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Summary. We propose a new statistical method for obtaining information about
particle size distributions from sectional data without specific assumptions about
particle shape. The method utilizes recent advances in local stereology. We show
how to estimate separately from sectional data the variance due to the local stereo-
logical estimation procedure and the variance due to the variability of particle sizes
in the population. Methods for judging the difference between the distribution of
estimated particle sizes and the distribution of true particle sizes are also provided.

Key words: Local stereology; Particle size distribution; Star-shaped sets; Vari-
ance estimation.

1. Introduction

Most statistical consultants have at least once in their carreer been asked to find
the cell size distribution from a histological section showing plane sections of indi-
vidual cells. One of the principal difficulties in answering this question is that a
plane section of the cells cannot be regarded as a representative sample from the
cell population in the usual statistical sense. Planes sample cells with a probability
proportional to cell height. The involved sampling problem may perhaps be un-
derstood more clearly if the analogy of a tomato salad is used. A uniform random
tomato slice picked from the salad has a higher probability of originating from a
large tomato than from a small tomato.

Swedish mathematical statistician S. D. Wicksell first treated the problem of
estimating the size distribution of spherical particles from plane sections, cf. Wicksell
(1923, 1925). His results were used to study cancer of the spleen where the size
distribution of small focal tumours were to be estimated from observations in plane
sections of tissue. Wicksell’s main results were later derived independently by Scheil
(1935, 1938), Fullmann (1953), Reid (1955) and Santaló (1955).

The mathematical solution of the problem of finding the size distribution of
spherical particles from the size distribution of circular sections is fascinating but
its practical relevance is limited because particles are in most applications not spheri-
cal and the methods developed for spherical particles are very sensitive to departures
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from the assumption of spherical shape. Nevertheless the main part of the statis-
tical literature on estimating particle size distribution from sectional data concerns
spherical particles. Reviews can be found in Cruz-Orive (1983), Stoyan et al. (1995,
Section 11.4, pp. 353–369) and Ohser and Mücklich (2000, Chapter 6).

The problem of estimating the sphere size distribution from the distribution of
circular sections is ill-posed. Techniques proposed for its solution include numerical
analysis (Anderssen and Jakeman, 1975a; Anderssen and Jakeman, 1975b), Gauss-
Chebyshev quadrature methods (Mase, 1995), kernel density estimation (Taylor,
1983; Hall and Smith, 1988), smoothing splines (Nychka et al., 1984), singular value
decomposition (O’Sullivan, 1986) and wavelets (Antoniadis et al., 2001).

This paper provides new statistical tools for obtaining information about parti-
cle size distributions from sectional data without specific assumptions about parti-
cle shape. These tools utilize methods from local stereology, a branch of stereology
that has been developed in the eighties and nineties in close collaboration with users
through publications in non-statistical journals such as Journal of Microscopy, cf.
Sterio (1984), Miles (1985), Cruz-Orive (1987), Gundersen (1988), Jensen and Gun-
dersen (1989), Jensen and Sorensen (1991), Jensen and Gundersen (1993), Tandrup
et al. (1997). It is now clear that local stereological methods are very powerful
in biological and medical application areas. Recent examples are Andersen et al.
(2003), Hundahl et al. (2006) and Hosseini-sharifabad and Nyengaard (2007). The
theory of local stereology has been unified in the monograph Jensen (1998), see also
the related concept of second-order stereology described in Jensen et al. (1990).
An introduction to stereological particle analysis, written for statisticians, may be
found in the recent monograph Baddeley and Jensen (2005, Chapter 11).

In the present paper, we show how these local methods can be developed into
practical statistical procedures for analyzing particle size distributions without spe-
cific assumptions about particle shape. The new tools require that the sampling of
particles is changed, see Section 2 below. The benefits obtained by changing the
sampling are, however, clear. First of all, the mean and variance of the particle
volume distribution can be estimated from sectional data without specific shape as-
sumptions and in some cases even the whole particle volume distribution. It is also
possible to get information about other types of size parameters without specific
shape assumptions.

The organization of the paper is as follows. In Section 2, we describe the prin-
ciples behind local sampling and local estimation of particle sizes. In particular, for
a size parameter ϕ, we discuss how to estimate, from sectional data, (i) the vari-
ance σ2

ϕ of the size parameter in the particle population and (ii) the total estimator
variance σ2

ϕ̂ = σ2
ϕ + τ 2

ϕ, where τ 2
ϕ is the extra variance due to the local stereological

estimation procedure. Specific examples of local particle size estimators are given in
Section 3. In Section 4, we study the distribution of the variance estimators σ̂2

ϕ̂ and
σ̂2
ϕ and give practical guidelines for how many particles we need to sample in order

to get reliable variance estimates. The answer depends on the mixture of shapes
represented in the particle population. In Section 5, we give a simple procedure for
judging how close the distribution of estimated particle sizes is to the distribution
of true particle sizes. In Section 6, the developed tools are tried out on a data set
consisting of sections through neurons from the human hippocampus. Section 7
concludes.
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Figure 1. Two-dimensional illustration of sampling of particles, using their refer-
ence points. All particles with reference points in Q are sampled (shown hatched).
The sections Yi ∩ (yi + L) can be observed completely for particles with yi ∈ Q.

2. Local sampling and local estimation of particle sizes

Let Y be a randomly chosen particle from the particle population {Yi} under study.
We aim at making inference about the distribution of ϕ(Y ) where ϕ is a size param-
eter such as volume, surface area etc. We let µϕ and σ2

ϕ be the mean and variance
of ϕ(Y ).

The basic idea is to collect a sample of particles and for each sampled particle
estimate its size. The sampling and estimation of sizes are based on methods from
local stereology. These methods require that we can associate a reference point
y ∈ Y to each particle Y . In bioscience, this is a mild requirement. If, for instance,
the particles are cells, we may choose the centres of the nuclei of the cells as reference
points.

In contrast to traditional sampling with planes, the sampling is performed such
that the resulting sample is representative for the particle population. Such sampling
can be implemented in a number of ways, cf. e.g. Baddeley and Jensen (2005,
Chapter 11), depending on the type of microscope available, the staining techniques,
the magnification needed for identifying the particles, etc. If optical sectioning of
a transparent tissue block Q is performed, then our sample S may consist of all
particles with reference points in Q, i.e.

S = {i : yi ∈ Q}.

This type of sampling is illustrated in Figure 1.

For each sampled particle Yi, we estimate its size ϕ(Yi), using a local probe
passing through the associated point yi of the sampled particle Yi. In this paper, we
will as local probe mainly use a plane yi + L where L is the parallel plane through
the origin. The size estimator is a function g of the intersection between the particle
and the section plane

ϕ̂(Yi) = g(Yi ∩ (yi + L)), (1)
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where g is chosen such that under the assumption of uniform randomly oriented
(isotropic) particles

E[ϕ̂(Y )] = µϕ. (2)

If the particles cannot be regarded as uniform randomly oriented, we may instead
randomize the orientation of the section plane and still use the estimator ϕ̂.

Based on the sampled particles, a (ratio-)unbiased estimator of µϕ is

µ̂ϕ =
∑

i∈S

ϕ̂(Yi)/N, (3)

where N = N(S) is the number of sampled particles. This result holds for an
arbitrarily positioned sampling cube Q if the particles can be regarded as homoge-
neously distributed in space. If this assumption is unrealistic we may instead choose
the sampling cube Q with uniform random position.

In what follows, we let µϕ̂ and σ2
ϕ̂ be the mean and variance of ϕ̂(Y ). Note that

because of (2), µϕ̂ = µϕ.
The mean particle size µϕ may also be estimated by dividing an estimate of the

total population value
∑

i ϕ(Yi) with an estimate of the number of particles in the
population, cf. e.g. Baddeley and Jensen (2005, Chapter 11, p. 262). This approach
is, however, not appropriate if more information about the particle size distribution
is needed like the variance.

If we are able to determine ϕ(Yi) with high precision, then we can regard

ϕ̂(Yi), i ∈ S, (4)

as a sample from the size distribution. This is the case for optical sectioning of
spherical particles where the size can be measured directly from a central section.
However, the general situation is that the particles are of unknown varying shape.
In such situations, it is important to be able to estimate from sectional data the two
components of the total estimator variance σ2

ϕ̂, consisting of the variance τ 2
ϕ due to

the stereological estimation procedure and the variance σ2
ϕ due to the variability of

particle sizes in the population. We have

σ2
ϕ̂ = σ2

ϕ + τ 2
ϕ. (5)

In order to estimate the variance components from sectional data, we can utilize
that the second moment in the particle size distribution can be estimated, using a
procedure similar to the one used for the estimation of the first moment. Let ψ = ϕ2

and
ψ̂(Yi) = h(Yi ∩ (yi + L))

such that
E[ψ̂(Y )] = µψ.

Then,

µ̂ψ =
∑

i∈S

ψ̂(Yi)/N (6)

is a (ratio-)unbiased estimator of µψ.
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Irrespectively of the interaction structure of the particles, we can always estimate
τ 2
ϕ by

τ̂ 2
ϕ =

1

N

∑

i

ϕ̂(Yi)
2 − µ̂ψ.

We have here utilized that µϕ̂ = µϕ and

τ 2
ϕ = σ2

ϕ̂ − σ2
ϕ

=
[

E(ϕ̂(Y )2) − E(ϕ̂(Y ))2
]

−
[

E(ϕ(Y )2) − E(ϕ(Y ))2
]

= E(ϕ̂(Y )2) − E(ϕ(Y )2).

Using (5), the variance in the particle size distribution can be estimated by

σ̂2
ϕ = σ̂2

ϕ̂ − τ̂ 2
ϕ, (7)

where σ̂2
ϕ̂ is an estimator of the total variance. The actual form of σ̂2

ϕ̂ will depend on
the interaction structure. If we can assume that {yi} and {Yi− yi} are independent
sequencies and {Yi− yi} consists of independent and identically distributed random
sets, then the standard estimator

σ̂2
ϕ̂ =

1

N − 1

∑

i

(ϕ̂(Yi) − µ̂ϕ)
2 (8)

is unbiased for σ2
ϕ̂. The case of interacting particles will be considered in a future

paper, cf. Pawlas and Nyengaard (2007).
A mathematical justification of the results presented in this section can be found

in the Appendix where particles are modelled by a stationary and isotropic marked
point process (Mecke et al., 1990; Stoyan et al., 1995; Stoyan and Stoyan, 1995), see
also Pawlas and Jensen (2006). If this model is not appropriate, the methods can be
justified in a design-based sense using appropriately randomized sampling devices.
For details, see Baddeley and Jensen (2005, Chapter 11, 257–269).

3. Local particle size estimators

Estimators ϕ̂ of the form (1), satisfying (2), have been constructed in local stereology
for a number of size parameters ϕ, including volume and surface area. For volume,
there are at least three possibilities of which we will mainly concentrate on the
following local estimator

V̂ (Y ) = 2

∫

Y ∩(y+L)

‖x− y‖ dx,

see also the related estimator discussed in Cabo and Baddeley (2003). If Y is star-
shaped relative to y such that any ray starting from y hits the boundary of Y exactly
once, then

V̂ (Y ) =
2

3

∫ 2π

0

ρY ∩(y+L)(α)3dα, (9)

where ρY ∩(y+L)(α) is the distance from y to the boundary of Y in the direction
determined by the angle α in the plane y + L. We can rewrite (9) as

V̂ (Y ) =
4π

3
R3,
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where

R =

[
∫ 2π

0

ρY ∩(y+L)(α)3dα

2π

]1/3

.

Note that if Y is a ball centred at y, then ρY ∩(y+L) is constant and the estimator

V̂ (Y ) determines V (Y ) without error. In Jensen and Petersen (1999), the class
of particles, having an exact volume estimator (called quasi-spherical bodies), is
studied. The general situation is, however, that the particles are not spherical (or
quasi-spherical). Indeed, in biological particle populations, a mixture of shapes will
very often be present.

Stochastic simulation for specific shapes can help to get an impression of how
much extra variability the distribution of estimated sizes exhibits compared to the
distribution of true sizes. Let us consider a particle population with particles dis-
tributed as ρBY0 where ρ is a random positive variable, B is a uniform random
rotation and Y0 is a fixed particle. Then, the variance in the particle volume distri-
bution is

σ2
ϕ = Var(V (ρBY0)) = V (Y0)

2Var(ρ3),

while, due to the homogeneity of the volume estimator (V̂ (ρBY0) = ρ3V̂ (BY0)), the
extra variance due to the estimation of volumes becomes

τ 2
ϕ = Var(V̂ (ρBY0)) − Var(V (ρBY0)) = E(ρ6)V (Y0)

2κ, (10)

where

κ =
Var(V̂ (BY0))

V (Y0)2

depends on Y0. If we let k = σϕ̂/σϕ be the increased variability due to the estimation
procedure and γ = σϕ/µϕ the variability in the particle size distribution, we have
under this simplified model that

k =

√

(γ2 + 1)κ

γ2
+ 1. (11)

The value of κ is given in Table 1 for an ellipsoid Y0 with semi-axes a, b and c.
(Ellipsoidal particles have earlier been discussed in, e.g., Wicksell (1926), Cruz-
Orive (1976) and Cruz-Orive (1978).) The value of κ is only dependent on a/b and
b/c. Note that κ is larger for prolate ellipsoids (b = c) than for the corresponding
oblate ellipsoids (a = b). Using Table 1, we can for instance conclude that for a
particle population of ellipsoids with a/b = 2 and b/c = 1, the increased variability
due to the estimation procedure will be

k =

√

(γ2 + 1)0.11835

γ2
+ 1.

For γ = 0.5 we get k = 1.26 while for γ = 1 we get k = 1.11.
There is a total of 14 estimators of the same type as V̂ (Y ) for volume, surface

area, length and number, cf. Jensen (1998). Except for the estimators of volume,
certain angular measurements are needed which may be difficult to implement. Very
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Table 1

The values of κ from (10) for a particle population of ellipsoids with semi-axes of

lengths a, b, c.

a/b b/c κ

1.0 1.0 0
1.0 1.5 0.02937
1.0 2.0 0.07945

1.5 1.0 0.03704
1.5 1.5 0.10154
1.5 2.0 0.17238

2.0 1.0 0.11835
2.0 1.5 0.21857
2.0 2.0 0.31307

recently, Cruz-Orive (2005) has constructed an alternative estimator of surface area
that avoids angular measurements. It is also possible to avoid angular measurements
by sampling in thick sections, see Kiêu and Jensen (1993) and Tandrup et al. (1997).
Length estimation without angular measurements has been discussed in Mouton
et al. (2002).

For the estimation of the variance in the particle size distribution it is needed
to construct an unbiased estimator of Eϕ2(Y ), as explained in Section 2. If ϕ = V ,
such an estimator can be constructed in a canonical fashion. The resulting estimator
has the following form, cf. Jensen (1998),

ψ̂(Y ) = 2π

∫

Y ∩(y+L)

∫

Y ∩(y+L)

∇2(x1 − y, x2 − y) dx2 dx1, (12)

where ∇2(z1, z2) is twice the area of the triangle with vertices O, z1 and z2. If Y is
star-shaped relative to y, then

ψ̂(Y ) =
2π

9

∫ 2π

0

∫ 2π

0

ρY ∩(y+L)(α)3ρY ∩(y+L)(β)3| sin(α− β)| dα dβ. (13)

4. The distribution of σ̂2
ϕ̂ and σ̂2

ϕ

The statistical properties of the variance estimators σ̂2
ϕ̂ and σ̂2

ϕ will depend on the
mixture of particle shapes represented in the particle population, the size variabil-
ity of the particles, the number of sampled particles and the interaction between
particles. A question of great practical importance is to decide on the number N of
particles to be sampled in order to get a desired precision of the estimators. Such
questions can be evaluated by stochastic simulation.

In Figure 2, we report the results of such a simulation for a particle popula-
tion consisting of triaxial ellipsoids with semi-axes of lengths A, B and C, where
(lnA, lnB, lnC) has a normal distribution with parameters ((lna, ln b, ln c),Σ) and
Σ = σ2I3 is a 3×3 diagonal matrix with σ2 in all diagonal elements. Figure 2 shows
histograms based on 1000 simulated observations of σ̂2

ϕ̂/σ
2
ϕ (white) and σ̂2

ϕ/σ
2
ϕ (grey)
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for different choices of particle shape (a, b and c), variability in the particle vol-
ume distribution (γ = σϕ/µϕ) and number of particles (N). The expected values
E(σ̂2

ϕ̂/σ
2
ϕ) and E(σ̂2

ϕ/σ
2
ϕ) = 1, respectively, are indicated by vertical lines.

The left column in Figure 2 corresponds to the case a = b = c = 1 where
the particles do not have a systematic deviation from spherical shape but the actual
shapes may vary considerably. The right column is based on very elongated ellipsoids
a = 4, b = 1, c = 0.25. In this case we have quite high variability in the estimation
of the variances. To avoid that the estimator σ̂2

ϕ of the variance in the distribution
of particle volume is negative a large number (N=1000, say) of observations are
needed. For the more realistic and moderately elongated ellipsoids in the middle
column (a = 2, b = 1, c = 0.5), negative variance estimates are seldom observed.

It may tentatively be concluded from Figure 2 that for a population of nearly
spherical particles, sampling and measurement of N = 100 particles or less provide
variance estimates of a reliable order of magnitude while for a population with
marked nonspherical particle shapes N = 1000 or more are needed.

5. Assessing the difference between true and estimated sizes

In some applied papers, see e.g. Tandrup and Braendgaard (1994) and Vestergaard
et al. (1997), the distribution of estimated sizes has been used as an estimate of
the distribution of true sizes. In this section, we provide tools for evaluating the
difference between these two distributions. We suppose that estimates of µϕ, σ

2
ϕ and

σ2
ϕ̂ are available from the sections. Furthermore, we will utilize that it is generally

known that

ϕ̂(Y ) = ϕ(Y ) · Z,

where EZ = 1 and, consequently, the size variable ϕ(Y ) and the error variable Z
are uncorrelated. It does, however, not seem to be possible to derive exact results
about the difference between the distribution of ϕ̂(Y ) and ϕ(Y ) without further
assumptions. One possibility is to assume that the size variable and the error vari-
able are independent (they are known to be uncorrelated) and both log normally
distributed. Then, it is easy to derive the following result:

D = sup
t>0

|P (ϕ̂(Y ) ≤ t) − P (ϕ(Y ) ≤ t)|

= sup
t>0

∣

∣

∣

∣

∣

Φ

(

ln t
√

1 + γ2k2

√

ln(1 + γ2k2)

)

− Φ

(

ln t
√

1 + γ2

√

ln(1 + γ2)

)
∣

∣

∣

∣

∣

, (14)

where γ = σϕ/µϕ, k = σϕ̂/σϕ and Φ is the distribution function of the standard
normal distribution.

In Figure 3, we directly compare the distribution of estimated volumes with the
distribution of true volumes. There is good agreement between the size of D and
the apparent similarity of the two distributions.

6. Example

As an example, we will use the methods developed in the present paper in a study
of the volume distribution of neurons in the Granular layer of the hippocampus of
the human brain. The hippocampi came from autopsies of brains from five Danish
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Figure 2. Distributions of σ̂2
ϕ̂/σ

2
ϕ (white) and σ̂2

ϕ/σ
2
ϕ (grey) for a = 1, b = 1, c = 1

(left column), a = 2, b = 1, c = 0.5 (middle column), a = 4, b = 1, c = 0.25 (right
column). For further details, see text.
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Figure 3. The distribution of the estimated volumes (histograms) and the distribu-
tion of true volumes. The simulated particle populations are the same as in Figure
2. The value of the index D is (from top left to bottom right) 0.034, 0.177, 0.360,
0.046, 0.120 and 0.258, respectively.
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Table 2

The estimates of µϕ (103 µm3), σ2
ϕ (106 µm6), τ 2

ϕ (106 µm6), γ2, k2 and D of

neurons from the Granular layer of the human hippocampus from 5 subjects.

Subject 1 Subject 2 Subject 3 Subject 4 Subject 5

µϕ 0.87993 0.65658 0.99920 0.59748 0.63681
σ2
ϕ 0.05327 0.09129 0.14895 0.02204 0.03423

τ2
ϕ 0.02345 0.02539 0.10257 0.01538 0.01601

γ2 0.06880 0.21176 0.14919 0.06174 0.08441
k2 1.44036 1.27814 1.68856 1.69777 1.46779
D 0.05507 0.04037 0.08452 0.07952 0.05891

males, aged 52–84 years. A total of N = 25 neurons was sampled in the Granular
layer of each subject. The neurons could be regarded as star-shaped with respect
to the centres of their nuclei which were chosen as reference points. A digital image
was taken when the nucleus of a sampled neuron was in focus. The boundary of the
neuron profile was traced by an expert. The resulting 25 central sections of neurons
from the Granular layer are shown in Figure 4 for each of the five subjects.

For each subject, we used the methods described in detail in Sections 2 and 3
to estimate the mean particle volume µϕ, the variance σ2

ϕ in the particle volume
distribution and the variance τ 2

ϕ due to the stereological estimation procedure. Neu-
rons in the Granular layer may be regarded as uncorrelated in position and size.
Accordingly, the total variance σ2

ϕ̂ was estimated, using (8).
In Table 2, the estimates of µϕ, σ

2
ϕ and τ 2

ϕ are shown for each subject. The
estimates of the squared coefficient of variation γ2 = σ2

ϕ/µ
2
ϕ in the particle volume

distribution and the increased variability k2 = σ2
ϕ̂/σ

2
ϕ due to the stereological esti-

mation procedure are also given. The values of the index D have been calculated
from formula (14) in Section 5, using the values of γ2 and k2 estimated from the
sectional data. Note that D is quite small for all subjects.

In order to get a rough idea about particle shapes in 3D, we have used the relation
(11) and the estimates of k and γ to calculate an estimate of the shape factor κ.
For the 5 subjects, we get the following estimates of κ

0.0283, 0.0486, 0.0894, 0.0406, 0.0364.

Comparing with Table 1, the deviations from spherical shape seem to be quite
modest. This particle population resembles mostly the simulated population in the
upper left corner in Figure 2. This is in accordance with the fact that sampling of
N = 25 particles was enough to give well-behaved estimators.

We also analyzed a similar data set collected from the CA1 layer of the human
hippocampus. The same five subjects were examined. For each subject N = 25
neurons were sampled from the CA1 layer. It turned out that the number of neurons
sampled in this case was too small to give valid estimates of the variance components
because the neurons in this layer of the hippocampus exhibited a much more marked
discrepancy from spherical shape. Actually, all the estimates of the variance in the
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Figure 4. Sections through reference points of 25 neurons from the Granular layer
of the human hippocampus in five subjects.
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particle volume distribution were negative presumably due to a heavy left tail of the
distribution of the estimator of the variance in the particle volume distribution, see
the grey histograms in the upper right corner of Figure 2.

The shape variability of the neurons has earlier been studied in Hannila et al.
(2004), see also Hobolth (2003).

7. Conclusion

In the present paper, we have developed new statistical tools for obtaining informa-
tion about particle size distributions from sectional data without specific assump-
tions about particle shape. It has been shown how the mean and variance in the
particle size distribution can be estimated, using methods from local stereology. The
methods have been exemplified by choosing volume as size parameter. An index,
describing the difference between the distribution of true sizes and the distribution
of estimated sizes, has been constructed. The value of this index can be estimated
from sectional data.
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Appendix

Marked point processes

The particles are assumed to be non-empty compact subsets of R
3. Together with

the reference points they constitute a marked point process Ξ = {[yi;Yi]} which is
assumed to be stationary and isotropic. To such a marked point process we can
associate a mark distribution Pm which is a probability distribution on the set of
non-empty compact subsets of R

3. The particle size distribution corresponding to
a size parameter ϕ is then the distribution of ϕ(Y ) where Y is a random particle
distributed according to Pm. The mean and variance in the particle size distribution
are

µϕ =

∫

ϕ(Y )Pm(dY )

and

σ2
ϕ =

∫

(ϕ(Y ) − µϕ)
2Pm(dY ).

The function g in the size estimator ϕ̂ in (1) is chosen such that

∫

S2
+

g(Y ∩ Lω)
dω

2π
= ϕ(Y ),

where Y is any fixed particle, Lω is a plane through the origin with normal vector
ω and S2

+ is the positive hemisphere. Utilizing that Pm is isotropic, it can be shown
that

∫

ϕ̂(Y )Pm(dY ) = µϕ,

which is the precise formulation of (2) in the main text.
Using that ϕ as a size parameter is invariant under translations and rotations,

and the Campbell-Mecke theorem for marked point processes, we furthermore have

E
∑

i∈S

ϕ̂(Yi) = λV (Q)µϕ,

where λ is the intensity of particles. In particular,

EN(S) = λV (Q),

and it follows that
E
∑

i∈S ϕ̂(Yi)

EN(S)
= µϕ.

Accordingly, the estimator µ̂ϕ in (3) of the main text is ratio-unbiased.
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