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Abstract

We introduce a new algorithm for reconstructing an unknown shape from a finite
number of noisy measurements of its support function. The algorithm, based on a least
squares procedure, is very easy to program in standard software such as Matlab and
allows, for the first time, good 3D reconstructions to be performed on an ordinary PC.
Under mild conditions, theory guarantees that outputs of the algorithm will converge
to the input shape as the number of measurements increases. Reconstructions may be
obtained without any pre- or post-processing steps and with no restriction on the sets of
measurement directions except their number, a limitation dictated only by computing
time.

In addition we offer a linear program version of the new algorithm that is much
faster and better, or at least comparable, in performance at low levels of noise and
reasonably small numbers of measurements. Another modification of the algorithm,
suitable for use in a “focus of attention” scheme, is also described.
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I. INTRODUCTION

HIS paper addresses the problem of reconstructing an unknown shape from

a finite number of noisy measurements of its support function. Given a mea-
surement direction, i.e., a unit vector, the corresponding support function value
provides the signed distance from some fixed reference point, usually taken to be
the origin, to the supporting line (for 2D shapes) or plane (for 3D shapes) to the
shape orthogonal to the direction. This is illustrated for 2D shapes in Fig. 1, where
the support function and support line of the shape K in the direction u are hg (u)
and H (u), respectively.

Support functions have found application in many different settings. Prince and
Willsky [1] used such data in computerized tomography as a prior to improve perfor-
mance, particularly when only limited data is available. Lele, Kulkarni, and Willsky
[2] applied support function measurements to target reconstruction from range-
resolved and Doppler-resolved laser radar data. Gregor and co-workers proposed
using support function data in a “focus of attention” pre-processing scheme for
reducing the computational cost associated with positron emission tomography [3],
projection magnetic resonance imaging [4], and cone-beam based computerized to-
mography [5]. A different sort of application is made by Ikehata and Ohe [6], who
obtain support function information from electrical impedance tomography data,
with a view to finding cavities.

The support function was introduced by the mathematical genius Minkowski, and
is of fundamental importance in convex geometry and geometric tomography; see [7]
and [8]. The role of the support function in mathematical morphology is described
by Serra [9]. Karl, Kulkarni, Verghese, and Willsky [10] note that support function
measurements can be obtained from repeated grasps by a parallel-jaw gripper,
as in [11] and [12]. They also list references to articles detailing the application
of support functions to geometric probing, robot vision, and chemical component
analysis. Ghosh and Kumar [13] provide a detailed survey of the support function
in geometric computing, where they compare its importance in the representation,
manipulation, and analysis of convex bodies to that of the Fourier transform in
signal processing.

The first algorithms for reconstructing shapes from noisy support function mea-
surements were proposed by Prince and Willsky [1] and Lele, Kulkarni, and Will-
sky [2]. The method in each case is to fit a polygon to the data by a least squares
procedure. In contrast, Fisher, Hall, Turlach, and Watson [14] use spline interpo-
lation and the so-called von Mises kernel to fit a smooth curve to the data. This
procedure was taken up in [15] and [16], the former dealing with convex bodies with
corners and the latter giving an example to show that the algorithm in [14] may fail
for a given data set. All these papers consider only the 2D case. A theoretical study
of the support function reconstruction problem in higher dimensions was carried
out by Karl, Kulkarni, Verghese, and Willsky [10].

The nature of the data arising from support function measurements makes it
natural to focus on convex bodies. Given a finite set of measurements, one can
attempt to approximate the unknown shape by a convex polyhedron. If, as in some
previous schemes, each face of the reconstructed polyhedron is to be orthogonal
to a measurement direction, the obvious variables become the distances of the
hyperplanes containing these faces from the fixed reference point. A least squares
procedure then involves finding values of these variables that correspond to the
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“best” finite set of hyperplanes that contain the faces of an approximating convex
polyhedron. The main theoretical difficulty lies in finding a constraint that guar-
antees that the hyperplanes really do contain the faces of a convex polyhedron, a
property called consistency in the sequel. (See Section III and Fig. 2.) While this
is quite easy to do in 2D—in [1] and [2] the constraint is formulated in terms of
a matrix-vector inequality—it is much more difficult in higher dimensions. In [10]
this problem was solved by constructing a set of “local” consistency tests that if
satisfied guarantee “global” consistency. Perhaps due to the inherent computational
complexity of their method, the authors of [10] did not describe any implementation,
even in 3D. But later, Gregor and Rannou [4] accomplished a clever implementation
in 3D (for certain sets of measurement directions; see Section IX), using several tricks
to cut down the computational complexity to a manageable level. We are not aware,
however, of any published algorithm for 3D support function reconstruction that is
simple, effective, and easy to program.

In this paper we introduce a new algorithm for reconstructing shapes from support
function measurements. Like many previous algorithms, the idea is to use k support
function measurements and least squares optimization to find an n-dimensional
convex polyhedron that approximates the n-dimensional unknown shape. The novel
feature in our algorithm is a different choice of variables. While there are more
real variables than before (kn instead of k), the new choice of variables allows the
consistency constraint to be specified by only O(k?) linear inequalities. In particular,
the local consistency tests of [10] are entirely circumvented. The result is an effective
support function algorithm that is very easy to program in standard software such as
Matlab, and that allows, for the first time, good 3D reconstructions to be performed
on an ordinary PC. Moreover, provided the number of measurements is not too large,
reconstructions may be obtained without restriction on the sets of measurement
directions and without any pre- or post-processing steps.

The new algorithm is described in Section IV. In Section VI we offer a linear
program version of the new algorithm, which is much faster and comparable in
performance to the least squares version at low levels of noise. Another modification,
suitable for use in a “focus of attention” scheme, is the subject of Section X.

II. BACKGROUND

Suppose that K is a convex body in n-dimensional Euclidean space " and u is
a unit vector in the unit sphere S™~!. The support function hy(u) of K is
hi(u) = sup 2" u. (1)
reK
Then hg(u) is the signed distance from the origin 0 to the support hyperplane

H(u) = {z € R"|2"u = h(u)} (2)
to K orthogonal to u. See Fig. 1. A convex body is completely determined by its
support function, which is a continuous function on the unit sphere; see [7, p. 38|.

In 2D, it is often convenient to write the unit vector u = [cos#,sind]’. In this
case the support function of K becomes a function hx (@) of the angle 6.

The most useful metrics for calculating the distance between convex bodies can
be defined by means of the support function. The Hausdorff distance between two
convex bodies K and L is

(K, L) = e = helloo = 0 [hac(u) = hu )],

uesSn—1



Fig. 1. The support function hx of a convex body K

The corresponding Lo distance is

oK, 1) = i Dl
= ([, o)~ o) )" ®)

where integration is over the unit sphere with respect to its natural measure. The
two metrics are closely related. If K and L are contained in a fixed ball of radius
R, then

¢ 0 (K, L)"Y/2 < 5)(K, L) < ¢y 65(K, L), (4)

where ¢; and ¢ are constants depending only on n and R; see [17, Proposition 2.3.1].

III. THE PRINCE-WILLSKY ALGORITHM
Let uq, ..., u; be fixed vectors in S™~! whose positive hull

k
{z e Rz =) Nu; for \; >0}
i=1
is R". If h; is a support function measurement of an unknown shape in the direction
u;, we call the pair (u;, h;) a support function data point.
For the purposes of reconstruction, it is important to know for which real numbers
hi,...,h; there is a convex body L in R" that fits the support function data
((uy, h1), ..., (ug, hg)), in other words, is such that hp(u;) = hs;, @ = 1,... k. In

this case the real numbers hq, ..., h; are called consistent. This is not always the
case, as Fig. 2 illustrates.
If hq, ..., hy are consistent, there will be many convex bodies L that fit the support

function data ((uy,h1),..., (ug, he)); let P(hy, ..., h;) denote the one that is the
convex polyhedron defined by

P(hy,...,hg) = ﬁ{x € R atu; < by} (5)

i=1

See Fig. 3, from which it is clear that P(hy, ..., hs) is the maximal convex body that
fits the support function data ((uy, hy), ..., (ug, hy)), because any other such convex

4



Fig. 2. Inconsistent support function data

body, such as K or the dotted polygon in Fig. 4, must be inscribed in P(hq, ..., hg).
(In these figures, only two of the six directions u; and two of the six distances h;
are shown.)

Fig. 3. The polygon P(hi,...,h;) (with k = 6)

For n = 2 and vectors uq, ..., u; equally spaced in S!, the following algorithm
was proposed and implemented by Prince and Willsky [1].

PRINCE-WILLSKY ALGORITHM

Input: Natural numbers n > 2 and k > n + 1; vectors u; € S" ', i =1,...,k
whose positive hull is "; noisy support function measurements

yi = hx(u;) + X, (6)
i =1,...,k of an unknown convex body K in R", where the X;’s are independent
normal N(0,0?) random variables.

Task: Construct a convex polyhedron P, in R that approximates K.
Action: Solve the following constrained linear least squares problem (LLS1):

k
min > (yi — i), (7)
Wik
subject to  hy,..., hg are consistent. (8)

Let hq, ..., hs be a solution of (LLS1) and let b, = P(Bl, ooy hg).
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The model for noise in the Prince-Willsky algorithm is a natural choice. Support
functions are typically measured using electronic sensor devices such as cameras,
robot tools, grippers, etc., so the noise corrupting the measurements is generally the
electrical noise coming from the sensors. This noise arises during data acquisition
(readout noise) and can be approximated by a Gaussian distribution.

Of course, any implementation of the Prince-Willsky Algorithm involves making
explicit the constraint (8). For n = 2, this was done by Prince and Willsky [1] for
vectors uy, . .., u;, equally spaced in S, and by Lele, Kulkarni, and Willsky [2] for
arbitrary vectors u,...,u; in S*, by means of an inequality constraint of the form
Ch > 0, where h = [hy,...,h]T and C is a certain matrix given explicitly in [2,
p. 1696]. The matrix C' depends only on the measurement directions uy, ..., uy (or,
equivalently, on the corresponding angles 61, ..., 6;) and this allows a very efficient
implementation of the algorithm in the 2D case.

The Prince-Willsky algorithm above actually corresponds to the Closest Algorithm
of [1, Section IV] and Algorithm NUA of [2, Section 3|. These algorithms produce
approximating polygons whose edges have unit outer normal vectors belonging to
the set {uy,...,ux} of measurement directions. Prince and Willsky [1] described in
addition several variants of the algorithm, each involving prior knowledge of some
kind, for example, information about the curvature or position of the unknown
shape. Lele, Kulkarni, and Willsky [2] also listed related algorithms: BNGON, in
which a number N of sides of the output polygon is specified in advance, and
BNGONROT, in which both the number of the edges of the output polygon and their
unit outer normal vectors are specified. (A nonlinear least squares procedure which
also optimizes the orientations of the edges is described by Poonawala, Milanfar,
and Gardner [18].)

Even in the 3D case, it is no longer a simple matter to deal with the consistency
constraint (8). An exhaustive study of the n-dimensional case was carried out by
Karl, Kulkarni, Verghese, and Willsky [10], who reduced (8) to a set of local consis-
tency conditions. Roughly speaking, each support function data point (u;, h;) must
be checked for consistency relative to each set of n such points for which w; lies in the
positive hull of the corresponding n directions. Perhaps due to the computational
infeasibility of checking all such local consistency conditions, no implementation was
described in [10]. However, such an implementation was undertaken by Gregor and
Rannou [4], who made several clever reductions in the number of local consistency
conditions by using special features of the set of directions employed (see Section IX
for more details).

IV. THE NEW ALGORITHM

Our new algorithm is easily described. Its input and task are exactly as for the
Prince-Willsky algorithm in the previous section. The essential difference is that
the least squares variables are now vectors x; in " instead of real numbers h; and
the constraint (10) is explicit.



NEW SUPPORT FUNCTION ALGORITHM

Action: Solve the following constrained linear least squares problem (LLS2):

k
i T )2
ZlE%E{l.l.,ralzke%n 1:21(% Z; ul) ) (9)
subject to aju; < afu; for 1 <i# j <k, (10)

where the measurements y; are given by (6).
Let &1, ..., & be a solution of (LLS2) and let Py be the convex hull of {Z1, ..., Zx}.

To understand how the new algorithm works, suppose that K is a convex body
in ™ and 1 < i < k is fixed. Then there is at least one point z; in K contained in
the supporting hyperplane H(u;) to K; see Fig. 3. By the definitions (1) and (2) of
the support function and supporting hyperplane, when 1 < j < k, we have

wiu; < hi(ug) = 2] s,

so the constraint (10) is satisfied. If the measurements are exact (o = 0), then Py is
a convex polygon with the same support function values as K in the measurement
directions wuq, . .., Ug.

The basic features of the new algorithm versus those of the Prince-Willsky Algo-
rithm are easily summarized. The main disadvantage of the Prince-Willsky Algo-
rithm is that the consistency constraint (8) is hard to make explicit except in 2D,
but on the positive side, the number k of real variables in the objective function
(7) is small. In the new algorithm, the consistency constraint is always completely
explicit in (10), and indeed requires only k(k — 1) linear inequality constraints. On
the other hand, the new algorithm requires, in n dimensions, kn real variables in
the objective function (9).

Another difference between the two algorithms is inherited from the choice of
variables. In the Prince-Willsky algorithm, the output polygon is unique and each
of its edges is orthogonal to one of the measurement directions. By contrast, due
to the larger number of variables, the output polygon of the new algorithm is not
unique and its edges do not have any particular orientation. When the support
function measurements are exact (¢ = 0), the bold polygon in Fig. 3 corresponds
to the output of the Prince-Willsky algorithm and the dotted polygon in Fig. 4
is a possible output of the new algorithm. As explained before, the convex hull of
{z1,..., 26} in Fig. 3 is another possible output.

Nevertheless, there is a simple connection between the real variables h; used in the
Prince-Willsky algorithm and the variables z; € R"™ employed in the new algorithm.
Since the output of the Prince-Willsky algorithm is unique, we have h; = z1u; for
each ¢ and the outputs of both algorithms have exactly the same support function
measurements in the directions uy, ..., ug. Indeed, it is very easy to modify the new
algorithm so that its output is the same as that of the Prince-Willsky algorithm,
simply by defining

P, = P(2Tuy, ..., 2 uy) (11)

instead. This choice of the output is appropriate whenever a superset of the un-
known shape is required, for example in applications involving a “focus of attention”
scheme; see Section X for more details. However, our choice of the output polygon is
more natural in view of the new variables, and moreover has some slight advantages
described in Section VII.



Fig. 4. Possible output (dotted) of the new algorithm when o =0

V. CONVERGENCE

Gardner, Kiderlen, and Milanfar [19] provided the first proof that the Prince-
Willsky algorithm converges, under mild assumptions. In [19, Theorem 6.1}, it is
shown that if K is a convex body in R", (u;) is an evenly spread infinite sequence of
directions in S"!, and P, is an output from the Prince-Willsky algorithm based on
measurements in the first & directions from the sequence (u;), then the Hausdorff
distance 0y(K, P,) and L, distance 0,(K, P;) converge to zero as k approaches
infinity. The exact meaning of “evenly spread” is given in [19, p. 1337]; suffice
it to say that it is a weak restriction and satisfied by many natural sequences.
Under a slightly stronger, but still easily satisfied, condition on (u;) and other mild
assumptions, [19, Theorem 6.2] even estimates the rate of convergence of d5(K, Pk)
to be O(k~%+3)). This holds provided the noise level ¢ is fixed, K is contained in
a ball of a fixed known radius, and the dimension n < 4. The relation (4) allows a
corresponding estimate for convergence in terms of the Hausdorff metric, but the
Lo metric is more natural in view of the least squares procedure involved. The
convergence rates in [19] were obtained by an application of the powerful theory
of empirical processes, which, incidentally, also suggests that the just-mentioned
convergence rate is optimal. (Convergence rates for dimensions n > 4 are also given
in [19, Theorem 6.2] but these need not be optimal.)

We observed in Section IV that the outputs of both the Prince-Willsky and
the new algorithm have exactly the same support function measurements in the

directions wuq, ..., u. This implies that the mean square error
A 1/2
.\ 1 2
MSE (K, P;) = (E ; (hac(wa) = hp, (w5)) ) (12)

between K and the output polygon P, is the same for both algorithms. With this
in hand, the rest of the analysis in [19] then applies equally to the new algorithm,
providing convergence, and the same rates of convergence, under the same assump-
tions.



VI. A LINEAR PROGRAM VERSION

A linear program version of the new support function algorithm can be obtained
by replacing the linear least squares problem (LLS2) of Section IV with the following
linear program (LP):

Sy — ), (13)

subject to 2l u; < 2l u; < ;i (14)

where the measurements y; are given as before by (6).

Suppose that (LP) has a solution #, ..., Z; with objective function value in (13)
equal to zero. Then it is easy to check that 1, ..., 2 is also a solution of (LLS2),
and the convex hull of {%,..., %} is a possible output of the new support function
algorithm. This situation will occur when the measurements are exact (o = 0), so
solving (LP) is then an alternative to solving (LLS2), and this could happen even
when the measurements are noisy (o > 0). If the minimal objective function value in
(13) is positive, however, then a solution of (LP) will not in general be a solution of
(LLS2) and the latter must be solved. Nevertheless, the solution 21, ..., 2 of (LP)
might be a good choice as initial values in solving (LLS2), at least when the noise
level is small. In fact, as we shall see in Sections VII and VIII, the linear program
version of the new algorithm is a viable alternative to the least squares version at
low levels of noise, and, since it is also much faster, may be preferable at a zero or
very low level of noise.

Another possible use of the linear program (LP) is as a test for consistency.
Suppose that hy, ..., h; are real numbers and uq, ..., u, are directions in S™~!. If
y; is replaced by h; in (LP) for 1 <i < k and the minimal objective function value
is zero, then iful = h; for 1 < i < k. This means that for 1 <1 < k, h; is a support

function measurement in the direction u; for the polyhedron P(hy,..., hy) defined
by (5), so hi,...,hy are consistent. It is easily verified that, conversely, if the real
numbers Ay, ..., by, are consistent, then the minimal objective function value in (LP)

is zero. Thus the linear program (LP) might allow the consistency tests in [10] to
be avoided when the dimension n > 3 and they become tedious to implement.

VII. EXPERIMENTAL RESULTS IN 2D

The Prince-Willsky and new support function algorithms were implemented with
Matlab programs. The experiments described in this and the next section were run
on a standard PC with a 2.4 GHz Pentium 4 processor and 512 MB RAM.

In this section, we give in detail some results in 2D, where it is possible to compare
the Prince-Willsky and new algorithms. We begin by discussing results concerning
the least squares version of the new algorithm (see Section IV). In the figures, this
is indicated by “new (LS)”.

Fig. 5 illustrates sample 2D reconstructions of an irregular 7-sided polygon from
17 support function measurements taken in directions spaced equally around the
unit circle and corrupted by noise with ¢ = 0.1.

The result is typical of our observations; both algorithms perform well and, when
the number of measurements is not very small, they produce similar-looking output
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------- input polygon
[| = = = Prince-Willsky
new (LS)

-6 -4 -2 0 2 4 6

Fig. 5. Reconstructions of a polygon

polygons. This is corroborated by Figs. 6 to 8, each of which show the average, maxi-
mum, and minimum error between input and output polygons for a Monte Carlo run
of 100 reconstructions for each number of measurements ranging from seven to 49 in
steps of three. The input polygon (shown as the lightly dotted polygon in Fig. 14)
was the image of a regular 11-gon under a certain linear transformation, somewhat
arbitrary but corresponding to a dilation, rotation, and stretching factors designed
to reduce the effect of any “matching” of polygon orientation and measurement
directions. Measurements were always taken in directions equally spaced around
the unit circle, and the noise level was fixed at ¢ = 0.1.

0.16
A — — — Prince-Willsky average
0.14 new (LS) average
A 4 Prince-Willsky maximum
0.12f LN A new (LS) maximum
Al v Prince-Willsky minimum
01k A4 Vv new (LS) minimum
% 0.08
2o
0.06 -
0.04r
0.02r

0 . . . . . .
5 10 15 20 25 30 35 40 45 50
Number of measurements

Fig. 6. MSE (least squares version)

Fig. 6 depicts the mean square error, given by (12), between input and output
polygons. The average error over the 100 reconstructions is represented by the graph
and the maximum and minimum errors are indicated by the triangular markers. As
expected from our remark in Section V, the mean square error for the Prince-Willsky
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and new algorithms was so nearly identical that only one graph is visible and the

two set of markers coincide.

N
T — — — Prince-Willsky average
35 N new (LS) average
A\ 4 Prince-Willsky maximum
\ A new (LS) maximum
\ v Prince-Willsky minimum
\ vV new (LS) minimum

Hausdorff error
N

vVYvVvVVYvyw

5 10 15 20 25 30 35 40 45
Number of measurements

Fig. 7. Hausdorff error (least squares version)

50

— — — Prince-Willsky average
new (LS) average

25F * Prince-Willsky maximum
I A new (LS) maximum
A v Prince-Willsky minimum
\

L2 error

Fig. 8.

15

v new (LS) minimum

A A A A A
‘ ‘ ‘ ‘ Y VYV vy
10 15 20 25 30 35 40 45

Number of measurements

Ly error (least squares version)

In Figs. 7 and 8, however, which show the Hausdorff and L, distance, respectively,
between input and output polygons, we see a noticeable difference between the two
algorithms, at least for small numbers of measurements. In particular, the new
algorithm tends to produce a smaller Hausdorff and L, error, an effect also visible

in Fig. 5.

In rare cases the Prince-Willsky algorithm does yield smaller errors. These ex-
perimental results can be explained as follows. In the case of a reconstruction via
the Prince-Willsky algorithm with no noise, the output polygon contains the input
shape (cf. the bold polygon in Fig. 3). Thus, unless the output polygon is identical to
the input shape, it always overestimates. Again, unless it is identical to the output
polygon of the Prince-Willsky algorithm, the corresponding output polygon of the
new algorithm will always be smaller (cf. the dotted polygon in Fig. 4), and so will
have significantly less tendency to overestimate.

For 2D reconstructions, however, the new algorithm pays a high price for the
double number of variables. Fig. 9 shows the average time taken for reconstructions
in the Prince-Willsky and new algorithms. Whereas the Prince-Willsky algorithm
is extremely fast for numbers of measurements up to 150 or so—in Fig. 9 the
corresponding graph is almost invisible, since the reconstruction time is still tiny
even for 49 measurements—the new algorithm slows significantly as these numbers
increase, becoming rather tedious at around 60.

We now turn to the performance of the linear program version of the new algo-
rithm (see Section VI). In the figures this is indicated by “new (LP)”.

Figs. 10 and 11 show the Hausdorff and L, distance, respectively, between input
and output polygons, for a Monte Carlo run of 100 reconstructions for the same
11-gon, same noise level (o = 0.1), and the same numbers of measurements as for
the least squares version described above.

At this level of noise, the linear program version of the new algorithm performs
reasonably well. In fact, Figs. 7 and 10 indicate that in terms of the Hausdorff
error, there is little difference between the least squares and linear program versions
of the new algorithm. However, Figs. 8 and 11 are rather different, and show a
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400

= = = Prince-Willsky
new (LS)

250

200

150 -

Average reconstruction time in seconds

5 10 15 20 25 30 35 40 45 50
Number of measurements

Fig. 9. Average reconstruction time (least squares version)

N
T — — — Prince-Willsky average — — — Prince-Willsky average
A new (LP) average new (LP) average

\ 4 Prince-Willsky maximum 25 * 4 Prince-Willsky maximum
Ay A new (LP) maximum A A new (LP) maximum

3r \ v Prince-Willsky minimum A v Prince-Willsky minimum
A\ Vv new (LP) minimum ol AN v new (LP) minimum

Hausdorff error
N
:

v ¥y
o ‘ ‘ ‘ ‘ ‘ ‘ ! ‘ ‘ 0 ‘ ‘ ‘ ‘ ‘ ‘ ! ‘ ‘
5 10 15 20 25 30 35 40 45 50 5 10 15 20 25 30 35 40 45 50
Number of measurements Number of measurements
Fig. 10. Hausdorff error (linear program version) Fig. 11. Lo error (linear program version)

loss in performance in the linear program version as the number of measurements
increases beyond about 25 (the Ly distance, defined by (3), is more appropriate
when considering the global error between input and output). A steady divergence
in performance between the linear program version and the Prince-Willsky algorithm
as the number of measurements increases is also shown by the MSE error (we omit
the graph).

The linear program version of the new algorithm is therefore quite satisfactory for
low levels of noise, or medium levels of noise and small numbers of measurements.
In such situations it has one distinct advantage over the least squares version: It is
much quicker, as Figs. 9 and 12 demonstrate.

As the noise level increases, however, the linear program version becomes less
effective. Fig. 13 depicts the Ly error as the noise level increases from o = 0 to
o = 0.5 in steps of 0.05, for a Monte Carlo run of 100 reconstructions. Here the
same input 11-gon is used as before, and the number of measurements is fixed at
25. The least squares version of the new algorithm appears to be quite robust as the
noise level increases, with reasonably low errors even when o = 0.5. Similar results
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7L | = = = Prince-Willsky
new (LP)

Average reconstruction time in seconds

5 10 15 20 25 30 35 40 45 50
Number of measurements

Fig. 12. Average reconstruction time (linear program version)

are obtained with the MSE and Hausdorfl errors.

N

g} | — — —new (LP) average

new (LS) average
81 4 new (LP) maximum
M A new (LS) maximum 4
v new (LP) minimum

6F Vv new (LS) minimum
8
@ 5r
JN

4+ N

3 [ A

N
2r N i~ i
-
4 —— A A
L A - YaN

1 a _x A L 5

e a2 2 A A

-0.1 0 0.1 0.2 0.3 0.4 0.5 0.6

Noise level

Fig. 13. L3 error for least squares and linear program versions

On the other hand, the linear program version becomes much worse, and this
deterioration of performance relative to the least squares version also occurs for
any nonzero level of noise as the number of measurements increases. The reason for
this phenomenon is the constraint (14), which causes an inappropriate reduction in
size in the output shape whenever a measurement y; is too small. An extreme case
of this effect is clearly illustrated in Fig. 14. The same 11-gon was reconstructed
using both the least squares and linear program versions of the new algorithm, with
35 measurements and a high level of noise (¢ = 1). The least squares version still
performs reasonably well, but the output polygon for the linear program version
has suffered an enormous contraction.

13



------ input polygon
= = =new (LP)
new (LS)

-2t

-4}

Fig. 14. Reconstructions for least squares and linear program versions with high noise level

VIII. EXPERIMENTAL RESULTS IN 3D

In this section we describe experimental results in 3D. The discussion is limited
to the two versions of our new algorithm, since it is not viable at present to make
a comparison with the only other program for 3D support function reconstruction,
that described by Gregor and Rannou [4] (see Section IX for further comments).

77 measurements, 6=0.05 87 measurements, 6=0.1

Fig. 15. Reconstruction of an octahedron (least squares version)
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67 measurements, 6=0
x
225,
0%505

87 measurements, ¢=0.1

77 measurements, ¢=0.05

. . . . 77 measurements, 6=0.05 87 measurements, 6=0.1
Fig. 16. Reconstruction of an ellipsoid (least squares pjg 17.  Reconstruction of a pentagonal pyramid

version) (least squares version)

In the absence of any a priori information, it is clearly desirable to use sets
of measurement directions that are as “spread out” as possible. (Note that our
algorithm does not require the measurement directions to be specially configured
in any way.) We took our sets of measurement directions from a database of the
best known sets of directions in this sense. (See www.research.att.com/~njas/grass/
dim3/ on the web site of N. Sloane. Some of these sets are optimal, but in general
the optimal spacing is not known.) However, since some of the sets of directions in
this database have a special orientation that tends to align with the symmetries of
our input shapes, we also rotated each measurement direction by a fixed amount,
specifically, by (6,¢) = (0.2,0.7) radians in spherical polar coordinates, to reduce
the chance of any such alignment.

Figs. 15, 16, and 17 show pictures produced with Mathematica (which, for 3D
shapes, we find more helpful than Matlab) of reconstructions of a regular octahe-
dron, an ellipsoid, and a pyramid with pentagonal base. In each of these figures
the input shape is depicted at the top left, and reconstructions are shown with 67
measurements and o = 0 (top right), 77 measurements and o = 0.05 (bottom left),
and 87 measurements and o = 0.1 (bottom right). It is important to bear in mind
that even with no noise, there are infinitely many different convex polyhedra whose
support function measurements agree in the 67 directions (or any other finite set of
directions) ezactly with those of the input shape. The average relative errors in the
support function measurements in the chosen directions between input and output
shapes are in each case less than 0.0005, 0.035, and 0.05, for the reconstructions
with o = 0, 0.05, and 0.1, respectively.

The reconstructions shown in Figs. 15, 16, and 17 each took from one to a few
hours on the PC described at the beginning of Section VII. It was noted in Sec-
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input shape

77 measurements, 6=0.05 87 measurements, ¢=0.1

Fig. 18. Reconstruction of an octahedron (linear program version)

tion VII that the linear program version of the new algorithm is considerably faster,
and the difference becomes more dramatic in 3D. Fig. 18 shows reconstructions of
the octahedron using the linear program version, and each took only from two to
five minutes. The average relative errors in the support function measurements in
the chosen directions between input and output shapes are approximately (and
coincidentally) 0, 0.05, and 0.1, for the reconstructions with o = 0, 0.05, and 0.1,
respectively. This is compatible with a visual comparison of Figs. 15 and 18, which
indicates that the linear program version does as good a job with low levels of
noise as the least squares version. Indeed, when o = 0 the linear program version
is exceedingly accurate and relative errors are essentially zero. However, at a noise
level o = 0.1 (and the relatively high number of 87 measurements) the least squares
version is to be preferred if computing time is not an issue.

We stress that Figs. 15-18 are genuine in that they were not specially selected
from a number of repeated reconstructions, which of course vary in quality due
to the noise. It should also be mentioned that although no post-processing was
used in these reconstructions, this would be possible if desired. In [18, Section 3.3],
several methods, such as clustering, are described for reducing the number of edges
of the output polygon in 2D reconstruction. It should be possible to extend these
methods to 3D reconstruction in order to reduce the number of faces of the output
polyhedron if it is known in advance that the input shape is a convex polyhedron
with a small number of faces.

We end by describing briefly the results of some Monte Carlo simulations involving
reconstructions of the ellipsoid depicted in Fig. 16. Fig. 19 shows the average,
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maximum, and minimum Ly errors in a run of 100 reconstructions with numbers of
measurements ranging from 7 to 49 in steps of 7, with a fixed noise level of o = 0.05,
for both the least squares and linear program versions of the new algorithm. (As be-
fore, the two versions are called “new (LS)” and “new (LP)” in the figures.) Results
for the Hausdorff errors were similar. In Fig. 19 and perhaps more clearly in Fig. 20
the same deterioration in the performance of the linear program version as was
reported for 2D reconstructions can be seen. The average time for reconstructions
is illustrated in Fig. 21, which demonstrates again the dramatic difference in speed
between the two versions of our algorithm. It should be noted that we have noticed
considerable variation in reconstruction times.

091 0.09
— — —new (LP) average A — — —new (LP) average
08} A new (LS) average 4 new (LS) average
’ 4 new (LP) maximum 0.08 - 4 new (LP) maximum
A new (LS) maximum A new (LS) maximum
0.7r v new (LP) minimum L v new (LP) minimum
- 0.07 -
v vV new (LS) minimum A A v new (LS) minimum
0.6
5 L, 0087 A A A
5 t 0
a)N 0.5 2
- 0.05+
0.4 k= - _
03 0.04
.3 v v
v v v
0.2} A 0.03F v
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01 . . . . . Y . . v, 0.02Y . . . . . . . )
5 10 15 20 25 30 35 40 45 50 5 10 15 20 25 30 35 40 45 50
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Fig. 19. Lo error against number of measurements Fig. 20. MSE against number of measurements

1201

= = =new (LP)
new (LS)

100

Average reconstruction time in seconds

5 10 15 20 25 30 35 40 45 50
Number of measurements

Fig. 21. Average reconstruction time against number of measurements

A further Monte Carlo run of 100 reconstructions, with the same ellipsoid, noise
levels ranging from 0 to 0.5 in steps of 0.05, and a fixed number of 30 measurements,
yielded Fig. 22 for the L errors, and very similar graphs for the MSE and Hausdorft
errors. At this relatively low number of measurements it can be seen that the linear
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program version competes quite well with the least squares version up to a noise
level of perhaps o = 0.15 or so.
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Fig. 22. L error against noise level

IX. PREVIOUS WORK ON 3D RECONSTRUCTION

To the best of our knowledge, the only previous program for 3D reconstruction
from support function measurements is that of Gregor and Rannou [4], who used it
as a “focus of attention” pre-processing scheme for projection magnetic resonance
imaging. One experiment involving 1,645 measurements is described in detail. Cer-
tain features of the specially chosen measurement directions were used to reduce
the huge computational burden of applying the local consistency tests of [10] to a
manageable level (see Section I). For example, the set of measurement directions
enjoyed some symmetry that was used to advantage, and it was also required to be
sufficiently uniformly distributed.

It seems that at present a direct comparison between our program and that of [4]
is not viable. There are several reasons for this. Firstly, since the support function
reconstruction in [4] is only a pre-processing scheme, there is no description there,
either visual or in terms of computation of errors, of the quality of the support
function reconstruction per se. Secondly, according to Gregor and Rannou (private
communication), their support function reconstruction program is embedded inside
the larger one for projection magnetic resonance imaging and it would take some
work to extract it. Moreover, in its present form the program described in [4] works
only with sets of measurement directions that are sufficiently uniformly distributed.

X. THE NEW ALGORITHM FOR “FOCUS OF ATTENTION”

In certain applications, such as those in which support function reconstruction
is used in a “focus of attention” scheme as part of a larger algorithm, it is impor-
tant that the output should contain the unknown shape. An example of such an
application was described in the previous section.

Our new algorithm is easily modified for such use. In fact, all that is necessary
is to choose the alternative output (11) defined in Section IV. As was pointed out
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there, this output is precisely the same as that of the Prince-Willsky algorithm. In
2D and when the support function measurements are exact (o = 0), this corresponds
to the bold polygon in Fig. 3. A

For exact measurements in 3D, the output Py given by (11) is a convex polyhedron
that contains the unknown shape and has each of its facets orthogonal to one of the
measurement directions. It can be constructed as follows. If Z1,. .., is a solution
of (LLS2) and F; is a facet of Py orthogonal to the measurement direction u;, then
h; = &Tu; is the distance from the plane H(u;) containing F; to the origin. Since
H (u;) is also orthogonal to wu;, the equation of H(u;) can be found. In this way, we
obtain a description of Py in terms of its bounding planes H(u;), 1 < i < k—its
so-called H-representation. If a picture of P, is required, it is necessary to convert
the H-representation of Py to a V-representation, i.e., a list of its vertices, and then
find the convex hull of these vertices. All this can be done very efficiently with
readily available software.

XI. CONCLUSION

We have introduced a new algorithm for reconstructing an unknown shape from a
finite number of noisy measurements of its support function. The algorithm, based
on a least squares procedure, is very easy to program in standard software such
as Matlab. Under mild conditions, theory guarantees that outputs of the algorithm
will converge to the input shape as the number of measurements increases.

Experimental results in 2D have been described in detail in order to explain the
main features of the new algorithm in relation to the primary known algorithm
for 2D reconstruction, the Prince-Willsky algorithm. Reconstructions are of similar
quality, but, as expected, the Prince-Willsky algorithm is generally preferable since
it is considerably faster.

Our experimental results in 3D, however, show that the new algorithm yields
good 3D reconstructions on an ordinary PC, without restriction on the sets of
measurement directions (provided the number is not too large) and without any pre-
or post-processing steps. As far as we know, no previous algorithm has accomplished
this. In addition we have described a linear program version of the new algorithm
that is much faster and better, or at least comparable, in performance at low levels
of noise and reasonably small numbers of measurements.

The new algorithm should also readily find application, for example as a “focus-
of-attention” pre-processing scheme in one or more of the scenarios mentioned in
Section I.
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