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FROBENIUS SPLITTING AND GEOMETRY

OF G-SCHUBERT VARIETIES

XUHUA HE AND JESPER FUNCH THOMSEN

Abstract. Let X be an equivariant embedding of a connected reductive group G

over an algebraically closed field k of positive characteristic. Let B denote a Borel
subgroup of G. A G-Schubert variety in X is a subvariety of the form diag(G) ·V ,
where V is a B×B-orbit closure in X . In the case where X is the wonderful com-
pactification of a group of adjoint type, the G-Schubert varieties are the closures
of Lusztig’s G-stable pieces. We prove that X admits a Frobenius splitting that
compatibly splits all the G-Schubert varieties. Moreover, any G-Schubert variety
admits stable Frobenius splittings along ample divisors in case X is projective.
Although this indicates that G-Schubert varieties have nice singularities we give
an example, in the wonderful compactification of a group of adjoint type, which
is not normal. Finally we also extend the Frobenius splitting results to the more
general class of R-Schubert varieties.

1. Introduction

LetG be a connected reductive group over an algebraically closed field k of positive
characteristic and let B denote a Borel subgroup of G. An equivariant embedding
X of G is a G×G-variety which contains G = (G×G)/ diag(G) as an open G×G-
invariant subset, where diag(G) is the diagonal image of G in G × G. When G is
a semisimple group of adjoint type there exists a canonical equivariant embedding
X which is called the wonderful compactification and which has been the subject of
much attention in recent years. Actually the wonderful compactifications are the
primary examples which we have in mind, but as the more general setup follows
almost identical, we have decided to state the obtained results in full generality.

Any equivariant embedding X of G contains finitely many B × B-orbits. In
recent years the geometry of closures of B × B-orbits has been studied by several
authors. The most general result was obtained in [H-T2] where it was proved that
B×B-orbit closures are normal, Cohen-Macaulay and have (F -)rational singularities
(actually, even stronger results were obtained). In the present paper we will need a
Frobenius splitting result of [H-T2] which is : the equivariant embedding X admits
a B × B-canonical Frobenius splitting which compatibly splits the closure of every
B × B-orbit. From this result we will derive that X admits a diag(B)-canonical
Frobenius splitting which compatibly splits every subset of the form diag(G) · V ,
where V denotes the closure of a B×B-orbit. In this paper, we will consider subsets
of the form diag(G) · V which we call the G-Schubert varieties of X. If X is the
wonderful compactification, then diag(G) ·V is the closure of some G-stable piece in
X and any closure of G-stable piece is of the form diag(G) ·V for some B×B-orbit
closure V .

Before discussing the Frobenius splittings on the G-Schubert varieties, let us make
a short digression and discuss some motivations to study the G-stable pieces and
G-Schubert varieties (in the wonderful compactification).
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2 XUHUA HE AND JESPER FUNCH THOMSEN

The decomposition (of the wonderful compactification) into G-stable pieces was
introduced by Lusztig in [L] to construct and study a class of perverse sheaves, which
generalizes his theory of character sheaves on reductive groups. More precisely, these
perverse sheaves are the intermediate extensions of the so-called “character sheaves”
on a G-stable piece. This is one of the motivations to study the geometry of the
closures of G-stable pieces.

When G is a simple group, the boundary of the closure of the unipotent subvariety
of G in the wonderful compactification is a union of certain G-Schubert varieties (see
[He] and [H-T]). Thus knowing the geometry of these G-Schubert varieties will help
us to understand the geometry of the closure of the unipotent variety.

There is another motivation to study the G-stable pieces and G-Schubert varieties
which comes from Poisson geometry. Let Lie(G) denote the Lie algebra of G and
≪,≫ denote a fixed symmetric non-degenerate ad-invariant bilinear form. Let <,>
be the bilinear form on Lie(G) ⊕ Lie(G) defined by < (x, y), (x′, y′) >=≪ x, x′ ≫
− ≪ y, y′ ≫. In [E-L], Evens and Lu showed that each splitting Lie(G)⊕ Lie(G) =
l ⊕ l′, where l and l′ are Lagrangian subalgebras of Lie(G) ⊕ Lie(G), gives rise to
a Poisson structure Πl,l′ on X. If moreover, one starts with the Belavin-Drinfeld
splitting, then all the G-stable pieces/G-Schubert varieties and B × B−-orbits of
X are Poisson subvarieties, where B− is a Borel subgroup opposite to B. Thus
to understand the Poisson structure on X corresponding to the Belavin-Drinfeld
splitting, one needs to understand the geometry of the G-stable pieces/G-Schubert
varieties. However, if we start with another splitting, then we obtain a different
Poisson structure on X and in order to understand these Poisson structures, one
needs to study the R-stable pieces [L-Y] instead, which generalize both the G-stable
pieces and the B × B−-orbits.

Now let us turn our attention back to the Frobenius splitting properties. To obtain
the described Frobenius splitting properties of the G-Schubert varieties we first prove
that diag(G)×diag(B) X admits a diag(B)-canonical Frobenius splitting which com-

patibly splits all closed subvarieties of the form diag(G)×diag(B) V , where V denotes
the closure of a B×B-orbit. By general theory on canonical Frobenius splitting this
would follow if X admits a diag(B)-canonical Frobenius splitting compatibly split-
ting all B×B-orbit closures [B-K, Prop.4.1.17]. However, we only know and expect,
thatX admits a B×B-canonical Frobenius splitting, which is less restrictive. In par-
ticular, we cannot apply the result [loc.cite] directly. Still the proof of [loc.cite] can
be modified to the present situation. Actually we prove a result which both contain
the statement in [loc.cite] and also the statement which we need. Having obtained
the described Frobenius splitting properties of diag(G) ×diag(B) X we may apply a
push forward argument along the natural morphism : diag(G) ×diag(B) X → X to
conclude that X admits a diag(B)-canonical Frobenius splitting which compatibly
splits all the G-Schubert varieties.

When X is a projective variety, a closer study of the obtained Frobenius splitting
reveals that when restricted to a G-Schubert variety X then it is actually a Frobenius
splitting along the support of an ample divisor . This has strong implication on the
cohomology of line bundles. E.g. the higher cohomology of every nef line bundle
(i.e. a line bundle L such that L ⊗ M is ample when M is ample) on X will be
zero. One should however notice that we do not claim that X admits a Frobenius
splitting along the support of an ample divisor which compatibly Frobenius splits
all the G-Schubert varieties. But letting Y denote the minimal G×G-orbit closure
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containing X it does follow, that Y admits a Frobenius splitting along the support of
an ample divisor which compatibly Frobenius splits X. In particular, the restriction
morphism

H0(Y,L) → H0(X,L),

for a nef line bundle L on Y is surjective. We do not know if this is true when Y is
substituted by X. However, if L is ample or X is the wonderful compactification of
an adjoint group, then H0(X,L) → H0(X,L) is surjective.

It seems natural to expect that the above described results should have strong im-
plications on the geometry of G-Schubert varieties. It therefore comes as a complete
surprise that these subvarieties are, in general, not even normal. We only provide a
single example of this phenomenon (for the wonderful compactification of a group
of type G2), but expect that this absence of normality is the general picture.

This paper is organized in the following way. In Section 2 we briefly define Frobe-
nius splitting and explain its fundamental ideas. Section 3 is devoted to some results
on linearized sheaves which should all be well known. In Section 4 we study the
Frobenius splitting of varieties of the form G×P X for a variety X with an action by
a parabolic subgroup P . The main idea is to decompose the Frobenius morphism on
G×P X into maps associated to the Frobenius morphism on the base G/P and the
fiber X of the natural morphism G×P X → G/P . In Section 5 we introduce canonical
Frobenius splittings and in Section 6 we study the obtained Frobenius splitting rel-
ative to effective divisors. Section 7 contains application to general B ×B-varieties
of the previous sections. In section 8 we define the G-stable pieces and G-Schubert
varieties. In Section 9 we apply the material of the previous sections to the class of
equivariant embeddings and obtain Frobenius splitting as well as cohomology vanish-
ing results for G-Schubert varieties. Section 10 contains an example of a non-normal
G-Schubert variety. Finally Section 11 contains generalizations and variations of the
previous sections.

2. The relative Frobenius morphism

By a variety we mean a reduced and separated scheme of finite type over k. In
particular, we allow a variety to have multiple components. By definition a variety
X comes with an associated morphism

p : X → Spec(k)

of schemes. The Frobenius morphism on Spec(k) is the morphism of schemes

Fk : Spec(k) → Spec(k),

which on the level of coordinate rings is defined by a 7→ ap. As k is assumed to
be algebraically closed the morphism Fk is actually an isomorphism and we let F−1

k

denote the inverse morphism. Composing p with F−1
k we obtain a new variety

p′ : X → Spec(k),

with underlying scheme X. In the following we suppress the morphism p from the
notation and simply use X as the notation for the variety defined by p. The variety
defined by p′ is then denoted by X ′.

The relative Frobenius morphism on X is then the morphism of varieties :

FX : X → X ′
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which as a morphism of schemes is the identity map on the level of points and where
the associated map of sheaves

F ♯
X : OX′ → (FX)∗OX

is the p-th power map. A key property of the Frobenius morphism is the relation
(FX)∗N′ ≃ Np which is satisfied for every line bundle N on X (here N′ denotes the
corresponding line bundle on X ′).

2.1. Frobenius splitting. A variety X is said to be Frobenius split if the OX′-linear
map of sheaves :

F ♯
X : OX′ → (FX)∗OX

has a section; i.e. if there exists an element

s ∈ HomOX′

(

(FX)∗OX ,OX′

)

,

such that the composition s ◦ F ♯
X is the identity endomorphism of OX′ . The section

s will be called a Frobenius splitting of X. In the following we will use the notation
EndF (X) to denote the sheaf

HomOX′

(

(FX)∗OX ,OX′

)

,

while EndF (X) will denote the global sections of this sheaf. The subvectorspace of
EndF (X) consisting of the elements which maps the constant function 1 on X to a
constant function on X ′ will be denoted by EndF (X)c. In particular, any Frobenius
splitting of X will lie in EndF (X)c.

2.2. Compatibly Frobenius splitting. Let Y denote a closed subvariety of X
defined by the sheaf of ideals IY . Let Y ′ denote the associated closed subvariety of
X ′ with sheaf of ideals IY ′, and let i′Y : Y ′ → X ′ denote the inclusion. The kernel
of the morphism

HomOX′

(

(FX)∗OX ,OX′

)

→ HomOX′

(

(FX)∗IY , (i
′
Y )∗OY ′

)

induced by the inclusion IY ⊂ OX and the projection OX′ → (i′Y )∗OY ′ , will be
denoted by EndF (X, Y ). The set of global sections of EndF (X, Y ) will be denoted
by EndF (X, Y ), and consists of the elements s in EndF (X) satisfying

s
(

(FX)∗IY

)

⊂ IY ′ .

Thus such an element defines an element in EndF (Y ) and we say that s is compatible
with Y . If s moreover is a Frobenius splitting of X then we say that Y is compatibly
Frobenius split by s.

If Y1, Y2, . . . , Ym is a collection of closed subvarieties ofX then notation EndF (X, Y1,
. . . , Ym) (or sometimes EndF (X, {Yi}i)) will denote the intersection of the sub-
sheaves EndF (X, Yi) for i = 1, . . . , m. The set of global sections of the sheaf
EndF (X, Y1, . . . , Ym) will be denoted by EndF (X, Y1, . . . , Ym). Finally we use the
notation EndF (X, Y )c to denote the intersection of EndF (X)c with EndF (X, Y ).
The notation EndF (X, Y1, . . . , Yn)c is then defined similarly.
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2.3. Frobenius D-splittings. Let L denote a line bundle on X and let σ denote
a global section of L. Then σ induces a map

HomOX′

(

(FX)∗L,OX′

)

→ EndF (X).

When Y is a closed subvariety of X then an element s of the vectorspace

HomOX′

(

(FX)∗L,OX′

)

is said to be compatible with Y if

s
(

(FX)∗(IY ⊗ L)
)

⊂ IY ′

The following is then an easy consequence of the definition

Lemma 2.1. Assume that s is compatible with closed subvarieties Y and Z of X.
Then

(1) s is compatible with every irreducible component of Y .
(2) If the scheme theoretic intersection Z∩Y is reduced then s is compatible with

Z ∩ Y .

Proof. Let Y1 denote an irreducible component of Y and let

J = s
(

(FX)∗(IY1 ⊗ L)
)

⊂ OX′ .

Let U denote the open complement (in X ′) of the irreducible components of Y ′

which are different from Y ′
1 . Then IY ′

1
coincides with IY ′ on U and consequently

J|U ⊂ (IY ′)|U as s is compatible with Y . In particular, J|U ⊂ (IY ′
1
)|U . As U ∩ Y ′

1

is dense in Y ′
1 and Y ′

1 is reduced it follows from the relation J ⊂ OX′ that J ⊂ IY ′
1
.

This proves that s is compatible with Y1. The second claim follows as the sheaf of
ideals of the intersection Z ∩ Y is IY + IZ . �

Consider the situation where L is the line bundle OX(D) associated to an effective
Cartier divisor D on X. Let σ = σD denote the associated global section. When
the image of s in EndF (X) is a Frobenius splitting s̃ of X then we say that s̃ is
a Frobenius D-splitting of X. The following result assures that, in this case, the
compatibility condition with closed subvarieties agrees with the classical definition
[R, Defn.1.2].

Lemma 2.2. Assume that s defines a Frobenius D-splitting of X. Then s is com-
patible with Y if and only if (i) s̃ compatibly Frobenius splits Y and (ii) the support
of D does not contain any irreducible component of Y .

Proof. The if part of the statement follows from [R, Prop.1.4]. So assume that s is
compatible with Y . Then s induces a morphism

s : (FY )∗OX(D)|Y → OY ′ ,

satisfying s((σD)|Y ) is the constant function 1 on Y ′. As a consequence (σD)|Y does
not vanish on any of the irreducible components of Y . This proves part (ii) of the
statement. Part (i) is clearly satisfied. �

It follows that if s is compatible with Y and, moreover, defines a Frobenius D-
splitting of X then D ∩ Y makes sense as an effective Cartier divisor on Y and s
induces a Frobenius D ∩ Y -splitting of Y .
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2.4. Stable Frobenius splittings along divisors. Generalizing the ideas above
we may consider the morphism

HomO
X(n)

(

(FX)n
∗OX(D),OX(n)

)

→ HomO
X(n)

(

(FX)n
∗OX ,OX(n)

)

,

induced by σD, where X(n) denotes the n-th iterated Frobenius twist of X. Then
the image of an element s in HomO

X(n)

(

(FX)n
∗OX(D),OX(n)

)

is said to be a stable

Frobenius splitting of X along D if it maps the global section σD of (FX)n
∗OX(D)

to the global section 1 of OX′ . In this case a closed subvariety Y of X is said to be
compatibly with the stable Frobenius splitting if

s
(

(FX)n
∗ (IY ⊗ OX(D))

)

⊂ IY (n) .

The following is well known (see e.g. [B-T, Lem.3.1])

Lemma 2.3. Let D1 and D2 denote effective divisors on X. Then X admits stable
Frobenius splittings along D1 and D2 if and only if X admits a stable Frobenius
splitting along D1 +D2.

The following result explains one of the main applications of (stable) Frobenius
splitting.

Proposition 2.4. Assume that X admits a stable Frobenius splitting along an ef-
fective Cartier divisor D. Then there exists an n such that for each line bundle L

on X we have an inclusion of abelian groups

Hi(X,L) ⊂ Hi(X,Lpn

⊗ OX(D)).

In particular, if D is ample and L is nef, then Hi(X,L) = 0 for i > 0. Moreover,
if Y is compatibly Frobenius split, D is ample and L is nef then the restriction
morphism

H0(X,L) → H0(Y,L),

is surjective.

Proof. Argue as in the proof [R, Prop.1.13(i)]. �

2.5. Duality for FX. By duality (see [Har2, Ex.III.6.10]) for the finite morphism
FX we may to each quasi-coherent OX′-module F associate an OX -module denoted
by (FX)!F and satisfying

(FX)∗(FX)!F = HomOX′

(

(FX)∗OX ,F
)

.

Actually, as FX is the identity on the level of points we may define (FX)!F as the
sheaf of abelian groups

HomOX′

(

(FX)∗OX ,F
)

,

with OX -module structure defined by

(g · φ)(f) = φ(gf),

for g, f ∈ OX and φ ∈ HomOX′

(

(FX)∗OX ,F
)

. When F = OX we will also use the

notation End!
F (X) for (FX)!OX . If Y1, Y2, . . . , Ym is a collection of closed subvarieties

of X then End!
F (X, Y1, . . . , Ym) (or End!

F (X, {Yi}
m
i=1)) will denote the subsheaf of

End!
F (X) consisting of elements compatible with Yi for i = 1, . . . , m.

Later we will consider OX-linear morphisms of the form

φ : M → End!
F (X),
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where M is a line bundle on X. Notice, that a morphism of this form is equivalent
to a global section s of the sheaf

HomOX′

(

(FX)∗M,OX′

)

.

Moreover, the image φ(σ) of a global section σ of M will factor as

(FX)∗OX
(FX)∗σ
−−−−→ (FX)∗M

s
−→ OX′ .

It follows

Lemma 2.5. Let Y denote a closed subvariety of X. Then the image of φ is con-
tained in End!

F (X, Y ) if and only if s is compatible with Y .

A similar result is true for a collection of closed subvarieties of X. We will also
need the following remark

Lemma 2.6. Let D denote a reduced effective Cartier divisor on X and L denote a
line bundle on X. Let M = OX((p−1)D)⊗L and assume that we have a morphism
φ : M → End!

F (X), as above. Let σD denote the canonical section of OX(D) and
consider the map

φD : L → End!
F (X),

induced by σp−1
D . Then the element

sD ∈ HomOX′

(

(FX)∗L,OX′

)

,

induced by φD is compatible with the variety associated with D. In particular, the
image of φD is contained in End!

F (X,D).

Proof. Notice that sD is the composition

sD : (FX)∗L
(FX)∗σp−1

D−−−−−−→ (FX)∗M
s
−→ OX′ .

Hence, the restriction of sD to L ⊗ OX(−D) coincides with the map

(FX)∗
(

L ⊗ OX(−D)
) (FX)∗σp

D−−−−−→ (FX)∗M
s
−→ OX′ .

But the restriction of s to

(FX)∗
(

OX(−pD) ⊗ M
)

≃ OX′(−D′) ⊗ (FX)∗M,

maps by linearity into OX′(−D′). This ends the proof. �

When X is a smooth variety then End!
F (X) coincides with the line bundle ω1−p

X ,
where ωX denotes the dualizing sheaf of X (see e.g. [B-K, Sect.1.3]).

2.6. Push-forward operation. Assume that f : X → Z is a morphism of varieties
satisfying that the associated map f ♯ : OZ → f∗OX is an isomorphism. Let f ′ : X ′ →
Y ′ denote the associated morphism. Then f ′

∗ induces a morphism

f ′
∗ EndF (X) → EndF (Z).

If Y ⊂ X is a closed subset then this map maps f ′
∗ EndF (X, Y ) to EndF (X, f(Y ))

where f(Y ) denotes the variety associated to the closure of the image of Y . On the
level of global sections this means that every Frobenius splitting s of X induces a
Frobenius splitting f ′

∗s of Z such that when s compatibly Frobenius splits Y then

f ′
∗s compatibly Frobenius splits f(Y ). Likewise
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Lemma 2.7. With notation as above let L denote a line bundle on Z and let s be
an element of

HomOX′

(

(FX)∗f
∗L,OX′

)

.

Then f ′
∗s is an element of

HomOZ′

(

(FZ)∗L,OZ′

)

.

Moreover, if s is compatible with a closed subvariety Y of X then f ′
∗s is compatible

with f(Y ).

Proof. This follows easily from the fact that the sheaf of ideals of f(Y ) coincides
with f∗IY [B-K, Lem.1.1.8]. �

3. Linearized sheaves

Let H denote a linear algebraic group over the field k and let X denote a H-
variety with H-action defined by σ : H ×X → X. We let p2 : H ×X → X denote
projection on the second coordinate. A H-linearization of a quasi-coherent sheaf F

on X is an OH×X -linear isomorphism

φ : σ∗F → p∗2F,

satisfying the relation

(µ× 1X)∗φ = p∗23φ ◦ (1H × σ)∗φ (1)

as morphisms of sheaves on H × H × X. Here µ : H × H → H (resp. p23 :
H × H × X → H × X) denotes the multiplication on H (resp. the projection on
the second and third coordinate).

A morphism ψ : F → F′ of H-linearized sheaves is a morphism of OX -modules
commuting with the linearizations φ and φ′ of F and F′, i.e. φ′ ◦ σ∗(ψ) = p∗2(ψ) ◦ φ.

Linearized sheaves form an abelian category which we denote by ShH(X).

3.1. Quotients and linearizations. Assume that the quotient q : X → X/H
exists and q is a locally trivial principal H-bundle. Then for G ∈ Sh(X/H), q∗G
is naturally a H-linearized sheaf on X. This defines a functor q∗ : Sh(X/H) →
ShH(X). On the other hand, for F ∈ ShH(X), q∗F has a natural action of H .
Define a functor qH

∗ : ShH(X) → Sh(X/H) by qH
∗ (F) = (q∗F)H the subsheaf of

H-invariants of q∗F. It is known that the functor q∗ : Sh(X/H) → ShH(X) is an
equivalence of category and the inverse functor is qH

∗ : ShH(X) → Sh(X/H).
In general, if H is a closed normal subgroup of G and X is a G-variety such thatH

acts freely on X, then X/H is a G/H-variety and the functor q∗ : ShG/H(X/H) →
ShG(X) is an equivalence of category and the inverse functor is qH

∗ : ShG(X) →
ShG/H(X/H).

3.2. Induction equivalence. Consider now a connected linear algebraic group G
and a parabolic subgroup P in here. Let X denote a P -variety. Then Y = G×X
is a G× P -variety by

(g, p)(h, x) = (ghp−1, px)

for g, h ∈ G, p ∈ P and x ∈ X. Then P acts freely on G × X and we denote by
Z = G ×P X the quotient space and π : Y → Z the quotient map. The quotient
of Y by G also exists and may be identified with the projection p2 : G × X → X.
In particular, we may apply the above consideration to obtain an equivalences be-
tween the categories of ShP (X), ShG×P (Y ) and ShG(Z). Notice that under this
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equivalence a P -linearized sheaf F on X corresponds to the G-linearized sheaf
IndG

P (F) = (π∗p
∗
2F)P . In particular, the global sections of IndG

P (F) equals

IndG
P (F)(Z) =

(

p∗2F(G×X)
)P

=
(

k[G] ⊗k F(X)
)P

= IndG
P (F(X)), (2)

where the second equality follows by the Künneth formula. This also explains the
notation IndG

P (F). Similarly, starting with a G-linearized sheaf G on G ×P X then
the associated P -linearized line bundle on X equals G′ = ((p2)∗π

∗G)G. However,
by [Bri, Lemma 2(1)] the latter also equals the more simple pull back i∗G by the
P -equivariant map

i : X → G×P X,

sending x to π(1, x). In particular, we conclude that the functor i∗ : ShG(Z) →
ShP (X) is an equivalence of categories and the inverse functor is IndG

P . Notice also
that the global sections of G is then G-equivariantly isomorphic to

G(Z) = IndG
P

(

(i∗G)(X)
)

,

which follows by (2) above.

4. Frobenius splitting of G×P X

Let G denote a linear algebraic group over an algebraically closed field k of positive
characteristic p > 0. Let P denote a parabolic subgroup of G and let X denote a
P -variety. In this section we want to consider Frobenius splittings of the quotient
Z = G×P X of G×X by P . We let π : Z → G/P denote the morphism induced by
the projection of G×X on the first coordinate. When g ∈ G and x ∈ X we use the
notation [g, x] to denote the element in Z represented by (g, x).

4.1. Decomposing the Frobenius morphism. The Frobenius morphism FZ ad-
mits a decomposition FZ = Fb ◦ Ff where Fb (resp. Ff ) is related to the Frobenius

morphism on the base (resp. fiber) of π. More precisely, define Ẑ and the mor-
phisms π̂, Fb as part of the fiber product diagram

Ẑ
Fb

//

π̂
��

Z ′

π′

��

G/P
FG/P

// (G/P)′

(3)

A local calculation shows that we may identify Ẑ with the quotient G×P X
′, where

the P -action on the Frobenius twist X ′ of X is the natural one. With this identi-
fication π̂ : G ×P X ′ → G/P is just the map [g, x′] 7→ gP . It also follows that the
natural morphism (induced by the Frobenius morphism on X)

Ff : G×P X → G×P X
′

makes the following diagram commutative

Z

Ff

A

A

A

  A
A

A

FZ

%%

π

��

Ẑ
Fb

//

π̂
��

Z ′

π′

��

G/P
FG/P

// (G/P)′
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For a given OẐ -module F we now introduce the following notation

EndF

F (Z)b = HomOZ′

(

(Fb)∗F,OZ′

)

,

EndF

F (Z)f = HomO
Ẑ

(

(Ff)∗OZ ,F
)

.

When F = OẐ we also write EndF (Z)b and EndF (Z)f respectively. Then using the
decomposition FZ = Fb ◦ Ff we obtain a map

ΦF : EndF

F (Z)b ⊗ (Fb)∗EndF

F (Z)f → EndF (Z),

induced by composition of morphisms. Taking global sections of the considered
sheaves we arrive at a map

ΦF(Z ′) : EndF

F (Z)b ⊗k EndF

F (Z)f → EndF (Z),

where EndF

F (Z)b (resp. EndF

F (Z)f) denotes the global sections of sheaf EndF

F (Z)b

(resp. EndF

F (Z)f).

4.2. An equivariant setup. From now on we assume that F = L̂ is the pull
back π̂∗L of a G-linearized line bundle L on G/P . The restriction of L to the point
eP ∈ G/P is then a trivial line bundle with global sections k. We let λ denote the
P -character defining the P -action on k.

4.2.1. A description of EndL̂

F (Z)f . Now EndL̂

F (Z)f is aG-linearized sheaf onG×PX
′.

Let Y ⊂ X denote a P -stable subvariety of X and let ZY = G ×P Y denote the
associated subvariety of Z with sheaf of ideals IZY

⊂ OZ . Let ẐY denote the subset
G×P Y

′ of G×P X
′. Then there is a natural morphism of G-linearized sheaves

EndF (Z)f = HomO
Ẑ

(

(Ff)∗OZ ,OẐ

)

→ HomO
Ẑ

(

(Ff )∗IZY
,OẐY

)

,

induced by the inclusion IZY
⊂ OZ and the projection OẐ → OẐY

. We let EndF (Z,ZY )f

denote the G-linearized kernel of the above map and arrive at a left exact sequence
of G-linearized sheaves

0 → EndF (Z,ZY )f → EndF (Z)f → HomO
Ẑ

(

(Ff )∗IZY
,OẐY

)

and consequently also

0 → EndF (Z,ZY )f ⊗ L̂ → EndL̂

F (Z)f → HomO
Ẑ

(

(Ff)∗IZY
, L̂|Ẑy

)

.

Taking global section we may identify global sections of EndF (Z,ZY )f ⊗ L̂ with the

set of elements in EndL̂

F (Z)f which maps (Ff )∗IZY
to (IẐY

⊗ L̂) ⊂ L̂.
Using the observations in Section 3.2 we will now give another description of the

global sections of EndF (Z,ZY )f ⊗ L̂. Let i′ : X ′ → G ×P X
′ denote the morphism

i′(x) = [1, x]. Then, as noticed in Section 3.2, the functor i′ is exact on the category
of G-linearized sheaves. We want to use this fact on the left exact sequence above :
notice first that

(i′)∗EndL̂

F (Z)f = HomOX′

(

(i′)∗(Ff)∗OZ , (i
′)∗L̂

)

where, moreover, (i′)∗L̂ = OX′ ⊗ kλ and (i′)∗(Ff )∗OZ = (FX)∗OX . Thus

(i′)∗EndL̂

F (Z)f = EndF (X) ⊗k kλ.

Similarly,

(i′)∗HomO
Ẑ

(

(Ff)∗IZY
, L̂|Ẑy

)

= HomOX′ ((FX)∗IY ,OY ′) ⊗ kλ
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where IY denotes the sheaf of ideals defining Y in X. In particular, we see that the
P -linearized sheaf on X ′ corresponding to EndF (Z,ZY )f ⊗ L̂ equals the kernel of
the natural map

EndF (X) ⊗k kλ → HomOX′ ((FX)∗IY ,OY ′) ⊗ kλ,

i.e. it equals EndF (X, Y )⊗kkλ. By Section 3.2 the global sections of EndF (Z,ZY )f⊗

L̂ then identities G-equivariantly with

IndG
P

(

EndF (X, Y ) ⊗ kλ).

In conclusion we find

Proposition 4.1. With notation above,

EndL̂

F (Z)f = IndG
P

(

EndF (X) ⊗ kλ).

Moreover, when Y is a closed P -stable subvariety of X then the set of elements in

EndL̂

F (Z)f which maps (Ff )∗IZY
to (IẐY

⊗ L̂) ⊂ L̂ coincides with the set

IndG
P

(

EndF (X, Y ) ⊗ kλ).

4.2.2. A description of EndL̂

F (Z)b. As π′ in the fiber-diagram (3) is flat the natural
morphism (π′)∗(FG/P )∗L → (Fb)∗π̂

∗L is an isomorphism ([Har2, Prop.III.9.3]). Thus
there is a natural isomorphism of G-linearized sheaves

EndL̂

F (Z)b ≃ (π′)∗HomO(G/P )′

(

(FG/P )∗L,O(G/P)′
)

.

Let V denote a closed subset of G/P and let IV ⊂ OG/P denote the associated sheaf
of ideals. Let KV denote the kernel of the natural map (which is not G-linearized)

HomO(G/P )′

(

(FG/P )∗L,O(G/P)′
)

→ HomO(G/P )′

(

(FG/P )∗(IV ⊗ L),OOV ′

)

,

i.e. KV is the subsheaf of HomO(G/P )′

(

(FG/P )∗L,O(G/P)′
)

consisting of elements map-

ping (FG/P )∗(IV ⊗ L) to IV ′ .
Let p : G → G/P denote the quotient map. Then π̂−1(V ) identifies with the

quotient p−1(V ) ×P X ′. Moreover, as π′ is locally trivial it follows that π̂∗(IV ) =
Ip−1(V )×P X′ . In particular,

(π′)∗(FG/P )∗(IV ⊗ L) ≃ (Fb)∗π̂
∗(IV ⊗ L) ≃ (Fb)∗(Ip−1(V )×P X′ ⊗ L̂)

and thus the sheaf

(π′)∗HomO(G/P )′

(

(FG/P )∗(IV ⊗ L),OOV ′

)

is isomorphic to

HomOZ′

(

(Fb)∗(Ip−1(V )×P X′ ⊗ L̂),O(p−1(V )×P X)′
)

.

As π′ is a flat morphism we conclude that (π′)∗KV , as a subsheaf of EndL̂

F (Z)b,

consists of the elements which maps (Fb)∗(Ip−1(V )×P X′ ⊗ L̂) to I(p−1(V )×P X)′ . In
conclusion

Proposition 4.2. There exists a natural G-equivariant morphism

(π′)∗ : HomO(G/P )′

(

(FG/P )∗L,O(G/P)′
)

→ EndL̂

F (Z)b.
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Moreover, with V as above, an element in HomO(G/P )′

(

(FG/P )∗L,O(G/P)′
)

which maps

(FG/P )∗(IV ⊗ L) to IV ′ is by (π′)∗ mapped to an element which maps

(Fb)∗(Ip−1(V )×P X′ ⊗ L̂)

to I(p−1(V )×P X)′.

From now on we will use the notation EndL

F (G/P) to denote the G-module

HomO(G/P )′

(

(FG/P )∗L,O(G/P )′
)

,

while the subspace consisting of of elements which maps (FG/P )∗(IV ⊗L) to IV ′ will

be denoted by EndL

F (G/P , V ).
The following is also useful.

Lemma 4.3. Let Y denote a closed P -stable subvariety of X and fix notation as

above. Then each element of EndL̂

F (Z)b maps (Fb)∗(IẐY
⊗ L̂) to I(ZY )′.

Proof. It suffices to show that the natural morphism

HomOZ′

(

(Fb)∗L̂,OZ′

)

→ HomOZ′

(

(Fb)∗(IẐY
⊗ L̂),O(ZY )′

)

is zero. The latter will follow if the natural morphism

I(ZY )′ ⊗ (Fb)∗L̂ → (Fb)∗(IẐY
⊗ L̂)

is an isomorphism and this can be checked by local calculation. �

4.3. Conclusions. Consider the P -equivariant morphism

evX : EndF (X) → HomOX

(

OX′ ,OX′) = OX′(X ′),

induced by the morphism F ♯
X . It follows that there is a morphism

IndG
P

(

EndF (X)c ⊗ kλ

)

→ IndG
P

(

kλ

)

= H0(G/P ,L),

and thus also an induced morphism

Φc : EndL

F (G/P) ⊗k IndG
P

(

EndF (X)c ⊗ kλ

)

→ O(G/P)′
(

(G/P)′
)

= k.

We can now state our main technical result.

Theorem 4.4. Let L denote an equivariant line bundle on G/P associated to the
P -weight λ. Then there exists a G-equivariant map

Φ : EndL

F (G/P) ⊗k IndG
P

(

EndF (X) ⊗ kλ

)

→ EndF (Z),

satisfying

(1) When Y is a P -stable closed subset of X then the restriction of Φ to the
subspace :

EndL

F (G/P) ⊗k IndG
P

(

EndF (X, Y ) ⊗ kλ

)

,

maps into EndF (Z,ZY ).
(2) When V denotes a closed subset of G/P then the restriction of Φ to the sub-

space

EndL

F (G/P , V ) ⊗k IndG
P

(

EndF (X) ⊗ kλ

)

,

maps into EndF (Z, p−1(V ) ×P X).
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(3) The restriction of Φ to

EndL

F (G/P) ⊗k IndG
P

(

EndF (X)c ⊗ kλ

)

,

maps into EndF (Z)c. Moreover, the composition of this restriction with the
morphism evZ , defined similar to evX above, coincides with Φc.

Proof. Set Φ = Φ
L̂
(Z ′) ◦

(

(π′)∗ ⊗ 1IndG
P (EndF (X)⊗kλ)

)

, where(π′)∗ is defined in Propo-
sition 4.2. The first statement then follows from Proposition 4.1 and Lemma 4.3.
The second statement follows from Proposition 4.2 and Lemma 4.5. It remains to
prove the third statement. Consider the natural morphism

Hom(F ♯
f , ∗) : EndL̂

F (Z)f → HomO
Ẑ

(

OẐ , L̂
)

= L̂

induced by F ♯
f : OẐ → (Ff)∗OZ defined by Ff . Applying the functor (i′)∗, as in

Section 4.2.1, we obtain a morphism

(i′)∗Hom(F ♯
f , ∗) : EndF (X) ⊗k kλ → OX′ ⊗ kλ.

It follows that Hom(F ♯
f , ∗) on the level of global section

IndG
P

(

EndF (X) ⊗ kλ

)

→ IndG
P (OX′(X ′) ⊗ kλ)

is the map induced by evX . By this observation and the definition of Φ the result
now easily follows. �

Lemma 4.5. Let V denote a closed subset of G/P . Then every element of EndL̂

F (Z)f

will map (Ff )∗Iπ−1(V ) to I(π′)−1(V ) ⊗ L̂.

Proof. It suffices to prove that the natural morphism

I(π̂)−1(V ) ⊗ (Ff )∗OZ → (Ff )∗Iπ−1(V ),

is an isomorphism which can be checked by a local calculation. �

5. Canonical Frobenius splittings

In this section we assume that G is a connected linear algebraic group. By duality
for the Frobenius morphism FG/P there is an isomorphism

HomO(G/P )′

(

(FG/P )∗L,O(G/P)′
)

≃ (FG/P )∗
(

ω1−p
G/P

⊗ L−1
)

,

where ωG/P -denotes the dualizing sheaf on G/P . This way we obtain a G-equivariant

identification of EndL

F (G/P) with the global sections of the line bundle ω1−p
G/P

⊗ L−1.

Let χ denote the P -character associated to the G-linearized line bundle ω−1
G/P

. Then

multiplication defines a G-equivariant map

IndG
P

(

(p− 1)χ− λ
)

⊗k IndG
P

(

λ
)

→ IndG
P

(

(p− 1)χ
)

≃ EndF

(

G/P
)

.

Actually the above multiplication map is surjective if the domain is nonzero [R-R,
Thm.3], i.e. if L and ω1−p

G/P
⊗L−1 are effective line bundles. Moreover, by construction
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the multiplication map makes the following diagram commutative

EndL

F

(

G/P
)

⊗k IndG
P

(

EndF (X)c ⊗ kλ

) Φ
//

1⊗IndG
P (evX⊗1)

��

EndF (Z)c

evZ

��

IndG
P

(

(p− 1)χ− λ
)

⊗k IndG
P

(

λ
)

��

EndF

(

G/P
)

evG/P

// k

In particular, the following statement is now an easy consequence.

Corollary 5.1. Assume that L and ω1−p
G/P

⊗ L−1 are effective line bundles on G/P

and that the G-equivariant morphism

IndG
P (evX ⊗ 1) : IndG

P

(

EndF (X)c ⊗ kλ

)

→ IndG
P

(

λ
)

,

is surjective. Then G×P X admits a Frobenius splitting.

We then define

Definition 5.2. With notation as above, a λ-canonical Frobenius splitting of X is
a P -equivariant morphism

φλ : IndG
P (λ) ⊗ k−λ → EndF (X)c,

such that the composed map evX ◦ φλ is nonzero; or equivalently, the image of φλ

contains a Frobenius splitting of X.

Notice that a λ-canonical Frobenius splitting of X defines a composed surjective
morphism

IndG
P (λ)

φλ⊗kλ−−−−→ EndF (X)c ⊗ kλ
evX⊗1
−−−→ kλ.

But the set of P -equivariant morphisms between IndG
P (λ) and kλ is 1-dimensional.

In particular, Frobenius reciprocity implies that the induced map

IndG
P (λ)

φλ⊗kλ−−−−→ IndG
P

(

EndF (X)c ⊗ kλ

) IndG
P (evX⊗1)

−−−−−−−→ IndG
P (λ),

is surjective. Thus also the map IndG
P (evX ⊗ 1) is surjective. It follows

Proposition 5.3. Assume that X admits a λ-canonical Frobenius splitting. Then
φλ and Φ induces a G-equivariant morphism

Φλ : IndG
P

(

(p− 1)χ− λ
)

⊗k IndG
P

(

λ
)

→ EndF (Z)c

such that the diagram

IndG
P

(

(p− 1)χ− λ
)

⊗k IndG
P

(

λ
) Φλ

//

��

EndF (Z)c

evZ

��

EndF

(

G/P
)

evG/P

// k

is commutative. In particular, if ω1−p
G/P

⊗ L−1 is an effective line bundle then the

image of Φλ contains a Frobenius splitting of Z.
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The notion of a λ-canonical Frobenius splitting generalizes the existing definition
of a B-canonical Frobenius splitting (see the subsection below) . Actually we are
only going to apply the notion in the case of a B-canonical Frobenius splittings, but
as the general notion seems so natural we have decided also to include it in this
paper.

5.1. B-Canonical Frobenius splitting. Assume for a moment that G is a con-
nected, semisimple and simply connected linear algebraic group. We will consider
the situation described above for the special case where P equals a Borel subgroup
B of G. In this case, the dualizing sheaf on G/B is the square of the linearized sheaf
defined by the B-weight ρ. The induced module IndG

B((1 − p)ρ) is called the Stein-
berg module of G and will be denoted by St. It is well known that St is a simple and
selfdual G-module and thus, by Frobenius reciprocity, there exists up to a nonzero
constant a unique G-equivariant non-degenerate bilinear form

η : St ⊗ St → k.

A (1 − p)ρ-canonical Frobenius splitting of X is then a B-equivariant map

St ⊗ k(p−1)ρ → EndF (X)c,

such that the image contains a Frobenius splitting of X. Actually it suffices to as-
sume that that the image of the above map is contained in EndF (X) : as the image
contains a Frobenius splitting, which has T -weight 0 and is contained in EndF (X)c,
it follows by the simplicity of St that the image will automatically be contained
in EndF (X)c. In particular, this coincides with the condition for X to admit a
B-canonical Frobenius splitting as presented e.g. in [B-K, Lemma 4.1.2]. The im-
portance of B-canonical Frobenius splitting was first observed by O. Mathieu in
connection with good filtrations of G-modules. From now on a (1 − p)ρ-canonical
Frobenius splitting in the above setting will be called a B-canonical Frobenius split-
ting.

Corollary 5.4. Let φX : St ⊗ k(p−1)ρ → EndF (X)c denote a B-canonical Frobenius
splitting of X. Then there is an induced morphism

ΦX : St ⊗ St → EndF (G×B X)c

such that the composed map evZ ◦ΦX coincides with the G-equivariant bilinear map
η defined above. Moreover,

(1) If the image of φX is contained in EndF (X, Y )c for a B-stable closed subva-
riety Y of X, then the image of ΦX is contained in EndF (G×BX,G×B Y )c.

(2) Let f denote an element of IndG
B(−ρ). Consider f as a global section of the

line bundle on G/B associated with the B-character −ρ, and let V denote
the zero scheme of f . Then V is a subvariety of G/B. Furthermore, for any
element w ∈ St we have

ΦX(f p−1 ⊗ w) ∈ EndF (G×B X, p
−1(V ) ×B X)

with p : G→ G/B denoting the quotient map.

Proof. The first part of the statement follows from the considerations above and
Theorem 4.4(1). Let L denote the G-linearized line bundle associated with the
weight (1 − p)ρ. To prove the last part of the statement it suffices, by Theorem
4.4(2), to check that V is a variety and that f p−1 as an element of EndL

F (G/B) is
contained in EndL

F (G/B, V ). Both these statements follow from [L-T, Thm.2.3]. �
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The first part of the above result is well known (see e.g. [B-K, Ex. 4.1.E(4)]).
However, the second part seems to be new.

Although Corollary 5.4 is only stated for connected, semisimple and simply con-
nected groups it also applies in other cases : assume that G is a connected linear
algebraic group containing a connected semisimple subgroup H such that the in-
duced map H/H∩B → G/B is an isomorphism. E.g. this is satisfied for any parabolic
subgroup of a reductive connected linear algebraic group. Let q : Hsc → H denote a
simply connected cover of H . Then X admits an action of the parabolic subgroup
Bsc := q−1(B ∩H) of Hsc. Furthermore, the natural morphism

Hsc ×Bsc X → G×B X,

is then an isomorphism. We then say that X admits a B-canonical Frobenius split-
ting if X, as a Bsc-module, admits a Bsc-canonical Frobenius splitting. In this case
we may apply Corollary 5.4 to obtain Frobenius splitting properties of G×B X.

5.2. Restriction to Levi subgroups. Return to the setup where G is simply con-
nected and let PJ denote the parabolic subgroup of G containing B and associated
to a subset J of the set of simple roots. Let LJ denote the Levi subgroup of PJ

containing the maximal torus T and let L′
J denote the commutator subgroup of

LJ . Then L′
J is a simply connected semisimple linear algebraic group with Borel

subgroup BJ = L′
J ∩ B and maximal torus TJ = T ∩ L′

J . We let StJ denote the

associated Steinberg module. Notice that StJ = Ind
L′

J
BJ

(k(p−1)ρJ
) where ρJ denotes

the restriction of ρ to TJ . The following should be well known but we do not know
a good reference.

Lemma 5.5. There exists L′
J -equivariant morphism

StJ → St,

such that B−
J -invariant line of StJ maps surjectively to the B−-invariant line of St.

In particular, if X is a G-variety admitting a B-canonical Frobenius splitting then
X admits a BJ -canonical Frobenius splitting as a L′

J -variety.

Proof. Let M denote the T -stable complement to the B-stable line in St. Then M
is B−-invariant and thus also B−

J -invariant. Let wJ
0 denote the longest element in

the Weyl group of TJ and let ẇJ
0 denote a representative of this element in NL′

J
(TJ).

Then the translate ẇJ
0M is invariant under BJ . In particular, we obtain a BJ -

equivariant morphism

St → St/(ẇJ
0M) ≃ k(1−p)ρJ

.

By Frobenius reciprocity this defines a L′
J -equivariant map St → StJ such that the

B-stable line of St maps onto the BJ -stable line of StJ . Now apply the selfduality
of StJ and St to obtain the desired map. This proves the first part of the statement.

The second part follows easily by composing the obtained morphism StJ → St
with the B-canonical Frobenius splitting

St → EndF (X)c ⊗ k(1−p)ρ,

of X and noticing that the restriction of ρ to BJ is ρJ .
�
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6. Frobenius D-splittings

In this section we study some D-splittings properties of the Frobenius splittings
considered in the previous section. The two results give Frobenius splitting prop-
erties relative to divisors along the base scheme G/P and the fibre scheme X of Z
respectively. We use the same notation as in the previous section.

6.1. D-splittings associated to the base.

Proposition 6.1. Let v denote a nonzero global section of the line bundle ω1−p
G/P

⊗L−1

and let D denote the effective Cartier divisor associated to the pull back π∗(v) to Z.
Let σ denote the canonical section of OZ(D). Then for any w in IndG

P

(

EndF (X)⊗kλ)
the element Φ(v ⊗ w) will factor through the morphism

(FZ)∗OZ
(FZ )∗σ
−−−−→ (FZ)∗OZ(D),

induced by σ. In particular, any Frobenius splitting of Z of the form Φ(v ⊗ w) is a
D-splitting.

Proof. By the discussion in Section 5 we may consider v as an element in

HomO(G/P )′

(

(FG/P )∗L,O(G/P )′
)

.

Actually v then identifies (up to a nonzero constant) with the composed map

(FG/P )∗L
(FG/P )∗(v)
−−−−−−→ (FG/P )∗ω

1−p
G/P

→ O(G/P)′ ,

where the second map denotes a nonzero element in

HomO(G/P )′

(

(FG/P )∗ω
1−p
G/P

,O(G/P )′
)

≃ k.

In particular, the element (π′)∗(v) = HomOZ′

(

(Fb)∗L̂,OZ′

)

factors through the map

(Fb)∗L̂
(Fb)∗π̂∗(v)
−−−−−−→ (Fb)∗

(

π̂∗(ω1−p
G/P

)
)

.

Regard w as an element of HomO
Ẑ

(

(Ff)∗OZ , L̂
)

and notice that we have a commu-
tative diagram

(FZ)∗OZ

(Fb)∗w
//

(Ff )∗σ

��

(Fb)∗L̂

(Fb)∗π̂∗(v)
��

(FZ)∗OZ(D) // (Fb)∗
(

π̂∗(ω1−p
G/P

)
)

where the lower horizontal map is the tensor product of (Fb)∗w with (π′)∗(ω1−p
G/P

⊗

L−1). Now the statement follows by the definition of Φ. �

6.2. D-splitting associated to the fibre. Let M denote a P -linearized line bundle
on X. Assume that there is a morphism of P -linearized sheaves

ψ : M → End!
F (X, Y ) ⊗ kλ.

Inducing from P to G this defines a morphism

ψZ : IndG
P (M) → (Ff)

!L̂,
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of sheaves on Z. Here (Ff)
!L̂ is defined by duality of the finite morphism Ff such

that the relation

(Ff )∗(Ff)
!L̂ = HomO

Ẑ

(

(Ff)∗OZ , L̂
)

as OẐ -modules is satisfied.
As in Section 2.5 the morphism ψZ defines a global section s of

HomO
Ẑ

(

(Ff)∗IndG
P (M), L̂

)

.

The compatibility of ψ with Y then implies

s
(

(Ff )∗
(

IZY
⊗ IndG

P (M)
))

⊂ IẐY
⊗ L̂.

Moreover, let σ denote a global section of the line bundle IndG
P (M). Then the image

ψZ(σ) will factor as

(Ff)∗OZ

(Ff )∗σ
−−−−→ (Ff )∗IndG

P (M)
s
−→ L̂.

It follows

Lemma 6.2. With notation as above let v be an element in EndL

F (G/P). Then
Φ

(

v ⊗ ψZ(σ)
)

∈ EndF (Z,ZY ) factors as

(FZ)∗OZY

(FZ)∗σ
−−−−→ (FZ)∗IndG

P (M)
(Fb)∗s
−−−→ (Fb)∗L̂

(π)′∗v
−−−→ OZ′ ,

where the composition (π)′∗v ◦ (Fb)∗s is compatible with ZY .

Proof. Apply Lemma 4.3 and the remarks above. �

In case X is a G-variety we may identify Z with G/P ×X. Under this identification
IndG

P (M) corresponds to the pull back (p2)
∗M of M by projection on the second

factor. In particular, the global sections of M and IndG
P (M) coincide. Thus, for

v ∈ EndL

F (G/P), we obtain a map

ηv : M(X) → EndF (Z,ZY ).

Moreover, any Frobenius splitting ηv(σ) in the image of ηv will factor through
(FZY

)∗MZ where MZ denotes the pull back of M to Z by the morphism Z → X
defined by [g, x] 7→ g · x.

7. Applications to G×G-varieties

In this section we assume that G is a connected linear algebraic group containing
a connected semisimple subgroup H such that H/H∩B → G/B is an isomorphism. We
define Hsc and Bsc as in the end of Section 5.1. We will need the following well
known result (see e.g. [B-K, Thm.2.3.8 including proof])

Lemma 7.1. Assume that G = Hsc and apply the notation of Section 5.1. Let M

denote the line bundle on G/B × G/B associated with the weight (1 − p)ρ⊠ (1 − p)ρ.
Let f denote a nonzero diag(G)-invariant element of St ⊠ St. Then the image s of
f under the identification

St ⊠ St ≃ HomO(G/B×G/B)′

(

(FG/B×G/B)∗M,O(G/B×G/B)′
)

is compatible with the diagonal diag(G/B) in G/B × G/B.
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We want to apply the results of the preceding sections to the case when the group
equals G × G. So let X denote a B × B-variety and assume that X admits a
Bsc × Bsc-canonical Frobenius splitting defined by

φ : (St ⊠ St) ⊗ (k(p−1)ρ ⊠ k(p−1)ρ) → EndF (X)c

which compatibly splits certain B×B-stable subvarieties X1, . . . , Xm, i.e. the image
of φ is contained in EndF (X,Xi) for all i. Then

Theorem 7.2. With assumptions as above, the variety (G× G) ×B×B X admits a
Frobenius splitting which compatibly splits the subvarieties diag(G) ×diag(B) X and
(G×G) ×(B×B) Xi for all i.

Proof. It suffices to consider the case where G = Hsc. By Corollary 5.4 there exists
a G×G-equivariant morphism

Φ′ : (St ⊠ St) ⊗ (St ⊠ St) → EndF ((G×G) ×B×B X),

satisfying certain compatibility conditions. Let f ∈ St ⊠ St denote the element of
Lemma 7.1. Let v ∈ St ⊠ St denote any element such that Φ′

(

f ⊗ v
)

is a Frobenius
splitting of (G × G) ×B×B X. Then by construction of Φ′ and Theorem 4.4 the
element Φ′

(

f ⊗ v
)

has the desired properties. �

As f , in the proof of the above result, is diag(G)-invariant the map

Φ∆ : St ⊗ St → EndF (diag(G) ×diag(B) X),

given by Φ∆(w) = Φ′(f ⊗ w), defines a diag(B)-canonical Frobenius splitting of
diag(G)×diag(B) X. By the general machinery of canonical Frobenius splittings this
would also be true if X had a diag(B)-canonical Frobenius splitting (see e.g. [B-K,
Prop.4.1.7]). However in the present setup X only admits a B×B-canonical Frobe-
nius splitting which is less restrictive than a diag(B)-canonical Frobenius splitting.
Notice however that, in contrast to the situation when X admits a diag(B)-canonical
Frobenius splitting , we do not obtain compatibly splitting of subvarieties of the form
p−1(Y ) ×B X with Y denoting a Schubert variety of G/B.

8. G-Schubert varieties in equivariant Embeddings

From now on, unless otherwise stated, we assume that G is a connected reductive
group. We fix a Borel subgroup B and a maximal torus T ⊂ B. The set of simple
roots determined by (B, T ) will be denoted by ∆. The Weyl group W = NG(T )/T
is then generated by the simple reflections si for i ∈ ∆. The length of w ∈ W will
be denoted by l(w). For J ⊂ ∆, let WJ denote the subgroup of W generated by
J and W J (resp. JW ) denote the set of minimal length coset representatives for
W/WJ (resp. WJ\W ). The unique maximal element in W will be denoted by w0

and the unique maximal element in WJ will be denoted by wJ
0 . For any w ∈W , let

ẇ denote a representative of w in NG(T ).
For J ⊂ ∆, let PJ ⊃ B denote the corresponding standard parabolic subgroup

and P−
J ⊃ B− its opposite. Let LJ = PJ ∩ P−

J be the common Levi subgroup of PJ

and P−
J . Let U (resp. U−) denote the unipotent radical of B (resp. B−).

Consider G as a G × G-variety by left and right translation. An equivariant
embedding X of G is then a normal irreducible G × G-variety containing an open
subset which is G×G-equivariantly isomorphic to G. In particular, we may identify
G with an open subset of X. Any equivariant embedding of G is a spherical variety
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(with respect to the induced B×B-action) and thus X contains finitely may B×B-
orbits.

A subvariety of the form diag(G) · V for some B × B-orbit closure V is called a
G-Schubert variety. Notice that diag(G) ·V is the image of diag(G)×diag(B) V under
the proper map diag(G) ×diag(B) X → X. Thus the G-Schubert varieties are closed
subvarieties of X.

In the rest of this section, we will define the G-stable pieces in a toridal embedding
and show that the G-Schubert varieties are actually the closures of the G-stable
pieces. However, we don’t know if there is a good notion for G-stable pieces for
general equivariant embeddings.

8.1. G-stable pieces in the wonderful compactification. In this subsection,
we assume furthermore that G is connected semisimple group of adjoint type and
X is the associated wonderful compactification. The boundary X \G is a union of
irreducible divisors Xj, j ∈ ∆ and they intersect transversally. For a subset J ⊂ ∆,
we denote the intersection ∩j∈JXj by XJ . As a (G×G)-variety, XJ is isomorphic to
the variety (G×G)×P−

∆\J
×P∆\J

Y , where Y denotes the wonderful compactification

of the adjoint group of L∆\J . Here the P−
∆\J × P∆\J-action on Y is defined by the

quotient maps P∆\J → L∆\J and P−
∆\J → L∆\J . Let hJ ∈ XJ denote the image of

(1, 1, 1) ∈ (G×G) × Y under this isomorphism.
For J ⊂ ∆ and w ∈W∆\J , we let

XJ,w = diag(G)(Bw, 1) · hJ

and call XJ,w a G-stable piece of X. By [L, section 12] and [He, section 2],

X =
⊔

J⊂∆

w∈W∆\J

XJ,w.

Moreover, by the proof of [He2, Theorem 4.5], for any B × B-orbit closure V in
X, the G-Schubert variety diag(G) · V is the closure of some G-stable piece and is
a finite union of G-stable pieces.

8.2. G-stable pieces in a toroidal embedding. Let Gad denote the semisimple
group of adjoint type associated to G and let X denote the wonderful compactifica-
tion of Gad. The equivariant embedding X is said to be toroidal if the natural map
G→ Gad extends to a morphism π : X → X.

We fix a toroidal embedding X of G. The irreducible components of the boundary
X − G will be denoted by X1, . . . , Xn. As G is an affine variety these boundary
component all have codimension 1 in X [Har, Prop.3.1]. For each G × G-orbit
closure Y in X we then associate the set

KY = {i ∈ {1, . . . , n} | Y ⊂ Xi},

where by definitionKY = ∅ when Y = X. Then by [B-K, Prop.6.2.3], Y = ∩i∈KY
Xi.

Moreover, we define

I = {KY ⊂ {1, . . . , n} | Y a G×G-orbit closure in X },

and write XK := ∩i∈KXi for K ∈ I. Then (XK)K∈I are the closures of G×G-orbits
in X. Then we may define a map p : I → P(∆) such that π(XK) = Xp(K). Here
P(∆) denotes the set of subsets of ∆.
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As in [H-T2, 5.4], for K ∈ I we may choose a base point hK in the open G× G-
orbit of XK which maps to hp(K). By [H-T2, Proposition 5.3], XK is naturally

isomorphic to (G × G) ×P−
∆\J

×P∆\J
L∆\J · hK , where J = p(K) and L∆\J · hK is a

toroidal embedding of a quotient L∆\J/H∆\J by some subgroup H∆\J of the center
of L∆\J .

For K ∈ I and w ∈W∆\p(K), we let

XK,w = diag(G)(Bw, 1) · hK

and call XJ,w a G-stable piece of X. One can show in the same way as in [He2, 4.3]
that

X =
⊔

K∈I

w∈W∆\p(K)

XK,w.

Also similar to the proof of [He2, Theorem 4.5], for any B ×B-orbit closure V in
X, the G-Schubert variety diag(G) · V is the closure of some G-stable piece and is
a finite union of G-stable pieces.

9. Frobenius splitting of G-Schubert varieties

In this section, we assume that X is an equivariant embedding of G. Let Gsc

denote a simply connected cover of the semisimple commutator subgroup (G,G) of
G. We also fix a Borel subgroup B of G and a compatible Borel subgroup Bsc of
Gsc. Similarly we fix maximal tori T ⊂ B and Tsc ⊂ Bsc. By a canonical Frobenius
splitting of the G-variety X we mean canonical with respect to the induced Gsc-
action.

Let X1, . . . , Xn denote the boundary divisors. The closure within X of the B×B-
orbit Bsjw0B ⊂ G will be denoted by Dj. Then Dj is also of codimension 1 in X.

The translate (w0, w0)Dj of Dj will be denoted by D̃j .
By earlier work we know

Theorem 9.1. [H-T2, Prop.7.1] The equivariant embedding X admits a B × B-
canonical Frobenius splitting which compatibly Frobenius splits the closure of every
B × B-orbit closure.

As a direct consequence of Theorem 7.2 we then obtain

Corollary 9.2. Let X denote an equivariant embedding of G. Then the variety
(G×G) ×B×B X admits a Frobenius splitting which compatibly Frobenius splits the
subvarieties (G×G) ×B×B Y and diag(G) ×diag(B) Y for every B ×B-orbit closure
Y in X. Moreover, (G×G) ×B×B Y admits a B × B-canonical Frobenius splitting
while diag(G) ×diag(B) Y admits a diag(B)-canonical Frobenius splitting.

Proposition 9.3. The equivariant embedding X of G admits a diag(B)-canonical
Frobenius splitting which compatibly splits all the G-Schubert varieties.

Proof. By Corollary 9.2 the variety Z = diag(G) ×diag(B) X admits a B-canonical
Frobenius splitting which compatibly Frobenius splits all subvarieties of the form
diag(G)×diag(B) Y with Y denoting a B×B-orbit closure in X. As X is a diag(G)-
stable we may identify Z with G/B ×X via the isomorphism

diag(G) ×diag(B) X → G/B ×X,

[g, x] 7→ (gB, g · x).
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In particular, we see that the morphism

π : Z = diag(G) ×diag(B) X → X,

[g, x] 7→ g · x,

is projective and that π∗(OZ) = OX . As a consequence (see Section 2.6) the Frobe-
nius splitting of Z induces a Frobenius splitting of X which compatibly splits all
subsets of the form

π(diag(G) ×diag(B) Y ) = diag(G) · Y.

This ends the proof. �

As a direct consequence, we conclude the following vanishing result (see [B-K,
Theorem 1.2.8]).

Corollary 9.4. Let X denote a projective equivariant embedding of G. Let X denote
a G-Schubert variety and let L denote an ample line bundle on X. Then

Hi(X,L) = 0, i > 0.

Moreover, if X′ ⊂ X is another G-Schubert variety, then the restriction map

H0(X,L) → H0(X′,L)

is surjective.

9.1. F-splittings along ample divisors. In this subsection we assume that X is
toroidal. The following structural properties of toroidal embeddings can all be found
in [B-K, Sect.6.2]. Let X0 denote the complement in X of the union of the subsets
BsiB− for i ∈ ∆. Let X ′ denote the closure of T in G and let X ′

0 = X ′ ∩X0. Then
X ′

0 is a T -stable subset of X and the morphism

U × U− ×X ′
0 → X0,

(x, y, z) 7→ (x, y) · z,

is an isomorphism. Moreover, every G × G-orbit in X intersects X ′
0 in a unique

T -orbit. Consequently this intersection is isomorphic to a product of copies of k∗.

Lemma 9.5. Let X denote a projective toroidal equivariant embedding of G and let
Y = XK, K ∈ I, denote a G×G-orbit closure in X. Then

Y ∩
(

⋃

j /∈K

Xj ∪
⋃

i∈∆

(1, w0)Di

)

has pure codimension 1 in Y and contains the support of an ample effective Cartier
divisor on Y .

Proof. Let XK = ∪j /∈KXj. We claim that Y \XK coincides with the open G × G-
orbit Y0 of Y . Clearly Y0 is contained in Y \ XK . On the other hand, let U be
a G × G-orbit in Y \ XK . Then Xj contains U if and only if j /∈ K. But every
G×G-orbit closure is the intersection of the Xj’s which contain it [B-K, Prop.6.2.3].
It follows that the closure of Y and U coincide and thus U = Y .

As X is normal we may choose a G×G-linearized very ample line bundle L on X.
As H0(Y,L) is finite dimensional it contains an element v which is B×B−-invariant
up to constants. The support of v is then the union of B×B−-invariant divisors on
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Y . As Y0 ∩X
′
0 is a single T × T -orbit it follows that Y0 ∩X0 = U ×U− × (X ′

0 ∩ Y0)
is a single B ×B−-orbit. In particular, the support of v is contained in

Y \ (Y0 ∩X0) = Y ∩ (XK ∪
⋃

i∈∆

(1, w0)Di).

This shows the second part of the statement. The first part follows as Y0 ∩ X0 is
affine [Har, Prop.3.1]. �

Let now X denote a projective smooth toroidal embedding of G. In this case
there exists an isomorphism [B-K, Prop.6.2.6]

ω−1
X ≃ OX

(

∑

i∈∆

(Di + D̃i) +
n

∑

j=1

Xj

)

.

Let τi denote the canonical section of the line bundles OX(Di). Then τi is a Bsc ×
Bsc-eigenvector with weight ωi ⊠ −w0ωi, where ωi denotes the fundamental weight
associated to the i-th simple root. This follows from the corresponding statement for
X in [B-K, Prop.6.1.11] as the pull back of OX(Di) to X is isomorphic to OX(Di).

Let V denote a B×B-orbit closure in X and let K denote the set of elements j in
{1, . . . , n} such that Xj contains V . Then Y = ∩j∈KXj is the smallest G×G-stable

closed subset of X which contains V . Let ρ =
∑l

i=1 ωi. As ω1−p
X is isomorphic to

End!
F (X) it follows by Lemma 2.6 that we have a morphism of Bsc × Bsc-linearized

sheaves
M → End!

F

(

X, {Di, Xj}i∈∆,j∈K

)

⊗ k(1−p)ρ⊠(1−p)ρ,

where M denotes the line bundle OX

(

(p− 1)(
∑

i∈∆ D̃i +
∑

j /∈K Xj)
)

.

By [H-T2, Prop.6.5] and Lemma 2.1 any element in End!
F (X) which is compatibly

with the closed subvarieties Di, i ∈ D, and Xj , j ∈ K, is also compatibly with V
and Y . In particular, we find

s : M → End!
F (X, Y, V

)

⊗ k(1−p)ρ⊠(1−p)ρ.

Let σj denote the canonical section of OX(Xj) and consider the global section

σ =
∏

i∈∆

τp−1
i

∏

j /∈K

σp−1
j

of M (here we use that OX(Di) is isomorphic to OX(D̃i)). Then σ is a B × B-
eigenvector of weight (p−1)ρ⊠(p−1)ρ. By Frobenius reciprocity and the selfduality
of the Steinberg module St associated to Gsc, it follows that we have a Bsc × Bsc-
equivariant morphism

OX ⊗ (St ⊠ St) → M
s
−→ End!

F (X, Y, V ) ⊗ k(1−p)ρ⊠(1−p)ρ.

Moreover, taking global section the induced map

St ⊠ St → EndF (X, Y, V ) ⊗ k(1−p)ρ⊠(1−p)ρ,

defines a canonical Frobenius splitting of X. This follows as the section

(

∏

i∈∆

(τiτ̃i)
n

∏

j=1

σj

)p−1

,

with τ̃i denoting the canonical section of OX(D̃i), defines a Frobenius splitting of X
(see e.g. [B-K, proof of Thm.6.2.7]).
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Proposition 9.6. Fix notation as above and let D denote the effective Cartier
divisor

(p− 1)
(

∑

i∈∆

(1, w0)Di +
∑

j /∈K

Xj

)

on X. Then X admits a Frobenius D-splitting which compatibly Frobenius splits the
subvarieties Y and diag(G) · V .

Proof. Above we have constructed a Gsc ×Gsc-equivariant map

St ⊠ St → IndGsc
Bsc

(

EndF (X, Y, V ) ⊗ k(1−p)ρ⊠(1−p)ρ

)

.

Let L denote the line bundle on Gsc/Bsc × Gsc/Bsc associated to the weight (1− p)ρ⊠

(1 − p)ρ. Applying the map Φ from Theorem 4.4 we find

Φ′ : EndL

F

(

Gsc/Bsc × Gsc/Bsc) ⊗ (St ⊠ St) → EndF

(

Z,ZY , ZV

)

,

where Z = (Gsc × Gsc) ×(Bsc×Bsc) X, ZY = (Gsc × Gsc) ×(Bsc×Bsc) Y and ZV =
(Gsc ×Gsc) ×(Bsc×Bsc) V . Let

v ∈ St ⊠ St ≃ EndL

F

(

Gsc/Bsc × Gsc/Bsc),

denote a nonzero diag(G)-invariant element and let

w = v+ ⊠ v− ∈ St ⊠ St

where v+ (resp. v−) denotes a nonzero B (resp. B−) -eigenvector of St such that
Φ′(v ⊠ w) defines a Frobenius splitting.

Let MZ denote the pull back of M to Z by the map

η : (Gsc ×Gsc) ×(Bsc×Bsc) X → X

[(g, h), x] 7→ (g, h) · x.

Let σ denote the global section of MZ defined as the pull back of the image σw of
w under the morphism St ⊠ St → M(X) defined above. Then by Lemma 6.2 the
Frobenius splitting Φ′(v ⊠ w) will factor as

(FZ)∗OZ
(FZ )∗σ
−−−−→ (FZ)∗MZ

(Fb)∗s
−−−→ (Fb)∗L̂

(π′)∗v
−−−→ OZ′ .

where s is some map (Ff )∗MZ → L̂. Moreover

t = (π′)∗v ◦ (Fb)∗s : (FZ)∗MZ −→ OZ′

is compatible with ZY and ZV , and by Proposition 4.2, Lemma 4.5 and Lemma 7.1,
also with Z∆ = diag(G) ×diag(B) X. In particular, t is also compatible with the
intersection ZV,∆ = diag(G) ×diag(B) V of Z∆ and ZV .

Notice that the natural morphism η♯ : OX → η∗OZ is an isomorphism. Thus, by
Lemma 2.7 the push forward

η∗t : (FX)∗M → OX′

is compatible with Y = η(ZY ) and diag(G)·V = η(ZV,∆). Moreover, the composition
of η∗t with

η∗(FZ)∗σ = (FX)∗σw : (FX)∗OX → (FX)∗M,

is, by construction, a Frobenius splitting of X. It follows that X admits a Frobenius
D-splitting which compatibly splits Y = η(ZY ) and diag(G) ·V = η(ZV,∆), where D
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is the effective Cartier divisor associated to σw. But by the remarks preceding this
proposition it follows that D, by construction, equals

(p− 1)
(

∑

j /∈K

Xj +
∑

i∈∆

(1, w0)Di

)

.

This ends the proof. �

Definition 9.7. A morphism f : X → Y is a called a rational morphism if the
induced map f ♯ : OY → f∗OX is an isomorphism and Rif∗OX = 0, i > 0.

The following criteria for a morphism to be rational will be very useful ([R,
Lem.2.11]).

Lemma 9.8. Let f : X → Y denote a projective morphism of irreducible varieties
and let X̂ denote a closed irreducible subvariety of X. Consider the image Ŷ = f(X̂)
as a closed subvariety of Y . Let L denote an ample line bundle on Y and assume

(1) f∗OX = OY .

(2) Hi(X, f ∗Ln) = Hi(X̂, f ∗Ln) = 0, for i > 0 and n≫ 0.

(3) The restriction map H0(X, f ∗Ln) → H0(X̂, f ∗Ln) is surjective for n≫ 0.

Then the induced map f ′ : X̂ → Ŷ is a rational morphism.

Lemma 9.9. Let X denote a projective embedding of a reductive group G and let Y
denote a G × G-orbit closure of X. Then there exists a smooth toroidal embedding
X̂ of G and a projective morphism f : X̂ → X extending the identity map on
G. Moreover, we may also assume that X̂ contains a G × G-orbit closure Ŷ with
f(Ŷ ) = Y and such that the induced morphism f : Ŷ → Y is a rational morphism.

Proof. Assume first that X is toroidal. Remember that the closure of T in any
toroidal embedding of G is a a toric variety and that this defines (see [B-K, Sect.6.2])
a correspondence between certain toric varieties and the set of toroidal equivariant
embeddings of G. In particular, if we let T̄ denote the closure of T in X, then there
exists a toroidal embedding X̂ whose associated toric variety T̂ is a resolution of
singularities of T̄ . We may assume that T̂ is constructed by a refinement of the
fan associated to T̄ as discussed in [Ful, Sect.2.6]. Thus it follows that any T -orbit

closure V of T̄ is the birational image of a T -orbit closure V̂ in T̂ (see e.g. the
discussion at the end of Chapter 5 in [Ful]).

By [B-K, Prop.6.2.3] T -orbit closures of T̄ correspond to G × G-orbit closures

in X. So let V be the T -orbit closure associated to Y . Choose V̂ as above and let
Ŷ denote the corresponding G × G-orbit closure of X̂. Then by the discussion in
[B-K, Sect.6.2] there is an induced birational map f : Ŷ → Y . By [H-T2, Cor.8.4]
the orbit closure Y is normal and thus, by Zariski’s main theorem, we conclude
f∗OŶ = OY . By Lemma 9.8 (used with X = X̂ and Y = Ŷ ) it now suffices to prove
that

Hi(Ŷ , f ∗L) = 0, i > 0

for a very ample line bundle L on Y . This follows from [H-T2, Prop.7.2] and ends
the proof in the case when X is toroidal.

Consider now an arbitrary projective equivariant embedding X of G. Let X̂
denote the normalization of the closure of the image of the natural G×G-equivariant
embedding

G→ X × X.
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Then X̂ is a toroidal embedding of G with an induced equivariant morphism f :
X̂ → X. Let Ŷ denote any G × G-orbit closure in X̂. Then f : Ŷ → f(Ŷ ) is a
rational morphism [H-T2, Lem.8.3]. In particular, we may find a G×G-orbit closure

Ŷ of X̂ with an induced rational morphism f : Ŷ → Y . Finally we may apply the
first part of the proof to Ŷ and use that a composition of rational morphisms is a
rational morphism. �

Corollary 9.10. Let X denote a projective embedding of a reductive group G and
let X denote a G-Schubert variety in X. Let Y denote the minimal G × G-orbit
closure of X containing X. When L is a nef line bundle on X then

Hi(X,L) = 0, i > 0.

Moreover, when L is a nef line bundle on Y then the restriction morphism

H0(Y,L) → H0(X,L),

is surjective.

Proof. Assume first that X is smooth and toroidal. Then by Proposition 9.6 and
Lemma 9.5 the variety Y admits a stable Frobenius splitting along an ample divisor
which compatibly Frobenius splits X. Thus the statement follows in this case by
Proposition 2.4.

Let now X denote an arbitrary projective equivariant embedding of G. Choose
a projective toroidal embedding X̂ as in Lemma 9.9 and let f : Ŷ → Y denote
the induced rational morphism. Let V denote a B × B-orbit in Y such that X =
diag(G) · V̄ . As Y is the minimal G×G-orbit closure containing X it follows that V
is contained in the open G×G-orbit of Y . In particular, there exists a B ×B-orbit
V̂ in X̂, contained in the open G×G-orbit of Ŷ , which maps to V . In particular,

X̂ := diag(G) ·
¯̂
V

is a G-Schubert variety in X̂ which by f maps onto X. Moreover, Ŷ is the minimal
G×G-orbit closure containing X̂. Applying Lemma 9.8 and the part of the statement
which is already proved, it follows that f : X̂ → X is a rational morphism. In
particular,

Hi(X,L) = Hi(X̂, f ∗L)

Hi(Y,L) = Hi(Ŷ , f ∗L)

for all i and all line bundles L on X or Y . Now apply the part of statement which
is already proved. �

By the proof of the above result we also find that any G-Schubert variety X a
projective equivariant embedding of G, will admit a G-equivariant rational mor-
phism f : X̂ → X by the closure X̂ of some G-stable piece of some smooth projective
toroidal embedding of G.

Remark 9.11. When X = X is the wonderful compactification of a group G of
adjoint type and L is a nef line bundle on X, then the restriction morphism

H0(X,L) → H0(Y,L),

to any G × G-stable irreducible subvariety Y of X is surjective. In particular, also
the restriction morphism

H0(X,L) → H0(X,L),
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to any G-Schubert variety X is surjective by the above result. We do not know if the
latter is true for arbitrary equivariant embedding.

10. Normality questions

It is natural to expect that the Frobenius splitting properties of closures of G-
stable pieces together with the cohomology vanishing results in Corollary 9.10 will
have strong implications on the geometry of G-Schubert varieties. However, below
will see that there exists an example of a G-Schubert variety in a wonderful com-
pactification which is not even normal. In fact, it seems that there are plenty of
such examples.

10.1. Some general theory. We keep the notations in 8.1. For J ⊂ ∆ and w ∈
W∆\J , We let XJ,w denote the closure of XJ,w in X. Let

K = max{K ′ ⊂ ∆ \ J ;wK ′ ⊂ K ′}.

By [He2, Prop. 1.12], we have a diag(G)-equivariant isomorphism

diag(G) ×diag(PK) (PKw, PK)hJ ≃ XJ,w

induced by the inclusion of (PKw, PK)hJ in X. Let V denote the closure of (PKw, PK)hJ

within X. Then V is the closure of a B×B-orbit and we find that the induced map

f : diag(G) ×diag(PK) V ≃ XJ,w

is a birational and projective morphism. By the results in [H-T2] the B × B-orbit
closure V is normal. Thus a necessary condition for XJ,w to be normal is that the
fibers of f are connected.

10.2. An example of a non-normal closure. Let now, furthermore, G be a group
of type G2. Let α1 denote the short simple root and α2 denote the long simple root.
The associated simple reflections are denoted by s1 and s2. Let J be the subset of
∆ defined by α2 and let w = s1s2 ∈ W∆\J . In this case K = ∅ and we obtain a
birational map

f : diag(G) ×diag(B) V ≃ XJ,w

where V is the closure of (Bw,B)hJ . By [Sp, Prop. 2.4], the part of V which
intersect the open G×G-orbit of XJ equals

⋃

w≤w′

(Bw′, B)hJ ∪
⋃

ws1≤w′

(Bw′, Bs1)hJ . (a)

In particular, x := (v̇, 1)hJ is an element of V , where v = s2s1s2. We claim that the
fiber of f over x is not connected. To see this let y denote a point in the fiber over
x. Then we may find g ∈ G and x̃ ∈ V such that

y = [g, x̃].

By (a), x̃ = (bw′, p)hJ for some b ∈ B, p ∈ P∆\J and w′ ≥ w. Then

(gbw′, gp)hJ = (v̇, 1)hJ .

It follows that (v̇−1gbw′, gp) lies in the stabilizer of hJ . In particular, gp ∈ P∆\J

and thus also g ∈ P∆\J . If g ∈ B then y = [1, x]. So assume that g = u1(t)ṡ1 where
u1 is the root homomorphism associated to α1. Assume that t 6= 0. Then we may
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find b1 ∈ B and s ∈ k such that g = u−1(s)b1 where u−1 is the root homomorphism
associated to −α1. Thus

x̃ = (g−1, g−1)(v̇, 1)hJ

= (b−1
1 u−1(−s)v̇, g

−1)hJ

= (b−1
1 v̇, g−1)hJ

∈ (Bv,Bs1)hJ

where the third equality follows as v̇−1u−1(−s)v̇ is contained in the unipotent radical
of P−

∆\J . But (Bv,Bs1)hJ has empty intersection with V which contradicts the

assumption that t 6= 0. It follows that the only possibilities for y are [1, v] and
[ṡ1, (ṡ1v̇, ṡ1)hJ ]. As (ṡ1v̇, ṡ1)hJ ∈ V we conclude that the fiber of f over x consists
of 2 points; in particular the fiber is not connected and thus XJ,w is not normal.

10.3. Normalization of G-Schubert varieties. The example above shows that
the G-Schubert varieties within wonderful compactifications are, in general, not nor-
mal. Now we turn our attention towards the normalization of G-Schubert varieties
which we expect to have nice singularities.

Let XJ,w be a G-stable piece and let ZJ,w denote the normalization of the closure
of XJ,w. Then the birational morphism f factors through ZJ,w. In particular, there
is an induced birational and projective morphism

f ′ : diag(G) ×diag(B) V → ZJ,w.

By the results in [H-T2] the B × B-orbit closure V is globally F -regular. Thus
diag(G) ×diag(B) V is locally strongly F -regular. As f ′

∗Odiag(G)×diag(B)V = OZJ,w
one

could hope that a similar result was true for ZJ,w. Moreover, using Proposition 9.6
and Lemma 9.5 one may conclude that ZJ,w admits a stable Frobenius splitting
along an ample divisor. In particular, if the above hope was true then ZJ,w would
be globally F -regular. At the moment we do not know if ZJ,w is strongly F -regular.
We refer to [S] for an introduction to global F -regularity.

11. Generalizations

An admissible triple ofG×G is by definition a quadruple C = (J1, J2, θδ) consisting
of J1, J2 ⊂ ∆, an isomorphism δ : WJ1 → WJ2 with δ(J1) = J2 and an isomorphism
θδ : LJ1 → LJ2 that maps T to T and the root subgroup Uαi

to the root subgroup
Uαδ(i)

for i ∈ J1. To each admissible triple C = (J1, J2, θδ), we associate the subgroup
RC of G×G defined by

RC = {(p, q) : p ∈ PJ1, q ∈ PJ2, θδ(πJ1(p)) = πJ2(q)},

where πJ : PJ → LJ , for a subset J ⊂ ∆, denotes the natural quotient map.
Let Gsc denote the simply connected cover of the commutator subgroup of G

and let C = (J1, J2, θδ) denote an admissible triple on Gsc × Gsc. By definition in
[L-Y, section 7], a RC-stable piece in the wonderful compactification X of Gad is a
subvariety of the form RC · Y , where Y = (Bv1, Bv2) · hJ for some J ⊂ ∆, v1 ∈W J

and v2 ∈
J2W . Notice that when J1 = J2 = ∆ and θδ is the identity map then a RC-

stable piece is the same as a G-stable piece. On the other hand, when J1 = J2 = ∅,
then a RC-stable piece is the same as a B×B-orbit. Moreover, for any B×B-orbit
closure V in X, RC · V is the closure of some RC-stable piece and is a finite union of
RC-stable pieces [L-Y, Section 7]. We call RC · V a RC-Schubert variety of X.
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The following is a generalization of Proposition 9.3 and Proposition 9.6.

Proposition 11.1. Every equivariant embedding X of G admits a Frobenius split-
ting which compatibly splits all closed subsets of the form RC · V , where V denotes a
B×B-orbit closure of X. If, moreover, X is a smooth projective toroidal embedding
and Y = XK is the minimal G × G-orbit closure containing a B × B-orbit closure
V , then X admits a Frobenius splitting along the Cartier divisor

D = (p− 1)
(

∑

i∈∆

(wJ1
0 , 1)D̃i +

∑

j /∈K

Xj

)

,

which is compatibly with Y and RC · V̄ .

Proof. In the following LJ , for a subset J ⊂ ∆, denotes the Levi subgroup in Gsc

associated to J . The corresponding commutator subgroup is denoted by L′
J . Define

XC to be the L′
J1
×L′

J1
-variety which as a variety is X but where the action is twisted

by the morphism

L′
J1

× L′
J1

1×θδ−−−→ L′
J1

× L′
J2
.

Then the (L′
J1

∩ Bsc) × (L′
J2

∩ Bsc)-canonical Frobenius splitting of X defined by
Theorem 9.1 and Lemma 5.5 induces a (L′

J1
∩Bsc)× (L′

J1
∩Bsc)-canonical Frobenius

splitting of XC. In particular, all subvarieties of XC which corresponds to B × B-
orbit closures in X will be compatibly Frobenius split by this canonical Frobenius
splitting. Now apply an argument as in the proof of Proposition 9.3 and use the
idenfication of RC · V ⊂ X with diag(LJ1) · V ⊂ XC. This ends the proof of the first
statement.

Assume now that X is a smooth projective toroidal embedding and consider the
morphisms

OX ⊗ (St ⊠ St) → M
s
−→ End!

F (X, Y, V ) ⊗ k(1−p)ρ⊠(1−p)ρ.

of the discussion above Proposition 9.6 in Section 9. Let YC and VC be defined
similar to XC. Applying Lemma 5.5 we obtain

OXC
⊗ (StJ1 ⊠ StJ1) → M

s
−→ End!

F (XC, YC, VC) ⊗ k(1−p)ρJ1
⊠(1−p)ρJ1

.

with notation as in Section 5.2. Let v− (resp. v+) denote a lowest (resp. highest)
weight vector in (StJ1 ⊠StJ1) and let σ be the global section of M which is the image
of v+ ⊠ v− under the map

StJ1 ⊠ StJ1 → M(X).

Let D denote the zero divisor of σ. Arguing as in the proof of Proposition 9.6 we
then obtain a D-splitting of XC which is compatible with the subvarieties YC and
diag(LJ1) · VC. Notice finally that D equals the divisor

(p− 1)
(

∑

i∈∆

(wJ1
0 , 1)D̃i +

∑

j /∈K

Xj

)

.

This ends the proof. �

In the case where k = C and X is the wonderful compactification, the subvarieties
(wJ1

0 , 1)D̃i, Xj and all the RC-Schubert varieties are Poisson subvarieties with respect
to the Poisson structure on X corresponding to the splitting

Lie(G) ⊕ Lie(G) = l1 ⊕ l2,
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where l1 = Lie(RC) and l2 is certain subalgebra of Ad(wJ1
0 ) Lie(B−) ⊕ Lie(B−). See

[L-Y2, 4.5].

We may also argue as in Corollary 9.10 to obtain

Corollary 11.2. Let X denote a projective embedding of a reductive group G and let
V denote the closure of a B×B-orbit in X. Let Y denote the minimal G×G-orbit
closure of X containing XC = RC · V . When L is a nef line bundle on XC then

Hi(XC,L) = 0, i > 0.

Moreover, when L is a nef line bundle on Y then the restriction morphism

H0(Y,L) → H0(XC,L),

is surjective.

11.1. Further variations. Define an To an admissible triple RC we may associate
the variety ZC = (G×G)/RC which can also be identified with the variety

(G×G) ×PJ1
×PJ2

LJ1,

where the action of PJ1 × PJ2 on G×G× LJ1 is defined by

(p1, p2) · (g1, g2, l) =
(

g1p1, g2p2, πJ1(p1)lθ
−1
δ (πJ2(p2)

−1)
)

.

Then

Lemma 11.3. There is a B×B-canonical splitting on ZC that compatibly splits all
the B ×B-orbit closures.

Proof. By [B-K, Thm.6.2.7], there exists a B × B-canonical splitting on LJ1 that
compatibly splits all the B ×B-orbit closures. Then by [B-K, Proposition 4.1.17 &
Exercise 4.1.E(4)], there exists a B × B-canonical splitting on (G × G) ×B×B LJ1

that compatibly splits all the B × B-orbit closures. By a push forward argument
this implies that ZC = (G × G) ×PJ1

×PJ2
LJ1 admits a B × B-canonical Frobenius

splitting which compatibly Frobenius splits all B × B-orbits closures. �

Now let h be the element [1, 1, 1] ∈ (G × G) ×PJ1
×PJ2

LJ1 = ZC and let C′ =
(J ′

1, J
′
2, θδ′) be another admissible triple. A RC′-stable piece of ZC is then a subset of

the form RC′ ·Y where Y = (Bv1, Bv2) ·h for some v1 ∈W J1 and v2 ∈
J ′
2W . Similar

to the proof of the first part of Proposition 11.1 we may then prove

Proposition 11.4. The variety ZC admits a Frobenius splitting which compatibly
Frobenius splits all closures of RC′-stable pieces.
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