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STABILITY RESULTS FOR CONVEX BODIES

IN GEOMETRIC TOMOGRAPHY

MARKUS KIDERLEN

Abstract. We consider the question in how far a convex body (non-empty compact
convex set) K in n-dimensional space is determined by tomographic measurements
(in a broad sense). Usually these measurements are derived from K by geometrical
operations like sections, projections and certain averages of those. We restrict to
tomographic measurements F (K, ·) that can be written as function on the unit sphere
and depend additively on an analytical representation Q(K, ·) of K. The first main
result states that F (K, ·) is a multiplier-rotation operator of Q(K, ·) whenever the
tomographic data depends continuously and rotationally covariant on K. For n ≥ 3,
these operators are classical multiplier transforms.

We then turn to stability results stating that two convex bodies whose tomographic
measurements are close to one another must be close in an appropriate metric on
the family of convex bodies. We improve the Hölder exponents of known stability
results for these transforms. The key idea for this improvement is to use the fact
that support functions of convex bodies are elements of any spherical Sobolev space of
derivative order less than 3/2. As the analytical representation Q(K, ·) may be a power
of the support function, a power of the radial function, or a surface area measure,
the class of tomographic data considered here is quite large. This is illustrated by
many examples ranging from classical projection and section functions to directed
tomographic transforms.

1. Introduction and main results

A classical result of Aleksandrov [1] states that an origin-symmetric convex body
(non-empty compact convex set) K in Rn with interior points is uniquely determined by
its shadow areas on all hyperplanes. More precisely, let u⊥ be the linear hyperplane with
unit normal vector u in the unit sphere Sn−1 and let Vn−1(K|u⊥) be the shadow area of
K in direction u, that is the (n − 1)-dimensional volume of the orthogonal projection
K|u⊥ of K on u⊥. Aleksandrov used the fact that the shadow area in direction u can
be written as

Vn−1(K|u⊥) =
1

2

∫
Sn−1

|〈u, v〉|Sn−1(K, dv), (1)

where 〈u, v〉 is the usual inner product of u and v and Sn−1(K, ·) is the surface area
measure (of order n − 1) of K, cf. [32]. As the even part of the latter determines a
full-dimensional origin-symmetric convex body uniquely, a uniqueness proof is reduced
to showing that the cosine transform C : µ 7→

∫
Sn−1 |〈·, v〉|µ(dv) determines the even

part of a measure µ. One way to do so is to use spherical harmonic analysis and to
show that the cosine transform is a multiplier transformation: there is a sequence of
real numbers a0, a1, . . . such that if µ ∼

∑∞
k=0 µk denotes the (formal and condensed)

Key words and phrases. Convex body, support function, radial function, surface area measure,
geometric tomography, multiplier transform, multiplier-rotation transform, stability estimate, spherical
Sobolev space.
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spherical harmonic expansion of µ, then
∑∞

k=0 akµk is the spherical harmonic expansion
of its cosine transform. Explicit calculation shows that a2k is nonzero for all k implying
that the even part of µ is indeed determined by C(µ), and Aleksandrov’s uniqueness
result holds.

This method of proof is known to extend to other tomographic measurements, and
we will give many examples below. They all have in common, that the tomographic
data in question can be written as a multiplier transformation of some analytical repre-
sentation of K. The first theorem presents a common framework for results of this type.
To specify the way in which the tomographic measurements depend on an analytical
representation of K, we return to the motivating example of shadow areas. Due to
(1) and the fact that the Blaschke sum K#K ′ of two convex bodies K and K ′ with
interior points is defined by means of the addition of their surface area measures, the
tomographic data

F (K,u) = Vn−1(K|u⊥), u ∈ Sn−1,

depends Blaschke additively on the convex body K, i.e.

F (K#K ′, ·) = F (K, ·) + F (K ′, ·). (2)

Generalizing this property, we will work with tomographic data F (K, ·) that satisfies

F (K♦M, ·) = F (K, ·) + F (M, ·), (3)

where ♦ may stand for Blaschke addition [32, p. 394], Minkowski addition [32, p. 41],
Firey’s p-addition [12] or the radial addition [21, p. 19] of convex bodies. By definition
of the Blaschke sum, (2) implies

Sn−1(K, ·) + Sn−1(K
′, ·) = Sn−1(M, ·) + Sn−1(M

′, ·)

⇒ F (K, ·) + F (K ′, ·) = F (M, ·) + F (M ′, ·)
(4)

for all convex bodies K, K ′, M, M ′ with interior points. Hence, F depends additively on
the (n−1)-st surface area measure. More generally, we say that F depends additively on
an analytical representation Q(K, ·) of K, if (4) holds with Q(K, ·) replacing Sn−1(K, ·).
Here, Q(K, ·) can either be a power of the support function, a power of the radial
function or a j-th order surface area measure of K, j = 1, . . . , n − 1. We note that
the expression analytical is used here as opposed to geometric and does not involve any
differentiability assumptions. It is convenient to replace (3) by the additive dependence
condition on Q(K, ·) (in the sense of (4)), as the latter does not require that the family
{Q(K, ·) : K is a convex body} is closed under addition. For example, if F (K, ·) is
the j-th order girth function with j ∈ {2, . . . , n− 2} then F depends additively on the
surface area measure Sj(K, ·) of order j, but condition (3) cannot be written down,
as the addition of two j-th order surface area measures is not necessarily a j-th order
surface area measure itself.

Besides the additivity assumption, we impose that the tomographic data is a square
integrable function on the unit sphere, depends continuously on the underlying convex
body and is independent of rotations of the coordinate system. We summarize these
conditions using K as notation for the family of all convex bodies in Rn, endowed with
the Hausdorff metric. For this and other concepts in convex geometry, Schneider’s
book [32] is a standard reference.

(i) For all K ∈ K, F (K, ·) is an element of L2, the Hilbert space of square integrable
functions on the unit sphere,

(ii) K 7→ F (K, ·) is continuous,
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(iii) F (K, ·) intertwines the action of the special rotation group SOn, meaning that

ϑF (K, ·) := F (K, ϑ−1(·)) = F (ϑK, ·), ϑ ∈ SOn,

holds for all K ∈ K,
(iv) there is an analytical representation Q(K, ·) of K such that F (K, ·) depends

additively on Q(K, ·), i.e. for all K,K ′, M, M ′ ∈ K,

F (K, ·) + F (M, ·) = F (K ′, ·) + F (M ′, ·)
holds whenever

Q(K, ·) + Q(M, ·) = Q(K ′, ·) + Q(M ′, ·).
An analytical representation Q(K, ·) of K can either be a power of its support
function hθ

K , θ 6= 0, a power of its radial function ρθ
K , θ 6= 0, or a surface area

measure Sj(K, ·), j ∈ {1, . . . , n − 1}. In the cases Q(K, ·) = hθ
K , where θ is

not an odd integer, and Q(K, ·) = ρθ
K , we assume that K contains the origin

o. When θ is an even integer, hθ
K does not determine K uniquely (consider

singletons), and this is why we impose o ∈ K also in this case.

Under these assumptions, F (K, ·) is essentially a multiplier transformation of Q(K, ·).

Theorem 1. Let F (K, ·) be a mapping satisfying (i) - (iv) with analytical representation
Q(K, ·) ∼

∑∞
k=0 Qk(K, ·). Then there is a real sequence a = (ak) and a sequence (ϑk)

in SOn with

F (K, ·) ∼
∞∑

k=0

akϑkQk(K, ·) (5)

for all K ∈ K. For n ≥ 3 all the rotations ϑk are the identity. The sequence (|ak|)
grows at most polynomially in k.

The numbers a0, a1, a2, . . . are called multipliers of F (K, ·). We refer to F (K, ·)
satisfying (5) as a multiplier-rotation operator. The two-dimensional case (n = 2) is
qualitatively different, as the rotation group is Abelian. A multiplier-rotation operator
can be written as a multiplier operator

F (K, ·) ∼
∞∑

k=0

akQk(K, ·)

if and only if K 7→ F (K, ·) intertwines the action of the (general) rotation group On.
Theorem 1 implies in particular that this is the case for all tomographic transforms if
n ≥ 3.

Note that the assumptions on F (K, ·) are quite weak. In particular, it is assumed that
F (K, ·) depends continuously on K, not on Q(K, ·). To show the multiplier property
we therefore first prove that K 7→ F (K, ·) gives rise to an associated continuous linear
transform T on a sufficiently large class of spherical functions, and apply results of
spherical harmonic analysis to T . Schneider [31], the author [27] and Schuster [35]
exploited this idea in the special cases where Q(K, ·) is either the support function or
the (n−1)-st surface area measure of K. We extend these arguments to general Q(K, ·).
Let Cm be the class of all m-times continuously differentiable functions, m ∈ N0. It is
shown in Proposition 9 that the linear space spanned by {Q(K, ·) : K ∈ K} contains
C2, if Q(K, ·) is a (non-vanishing) power of the support function or the radial function.
In the case where Q(K, ·) is a surface area measure, Proposition 10 shows that the
family of all functions in C2d(n+1)/4e with centroid at the origin is contained in the linear
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span of {Q(K, ·) : K ∈ K}. (An integrable function f is here identified with the signed
measure µ by dµ(u) = f(u)du).) These results, also of interest in their own right, allow
to define T on Cm for sufficiently large m.

Like in the special case of shadow areas, injectivity properties of K 7→ F (K, ·) depend
on the injectivity properties of Q(K, ·) and on the sequence of multipliers a. Define the
sets

Ka,hθ :=

{
{K ∈ K : hθ

K ∼
∑

ak 6=0(h
θ
K)k}, θ ∈ 2N0 + 1,

{K ∈ K : hθ
K ∼

∑
ak 6=0(h

θ
K)k, o ∈ K}, θ 6∈ 2N0 + 1,

and

Ka,ρθ = {K ∈ K : ρθ
K ∼

∑
ak 6=0

(ρθ
K)k, o ∈ K}.

As K is determined by Sj(K, ·) only up to translation and only if dim K > j (cf. [32,
Corollary 7.2.5]) we set

Ka,Sj
= {K ∈ K : Sj(K, ·) ∼

∑
ak 6=0

(Sj(K, ·))k, dim K > j, and s(K) = o},

where s(K) is the Steiner point of K. If F (K, ·) is satisfying (i) - (iv) and has a as
multiplier sequence, then K 7→ F (K, ·) is injective on Ka,Q. To give some examples,
assume that exactly the even multipliers a2k, k = 0, 1, 2, . . . , of F are non-zero. Then
Ka,hθ = Ka,ρθ is the family of origin-symmetric convex bodies and Ka,Sj

is the subfamily
of origin-symmetric convex bodies of dimension at larger than j. Another typical ex-
ample occurs, when exactly the odd multipliers and a0 are non-zero. Then, Ka,h is the
family of bodies of constant width and Ka,Sn−1 is the family of full-dimensional centered
bodies of constant brightness.

For later use we define for nonnegative r and R the families

K(R) := {K ∈ K : K ⊂ RBn} and K(r, R) := {K ∈ K : rBn ⊂ K ⊂ RBn},
(where Bn is the Euclidean unit ball in Rn) and

Ka,Q(R) := Ka,Q ∩ K(R), Ka,Q(r, R) := Ka,Q ∩ K(r, R).

We return to the example of shadow areas from the introduction. Given uniqueness,
it is natural to ask whether small deviations of corresponding shadow areas of two
suitable convex bodies imply that the bodies are close to one another. Such a stability
result has been shown by Bourgain and Lindenstrauss [5]. We state it in the form
given by Groemer [21]. For any γ, r, R > 0, there is a constant c1 = c1(n, γ, r, R) > 0
such that

δ(K, K ′) ≤ c1‖Vn−1(K|u⊥)− Vn−1(K
′|u⊥)‖2/(n(n+4))−γ (6)

holds for all origin-symmetric convex bodies K, K ′ ∈ K(r, R). Here, δ(K, K ′) is the
Hausdorff distance between K and K ′ and ‖·‖ denotes the L2-metric on the unit sphere
(with respect to u). Independently of Bourgain and Lindenstrauss, Campi [8] has
shown a similar stability result in the special case n = 3 with an exponent 1/9 − γ,
which is better than 2/21 − γ in (6). This improvement is due to the fact that in
[5], properties of first order derivatives of support functions are used, whereas Campi
works with derivatives of these functions of (fractional) order η < 3/2, close to 3/2. The
original motivation for the present work was the question whether Campi’s improved
stability result can be extended to higher dimensions. Firstly such an extension would
require that any family of uniformly bounded support functions on Sn−1 is bounded
with respect to the spherical Sobolev norm of derivative order η. This is proved and
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used in [8] for n = 3; from another paper [9] of Campi, it easily follows that this is
also true in arbitrary dimensions n ≥ 3; see Proposition 7 below. The second main
ingredient for Campi’s approach is a bound depending on the dimension of the space
of spherical harmonics of degree k. This dimension grows moderately (linear) in k in
R3, but at least quadratic for n ≥ 4, which makes Campi’s method unfit in higher
dimensions. A closer look, however, reveals that a combination of Campi’s ideas and
the Poisson integral estimates exploited by Bourgain and Lindenstrauss leads to
an improved exponent in (6) for arbitrary n ≥ 2: a special case of Theorem 4 states
that 2/(n(n + 4)) can be replaced by 2/(n(n + 1)), which yields 1/6 in R3.

We will now formulate stability results for general tomographic data satisfying con-
ditions (i) – (iv). It turns out that these stability results only depend on the underlying
analytical representation Q(K, ·) and on the multipliers a0, a1, a2, . . . of F . In all stabil-
ity statements, we will therefore assume (5) instead of (i) – (iv), keeping in mind that
this assumption is weaker. Considering the inverse problem to reconstruct K from its
tomographic data F (K, ·) ∼

∑∞
k=0 Fk, relation (5) suggests, roughly speaking, to re-

construct Q(K, ·) using
∑∞

k=0 a−1
k ϑ−1

k Fk in a first step, and then reconstructing K from
this approximation of Q(K, ·). The continuity properties of such an inversion therefore
depend on the asymptotic behavior of (|ak|−1). We will require that this behavior is
polynomial: assume that there are non-negative constants b and β such that

|ak|−1 ≤ b(1 ∨ k)β, for all k with ak 6= 0. (7)

Here a∨b is the maximum of a, b ∈ R. Before stating stability results, some examples are
discussed, where the multipliers or at least their asymptotic behavior can be determined.
These are examples, where F (K, ·) can be written as an integral transform of Q(K, ·).
For instance, we have already seen that the shadow area function can be written as
the cosine transform of the (d − 1)st surface area measure of K. We list the most
common integral transforms and their properties. Their connection to tomographic
measurements will be clarified later. All these transforms are defined here on the space
C of continuous functions on Sn−1, but can be extended to weakly continuous transforms
on the space of finite signed measures.

(a) The cosine transform, given by

C(f) :=

∫
Sn−1

|〈v, ·〉| f(v) dv, f ∈ C,

has the property that all its odd multipliers a2k+1 vanish. The even multipliers satisfy
(7) with β = (n + 2)/2, and this exponent is best possible.

(b) The spherical Radon transform R(f) is defined by

(Rf)(u) :=

∫
Sn−1∩u⊥

f(v) dv, f ∈ C,

where integration is understood with respect to spherical Lebesgue measure on the
great sphere orthogonal to u ∈ Sn−1. All the odd multipliers a2k+1 vanish; the even
multipliers satisfy (7) with β = (n− 2)/2, and this exponent is best possible.

(c) The sine transform, given by

S(f) :=

∫
Sn−1

√
1− 〈v, ·〉2f(v) dv, f ∈ C,
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coincides up to a multiplicative constant with the composition RC, (see e.g. [37, equation
(5.4)]) and thus, again, all the odd multipliers a2k+1 vanish and the even multipliers
satisfy (7) with β = n.

(d) The spherical cap transform. For u ∈ Sn−1 and fixed ϕ ∈ (0, π) let

Cϕ(u) := {v ∈ Sn−1 : 〈u, v〉 ≥ cos ϕ}

be the cap of all points on the unit sphere whose angle with u is at most ϕ. The
spherical cap transform or generalized Funk transform (with parameter ϕ) is given by

(Fϕf)(u) :=

∫
Cϕ(u)

f(v) dv, f ∈ C, u ∈ Sn−1.

This transform represents a special case of generalized Minkowski-Funk transforms.
These were treated by Rubin [29] who determined the asymptotic behavior of the
multipliers in the case where ϕ is a rational multiple of π. Put

r0 =
n− 2

4

(
1− 2

ϕ

π

)
and assume that ϕ/π = p/q 6= 1/2 where the natural numbers p and q are relatively
prime. [29, Theorem 3.2] implies that the sequence of multipliers a satisfies (7) with
β = n/2 if qr0 6∈ Z. In the case qr0 ∈ Z, the value β = (n + 2)/2 is best possible.
Note, however, that this does not imply injectivity of Fϕ, as (7) involves only the non-
vanishing multipliers. By the Funk-Hecke formula, the multiplier ak, k > 1, coincides
essentially with the value of the Legendre polynomial P d+2

k−1 (x) at x = cos ϕ; see [29].
Using this, an injectivity proof would require to determine if a given value cos ϕ is
the zero of at least one of the polynomials in the infinite sequence (P d+2

k (x))k. Rubin

determined a strong bound k = k(n, ϕ) ∈ Z such that ak = 0 implies 2 ≤ k ≤ k.
If k < 2 (or none of the finitely many polynomials P d+2

1 (x), . . . , P d+2

k−1
(x) vanishes at

x = cos ϕ) then Fϕ is injective. As examples, he mentions that Fϕ is injective on R3

for ϕ = π/3 and ϕ = π/4. The cases where ϕ is not a rational multiple of π are much
more involved, but it is known that (7) cannot hold with β < (n + 2)/2.

The special case ϕ = π/2, excluded in the above discussion, is easier to handle. As
integration is extended over closed half spheres, the corresponding transform is called
hemispherical transform H = Fπ/2. All the even multipliers a2k of H vanish with the
exception of a0. The odd multipliers satisfy (7) with with β = n/2 being the best
possible exponent.

More details on the first two examples and on the hemispherical transform can be
found e.g. in Groemer’s book [21]. Stepanov [39] discusses general spherical inte-
gral operators of convolution type with an integrable kernel, a setting which does not
include the spherical Radon transform. According to the underlying analytical repre-
sentation, stability results are given in Subsections 1.1 (power of the support function)
and 1.2 (power of the radial function). In Subsection 1.3 we treat tomographic data
which depends additively on the j-th surface area measure. Applications of the general
results will also be given in these subsections. Most of them are well-known (see the
detailed historical remarks in [21]), but we can in almost all cases provide better Hölder
exponents.

1.1. Tomographic data from a power of the support function. In the case,
where the tomographic data depends additively on a power of the support function, a
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stability result follows essentially from Hölder’s inequality, in the form of Proposition
13. It is natural to formulate stability results in terms of the L2-metric on K, given by

δ2(K, K ′) := ‖hK − hK′‖, K, K ′ ∈ K.

Using the known relation (23) below, stability results can be rephrased with the usual
Hausdorff metric at the cost of a weaker exponent.

Theorem 2. Let n ≥ 2. Assume that F (K, ·) satisfies (5) with Q(K, ·) = hθ
K, θ 6= 0,

and that its multipliers satisfy (7). Then, for any γ > 0 and 0 < r ≤ R, there is a
constant c2 = c2(n, θ, b, β, γ, r, R) such that

δ2(K, K ′) ≤ c2‖F (K, ·)− F (K ′, ·)‖
3

3+2β
−γ (8)

holds for all K, K ′ ∈ Ka,hθ(r, R).
If θ ≥ 2 or θ ∈ N, the set Ka,hθ(r, R) can be replaced by Ka,hθ(0, R) or Ka,hθ(R),

respectively.

As the exponent in (8) is not known to be optimal, it is futile to ask for an optimal
leading constant. In the literature, special cases of Theorem 2 where treated, all of
them with θ = 1. Campi [7] was apparently the first who stated a stability result for
tomographic data from support functions: he established stability from the mean width
of hyperplane shadows (see Application (a) below) in the case n = 3. The corresponding
integral transform is the spherical Radon transform. His article is based on earlier work
of his own and uses Jensen’s inequality (which, however, is applied in such a way
that Hölder’s inequality could be used instead); cf. [6]. Goodey and Groemer [18]
make explicit use of Hölder’s inequality to extend Campi’s result to higher dimensions.
Both papers use derivatives of support functions up to order 1 instead of 3/2, and
therefore obtain the weaker Hölder exponent 1/(1 + β). This weaker exponent is also
the one established in [26, Proposition 4], where slightly stronger assumptions than in
Theorem 2 were used.

Applications.

(a) Support function power integrals of central hyperplane projections. For a convex
body K ⊂ Rn (with o ∈ K if θ 6∈ 2N0 + 1), we call

Jn
θ (K) =

∫
Sn−1

hθ
K(u) du

the support function power integral of dimension n and order θ. The tomographic
measurements, given by

F (K, u) = Jn−1
θ (K|u⊥) = (Rhθ

K)(u), u ∈ Sn−1,

can be written as spherical Radon transform of hθ
K . Hence, Theorem 2 can be applied

with β = (n − 2)/2. Ka,hθ now is the family of origin-symmetric convex bodies. It
follows that for any γ > 0 and 0 < r ≤ R, there is a constant c3 = c3(n, θ, γ, r, R) such
that

δ2(K,K ′) ≤ c3‖Jn−1
θ (K|(·)⊥)− Jn−1

θ (K|(·)⊥)‖3/(n+1)−γ (9)

holds for all K, K ′ ∈ Ka,hθ(r, R) (or K, K ′ ∈ Ka,hθ(R), when θ ∈ N). The mean width

w(K) =
2

$n

∫
Sn−1

hK(u) du =
2

$n

Jn
1 (K)
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is essentially the support function power integral of order 1 (with $n being the surface
area of Sn−1). Hence

δ2(K, K ′) ≤ $nc3

2
‖w′(K|(·)⊥)− w′(K|(·)⊥)‖3/(n+1)−γ (10)

for all origin-symmetric K, K ′ ⊂ RBn. The tomographic data w′(K|u⊥) is the mean
width of K|u⊥; the dash indicates that the mean width is taken relative to the hyper-
plane u⊥. However, this is not essential, as u 7→ w(K|u⊥) (with K|u⊥ considered as
a lower dimensional subset of Rn) is proportional to u 7→ w′(K|u⊥). For n ≥ 3, the
Hölder exponent in (10) is better than 2/n obtained by Goodey and Groemer [18].
It should be remarked that their result does not require K,K ′ ⊂ RBn, as their leading
constant depends on certain intrinsic volumes of K and K ′.

Note that Jn
1 (K) also has an interpretation as the probability that an isotropically

and uniformly chosen affine hyperplane hits K. Therefore, (10) can be interpreted as a
stability result for the tomographic data obtained from hitting probabilities with UIR
(uniform isotropic random) hyperplanes in u⊥. Replacing UIR hyperplanes by one-
point sampled hyperplanes, a stability result can be derived from (9) with θ = n. This
is made precise in [28].

(b) Mean width and Steiner point from hyperplane projections. As the mean widths of
hyperplane projections of two convex bodies only allow to compare the even parts of
their support functions, Schneider [34] suggests to use additional information by com-
paring also the Steiner points of the two projections. The Steiner point of a projection
satisfies

s′(K|u⊥) =
n− 1

$n−1

∫
Sn−1∩u⊥

vhK(v) dv =
n− 1

$n−1

(Rf)(u)

with f(v) = vhK(v) (and we apply the spherical Radon transform component-wise to
the vector-valued function f). The even part of f , and thus the odd part of hK is
determined by this information. Following the line of arguments given by Schneider,
using the better estimate for the Hölder exponent, we obtain that

‖w′(K|(·)⊥)− w′(K|(·)⊥)‖ ≤ ε

and
‖|s′(K|(·)⊥)− s′(K|(·)⊥)|‖ ≤ ε

implies
δ2(K, K ′) ≤ c4ε

3/(n+1)−γ

for all K, K ′ ∈ K(R), where c4 = c4(n, γ, R).

(c) Mean directed projection function of order one and averages. Like in (b), the
motivation to consider this tomographic data is that the mean widths of (hyper-)plane
projections only determine the even part of the support function of the unknown convex
body. Goodey and Weil [15] suggest therefore to consider directed measurements
of the projections. Let Ln

k be the Grassmannian of all k-dimensional linear subspaces
of Rn and let u+ be the closed half space bounded by u⊥ (containing u). In view of
the definition of mean width, Goodey and Weil introduce for 1 ≤ k ≤ n − 1 the
function

w1(K; L, u) :=
2

$k

∫
Sn−1∩L∩u+

hK(u) du (11)

of pairs (L, u) with L ∈ Ln
k , u ∈ Sn−1 ∩ L, which we call directed projection mean

width. Integration is understood here with respect to spherical Lebesgue measure on
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Sn−1∩L. (In [15] a different normalization is used and the above function is denoted by
p1,j(K; L, u). More importantly, such functions are discussed in a much more general
framework where directed versions of all classical projection functions of lower order are
stated using tensor formulas.) Applying Theorem 2 to the hemispherical transform in
L and the spherical Radon transform in suitable (k + 1)-dimensional spaces, a stability
result can be derived; see [23] for a proof in a similar situation. Let K, K ′ ∈ K(R) be
given and assume that there is an ε > 0 such that, for all L ∈ Ln

k and all u ∈ Sn−1 ∩ L
we have

|w1(K; L, u)− w1(K
′; L, u)| ≤ ε.

Then, for any γ > 0 there is a constant c5 = c5(n, γ, R) such that

δ2(K, K ′) ≤ c5ε
3/(k+2)−γ.

As K appears to be overdetermined by w1(K; ·), Goodey and Weil [15] suggest to
consider averages of the directed projection mean width, where averaging is understood
with respect to all k-dimensional half-spaces (containing u) in the half-space u+:

F (K, u) :=

∫
Lu⊥

k−1

w1(K; Lu, u) dL, u ∈ Sn−1. (12)

Here Lu⊥

k−1 is the Grassmannian of all (k − 1)-dimensional subspaces in u⊥, Lu is the
linear space spanned by L and u, and integration is understood with respect to the
usual invariant probability measure on Lu⊥

k−1. Clearly, F (K, ·) depends additively on
the analytical representation hK of K and is therefore a multiplier transformation. It
is noted in [15] that in the cases k ≤ (n + 2)/2 and k > (2n + 1)/3, for n 6= 4, as well
as k = 2 for n = 4, all multipliers are non-zero and satisfy (7) with β = n; see also [14].
Theorem 2 implies for these pairs (k, n) of parameters that for any positive γ and R,
there is a constant c6 = c6(n, γ, R) with

δ2(K, K ′) ≤ c6‖F (K, ·)− F (K ′, ·)‖
3

2n+3
−γ (13)

holding for all K, K ′ ∈ K(R). It should be noted that there are infinitely many pairs
(k, n) for which K is not determined by F (K, ·).

Definition (11) is not the only possible way to define a directed version of the (first
order) projection function. As the mean width of K coincides with 2/$nS1(K,Sn−1),
another possible directed extension would be the function

w2(K; L, u) :=
2

$k

S1(K|L, u+ ∩ L ∩ Sn−1)− 1

$k

S1(K|L, u⊥ ∩ L ∩ Sn−1);

cf. the more general directed tomographic data defined by (20) in Subsection 1.3 below.
The same averaging process as in (12) leads to the tomographic data

F (K, u) :=

∫
Lu⊥

k−1

w2(K; Lu, u) dL, u ∈ Sn−1.

Goodey and Weil [16] denote this function (with a different normalization) by
v1,k(K; ·) and show that it can be expressed as an average of lower dimensional hemi-
spherical transforms of a differential operator, applied to hK . This shows that F (K, ·)
depends additively on the support function. Furthermore F : K → L2 depends con-
tinuously on K. This follows from the fact that if K1, K2, . . . is a sequence of convex
bodies converging to some K ∈ K, and L ∈ Ln

k is fixed then w2(Km; L, u) converges
to w2(K; L, u) for almost all u in the unit sphere in L; see [16, p. 47]. Hence, the
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assumptions of Theorem 1 are satisfied and F (K, ·) is a multiplier transformation of
the support function of K. In [16], this was derived in a different manner and it was
shown that for 2 ≤ k < (2n − 3)/5 or (n − 2)/2 ≤ k ≤ n − 1 all multipliers (with the
exception of a1) are non-zero and satisfy (7) with β = n.

Theorem 2 now implies that for these pairs (k, n) of parameters and any positive γ
and R, there is a constant c7 = c7(n, γ, R) such that

δ2(K, K ′) ≤ c7‖F (K, ·)− F (K ′, ·)‖
3

2n+3
−γ (14)

holds for all K, K ′ ∈ K(R) with Steiner point at the origin. In view of (26), the Hölder
exponent 2/(n+1)2 for stability in the Hausdorff metric in [16, Theorem 7] can therefore
be improved to 6/((n+1)(2n+3))−γ. There are also know pairs (k, n) of parameters for
which F (K, ·) does not determine K uniquely, e.g. those in {(k, 5k + 4) : k = 1, 2, . . .}.

(d) Mean k-dimensional projection. Let 1 ≤ k ≤ n− 1 be given and set

F (K, u) :=

∫
Ln

k

hK|L(u)dL, u ∈ Sn−1,

where integration is understood with respect to the invariant probability measure on Ln
k

and the set K|L is considered as a (lower dimensional) convex body in Rn. Obviously,
F (K, ·) satisfies the conditions (i)-(iv). Considering (iv), F (K, ·) is additive with respect
to Q(K, ·) = hK , as hK|L equals the restriction of hK to the unit sphere in L. It is shown
in [26], that F (K, ·) can be written as an integral transform of hK with a trigonometric
integral kernel, but the multipliers and their asymptotic behavior are only known in
special cases. In particular, there are pairs (k, n) with k > 1 such that F (K, ·) does
not determine the convex body K ⊂ Rn uniquely. One such pair is (k, n) = (2, 14);
see Goodey [17]. We refer to [26] for a detailed discussion and reference list and only
note two special cases with improved Hölder exponents: For projections on hyperplanes,
Spriestersbach [38] (see the correcting comment in [26]) obtained a stability result
with Hölder exponent 1/2. This can be improved to

δ2(K, K ′) ≤ c8‖F (K, ·)− F (K ′, ·)‖3/5−γ,

holding for all convex bodies K and K ′ in a given ball RBn, k = n − 1. For general
k ∈ {2, . . . , n − 1} with the property that (k, n) is not an exceptional pair, one would
expect

δ2(K, K ′) ≤ c9‖F (K, ·)− F (K ′, ·)‖3/(3+2(n−k))−γ (15)

for all K, K ′ ∈ K(R). Combining the refined estimates in the present work with the
arguments leading to [26, Theorem 1], it follows that (15) actually holds for origin-
symmetric K and K ′ if k is even and for bodies K and K ′ of constant width if k is
odd.

1.2. Tomographic data from a power of the radial function. Working with pow-
ers of radial functions, the radial L2-distance

ρ2(K, K ′) = ‖ρK − ρK′‖

will appear in stability estimates for convex bodies K and K ′ with o in their interior.
As before, these results can be stated in terms of the Hausdorff distance using (26),
below, at the cost of a weaker Hölder exponent. Note that the Hölder exponent in the
next theorem is the same as the one obtained in Theorem 2.
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Theorem 3. Let n ≥ 2. Assume that F (K, ·) satisfies (5) with Q(K, ·) = ρθ
K, θ 6= 0,

and that its multipliers satisfy (7). Then, for any γ > 0 and 0 < r ≤ R, there is a
constant c10 = c10(n, θ, b, β, γ, r, R) such that

ρ2(K, K ′) ≤ c10‖F (K, ·)− F (K ′, ·)‖
3

3+2β
−γ

holds for all K, K ′ ∈ Ka,ρθ(r, R).

Applications.

(a) Radial power integrals of central hyperplane sections. Establishing a common frame-
work for different geometrically motivated applications, Groemer [20] introduces the
radial power integral In

θ (K) of dimension n and order θ for a convex body K by setting

In
θ (K) =

∫
Sn−1

ρθ
K(u)du.

The tomographic data obtained by considering radial power integrals of central hyper-
plane sections can be written as

F (K, u) = In−1
θ (K ∩ u⊥) = (Rρθ

K)(u), u ∈ Sn−1.

Theorem 3 can be applied with β = (n− 2)/2. Hence, for 0 < r ≤ R, θ 6= 0 and γ > 0
there is a constant c11 = c11(n, θ, γ, r, R) such that

ρ2(K, K ′) ≤ c11‖In−1
θ (K ∩ (·)⊥)− In−1

θ (K ′ ∩ (·)⊥)‖
3

n+1
−γ (16)

for all origin-symmetric K, K ′ ∈ K(r, R). The same stability result is shown in [20] and
[21], but with the generally weaker exponent 2/n.

As the (n− 1)-dimensional volume of the central section with the hyperplane u⊥ is

Vn−1(K ∩ u⊥) =
1

n− 1
In−1
θ (K ∩ u⊥), u ∈ Sn−1,

(16) can be specialized to

ρ2(K, K ′) ≤ (n− 1)c11‖Vn−1(K ∩ (·)⊥)− Vn−1(K
′ ∩ (·)⊥))‖

3
n+1

−γ,

with the assumptions as above. Campi [9, Theorem 1.1] has found the same exponent,
generalizing also to bodies that are not necessarily convex, but star shaped with suitable
additional properties. Groemer ([21] and [23]) gives also a geometric interpretation
of 2/$nI

n
1 (K) as average radial length of K and gives a corresponding stability result

with Hölder exponent 2/n which can be improved as above.

(b) Cone-volumes. Let Γϕ(u), ϕ ∈ (0, π), be a solid cone of revolution with vertex
o, axis-direction u, and fixed opening angle 2ϕ. The orientation is here such that
u ∈ Γϕ(u). Consider the tomographic data obtained as the intersection volumes with
such cones:

F (K, u) := Vn(K ∩ Γϕ(u)) =
1

n
(Fϕρn

K)(u), u ∈ Sn−1,

where we assumed o ∈ K. If ϕ is a rational multiple of π then the multipliers of F (K, ·)
satisfy (7) with β = (n + 2)/2. Hence, for 0 < r ≤ R, and γ > 0 there is a constant
c12 = c12(n, γ, r, R) such that

ρ2(K, K ′) ≤ c12‖Vn(K ∩ Γϕ(·))− Vn(K ′ ∩ Γϕ(·))‖
3

n+5
−γ

for all convex bodies K, K ′ ∈ Ka,ρθ(r, R). In view of the discussion on the spherical cap
transform, the Hölder exponent can be improved to 3/(n + 3)−γ for certain parameter
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values (to be precise, whenever qr0 6∈ Z). For n = 3 and ϕ ∈ {π/4, π/3}, we have
Ka,ρθ(r, R) = K(r, R). The special case ϕ = π/2, where the tomographic data consists
of half-volumes reads

ρ2(K, K ′) ≤ c12‖Vn(K ∩ (·)+)− Vn(K ′ ∩ (·)+)‖
3

n+3
−γ

for all convex bodies K, K ′ ∈ K(r, R) with the property that

ρn
K(u)− ρn

K(−u) = ρn
K′(u)− ρn

K′(−u)

for all u ∈ Sn−1.

(c) Directed section functions and their averages. In analogy to directed projection
functions one can define a directed section function vk(K; ·) on {(L, u) ∈ Ld

k × Sn−1 :
u ∈ L} by

vk(K; L, u) = Vk(K ∩ L ∩ u+).

Groemer [23] showed that vn−1(K; ·) determines K uniquely and derived a stability
result. Goodey and Weil [14] remark that this implies corresponding uniqueness
and stability results for arbitrary k ≥ 2 with a method of proof like in Application (c)
in Section 1.1. (Of course, stability in the case k = 1 is trivial.) To improve the Hölder
exponent we use Theorem 3. Fix k ∈ {2, . . . , n − 1}, 0 < r ≤ R, ε > 0, γ > 0, and
K, K ′ ∈ K(r, R) and assume that

|vk(K; L, u)− vk(K
′; L, u)| ≤ ε

holds for all L ∈ Ln
k , u ∈ Sn−1 ∩ L. Under these assumptions there is a constant

c13 = c13(n, γ, r, R) such that

ρ2(K, K ′) ≤ c13‖F (K, ·)− F (K ′, ·)‖
3

k+2
−γ.

As it appears that the body K is overdetermined by directed section functions,
Goodey and Weil [14] consider averaged directed section functions with k-dimen-
sional half-planes, 2 ≤ k ≤ n − 1. Motivated by the stereological concept of vertical
sections, they consider

F (K,u) :=

∫
Lu⊥

k−1

vk(K; L, u) dL.

They show that F (K, ·) is an integral transform of the analytical representation ρk
K

of K. This transform coincides with the one for the average mean directed projection
function (11), so injectivity holds for the same pairs (k, n). Due to Theorem 3, a
stability result analogous to (13) is valid, stating that

ρ2(K, K ′) ≤ c13‖F (K, ·)− F (K ′, ·)‖
3

2n+3
−γ

for all K, K ′ ∈ K(r, R), where c13 = c13(n, γ, r, R) is some constant. In view of (26), the
Hölder exponent 2/(n + 1)2 for stability in the Hausdorff metric in [14, Theorem 1.2]
can therefore be improved to 6/((n + 1)(2n + 3))− γ.

1.3. Tomographic data from a surface area measure. The following stability
results are refinements of those in Hug and Schneider [25], which in turn are based
on the mentioned work of Bourgain and Lindenstrauss [5]. With the exception of
Theorem 5, results are formulated in terms of the Hausdorff distance.
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Theorem 4. Let n ≥ 2 and R ≥ r > 0 be given. Assume that F (K, ·) satisfies (5) with
Q(K, ·) = Sn−1(K, ·) and that its multipliers satisfy (7).

If β < 3/2, there is a constant c14 = c14(n, b, β, r, R) such that

δ(K, K ′) ≤ c14‖F (K, ·)− F (K ′, ·)‖
1
n

holds for all K, K ′ ∈ Ka,Sn−1(r, R).
If β ≥ 3/2 and γ > 0, there is a constant c15 = c15(n, b, β, γ, r, R) such that

δ(K, K ′) ≤ c15‖F (K, ·)− F (K ′, ·)‖
1

n(β−1/2)
−γ

holds for all K, K ′ ∈ Ka,Sn−1(r, R).

This improves the Hölder exponent 1/(n(β +1))−γ obtained by Hug and Schnei-
der [25]. We turn to tomographic data depending on surface area measures of lower
order j and first treat the simplest case j = 1. The idea is to reduce the problem to to-
mographic data depending on support functions using the fact that S1(K, ·) is obtained
by applying a second order differential operator to h(K, ·). As this differential operator
is a linear combination of the spherical Laplace-Beltrami operator and the identity, its
multipliers are explicitly known.

Theorem 5. Let n ≥ 2 and R > 0 be given. Assume that F (K, ·) satisfies (5) with
Q(K, ·) = S1(K, ·) and that its multipliers satisfy (7).

If β ≤ 2 then
δ2(K, K ′) ≤ c16‖F (K, ·)− F (K ′, ·)‖

holds for all K, K ′ ∈ Ka,S1(R), where c16 = 2(n− 1)b.
If β > 2, then, for any γ > 0, there is a constant c17 = c17(n, b, β, γ, R) such that

δ2(K, K ′) ≤ c17‖F (K, ·)− F (K ′, ·)‖
3

2β−1
−γ

holds for all K, K ′ ∈ Ka,S1(R).

Hug and Schneider [25] also show a stability result for lower order surface area
measures in the case where F (K, ·) is the cosine transform of Sj(K, ·). It still holds
(with a better exponent) in the general setting, as is shown below.

Theorem 6. Let n ≥ 2 and R ≥ r > 0 be given. Assume that F (K, ·) satisfies (5) with
Q(K, ·) = Sj(K, ·), j ∈ {2, . . . , n− 2} and that its multipliers satisfy (7).

If β < 3/2, then there is a constant c18 = c18(n, b, β, r, R) such that

δ(K, K ′) ≤ c18‖F (K, ·)− F (K ′, ·)‖
1

(n+1)2j−1 (17)

holds for all K, K ′ ∈ Ka,Sj
(r, R).

If β ≥ 3/2 and γ > 0, then there is a constant c19 = c19(n, b, β, γ, r, R) such that

δ(K, K ′) ≤ c19‖F (K, ·)− F (K ′, ·)‖
1

(n+1)(2β−1)2j−2−γ

holds for all K, K ′ ∈ Ka,Sj
(r, R).

Applications.

(a) Illumination and brightness measurements. Motivated by applications in scattering
theory, Anikonov and Stepanov [3] consider tomographic data, which is obtained
as a linear combination of shadow area and surface area of the “illuminated part” of a
convex body,

F (K, u) := aVn−1(K|u⊥) + bSn−1(K,Sn−1 ∩ u+), u ∈ Sn−1.
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They show that F (K, ·) determines the convex body K up to translation if and only
if the weights a, b ∈ R satisfy a 6= 0 6= b and a + b 6= 0. As the integral transforms
involved here are the cosine transform and the hemispherical transform, Theorem 4
implies a stability inequality with Hölder exponent arbitrarily close to 2/(n(n + 1)). A
stability result for this data in the case n = 3 was also derived in [2], but requires that
a 6th-order derivative of F (K, ·) is uniformly small.

(b) Girth functions and projection functions. Let Vj(K) be the j-th intrinsic volume
of K, j ∈ {1, . . . , n− 1}. For the j-th order girth function, given by

F (K, u) := Vj(K|u⊥) = 1
2
(CSj(K, ·)) (u), u ∈ Sn−1,

we can apply the above theorems with β = (n + 2)/2. Note that only origin-symmetric
convex bodies are determined by one of their girth functions. For j = n−1, Theorem 4
leads to the improvement of (6), already discussed in the introduction. For j = 1,
Theorem 5 can be used. The two-dimensional case is special, as β = 2, so

δ2(K, K ′) ≤ c16‖V1(K|(·)⊥)− V1(K
′|(·)⊥)‖,

which is not amazing, as in the planar case, 1/2V1(K|u⊥) is the support function of a
rotation of K about the origin with rotation angle π/2. For n ≥ 3, we obtain

δ2(K, K ′) ≤ c17‖V1(K|(·)⊥)− V1(K
′|(·)⊥)‖

3
n+1

−γ (18)

for all origin-symmetric K, K ′ ∈ K(R). This is rephrasing (10). For the cases 2 ≤ j ≤
n− 2, Theorem 6 yields

δ(K, K ′) ≤ c19‖Vj(K|(·)⊥)− Vj(K
′|(·)⊥)‖

1

(n+1)22j−2−γ
(19)

for all origin-symmetric K, K ′ ∈ K(r, R), improving the Hölder exponent

1

(n + 1)(n + 4)2j−2
− γ

in [25, Theorem 5.3].
It is well known that stability for girth functions implies stability for more general

projection functions. Suppose 1 ≤ j ≤ k ≤ n − 1 and assume that there is an ε > 0
with

|Vj(K|L)− Vj(K
′|L)| ≤ ε

for all L ∈ Ln
k . Then Kubota’s integral recursion (see e.g. [21, (A.46)]), applied in u⊥,

gives
|Vj(K|u⊥)− Vj(K

′|u⊥)| ≤ c19ε

for all u ∈ Sn−1, where c19 = c19(n, k, j) is a constant. The improved Hölder exponents
for girth functions therefore extend to general projection functions.

(c) Directed projection functions and their averages. Assume 1 ≤ j < k ≤ n − 1.
The classical (lower order) projection functions, which where mentioned above, can be
written as

L 7→ Vj(K|L) = cjkS
′
j(K|L, Sn−1 ∩ L).

Here cjk =
(

k
j

)
/(kκk−j) with κm being the volume of the unit ball in Rm. The dash

indicates that the surface area measure is calculated in the subspace L. Goodey and
Weil [16] consider directed projection functions

vj,k(K; L, u) = cjkS
′
j(K|L, Sn−1 ∩ u+)− cjk

2
S ′

j(K|L, Sn−1 ∩ u⊥), (20)
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yielding the j-th order surface area measure of the part of K|L which is illuminated
in direction u ∈ L. The second term in (20) vanishes for almost all u ∈ L and the
remaining term coincides with the semi-girth of K introduced by Groemer in [22]
for n = 3, k = 2 and j = 1. For centrally symmetric K the function 2vj,k(K; ·) is
independent of u and coincides with Vj(K|L). The stability result [16, Theorem 2]
(which is essentially based on the properties of cosine and hemispherical transform in
a fixed but arbitrary (k + 1)-dimensional subspace) can be improved by modifying its
proof. An application of Theorem 6 yields the following slightly strengthened version.
Assume that 2 ≤ j < k ≤ n − 1, 0 < r ≤ R, γ > 0, and that K, K ′ ∈ K(r, R) have
coinciding Steiner point. If there is an ε > 0 such that, for each L ∈ Ln

k we have

|vj,k(K; L, u)− vj,k(K
′; L, u)| ≤ ε

for almost all u ∈ Sn−1 ∩ L, then there is a constant c20 = c20(n, b, β, γ, r, R) such that

δ(K,K ′) ≤ c20ε
1

(k+2)2 2j−1−γ
.

For j = 1, Theorem 5 can be applied instead and yields an Hölder exponent arbitrarily
close to 3/(k + 2)2.

As convex bodies seem to be overdetermined by directed projection functions, av-
erages are considered in [16], as well. These averages are defined in analogy with the
average directed section functions discussed earlier. Besides a general injectivity result
for centrally symmetric sets, Goodey and Weil discuss the case j = 1 in detail, which
we treated in Subsection 1.1.

(d) Integrals of sections. For 1 ≤ k ≤ n − 1, Goodey and Weil [13] consider the
tomographic data

F (K, ·) =

∫
Ln

k

∫
L⊥

h(K ∩ (L + x), ·) dx dL. (21)

The right hand side of (21) is the support function of a convex body which is called
mean section body of K, as it is derived from the Minkowski average of all k-dimensional
UIR (uniform isotropic random) planar sections of K. For k = 2 and n ≥ 3 there is an
xK ∈ Rn with

F (K, ·) = 〈xK , ·〉+
1

(n− 1)π

∫
Sn−1

<) (−v, ·) sin<) (−v, ·) Sn−1(K, dv)

where <) (v, u) is the smaller angle between the unit vectors u and v. From this repre-
sentation and Theorem 1 it follows that K 7→ F (K, ·)−〈xK , ·〉 is a multiplier operator.
The multipliers ak, k 6= 1, are determined explicitly in [13], showing that they are all
nonzero and that (7) is satisfied with β = n. Theorem 4 implies that for any positive
γ, r and R, there is a constant c21 = c21(n, γ, r, R) such that

δ(K, K ′) ≤ c21‖F (K, ·)− F (K ′, ·)‖
1

n(n−1/2)
−γ

holds for all K, K ′ ∈ K(r, R) with Steiner point at the origin. A stability result for this
tomographic data was already announced in [13].

(e) Integrated surface area of parallel hyperplane sections. Consider the tomographic
measurements

F (K, u) :=
1

2

∫ ∞

−∞
Vn−2(K ∩ (u⊥ + tu)) dt.
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obtained by invariantly integrating the surface areas of hyperplane sections of K with
hyperplanes parallel to u⊥. Schneider [30] observed, that

F (K, ·) =
1

n− 1
S(Sn−1(K, ·))

and thus any full-dimensional origin-symmetric convex body K is uniquely determined
by F (K, ·). Theorem 4 implies a stability result with Hölder exponent arbitrarily close
to 1/(n(n − 1/2)). Motivated by a stereological application and the fact that the odd
part of Sn−1(K, ·) cannot be recovered from F (K, ·), Schneider [33] suggests to restrict
surface area measurements to the upper boundary ∂uK of K. The set

∂uK := {x ∈ ∂K : there is an outer normal v to K at x with v ∈ u+}
can roughly be thought of as the part of the boundary of K that is illuminated by
parallel light coming from direction u. With Hk denoting k-dimensional Hausdorff
measure, the new tomographic data can be written as

F (K, u) :=

∫ ∞

−∞
Hn−2(∂uK ∩ (u⊥ + tu)) dt. (22)

Schneider [33] not only shows that

F (K, u) =

∫
Sn−1∩u+

√
1− 〈v, u〉2 Sn−1(K, dv),

but also determines the even multipliers of the involved integral transform explicitly and
the odd ones approximatively. As they are all non-zero, he concludes that a convex body
is uniquely determined up to translation by this tomographic data. His calculations
imply that (7) is satisfied for the odd multipliers with β = (n − 2)/2. By Theorem 4,
a stability result on the class of all convex bodies can only be derived with the same
Hölder exponent as obtained for the sine transform. If we restrict to convex bodies
of constant brightness, the stability inequality holds with a better Hölder exponent,
namely 1/n for n = 3 and n = 4, and 2/(n(n − 3)) − γ for n ≥ 5. Generalizing (22),
Goodey et al. [19] consider the upper surface integrals

Hk(K, u) =

∫
Lu⊥

k

∫
L⊥
Hk−1(∂uK ∩ (L + x))dxdL,

where 1 ≤ k ≤ n − 1 is fixed. They show that Hk(K, ·) coincides with a multiple of
Hn−1(K, ·), which is the tomographic data given by (22). Hence, the above stability
considerations also hold for Hk(K, ·).

2. Notations, known and basic results

The following notations are used throughout the paper. If not self-explaining or
already introduced earlier, detailed definitions will be given later.

〈x, y〉 Euclidean scalar product of x, y ∈ Rn, n ≥ 2,

|x| Euclidean norm of x ∈ Rn,

Bn = {x ∈ Rn : |x| ≤ 1} unit ball of Rn,

Sn−1 = {x ∈ Rn : |x| = 1} unit sphere of Rn,

C real Banach space of real continuous functions on Sn−1,
endowed with the maximum norm ‖ · ‖∞,
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Cm m-times continuously differentiable functions in C,
m ∈ N0, (with C0 = C),

Lp real Banach space of p-integrable real functions on Sn−1 with
norm ‖ · ‖p,

〈〈·, ·〉〉 and ‖ · ‖ natural scalar product and norm in L2 (hence ‖ · ‖ = ‖ · ‖2),

Hη Sobolev space of L2-functions with derivatives up to order
η ≥ 0,

‖ · ‖Hη natural norm in Hη,

Hn
k space of spherical harmonics of dimension n and degree k,

P n
k (·) Legendre polynomial of dimension n and degree k,

M real vector space of finite signed measures on the sphere Sn−1

endowed with the weak topology,
SOn proper orthogonal group of Rn,

K family of convex bodies in Rn,

δ(K, K ′), δ2(K, K ′) Hausdorff distance and L2-distance of K and K ′ in K,

ρ2(K, K ′) radial L2-distance of K and K ′ in K,

Vj(K) j-th intrinsic volume of K ∈ K, j ∈ {0, . . . , n},
hK support function of K ∈ K,

ρK radial function of K ∈ K,

Sj(K, ·) j-th surface area measure of K ∈ K, j ∈ {0, . . . , n− 1}.

The surface area of the unit sphere Sn−1 in Rn is denoted by $n, the volume of the
Euclidean unit ball Bn by κn. The spaces Lp, 1 ≤ p ≤ ∞ are consisting of all functions
f : Sn−1 → R which are p-integrable with respect to spherical Lebesgue measure (with
the usual meaning when p = ∞). The space L2 of square integrable functions on the
sphere is endowed with the scalar product

〈〈f, g〉〉 =

∫
Sn−1

f(u)g(u) du. f, g ∈ L2,

and the derived norm ‖ · ‖. The rotation of a function f ∈ L1 is defined by

ϑf(u) = f(ϑ−1u), u ∈ Sn−1, ϑ ∈ SOn.

The non-empty compact convex subsets of Rn are called convex bodies and the family
of all convex bodies is denoted by K. The support function

hK = max{〈x, ·〉 : x ∈ K}

of K ∈ K is considered as a function on Sn−1, if not otherwise stated. The Hausdorff
metric on K can conveniently be defined by

δ(K,K ′) = ‖hK − hK′‖∞, K, K ′ ∈ K.

The L2-metric on K, defined in Section 1.1, is equivalent to the Hausdorff metric: for
K, K ′ ∈ K(R) we have

$−1/2
n δ2(K, K ′) ≤ δ(K, K ′) ≤ c22δ2(K, K ′)2/(n+1), (23)



18 MARKUS KIDERLEN

where

c22 =

(
(n + 1)n(n− 1)

2$n−1

)1/(n+1)

R(n−1)/(n+1)

(see e.g. [21, Proposition 2.3.1]). The mean value theorem implies that

δ2(K, K ′) ≤ c23‖hθ
K − hθ

K′‖ (24)

holds for all K,K ′ ∈ K(r, R) and θ 6= 0, with

c23 = |θ|−1
(
r1−θ ∨R1−θ

)
.

We note similar results for the radial L2-distance. If K, K ′ ∈ K(r, R) then

ρ2(K, K ′) ≤ c23‖ρθ
K − ρθ

K′‖ (25)

and

δ(K, K ′) ≤ c24ρ2(K, K ′)2/(n+1); (26)

see [21, Lemma 2.3.2], also for an explicit value of c24 = c24(n, r, R).
If not otherwise stated, the following facts about spherical harmonic analysis can

be found in Groemer’s book [21]. Let Hn
k be the space of spherical harmonics of

order k and dimension n. Fix u ∈ Sn−1. Up to multiplication with a constant, there
is exactly one spherical harmonic Yk ∈ Hn

k , which is zonal with respect to u (i.e. it
is invariant under all rotations at the origin fixing u). The additional normalizing
condition Yk(u) = 1 implies Yk = P n

k (〈u, ·〉), where P n
k is the Legendre polynomial

of degree k and dimension n. The (condensed) spherical harmonic expansion of an
integrable function f on the sphere is denoted by f ∼

∑∞
k=0 fk, where

fk = c(k)

∫
Sn−1

f(u)P n
k (〈u, ·〉) du,

with c(k) = dimHn
k/$n. Let M be the vector space of finite signed measures on the

unit sphere, endowed with the weak topology. We will also work with the (formal)
spherical harmonic expansion of signed measures µ ∈M, writing µ ∼

∑∞
k=0 µk, where

µk = c(k)

∫
Sn−1

P n
k (〈u, ·〉) µ(du).

For f ∈ C∞ and µ ∈ M with spherical harmonic expansions f ∼
∑∞

k=0 fk and µ ∼∑∞
k=0 µk, respectively, the generalization of Parseval’s identity∫

Sn−1

f dµ =
∞∑

k=0

〈〈fk, µk〉〉 (27)

holds. Due to (27), the spherical harmonic expansion of µ ∈M determines this measure
uniquely. A more general discussion of spherical harmonic expansions for distributions
(i.e. generalized functions) on the sphere can be found in [27].

Derivatives of a function f on the sphere are understood as derivatives of its ho-
mogeneous extension of degree zero. In particular ∇0f is the gradient of this exten-
sion, restricted to Sn−1 and ∆0 is the spherical Laplace-Beltrami operator. For every
k = 0, 1, 2, . . . , the set Hn

k is an eigenspace of ∆0 and the corresponding eigenvalue
(or multiplier) is −k(k + n − 2). Let Cm ⊂ C, m ∈ N, be the real vector space of all
m-times continuously differentiable functions. Convergence in this space is understood
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as uniform convergence of all derivatives up to order m. Set C∞ =
⋂∞

m=0 Cm. If f ∈ C2,
then Green’s formula and Parseval’s equality imply∥∥|∇0f |

∥∥2
= −〈〈f, ∆0f〉〉 =

∞∑
k=0

k(k + n− 2)‖fk‖2.

We will also need fractional derivatives of spherical functions. For η ≥ 0 we define the
Sobolev space Hη as the family of those square integrable functions f ∼

∑∞
k=0 fk for

which

‖f‖2
Hη :=

∞∑
k=0

(1 ∨ k)2η‖fk‖2

is finite. The space Hη is a Banach space with norm ‖ · ‖Hη . In view of the eigenvalues
of the Laplace-Beltrami operator, Campi [10] introduces the same space considering
functions f ∈ L2 for which

∞∑
k=0

(k(k + n− 2))η‖fk‖2

converges. The convergence of this sum implies that
∞∑

k=0

(k(k + n− 2))η/2fk

converges in the L2-sense to a function, which is denoted by (−∆0)
η/2f . We have, of

course, H0 = L2. Campi [9, Lemma 4.1] shows that if 0 < η < 3/2, |∇0f | ∈ L∞, and
∆0f ∈ L1, then

‖(−∆0)
η/2f‖2 ≤ c25‖|∇0f |‖∞‖∆0f‖1 (28)

for some constant c25 = c25(n, η), and hence f ∈ Hη. We note that Parseval’s equality
implies

〈〈f, (−∆0)
η/2 g〉〉 = 〈〈(−∆0)

η/2f, g〉〉 (29)

for f, g ∈ Hη, which generalizes the well-known self-adjointness of ∆0.
The above concepts can in particular be applied to powers of support functions and

radial functions. Let K be a convex body and hK ∼
∑∞

k=0 hk be the spherical harmonic
expansion of its support function. Then the constant 2h0 coincides with the mean
width w(K) of K and h1 = 〈s(K), ·〉 is the support function of a singleton containing
the Steiner point s(K) of K. We mention an important connection between support
functions and first order surface area measures. Berg [4] showed that

S1(K, ·) = �hK (30)

in the sense of distributions, where

� =
∆0

n− 1
+ 1

is a second order differential operator. Note that � acts as a multiple λk of the identity
on Hn

k , where

λk = −(k − 1)(k + n− 1)

n− 1
, k = 0, 1, 2, . . . . (31)

Let K ⊂ RBn, R > 0, be strictly convex and x(u) be the point in bd K with outer
unit normal u ∈ Sn−1. Then, considering hK as a (positive homogeneous) function
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on Rn, ∇hK(u) = 〈x(u), ·〉 and thus ‖|∇hK |‖∞ ≤ R. Using the fact that hK(·) is
homogeneous of degree one, this relation can be transferred to ∇0hK and yields

‖|∇0hK |‖∞ ≤ 2R. (32)

This relation also holds without the assumption of strict convexity. If K has a smooth
boundary, then �hk = S1(K, ·) is a nonnegative function, and thus

−(n− 1)hK ≤ ∆0hK .

The last inequality, together with the additional assumption o ∈ K implies |∆0hK | ≤
∆0hK + (n− 1)hK . Integrating this, using also (29) with η = 2, gives

‖∆0hK‖1 ≤ (n− 1)$nR. (33)

Substituting (32) and (33) into (28) shows

‖(−∆0)
η/2hK‖ ≤ c26, (34)

where 0 < η < 3/2 and c26 = c26(n, η, R) is independent of K ⊂ RBn. An approxima-
tion argument shows that (34) is true even without the smoothness assumptions on K.
Also, the assumption o ∈ K can obviously be dropped possibly increasing the constant
c26. In particular, hK ∈ Hη for any positive η < 3/2. (34) was shown by Campi [8] in
the case n = 3. We generalize these observations slightly.

Proposition 7. Fix 0 < r ≤ R, 0 < η < 3/2. Then the following sets are bounded in
Hη:

(a) {hθ
K : K ∈ K(r, R)} for θ ∈ R,

(b) {hθ
K : K ∈ K(0, R)} for θ ≥ 2,

(c) {hθ
K : K ∈ K(R)} for θ ∈ N.

Proof. For θ = 1 the estimate (34) implies the strongest claim (c), so we may assume

θ 6∈ {0, 1}. For this proof only let f̂ be positive homogeneous extension of degree zero
of the spherical function f . We have

∇(̂f θ) = ∇(f̂)θ = θ(f̂)θ−1∇f̂

and

∆(̂f θ) = θf̂ θ−2
(
(θ − 1)|∇f̂ |2 + f̂∆f̂

)
.

For f = hK with K ∈ K and rBn ⊂ K ⊂ RBn, (32) and (33) give

‖|∇0h
θ
K |‖∞ = ‖|θ(hK)θ−1(u)∇0hK(u)|‖∞

≤ |θ|(rθ−1 ∨Rθ−1)‖|∇0hK(u)|‖∞ ≤ c27(n, θ, r, R)

and

‖∆0h
θ
K‖1 ≤ |θ|(rθ−2 ∨Rθ−2) ‖(θ − 1)|∇0hK |2 + hK∆0hK‖1 ≤ c28(n, θ, r, R).

The claim (a) now follows from (28). If θ ≥ 2 then rθ−1∨Rθ−1 = Rθ−1 and rθ−2∨Rθ−2 =
Rθ−2 are independent of r, so we may replace the condition rBn ⊂ K by o ∈ K (i.e.
hK ≥ 0) when θ is not an integer, and omit it completely for θ ∈ N. �

Similar results hold for powers of the radial function of a convex body. If K∗ denotes
the polar body of K (with the origin o in the interior), then ρ−1

K = hK∗ and rBn ⊂ K ⊂
RBn implies 1/RBn ⊂ K∗ ⊂ 1/rBn. This gives the following result.
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Corollary 8. Fix 0 < r ≤ R, 0 < η < 3/2, and θ ∈ R. Then

{ρθ
K : K ∈ K(r, R)}

is a bounded set in Hη.

Campi [10, Theorem 2.4 and Lemma 2.5] showed Corollary 8 for the case θ = 1. His
proof already contains all essential arguments for the general case.

3. Proofs and auxiliary results

3.1. Proof of Theorem 1. A first step to prove Theorem 1 is to show that any
sufficiently smooth function can be written as a linear combination of Q(K, ·) with
coefficients in {±1}. The next two Propositions provide this result for the different
choices of Q(K, ·).

Proposition 9. Let θ 6= 0. For any f ∈ C2 there is a convex body K with the origin in
its interior, and an r > 0 such that

f = hθ
K − hθ

rBn . (35)

Here, K and r can be chosen in a continuous way, i.e. there is a mapping f 7→ (K, r),
continuous from C2 to K × R>0, such that (35) holds.

Likewise, there is a convex body M with the origin in its interior and an r > 0 such
that

f = ρθ
M − ρθ

rBn . (36)

Here, M and r can be chosen in a continuous way, i.e. there is a mapping f 7→ (M, r),
continuous from C2 to K × R>0, such that (36) holds.

Proof. For θ = 1, the claim was shown by Schneider [31] (cf. also [27, p. 5555]).
His arguments can be extended to the case θ 6∈ {0, 1} as follows. To start, consider
only functions f ∈ C2 which are positive on Sn−1. Let f̌ be the positive homogeneous
extension of degree one of f 1/θ. For s ≥ 0, the function

g(x) =
(
‖x‖θ + s(f̌)θ(x)

)1/θ
, x 6= o,

has gradient

∇g(x) = g1−θ(x)
(
‖x‖θ−2x + s(f̌)θ−1(x)∇f̌(x)

)
.

The matrix of its second derivatives (at a point u ∈ Sn−1) therefore is given by

Hg(u) =(1− θ)g−1(u)∇g(u) (∇g(u))> + g1−θ(u)
[
I + (θ − 2)uu>

+ s(θ − 1)f̌ θ−2(u)(∇f̌)(u)
(
(∇f̌)(u)

)>
+ sf̌ θ−1(u)Hf̌ (u)

]
,

where I is the identity matrix and Hf̌ is the matrix of second derivatives of f̌ . It is
well known that g is the support function of a convex body if and only if this matrix is
positive semi-definite for all u ∈ Sn−1. Fix u ∈ Sn−1. As g is positive homogeneous of
degree one, u is an eigenvector of Hg(u) with corresponding eigenvalue 0. It is therefore
enough to control y>Hg(u)y for y ∈ Sn−1 ∩ u⊥. If y is a unit vector orthogonal to u,
then

y>∇g(u)(∇g(u))>y = s2g2(1−θ)(u)f̌ 2(θ−1)(u)〈∇f̌(u), y〉2,
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and thus

y>Hg(u)y = g1−θ(u)
[
1 + sf̌ θ−1(u)y>Hf̌ (u)y (37)

+ s(θ − 1)f̌ θ−2(u)〈∇f̌(u), y〉2
(
1− s

(
f̌(u)/g(u)

)θ
) ]

.

As 0 < 1− s
(
f̌(u)/g(u)

)θ ≤ 1, the last summand is not smaller than −1/2, whenever

s ≤ s1(u) := 1
2
|1− θ|−1f 2−θ(u)|∇f̌(u)|−2.

Let ηf̌ (u) be the smallest eigenvalue of Hf̌ (u) and let

s ≤ s2(u) :=

{
∞, if ηf̌ (u) ≥ 0,
− 1

2ηf̌ (u)
f 1−θ(u), if ηf̌ (u) < 0.

Then s ≤ min{s1(u), s2(u)} implies that Hg(u) is positive semi-definite. Setting

si = min
u∈Sn−1

si(u), i = 1, 2,

and ρ = min{s1, s2} > 0 we see that

gρ(x) =
(
‖x‖θ + ρ(f̌)θ(x)

)1/θ
, x 6= o,

is the support function of a convex body N . As hN = gρ > 0 on the unit sphere, o is
an interior point of N and

f = ρ−1hθ
N − ρ−1

on Sn−1. We obtain
f = hθ

K − hθ
rBn

with r := ρ−1/θ and K := ρ−1/θN . The functions s1(u) and s2(u) depend continuously
on f and so do ρ and r. This also implies the continuity of f 7→ (1/ρ+f)1/θ = hK . Hence
K depends continuously on f . Summarizing, we have shown (35) and the corresponding
continuity statement for the family of all positive functions f ∈ C2. The positivity
condition is here not essential, as we can apply the above arguments to the function
f + 1 + ‖f‖∞ and use the fact that the constant 1 + ‖f‖∞ only changes the radius r in
the representation of f .

The second claim is an easy consequence of the above and polar duality, using again
that ρK∗ = h−1

K . Applying (35) with θ replacing −θ gives

f = h−θ
K − h−θ

rBn = ρθ
K∗ − ρθ

1/rBn

for a suitable convex body K with o in its interior and r > 0. This shows (36). The
continuity of K 7→ K∗ on the class of convex bodies (with o as interior point) implies
the continuity statement and the proof is complete. �

For m ∈ N0, let Cm
∗ be the space of of all functions f ∈ Cm which are centered in the

sense that

f1 = c(1)

∫
Sn−1

〈u, ·〉f(u) du ≡ 0.

Proposition 10. Let Vj be the linear subspace of M spanned by the cone {Sj(K, ·) :
K ∈ K0}, j ∈ {1, . . . , n− 1}. Then, for any j ∈ {1, . . . , n− 1},

C2d(n+1)/4e
∗ ⊂ V1 ⊂ Vj,

and there is a continuous mapping

f 7→ (K1, . . . , Kj, r)
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from C2d(n+1)/4e
∗ to Kj × R>0 such that

f =

j∑
i=1

Sj(Ki, ·)− Sj(rB
n, ·).

Remark 11. Like in the case j = 1, also when j = n−1, any f ∈ C∞∗ can be written as

f = Sj(K, ·)− Sj(rB
n, ·)

(with a suitable convex body K and r > 0), as Vn−1 is closed under addition. This is
not true for 2 ≤ j ≤ n − 2. The proof of Proposition 10 is a refinement of Weil’s
proof in [40, Theorem 3.5], where it is shown that differences of j-th order surface area
measures are dense in the set M∗ := {µ ∈ M | µ1 = o} of all signed measures with
centroid at the origin.

Proof. Assume f ∈ C2d(n+1)/4e
∗ with f ∼

∑∞
k=0 fk, and let λk be given by (31). The sum∑

k 6=1

λ−1
k fk

converges uniformly to a function hf ∈ C2
∗ and the mapping f 7→ hf from C2d(n+1)/4e

∗ to
C2
∗ is continuous. This follows from Seeley [36, Theorem 4(b)]; cf. [27, p. 5549] for a

similar reasoning. As λ0, λ1, . . . are the multipliers of �, we have �hf = f . There is a
convex body K and an r > 0, both continuously depending on hf , with hf = hK−hrBn

by Proposition 9, and (30) implies

f = �hf = S1(K, ·)− S1(rB
n, ·) ∈ V1.

The pair (K, r) constructed this way depends continuously on f and the proposition is
shown for j = 1.

To show the claim for 2 ≤ j ≤ n− 1 we start by fixing K ∈ K and show that there
is a linear combination of the j-th surface area measures of

K, K + Bn, K + 2Bn, . . . , K + (j − 1)Bn

which coincides with S1(K, ·) (up to addition of a suitable multiple of spherical Lebesgue
measure). Consider the linear combination

µj(K, ·) =
1

j!

j−1∑
s=0

(
j − 1

s

)
(−1)j−1−sSj(K + sBn, ·) ∈ Vj.

Using that

Sj(K + sBn, ·) =

j∑
i=0

(
j

i

)
sj−iSi(K, ·),

we obtain

µj(K, ·) =

j∑
i=0

b(i)Si(K, ·),

where the coefficients are given by

b(i) =
1

j!

(
j

i

) j−1∑
s=0

(
j − 1

s

)
(−1)j−1−ssj−i.
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From [24, p. 64, (xxi)], it follows b(1) = 1 and b(t) = 0 for all 2 ≤ t ≤ j. The constant
b(0) = (j − 1)/2 is not explicitly needed in what follows, but we give it for the reader’s
convenience. We obtain

µj(K, ·) = S1(K, ·) +
j − 1

2
S0(B

n, ·), (38)

as S0(K, ·) = S0(B
n, ·). Observing that for any µ ∈ V1, there are K and K ′ in K such

that

µ = S1(K, ·)− S1(K
′, ·) = µj(K, ·)− µj(K

′, ·) ∈ Vj,

we see V1 ⊂ Vj.
To construct the continuous mapping f 7→ (K1, . . . , Kj, r) we use the proposition

for the case j = 1, which has already been treated: There is a continuous mapping
f 7→ (K, ρ) such that

f = S1(K, ·)− S1(ρBn, ·).
Obviously, r := ((j − 1)/2 + ρ)1/j and

Ki :=

(
1

j!

(
j − 1

i− 1

))1/j

(K + (i− 1)Bn), i = 1, . . . , j,

depend continuously on f and we obtain from (38) and Sj(B
n, ·) = S0(B

n, ·)
j∑

i=1

Sj(Ki, ·)− Sj(rB
n, ·) = µj(K, ·)− j − 1

2
S0(B

n, ·)− ρS1(B
n, ·)

= S1(K, ·)− S1(ρBn, ·) = f. �

Lemma 12. Let θ 6= 0 and assume that D is one of the (abstract) cones {hθ
K : K ∈

K, o ∈ K}, {ρθ
K : K ∈ K, o ∈ K} (supplied with the topology induced by the maximum

norm) and {Sj(K, ·) : K ∈ K} (supplied with the weak topology). Then D ∩ C∞ is
dense in D.

Proof. We distinguish the different cases:

(a) D = {hθ
K : K ∈ K, o ∈ K}. The case θ = 1 is well known (cf. Schneider [32,

Theorem 3.3.1] and trivially implies the general case.

(b) For D = {ρθ
K : K ∈ K, o ∈ K}, we may restrict considerations to convex bodies

K with o ∈ int K and the claim follows from (a) by polar duality.

(c) Fix K ∈ K. According to (a), there is a sequence (Ki) of convex bodies with
C∞ support functions and limi→∞ Ki = K. By [32, Corollary 2.5.3], Sj(Ki, ·) has
a C∞ density for i = 1, 2, 3, . . . and the claim follows from the weak continuity of
K 7→ Sj(K, ·). �

Proof of Theorem 1. Assume that F satisfies (i) - (iv) and set

V =

{ k∑
i=1

εiQ(Ki, ·) : K1, . . . , Kk ∈ K, ε1, . . . , εk ∈ {±1}, k ∈ N
}

.

By (iv), the mapping T : V → L2, given by

Tf =
k∑

i=1

εiF (Ki, ·)
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with f =
∑k

i=1 εiQ(Ki, ·) ∈ V is well defined and linear. Due to (iii), T commutes with
rotations. Propositions 9 and 10 imply that C2 ⊂ V and Cm

∗ ⊂ V , m = 2d(n + 1)/4e,
depending on the choice of Q(K, ·). When Q(K, ·) is a surface area measure, we define

Tf := T (f − f1), f ∈ Cm,

and thus, T is defined on all of Cm, independent of the analytical representation. By an
application of Schur’s Lemma (cf. [31, p. 67] in a similar situation), it follows that for
any k ∈ N0, there is ak ∈ R and a ϑk ∈ SOn (with ϑk being the identity when n ≥ 3)
such that

Tf = akϑkf, f ∈ Hn
k . (39)

Here a1 = 0, when Q(K, ·) is a surface area measure.
The continuity statements in Propositions 9 and 10 and (ii) imply that T : Cm → L2

is continuous. If f ∈ C∞ with f ∼
∑∞

k=0 fk, then
∑∞

k=0 fk converges to f in Cm and
(39) implies

Tf ∼
∞∑

k=0

akϑkfk.

In particular, if f = Q(K, ·) is in C∞, we may use F (K, ·) = TQ(K, ·) and obtain

Q(K, ·) ∼
∞∑

k=0

Qk(K, ·) ⇒ F (K, ·) ∼
∞∑

k=0

akϑkQk(K, ·).

Due to Lemma 12, any Q(K, ·), K ∈ K, is the limit of a sequence (Q(Ki, ·)) in C∞, and
thus the last implication holds for all K ∈ K. This shows (5).

It remains to show that (|ak|) is increasing at most polynomially in k. The mapping
G : C∞ → R with f 7→ ‖Tf‖2 is a spherical distribution (generalized function) of order
at most m. As Sn−1 is compact, there is a continuous function g and a differential
operator D such that

G(f) =

∫
Sn−1

(Df)(v)g(v) dv (40)

holds for all f ∈ C∞. For f(u) := P n
k (〈u, ·〉) we have

|GP n
k (〈u, ·〉)| = ‖TP n

k (〈u, ·〉)‖ = ‖akϑkP
n
k (〈u, ·〉)‖

= |ak|$n (dimHn
k)−1 ≥ c−1

29 k2−n|ak|

for some constant c29 = c29(n) > 0, where we used [21, Proposition 3.3.6 and (3.1.12)].
Hence (40) yields

|ak| ≤ c29k
n−2|GP n

k (〈u, ·〉)| ≤ c29$
1/2
n ‖g‖kn−2‖DP n

k (〈u, ·〉)‖.

As

d

dt
P n

k (t) =
k(k + n− 2)

n− 1
P n+2

k−1 (t), k ≥ 1,

(see [21, Lemma 3.3.9]) and |P n
k (t)| ≤ 1 on [−1, 1], we conclude that (|ak|) is increasing

at most polynomially in k. �
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3.2. Proofs for Sections 1.1 and 1.2. To show Theorem 2 we start with an estimate
depending on Hölder norms of functions. It is an easy consequence of Hölder’s inequal-
ity, merely more than a reformulation of [21, Lemma 3.4.13], but we give a proof to
make the main ingredients apparent.

Proposition 13. Let f and g be two square integrable functions on Sn−1 with

f ∼
∞∑

k=0

fk, g ∼
∞∑

k=0

akfk,

and assume that fk = 0 whenever ak = 0. Assume further that the sequence (ak)
satisfies (7).

Then, for any η ≥ 0, we have

‖f‖ ≤ c30‖f‖β/(β+η)
Hη ‖g‖η/(β+η)

with the constant c30 = bη/(β+η).

Proof. Let p, q > 1 be a pair of conjugate exponents (1/p + 1/q = 1). For a variable
0 ≤ α ≤ β to be determined later we get from Hölder’s inequality

‖f‖2 =
∞∑

k=0

‖fk‖2 =
∞∑

k=0

((1 ∨ k)2α‖fk‖2/p)((1 ∨ k)−2α‖fk‖2/q)

≤
( ∞∑

k=0

(1 ∨ k)2αp‖fk‖2

)1/p( ∞∑
k=0

(1 ∨ k)−2αq‖fk‖2

)1/q

.

The first expression on the right hand side is ‖f‖2/p
Hαp . The second expression is not

larger than b2/q‖g‖2/q, when αq = β. The choice q = 1 + β/η (and hence p = 1 + η/β,
α = ηβ/(η + β)) shows the claim. �

Proof of Theorem 2. Let the assumptions of the theorem be satisfied. Proposition 13
with f = hθ

K − hθ
K′ and g = F (K, ·)− F (K ′, ·) gives

‖hθ
K − hθ

K′‖ ≤ c30‖f‖β/(β+η)
Hη ‖F (K, ·)− F (K ′, ·)‖η/(β+η).

For 0 < η < 3/2, Proposition 7 implies

‖hθ
K − hθ

K′‖ ≤ c31‖F (K, ·)− F (K ′, ·)‖η/(β+η)

with a constant c31 = c31(n, θ, b, β, η, r, R). In view of (24), this shows (8). That the
assumptions on K and K ′ can be weakened in the cases θ ≥ 2 and θ ∈ N, follows from
the corresponding statements in Proposition 7. �

Proof of Theorem 3. The arguments are essentially the same as those in the proof of
Theorem 2. Proposition 13 with f = ρθ

K−ρθ
K′ and g = F (K, ·)−F (K ′, ·) in combination

with Corollary 8 and (25) give the assertion. �

3.3. Proofs for Section 1.3. We first prove an intermediate result which refines [25,
Theorem 5.1]. Let ‖µ‖TV be the total variation norm of a signed measure µ. For a
Lipschitz function f set

‖f‖L := sup
u 6=v

|f(u)− f(v)|
|u− v|

.
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Theorem 14. Let n ≥ 2, and let µ be a finite signed measure and g ∈ L2 such that

µ ∼
∞∑

k=0

µk, g ∼
∞∑

k=0

akµk,

where µk = 0 whenever ak = 0. Assume that the sequence (ak) satisfies (7).
If f ∈ C∞ and β > 0 then ∣∣∣∣∫

Sn−1

f dµ

∣∣∣∣ ≤ b‖f‖Hβ ‖g‖. (41)

If f ∈ Hη is a Lipschitz function, β > η, and 0 < α < 1/(1 + β − η)), then∣∣∣∣∫
Sn−1

f dµ

∣∣∣∣ ≤ c32 (‖f‖L + ‖f‖Hη) ‖µ‖1−α
TV ‖g‖

α,

where c32 = c32(n, b, β, α) does not depend on f or µ.

Proof. For this proof only, we use the notation ‖µ‖H−β . Due to (7), we have

‖µ‖2
H−β :=

∞∑
k=0

(1 ∨ k)−2β‖µk‖2 ≤ b2

∞∑
k=0

‖akµk‖2 = b2‖g‖2.

For f ∈ C∞ this gives the assertion (41), as∣∣∣∣∫
Sn−1

f dµ

∣∣∣∣ =

∣∣∣∣ ∞∑
k=0

〈〈fk, µk〉〉
∣∣∣∣ ≤ ∣∣∣∣ ∞∑

k=0

(1 ∨ k)β‖fk‖ (1 ∨ k)−β‖µk‖
∣∣∣∣ ≤ ‖f‖Hβ‖µ‖H−β ,

where (27) and Hölder’s inequality were used.
To show the second statement let f ∈ Hη and β > η. We consider two cases. If

‖g‖ ≥ ‖µ‖TV , the claim follows trivially from∣∣∣∣∫
Sn−1

f dµ

∣∣∣∣ ≤ ‖f‖∞‖µ‖TV ≤ ‖f‖∞‖µ‖1−α
TV ‖g‖

α,

and the fact that
‖f‖∞ ≤ 2‖f‖L + ‖f‖Hη .

To treat the case ‖g‖ ≤ ‖µ‖TV , We refine the arguments in Hug and Schneider [25],
improving their estimate (60). Let µ(τ) be the Poisson transform of µ with parameter
0 < τ < 1. Instead of inequality (59) in [25], we use∣∣∣∣∫ f(u)µ(τ)(u)du

∣∣∣∣ = |〈〈f, µ(τ)〉〉| ≤ ‖f‖Hη‖µ(τ)‖H−η .

Like in [25], it follows from calculating the maximal value of x 7→ xβ−ητx that

kβ−ητ k(1− τ)β−η ≤
(

β − η

e

)β−η

and thus (7) implies

‖µ(τ)‖H−η =

( ∞∑
k=0

(1 ∨ k)−2ητ 2k‖µk‖2

)1/2

≤ c33(1− τ)−(β−η)‖g‖,

which replaces [25, equation (60)]. The rest of the proof carries over almost literally
with β and ‖f‖BL replaced by β − η and ‖f‖L + ‖f‖Hη , respectively. The assumption
‖g‖ ≤ ‖µ‖TV is also used in the line of arguments. �
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Proof of Theorem 4. Let the assumptions of the theorem be satisfied and consider the
case β < 3/2. Let M ⊂ RBn be a convex body with hM ∈ C∞, and put f = hM ,
µ = Sn−1(K, ·) − Sn−1(K

′, ·), and g = F (K, ·) − F (K ′, ·) in Theorem 14. Then, (41)
and Proposition 7(c) yield∣∣∣∣∫

Sn−1

hM(u) Sn−1(K, du)−
∫

Sn−1

hM(u) Sn−1(K
′, du)

∣∣∣∣ ≤ c34‖F (K, ·)− F (K ′, ·)‖ (42)

with c34 = c34(n, b, β, R). By a usual approximation argument, (42) also holds when
the assumption hM ∈ C∞ is dropped. Like in [25, proof of Theorem 5.2], an application
of Diskant’s stability result [11] implies that there is an x ∈ Rn such that

δ(K + x, K ′) ≤ c35‖F (K, ·)− F (K ′, ·)‖1/n, (43)

with c35 = c35(n, b, β, r, R). By assumption, K,K ′ ∈ Ka,Sn−1 , and thus their Steiner
points satisfy s(K) = s(K ′) = o. Hence, (43) implies

|x| = |s(K + x)− s(K ′)| ≤ δ(K + x, K ′) ≤ c35‖F (K, ·)− F (K ′, ·)‖1/n.

Another application of (43) finally gives

δ(K, K ′) = ‖hK + 〈x, ·〉 − hK′‖∞ ≤ δ(K, K ′) + |x| ≤ 2c35‖F (K, ·)− F (K ′, ·)‖1/n.

This is the desired result for β < 3/2. The case β ≥ 3/2 is treated similarly. �

Proof of Theorem 5. Fix a convex body K and consider the spherical harmonic expan-
sion

∑∞
k=0 hk of hK . Recall that for any k = 0, 1, 2, . . . and any f ∈ Hn

k , we have
�f = λkf, where

λk = −(k − 1)(k − 1 + n)

n− 1
.

Due to (30), S1(K, ·) ∼
∑∞

k=0 λkhk and thus F (K, ·) ∼
∑∞

k=0 akλkϑkhk. This shows
that F (K, ·) can be seen as a multiplier-rotation operator depending on the support
function. Its multipliers satisfy

|akλk|−1 ≤ 2(n− 1)b(1 ∨ k)β−2, whenever ak 6= 0 and k 6= 1.

If β ≤ 2, this implies that the finite members of the sequence (|akλk|−1) are uniformly
bounded by 2(n−1)b and the claim follows from Parseval’s identity. For β > 2 Theorem
2 with θ = 1 and with β replaced by β − 2 implies the assumption. Note that in both
cases, we have

Ka,S1 = {K ∈ Ka,h : s(K) = o},
which follows from the fact that among all multipliers λk, only the one for k = 1
vanishes. �

Proof of Theorem 6. We treat only the case β ≥ 3/2; the other case can be shown
essentially the same way. The constants involved here depend only on n, b, β, r, R
and γ. The proof follows the proof of [25, Theorem 5.3] with two modifications. Firstly,
the exponent α ∈ (0, 2/(n + 4)) now ranges in (0, 1/(β − 1/2)), as Theorem 14 is
applied. Secondly, we adjust the last step of the proof in [32, p. 403]. For the reader’s
convenience, we repeat this step, which shows that

δ(K, λK ′) ≤ c36w(K)εq (44)

(with λ = w(K)/w(K ′), q = 1/((n + 1)2j−1), and ε = ‖F (K, ·)− F (K ′, ·)‖α) implies

δ(K, K ′) ≤ c37ε
q (45)
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for sufficiently small ε (where c36 and c37 are some constants and K ′ is already translated
suitably). The equations

Vj(K) =
1

$n−j

(
n− 1

j

)
Sj(K, Sn−1) =

$n

$n−j

(
n− 1

j

)
(Sj(K, ·))0

show that the j-th intrinsic volume is up to a multiplicative constant the first term in
the spherical harmonic expansion of Sj(K, ·). Hence

|a0| |Vj(K)− Vj(K
′)| ≤ c38‖F (K, ·)− F (K ′, ·)‖.

If a0 would vanish, then any M ∈ Ka,Sj
would satisfy Vj(M) = 0 and dim M ≥ j, which

is impossible. Therefore a0 6= 0 and we may conclude

Vj(K) ≤ c39ε
1/α + Vj(K

′). (46)

Due to (44), we have

λK ′ ⊂ K + (c36w(K)εq)Bn ⊂ (1 + c40ε
q)K,

and the fact that intrinsic volumes are monotone with respect to set inclusion implies

λjVj(K
′) ≤ (1 + c40ε

q)jVj(K) ≤ (1 + c40ε
q)j

(
c39ε

1/α + Vj(K
′)
)
.

This gives λ ≤ 1 + c41ε
q and therefore

K ⊂ λK ′ + (c36w(K)εq)Bn ⊂ K ′ + c42ε
qBn.

Similarly we obtain K ′ ⊂ K + c43ε
qBn and thus (45). �
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