P(Aa), then y
is P(Aa)-conjugate to an element z € g(Aa, —2)req. By definition g(Aa, —2)req i &
Z(Aa)-orbit, and we have g(Aa, —2)reg = Z(Aa).z. Since P(Aa) = Z(Aa)U(AA)

we can write
y=(zu).x with ze€Z(Aa), uweU(ia).

Now u.x = x + 2’ with a2’ € g_35(Aa). Since g(Aa,i) is Z(Aa)-stable, and since
9(Aa, —2)reg = Z(Aa).x, this implies that

y=(2u)x=zx+z2 with za€gAa, —2)reg, 2.2° € g_3(Aa).

But y € g(Aa, —2), and hence z.2' = 0. Consequently y = z.z € g(Aa, —2)req-

To summarize: We have seen that g(Aa, —2)reg is exactly the set of Richardson
elements in up(y,) for P(Aa) which are contained in g(Aa, —2).

Now if & = C, we see that p(Aa) is a nice parabolic subalgbra in the sense of
[BWO05].
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2.2.4 Why we can use characteristic zero results

Remember that G = G}, is the connected, semi-simple, simply connected linear
algebraic group over k with root system ® and Lie algebra g = Lie(G}).

Again we take a look at Premet’s paper. He shows that the map from the
set of weighted Dynkin diagrams to the set of all nilpotent G-orbits in g sending
A € D(II) to the orbit O(A) is a bijection, see Proposition 2.4, Theorem 2.6 and
Theorem 2.7 in [Pre03]. But the Bala-Carter theorem in good characteristic (which
Premet proves in a new, uniform way, see Theorem 2.6 and Theorem 2.7 in [Pre03]),
assigns to each nilpotent orbit a Bala-Carter label, and hence we get a bijection
between the set of weighted Dynkin diagrams and the set of Bala-Carter labels.
Premet proves that this bijection between the set of weighted Dynkin diagrams
and the set of Bala-Carter labels is independent of our field &, and hence we denote
it by ¢ (not indexed by k).

From classical theory over C we already have a bijection between weighted
Dynkin diagrams and nilpotent Gc-orbits in gc¢, and also a bijection between the
set of Bala-Carter labels and nilpotent orbits in gc¢ from the Bala-Carter theorem.
Composing these two maps we get a new bijection between the set of weighted
Dynkin diagrams and the set of Bala-Carter labels. Again following Premet it
turns out that this bijection is equal to the bijection ¢ from the last paragraph. In
Chapter 13.1 in [Car85] this bijection is explicitly calculated for each root system,
and consequently we can use these results.

Let A € D(IT) be a weighted Dynkin diagram. Let O(A) be the corresponding
nilpotent G-orbit in g, and let O¢(A) be the corresponding Ge-orbit in ge. Then

dimy, O(A) = dime O¢(A)

by Theorem 2.6.iv in [Pre03], and hence we can use the dimension results over C
which e.g. can be found in Chapter 8.4 and Corollary 6.1.4 in [CM93].

Let z € O(A), and let 2/ € Oc¢(A). Then remember that Zg(z) denotes
the centralizer of x in G, and that Zg.(2’) denotes the centralizer of 2’ in Gg.
By Theorem 2.7(ii) we know that there exists Levi factors L = Cg(Aa,z) and
Le = Ca.,(Aa,2’) of Zg(xz) and Zg.(2') respectively.

In the beginning of Section 2.2 we observed that the characteristic of k is very
good for G since G is semi-simple and satisfies the standard hypothesis. Hence we
can apply the following results from [McN]. Theorem A in [McN] states that the
root datum of L and L¢ can be identified, in particular L is semi-simple if and only
if L¢ is semi-simple. Theorem B in [McN] which is an extension of Theorem 36 in
[MS03] shows that the component groups of the centralizers are isomorphic finite
groups, i.e. it tells us that Zg(x)/Zg(2)? and Zg.(2)/Zg.(2")° are isomorphic.
Therefore we can use the results in Chapter 13.1 in [Car85] about the root datum
of L¢ and the component group Zg.(z')/Zg.(2")° to find the root datum of L
and to find the component group Zg(z)/Zg(x)°.
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2.3 The complement of the set of Richardson elements

Let G be a connected linear algebraic group. Let I C II be a subset of simple
roots, and let P be the standard parabolic subgroup containing B corresponding
to I. Remember that P acts linearly on the Lie algebra of its unipotent radical
up. According to Richardson’s Dense Orbit Theorem there exists a unique dense
and open P-orbit in up, see Theorem 1.3. Let Op denote this P-orbit. Then
the elements in Op are called Richardson elements. Since Op is open in up, the
complement up \ Op is closed in up, and hence an affine variety. Moreover the
dimension of up\Op is strictly less than the dimension of up since up is irreducible.
Since

Uup = @ Jas

acd—\&;

we can identify the coordinate ring of up, denoted k[up], with the polynomial ring
klxo|a € @7\ @]

with the usual grading deg(x,) = 1.

Lemma 2.10. Let V be an irreducible component in up \ Op, and let I(V') be
the defining ideal of V in up. Then I(V') C k[up] is a homogeneous ideal.

Proof. In addition to the P-action on up, we also have an action of k* on up
because up is a k-vector space. Since P acts linearly on up, the P-action commutes
with the k*-action.

Let x € Op be a Richardson element, and let ¢t € k*. Then Op = P.x and

t.0Op =t.(P.x) = P.(t.z).

But then t.Op is a P-orbit in up of the same dimension as Op, but there exists
only one such orbit, and hence t.Op = Op, and Op is k*-stable.

Now also the complement up \ Op is k*-stable, and since k* is irreducible, the
irreducible components of up \ Op are k*-stable too. In particular V is k*-stable,
and I(V) is homogeneous with respect to the chosen grading of k[up]. O

We want to study the components in up \ Op of maximal dimension, i.e. the
components of dimension equal to dimup — 1. Since Op is P-stable, also up\ Op is
P-stable. But P is irreducible, and hence all components in up \ Op are P-stable.
Now let V C up \ Op be a component of maximal dimension. Then

I(V) = (f) C klup] for some irreducible element f € kfup]

since up is just affine space. Since P-acts on up, it also acts on the coordinate ring
klup]. Now V is P-stable, and hence also I(V') = (f) is P-stable. Therefore there
exists a P-character A € X*(P) such that

p.f=Xp)f forall peP.
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Let k(up) denote the function field of up. Then k(up) is just the fraction field
of k[up], so P also acts on k(up). Now define

k(up)®) = {h € k(up)|3\ € X*(P) : p.h = A(p)h for all p € P},

and let k[up]) = kfup] N k(up)¥). The elements in k(up)") are called P-
semistable.

We have seen that given a component in up \ Op, we can construct an ir-
reducible element in k[up]"”) which is unique up to multiplication by scalars in
k*. On the other hand, given an irreducible element f € k[up]"”), then V(f) is
irreducible of dimension equal to dimup — 1. But since f is P-semistable, V(f) is
P-stable. Therefore if V(f) intersects Op, then Op C V(f). But since Op is dense
in up, we get V(f) = up which is a contradiction. Therefore V(f) C up \ Op, and
V(f) is a component in up \ Op of dimension equal to dimup — 1. Tt is clear that
if we multiply f by a scalar in k*, we get the same component.

To summarize: We have shown that there is a bijection between the set of
components in up of dimension dimup — 1 and the set of irreducible elements in
E[up]®) modulo scalars in k*.

Let

(k[up](P))o

denote the fraction field of k[up]F).

Lemma 2.11. Now the following are satisfied.

i. If f € k[up]?), then all irreducible components of f belongs to k[up]F).

ii. We have the identity
(kfup] ™)), = (kluplo)”.

Proof. i: Let f € k[up]")\ {0} and assume that f is not a unit. Write f = [, f; as
a product of irreducibles. Then since f is P-semistable, we know that V(f) C up is
P-stable. As above we therefore know that V(f) C up \ P.a. But V(f) = U;V(f2),
and V(f;) is irreducible of dimension equal to dim(up) — 1. Hence V(f;) is a
component in up \ P.x, and since P is connected, V(f;) is P-stable. But then
I(V(f:)) = (f:) is P-stable, and f; is P-semistable.

ii: Clearly (k[up](P))O C k(up)P). Let h € k(up)). Then we can write h = g
with f,g € k[up], g # 0, such that f and g have no common irreducible factors.
Since h is P-semistable, there exists a character A € X*(P) such that p.h = A(p)h
for all p € P. Hence

and we have

Ap)(p-9)f = (p-f)g € kup].
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Now k[up] is a UFD, and f and g have no common factors, hence g divides p.g,
and f divides p.f for all p € P. Let p € P. Then g divides p~'.g, and p~'.g = ¢'g
for some ¢’ € k[up]. Now we have

-1

g=p.(p"".9) =p.(9'9) = (0.9")(p-9),

and p.g divides g. Now since g divides p.g, and p.g divides g for all p € P, we must
have p.g = A(p)g for some character A € X*(P), and g € k[up]"). Similarly we
can show that f € k[up]("). O

Remember that P is the standard parabolic subgroup corresponding to the
subset I C II of simple roots. Assume that G is simply connected. Then X*(P)
is a finitely generated free abelian group, and the set of fundamental weights
corresponding to the simple roots in IT\ I is a basis for X*(P). Let x € Op be a
Richardson element. Let Zp(z) denote the centralizer of z in P, and let Zp(z)°
be its identity component. Then Zp(x)" has finite index in Zp(z).

The inclusions Zp(z)° C Zp(z) C P induces restriction maps between their
character groups

X*(P) = X*(Zp(x)°)

S~

X*(Zp(x))

Since X*(P) is a finitely generated free abelian group, also Ker ¢, and Ker ¢,
are finitely generated free groups. Clearly we have Ker (¢, ) C Ker (¢, ). Now let
N denote the finite index of Zp(z)? in Zp(z). Then we claim that NKer (¢,.) C
Ker (¢z):

Let A € Ker (¢;), then \(p) = 1 for all p € Zp(z)°. Let ¢ € Zp(z). Then
NX(q) = M¢"V) = 1since ¢V € Zp(z)°, and NX € Ker (¢,).

Hence the rank of Ker (¢,) equals the rank of Ker (¢,).

Also notice that if we choose another Richardson element ' € Op, then there
exists a p € P, such that 2/ = p.x. Hence Zp(z') = pZp(z)p~!, and

Ker ¢, = Ker ¢,» and Ker ¢, = Ker ¢,-.
Therefore we define K, = Ker ¢, and Ky, = Ker 9.

Lemma 2.12. The number of components in up \ Op with dimension equal to
dim(up) — 1 is less than or equal to the rank of K. In particular it is less than
the rank of X*(P).

Proof. Let Vi,...,V, be the components of dimension dim(up) — 1 in up \ Op.
Then for ¢ = 1,...,n we have I(V;) = (f;) C klup| for some irreducible element
fi € k[up]P). So there exist A1, ..., \, € X*(P) such that fori = 1,...,n we have
p-fi = Xi(p) fi for all p € P. Notice that since V; does not intersect Op, we know
that f;(x) # 0 for all x € Op. Now choose an element © € Op. Since f;(x) # 0, we
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may assume that f;(z) = 1 by multiplying with a scalar. Now for all p € Zp(x)
we have

Xi(p) = Xi(p) filz) = (p.fi)(w) = filp™ @) = fi(zx) =1

hence \; € Ker ¢,.

Assume that the rank of K, = Ker ¢, is strictly less than n. Then there exist
mi,...,My, € 7Z such that 2?21 m;\; = 0 and not all m;’s are zero. Now look
at the element []!"; f/"* € k(up). Since all f;’s are nonzero on Op, the element
[T7, f"* is a regular function on Op. For all p € P we have

n

(IT#) 0 ) =TT o™ (@) = [T )™ 1) (@)

i=1 i=1

o
Il

= [T O™ (f@)™) = [T uw™ -1

i=1 i=1

and

Now define

fr="11 i ekuel, = J[ £7™ €klupl.

i:m; >0 i:m; <0

From (2.6) it follows that f*(z) = f~(z) for all 2 € Op. But Op is dense in up,
and hence f1(z) = f~(2) for all z € up, i.e.

IT = 1 £ e kel (2.7)

i:m; >0 i:m; <0

Since the f;’s corresponds to different components, we know that for all constants
a € k we have f; # af; wheni # j. But k[up] is a UFD, and the f;’s are irreducible,
and hence (2.7) implies that all m;’s must be zero. But this is a contradiction, so
n is less than or equal to the rank of K. O

Lemma 2.13. Let x € Op be a Richardson element. If the orbit map P — P.x =
Op sending p to p.z is separable, then the number of components in up \ Op with
dimension equal to dim(up) — 1 equals the rank of K.

Proof. Let s denote the rank of K, and let n denote the number of components
in up \ Op with dimension equal to dim(up) — 1. From the preceding lemma we
know that n < s, so we want to show that s < n.

We us the notation from the preceding proof. Again V;,...,V,, are the com-
ponents in up \ Op of dimension dim(up) — 1, and I(V;) = (f;) C klup] for some
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irreducible element f; € k[up]”) with fi(z) = 1 fori = 1,...,n. Now there exist
AL ...y, Ap € X*(P) such that p.f; = \i(p) fi for all p € P. Now remember that up
to multiplication with scalars in k£*, the f;’s are the only irreducible elements in
k/’[up](P).

Since the orbit map P — P.x = Op is separable, the induced morphism
P/Zp(z) — Op is an isomorphism. Therefore all € Ker ¢, = K, induce mor-
phisms ji : Op — k* given by ji(p.x) = pu(p~t). Now i is a non-vanishing regular
function on Op. Since Op is open in up, we can consider i as an element in the
function field of up, i.e. i € k(up). Note that

L) = plqgp) = plp)ulg™") = p(p)i(g.x)

(p-11)(g-x) = p(p~
for all p,q € P. In particular p.ji = u(p)ji, and i € k(up)).
Now we can choose a basis i1, ..., us for K,. Using the above method we get
induced elements ji1,..., s € k(up)(P). Since the f;’s are the only irreducible
elements in k[up]"”) up to scalars, Lemma 2.11 tells us that we can write

n
= . miwj
Hj = ¢ H i
1=1

for some ¢; € k and some m;; € Z. Since p.f; = \i(p)f; for all p € P, we have

Dy = (i mj,i)\i) () ;-

But we also have p.fi; = (1) (p)fi;, and hence p; = 37 mj ;A

As in the proof of the preceding lemma we know that A; € Ker ¢, = K. But
the set of 41;’s is a basis for K., and we can write \; = 2;21 a; jju; for some
aij € 7.

Let A denote the n x s-matrix with entries a;; € Z, and let M denote the
5 x n-matrix with entries m;; € Z. Let p be the vector with entries 15, and let A
denote the vector with entries \;. N

We have seen that A\ = Ay and that g = MA. Hence y = M Ap, but since the
;s are linearly independent in K, we get that M A = I, where I, is the s x s
identity matrix, and we must have n > s. O

Let x € Op. Notice that in characteristic zero the orbit map P — P.z sending
p to p.x is always separable. In the following situation the orbit map P — P.x
is also separable. Suppose G satisfies the standard hypothesis on page 4. We use
the notation of Section 2.2.3. Assume that P = P(\a) for some weighted Dynkin
diagram A. Since g(Aa, —2)reg consists of Richardson elements, we know that x is
P-conjugate to an element @’ € g(Aa, —2)reg. Then Zg(z') € P by Theorem 2.7. i,
and since Zg(x) and Zg(2') are P-conjugate, we have Zg(xz) C P. Therefore
Za(x) = Zp(x). Since G satisfies the standard hypothesis, the orbit map G — G.x
is separable, and the induced map G/Zp(z) = G/Zg(x) — G.x is an isomorphism.
Restricting this isomorphism to the closed set P/Zp(x), we get an isomorphism
P/Zp(x) — P.x which is equivalent to P — P.x being separable.
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From now on we will assume that G satisfies the standard hypothesis, and
that P = P(Aa) for some weighted Dynkin diagram A. Then we know from
Theorem 2.7.ii that Zp(2') = Zg(a') is a semidirect product of Cg(Aa,2’) and
Zuas)(2') as algebraic groups where Cg(Aa,z’) is reductive and Zy(x,)(z')
equals the unipotent radical of Zp(2'). Let R, (Zp(z)) denote the unipotent rad-
ical of Zp(x). Then since z is P-conjugate to =/, we get that Zp(x) = Zg(z) is a
semidirect product of a reductive group L and R, (Zp(z)) where L is P-conjugate
to Ca(Aa,2"). Now also Zp(z)? = Zg(x)? is a semidirect product of the identity
component L? and R, (Zg(x)).

Since LY is reductive and connected, we can write L° = R(L°)(L%, LY) where
R(LY) is the radical of L? and (L%, LY) is the commutator subgroup of L°. The
radical R(LC) is a central torus, hence X*(R(L")) is a finitely generated free
abelian group.

Lemma 2.14. Let r denote the rank of X*(R(L")). Then also X*(Zp(x)?) is free
abelian of rank r.

Proof. The considerations above imply that
Zp(x)? = Zg(x)? = R(LY)(L°, L°)R,(Zg(x)).
Since R(L°) C Zp(x)° we get an induced map
[ X*(Zp(2)°) — X" (R(L")).

Since (L°, L°) is commutative, the character group of (L°, L°) is trivial. Since
R, (Zg(x)) consists of unipotent elements, the character group of R, (Zg(x)) is
also trivial. Hence I is injective, and X*(Zp(z)?) is free abelian of rank less than
or equal to r.

Now we want to define a group homomorphism

U: X*(R(L%) — X*(Zp(z)?).

Let K be the number of elements in the finite set (L%, L%) N R(LY). Let f €
X*(R(LY)). Let z € Zp(x)° and write x = x1293 with 1 € R(LY), 2o € (L°, L?)
and 73 € R,(Zg()). Then define U(f)(z) = x¥. It turns out that this is well
defined and that ¥ becomes a group homomorphism. It is clear that

LoV : X*(R(LY) = X*(Za(x)?) — X*(R(LY)),

is just multiplication by K, and hence W is injective. It follows that the rank of
X*(Zg(x)?) equals r. O

Corollary 2.15. If L? is semisimple, then X*(Zp(z)?) = 0.

Proof. 1f L is semisimple, then R(LY) is trivial, and we have X*(R(L%)) = 0.
Hence X*(Zp(z)°) = 0 by Lemma 2.14. O

Corollary 2.16. If L? is semisimple, then the number of components in up \ P.x
with dimension dim(up) — 1 is equal to the rank of X*(P).



2.3. The complement of the set of Richardson elements 27

Proof. Corollary 2.15 and Lemma 2.13 O

As explained in Section 2.2.4 we can use the results in Chapter 13.1 in [Car85)
to find the root datum of L° given the root system ® and the weighted Dynkin
diagram A. In particular we can check whether or not L° is semi-simple.






Chapter 3

Vanishing theorems

We need some vanishing results for cohomology groups, cf. Section 2. The main
theorem used by Eric Sommers is the following theorem by Demazure, found in
[Dem76] in characteristic 0, and e.g. in [Tho00] in characteristic p > 0.

Theorem 3.1. Let a denote a simple root. Let V be a P,-representation. Let
A€ X*(T) and m = (\,a"). Assume that

m < —1 if char(k) =0
—p—1<m< -1 if char(k) =p.

Then there exists an isomorphism of G-representations
HY (G/B,V®\) =H " G/B,V @ (s4(\) —)) forall icZ.
In particular, if m = —1 all cohomology groups vanish.
Remember that
A—(m+1)a=s,(\) —a.

Eric Sommers has shown the following proposition, Proposition 3.2, which relies
on Theorem 3.1. We need some notation to be able to explain it.
Let G be of type A;, and label the simple roots a1, as, ..., q; such that

(i,af ) =—1 forall i=1,2,...,1—1.

Let wy,wa,...w; denote the corresponding fundamental weights. Let u; be the
Lie algebra of the unipotent radical of the mazimal standard parabolic subgroup
containing B corresponding to all the simple roots except «;.

Proposition 3.2. Let char(k) = 0. Choose m with 1 < m < [, and let m’ =
min {m,l + 1 —m}. If r is an integer satisfying

2m' —2—-1<r <0,
then there exists an isomorphism of G-representations
Hi (G/B, S @ rwm) — (G/B, grrmiy @ fmm,m)

for all i,n € Z.

29
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Eric Sommers gives a proof of the proposition in [Som]. He also states that
the proposition works in a more general setting, Proposition 6 in [Som03]. The
following section contains a detailed proof of the proposition in this more general
setting, also when char(k) = p > 0. However there will be a lower bound on p in
characteristic p.

3.1 Proof and explanation of Proposition 4.4 in [Som03]

Let I C A, and let P; be the corresponding subgroup containing B. Let L be the
Levi subgroup of P containing 7'. We assume that L is of type A;, i.e. the root
system of L relative to T', @y, is a root system of type A;. Let wqy be the longest
element in the Weyl group of L. The Weyl group of L is a subgroup of the Weyl
group, W, of G so we can consider wy as an element in W.

We now enumerate the simple roots as follows:

e The roots in I are denoted aq, o, ..., a; such that (o, a;11) = —1.

e The roots § € A\ I for which there exists an «; satisfying (3, ) < 0 (we
will call 5 and «; for neighbors), are denoted 1, 2, . . ., Bs.

e The rest of the simple roots are denoted 1,72, ..., 7.

We start by choosing a set of simple roots {Vk,, Yks,---,Vk, },» and let P; be the
parabolic subgroup corresponding to the set

Ii:IU{’Yk177k27---a’7ku}\{04i}7 1<i<IL

Let u; denote the unipotent radical of P;. Then u; is a P;-module, and
u; = @ Ho
acd\P;

where ®; is the set of roots which are linear combinations of the roots in I;.

Note that if A € X*(T') satisfy (\,a¥) = 0 for some simple root «, we know
that A € X*(P,) — this will be used in the proof of the following proposition. Also
remember that the one dimensional B-representation with weight A € X*(T') =
X*(B) is just denoted .

Proposition 3.3. Let 1 < m <[ and m' = min{m,l + 1 —m}. Let A € X*(T),
and set 7 = (A, ,%,). Suppose that

Nay=0 fori=1,....m—1m+1,...1

and that 2m’ —2 -1 <r <0.
If char(k) = 0, or char(k) = p with m’—1 < p, then there exists an isomorphism
of G-modules

HY(G/B,S"um @A) = H(G/B, S w11_m @ wo(X)) for all i,n € Z.

We start by proving the following lemma.
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Lemma 3.4. Let 1 < a < b <[ let J = {aq,@at+1,-..,5}, and let Q be a
Pjy-module. Let A € X*(T), s = (\, ), and suppose that

Na)=0 fora<i<b
and that a —b—1 < s < —1. Then
HY(G/B,Q®\) =0 forall icZ. (3.1)

This lemma is a generalization of a lemma by Eric Sommers which is valid when
char(k) = 0. If we use his method to prove the lemma when char(k) = p > 0, then
we get a lower bound on p. The following proof, due to H. H. Andersen, has no
bound on p.

Proof. The Grothendieck Spectral Sequence
Ey! = H'(G/Py, H'(P1/B,Q® \)
abuts to
H"™(G/B,Q ®\)
But since @ is a Py-module, the generalized tensor identity gives
HY(P;/B,Q®)\) = Q® H¥(P;/B,\) forall jcZ.
If we can show that
HI(P;/B,\) =0 forall jcZ.

then E;J = 0 for all ¢ and j, the spectral sequence already collapses at the Es-level,
and (3.1) is satisfied.

Let L; denote the Levi subgroup of P; containing T', and let L’ be the com-
mutator subgroup (Lj,Lj). Then L’ is semi-simple and connected with Borel
subgroup B’ = BN L' and maximal torus 77 = (T N L’)°. By Remark 1.6.13 in
[Jan87] we have

HI(P;/B,\)| = H(L'/B',\|p/) forall je€Z. (3.2)

Since H7(P;/B,\) equals H’(P;/B, )|, as vector spaces, it is enough to show
that the right hand side of (3.2) vanishes for all j € Z.

Now J is a simple system of roots in the root system ®; of L’. We denote the
corresponding fundamental weights

oy, Wati----, @ € X (T') = X*(B").

But
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and hence A g = sw, in X*(B’). So we need to show
HI(L'/B' sw,) =0 foral jcZ.

We will show this by using the Strong Linkage Principle. Let W be the Weyl group
of L' with respect to T’, and let s; € W be the simple reflections corresponding
to the simple root «; for i = a,...,b. We will use the “dot” action defined in (1.1)
in Section 1.1. We want to show that

(Sa—s—18a—s—2 " Sa) * (§Wa) = —Wa—s—1- (3.3)
Using that oy = 2w, — we1, We get
Sa + (8w04) = 84(8T04) — g
= swa — ({sWa,)) + 1)ayg
= 5w, — (s+ 1)a,
=—(s+2)w, + (s + Dway1.

Using that ag1i—1 = —@ati—2 + 20Wa1i—1 — Ways for 2 < i < b — a, we get by
induction

(Sati—1Sati—2"Sa)* (swa) = —(s+ i+ 1)wari—1 + ($+ 1)wati (3.4)
for1<i<b—a.If s#a—b—1, we can set i = —s in this equation, obtaining
(Sa75715a7572 t Sa) : (Swa) = —Wag—s-1-

and (3.3) is satisfied if a —b < s < —1. For i = b —a and s = a — b — 1 equation
(3.4) gives

(Sp—15b—2 - 8q) * (SWa) = —Wp = —Wa—s—1-
But since
Sp * (—wb) = —wp — ((—wb,al\,/) + 1)ab = —wy,

(3.3) is valid also if s =a — b — 1.
By (3.3) we get

HI(L'/B',\p) = H(L'/B, sw,)
= Hj(L//B/a (Sa—s—lsa—s—2 e 'Sa)_l . (—wa_s_l))

for all j € Z. But since (wy—s—1 + p,)) > 0 for i = a,...,b, and since there
exists no dominant weight p € X*(T”) with u < —w,_s_1 the latter vanishes for
all j € Z by the Strong Linkage Principle, Proposition I11.6.13 in [Jan87]. O

Identically we can prove a symmetric version of Lemma 3.4:
Let 1 <a<b<llet J={ag aqt1,-..,}, and let @ be a Py-module. Let
A € X*(T). In this symmetric version we let s = (\, )! Suppose that

N\a/y=0 fora<i<b
and that a —b—1 < s < —1. Then
HY(G/B,Q®\) =0 forall icZ.
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Proof of Proposition 3.3. The proof works in characteristic zero and in character-
istic p if p is “big enough”. Unfortunately we cannot avoid the bound on p using
the Strong Linkage Principle instead of Theorem 3.1 in Step 3 in the following
proof. But the bound on p is still better than without using the Strong Linkage
Principle in the proof of Lemma 3.4.

In this proof we will write H*(—) instead of H'(G/B, —).

Step 1: Let V = u,, Nuy41_4p, and suppose that m < [+ 1 —m. Now assume that
w € X*(T) satisfies (u, ) =0 for m < t <.
We wish to show that

HY(S™uf, @ p) = H(S"V*@u) forall i,neZ.

This is obvious if m = [ + 1 — m, since in this case V = uy. We will therefore
assume that m <l+1—m.
There exists a short exact sequence (U is the kernel)

0—-U—u, > V*—0. (3.5)

Taking the Koszul resolution of the short exact sequence, and tensoring with p we
get the exact sequence

0—...= 8" NUQpu— ... =S @pu— S"Vou—0. (3.6

The weights of U (T-weights) are the the weights of u,, which are not weights
of V*. The set of weights of u’, is ®* \ @,,, and the set of weights of V* is
&\ (P, UD;1 ). Thus the set of weights of U is

(I)Jr N (q)lJrlfm \ (I)m)
={a € ®" NP1 ,,|a has a nonzero coefficient to a, }
= {a € ®* N ®;|a has a nonzero coefficient to a,,

and the coefficient to 41—, is zero}
={ait+aip1+...Fal<i<mm<k<l+1-—m}.

Here we have used the fact that if a € ®4, it may be written as

l u
o= Z cio + Z djvk,;, where ¢ = 0.

i=1 j=1

Since (yx,,ay) = 0 for all 7, j, it follows that either all ¢;’s are zero or all d;’s are
zero. Hence, if o € ®;41_,, has a nonzero coefficient to «,,, then all d;’s are zero
and o € Pj.

Thus, if 1 is a weight of AJU, there exists ¢ty with m < tog < [+ 1 —m,
—m < (n,0) < —1and (n,0)) =0for tg <t <I.

We can use Lemma 3.4 with Q = S"Ju*, @ pu, a = tg, b =1 and s = (n, o))
because

a—b—lzto—l—lg—mg(n,a%’o>§—1,
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and because u}, is a P,,-module for ¢t # m, and p a P,,-module for m <t < [.
Hence _ _
H(S" 7w, @uen) =0 foral inecZ.

We can filter AJU by B-submodules such that the consecutive quotients are one
dimensional with weights equal to the weights of A7U, and we get for all 1 < j <
dim(U)

HY(S" 7w, @ u@ NU) =0 forall i,n¢cZ,

Splitting the Koszul resolution in (3.6) into short exact sequences and taking long
exact sequences in cohomology, we see that

HY (S™u, @p)=H(S"V*®@pu) foral incZ.

Identically the proof may be carried out if m > I+1—m and pu € X*(T) satisfy
(pyay =0for 1 <t < m.
Thus, if p € X*(T) satisfy (u, y’) = 0 for ¢ # m, we have

HY(S™w, @ p) = H(S"V*@u) forall incZ.
Step 2: From now on we will assume that m <I+1—m. Let V3 =V Nu,,_1, and

Vo =ViNugo_p,. If m =1 we consider u,,—; and u;42_,, to be the zero vector
space. Let p € X*(T), and assume that u satisfy

(oY =0 fori=m-+1,....0—m,l+2—m,...,I,
= (u, ) with 2m —2 — [ < ¢/ < —1,
(o) ) =0 ifr'=2m—2—1.
We wish to show that
H(S"V®@u)=0 forall incZ.
Since Vo C V4, we have a short exact sequence (Us is the kernel)

0—-Us—= V=V =0

Taking the Koszul resolution of this short exact sequence and tensoring with pu,
we get an exact sequence

0= ... 8" IV QNU,Qu— ... S" Vi @u— S"Vy@u—0.
Thus it is enough to show that

HY(S"IVF @NUs@p) =0 forall i,neZ
H(S"Vy ®@u)=0 forall incZ.

Actually it holds that

Vo=upm_1 Nu, N Wit N U2 = Upp—1 (U424
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This can be seen by comparing the weights:

(27 \ @) U{a € &~ N P|a has nonzero coeflicients to

Qm—1; Qi Qg 1—mm A0 QG424 }
is the set of weights of V5. But this set equals the set

(@~ \ @;) U{a € &~ N ®;|a has nonzero coefficients

t0 -1 and aj4a-m },

which is exactly the set of weights of u,,—1 Nujro_p,. Thus Vo = 11 N U2y,
and V5 is a P,,-module for t #m — 1,1+ 2 —m.

If v/ # 2m — | — 2 we can use Lemma 3.4 with Q = S"V,", a=m,b=1—m
and s = (u,a,,) =1’ because a —b—1=2m —1—1 <7 < —1, and because V;*
is a P,,-module for m <t <[ —m. Thus

H' (S"Vy@u)=0 foral incZ.

If ¥/ = 2m — | — 2 we can also use Lemma 3.4, but this time with Q = S™VJ',
a=m,b=I1+1—mand s = (u,),) =1 becausea—b—1=2m—-2—1 <r' < —1,
and because V5" is a P,,-module for m <t <[4 1 — m. Again we have

H (S"Vy @u)=0 forall incZ.
The set of weights of V}* is
ST\ (@1 UP,, U1 ),
and
(I)Jr \ ((I)mfl U (I)m U q)lJrlfm U (I)l+27m)
is the set of weights of V5. Thus the set of weights of Us is
(I)Jr N (q)lJerm \ ((I)mfl U (I)m U (I)lJrlfm))

={a € ®" NP5 ,,|a has a nonzero coefficient to v, —1, Ay and a1 }

={a € &7 N ®|a has a nonzero coefficient to a1, @y, and a1 m,

and the coefficient to aj4a_,, is zero}

= {ai—l—aiﬂ +...+al+1_m|1 <1< m—l}.

Hence, if 1 is a weight of AJUs, we have

<77a04?/+27m> = 7.].5
(n,a)y=0forl+2—m<t<lI.

Remark that dim(Uz) = m — 1. Now we use Lemma 3.4 again. This time with
Q=95"V@ua=1+2-mb=1ands = (noy_,,) = —j. V' is
a P,,-module for t # m — 1,m,l +1—m ! and p is a P,,-module for t =

L Actually V¥ is a Pa,-module for t = m — 1,1+ 1 —m since V¥ = w1 N4 1_py,, compare
with the proof of V5 = um_—1 Nwyio_p,.
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m+1,...,0l—m,l+2—m,...,[. Thus @ is a P,,-module for [ +2 —m <t <.
We also have

a—b—1=1-m<—j<-—1
because 1 < j < dim(Usz) = m — 1. Therefore
HY(S" Vi @uen) =0 forall i,n€Z
for all weights 7 of A7Us. But filtering A7Us, (as in Step 1) gives us
HY(S" Vi@ NUs®p)=0 foral i,néeZ.

Step 3: Suppose u € X*(T) satisfy

() =0 for i £ m,l+1—m,
= {u, ) with 2m — 2 —1 <7’ < -1, (3.7)
() =0 if ' =2m—2—1.

We want to show that
H(S"V*®@u)=H(S" ™V *@u+wry) forall inc7Z,
where

vo=0a1+2as+ ...+ (m—Dam—1 +m(am + @mi1 + - .-+ Qp1-m) (3.8)

+(m—1Dao—m+ ...+ 2011 + . '

Since V7 C V, we get a short exact sequence (U; is the kernel)
0—-U; = V*=V"—=0

Taking the corresponding Koszul resolution and tensoring with p, we get an exact
sequence

0= ... S"IVoNU,Qu— ... S"V'ou—S"Vion—0 (3.9
The set of weights of V* is
O\ (B, U Bry1-1m),
and the set of weights of V" is
TN\ (D1 U Dy, UDp1 ).
Thus the set of weights of Uy is
O N (i1 \ (P U Pry1-m))

={a € ®"' N ®,,_1|a has a nonzero coefficient to a,, and 11—}

= {a € &7 N ®;|a has a nonzero coefficient to a,, and ajy1_m,
and the coefficient to o, is zero}

={am+am+...+a|l+1—-—m<i<I}
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Thus dim(U;) = m, and if 7 is a weight of AUy, it satisfy

<nao‘7\;—1> = 7‘7‘7
(nyoyy =0for 1 <t <m-—1.

If j < m—1 we can use the symmetric version of Lemma 3.4 with Q = S" 7 V*®u,
a=1,b=m—-1lands= (n,a)_1) =—j. Now Qisa P,,-modulefor 1 <t <m-—1
because V* and p are P,,-modules for t # m,l 4+ 1 —m, and

a—b—1=1-m<—j<1.

Thus we get . ‘
H(S" 7 V*e@uen) =0 forall i,neZ.

But filtering U; (as in Step 1), we get
HY(S"7V*@NUi®u)=0 forall iné€Z, (3.10)

when j <m — 1.
We now concentrate on the case j = m. Define

n=m(n+ mi1--+11-m) + (M —Daypom+ ...+ 201 + .
Then A™U; = 1. We wish to use Theorem 3.1 m —1 times. Still, V* and p are P,,-
modules for ¢ # m,l + 1 —m, especially for 1 <t <m — 1. Now (n,a,,,_;) = —m
and the theorem gives

H(S"™V*@u@ A™U) = H7HS"™™V* @ u® (m — agm_1 +n)

for all 4,n € Z. In characteristic p we will need m — 1 < p. Again {((m — 1)a;,—1 +
n,ay,_o) = —m + 1, so the latter cohomology group equals

HTY S ™V* @ pu® (m —2)am_o+ (m — Day_1 +n)
by Theorem 3.1 (here m — 2 < p). After m — 1 times we see that
HY(S"™V* @ u® A™U;)

=H"(STYV @ u@an + oz + ... (m— Dam—1+1)  (3.11)
_ Hiferl(Snme* Qu® VO)

for all i,n € Z where we must have m — 3, m — 4,...,1 < p. So all in all we need
m—1<p (3.12)

to use Theorem 3.1. We have
HY (S"V@u)=0 forall i,necZ (3.13)

using Step 2.
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Splitting the exact sequence in (3.9) into short exact sequences and using (3.10)
and (3.13) we see that

HY (S"V* @ p) = HT™ HS"™V* @ AUy @ u)  for all 4,n € Z,
which by (3.11) equals

HY(S" ™V*®@u®uvy) forall i,ncZ.

Step 4: We want to show that
HY (8™, @ \) = H' (S™"™ i, @ X —rvg) forall i,n€Z.

We will use Step 3 inductively —r times. Since A + sy satisfies (3.7) for 1 < s <
—r — 1, we have

H(S"V*®@\) = H(S" "™V* @\ + 1p)
= H'(S"?"V* @ )\ + 2u)

= H{(S" My @ X+ (—r — 14 1))
for all i,n € Z. But by Step 1 we have
H(S™u,, ® \) = H(S"V* @ \)
= HY(S"T™MV* @ X —rup)
= HY(S" ™My @A —T10)

for all 7,n € Z.

Step 5: All that is left to show is that wo(A) = X — ruyp.
We know that wq is a product of simple reflections corresponding to the simple

roots o, aa, ..., ;. Therefore A — wg(A) is a linear combination of oy, aa, ..., ;.
But 71y is also a linear combination of oy, ae, ..., a;. Hence it is enough to show
that

<A7w0()\>,04,>/>:<7’1/07042/>, 7’:152771

From Planche I, p. 250 [Bou81] we know that wo(;) = —aq41—i. Remembering

ww_Jor ifi=m
(A aif) = { 0 otherwise

we therefore get

B vy v v fr ifi=mi+1-m
(= w),a) = alh+ et ) = § oot
But

(rvp, a) = r ifi=m,l+1—-—m
0% /77 0 otherwise
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according to (3.8). Hence wo(A\) = A — riyp.

Step 6: In characteristic p, the limit for p is found in equation (3.12), so we need
m—1<np.
All what we have done in Step 2 - 5 may also be done with the assumption

m > 1+ 1—m, so Proposition 3.3 is correct for all m. In general we need m’ —1 <
p. |
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3.2 A new vanishing method

Whenever Eric Sommers proves that a nilpotent orbit has normal closure, he
applies the following proposition in the calculations. The proposition is a small
extension of a vanishing theorem by Broer in [Bro94].

Proposition 3.5 (Proposition 4 in [Som03]). Suppose char(k) = 0. Let P be a
parabolic subgroup containing B, and let A € X*(P) be a dominant P-character.
Then

1. For all © > 0,n € Z we have
HY(G/P,S™uwp @ \) = H(G/B,S"up @A) =0

2. Assume P is the parabolic subgroup with Lie algebra &;>0g; where g; is the
i-eigenspace for the semi-simple element of an sl-triple normalized so that
P contains B. Let V = @;>28;, and let w = /\dim(gl)gl. Then

HY(G/P,S"V*@w®\) = H(G/B,S"V*@w®\) =0
forall v > 0,n € Z.

Broer’s result relies on the Grauert-Riemenschneider vanishing theorem which
is only valid in characteristic zero, hence this proposition is unfortunately only valid
in characteristic zero. However we have found another method to obtain vanishing
cohomology groups. There are two important ingredients in this method. The
first is a vanishing theorem by Broer in characteristic zero, Theorem 3.9.(iii) in
[Bro94], which was generalized to characteristic p > 0 by Thomsen in Theorem 1
in [Tho00] with a lower bound on p. Now H. H. Andersen has given another version
of this theorem without any bound on p, this is the following Theorem 3.11. The
second ingredient in the new method to obtain vanishing cohomology groups is
Example 3.15 where we combine this theorem with Koszul resolutions.

Note that Broer’s/Thomsen’s vanishing theorem would work in the actual cal-
culations in Chapter 4. However, in prime characteristic p > 0 we would need to
require that p > 7 in the proof of normality of the closures of some of the smallest
nilpotent orbits. But 5 is a good prime when G is of type Fg, and hence we need
to use Andersen’s result.

In Theorem 3.11 we need a function X*(7') — N satisfying some conditions to
make the proof work. This is the motivation for the following definition.

Definition 3.6. Let d : X*(T) — N be a function satisfying
1. d(A) =0if A € X*(T) is dominant.

If A € X*(T) is not dominant, there exists a simple root « such that either 2 or 3
is satisfied

2. (N, V) = —1and d(sa (M) < d(N).
A oY) < —1 with d(A + i) < d(A) for all i = 1,2,...,—(\,a¥) — 1 and
d(sq(N)) < d(N).

3
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Then we call d a vanishing function since it can be used in the vanishing theorem,
Theorem 3.11.

First we give an example of a vanishing function. In order to do this we need
some notation. Let < denote the partial order on X*(T") defined by p < Aif A—p
is a sum of positive roots. For all A € X*(T") there exists a unique dominant weight
At € X*(T) in the W-orbit of A\. We know that A < AT.

For each weight A € X*(T') there exist a dominant weight \* € X*(7T) with
A < A* which is minimal in the sense that if y € X*(T) is dominant with A < p,
then A* < p, see e.g. Proposition 2 in [Tho00].

Now we can define the Chevalley height of A € X*(T) to be the largest integer
r such that there exist dominant weights 1o, 1, ..., gr € X*(T) with

MNo=po < p1 <o < fp1 < pir = AT,

We will let Cht(\) denote the Chevalley height of A, and clearly Cht()) € N.
The following proposition can be found in [Tho00].

Proposition 3.7. Let A € X*(T)
1. If (\,a) = —1 then Cht(A\) = Cht(\ + «).
2. If (\,a¥) < —2 then Cht(\)
3. If (\,a") <0 then Cht(\) > Cht(sq(N)).
4. If (A, a¥) < —2 then Cht(A) > Cht(sq(\) — ).
Corollary 3.8. The function Cht : X*(T') — N is a vanishing function.

be a character, and let a € II be a simple root.

> Cht(\ + ).

Proof. If X € X*(T) is dominant, then clearly Cht(\) = 0, and condition 1 in
Definition 3.6 is satisfied. If A is not dominant, there exists a simple root a with
A aYy < —1. If (\,a¥) = —1, then Cht(\) = Cht(A + ) and condition 2 in
Definition 3.6 is satisfied since in this case so(\) = A + a. If (\,a¥) < —1, then

A+ia,0¥) <=2 for 0<i<i(—(A\a")-2)
and the proposition above gives that

Cht(A 4 i) > Cht(A + (i + 1)a)
Cht(\ + i) > Cht(sq(\ +ia) —a) = Cht(A — (A, ") +1i + 1)a)

for 0 <i < 2(—()\, ") — 2). This implies that
Cht(A\) > Cht(\ + ja) for j=1,2,...,—(\,a") —1.

But also Cht(A) > Cht(sq(A)) by the above proposition, and hence condition 3 in
Definition 3.6 is satisfied. O

Later we will actually define a minimal vanishing function. For A € X*(T') we
define [(\) to be the number of elements in

{B e @) pY) <0}
We call [(A\) the length of .
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Corollary 3.9. Let A € X*(T). If (A, ) < 0 for some simple root «, then
(sa(N) =100 — 1.

Proof. Let 3 € ®* be a positive root. Then (s (), 8Y) = (), (so(8))Y). But since
Sq permutes all the positive roots except «, and since s, () = —a, the result
follows. m

Remember that p denotes half the sum of the positive roots, i.e. p = % Y acat Q-
Also remember that (p,a") =1 for all simple roots « € II.

Corollary 3.10. Let d : X*(T') — N be a vanishing function. If d(A) = 0, then
A+ p is dominant.

Proof. Assume that d(\) = 0. We will show the corollary by induction in I(A). If
[(A) = 0, then A is dominant and so is A + p. If [(A) > 0, then since d(\) = 0,
either \ is dominant (and the result follows), or there exists a simple root a such
that condition 2 in Definition 3.6 is satisfied, i.e.

na¥)y=—1 and d(sa(\) < d(\) = 0.

But 1(so(A\)) = I(X) — 1 so by induction s4(A) + p = A+ « + p is dominant, i.e.
A+ p+a,BY) > 0 for all simple roots 3. But for 8 # « we have {«, 3¥) < 0 and
hence

A+p,8") 2 A+ p+a,57) 20,
But (A, ") = —1, and hence (A+p, ") = 0, and we see that A+p is dominant.

Now we are ready to state the vanishing theorem by H. H. Andersen.

Theorem 3.11. Let d : X*(T) — N be a vanishing function. Let A € X*(T).
Then if the characteristic of k is good for G we have

HI(G/B,S™w* ®\) =0 forall j>d(\),ncZ.

Proof. We will proof the theorem by induction first on n and then on d(X). Suppose
n <0.

Assume that d(\) = 0. Then we are in condition 1 or 2 of Definition 3.6,
and either )\ is dominant or there exists a simple root a with (\,a") = —1 (and
d(sq (X)) < d(X)). If X is dominant, Kempf’s vanishing theorem (Proposition I1.4.5
in [Jan87]) gives us

HI(G/B,\) =0 forall j>O0,
and if (A\,a") = —1, Theorem 3.1 gives us
HI(G/B,\) =0 forall jcZ,

and hence the theorem holds in this case.
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If d(A) > 0 there exists a simple root « satisfying condition 2 or 3 in Defini-
tion 3.6. If « satisfies condition 2, we have (A, ") = —1 and again the theorem
holds by Theorem 3.1.

If « is satisfying condition 3 we do the following. Let P, denote the minimal
parabolic subgroup containing B corresponding to {a}. Then since (\,aV) < —1
we have by Proposition I1.5.4 in [Jan87]

HI(G/B,\) = H'"(G/P,, H (P,/B,\))
= H’"'(G/B,H"(P./B,\))

for all j € N. Now by Proposition I1.5.2 in [Jan87] the weights of H'(P, /B, \) are
A, A+ 20, , A+ (=N, aY) — 1)a. (3.14)

We can filter H'(P, /B, \) with B-subrepresentations such that the quotients are
one dimensional with the same weights. For any such weight 1 we have d(u) < d()\)
since « satisfies condition 3 in Definition 3.6. So by our second induction we have

ijl(G/B,M) =0 forall j—1>d(p),

and hence for all j > d()). So for all quotients @ in the filtration of H(P,/B,\)
we have

HI7YG/B,Q) =0 forall j>d(\).
and hence
HI(G/B,\) = H Y (G/B,H"(P,/B,)\)) =0 forall j>d(\).

Now suppose that n > 0, and assume that the theorem holds for n — 1. If
A € X*(T) is dominant, the theorem holds by Theorem 2 in [KLT99] since the
characteristic is good for G. If A is not dominant, there exists a simple root «
satisfying condition 2 or 3 in Definition 3.6. Now let up, denote the Lie algebra
of the unipotent radical of P,. This is a P,-module, and as a B-module u/up, is
just the one dimensional B-module with weight —a. Remember that we denote
this B-module just by —«. With this notation we have a short exact sequence of
B-modules

0—up, —u——a—10

The Koszul resolution corresponding to the dual sequence is the short exact se-
quence

0—S" " ®@a— S"u* — S"up — 0

Tensoring with the one dimensional B-module with weight A we get the short
exact sequence of B-modules

0—-S"""w@A+a) = S @A — S"up @A —0
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which induces this long exact sequence in cohomology

= HI(G/B,S" ' @ (A + ) (3.15)
— HI(G/B,S™u* ®\) — H/(G/B,S™u}j, @) — ...

If « satisfies condition 2 in Definition 3.6 we have (A, ") = —1 and
H'(G/B,S™u}, @A) =0 forall jeZ
by Theorem 3.1, and by the long exact sequence above we get
HI(G/B,S™w* @ \) = H(G/B,S" "w* @ (A +«)) foral jecZ.

By induction on n we know that the latter vanishes for j > d(\ + «). But since «
satisfies condition 2 in Definition 3.6, we know that

d(A + @) = d(sa (X)) < d(N).
In particular
HI(G/B,S"™u* ®\) = H(G/B,S" 'uw*® (A +a)) =0 forall j>d(\),

and the theorem holds in this case.
Now assume that « instead satisfies condition 3 in Definition 3.6. Then we have
d(X + a) < d(N), and by induction

HI(G/B,S" " @ (A +a)) =0 forall j>d\+a),
in particular it holds for j > d(X). If we can show that
HI(G/B, 8™ @A) =0 forall j>d(\) (3.16)

we are done by (3.15). Now since (\,a") < —1 we obtain by Proposition I.5.4 in
[Jan87]

H/(G/B,S™u}p, @A) = H ' (G/Pa,S™wp, @ H' (Ps/B,)\))
= H'"Y(G/B,S"u}, @ H'(P./B,\)) (3.17)

for all j € Z. Let u be a weight of H*(P,/B,\), i.e. u is one of the weights in
(3.14). Then look at the long exact sequence in (3.15) with p instead of A. In order
to show (3.16), it is by (3.17) enough to show that

HI(G/B,S" 'u®@ (u+a)) =0 for all  j > d(\) (3.18)
HI™Y(G/B,S"w @ p) =0 for all j > d(\). (3.19)

By induction on n the first cohomology group vanishes for j > d(u + «). If
w# A+ (—(\ oY) = 1a, then d(u + «) < d(M\) by condition 3 in Definition 3.6,
and if g =X+ (=(\,a¥) — 1), then g+ a = s,(\) and we have d(u + a) < d()\)
again by condition 3. Hence (3.18) is satisfied.

By condition 3 we know that d(u) < d(\), and by induction (3.19) is satisfied
for j > d(u). But then it also holds for j > d(\), and we are done. O
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We know that the Chevalley height, Cht, is a vanishing function, and we can
use it in the above theorem. But Cht is not small enough for our calculations in
Chapter 4, so we will define a minimal vanishing function recursively.

Definition 3.12. We will define a function m : X*(T') — N as follows. If A €
X*(T) is dominant, we define m(A) = 0. If X is not dominant, we may inductively
assume that m(u) is defined for p € X*(T') satisfying one of the following two
conditions

i. Cht(y) < Cht(\)
ii. Cht(x) = Cht(\) and I(1) < [(\).
Now define
m(A) = min{m,(A\)|a is a simple root with (\,a) < —1}
where m () is defined for all simple roots a with (A, ") < —1 as follows:
Suppose (A, a¥) = —1: Then A + a = s,()\), and hence
Cht(A) = Cht(A + «) = Cht(sa(N))

by Proposition 3.7 and 1(s,(A\)) < I(A\) by Corollary 3.9. Hence s, (\) satisfies
condition ii above, and we may assume that m(s, (X)) is defined. Now define

ma(X) = m(sa(})).
Suppose (A, a¥) < —1: Then
Cht(\) > Cht(A + ja) for j=1,2,...,—(\a"’)—1

as in the proof of Corollary 3.8, so for these j’s the weights A\ + jo satis-
fies condition i above, and we may assume that m(\ + ja) is defined. Now
Cht(X\) > Cht(s,(\)) by Proposition 3.7, but again I(s4(\)) < I(A) by Corol-
lary 3.9, so one of the two conditions i and ii is satisfied, and m(ss(\)) is
defined. Now we can define

Ma(N) = max{m(sa(\), m\ + ja) +1[j = 1,2,..., ~(\ a”) — 1)
Since a weight A € X*(T) is dominant, if and only if Cht(A\) = 0 and [(\) = 0,
and since [(A\) < [®7T| for all A € X*(T'), our function m is well defined.

It is clear from the definition that m is a vanishing function, and it is con-
structed as a minimal vanishing function in the following sense.

Lemma 3.13. Let d : X*(T') — N be a vanishing function. Then for all A € X*(T")
we have

m(\) < d(\).
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Proof. We will prove it by induction first on d(A) and then on [(A).
Assume d(\) = 0. Then Corollary 3.10 gives us that A + p is dominant. If X is
dominant, then m(A\) = 0. If not, there exists a simple root « with

Aoy <—1 and m()\) =ma(N)

by construction of m. But since A+ p is dominant this o must satisfy (A, a") = —1
and hence m(A\) = mq(A) = m(sq(N)). Since [(s4(N)) < I(A) by Corollary 3.9, we
have by induction

m(A) = m(sa(A)) < d(sa(N))-
But by condition 2 in Definition 3.6 we know that d(s(A)) < d(\) and therefore
m(A) = m(sa(A) < d(sa(A) < d(A).

Now assume that d(\) > 0. Then X is not dominant, and hence there exists a
simple root « such that condition 2 or 3 in Definition 3.6 is satisfied.

If condition 2 is satisfied we have (\,a") = —1 and d(s,(\)) < d(\). Then
I(sa (X)) < I(A) so by induction we have

m(sa(A) < d(sa(A)) < d(A).

But remember that m(\) < mqy(A) = m(sa(N)) by construction of m, and we are
done.
If condition 3 is satisfied we know that (\,a") < —1, and

A\ +ja) <d(\) for j=1,2,...,—(\a")—1,
d(sa(N) < d(N).

So by induction

m\ +ia) < d(A +ia) < d(\) (3.20)
fori=1,2,...,—(\, V) — 1, and since I(s4 (X)) < [(\) we also have

m(sa(A)) < d(sa(N) < d(X) (3.21)
by induction. But
m(A) < ma(A) = max({m(sa(N)} U{m\ +ja)+ 17 =1,2,....,—(\,a¥) — 1})
and hence m(\) < d(\) by (3.20) and (3.21). O

Another nice property of this minimal vanishing function is that we know
exactly where it vanishes. We will show that it vanishes on the following set

C={Ne X*(T)|(\,BY) > —1forall B € d}.

Now assume that A € C' and (A, ") < 1 for some simple root . Then s,()\) € C:
First observe that

(sa(A),87) = (A, (sa(B))¥) forall Be @
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Since s, permutes all the positive roots except «, and since
(sa(N), ) = (X (sa(a))’) = —=(A,a¥) = —1,

this implies that so(A\) € C. We will use this observation in the proof of the
following corollary.

Corollary 3.14. Let A € X*(T'). Then m(\) = 0 if and only if A € C.

Proof. We will prove the corollary by induction on I(}).
Assume that A € C. If [(A\) = 0, then A is dominant and m(A) = 0. If on the
other hand [(\) > 0, then since A € C, there exists a simple root « with

N aYy=—1 and m(\) =ma(\) =m(sa(N)).

Hence s, (M) € C. Since (s4(N\)) < I(N\) we therefore have by induction m(\) =
m(sa (X)) =0.

Now assume that m(\) = 0. Then either X is dominant, or there exists a simple
root o with

AaY)y=—-1 and 0=m((\) =ma(\) =m(sa(N).

Now I(s4(A\)) < I(N\), and by induction we have s,(\) € C. Hence we have \ =
sa(sa(N) € C. O

Example 3.15. We will use Theorem 3.11 in the following setup. Assume that
V Cuis a B-subrepresentation. Let A € X*(T'), and let iy € Z. Suppose we want
to show that

HY(G/B,S"V*®@\) =0 forall i>igncZ. (3.22)
We take the exact sequence of B-modules (W is the cokernel)
0—-V—-u—-W-—=0

If we take the Koszul resolution of the dual of this short exact sequence and tensor
it with A, we get the exact sequence

0— Sn—dim(W)u* ® /\dim(W)W* ® N e — Sn—ju* ® /\jW* ® A\ —
= ST W RN = ST RN — S"TVFRAN— 0 (3.23)

We may filter A/W* ® X with B-subrepresentations such that the quotients are
one dimensional with T-weights equal to the T-weights of AVW* ® A counted with
multiplicities. Hence, if we for all these weights p can show that m(u) < j + o,
then Theorem 3.11 gives us

HY(G/B,S"u*®@u)=0 forall i>j+ig,n€Z
for all these weights p. Then all quotients @ in the filtration of AJW* ® X satisfy

HY (G/B,S" u*®Q)=0 forall i>j+ig,ncZ.
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Hence we get
HY (G/B,S"uw* @ NW*®\) =0 forall i>j+ig,ncZ

If this is satisfied for all j = 0,1,2,...,dim(W), we get, by splitting the exact
sequence in (3.23) into short exact sequences and taking long exact sequences in
cohomology, that

HY(G/B,S"V*®\) =0 forall i>igncZ.

Remark 3.16. In type Eg we have created a computer program which does the
following. Given ), ig and the weights of V', the program checks if m(u) < j + i
for all weights p of AAW* @ X\ where j = 0,...,dim(W). If m(u) < j + ip for all
appropriate p we know that (3.22) holds.

Because m is inductively defined it is easy to make a computer program which
calculates it. The code for the computer program can be seen in appendix A.

When we are going to use the method of Example 3.15 to show the vanishing
of a cohomology group in the actual calculations in Chapter 4, we will refer to this
example, meaning that we have used the computer program to get the result.



Chapter 4

Calculations

Throughout this chapter we will assume that G is a connected, simply connected,
semi-simple linear algebraic group of type Eg over an algebraically closed field
k. Moreover we will assume that the characteristic of k is good for G, i.e. either
char(k) = 0 or char(k) = p > 5. Then G satisfies the standard hypothesis on
page 4, and all the results in the preceding chapters apply.

In this chapter we will prove that the orbits Fgs, Fs(a1), D5, E¢(as), Ds(a1),
1457 A4 + Al, D47 D4(a1), D4, 2142 + Al, A2 + 2A1, AQ, 3141, 2A1, 0 all have
normal closure. Before we begin our calculations, we will establish some notation
specifically for type Fjg.

Let IT = {ay,aa,...,a} be a numbering of the simple roots corresponding to
the Dynkin diagram with vertices numbered as

1 2 3 4 5
[ ] ° [ ] [ ] °

6
[ ]

Let A = Y20 mi; € X*(T) be a character. Then we will sometimes use the
notation
{nl no ZZ ng n5}

for the character A and for the one dimensional B-representation with weight .
For b1,...,bs € Z we define

[blbzlgzml’ﬂ: @ ga C 0

a=>n;a; €D,
dobin; <=2

Let I C II be a subset of simple roots. Let P; be the standard parabolic subgroup
containing B corresponding to I, and let up, be the Lie algebra of the unipotent
radical of P;. Now define

by — 0 ifayel
)2 ifas g

49
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Then

by by bz by bs] _ _
[l = D s =un
acd—\P;

because

Donia; € B> bing < =2} ={> nja; € P> bin; < -2}
={> nja; € P |Fi: b, =2,n; #0}
= na, €@ |Fi:a; ¢ I,n; #0}
— 9\ ;.

Let u denote the Lie algebra of the unipotent radical of the Borel group B. Then
u consists of nilpotent elements. If all the b;’s are non-negative, then

[P cu

is a B-stable subspace of 1 consisting of nilpotent elements.
In this chapter we will often write H*(—) instead of H*(G/B, —).
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4.1 The orbits EG, Eﬁ(al), D5, and E@(a,g)

These orbits have normal closure by work of Kostant, Kumar, Lauritzen and
Thomsen.

4.2 The orbit Ds(a,)

We will use that the closure of Eg(as) is normal to show that also the closure of
Ds(ay) is normal.

Step 1: Let D5(aq) denote the closure of Ds(aq). This notation will also be used
for other orbits. We want to show that

Dyfan) = G.[00329).

Let A be the weighted Dynkin diagram {??3°0} Then with the notation of
Section 2.2.3 we have V(Aa) = g2(Aa) = [V 2300] and because the weighted
Dynkin diagram of Dy is {° 9290} it follows from Lemma 2.8 that

Dy=G.[00200],

Let P = Py be the standard parabolic subgroup corresponding to I = {1, aa, as }.
Then up = [29220] and dim(G.up) = 2- (36 — 4) = 64, cf. Richardson’s dense
orbit theorem, Theorem 1.3. Since G.up is the closure of a nilpotent orbit, and
since the only two nilpotent orbits of dimension 64 are As and Ds(aq) according
to the table p. 129 in [CM93], G.up must equal the closure of either A5 or Ds(ay).
But
[00200]C[00220] =y,

hence Dy = G.[°9300] C G.up. But Dy is not a subset of As, cf. Figure 1. Thus
G.up = D5(a1).

Step 2: We want to show that
D5(a1) = G[O 1%20].

Note that [0 1120] C[90220] If we let V denote the cokernel of this inclusion,
we get a short exact sequence of B-modules

0—[01120] 500220,
Then V is one dimensional with T-weight —a3 = {O 0 _01 00 }, and the Koszul
resolution for the dual sequence is
0—>S”1[00320]*69{00(1)00}—>S”[00§20]*—>S”[01§20]*—>(0. |
4.2.1

Since (ag, ) = —1, and since up = [© 932 0] is a P-module (and in particular a
P,,-module), we can use Theorem 3.1 to see that

HY(S" 1002207 @ {00100}) =0 forall i,n€Z.
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The short exact sequence in (4.2.1) gives rise to a long exact sequence in cohomol-
ogy. Using this sequence we therefore have

HY(S™[002201") = gi(S"[01120]") forall i,ncZ,

and Lemma 2.1 gives

Step 3: Now remember that we are going to use that Fg(as3) has normal closure.
The closure of Fg(as) equals G.[?2920] because the dimension of G.[92§2 0] is
2 (36 — 3) = 66 by Richardson’s dense orbit theorem and because the only orbit
of dimension 66 is Fg(a3) according to the table p. 129 in [CM93].

Look at the short exact sequence of B-modules (V is the cokernel)

0—[01120]5[02020] )
Then V* is 2 dimensional with T-weights
{01000} {11000}
Thus the Koszul resolution of the dual of the short exact sequence is
OHS"_2[02820]*®A2V* H571—1[02820]*(@‘/*
— §"[02920)" - gn[01120]" 0. (4.2.2)

We will show that

HY (8" 1029201 @V*)=0 forall i,ncZ.
There exists a short exact sequence of B-modules

0— {01000} ,y* {11000} 0

Since [Y2929] = up is a P,,-module, and since

{0189 ag)=—1, ({'18°°},a5) =1,
Theorem 3.1 gives

HY(S" 10292017 @ {01000}y =0 forall i,ne€Z
HY(S"1[029201" @ {11000}y =0 forall i,n € Z.
Hence _
HY (8" 102920 @V*) =0 forall i,ncZ.

Thus, by splitting the exact sequence in (4.2.2) into short exact sequences and
taking long exact sequences in cohomology, we get

H'(Ker (S™[02920]" — gn[01]20]7)
= H™H (S 2[02920]" @ A*°V*) forall i,n € Z.
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Step 4: If we can show that
HTH(Sn=2[020201" @ A2V*) =0 forall i>1,ncZ (4.2.3)
we have the exact sequence
0— H'(S"2[02920]" @ A?V¥)
— HO(S™[02920]") — HO(S"[01420]") - 0

for all n € Z, and we are able to prove that Ds(A;) has normal closure: Let
J ={a1,a3,a5} CII, and let Py be the corresponding parabolic subgroup. Then
up, =[22929] and by Lemma 11 in [Tho00] the map

GXPJ[OQ(%QO]HG.[OQBQO]

is birational. Since Fg(as) = G.[Y2929], and since Fg(a3) has normal closure,
Lemma 2.2 gives that

is normal.

Now we are going to show (4.2.3). Remark that A?V* = {12800} and that
[02920] is a P,,-module, so using Theorem 3.1 with ({1200} ay) = —2, we
get

Hi+1(Sn72 [02320]* ®/\2V*) :Hi(sn72[02820]* ® {1 2(1)00})

for all i,n € Z.

We now start using Proposition 3.3. We will use the notation from Section 3.1
with the small exception that «; in Section 3.1 here will be denoted o, so the
notation «; is reserved for simple roots in type Fg. Let [ = 3, m = 2, o} = as,
ab = ay, oy = as, I' = {a1}. Then

I+1-m=2, m'=2 I©L={«a,as a5}
and
{125°% a5) =0, ({'?§°%,a5) =0, r=({"2§""},ay)=—1,
so by the proposition we get
Hi(5"2[02420) @ (12400))
= H!(S"*[02920]" {12221} forall i,n€Z. (4.2.4)

We use Proposition 3.3 again with [ =2, m =2, o] = a3, oy = ag, I' = {1, a5}
Then

l+1—-m=1, m'=1, L={a,a3 a5}, ©L={a,asas}
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and
(12371} .08) =0, r=({(*737"}.a}) =2

and the proposition gives
HI(S™ (02920 @ {12321)) = Hi(S" 007370 0 {1242 1]) (4.25)

for all i,n € Z. At this point Eric Sommers uses Proposition 3.3 two times, and
then Proposition 3.5 to show that the latter cohomology group vanishes for all
1 > 0 in characteristic 0. Instead we obtain by Example 3.15 that

HY(S"0[02220" @ {12421}) =0 forall i>0,nc€Z.

Remembering all the isomorphisms of the cohomology groups, we see that (4.2.3)
is satisfied and hence that D5(a;) has normal closure.
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4.3 The orbit Aj

We want to show that also the closure of As is normal using that the closure
of FEg(as) is normal. As explained in the summary in the introduction, we will
use a method which is different from the one in [Som03]. This new method does
not require as many calculations as the old one, even though the new method is
not easy. The main ingredient is the observation that A5 has codimension two in
Es(as), see the table on page 129 in [CM93], and remember that we are allowed to
use characteristic zero results as explained in Section 2.2.4. The idea behind the
method is due to Eric Sommers.

The weighted Dynkin diagram of As is A = {21912} and since V(Aa) =
[21912] we have by Lemma 2.8 that

A_5:G.[21?12].

Similarly since A’ = {20202} is the weighted Dynkin diagram of Eg(a3z), we
know that V(Aa) =[2°292], and that

Eglag) =G.[20202].
Let P = P(Aa/). Then the morphism
ﬁ:GXP[QO(QJOQ] H(;.[20%02]

is birational by Corollary 2.9. Note that P is the standard parabolic subgroup
containing B corresponding to J = {aa, a4, ag}-

We know that [21912] C [20202] We want to show that the closure of
As is normal. By Lemma 2.2 it is enough to show that the inclusion [21912] C
[20202] induces a surjection on cohomology groups

HY(G/B,S"[?°3°2]") — H(G/B,S"[**91°]") = 0 (4.3.1)
for all n € N because p is birational, and because Eg(az) = G.[2??292] is normal.
The idea is as follows: We will find a normal, irreducible P-stable subvariety

W C[20202] (4.3.2)

of codimension one. Let k[2?© 30 2] be the coordinate ring of [2 020 2]. Then we
can identify k[2 920 2] with the polynomial ring k[z.|a € @~ \ @] graded with
deg(z,) =1 for all .. Let I(W) be the defining ideal of W in [2 920 2], Then it

turns out that
IW) = (f) Ck[*>°5°2]
for some irreducible, homogeneous element f € k[2030 2](P).
Since f is P-semistable, there exists a P-character A\ € X*(P) such that p.f =
A(p)f for all p € P. We also claim that A = {2320}, Since f is homogeneous,

the coordinate ring of W is graded. Let k™[] denote the graded piece of degree
n in the coordinate ring of W.
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We will show that the inclusion W C [2 020 2] induces a short exact sequence
of cohomology groups

0— HO(G/B,S"*[203°2 @ {°24>"})
— H°(G/B,S™[20202]) (4.3.3)
—HY(G/B,k"[W]) — 0

for all n € N.
Late we will show that P.[21912] =¥ and that the inclusion [21§12] C W
induces an isomorphism

HY(G/B,k"W]) ~ H'(G/B,S™[21912]) (4.3.4)

for all n € N. To prove this, we will need that W is normal. Combining (4.3.3)
and (4.3.4) we get the desired surjection in (4.3.1).

4.3.1 Restricting to a subgroup of type D,

We will define W in (4.3.2) by restricting to a subgroup of type Djy.

Let Pr be the standard parabolic subgroup containing B corresponding to
the set I = {9, a3, s, ag} of simple roots. Let L; be the Levi subgroup of P;
containing 7. The commutator group G’ := (Ly, Ly) is semi-simple and simply
connected (cf. Exercise 8.4.6,6 in [Spr98]) with root system ® := ®; of type Djy.
Then 77 = (TNG")? is a maximal torus in G, and B’ = BNG' is a Borel subgroup
in G’ containing T”. Let P’ be the standard parabolic subgroup in G’ containing
B’ corresponding to the subset J = {ag, as, a5} C D',

Let o = Zi:273,476 a;a; € ' be a root. We will also use the notation

{2 a5 as (4.3.5)

for the root a.
Let g’ be the Lie algebra of G’. Then g’ is the subset of g given by

¢ =to(Pa)co

aEed’

where t’ is the Lie algebra of 7. In g’ we define

by b3 byl __ /
[ 5] = D 8. C 0,
O‘zza;:z,z.A,s nia; €',
Zbini§72

and we will consider this as a subspace of g. Let up, denote the Lie algebra of the
unipotent radical of P’, and note that up = [92°]. Let Ops € ups be the dense,
open P’-orbit of Richardson elements, and let k[up/] denote the coordinate ring of
ups. Let wg € X*(T") denote the fundamental weight corresponding to az. Now
since G’ is simply connected, we have X*(P’) = Zws. We will use the notation
and results from Section 2.3 in the following lemma.
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Lemma 4.1. The closed set up: \ Op: has exactly one component V of dimension
equal to dim(up:) — 1. Furthermore I(V) = (f) where f € k[up/]") and p.f =
2wos(p)f for all p € P’.

Proof. Let x € Ops be a Richardson element, and let A’ be the weighted Dynkin
diagram { Y 2 °}. Then P’ = P(Aa/), and by Lemma 2.13 we know that the number
of components in up: \ Op: of dimension equal to dim(up/) — 1 equals the rank of
the kernel of the restriction map

po X*(P) = X*(Zpi(2)).

Remember that X*(P’) = Zws, and that Ker ¢, is independent of the Richardson
element z, cf. Section 2.3. We will show that Ker ¢, = Z2ws;.

First we show that ws ¢ Ker (). To do this we will choose a specific Richard-
son element z € Op: and an element py € Zp:(x) such that ws(pg) # 1.

In order to find a Richardson element x € ups and an element pg € Zp/(x)
such that ws(pg) # 1, we are going to use Lemma 4.6 which is stated and proved
in Section 4.3.2.

Let I’ be the rank of G'. Lemma 4.6 gives the existence of a basis

{zala € YUK =1,2,...,I'} (4.3.6)

for g’ with z, € go and h; € ¥ and the existence of admissible isomorphisms
Uq : k — Uy, for o € @' such that

Ad(ua(t)(zp) =25+ Y ¢ tapyia foralltek (4.3.7)
i>1
BHiaed
where cf"ﬂ are constants with c(ll'ﬂ = +(r + 1) where r > 0 is the greatest integer

satisfying that 8 — ra is a root.

By Remark 4.7 we can choose the signs of c?’ﬁ using the process in [Sam69]
page 54. We choose the signs of c?’ﬁ to positive whenever we use equation (4.3.7)
in the following calculations.

With this notation and the notational convention in (4.3.5) we define

SC:SC{_l:%_l +${0510}€up/.

Then one can directly check that x is a Richardson element in Op/. Define
ny = uai(]‘)u*ai(i]‘)uai(]‘) € NG/(T/)a

and let n = nggNa,Na, - Let L' be the Levi subgroup of P’ containing 7. Since P’ is
the standard parabolic subgroup containing B’ corresponding to J = {aa, a4, ag},
we see that the image of n in the Weyl group Ng/ (T")/T" of G’ is the longest
element in the Weyl group of L. Let t = oy (—1) € T”, and define py = tn € P'.
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Now we are ready to prove that py € Zp/(z):

No.Tr—-1 -1 -1 :Ad(uw(l)u_ou( Ua2 { 1 — 1}
—1 71

= Ad(ta, (1)u—qa,( ({ —1-1 1}+:E{0 -1 1})
:Ad(uaz(l))((lfl { —1-1-1 +${0:1—1})
= uag {0_171}

7${0:1—1}

Continuing this way we get

nx{ 17171 —33{0—010}
and therefore
pox{ -1 1 1}—a3 {o 10}—13{0 10} (4-3-8)
Now
712-50{0—010}:Ad(um(l)ufm( YUy (1 {0 Lo}
= Ad(Ua, (1)t—a,(— {o 10}
= Ad(uq, (1 ({0 10}*${ -1 10})
:(1—1 {0—010}—13{—1—010}
:71'{717010}
and we get
n.x{o -l 0} = (—1)313{ “1-1-1
Hence
pofc{o 10}—043 ( { 171 1}) ( { 171 1})750{ 1—1—1

(4 3.9)

Putting (4.3.8) and (4.3.9) together we get po.x = x, and so py € Zp/(x). Since n
is a product of unipotent elements, we know that ws : P — k* satisfies w3 (n) = 1,
and therefore

@s(po) = ws(az (—1))ws(n) = -1-1= -1

and pg ¢ Ker .
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Now we need to show that 2ws € Ker ¢,. Since P’ = P(Aas), Theorem 2.7. i
gives that Zg/(z) = Zp/(x) as mentioned on page 25. Hence we have

Zp/(2))Zp: (2)° = Zeo () [ 2o ().

The latter is isomorphic to Z/27Z by Chapter 13.1 in [Car85] — as described in
Section 2.2.4 we are allowed to use the characteristic zero results. Hence Zp(z)°
has index two in Zp/(x). Let

’l/)m : X*(P) — X*(Zp/(x)o).

be the restriction map. As observed in Section 2.3 we have 2Ker 1, C Ker ¢,
and we only need to show that w3 € Ker 1,.

Let S = Ker (a3)NKer (ag+a3z+as+ag) €T’ Then S is a two-dimensional
torus, and S C Zp/(x). Hence S C Zp/(x)°. Also note that ws restricted to S,
denoted wslg, is constantly 1 since ws = (a3) + (a2 + as + a4 + ag).

Let R, (Z¢) be the unipotent radical of Zg(z). If we can show that Zp: (z)° =
Zg(z)? is the semidirect product of S and R,(Z¢g/) (i.e. if S is a Levi factor for
Zg(z)?), then ws € Ker 1, since wsls = 1 and since R,(Zg/(x)) consists of
unipotent elements. So in this case w3 € Ker 1, and we are done.

In Chapter 13.1 in [Car85] we see that if G&1 is an adjoint, semi-simple, con-
nected, linear algebraic group of type D4 over the complex numbers, and z¢
is a Richardson element for P(Aa/) where A’ is the weighted Dynkin diagram
A"={%3°}, then Zgua (zc)? has a Levi factor isomorphic to (C*)2.

Let G be the simply connected, connected, semi-simple linear algebraic group
of type D4 over C. Then we have the surjective morphism 7 : G& — G(%d with
finite fibers and with a differential which is an isomorphism of the Lie algebras of
the two groups. Under this isomorphism z¢ is also a Richardson element for G
Now 7 restricts to a surjective map

T Zgse (z¢)? — Zgaa (zc)°.

Let LE be a Levi factor of Zgse (x¢)°. Then LE is connected. Moreover the image
m(L¥) is a Levi factor of Zgai(vc)? by Lemma 1.4, and hence (Lg) ~ (C*)*.
Now

7 LE — (L) (4.3.10)

is surjective with finite fibers, and hence dim¢ LF = 2. Let T¢¢ be a maximal torus
in L. Since the morphism in (4.3.10) is surjective, 7(7¢°) is a maximal torus in
m(LE) ~ (C*)2. But then dimg T2¢ > 2. Since L is connected of dimension two,
we can conclude that L{ = T ~ (C*)2.

Now Theorem 2.7 and Section 2.2.4 tells us that Zg:(2)° = Zp/(x)° has a Levi
factor L with the same root datum as L§¢. Hence L ~ (k*)2. Then L is a unique
maximal torus in Zg/ (), and since the dimension of S is two, we have S = L.
Therefore S is a Levi factor of Zg/(z)°, and we are done.

O
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We can identify the coordinate ring k[up/] with the polynomial ring
klzola € (@) \ @]
where J = {ag, a4, ag}, and we grade it with deg(zo) =1 for all a.

Corollary 4.2. The element
[ €klup] = kl[zala e ()" \ @]
from Lemma 4.1 is homogeneous of degree 4.

Proof. By Lemma 2.10 f is homogeneous. Since f is homogeneous, irreducible and
P-semistable with p.f = 2ws(p)f for all p € P’ and 2w3 = {242}, we see that
the terms of f must be products of two of these four monomials in kfup]:

B S R S G St G A G T G A S T 2 R &
O

Since f is homogeneous, the coordinate ring k[V] = k[up/|/(f) is graded. Let
E™[V] denote the degree n graded piece.

We want to prove that the component V' from Lemma 4.1 is normal, and we
also want to find a good description of k™[V]. In order to do this we will prove that
V = P.[191] and that the morphism P’ x5 [191] — P’ [101] is birational.

First notice that [1 9] C [©2°] = ups and therefore P’.[1 9 1] C [0 2 0], Next
observe that P’.[1§ 1] is closed in [© 2 O] since P’/B’ is projective, cf. Section 1.2
page 4. Clearly P’.[* 9 1] is irreducible.

Lemma 4.3. The morphism

WP B [101] 5 pr101]
is birational.
Proof. Let

7P X [L91] - P xB [191]

be the projection, and let U’ = U,,U,,Uqss. Then U’ is a subgroup of P’. Now
(U’ x [191]) is open in P’ xB" [191] since

7 (U x [Y91]) =U'B x [191]

and since U’'B’ is open in P’ by the Bruhat decomposition. Therefore it is enough
to show that

Won(U' (191 = P

is birational. Since ¥ is dominant, it is by Theorem 2.4 enough to show that W is
generically one to one and separable.
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Consider the composition
Q):\IIOW|U,X[1(1)1];U’x[l?l]ﬂpl.[l(fl].

We will use the same notation as in the proof of Lemma 1.4. First notice that
[191] is the span of the z,’s where « is one of the following roots

{71:%717 {71:%71 : {0:%—1 , {7170171}7 {—1:%0.
(4.3.11)

Let € [1 §!]. Then we can write
T=ax;_1_9_-11+bxry_1_-1_1\+cxryo_1_
{121} {1_%1 {0_%1
+dry_1 11y texry_1-10
i S e
for some constants a, b, c,d,e € k. Then

Vor (ucw (UQ)UOM (U4)ua6 (U6)’ ‘i')
=Ad(Uas, (V2)Uay (V4)Uag (V6)) (T)
= 19 _ br_1_.1_ b)xro-1— (d b)x 1
61{121}+${1}1+0+02 {011+ +U6{111}
+ (e 4+ vab)x {71710}4- (vad + vec + vavgh)x: {0—1—1}
+ (v2e + vac + vovsb)x {0—10 + (vad + vee + vaveb) T {71710}
+ (vavad + vavge + V4UC + V2V4V6D) x{o 1 0}
0

(4.3.12)

Now we will see that U : 7(U’ x [1 9 1]) — P’.[1 9 1] is generically one to one. Let
V" be the complement in [ 2 %] = up, of the zero set of the three polynomials

x{_l :% _1}z{0,1 71}*:E{0—1 —1} {71 1 71} € klup/]

{717171} {0710 —96{07171} {71710 € klup/]

{—1—1—1} (- 710}*${—1 —10} (-1 1) € klup].

Let V! =V"NP.[191]. Then by direct calculations using (4.3.12) one can check
that

(@) (V) -V

is injective. Since m: U’ x [191] — «(U’" x [ §1]) is bijective, this implies that
7(U" x [191]) — P/.[191] is generically one to one.
Now we want to show that W is separable. Let w € U" and z € [ § 1]. We look
at the differential of ® as a map of tangent spaces

dq)(ﬂ,i) =d(¥o 77)(71,@) : T(ﬂ,:i)(U/ X [1 (1) 1]) - T‘IIOﬂ'(ﬁ,:E)(P/- [1 (1) 1])



62 4. Calculations

Using (4.3.12) one can again directly calculate that this differential is surjective
for (u,z) € U’ x W where W is the complement in [* 9 1] of the zero set of

:E{Oj —1}50{71 51 71}${71 Bl 71} ck[t9t].

Hence d¥, is surjective for all z in the open set w(U’ x W). Since ¥ : w(U’ x
[L91]) — P’ [t Q1] is dominant, this implies by Theorem 4.3.6 in [Spr9§| that ¥
is separable.

O

Corollary 4.4. Let V be the component given by Lemma 4.1. Then
V="r.['91].
Proof. From the above lemma we see that
dim(P'.[11]) = dim(P' x7' [191])
= (dim P’ — dim B’) + dim [* { !]
=3+5=8,

and P’.[19 1] has codimension one in | = ups. Furthermore P'.[1 9 1] Cup/
is closed, irreducible and P’-stable, and hence P’.[! { 1] is a component in up/\Op/
of dimension equal to dimup, — 1. But by Lemma 4.1 V is the only component in
up: \ Op: of this dimension, and we have V = P'.[1{1]. O

0%0]

Note that in this proof we see that P’.['{ 1] is a component in up \ Ops of
dimension dimups — 1. Since X*(P’) = Zws, there is at most one such component
by Lemma 2.12. We also know that the defining ideal of P’.[! ¢ 1] in ups is equal
to (f) C k[up/], and that there exists a character A € X*(P) such that p.f = A(p)f
for all p € P’. Now one can ask why we made such an effort to prove Lemma 4.17
The answer is that we got some extra information from Lemma 4.1, namely the
information that A = 2ws. This will be important later.

We will prove that the component V' from Lemma 4.1 is normal. In the proof
we need to know that there are only finitely many P’-orbits in ups = [ 29]. To
see this we will use the theorem on page iii in the introduction of [R6h] which is
a generalization of Theorem 1.1 in [HR99]. Actually we could use Theorem 1.1 in
[HR99], but if we wanted to prove normality of 34; by the same method we are
now using to prove normality of A5, we would need the generalized version. The
setup is the following;:

Let G be a reductive linear algebraic group, and P a parabolic subgroup with
Levi factor Lp and unipotent radical Up. Let up denote the Lie algebra of Up.
Now Up is a nilpotent group, and we define the descending central series of Up:
Let C°(Up) = Up, and let C**1(Up) be the commutator (C*(Up),Up) for i > 0.
Since Up is nilpotent, we can define [(Up) to be the smallest integer m such that
C™(Up) is trivial.

For G of type D, we let 7 denote the graph automorphism of G of order two.

Suppose G is simple as an algebraic group, and the characteristic is good for
G. Then the generalized theorem in [Roh] states that P acts on up with a finite
number of orbits if and only if one of the following conditions hold.
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i I(Up) < 4.

ii. Gisof type D,, [(Up) =5, 7P # P, and the semi-simple part of Lp consists
of two components which are simple as algebraic groups.

iii. G is of type Eg, I(Up) =5, and P is of type 24, + Ay or As.
iv. G is of type E7, [(Up) =5, and P is of type Ay + As.

A method to compute [(Up) is given by the formula on page 4 in [Roh]: Let
T be a maximal torus in G. Let ® be the roots of G with respect to T', and let
II € ® be a set of simple roots. Suppose P is a standard parabolic subgroup
corresponding to the subset I C II of simple roots. Let o denote the highest root
in ®, and write ¢ = ) .y na« as a linear combination of the simple roots. If the
characteristic of G is very good, then the formula is

IUp)= > na. (4.3.13)

Now we are ready to prove that V is normal.

Lemma 4.5. The component V' from Lemma 4.1 is normal.

Proof. Since V is a hypersurface in upr = [?2 0], it is by Proposition II1.8.2 in

[Mum99] enough to show that the set of singular points in V has codimension at
least two, i.e. it is enough show that the set of singular points in V' has dimension
six or less.

Now we want to use the above theorem to conclude that there are only finitely
many P’-orbits in [°2°] = up/. Now G’ is simple as an algebraic group and of
type Dy. Since char(k) > 5 is good for G of type Eg, it is also good for G’ of type
Dy. Then it is also very good for G/, since G’ is not of type A. The highest root
in ® is

o=azs+2a3+as+ag={121}.

Since P’ corresponds to the subset {aa, a4, ag} of simple roots, formula (4.3.13)
gives us that [(Up/) = 2. Hence Rohrle and Hille’s theorem above tells us, that
there are only finitely many P’-orbits in up:.

Let O denote the nilpotent G’-orbit in g’ with weighted Dynkin diagram
{191}, According to Corollary 6.1.4 in [CM93] the dimension of O is 16 — as
explained in Section 2.2.4 we are allowed to use the dimension results from char-
acteristic zero. Moreover Corollary 6.1.4 in [CM93] tells us that there are no nilpo-
tent G’-orbits in g’ of dimension 14 (remember that the dimension of an orbit is
always even). We want to conclude that V' contains no P’-orbit of dimension 7:

The main ingredient to prove this is the following result from [Kaw87]. Let H be
a connected, semi-simple, linear algebraic group over an algebraically closed field
of good characteristic. Let D C H be a one dimensional torus, and let A € X*(D)
be a generator for the character group of D. Then X induces a grading on the Lie
algebra of H, denoted b, defined by

bh(i,\) = {x € h|Ad(t)x = t.x = A(t)'z Vt € D}.
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Now let @ C G be the parabolic subgroup with Lie algebra

P, ).

i<0
Formula 3.1.8. in [Kaw87] states that
dim(Q.z) = 1 dim(H.z) for all z € h(—1,N). (4.3.14)

We will for contradiction assume that V' contains a P’-orbit of dimension 7, and
then use Kawanaka’s result to show that there must exist a G’-orbit of dimension
14. Since this is not the case, we have obtained a contradiction.

Now since the fundamental weight w3 is actually a root, we can define wy :
k* — T” to be its coroot. Let D be the image of wy. Then D is a one dimensional
torus with character group X*(D) ~ Z and a3 € X*(D) is a generator for this
group. As described before ag induces a grading of the Lie algebra g’ given by

§'(i,a3) = {z € g/|Ad(d)x = d.x = (a3(d))'z Vd € D}
={reg|wft)r = (a3(wy(t)) 'z =tz Vteck}.

Hence
gi,a5)= P ga= . Gao
acd®'u{0} aced’'U{0}
(a,my)=i a:ijz,sA,G njag,ny=i
and

LeP)=te( @  0)=-@dla). (4315
acd’ <0
azzj njo,m3<0

We have assumed for contradiction that we have a 7-dimensional P’-orbit con-
tained in V. By Corollary 4.4 we have V = P’.[1 9 1] and we may assume that
the P’-orbit is of the form P’.z for some z € [1{ !]. In the following we will find
an element b € B’ such that b.x € g’(—1, a3). Then we have P’.x = P'.(b.z), and
since b.z € g'(—1, a3) we can use Kawanaka’s result in (4.3.14) to conclude that

dim(G'.z) = 2dim(P".(b.x)) = 2dim(P".z) = 14

which is a contradiction.

Now we are going to find the above element b € B’. We use the same notation
as we used in the proof of Lemma 4.1. In particular we use the basis for g’ given
in (4.3.6) and the formula for the action of the root groups given in (4.3.7). This
time we do not care about the signs of the constants c?’ﬁ .

Remember that [! 9 1] is the span of the z,’s where « is one of the roots in
(4.3.11), and notice that

(191 =¢'(-1,a3) @ ¢'(~2,q3).
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The element z € [1 9 1] can be written

T = Z AaTs, With aq €k

agac[101]

where the sum is taken over all & € ® such that g, C [1{!] (i.e. where « is one
of the roots in (4.3.11)). If a_fi21) = 0, then = € g’(—1,a3) and we are done,
1

SO we may assume that
a 0.
{1317

Since g’'(2, a3) = kxi{ 121} is P’-stable, and P’.z is 7-dimensional, we have
1

x ¢ ¢'(2,a3). Hence at least one of the coefficients

Oy LY S0 S0}
is nonzero. Using (4.3.7) we get
Uy ()2 = Z aama—l—(ita_{l%1}+a_{1%1})$_{1%1}-

a:gaCg'(—1,a3)
(4.3.16)

Now assume that a_fi11y # 0. Then letting
1
a_g121
t =+ { 1 }
(1)
(with an appropriate sign) the last term in (4.3.16) vanishes and we get
a?{ 121 }
Uy (iil) xT = Z anTo € g'(—1,a3).
a?{ 111 } ) B
1 a:gaCg/(—1,03)

And since U_,, C B’ we are done.
If on the contrary we have a_ (111} = 0, then one of the three coefficients
1

oy Gty oo
is nonzero. By symmetry we may assume that a_fi1oy # 0. Then choosing
1

appropriate signs and using (4.3.7) again, we see that the coefficient to T_{121y
1

in

is zero, and hence the above element belongs to g'(—1, a3). Also U_,,U_,, C B,
so we are done. O
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4.3.2 The adjoint action of a root group on the root spaces

In this section we will prove Lemma 4.6 which we have used many times in Sec-
tion 4.3.3.

Let G be a connected, semi-simple linear algebraic group of rank [ with root
system @, and let Lie(G) be its Lie algebra. Let T be a maximal torus with Lie
algebra Lie(T'), and let ® be the root system of G with respect to T. For a € ®
let Lie(G)s be the root space with weight a, and let U, be the corresponding
root group, i.e. U, is the unique T-stable subgroup of G with Lie algebra Lie(G),.
We know that there exist admissible isomorphisms u, : k& — U,. An admissible
isomorphism u, : K — U, is unique up to a scalar factor, i.e. up to choosing a

basis for Lie(G),.
Lemma 4.6. There exists a basis
{zo|la € PYU{Ri =1,2,...,1}

for Lie(G), and there exist admissible isomorphisms u, : & — U, such that

Ad(ua(t))(@p) =25+ Y " tag0 foralltek (4.3.17)
i>1
B+iacd
o,

where ¢;"” are constants with &P = £(r + 1) where r > 0 is the greatest integer
satisfying that 3 — ra is a root. Furthermore z, € Lie(G), and h} € Lie(T).

Sketch of proof. Since every semi-simple linear algebraic group is isomorphic to a
Chevalley group (considered as an algebraic group), see [Ste68] p. 61, it is enough
to show the lemma for Chevalley groups.

We will use the notation and results about Chevalley groups in Section 2.2.2,
so G = G} with this notation. Remember that m : gz ®z &k — Lie(G) is an
isomorphism. By abuse of notation we will let 2, denote mx(zq ® 1) € Lie(G) for
a € ® and A} denote 7, (h}; ® 1) € Lie(G) for i = 1,2,...,1. Then

{zola € @y U{Ri=1,2,...,1}

is a basis for Lie(G). Let u, = T4 : k — U, be the admissible isomorphism. Then
dug : k — Lie(G)q, and it turns out that

To = TE(To @ 1) = dug(1). (4.3.18)

We will try to calculate Ad(uq(t))(zg) for all t € k. Therefore consider the com-
position

0 = Int(ua(t)) cug : k — G.

This is given by 0(u) = us (t)ug(u)(ua(t))~t. According to Chevalley’s commuta-
tor formula we have

a0 () () () =TT g )
ial-;-é%letb
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where the product is taken in some fixed order over the roots ia + j3 € ® and
where cioff € k are constants depending on «, 3 and the chosen ordering, but not
on ¢t and u. Now consider the z3’s as elements in gc. Then the zz’s are part of the
Chevalley basis, so we know that when o+ (3 is a root then ci’l equals the constant
N, g that satisfies [z, 28] = No gZa+s € gc. Hence c?lﬁ =+(r+1) where r > 0
is the largest integer such that 5 — ra is a root. Now we have a formula for 6(u)

0(u) = ta(t)ug(u) (ua(t) ™" = H tia o (¢ 1w Yup (u).
iaijpen

The differential d0 = Ad(ua(t)) o dug : k — Lie(G) can be calculated. For all
a,t € k we get

Ad(ua(t)(up(@) = db(a) = Y f{t'duasp(a) + dug(a)

i>1

ia+peD
= dug(a) + Z Cziﬁtidua+ﬁ(a).
i>1
B+iaed

Letting a = 1 in the this equation and using (4.3.18), we get

Ad(ua(®)(p) =25+ D ' wass
i>1
B+iaced
for all t € k, and we are done. O

Remark 4.7. Remember that the z,’s considered as elements in gc are part of a
Chevalley basis for gc. Hence it is possible to choose the z,’s such that the signs
of the N, g’s can be chosen by the process in [Sam69] p. 54.

Therefore we can choose the basis for Lie(G) and the admissible isomorphisms

as described in the lemma such that the signs of c?’ﬁ = N, can be chosen by
the process in [Sam69).

4.3.3 Using the Ds-case to show the general case

We will use the results from Section 4.3.1 in the Dy4-case to obtain similar results
in our original setup. First notice that

=3 ( P w)=we( B o)

acd—\d; aEd—\d;
Next remember the identifications
k[0F 0] =klzala € (@) \ @], Kk[?°F°?] =klzala € 27\ 2,].
This gives us an inclusion

i h[030) = k[20302]
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with i(xq) = x4 for all @ € (')~ \ @, or written differently

i(:C{al gi as ) ::C{Oal Zj az 0~
Now let V' C up, = [°2 9] be the component given by Lemma 4.1, and define

Wovx @ 50300 —un

a€EP—\P;

By Lemma 4.1 and Lemma 4.5 we know that V is a normal, irreducible, affine
subvariety of codimension one in [° 2 °]. Hence W is a normal, irreducible, affine
subvariety of codimension one in [20292] = up. Since I(V) = (f) C k[°29]
where f € k[?2°] is the element from Lemma 4.1, we see that the defining ideal
of W is given by

IW) = G(f) Sk[2°5°2].

If h € k[°3°] is T’-semistable with T"-weight {“* g2 **}, then i(h) is T-
semistable with T-weight { © 1 2223 01 Since f is P’-semistable with 7’-weight
23 = {232} by Lemma 4.1, the element i(f) is T-semistable with weight
{92220}, As in Lemma 4.3 and Corollary 4.4 it is possible to show that

PXB[21?12]—>P.[21(1)12]

is birational and that W = P.[21 91 2] In particular W is P-stable, and i(f) is
P-semistable with p.f = A(p)f where A = {02420} (since f was T-semistable
with this weight).

Since W is P-stable, it is certainly B-stable, hence we get a short exact sequence
of B-modules

00— k[20202] 2 s pr20202) ¥ 120202) /i(f)) — 0 (4.3.19)

where ¢(h) = hi(f) for h € k[2°2°2] and ¢ is the projection.
Also note that

and that

k[20%02]:@5n[20%02]*_

n>0

Since f € k[°2°] is homogeneous of degree four by Corollary 4.2, also i(f) €
k[29292]is homogeneous of degree four. In particular k[WW] is graded. Let k"[W]
denote the degree n graded piece.

Remember that {°2320} also denotes the one dimensional B-module with
weight {?24201}. Moreover remember that i(f) is homogeneous of degree four,
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and that the weight of i(f) is A = {924 2 0}. Therefore, investigating each degree
of the sequence in (4.3.19) we get the following exact sequence

0%5”74[20302]*(@{02%20} ¢ }Sn[20302]* ¥ k"[W] 0

(4.3.20)

for all n € Z. Here ¢(h @ a) = a-h -i(f) for all b € §74[20202]* 4nq all
ae {02420}

Using Theorem 3.1 three times gives

Hl(G/B Sn— 4[20202] ®{02420})
HH'?’(G/B Sn— 4[20202] ®{01410})

for all i € Z and all n € Z. By Example 3.15 we know that
H)(G/B,S"*[20202]" @ {01410}y =0 forall j>3.
Hence we have
HY(G/B,S"*[20202)"@{024201) =0 forall i>0. (4.3.21)

Now the long exact sequence in cohomology arising from (4.3.20) gives us the
following short exact sequence for all n € Z

0— HO(G/B, 5" [70302" @ {02420 })
— H'(G/B,S"[2°3°2]")
—H°(G/B,k"[W]) — 0

which is exactly (4.3.3).
In order to prove that As has normal closure, it now remains to show that the
inclusion

[21012]C p[21012] =)
of B-modules induces an isomorphism
HY(G/B,S"[*1912]") = H(G/B, k" [W))
for all n € Z, cf. the discussion on page 55. Remember the birational morphism
\I,:PXB[21?12]_)P.[21?12]:W

Let OPxB[ and

W respectively. Now W is clearly surjective and projective, and since W is normal,
Lemma II.14.5 in [Jan87] gives us that ¥ induces an isomorphism of sheaves

21012) and Oy denote the structure sheaves of P xZ [21012]

W*OPXB[Q 1 (1J 1 2] ~ Ow.
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Hence the two sets of global regular functions are isomorphic, i.e.
kW] = k[P <P [219 1 2]].
But by (2.1) the latter equals
HO(P/Ba @HZOSn [2 ! ? ! 2]*)7
and we get

H'(G/B,k[W]) = H'(G/B,H(P/B,®y>05" [*1 1 2]"))
= H'(G/P,H°(P/B,®,>0S™ [21 91 2]")). (4.3.22)

Take a look at the Grothendieck spectral sequence
Ey’ = H'(G/P,H'(P/B,®n>0S™ [21912]")).
We know that it abuts to
H'™(G/B, @&nz08" 2191 2]"),
But by Example 3.15 we see that
H)(P/B,@®p>0S™"[21912]")=0 forall j>0.

Hence E;J = 0 for j > 0, and the spectral sequence already collapses at the
Es-term. Therefore we get

H'(G/P,H(P/B,®n20S" [21012]")) = B;” = H*(G/B, ®n05" [2 191 2]")

for all i € Z. Combining this with (4.3.22) we get the desired isomorphism (in
(4.3.4))

HY(G/B,k[W]) = H(G/B,®,>0S"[21912]") forall icZ.

Now we have proved (4.3.3) and (4.3.4), and hence we have finally proved that
the closure of As is normal.
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4.4 The orbit A, + A;

A4 + Aj is the only nilpotent orbit of dimension 62 according to the table on p.
129 in [CM93], and the dimension of G.[?? 22 0] is also 62, cf. Richardson’s dense
orbit theorem, Theorem 1.3, hence

AT A =G.[00220],

We have proved that the closure of Ds(aq) is normal. We will use this to show
that also the closure of A4 + Ay is normal. In Step 1 in Section 4.2 we observed
that Ds(a1) = G.[°9320]. Consider the short exact sequence of B-modules (V'
is the cokernel)

0—[00220] ,[00220] ,y

Then V* is one dimensional with 7-weight {9900} and the Koszul resolution
of the dual sequence is

0— S"[00220]" g {00000}, gr[00220]* _, gn[00220]*
Taking the long exact sequence in cohomology and observing that
HY(S"[002201" @ {00000}y =0 forall i>0,n€Z (4.4.1)
by Example 3.15, we get a short exact sequence
0— H(S™[°0320) @ {00900}
— HO(S™[002207") — HO(S™[00220]") 0 (4.4.2)

for all n € Z. Now let z € [°°320] be a Richardson element. By Richardson’s
dense orbit theorem, Theorem 1.3, we get

Ga=G.[°°320) = Dy(ar)

and hence G.x = Ds(a1), and = belongs to the orbit Ds(a;). But for all elements
y in the orbit Dj(a;) we know that Zg(y) = Za(y)?, cf. the table on pp. 428-429
in [Car85], since we are allowed to us the characteristic zero result as described in
Section 2.2.4. Now Lemma 2.6 gives that

G xPlorazas) [00220] _, G [00220]
is birational. Since Ds(a1) = G.[??329] is normal this implies by Lemma 2.2
(and by (4.4.2)) that Ay + A; = G.[°°2320] is normal.
Note that Eric Sommers uses Proposition 3.3 three times and then Proposi-
tion 3.5 to get the vanishing in (4.4.1).
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4.5 The orbit D,

Step 1: The weighted Dynkin diagram of Dy is A = {90200} and since V(A\a) =
[00200] we have by Lemma 2.8

Dy=G.[00200]

Again we will use that Ds(a;) is normal. By Richardson’s dense orbit theorem,
Theorem 1.3, we know that G.[?© 29 2] has dimension 2(36 — 4) = 64 so it must

equal Ds(a;) or As, cf. the table p. 129 in [CM93]. But
D_4:G.[OO%OO] QG.[OO%OQ],
and Dy is not contained in As. Hence Ds(a;) = G.[00202].

Step 2: Look at the short exact sequence (V' is the cokernel)
0—[00200],[00202] ,y

V* has dimension two with T-weights

{00001} foo0011}
We take the Koszul resolution of the dual sequence and get the exact sequence
OHS”72[00302]*®/\2V* H5*7171[00%02]*(3‘/*
H571[00%02]* HSn[oogoo]*ﬂo
for all n € Z. In the following two steps we will show that

HY(S"2[002021" @ A2V*) =0 forall i>1,neZ
HY(S"1[002021" @ V*) =0 forall i>0,n¢Z.
For a moment we assume this. Then splitting the Koszul resolution into short

exact sequences, and taking long exact sequences in cohomology, we get the short
exact sequence

0— H'(Ker (57[°°302)" — 5" [00300]"))
— HO(S"[00302]") = HO(S™[70300]") 0,

Let z € [°9202] be a Richardson element. By Richardson’s dense orbit theorem,
Theorem 1.3, we have

m:G.[OO§02]:D5(a1)

and hence G.z = Ds(a1), and = belongs to the orbit Ds(a;). But we just observed
that for all elements y in the orbit Ds(a1) we have Zg(y) = Z(y)?, and Lemma 2.6
gives that

G xFPrat,an,04) [00202] G, [00202]
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is birational. Since Ds(a;) = G.[°°292] is normal, this implies that D, =
G.[909200] js normal by Lemma 2.2.

Step 3: We want to show that
H{(S"72[00202]" @ A2V*) =0 forall i>1,ncZ.

We know that A?V* is one dimensional with T-weight {°°912}. We will use
Proposition 3.3 with =4, m =3, o} = o; for i = 1,2,3,4 and I = (). Then

I+1-m=2, m'=2, L={o,o3,u}, I3={ai,a, a4},
and
({00812},04;/>=0 i=1,2,4, T=<{00812},O¢g>=—1,
and the proposition gives
Hi(Sn—2[00%02]*®{00812})
= H{(S"*[02902]"@{12222}) forall i,n€Z.

But Example 3.15 gives that the latter vanishes for ¢ > 1 and for all n € Z, and we
are done. Here Eric Sommers has to use Proposition 3.3 before he gets vanishing
by Proposition 3.5.

Step 4: We want to show that
HY(S"1[00202]" @ V*) =0 forall i>0,n¢cZ.
00202]
P

Since | is a P,,-representation and ({®°J%1} ay) = —1, we have by

Theorem 3.1

HY(S"1[00202)" @ V*) = Hi(S""1[00202]"  {00011Y) forall i,ncZ.

Consider the short exact sequence of B-modules (W is the cokernel)
0—[00202] ,[00222] ) .

Then W* is one dimensional with T-weight {310}, Taking the Koszul resolu-
tion of the dual sequence and tensoring with {99311} we get the short exact
sequence

OHS”_1[00§22]*®{00821}HS"[00§22]*®{00811}
HS”[OO%OQ]*(X){OOgll}—)O_
Using Example 3.15 we have

HY(S"[00222]" @ {00011y =0 forall i>0,n¢€Z. (4.5.1)
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Proposition 3.3 with [ =3, m =3, af = «a; for i = 1,2,3 and I' = () gives
Hi(Sn—1[00%22]*®{00821})
= H(S"?[20922]"®{22221}) forall i,n€Z. (4.5.2)
Using Example 3.15 we see that the latter vanish for all 7 > 1 and all n € Z. Hence
HY(S™[00202]1" @ {00011}y =0 forall i>0,n€Z,

and we are done.

Eric Sommers uses Proposition 3.3 three times more and then Proposition 3.5
before he obtains the vanishing in (4.5.1). Similarly he gets the desired vanishing
of (4.5.2).
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4.6 The orbit Dy(a,)

By Richardson’s Dense Orbit Theorem, Theorem 1.3, we know that G.[09300]
has dimension 58, and the only orbit of dimension 58 is Dy(aq), cf. the table p.
129 in [CM93], hence

D4(CI,1)=G.[OO(Q)OO]. (461)

In the last section we observed that Dy = G.[?9200] is normal. We study the
following short exact sequence (V' is the cokernel)

0—[00200] 00200,y 0

where V* is one dimensional with T-weight {9° 900} The Koszul resolution of
the dual sequence is

0— S"1[00200]* (00000} _, gn[00200]* _, gn[00200]*
But
HY(S""1[00200]" @ {00000}y =0 forall i>0,n€Z
by Example 3.15, so we have the short exact sequence
0— HO(S" 120300 0 {20900
— HO(S™[00300)%) — HO(S"[°*0]") =0

for all n € Z. Remember that the weighted Dynkin diagram of D, is A =
{00200} Then V(Aa) =[?92090] and by Corollary 2.9 the morphism

G xPRa)[00200] , G [00200] =T,

is birational. Since D, is normal, this implies by Lemma 2.2 that Dy(a;) =
G.[00200] is normal.
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4.7 The orbit 245 + A,

Now we will prove that 245 + A; has normal closure by using the normality of the
closure of Dy(aq).

Step 1: The weighted Dynkind diagram of Dy(ay) is A’ = {90200} and by
Lemma 2.8

Di(ar) = G.V(Aa) = G.[00200].

Let P = P(Aa+) . Then P is the standard parabolic subgroup containing B corre-
sponding to the subset {a1, a9, a4, a5, ag} of simple roots. The morphism

ﬁszP[oogoo]_,G[oogoo]

is birational by Corollary 2.9.
Assume we can find a closed B-stable subspace U C
002
0

245+ Ay = G.U, and such that the inclusion U C [00
tion

002007 such that

[
00] mduces a surjec-

HO(G/B,S™[00200)") - HY(G/B,S"U*) — 0

Then since Dy(ar) = G.[?2200] is normal, and since p is birational, Lemma 2.2
gives us that G.U = 245 + A; is normal.

Step 2: In this step we define U from above, and see that G.U = 245 + A;.
Since the weighted Dynkin diagram of 245 + A; is A = {1091} we know
by Lemma 2.8 that

24, + A1 = G.V(Aa) = G.[10101],

Define U’ to be the direct sum of the root spaces in |
spaces g, and gg where

a:{—1—1—0100} and ﬁ:{oo—o1—1—1}_

L1010 1] except the two root

Then U’ is B-stable and we have the short exact sequence of B-modules (W is the
cokernel)

0—-U —[1001] W —0
where W* is two dimensional with T-weights
{11300} and {00)11}. (4.7.1)

Taking the Koszul resolution of the dual sequence, we get for all n € Z the exact
seqeuence

0— S™— 2[10101] R MNW* — S~ 1[10101] QW*
—>S"[10101] S"(U’)*—>O
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Note that [*© §01]is Py, o, aq)-stable. Since the weight of AZW* is {11211},
and since ({11211} oY) = —1, we have by Theorem 3.1 that

HY(G/B,S" 2[00 @ A’W*) =0 forall i,né€Z.

We can filter W* by B-submodules such that the quotients are one dimensional
with weights equal to the weights of W*, i.e. the weights in (4.7.1). Since these
weights satisfies ({1190} ay) = -1 and ({°%} 11}, a)) = —1, we therefore
have by Theorem 3.1

HY(G/B,S™ [0 01" @W*) =0 forall i,ncZ.

Splitting the Koszul resolution into short exact sequences and taking long exact
sequences in cohomology we therefore have

HY(G/B,S™['°{°Y") = HY(G/B,S™(U")*) forall i,n€Z.
By Lemma 2.1 we see that
LT A =G [0 =aU,
Now let
U=U"®go Cu, where a={0"1-7-101

and notice that U is B-stable. Taking the Koszul resolution of the dual of the short
exact sequence of the inclusion U’ C U of B-modules we get the exact sequence

0— S" U @{01110} — S"U* — S"(U')* — 0

Actually U is Ppq,3-stable, and since ({°1{1°} ay) = —1 we have by Theo-
rem 3.1 that

HY(G/B,S"U*) = H(G/B,S™(U")*) forall i,n¢cZ.
Hence
24, + A =G.U =GU
again by Lemma 2.1

Step 3: Now look at the short exact sequence of B-modules
0-U—[00200] 5V >0 (4.7.2)

where V' is the cokernel. Then V* is of dimension nine with the following T-weights

{00600}, {01600}, {OO%OO}, {00(1)10}7 {11100}

(4.7.3)
{01%00}’ {01610}’ {00%10}’ {00611}_
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The Koszul resolution of the dual sequence in (4.7.2) is
0— §nTIL[00200)" g ALLY* ..., gn=1[00200]* g /*
— §M[00200)F  §PU* -0
Our goal is to show that if j =1,2,...,8, j # 6, then
HY(G/B,S"7[002001" @ ANJV*) =0 forall i,n € Z, (4.7.4)
and to show that

HY(G/B.S" [0 0300]" @ A°V") = H'(G/B, 5" O [00300] 0 {122 1))
(4.7.5)

for all i,n € Z. Before we are going to prove this, we will show why it is enough
to prove the normality of the closure of 245 + A;.
Let 7, denote the map

gn[00200)* T, g+ (4.7.6)

from the Koszul resolution. Let K,, = Ker 7,. Now we split the Koszul resolution
into short exact sequences, take long exact sequences in cohomology and use (4.7.4)
and (4.7.5). This gives rise to a long exact sequence

. H™T(G/B,S"0[00200]" g A%V*)
— H™5(G/B,S"6[00200]" @ {12621} (4.7.7)
— H(G/B,K,) — HT(G/B,S"2[00200]" g A%V*) —
But
H*5(G/B,S"=6[00200]* g {12621})
— HY(G/B.S"O [P0 @ {24442))

by Theorem 3.1 used five times, and by Example 3.15 the latter vanishes for all
i >0 and all n € Z. Also

HH_?(G/B Sn— 9[00200] R A V)
HH—?(G/B Sn 9[00200] ®{14941}
—H’(G/B gn— 9[00200] ®{36963}

by Theorem 3.1 used seven times, and again the latter vanishes for all + > 0 and
all n € Z by Example 3.15. But then we get from (4.7.7) that

HY(G/B,K,)=0 forall incZ,
and thus we have the desired surjection
0 — H%G/B,Ker m,) — H*(G/B,S™[°°200]") — H°(G/B,S"U*) — 0
induced from (4.7.6).



4.7. The orbit 2A5 + Ay 79

4.7.1 The easy terms in the Koszul resolution

For j # 1,2,4,5,7,8 it is easy to prove (4.7.4). We simply filter A/V* by B-
submodules such that the quotients are one dimensional with the same weights as
in AJV*. Then it is enough to show that for all the weights, ), in A7V* we have

HY(G/B,§" 7 [00200]" @ \)=0 forall i,ncZ. (4.7.8)

Remembering that [9?290] = up is the unipotent radical of the parabolic sub-
group P (from page 76), we can prove (4.7.8) by using Theorem 3.1 — sometimes
several times for each weight . This is very easy calculations, but since we have
to check this for so many weights, we have constructed a computer program that
can do the calculations for us, see Appendix A, Section A.3.

4.7.2 The seventh term in the Koszul resolution

In this section we will prove (4.7.4) for j = 3, i.e. we will prove that
HY(G/B,S™3[002001" @ A*V*) =0 forall i,n€Z. (4.7.9)
Look at the Grothendieck spectral sequence
By = H'(G/PH(P[B.S™*(0030°) & AV,
We know it abuts to
H(G/B,S"3[00200]" g A3Y™),

If we can show that

HI(P/B,S"3[002001" @ A3V*) =0 forall je€Z,

then E;] = 0 for all ¢ and j and hence it already collapses at the Fs-term and
(4.7.9) is satisfied.
Since [00300]

identity

= up, it is a P-module, and we have by the generalized tensor

(P/BS" 3[00200] ®/\V) Sn— 3[00200] ®HJ(P/B/\V)
So it is enough to show that
HI(P/B,N*V*) =0 forall je€Z. (4.7.10)

We will do this by restricting even more.

Let L denote the Levi subgroup of P containing T'. Let L' = (L, L). Then L’
is semi-simple with Borel group B’ = BN L’ and maximal torus 7/ = (T'N L")°.
Since H/(P/B, \3V*) equals H?(P/B, \*V*)|L as vectorspaces, it is enough to
show that the latter vanishes for all j € Z. But according to Remark 1.6.13 in
[Jan87] we have

HI(P/B,\N*V*)|p, = H(L'/B', (N*V*)| /). (4.7.11)
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Remember that P = P; where I = {1, a9, a4, a5, a6}. Now L’ is connected
and semi-simple with rootsystem As x As x A;. But since G is simply connected,
also L’ is simply connected, cf. Exercise 6, Section 8.4.6 in [Spr98]. Hence L' is
isomorphic to SL3g x SL3 x SLo by the isomorphism theorem of algebraic groups,
see e.g. Theorem 9.6.2 in [Spr98].

For ¢ = 2,3 let B; denote a Borel subgroup in SL;, and let T; C B; be a
maximal torus in SL;. Now we identify L’ with SL3 x SL3 x SLsy in such a way
that B’ is identified with B3 x Bs x Bs, and T is identified with T3 x T35 x T5.
Moreover we may asume that the fundamental weights w1, ws are identified with
the fundamental weights of the first SLs-factor, the fundamental weights wy, ws
are identified with the fundamental weights of the second SLs-factor, and wg is
identified with the fundamental weight of the SLy-factor.

Let Vssffii denote the standard SL;-module for ¢ = 2, 3, and let V'’ be the SL3 x
SLs x SLy-module V54 ® V54 ® Vg4 where the first SLs-factor acts on the first
Vdgrtstd_factor ete. We will show that (V|p/)* is the B’-submodule of V” given by
the direct sum of the weight spaces corresponding to the T’-weights

—Wy — W4 — W, —W1+ W2 — W4— Wg, —W2— W4+ We,
—wy + Wy — W5 — Wg, W1 — W4 — W, —W1+ W2 — Wy + We,
—wi + w2 + Wy — W5 — W, —W2+ Wy — W5+ Wg, —W2+ Ws— Ws.

(4.7.12)

Once we have proved this, Lemma 4.8 (which we will state and prove later) gives
us that HY(L'/B', (A3V*)|p/) = 0 for all i € Z.

Let Z be the direct sum of the rootspaces corresponding to the roots where
the coefficient to ag is —1, i.e.

Z= b G

acd™
—\6 s [
O‘—Zj:1 njaj,mz=—1

Then Z is clearly L'-stable, and Z C [©0200] Remember our short exact se-
quence of B-modules, cf. (4.7.2),

0-U—[20300] 5V -0

Considering this sequence as a sequence of B’-modules, we have the commutative
diagram of B’-modules

0 ZNU Z 1% 0
IN N
0 U [00300] 4y — 0

where V is the cokernel of the first row. Notice that it is also a diagram of T-
modules. Since the two rows are exact, we get an injective map of B’-modules and
T-modules from V to V. But since

dimV =9 and dim(V)=dimZ -dim(ZnNU) =9,
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it must be an isomorphism, and therefore V and V are isomorphic as B’- and

T-modules. Hence we have V*|g ~ (V)* C Z*.
Now we are going to show that Z* is actually isomorphic to Vi @ Vi @ Vitd

and that (V)* is the B’-subrepresentation with weights as in (4.7.12).
The T-weights of Z* are (written as usual in the basis of the simple roots)

{00500}, {P1FO0}, {00100}, {00310}, {01100} {rifoo,
{01(1)10}, {00(1)11}, {00%10}, {11(1)10}, {01511}, {01%10},
{11%00}, {00%11}, {11(1)11}, {11%10}, {01%11}, {11%11}_

and hence the T"-weights of Z* are the weights in (4.7.12) together with the
following weights

w1 + w4y — ws — wg, —wW1+ we+ w5 —w, —wWi+ w2+ w4 — w5+ ws,
w1 — w4 +wWs, —wW2t+ws+ws, w1+ wWs—ws, Wi+ w4 W5+ We,

7@14’@24’@54’@6, W1+W5+w6.

Now let ki, tws+ws denote the one dimensional B’-module with T’-weight
w1 + w5 + wg. Then the projection map

Z" = ke 4ot
is a map of B’-modules. By Fronbenius reciprocity we have
Homp: (Z*, ko, +wstows) =~ Homp (Z%, HO(L' /B’ ke 45 06 )
and hence we get a nonzero map of L’-modules
¢:Z* — HY L' /B kw15 +0g) (4.7.13)
Now

HY(L')B' ke, +ws+w) = H(SL3 x SL3 x SLa /B3 x B3 X Ba, ke, +ws+)
= H(SL3/B3 x SL3/Bs x SLa/Ba, ke, @ ks @ ko)

Since wy € X*(T3), ws € X*(T3) and we € X*(T3) are dominant we know that

H'(SL3/B3,kw,) =0 for i>0,
H'(SL3/B3,kw,) =0 for i>0,
H'(SLy/Bg, k) =0 for i>0,

according to Kempf’s vanishing theorem (Proposition I114.5 in [Jan87]). Hence we
have by the Kiinneth fomula that

HY(SL3/B3 x SL3/ B3 x SLa/Ba, ke, @ ks @ k)
= H°(SL3/B3, ke, ) ® H(SL3/Bs, kw,) @ H°(SLy/Ba, kw,)
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We want to show that this module is irreducible and isomorphic to the module
V' = V5 @ Vi @ Vi, To prove this we need to use a corollary to the Borel-
Bott-Weil theorem, but in order to use this corollary we need a bit of notation.

For ¢ =2,3let <I>;-" denote the set of positive roots in X*(7;), and let p; denote
half the sum of the positive roots, i.e. p; = %Zaebj «. For ¢ = 2,3 define

azﬂ' = {)\ S X*(Tl)|0 < ()\ + pi,ﬁv> for all g € (I);r}
if char(k) = 0, and
azﬂ' = {)\ (S X*(Tl)|0 < ()\ + pi,ﬁv> <p for all ﬁ S (I)j_}

if char(k) =p > 0.

Now w; € Cz3, and @ is dominant. Therefore the module H°(SL3/Bs, ke, )
is an irreducible SLo-module with highest weight @ by Corollary I1.5.6 in [Jan87],
and H°(SL3/Bs, ks, ) is the standard SLs-representation V9. Similarly

H°(SL3/Bs, kwy) = V§iY  and  H°(SLa/Bs, kwy) = V&4, (4.7.14)
and these modules are irreducible. Therefore
H°(SL3/Bs x SLg/Bs X SLa/Ba, ke, © keoy @ ki) = V{5 @ V3T @ V(S = V7,

and this module is irreducible. Hence the map ¢ from (4.7.13) must be surjective
since it is nonzero. But dim Z* = 18 and

dim(V§d @ V§d @ V§id) =3-3.2 =18

and hence ¢ is an isomorphism and Z* is isomorphic to V' = Vssﬁg ® Vssﬁfj ® Vssﬁg.

We have seen that V*|p, ~ (V)* is a B’-submodule of Z*, and it is easy to see

from (4.7.3) that the T"-weights of (V)* are the ones listed in (4.7.12).
Now we are ready to apply Lemma 4.8. We get

H(L'/B',(AN3V*)|p/) = H’(SL3 x SL3 x SLy/Bs x B3 x By, A*(V)*) =0

for all j € Z, and by (4.7.11) we have proved (4.7.10) and hence (4.7.9) which was
the goal of this section. Now it only remains to prove the following lemma.

Lemma 4.8. Let G = SL3 x SL3 x SLg, let B = B3 x B3 X By be a Borel
subgroup in G, and let T'= T3 x T3 x T5 be a maximal torus contained in B. Let
wi, t = 1,2,4,5,6 be the fundamental weights as described on page 80.

Let U be the G-module V{9 © V5l? @ V§ie, and let U’ be the B-submodule of
U given by the T-weights in (4.7.12). Then

HI(G/B,A*U") =0 forall j€Z

Proof. We will compute H7(G /B, \*U’) by making a filtration of A3U’ with B-
modules and computing the cohomology groups of the quotients in the filtration.

Remember that the T-weights of U’ are the ones written down in (4.7.12). In
the next diagram we will write the coefficients of these weights in the ordered basis
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(w1, e, wa, ws, we). Here the arrows indicate how the root groups U_,, C B acts
on U’.

As A6 A7 Ag Ag
Il Il Il Il Il
(1,0,-1,0,-1) (-1,1,-1,0,1) (-1,1,1,-1,-1) (0,-1,1,-1,1) (0,-1,0,1,-1)

Uay Ufag U_aq U_ay U—ay U_ay Ufag Ufa‘r)

A2 Ag Agq

Il Il Il

(-1,1,-1,0,-1) (0,-1,-1,0,1) (0,-1,1,-1,-1)
U_aq Ufag, U_ay
Al

I
(0,-1,-1,0,-1)

(4.7.15)
Let v; € U’ be a nonzero weight vector in U’ of weight \;, and let
Vs,tu = Us AUy AUy € AU,
Then
{Vspull <s<t<u<9}
is a basis for A3U’. Also define
Astu=As A+, for 1<s<t<u<y.

Then the weight of vs ¢, is exactly As ¢ .. We say that vy, is of the form [a, b, ¢]
where a,b,c € {1,2,3}, if A can be found in row number a (counted from below)
in diagram (4.7.15), and if A; can be found in row b, and A, in row c. For example
v1.8,9 is of the form [1,3, 3].

Now we are ready to describe the filtration 0 = Vo C V; C --- C A3U’ of
B-submodules of A3U’. Define

Vo=0,Vi=kvipoz, Vo=Vi®kviga, Va=Vo@kviza, Va=Vs3Dkvasza.

Then the quotients Q; = V;/V;_1, 1 = 1,2,3,4 are one dimensional with T-weights
w; that satisfies (u;, ay,) = —1 for m =1,2,4,5 or 6. Hence H'(G/B,Q;) = 0 for
all j € Z by Theorem 3.1. Remark that there are only 14 v, ; ,,’s with weight Ag ;.
which do not satisfy (As ¢, q,,) = —1 for m =1,2,4,5 or 6. They are

m

V1,2,5, U1,4,9, V1,59, U348, V236, V24,7, V259,
(4.7.16)
V45,7, V4,59, V279, U356, V389, Us78, U579

Let

Vs =Vi®kvias, Ve=Vs®kviag.
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Now we construct the next parts of the filtration such that the quotients are
one dimensional with weights of the form [1,2,3]. All weights of this form occur
however we omit the two weights A1 2 5 and Aq 4,9 (since we allready have quotients
with these weigths). All these quotients have vanishing cohomology by Theorem 3.1
since they are not in the list (4.7.16).

The next B-modules in the filtrations are chosen such that the quotients are
one dimensional with weights of the form [2,2,3]. Again all weights of this form
occur except the three weights A2 47, X236 and A3 4,3. Again these quotients have
vanishing cohomology by Theorem 3.1.

Now we take B-modules with quotients of dimension one with all the weights
of the form [1,3,3] except A1 59. These quotients have vanishing cohomology by
the same argument.

Let Vv be the last B-module we constructed, and define the B-modules

Vi1 = VN ® kvs 5.6 @ kva 3z, VNi2 = Vg1 @ kva79 @ kvgar,
Vnis = Vio ® kvs g o @ kvsas, VNta = Vi ® kviso @ kvasg.

The next B-modules in the filtration are again constructed such that the quo-
tients are one dimensional with all the weights of the form [2, 3, 3] except A3 5.6,
A2.7.9, A3,8.9 and except Ay 57 and Ay 59. Again all these quotients have vanishing
cohomology by Theorem 3.1.

Let again Vs be the last module constructed, and define

Vi1 =V @ kvasz, Vimgo = Vg1 © kvasg @ kvs 7o

Vs = Vg g7 g

Now the next modules in the filtration are again one dimensional with all the
weights of the form [3, 3, 3] omitting the weights A5 7,9 and Ag 7,s. This finishes the
filtration of A3U".

Let Q; = Vi/Vi—1 denote the quotients of the filtration. The only quotients
with non vanishing cohomology are Qs, Q6, @N+1, @N+2, @N+3, QN+a;, Qrrt1,
Q42 and Qpry3. We will study these quotients a bit.

Note that Qn+1, @nt2, QN+3, @n+a and Q4o are two dimensional. The
two weights of Qn+1 are A356 = {12390} and Aa36 = {92399}, Note that
)\3,5,6 =] + )\273,6, and that

(Aos6 0f) = ({°23°°},af) = -2,
Hence Lemme 1 in [Dem77] gives that
HI(G/B,Qn+1) =0 forall jeZ.

Similarly Qn+2, @N+3, @n+4 and Qar42 have vanishing cohomology.

We will use the Borel-Bott-Weil Theorem to show that @5, Q¢, Qar4+1 and
@ ar+3 has only one non vanishing cohomology group which is either in degree two
or three. Remember that ()5 is one dimensional with weight

)\1,275 = —3@4 — SWG
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Hence
H](G/Ba Q5) = HJ(G/Ba k73w4173w6)

_ (4.7.17)
= HJ(SLg/Bg X SLg/Bg X SLQ/BQ, ko ® k,3w4 X kfgwﬁ)

To calculate this cohomology group we will use the Kiinneth formula, so we need
to compute

HI(SL3/Bs, ko), H?(SL3/Bs,k_,), and H’(SLy/Bo,k_3m).

First notice that 0 € X*(T3) is dominant, so according to Kempf’s vanishing
theorem (Proposition I1.4.5 in [Jan87]) we have

HI(SL3/Bs, ko) =0 for j>0.

Also notice that kg is the one dimensional Bs-module with T5-weight 0. Hence kg
is the one dimensional trivial Bs-module, and therefore H°(SL3/Bs, ko) is the one
dimensional trivial SLz-module which we will denote k. With this notation

k for j=0

Hj(SL3/B3,k0):{O for j#£0

Remember the “dot” action defined in (1.1), and notice that sa;Sa, * (—3w4) =0
and that 0 € Cz 3 is dominant (C'z 3 is defined on page 82). By the Borel-Bott-Weil
theorem (Corollary I1.5.5 in [Jan87]) we therefore know that

HO(SL3/B3,I{/’0) =k for _j =2

HY(SL3/Bs, k_30,) =
(3/33){0 for j 2

Since sq, + (—3we) = ws, and since wg € C7,2 is dominant, we get by the Borel-
Bott-Weil theorem

H%(SLy/Ba, kwy) = szg for j=1

HI(SLy/Bsy, k_3.) =
( 2/ 2 3 6) {0 fOI’ .7751

where we remember that H%(SLa/Bg, ko) = VEid, cf. (4.7.14). Let W denote
G-representation k® k® Vssﬁg where the first SLs-factor acts on the first £ trivially
etc. Also notice that W is an irreducible G-representation — we will need it later.

Using all these cohomology results we get by the Kiinneth formula applied to
(4.7.17)

. W f =3
H'(G/B,Qs) = o (4.7.18)
0 for j#3
Similarly we can calculate that
. W for j=3
HY(G/B, Qs) = !
0 for j#3
(4.7.19)

W for j=2

Hj(g/B’QMH):Hj(G/B,QMJrs):{0 for j#2
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Since all the quotients in the filtration of A3U’ only has non vanishing cohomology
groups in degree two and three the same must be true for A3U, i.e.

HI(G/B,N3U') =0 when j#2,3. (4.7.20)

Now we need to prove that H*(G/B, A3U’) = 0 and H*(G/B, A3U") = 0. Consider
the short exact sequence of B-modules

0—-U —-U—-U/U -0
and the corresponding Koszul resolution with five terms
0= AU - ANU'®@U - U ®85°U— S°U— S*(U/U)—0
Again we notice that
HY(G/B,AN*U')=0 forall icN
HY(G/B,U')=0 foral ieN

by Theorem 3.1 just as we proved (4.7.4) for j = 1,2, cf. Section 4.7.1. Since U is
a G-representation this implies by the generalized tensor identity that

HY (G/B,N°U' ®@U)=0 forall i€N
HY (G/B,U' ®S?U)=0 forall ieN
and therefore
H?*(G/B, N*U") = Ker (H°(G/B, S*U) — H°(G/B,S*(U/U")))

But again since U is a G-representation we have H°(G/B, S3U) = S3U and we
see that H?(G/B,A\3U’) is a G-submodule in S3U. We will use this to show that
HI(G/B,N3U") =0 for j = 2,3.

Remember our filtration 0 = Vy C V; C --- C ASU’. This gives us the following
short exact sequences

0=Viei—=Vi—=Q —0

Remember that for [ # 5,6, M + 1, M + 3 we have H'(G/B,Q,;) = 0 for all j € N.
Hence taking long exact sequences in cohomology corresponding to these short
exact sequences and using the results about the cohomology groups H?(G/B, Q)
for il =5,6,M + 1, M + 3 in (4.7.18) and (4.7.19), we get three exact sequences

0—W — H*(G/B,Vy) = W — 0

0 — H*(G/B, Vi) — W — H*(G/B,Va) — H*(G/B,Varsa) — 0
and
0 — H*(G/B,Vari2) —H?*(G/B, N*U")
— W — H*(G/B,Vay2) — H*(G/B,N*U") — 0
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Remember that H*(G/B,\3U") C S3U is a G-submodule. We will show that
W is not a submodule of S3U. For a moment assume this. Then we are ready to
show that H'(G/B,A\3U") = 0 for all i € N.

Since W is irreducible, we get that

H*(G/B,Vary2) =W or H*G/B,Vas2) =0

by the second short exact sequence. If H2(G/B,Vy12) = W, then by the third
exact sequence W is a submodule of H?(G/B, A3U’) which is a submodule of S3U
and we have reached a contradiction. Therefore H*(G/B, Va42) = 0.

But then by the third exact sequence H?(G/B,A\3U’) is a submodule of W.
Again W is irreducible so either

H*(G/B,N*U"Y=W or H?*(G/B,N*U")=0

But since W is not a submodule of S2U by assumption, and since H?(G /B, A3U")
is a submodule of S?U, we are in the case where H?(G/B, N\3U’) = 0.

Now the dimension of W is two, and hence H3(G/B, Vi) has dimension four
according to the first short exact sequence. But then the second short exact se-
quence gives that the dimension of H?(G/B,Vi42) is two, and the third exact
sequence shows that H?(G/B,A\3U’) = 0. Now we have proved the lemma under
the assumption that W is not a submodule of S3U.

In order to show that W is not a G-submodule of S3U we will prove that
S3U has a good filtration, i.e. a filtration with quotients of the form H°(G/B, ky)
with A € X*(T") dominant. We will also find the quotients in a good filtration
(remember that the quotients are independent of the actual filtration).

Remember that U = V{4 @ V§id @ Vi, Using the earlier methods to compute
cohomology — remember for example how we computed H?(G/B,Q5) — we see
that

U = H°(SL3/B3, ke,) ® H°(SL3/B3, ke, ) ® H°(SLy/Ba, ke, )
= HO(G/B’ kw1+w5+w6)'

But w; + w5 + wg is dominant, and therefore U is itself a good filtration of U.
But then U ® U also admits a good filtration, cf. Proposition 11.4.19 in [Jan87].
Now S3U is a quotient of U ® U, and we have a spitting

SU—-U®U
given by

[1®f2® far & Z Jo(1) ® fo2) @ fo3)

og€S3

where S3 is the symmetric group on three letters. Thus S3U is a direct summand
of U ® U, and it has a good filtration, cf. Proposition 11.4.16 in [Jan87].
We can compute that

W=keka Vil =H(G/B, ky,).
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Now notice that wg is dominant. Hence, in order to show that W is not a sub-
module of S3U, it is enough to observe that H°(G/B, ky,) does not occur as a
quotient in a good filtration of S3U. Now we will find these quotients.

Let A1, ..., A\ € X*(T) be dominant weights such that the quotients in a good
filtration of S3U are of the form H°(G/B, ky,). Then

SU ~ P H(G/B, k»,)

i=1

as T-representations. We want to find the \;’s.

We know all the weights of S3U counted with multiplicities. The weight 3w, +
3ws + 3we is a highest weight of S3U, and hence one of the \;’s must be equal to
3w + 3ws + 3wg. By reordering the \;’s we may assume that \,,, = 3w + 3ws +
3wg. Now

m—1
SPU/H"(G/B, ksw, 435 13w) =~ D) H°(G/B, k»,) (4.7.21)
i=1

as T-representations.

There are many ways to find the weights of HY(G/B, k3w, +3ws+3w,) counted
with multiplicities. One can for example use Kostant’s multiplicity formula (see e.g.
Theorem 24.2 in [Hum?78]), and one can reduce to the S Lz- or SLa-case by Kempf’s
vanishing theorem and the Kiinneth formula as described in the calculation of
H’(G/B,Qs). Hence we can find the weights of

SBU/HO(G/Ba k3W1+3W5+3w6)-

We see that wy + ws + w4 + w5 + 3w is a highest weight of this module, and by
(4.7.21) we may assume that \,,_1 = @1 + w2 + w4 + w5 + 3ws.

Continuing this way we can find all the A;’s and hence the quotients in a good
filtration of S2U. They are

O(G/Bv k’3W1+3W5+3w6)7 HO(G/Ba kw1+w2+w4+w5+3we)v

HO(G/Bak/BWG)a HO(G/Bak3W1+W4+W5+WG)7

O(G/Bv kw1+w2+3w5+we)a HO(G/Ba kw1+w2+w4+w5+w6)'

But W = H°(G/B,ky,) is not one of these modules, and hence W is not a
submodule of S3U. O

4.7.3 The fourth term in the Koszul resolution

In this section we will prove (4.7.5), i.e. we will prove that

(G/B qn— 6[00200] RN V) Hl(G/B qn— 6[00200] ®{12621})
(4722)

for all i € Z and all n € Z. We will do this using the same method as in the last
section, but with a little twist.
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Let Q be the B-submodule of ASV* corresponding to the T-weights A of A6V *
that satisfies (A, ) € {—4,—6}. Then we have a short exact sequence of B-
modules

0— Sn— 6[00200] ®Q — S"™ 6[00200] R NOV*
— SnTO[00Z00 @ (AVH/Q) = 0
The idea is to show that

(G/BS" 6[00200] ®Q) Hl(G/BSn 6[ ] {12621})
(4723)

for all 7 € Z, and to show that
HY(G/B,S"6[002001" @ (A°V*/Q)) =0 (4.7.24)

for all 7 € Z.

It is easiest to show (4.7.23). As in the last section we can filter @ with B-
modules 0 C Vo C V4 C ... C Vy = @ with quotients Qs = Vi /Vi_1 such that all
the quotients except one (call it Q,) satisfies

Hj(P/BaQs) =

for all j € Z. This vanishing is obtained by observing that either Q4 can be chosen
to be one dimensional with vanishing cohomology by Theorem 3.1, or to be two
dimensional with vanishing cohomology by Lemme 1 in [Dem77]. We can make
the filtration such that @, is one dimensional with T-weight {12 ¢ 21}, Take a
look at the Grothendick spectral sequence

Ey’(Qs) = H'(G/P,H(P/B,5"°[° 30" © Q,)).
We know it abuts to
H“”(G/B qn— 6[00200] @ Q).
The generalized tensor identity gives that
HI(P/B,S" [0030°] ©Q.) = "~ [0 030 )" & HI(P/B,Qu).

Since Hi(P/B,Q,) = 0 for all j € Z when s # s, we know that E47(Q,) = 0 for
all 7 and j. Hence

HY(G/B,S"6[00200]" @ Q) = (4.7.25)

for all i € Z and all s # sg. This implies the desired equation (4.7.23).
Section 4.7.2 was devoted to show that

(G/B qn— 3[00200] RN V)

for all i € Z and all n € Z. We will use the same method to show (4.7.24), but
since Section 4.7.2 is quite long we will not include all details this time. We will
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use the same notation as in Section 4.7.2. Again we restrict to L’ = (L, L) ~
SL3 x SL3 x SLo and observe that it is enough to show that

HI(L')B',(\°V*/Q)|p)) =0 (4.7.26)
for all j € N in order to prove (4.7.24). Let Q' = Q|p/. Again we show the
vanishing result by showing the following Lemma.

Lemma 4.9. Let G = SL3 x SL3 x SLo, let B = B3 x B3 x By be a Borel subgroup
in G, and let T' = T3 x T3 x T be a maximal torus of G contained in B. Let U be the
G-module Vi @ V§id@gd | and let U’ be the B-module described in Lemma 4.8.
Furthermore let @’ denote the B-submodule of ASU’ arising as above. Then

HI(G/B,(A\°U")/Q") =0 forall jcZ.

Proof. Again we proceed by making a filtration of ASU’/Q’ with B-submodules.
This time we find a filtration

0=Uy CU CU; C...C Uy = NU"/Q

with quotients P, = U;/U;—1. Now we can find i1 < ia < i3 < 44 such that if
i #i1,...,i4, then

HI(G/B,P;) =0

for all j € Z. Again this result is obtained by using Theorem 3.1 and Lemme 1 in
[Dem77]. Now the P;;’s are one dimensional with T-weight \;; where

/\il = —3w; — 3ws — 2ws, )\z‘2 = —3w; — 2wy — 2ws,

Ais = —2w; + w2 — 2wy — 2ws, >\1‘4 = —3w; + wy — 2w5 — 2ws.

Let k denote the trivial G-representation. Again one can calculate that
k for j=5
0 for j#5

k for j=4
0 for j#4

H'(G/B,P,) = H'(G/B,P,) = {
HY(G/B, P;,) = H(G/B, P;,) = {

and hence H’(G/B, \U’/Q’) = 0 for all j # 4,5. Furthermore we obtain the
following exact sequences in cohomology

0—k— H>(G/B,Us) — k — 0
0 — H*G/B,Us) — k — H*(G/B,Us) — H*(G/B,Us3) — 0

0— HYG/B,Us) — H'(G/B,A°U"/Q')
— k — H°(G/B,Us) — H°(G/B, \°U’/Q") — 0
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This implies that the trivial G-module k is a submodule of H*(G/B, U’ /Q’) or
that

HYG/B, U'/Q") = H*(G/B, U’ /Q") = 0. (4.7.27)

Therefore we just need to show that k is a not submodule of H*(G/B, \SU"/Q’).
To prove this we will use the Koszul resolution with eight terms induced by
the inclusion U’ C U:

0= NU - UANU — - = SUU — S°U - SU/U) -0
Notice that H7(G/B,AN'U’") = 0 for all j € Z when t = 1,2,...,5. For t # 3 this is
shown by using Theorem 3.1 just as we proved (4.7.4) and for t = 3 it follows from

Lemma 4.8. Since U is a G-module this implies by the generalized tensor identity
that

HI(G/B,S*'U @ A'U") =0

for all j € Z and for t = 1,...,5. Therefore

HY(G/B,\NU") =0
for 7 =0,1,...,4, and hence the short exact sequence

0—Q — AU — AU'/Q' — 0
induces this exact sequence in cohomology
0— HYG/B,\°U'/Q") — H*(G/B,Q’)
— H°(G/B,NU") — H*(G/B, U /Q") — -

But using the filtration of Q' on page 89 we can show that H°(G/B,Q’) =
H5(G/B, k_3w,—3mw,—4ws) Which is irreducible of dimension three. Therefore the
trivial G-module k cannot be a submodule of H*(G/B,AU’/Q’) and (4.7.27) is
satisfied. O

Now we have proved (4.7.22) and hence (4.7.5) which was the missing result
in order to prove that the closure of 245 + A; is normal.
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4.8 The orbit A, +2A,

Step 1: We are going to use that 245+ A; has normal closure in order to show that
As 4+ 2A1 has normal closure. By Richardson’s dense orbit theorem, Theorem 1.3,
the dimension of G. [ 0§ 2 0] is = 50, and the only orbit of dimension 50 is Ay+24;
by the table p. 129 in [CM93]. Therefore

LA =G.[00920).

The weighted Dynkin diagram of 24; + Ay is A = {10501} and V(A\a) =
[10301] Therefore Lemma 2.8 gives

2, + AL =G.[10101],

Let U be the B-subrepresentation of [1 0} 9 1] obtained by omitting the two root
spaces

Q{—l—l—oloo}, {—1—1—100

We will show that G.[°9J29] = G.U. Look at the short exact sequence (U is
the cokernel)

0—-U—["082°] - U; —0. (4.8.1)
Then U7 is six dimensional with T-weights

{00810}’ {00(1)10}, {00811}, {00%10}, {01(1)10}, {01%10}_

We look at the first six terms of the Koszul resolution of the dual sequence. Ap-
plying Theorem 3.1 several times we get

HY(S"I[000201" @ ANVUF) =0 forall i,n€Z,j=1,2,...,6.

In practice the calculations were done using the computer program in Appendix A,
Section A.3. Hence

HY(S™[000201") = g*(S"U*) for all i,n € Z,
and Ay +2A4; = G.[°0920] = G.U by Lemma 2.1.
Step 2: Look at the short exact sequence of B-modules (defining V')
0—-U—[10}0] -V —o0.
Then V* is two dimensional with weights
{11300y griio0y,

We take the Koszul resolution of the dual sequence

0— §" 2[10101] ®/\V* Sn— 1[10101] ®V*
— GP[1O0L01TF L, Gt 0. (4.8.2)
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Theorem 3.1 gives that

HY(SM 11001 o {11100y =0 forall i,n€cZ
Hi(S" L [10001] 11100}y —( forall i,neZ

because [0} 9 1] is a P,,-representation. Hence
H'(Ker (S"[10301]" — §"U*)) = HFH(S"2[1OL 01" @ A?VY)

for all i,n € Z. If we can show that the latter vanishes for all i > 0, we have the
short exact sequence

0— HY(S"2[10L01 @ A°V*) — HO(S" [P0 01]") — HO(S"U*) — 0

for all n € Z. We assume this for a moment. Remember that A = {10101} jg
the weighted Dynkin diagram for 24 + Ay and V(Aa) = [1 00 1] Then

GXP()\A)[l()éOl]*}G[lolol]im

is birational by Corollary 2.9. Since 245 + A; is normal, Lemma 2.2 gives that
Ay +2A; = G.U is normal.

Step 3: We need to show that
HFHSm=2[10 101" & A2V*) = (0 for all > 0,n¢€ Z.

We know that A2V* is one dimensional with T-weight {22200} and by Theo-
rem 3.1 we get

HiJrl(San[lO(l)Ol]* {22200}
=H(S" 210 01" ®{22310}) forall i,ncZ.

By symmetry

(S" 2[10101] ®{22210}
= HY(S"2[10101* {01222}y forall j,neZ

We tensor the exact sequence of (4.8.2) (writing n—2 instead of n) with {® 1222}
and obtain the following exact sequence

0— §P2[10101)" g A2y* g {01222}
— §n 1[10101] QV*® {01%22}
— SM[I0L01]F g 01222}, gnr g (01222}
Using Theorem 3.1 two times we get

HY(S"2[10l01 @ V*@{01222}) =0 forall i,nécZ.
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In Step 4 we will show that
HY(S"2U*®@{°1222})=0 forall inecZ
Assuming this, we have

Hi(Sn—2[10601]* {01222})
—HZ'H(S" 4[10101] ®/\V* {01%22})
:Hz+1(Sn—4[10(1)01] {23%22})
= HI(SI 0RO T @ {2832

for all i,n € Z where we use Theorem 3.1 to get the last equality. But the latter
vanishes for all i > 0 by Example 3.15, and since

HIFL (G2 [10101]" @ A2)%) = Hi(§n—2[10101]" g {01222}
for all i,n € Z, we are done.
Step 4: We will now show that
HY(S"2U*®{°1222})=0 forall incZ.

Take a look at the Koszul resolution of the dual sequence of (4.8.1) (writing n — 2
instead of n). Then tensor this sequence with {1 222}, Using Theorem 3.1 several
times — i.e. using the computer program in Appendix A, Section A.3 — we observe
that

HY(S" 277000201 @ AMUF @ {01222}) =0 forall i,ne€Zj=12,...,6
where 6 = dim(U5). Hence
HY(S"2U* @ {01222}) = HY(S"2[00020)" @ {01222}y forall i,ncZ.

But the latter vanishes for all i,n € Z by Theorem 3.1, and we are done.
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4.9 The orbit A,

Step 1: We are going to use that the closure of Ay +2A; is normal to prove that
Aj has normal closure. The weighted Dynkin diagram of A is A = {°9900} and
V(Aa)=[2990909] and by Lemma 2.8 we have

A, =G.[00900],

The weighted Dynkin diagram of Ay 4+ 24; is A’ = {9 1§10} Similarly we have
V(Aar) = [°0900] and

A T2A = [01810).
Let
U=[00900]n[01010] (4.9.1)

We will show that Ay = G.U. We study the short exact sequence of B-modules
(V is the cokernel)

0—-U—[°9900 -V —0.
The dimension of V* is 6, and its T-weights are
{00000} {00100} (01100} 00110} (11100} (00111},
We take the Koszul resolution of the dual sequence, and observe that
H{(S"I[009001" @ AJV*) =0 forall i,ne€Z,j=1,2,...,6=dim(V*)

by Theorem 3.1 used several times, again we have used the computer program in
Appendix A, Section A.3 for the calculations. Therefore we get

HY(S™[009001") = g*(S"U*) for all i,n € Z, (4.9.2)
and Ay = G.[00900] = G.U by Lemma 2.1.

Step 2: Look at the short exact sequence (W is the cokernel)
0—-U—[1810] W -0 (4.9.3)
Then W is four dimensional with weights
{01110} F11110} 01111} 11111},
We take the Koszul resolution of the dual sequence and observe that
HY(S" I [010101" @ ATW*) =0 forall i,n€Z,j=1,2 (4.9.4)
by using Theorem 3.1 repeatedly. We also observe that

HY(S"2[010101" @ \) =0 forall i,n€Z
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for all weights A\ in ASW* except for A = {23332} Filtering A>W* by one
dimensional B-modules we therefore have

HY(SM 3 [0L010]" @ ASW™*) = HY(S" 3 [01010] g {23332} (4.9.5)
for all 7,n € Z. The last part of the Koszul resolution is here
— SPTH0L0I0 @ W — S [018101" T gr* — 0

Let K, = Ker m,. Splitting the Koszul resolution into short exact sequences,
taking long exact sequences in cohomology and using (4.9.4) and (4.9.5), we get
the long exact sequence

.HH”Q(S" 4[01010] ®/\W)HH1+2(S” 3[01010] ®{23332}>
— H'(K,) —» HT3(S" 1 [0101 0] @ AtW™) —

Thus, if we can show
HF3(S4[010101" @ AfYW*) =0 forall i>0,n€Z
HF2(Sn=3[010107" e 233323)=( forall i>0,n€Z

we get H(K,) = 0 for all i > 0 and all n € Z. Then we have the short exact
sequence
0— H(K,) — H°(S"[°1§1°]") — H°(S"U") — 0
Now remeber that A" = {01810} is the weighted Dynkin diagram of the orbit
As + 2A,. Hence the morphism
G xPRa) [01010] , ¢ [01010] =74, 124,

is birational by Corollary 2.9. Since A +2A; is normal, all the conditions of
Lemma 2.2 are satisfied, and Ay = G.U is normal.
We know that A*W* = {24442} Using Theorem 3.1 we get
H”g(S” 4[01010] ®{24442})
= HiT2(GnA[01010] g (244421
= HTH (ST [01010]" (246420 forall i,n € Z.

The latter vanishes for all ¢ > 0 and all n € Z by Example 3.15.
Theorem 3.1 also gives

H+2(Sm=3[01010] g [238832))
= H'TH(Sn3[010101" @ {23832Y) forall i,n € Z.

Again the latter vanishes for all i > 0 and all n € Z by Example 3.15. The last two
vanishing results given by Example 3.15 are difficult to obtain for Eric Sommers,
so Example 3.15 sometimes gives strong vanishing results.
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4.10 The orbit 34,

We have just shown that the closure of Ay is normal. We can use this result to
prove that also 3A4; has normal closure.

Step 1: The weighted Dynkin diagram of As is A = {90900} and since V(A\a) =
[00900] we have by Lemma 2.8 that

A_QZG.[OOBOO].

Now we let P = P(A\a), i.e. P is the standard parabolic subgroup containing B cor-
responding to the subset I = {aq, ag, a3, a4, as } of simple roots. By Corollary 2.9
the morphism

ﬁszP[oogoo]_,G[oogoo]

is birational. Now we know that Ay = G.[% 990 0] is normal, and p is birational.
Therefore, if we can find a closed B-stable subspace W C [09900] such that
G.W = 3A; and such that the inclusion W C [0 99007 induces a surjection

H(G/B,S™[00900]") — HYG/B,S"W*) — 0 (4.10.1)
for all n € N, then 3A; has normal closure by Lemma 2.2.

Step 2: In this step we find the desired W and show that G.W = 3A;. Since the
weighted Dynkin diagram of 34, is {° %} 90} we have by Lemma 2.8 that

341 =G.[00}00],
Let Wy be the B-submodule of [? 010 0] obtained by omitting the root space gq
where

a:{O—l:%—lo ,

and let W be the Py, o, q,-module obtained from W; by adding the root space gg
where

We will show that G.[ 0} 9] = G.W. Consider the short exact sequence (W is
the cokernel)

0—W; —[00500] Wy, -0

Then Wy is one dimensional with T-weight

{0—1:%—10 )

Looking at the Koszul resolution of the dual sequence and observing that by
Theorem 3.1 we have

HY(G/B,S" 1[00}00]" @ {01210}y =0 forall i,n€Z,
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we get that
HY(G/B,S™[°° 001" = H(G/B,S"Wy) forall i,n¢€Z.

From Lemma 2.1 we see that 34; = G.[90}00] = G.W7.

Similarly the short exact sequence defined by the inclusion W7 C W gives rise
to a Koszul resolution of its dual. And again since W is a P, q4,q,-module we get
by Theorem 3.1 that

HY(G/B,S" '"W*@{11111})=0 forall i,necZ.
Hence

HY(G/B,S"W*) = H(G/B,S"Wy) forall i,ncN,
and again Lemma 2.1 tells us that G.W = G.W; = 34,.

Step 3: In this step we will begin proving that W C [©99090] induces a
surjection

HO(G/B,S" [0090 01"y — HO(G/B,S"W*) -0
for all n € Z as in (4.10.1). First let
U=[00900]n[01910]

as in (4.9.1). In Section 4.9, cf. (4.9.2), we proved that the inclusion U C [00§00]
induced an isomorphism

HY(G/B,S"[°0920)") = H(G/B,S"U*) for all i,n€Z.
Hence it is enough to prove that the inclusion W C U induces a surjection
H(G/B,S"U*) — H°(G/B,S"W*) — 0 (4.10.2)
for all n € Z. Consider the short exact sequence of B-modules (V' is the cokernel)
0—-W-—-=U—-=V—=0. (4.10.3)
Then V* is four dimensional with T-weights
{01110y g11110} 01111} f01210} (4.10.4)
Take a look at the Koszul resolution of the dual sequence
0— S" U QANVF - ... = ST RV — S"U* — S"W* — 0 (4.10.5)

and notice that U is a Py, a4,a5-module. By Theorem 3.1 used several times we
know that

HY(G/B,S"7U*®@\) =0 forall i,ncZ
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for all weights X in AJV* when j = 1, 3. By filtering V* and A3V * by appropriate
B-submodules we therefore get

HY(G/B,S"U* @ NN'V*) =0 forall i,ncZ

when j =1, 3.
In the next section we will prove that

HY(G/B,S"2U* @ A*V*) =0 forall i,necZ (4.10.6)

using the same method as in Section 4.7.2 and Section 4.7.3. Assume this for a
moment. By splitting the Koszul resolution in (4.10.5) into short exact sequences
and taking long exact sequences in cohomology we obtain the following long exact
sequence using all the above vanishing results

-— H'3(G/B,S"*U* @ AN*'V*) — H'(G/B,S"U*)
— HY(G/B,S"W*) — H*3(G/B, S"4U* @ N*V*) — ..

Note that A%V * is the one dimensional B-module with T-weight {45 4 1}. Using
Theorem 3.1 three times we get

H'(G/B, 840" @ A'V*) = HYH(G/B,S" U @ n* {14741
=H'(G/B,S"'U" @ A*{24§1?})

for all ¢,n € Z. But the latter vanishes for j > 0 by Example 3.15, and we get a
short exact sequence

0— H°(G/B,S"*U* @ A" {24§42})
— HY(G/B,S"U*) — H°(G/B,S"W*) — 0

and (4.10.2) is satisfied.

4.10.1 The third term in the Koszul resolution

In order to know that the closure of 34; is normal, it only remains to prove (4.10.6)
which states that

HY(G/B,S"2U* @ A*V*) =0 forall i,n¢cZ. (4.10.7)

We will use the same method as in Section 4.7.2 and Section 4.7.3 to prove this
vanishing result.
Let P = P,, a4,a5- The Grothendieck spectral sequence

EY = HY(G/P,H’(P/B, S"~2U* @ A\*V™))
abuts to

H™Y(G/B,S"2U* @ A2°V™).
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If we can show that
HI(P/B,S"2U* @ A*’V*) =0 forall j€Z,

then E;J = 0 for all 4,7 and the spectral sequence collapses allready at the FEo-
term. Hence (4.10.7) is satisfied.
Since U is a P-module, the generalized tensor identity gives us that

HY(P/B,S"2U* ® N*V*) = S"~2U* @ H/(P/B, N\*V*),
so it is enough to show that
HY(P/B,N*V*) =0 forall jecZ. (4.10.8)

Let L denote the Levi subgroup of P containing T, and let L’ be the commu-
tator subgroup of L. Then L’ is semi-simple and connected with Borel subgroup
B’ = BN L' and maximal torus 77 = (T'N L’)Y. According to Remark 1.6.13 in
[Jan87] we know that

HI(P/B,N*V*)|, = HI(L' /B, (N*V*)|5),
so in order to prove (4.10.8), it is enough to prove
HI(L'/)B',(N*V*)|p) =0 forall jeZ. (4.10.9)

Since P = Py, a4.05, We know that the root system of L’ is of type A1 x A; x Aj.
But G is simply connected, and hence also L’ is simply connected by Exercise 6
in Section 8.4.6 in [Spr98]. Therefore L’ is isomorphic to SLy x SLa x SLy by the
isomorphism theorem of algebraic groups, see e.g. Theorem 9.6.2 in [Spr9g].

Let Bs denote a Borel subgroup in SLo, and let T> C By be a maximal torus in
SL5. Now we identify L’ with SLs x SLy x SLs in such a way that B’ is identified
with Bg X By X By, and 1" is identified with T5 x T x T5. Moreover we may assume
that the fundamental weight w; is identified with the fundamental weight of the
first SLo-factor, the fundamental weight wj is identified with the fundamental
weight of the second SLs-factor, and wj is identified with the fundamental weight
of the third SLy-factor.

Let VSSE‘; denote the standard SLy-module, and let V’ be the SLy x SLo x SLo-
module V59 @ V54 @ V§id where the first SLy-factor acts on the first V§{d-factor
etc. We will prove that V*|p/ is the B’-submodule of V' given by the T’-weights

—wW] - w3 — W5, —W]—W3+wWs5 —W+wW3—W5 W — W3 Ws.

(4.10.10)

When we have proved this result, equation (4.10.9) follows from Lemma 4.10 which
we will state and prove later.

Now define Z to be the direct sum of the root spaces g, € W which satisfies
o= Zle n;a; and n; > —1 for i = 2,4, 6, i.e. where a equals one of the following
roots (written in the basis of simple roots)

{071:%710 , {7171:%710 , {071:%7171 ,

{071j710 {7171:%7171}7 {71*1:%*10 , (4.10.11)

)
{0—1:%—1—1 , {—1—1—2—1—1}.
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Note that Z is L’-stable and in particular B’-stable.
Remember the short exact sequence of B-modules, cf. (4.10.3),

0—-W-—->U-—-V—0

Considering this as a sequence of B’-modules, we have the following commutative
diagram of B’-modules (V is the cokernel)

0——2ZnNW Z vV 0
IN IN
0 w U |4 0

Since the two rows are exact, we have an induced injective map V — V of B-
modules. But since the dimension of V' equals the dimension of V/ (they are both
four), the B’-mdoules V and V are isomorphic. Hence
V¥ g ~ V* cz.
. * . . . _ d 3 d 2 d
Now we will show that Z* is actually isomorphic to V' = Vgi$ @ V&S @ Vgis

and that V* is the B’-submodule of Z* given by the T’-weights in (4.10.10). The
T-weights of Z are given in (4.10.11), and therefore the T’-weights of Z* are the
four weights in (4.10.10) together with the four T'-weights

—w1 + w3+ w5, W) — W3+ wW;, W+ wW3— W5, Wi+ W3+ wWs.

Let Ky 4ws+ws denote the one dimensional B’-module with T’-weight w; + w3 +
ws. Then the projection map

Z" = ke 4wy tms
is a map of B’-modules. By Frobenius reciprocity we have
Homp/ (2%, ke, 4wyt ) ~ Homp/ (Z*, HY(L' /B’ ke, o5 1005 )
and hence we get a nonzero map of L’-modules
¢: 7" — HY(L')B' ke, 1oos o)
Just as in Section 4.7.2, page 81, we get that
HO(L' /B Ko 4t

is irreducible and isomorphic to V' = V&4 @ V59 @ V§id. Hence Z* ~ V. Since
the T-weights of V* are the weights listed in (4.10.4), and since V*|p/ ~ V*,
the T"-weights of V* are the ones listed in (4.10.10). Hence V*|p is the desired
B’-submodule of Z* ~ V".

Now

HI(L'/B',(N*V*)|p/) = H?(SLy x SLy x SLy/By x By x By, A*V*),

and by the following lemma the latter vanishes for all j € Z, and (4.10.9) is
satisfied. Then also (4.10.7) is satisfied, and we can conclude that it only remains
to prove Lemma 4.10 in order to prove the normality of the closure of 3A4;.
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Lemma 4.10. Let G = SLy x SLy X SLa, let B = By x By X By be a Borel
subgroup in G, and let T' =T, x Ty x T5 be a maximal torus contained in B. Let
wi, 1 = 1,3,5 be the fundamental weights as described on page 100.

Let U be the G-module V&[4 @ V59 @ V§id, and let U’ be the B-submodule of
U given by the T-weights

—w] - w3 — W5, —W]—W3+wWs;, —W+wW3—W5 W — W3 Ws.
Then
HI(G/B,N°U') =0 forall jecZ.

Proof. The idea of the proofis to filter A2U’ with B-submodules and then calculate
the cohomology groups of the corresponding quotients.
Let

AN = —w — w3 — W5 Ay = —w — w3 + ws

A3 = —wq + w3 — ws A4 = W — W3 — Ws.
For s =1,2,3,4 let vy € U’ be a nonzero weight vector of weight ;. Then
{vs Avy € N2U'|1 < s < t <4}
is a basis for A2U’. Define the filtration
0=VoCViC-- - CVy=nU
of B-submodules by

‘/1 = k(’Ul A\ ’02)
Vo=Vi® k(’l}l /\’1}3) & k?(’UQ /\’Ug)
Va=Vo® k(v Avg) @ k(va Avy).

Define the quotients Q; = V;/V,_1 for [ = 1,2,3,4. Then @2 is two dimensional
with Weights )\1 + )\3 = 72@1 — 2@3 and )\2 + Ag = 72@1. Since AQ + )\3 =
(043) + ()\1 + )\3), and

(—2w1 — 2w3,03) = -2,
Lemme 1 in [Dem?77] gives that
HI(G/B,Q2) =0 forall jecZ. (4.10.12)
Similarly
HI(G/B,Q3) =0 forall jecZ. (4.10.13)

Now consider @)1 and (4. They are both of dimension one with weights \; +
Ao = —2w1 — 2ws and A3 + Ay = —2ws respectively, i.e.

Q1 =k 2w, -2y, and Qi =k _oq,.
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Now

Hj(G/B, Q1) = Hj(G/B, k20, —2w,)

= H7(SLy/By x SLy/Ba x SLy/Ba, k90, @ k_wy @ ko).
(4.10.14)

To calculate this cohomology group we will use the Kiinneth formula, so we need
to compute

Hj (SLQ/BQ, kfgwl ) = Hj (SLQ/BQ, k,QWS) and Hj (SLQ/BQ, ko)
By Kempf’s vanishing theorem, see e.g. Proposition 1.4.5 in [Jan87], we have
HI(SLy/Ba, ko) =0 forall j>0

since 0 € X*(Ty) is a dominant weight. But ko is the one dimensional Bs-
module with weight 0, so it is just the trivial one dimensional By-module. Hence
H°(SLa/Ba, ko) is the one dimensional trivial SLy-module which we will denote
k. Hence

k for j=0

H](SLQ/BQ,]CO): {0 for ‘77&0

To compute H7(SLy/Ba, k_2+) we will use the Borel-Bott-Weil theorem, see
e.g. Corollary I1.5.5 in [Jan87]. Now remember the “dot” action defined in (1.1).
Since s, -(—2w1) = 0, and since 0 € X*(T%) is dominant with 0 € C7 > (remember
the definition of 6272 on page 82), we have

HO(SLQ/BQ,IC()) =k for j =1

HY(SLy/Bo,k_oe,) =
(2/22){0 for j#1

Now we can us the Kiinneth formula on the cohomology group in (4.10.14)
using the above cohomology results. We get

k for j=2

_ (4.10.15)
0 for j#2

HI(G/B,Q,) = {

where k is the trivial one dimensional G-module obtained as the tensor product
of three trivial one dimensional SLo-modules. Similarly we see that

k for j=1

, (4.10.16)
0 for j#2

H'(G/B,Qu) {

Now look at the short exact sequences

0=Vii—=Vi—-Q —0
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Taking long exact sequences in cohomology and using the results in (4.10.12),
(4.10.13), (4.10.15) and (4.10.16) we see that
HI(G/B,N°U') =0 for j+#1,2,
and that we have an exact sequence
0— HY(G/B,N°U") - k — k — H*(G/B,N*U") — 0

Now we just have to show that

HY(G/B,AN*U')=0 and H?*(G/B,N*U’) =0.
But either

HY(G/B,A*U")=0 or H'(G/B,N*U')=kF.
If HY(G/B,N?U’) = 0, then also H*(G/B,A*U’) = 0, and hence it is enough to
show that H'(G/B,N\2U") # k.

Now consider the short exact sequence of B-modules
0-U —-U—-U/U -0

and take the the corresponding Koszul resolution with four terms

0— AU -UeU — S?°U — S*U/U') -0
Since U is a G-module, we have by the generalized tensor identity

HI(G/B,UeU')=Uw®H'(G/B,U"). (4.10.17)

Now U’ can be filtered by B-submodules such that the quotients in the filtration
are one dimensional with vanishing cohomology by Theorem 3.1, and hence

HI(G/B,U')=0 forall je€Z.

But then also the cohomology group in (4.10.17) vanishes for all j € Z. Splitting
the Koszul resolution into short exact sequences and taking long exact sequences
in cohomology, we therefore get

HY(G/B, N*U") = Ker (H°(G/B, S*U) — H*(G/B, S*(U/U"))).

Since U is a G-module, we have H°(G/B, S?U) = S?U, and we see that the G-
module H(G/B,A?U’) is a submodule of S2U. Now it is enough to show that
the trivial one dimensional G-module, k, is not a submodule of S2U. We will do
this by proving that S?U admits a good filtration without k = H°(G/B, ko) as a
quotient.

Remember that U is the standard representation of SLy tensored with itself
three times. But H°(SLa/Ba, kw,), i = 1,3,5, equals the standard representation
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of SLy as seen in (4.7.14) in Section 4.7.2. Since w; € X*(T3) is dominant, Kempf’s
vanishing theorem tells us that

HI(SLy/Ba,kw,) =0 for j>0,
for i =1, 3,5, so by the Kiinneth formula we have

U = H°(SLy x SLy x SLy/Bs X By X Bo, ke, @ kegy @ ko)
- HO(G/kalerwerW&s)'

But w; + w3+ w; € X*(T) is dominant, and therefore U is itself a good filtration
of U. But then U ® U also admits a good filtration, cf. Proposition 11.4.19 in
[Jan87]. Now S2U is a quotient of U ® U, and we have a spitting

S’U -U®U
given by

fog—3(f@g+g®f).

Thus S2U is a direct summand of U ® U, and it has a good filtration, cf. Propo-
sition 11.4.16 in [Jan87].

Now we will find the quotients in a good filtration of S?U. Let Ai,..., A\, €
X*(T) be dominant weights such that the quotients in a good filtration of S2U
are of the form H°(G/B, ky,). Then

S°U ~ P H'(G/B, k»,)

i=1

as T-representations. We want to find the \;’s.

The dimension of S2U is 36, and we know all the weights of S2U counted with
multiplicities. The weight 2co; + 23 + 25 is a highest weight of S2U, and hence
one of the \;’s must be equal to 2ww; + 2w3 + 2ws. By reordering the A\;’s we may
assume that \,, = 2wy + 2w3 + 2w;5. Now

m—1
S?U/H"(G/B, kyw, + 20, +25) ~ €D H°(G/B, k»,) (4.10.18)

i=1

as T-representations.

But H°(G/B, kaw, +2ws+2ws ) is 27 dimensional, and we can find its weights
counted with multiplicities for example by Kostant’s multiplicity formula (see e.g.
Theorem 24.2 in [Hum78]). Then we see that the weights of

S2U/H"(G/B, kyeo, +2005 4255
becomes

2w1, 2@3, 2@5, 0, 0, O, —2w1, —2W3, —2@5
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counted with multiplicities, and that 2w, 23 and 2ws; are highest weights. By
(4.10.18) we may assume that \,,—1 = 2w, App—2 = 2w3 and \,,—3 = 2ws. Now
the module in (4.10.18) is of dimension 36 — 27 = 9, and H°(G/B, kaw,) is of
dimension 3 for j = 1,3,5. Hence m = 4, and the quotients in a good filtration of
S2U are

HO(G/Ba k2w, +2w542a5 ) HO(G/B’ k2w, ), HO(G/B’ k2s), HO(G/B’ k2cs)-
Since k = H°(G/B, ko) is not one of these modules, it cannot be a subrepresenta-

tion of S2U. Hence H'(G/B,\*U’) =0 for all i € Z.
O
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4.11 The orbit 2A4;
We will use the normality of 3A; to show that 24; has normal closure. Since the

weighted Dynkin diagram of 24; is A = {19901} "and since V(Aa) = [1 00 1],
we have

24, =G.[10901]

by Lemma 2.8. Similarly the weighted Dynkin diagram of 34; is A’ = {00100}
and we have

Define now

We want to show that 24; = G.U. We have a short exact sequence (V is the
cokernel)

0-U— 19901 -V =0
where V* is two dimensional with T-weights
{rritiy ogriiiay

Hence the Koszul resolution of the dual sequence is

0— SPT2[LO00 1T @ A2V* — G [10001]"

— SM[TO801) 5 SMUF 0

Theorem 3.1 gives that

~—

HY(G/B,S" 2[10001]" @ A?V*) =0
HY(G/B,S" [ 030 @ V*) =0

for all i € N and all n € Z, so by Lemma 2.1 we have
A = G.[10001] = Q.U

Now we are ready to show that 24; = G.U is normal using that 3A4; is normal.
Consider the short exact sequence of B-modules (W is the cokernel)

OHUH[OO%)OO]HWHO

Then W is five dimensional with T-weights

{01%10}’ {11%10}’ {01%11}’ {12%10}’ {01%21}.
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Again we take a look at the Koszul resolution for the dual sequence
0—S"— 5[00100] R NW* =
S GPTI[00 100 @ AT s §P[00L00) L gnprr
Let K,, denote the kernel of
Sn[00L00]"  gny* — 0 (4.11.1)

Remeber that A’ = [09}00] is the weighted Dynkin diagram of the orbit 34;.
Then the morphism

GXP(/\AI)[OO(lJOO]HG [00100]

is birational by Corollary 2.9. In order to show that 24; = G.U is normal, it
follows from Lemma 2.2 that we just have to show that the morphism in (4.11.1)
induces a surjection in cohomology since 34; = G.[° 9} 0 0] is normal.

Filtering A7W* by one dimensional B-modules and using Theorem 3.1 several
times we get

HY(G/B,S" I [001001" @ A\TW*) =
for alle ¢ € N and all n € Z when j # 3. Hence
HY(G/B,K,) = H"(G/B,S"?[00100]" @ ASW*)
for all i € N and all n € Z, and we just need to show that
H™*(G/B,S" 2[00 00 @ A*W*) =0 forall i>0,neZ.  (4.11.2)

But now we filter A3W* by B-submodules such that the quotients are one di-
mensional with the same weights as the weights of A3W*. Using Theorem 3.1 we
can show that the quotients have vanishing cohomology except the quotients with
weights of this form

{24230}’ {03g42}’ {14g41}’ {24g41}’ {14g42}

But by Theorem 3.1 we see that

(G/B qn— 3[00100] ®{24642})
:HH—Q(G/B,Sn 3[00(1)00]*®{24230})
:Hl+2(G/B,S” 3[00500]*@){03242})
:HH_2(G/B,Sn 3[00(1)00]*®{14g41})
:HH_l(G/B,Sn 3[00500]*@){24241})
:H”l(G/B,S” 3[00100]*®{14g42})

so in order to show (4.11.2), it is enough to show that

HY(G/B,S™3[0000]" {24642}y =0 forall i>0,n€Z

But this is satisfied by Example 3.15, and hence we have proved that 24, is normal.
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4.12 The orbits A; and 0

The orbit A; is the minimal orbit with closure equal to the union of A; and 0.
Since G is semisimple, simply connected and simple as an algebraic group, the
orbit A; has normal closure, see e.g. Remark 1 in Section 8.13 in Jantzen’s part
of [JNO4].

The orbit 0 is clearly closed and normal since it consists of the single point
0€eg.






Chapter 5

The orbits without normal closure

As in Chapter 4 we let G denote a connected, simply connected, semi-simple linear
algebraic group over k of type Eg where k is an algebraically closed field of good
characteristic for G. In this chapter we will show that the nilpotent G-orbits in
the Lie algebra g with Bala-Carter labels A4, As + Ay, As, 245 and As + A; do
not have normal closure. We will prove it by using that this is the case over C as
shown by Eric Sommers, cf. Theorem 1 in [Som03].

The idea of the proof is to connect the characteristic zero case with the charac-
teristic p > 0 case by defining everything over Z and making base change. Before
we start discussing the question of normality, we need quite a lot of notation. The
notation with definitions etc. is taken from [Jan87] mainly from Section II.1.

For each algebraically closed field L let G, be a semi-simple, simply connected,
connected linear algebraic group over L of type Eg. By the theory of Chevalley
groups ! there exists a split, connected, reductive algebraic Z-group, Gz, which is
flat over Z, such that for each algebraically closed field L we get G, as the fibered
product

G = Gz Xspec(z) Spec(L).
Furthermore Gz can be chosen with a split maximal torus 77, i.e.
Ty, ~ Spec(Z[Ty, T ', ..., T,, T, 1)).
Now we can define
Tr, = Tz Xspec(z) Spec(L),

and 77, is a maximal torus in Gp,.
In general let R be an integral domain, and define

Gr=Gy X Spec(Z) SpeC(R)a Tpr="1y X Spec(Z) SpeC(R)

Let X*(Tr) be the character group of Tr. Then X*(Tg) is a free abelian group of
rank r, and X*(Tg) identifies with X*(77). Let X, (Tr) be the cocharacter group

1See e.g. Theorem 5.6 in [Ste68] and Borel’s Section A.3.4-A.3.5, A.4 in [MRO70].
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112 5. The orbits without normal closure

of Tg, then also X,(Tr) can be identified with X, (7%). Let
() s X*(Tr) x X.(Tr) — 7,

denote the pairing of characters and cocharacters.
Now let gr denote the Lie algebra of G and remember that Gr acts on gg
by the adjoint action. Now

gr =0z Qz R
and we have a direct decomposition into root spaces
gr = tn & P(9r)a (5.1)
acd

where tr denotes the Lie algebra of Tk, and ® are the roots of Gr with respect
to Tr. Since the roots of G with respect to Tr can be identified with the roots
of Gz with respect to T7, the set of roots ® in (5.1) does not depend on R. For all
roots a € ® we have

(gR)a = (gZ>a ®z R.
Let 2o € (92)a \ {0}, and define

Ta,R = Lo ®1e (gZ)a Rz R = (gR)a-

Let &~ be a negative system of roots in ®.
Let Uy, r be the root subgroup of G corresponding to o € ®. Also notice that

Ua,R = Ua,Z ><SpeC(Z) Spec(R).

Let Ugr be the closed subgroup of Gr generated by all U, r with a € ®~. Now
we can define a Borel subgroup Bp as the semidirect product of T and Ur. We
identify Br with the image of this product in Gr and write Br = TrUR.

If Mg is a Tr-module, then there is a direct decomposition into weight spaces

Mr= €D (Mg

XeX*(TRr)

If furthermore Mp is a TrU, r-module, then we have

Ua,r-(Mg)x € @D (M)t na- (5.2)

n>0

Now we turn to the more specific setting. Let £ be one of the Bala-Carter labels
Ay, As + A1, As, 2A5 or As + Aq, and let Ag be the weighted Dynkin diagram
corresponding to this Bala-Carter label. Let Aa, € X..(Tz) = X.(Tr) denote the
cocharacter defined in Section 2.2.3.

Now define

ur = @ (QR)a and V()‘AS)R = @ (gR)a7

acd— aced™
(A g)<—2
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and note that the sets
{Za,rla e @7} and {za,rlo € D7, {a, An,) < =2} (5.3)
are bases of ur and V(Aa, )r respectively. Also note that
ug = uz @z R, V(Aac)r =V(Aa.)z ®z R.

Since gg is a Gr-module under the adjoint action, it is also a Br-module, and by
(5.2) we see that ug and V(Aa, )r are Br-submodules of gp.

Now look at the inclusion of Br-modules V(Aa,.)r € upr and at the induced
surjection S™(ug)* — S™(V(Aa.)r)* of Br-modules. Let Kp , denote the kernel
of this surjection. Then we have a short exact sequence of Br-modules

0— Kgy— S"(ug)" — S"(V(Aa)r)" — 0

Using the bases of ug and V(Aa.)r in (5.3) we see that the above short exact
sequence arises from the one over Z by tensoring with R, and that Kg , is a finitely
generated free R-module. The short exact sequence above gives rise to a long exact
sequence in cohomology

0— HO(GR/BR, KR,n) — HO(GR/BR, S"(uR)*)
— HY(Ggr/Br,S"(V(Aa)r)") — H'(Gr/Br, Kpn) — -
Notice that since k is the ground field of G, we have G = G| and g = gk.
Let O,f denote the nilpotent Gy-orbit in g; with Bala-Carter label £, and let Oé
denote the nilpotent Ge-orbit in gc with Bala-Carter label £. We know that Oé
does not have normal closure, and we want to show that also (9,? does not have

normal closure. Note that Gc.uc is the closure of the regular orbit Eg (Ge.uc is
the full nilpotent variety), and hence it is normal. By Corollary 2.9 the morphism

Gc x Be uc — Ge.uc

is birational. Since Oé does not have normal closure, Lemma 2.2 therefore gives
that there exists a number n € N such that

H°(Ge/Bc, 8" (uc)") — H*(Ge/Be, S™(V(Aag)c)")
is not surjective, and hence
H*(Gc¢/Bc, Kc.n) # 0.
But by Proposition 1.4.13 in [Jan87] we have (since C is a flat Z-module)
HY(Gz/Bz,Kz.,) ®2C = H (Gc¢/Bc, Kc.n). (5.4)

Now Gz /By is projective by Section I1.1.8 in [Jan87], and since Kz, is a finitely ge-
nerated Z-module, the module H 1(GZ / Bz, K7 ) is a finitely generated Z-module
by Proposition 1.5.12 in [Jan87]. But then (5.4) shows that H'(Gz/Bz, Kz.,) is
not a torsion module over Z.
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Since Z is a Dedekind domain, and K7z ,, is a finitely generated free Z-module
(and hence a flat Z-module), Proposition 1.4.18 in [Jan87] gives an injective map
HY(Gz/Bz,Kz.n) ®zk — H'(Gr/By, Ki.n)
and since H'(Gz/Bz, Kz,,) is not a torsion Z-module, we know that
HY(Gz/Bz,Kz.,) @7k #0,

and hence H'(Gy /By, Ky,) # 0. But since H'(Gy /B, S™(ur)*) = 0 by Theo-
rem 2 in [KLT99] the morphism

H®(Gr/ B, S™(ur)*) — H(Gr /B, S"(V(Aae)k)") (5.5)

is not surjective. Let P(Aa,)x be the parabolic subgroup in Gy, defined in Sec-
tion 2.2.3. Then the morphism

G xPP22 )  V(Aa, )k = GeV(Aag )k

is birational by Corollary 2.9, and since the map in (5.5) is not surjective, we get

by Lemma 2.3 that Of = G;.V(Aa, )k is not normal.
This finishes the proof of Theorem 1.



Appendix A

Computer programs

This appendix contains the Java code for the computer programs mentioned in
the thesis. Note that the programs only work for groups of type Eg. The two basic
classes are

e Vaegt.java
e Wedge.java
The main programs are
e MindsteAfunktionTensorListe.java

e PTensorListe.java

A.1 MindsteAfunktionTensorListe.java — the program
from Remark 3.16

This section contains the Java code for the main program mentioned in Exam-
ple 3.15 and Remark 3.16. The idea behind the program is explained in Exam-
ple 3.15, so we will only mention the setup.

Let V' C u be a B-subrepresentation. Let A € X*(T'), and let iy € N. Using
Theorem 3.11 we want to show that

HY(G/B,S"V*®@\) =0 forall i>igncZ. (A.1)
Let A1,..., A\ be the T-weights of u which are not weights of V.
Input: The A;’s, then A and at last ig.
Output: If the program prints
Vi kan desvaerre ikke sige noget, oev!

we know that we cannot make the conclusion in (A.1) by the method de-
scribed in Example 3.15.

If the program prints
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HAi(SAn[bla] tensor lambda) = 0 for i > i_0

then (A.1) is satisfied.

import java.io.=x;
import java.util.x;

class MindsteAfunktionTensorListe {

/% We use the above notation =/
public static void main(String[] args) {
int antal = args.length-2; // The number of weights in VAx
int cohgraense = Integer.valueOf(args[args.length-1]).intValue();
// cohgraense is the number i_0
Vaegt tensor = new Vaegt(args[args.length-2]); // The weight lambda
Vaegt[] vaegte = new Vaegt[antal]; // The weights in VA=x
for (int i=0;i<antal;++i) {
vaegte[i]= new Vaegt(args[i]);
}
Wedge wedge = new Wedge(tensor, vaegte ,cohgraense);
// See Wedge.java for comments
boolean cohErNul = wedge.erCohNulMindsteA(0,0);
if (cohErNul) { // The cohomology is zero
System.out.println("HAi(SAn[bla]_tensor_" +tensor.n(0) +
tensor.n(1l) + tensor.n(2) + tensor.n(3) + tensor.n(4) +
tensor.n(5) + ")_=_0_for_i_>" + cohgraense);
} else { // The cohomology is not necessarily zero
System.out.println("Vi_kan _desvaerre_ikke_sige_noget, oev!");

A.2 Wedge.java — the wedge class

class Wedge{

/* This class is only used from MindsteAfunktionTensorListe. Hence
* we will use the notation from Section A.1. Moreover let u be

% the Lie algebra of the unipotent radical of the Borel. Let

= W=u/V =/

Vaegt v; // This v will be a weight in \wedgeAj WA* \otimes \lambda.
To
// begin with we have v = \lambda.
Vaegt[] liste; // The weights of WA=
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A.3. PTensorListe.java — the program that checks for vanishing cohomology
using Theorem 3.1

int cohgraense; // i_0
int antalvaegte; // The number of weights in WA=

// Constructor

public Wedge(Vaegt tensorVaegt, Vaegt[] vaegtliste, int cohGraense){

cohgraense = cohGraense;

v = tensorVaegt;

antalvaegte = vaegtListe.length;
liste = vaegtListe;

/#* Let m be the minimal vanishing function from Section
3.2. Inductively we check if HA1(G/B, SA{n-i} u=* \otimes \mu) =
0 for 1 > i+i_0 where \mu is a T-weight in \wedge’i WA+ \otimes
\lambda. By Theorem 3.11 this is satisfied if m(\mu) =<
i+i_0. See example 3.15 for more details. The i below equals
the i above. =/
public boolean erCohNulMindsteA(int i, int j) {
boolean tmpl = true;
boolean tmp2 = true;
int mindsteA;
if (j<antalvaegte) {
tmpl = erCohNulMindsteA(i,j+1);
v.plus(liste[j]);
tmp2 = erCohNulMindsteA(i+1l,j+1);
v.minus(liste[j]);
return (tmpl && tmp2);
} else {
mindsteA = v.mindsteA();
if (mindsteA > cohgraense +i) { // m(\mu) > i+i_0
v.print();
}

return (mindsteA < cohgraense + i + 1); // m(\mu) =< i+i_0
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A.3 PTensorListe.java — the program that checks for
vanishing cohomology using Theorem 3.1

This section contains the Java code for the program which is used for example in
Section 4.7.1.

Let I CII be a subset of the simple roots. Let U C u be a P;-module, and let
V C U be a B-submodule. The inclusion V' C U induces a short exact sequence
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of B-modules
0—-V->U—->U/V-0

Take the Koszul resolution of the dual short exact sequence, and tensor it with the
one dimensional B-module with weight A € X*(T'). Then we obtain the following
exact sequence

0= = S"IU" NV @X— - = ST @V @ A
= ST @A = S"(U/ V)" @A —0
Using Theorem 3.1 we want to show that
HY(G/B,S" 7 U*@ NV*®@\) =0 forall incZ. (A.2)

for some j’s.
In the program we use Theorem 3.1 on cohomology groups of the form

HY(G/B,S" U @ p)

where y is a T-weight of AV *® X. We can use Theorem 3.1 again on the resulting
cohomology group if this group is not zero. In the program we have to specify how
many times we will at most repeat this process, we call this number N.

Input: The weights in V*; the subset I; the number N; the weight A.

Output: Now the program prints something like

Dimension 0O
Dimension 1
01410

1
Dimension 2

and so forth. Finally it prints
Vi ma krave at p >=n
If no weights are printed between “Dimension j” and “Dimension j+ 17, then

(A.2) holds for this j in characteristic zero and in characteristic p > 0 when
p=n.

On the contrary if a weight is printed, then we cannot conclude that (A.2)
holds for this j.

import java.io.x;
import java.util.=x;

class PTensorlListe {



A.3. PTensorListe.java — the program that checks for vanishing cohomology
using Theorem 3.1 119

/% We will use the notation above =*/

public static void main(String[] args) {
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int antal = args.length-3; // The number of weights in VA=
int 1lgd = Integer.valueOf(args[args.length-2]).intValue();
Vaegt tensor = new Vaegt(args[args.length-1]); // lambda
Vaegt[] vores = new Vaegt[antal]; // The weights in VA=
for (int i=0;i<antal;++i) {

vores[i]= new Vaegt(args[i]);
}
int antalgodkendte = args[antal].length(); // The number of
// simple roots in I
int[] godkendte = new int[antalgodkendte]; // The simple roots

// in I

for (int i=0;i<antalgodkendte;++i) {

godkendte[i] =

Integer.valueOf(args[antal].substring(i,i+1)).intValue();
}
int[] hvilke = new int[antal];
int[] hvilketmp = new int[antall];
int sidstel = 0;
Vaegt vaegt;
Vector liste = new Vector();
Vector listetmp = new Vector();
int[] svar = new int[2];
int pgraense = 0; // The limit we should put on p in
// characteristic p
System.out.println("Dimension_0"); // We check if
// HAi(G/B, SAnUA=x \otimes \lambda)=0 for all i
svar = tensor.pErCohomologiO(godkendte, 1lgd, 0);
if(svar[0] == 1) { // The cohomology is not 0 by Theorem 3.1
// of Demazure

tensor.print();

} else { // The cohomology is O by Theorem 3.1, and we have a
// new 1limit for p in characteristic p.

pgraense = Math.max(pgraense, svar[1l]);
}
System.out.println("Dimension_1"); // We check if
// HAi(G/B, SA{n-1}UA* \otimes VAx \otimes \lambda)=0 for all i
for (int i=0;i<antal;++i) {

hvilke = new int[antal];

hvilke[i]=1;

liste.add(hvilke);

vores[i].plus(tensor);

svar = vores[i].pErCohomologiO(godkendte, 1lgd, 0);

if (svar[0] == 1) { // The cohomology is not 0 by Theorem 3.1

vores[i].print();
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} else { // The cohomology is O by Theorem 3.1, and we have a
// new limit for p in characteristic p.
pgraense = Math.max(pgraense, svar[1l]);
h
vores[i].minus(tensor);
}
hvilke = new int[antal];
for (int i=1;i<antal;++i) {
System.out.println("Dimension_"+(i+1)); // We check if
// HAL(G/B, SA{n-{i+1}}Ur* \otimes \wedge/r{i+1}VA+ \otimes
\lambda)=0 for all 1
for (int j=0;j<liste.size();++j) {
hvilke = (int[]) liste.get(j);
for (int m=0;m<antal;++m) {
if (hvilke[m] == 1) {
sidstel = m+1;

h
for (int m=sidstel;m<antal;++m) {
hvilketmp = new int[antal];
for (int k=0; k<antal;++k) {
hvilketmp[k] = hvilke[k];
}
hvilketmp[m]=1;
listetmp.add(hvilketmp);
vaegt = Vaegt.nyvaegt(vores,hvilketmp);
vaegt.plus(tensor);
svar = vaegt.pErCohomologiO(godkendte, 1lgd, 0);
if (svar[0] == 1) { // The cohomology is not 0 by
// Theorem 3.1
vaegt.print();
} else { // The cohomology is 0 by Theorem 3.1,
// and we have a new 1limit for p in
// characteristic p.
pgraense = Math.max(pgraense, svar[1l]);
}
vaegt.minus(tensor);
b
hvilke = new int[antal];
h
// We do not need liste anymore, only the new listetmp.
liste = listetmp;
listetmp = new Vector();
}

System.out.println("Vi_md,_krave_at,_p_>=_

+ pgraense);
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A.4 Vaegt.java — the class of weights

import java.io.=x;
import java.util.=x;
import java.math.*;

public class Vaegt
{
int[] vaegt; // Write a T-weight as a linear combination of simple
// roots. Then the integers here are the coefficients
// to the simple roots. We will call "vaegt" for "this
// weight" in the following.

// Constructor
public Vaegt(String a){
vaegt = new int[6];
for (int 1=0;i<6;i++){
vaegt[i] = Integer.valueOf(a.substring(i,i+1)).intValue();

// Constructor
public Vaegt(int[] a){
vaegt = new int[6];
for (int i=0;i<6;i++){
vaegt[i] = a[i];

// Makes a copy of the weight
public Vaegt kopi(){
Vaegt nyvaegt = new Vaegt(vaegt);
return nyvaegt;

// This method prints the weight

public void print() {
System.out.println(n(0)+"_"+n(1L)+"_"+n(2)+" . "+n(3)+""+n(4));
System.out.println(" "+n(5));

e

// If the weight is written as a linear combination of simple
// roots, then this method returns the coefficient to the i’th
// simple root
public int n(int i) {

return vaegt[i];
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// Adds a weight v to this weight
public void plus(Vaegt v) {
for (int i=0;i<6;++1) {
vaegt[i] = n(i) +v.n(i);

// Adds the simple root alpha_i to this weight
public void plusAlfa(int i) {
vaegt[i] = vaegt[i]+1;

// Subtracts the simple root alpha_i from this weight

public void minusAlfa(int i) {
vaegt[i] = vaegt[i]-1;

// Subtract the weight v from this weight
public void minus(Vaegt v) {
for (int i1=0;i<6;++1) {
vaegt[i] = n(i) - v.n(i);

/# Input: An array of weights, liste. An array of 0’s and 1’s,

hvilke. The lists should be of the same size.

/# Output: The sum over i of the weights liste[i] where i
satisfies that hvilke[i]=1. I.e. we sum over some of the

weights in the list, liste. =/

public static Vaegt nyvaegt(Vaegt[] liste, int[] hvilke) {

Vaegt ny = new Vaegt("000000");
for (int i=0;i<hvilke.length;i++){
if (hvilke[i] == 1){
ny.plus(liste[i]);

3

return ny;

// Output: True, if this weight is dominant. Else false.

A. Computer programs
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public boolean erDominant() {

boolean retur = true;
if (firkant(1l) < 0) {

retur = false;

3

if (firkant(2) < 0) {

retur = false;

}

if (firkant(3) < 0) {

retur = false;

3

if (firkant(4) < 0) {

retur = false;

3

if (firkant(5) < 0) {

retur = false;

3

if (firkant(6) < 0) {

retur = false;

3

return retur;

/% Let alpha_i be the i’th simple root. Then we let alpha_iAv

% denote the corresponding coroot =/

/* Returns the pairing of this weight and alpha_iAv, 1i.e.
<this weight, alpha_isv >, i = 1,2,3,4,5,6 %/

public int firkant(int i) {

if (i==1) {
return 2 * n(0)
}
else if (i==2) {
return 2 * n(1l)
}
else if (i==3) {
return 2 * n(2)
}
else if (i==4) {
return 2 * n(3)
}
else if (i==5) {
return 2 * n(4)
}
else {
return 2 * n(5)

n(1);

n(0) - n(2);

n(1) - n(3) - n(5);

n(2) - n(4);

n(3);

n(2);
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/#% Returns the pairing of this weight and alpha_iAv, i.e.
<this weight, alpha_isv >, i = 0,1,2,3,4,5. %/
public int firkantO(int i) {
if (i==0) {
return 2 = n(0) - n(1);
}
else if (i==1) {
return 2 * n(1) - n(0) - n(2);
}
else if (i==2) {
return 2 * n(2) - n(1) - n(3) - n(5);
}
else if (i==3) {
return 2 * n(3) - n(2) - n(4);
}
else if (i==4) {
return 2 * n(4) - n(3);

}
else {

return 2 * n(5) - n(2);
}

/#* Let m be the minimal vanishing function from Chapter 3.2. This
* method returns the value of m on this weight.*/
public int mindsteA() {
if (this.erDominant() ) { // If this weight is dominant, m is
// zero on this weight.
return 0;
}
int mindsteA = -1; // This will eventually be the value of m
// on this weight
int mindsteAtmp = -1;
int firkant = 0;
Vaegt v;
for (int 1=0;i<6;i++) {
firkant = firkantO0(i);
if ( firkant == -1) { // 1: <this weight, alpha_irv>=-1
// See the definition of m.
this.plusAlfa(i);
mindsteAtmp = this.mindsteA();
this.minusAlfa(i);
h
if ( firkant < -1) { // 2: <this weight, alpha_iAv><-1,



186
187
188

190
191
192
193
194
195
196
197
198

200
201
202
203
204
205
206
207
208

210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232

A.4. Vaegt.java — the class of weights 125

// Se the definition of m.
v = this.kopi();
mindsteAtmp = -1;
for (int j=0; j<-firkant-1; ++j) {
v.plusAlfa(i); // Now v = this weight + r+alpha_1i
// where 0 <= r <= -<this weight, alpha_irv> -1.
mindsteAtmp = Math.max(mindsteAtmp,v.mindsteA()+1);
h
v.plusAlfa(i); // Now v = s_alpha_i(this weight), where
// s_alpha_i is the reflection in the
// Weyl group corresponding to alpha_i
mindsteAtmp = Math.max(mindsteAtmp,v.mindsteA());
h
if (mindsteA==-1) {
mindsteA = mindsteAtmp;
} else {
mindsteA = Math.min(mindsteA,mindsteAtmp); // m is the
// minimum over all i with <this weight, alpha_iAv> of
// mindsteAtmp in either 1 or 2. See the definition of m.

3

return mindsteA;

/% In the following, godkendte, is the number such that
alpha_{godkendte-1} is the simple root use in Theorem 3.1. The method
changes this weight to be s_alpha_{godkendt-1}(this
weight)-alpha_{godkendt-1}, see Theorem 3.1. The method returns
how big p should be in characteristic p in order to use Theorem 3.1
with this weight. =/
public int pCohVaegt(int godkendt) {
int firkant = firkant(godkendt);
vaegt[godkendt-1] += - (firkant+1); // this weight =
// s_alpha_{godkendt-1}(this weight)-alpha_{godkendt-1},
// see Theorem 3.1.
if (firkant < 0) {
return (-firkant-1);
} else {
return (firkant-1);

/* We want to see if HAi(G/B, V \otimes (this weight))=0 by using
Theorem 3.1 by Demazure. Let P_alpha_i be the minimal standard
parabolic subgroup corresponding to alpha_i. Let p the
characteristic, if it is not 0. =/

/% Input: godkendte: An array of numbers j_0, ... , j_k satisfying
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that V is a P_alpha_{j_k}-module.
lgd: The number of times we should apply Theorem 3.1 in a

row.

n: The number that counts how big p should be in order to
use Theorem 3.1. =*/

/# Output: An array with two numbers. The first number is 0 if we
can conclude HAi(-)=0 by Theorem 3.1. Else it is 1. If the
first number is 0, the second number, s, tells us that Hi(-)=0
if p>=s =/

public int[] pErCohomologiO(int[] godkendte, int lgd, int n) {
int[] retur = new int[2];
for (int i=0;i<godkendte.length;i++) {

}

if (firkant(godkendte[i]) == -1) { // Since

// <this weight, alpha_{godkendte[i]}*v>=-1, Theorem 3.1.
// tells us that HA1i(-)=0.

retur[0] 0;

retur[1l] = n;

return retur;

Vaegt tmpv;
if (1gd > 0) {

3

for (int i=0;i<godkendte.length;i++) {

tmpv = kopi();
n = Math.max(n, tmpv.pCohVaegt(godkendte[i]));
retur = tmpv.pErCohomologiO(godkendte, lgd -1,n);
if (retur[0]==0) { // H*i(-)=0 for all i

return retur;

retur[0]=1; // HAi(-) is not necessarily zero
retur[1l]=n;
return retur;
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