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QUANTUM SCATTERING AT LOW ENERGIES

J. DEREZIŃSKI AND E. SKIBSTED

Abstract. For a class of negative slowly decaying potentials, including V (x) :=
−γ|x|−µ with 0 < µ < 2, we study the quantum mechanical scattering theory
in the low-energy regime. Using modifiers of the Isozaki–Kitada type we show
that scattering theory is well behaved on the whole continuous spectrum of the
Hamiltonian, including the energy 0. We show that the S–matrices are well-
defined and strongly continuous down to the zero energy threshold. Similarly, we
prove that the wave matrices and generalized eigenfunctions are norm continuous
down to the zero energy if we use appropriate weighted spaces. These results are
used to derive (oscillatory) asymptotics of the standard short-range and Dollard
type S–matrices for the subclasses of potentials where both kinds of S-matrices are
defined. For potentials whose leading part is −γ|x|−µ we show that the location of
singularities of the kernel of S(λ) experiences an abrupt change from passing from
positive energies λ to the limiting energy λ = 0. This change corresponds to the
behaviour of the classical orbits. Under stronger conditions we extract the leading
term of the asymptotics of the kernel of S(λ) at its singularities; this leading term
defines a Fourier integral operator in the sense of Hörmander [Hö4].
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1. Introduction and results

Scattering theory of 2-body systems, both classical and quantum, both short- and
long-range, is nowadays a well understood subject [Hö2, II, IK1, IK2, Ya2, DG]. In
particular, for large natural classes of potentials we know a lot about the properties
of wave and scattering matrices at positive energies. Zero – the only threshold
energy – in most works on the subject is avoided, since scattering at zero energy is
much more difficult to describe and strongly depends on the choice of the potential.

In this paper we consider a class of potentials that have an especially well behaved,
nontrivial and interesting low energy scattering theory. Precise conditions used in
our paper are described in Subsection 2. Roughly speaking, the potentials that we
consider have a dominant negative radial term V1(x) similar to −γ|x|−µ with γ > 0
and 0 < µ < 2, plus a faster decaying perturbation.

Similar classes of potentials appeared in the literature already in [Ge]. A system-
atic study of such 2-body systems at low energies was undertaken in [FS], where a
complete expansion of the resolvent at the zero-energy threshold was obtained, and
in [DS1], where classical low-energy scattering theory was developed. This paper
can be viewed as a continuation of [FS, DS1].

In this paper we show that quantum scattering theory for such potentials is well
behaved down to the energy zero. In particular, we study appropriately defined
wave matrices and scattering matrices for a fixed energy. We show that they have
limits at zero energy. Our results were partly announced in [DS2].

For positive energies most (but probably not all) of our results are contained in
the literature, scattered in many sources. Our material about the zero energy case
is new.

In the introduction we will first review scattering for positive energies for a rather
general class of potentials. Then we will describe a simplified version of the main
results of our paper, which concerns scattering at low energies for a more restrictive
class of potentials.

1.1. Classical orbits at positive energies. For the presentation of known results
about positive energies we assume that the potentials satisfy the following condition:

Condition 1.1. V = V1 +V3 is a sum of real measurable functions on Rd such that
V1 is smooth and for some µ > 0

∂αxV1(x) = O
(|x|−µ−|α|); |α| ≥ 0, (1.1)

V3 is compactly supported and V3(H0 + 1)−1 is a compact operator on the Hilbert
space L2(Rd). Here H0 := 2−1p2 with p := −i∇x. The Hamiltonian H = H0 + V
does not have positive eigenvalues.

Let us first consider the classical Hamiltonian h1(x, ξ) := 1
2
ξ2 +V1(x) on the phase

space Rd × Rd, using h0(x, ξ) := 1
2
ξ2 as the free Hamiltonian. (The analysis of the

classical case is needed in the quantum case). One can prove that for any ξ ∈ Rd,
ξ 6= 0, and x in an appropriate outgoing/incoming region the following problem
admits a solution (strictly speaking, meaning one solution for t→ +∞ and one for
t→ −∞): 

ÿ(t) = −∇V1(y(t)),

y(±1) = x,

ξ = limt→±∞ ẏ(t).

(1.2)
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One obtains a family y±(t, x, ξ) of solutions smoothly depending on parameters. All
(positive energy) scattering orbits, i.e. orbits satisfying limt→±∞ |y(t)| = ∞, are of
this form (the energy is λ = 1

2
ξ2). Using these solutions, in an appropriate incom-

ing/outgoing region one can construct a solution φ±(x, ξ) to the eikonal equation
1
2

(∇xφ
±(x, ξ)

)2
+ V1(x) = 1

2
ξ2 (1.3)

satisfying ∇xφ
±(x, ξ) = ẏ(±1, x, ξ).

1.2. Wave and scattering matrices at positive energies. Let us turn to the
quantum case. Following Isozaki-Kitada, see [IK1], [IK2], [Ya2] and [RY], one can
use the functions φ±(x, ξ) in the quantum case to construct appropriate modifiers,
which can be taken to be

J±f(x) := (2π)−d
∫

eiφ±(x,ξ)−iξ·ya±(x, ξ)f(y)dxdξ. (1.4)

Here a±(x, ξ) is an appropriate cut-off supported in the domain of the definition
of φ±, equal to one in the incoming/outgoing region. Then one constructs modified
wave operators

W±f := lim
t→±∞

eitHJ±e−itH0f ; f̂ ∈ Cc(Rd \ {0}), (1.5)

and the modified scattering operator

S = W+∗W−. (1.6)

We remark that W± are isometric with range 1c(H)L2(Rd) = 1]0,∞[(H)L2(Rd);
whence S is unitary.

The free Hamiltonian H0 can be diagonalized by the direct integral

H0 =

∫ ∞
0

⊕L2(Sd−1) dλ, (1.7)

and
F0(λ)f(ω) = (2λ)(d−2)/4f̂(

√
2λω); f ∈ L2(Rd), (1.8)

where f̂ refers to the d–dimensional Fourier transform. The operator F0(λ) can be
interpreted as a bounded operator from the weighted space L2,s(Rd) := 〈x〉−sL2(Rd),
s > 1

2
, to L2(Sd−1) . One can ask whether the wave and scattering operators can be

restricted to a fixed energy λ.
This question is conceptually simpler in the case of the scattering operator S. Due

to the intertwining property W±H0 = HW± it satisfies SH0 = H0S, so abstract
theory guarantees the existence of a decomposition

S '
∫

]0,∞[

⊕S(λ)dλ,

where S(λ) are unitary operators on L2(Sd−1) defined for almost all λ. One can
prove that under Condition 1.1 S(λ) can be chosen to be a strongly continuous
function (which fixes uniquely S(λ) for all λ ∈]0,∞[). S(λ) is called the scattering
matrix at the energy λ.

The case of wave operators is somewhat more complicated. By the intertwining
property it is natural to use the direct integral decomposition (1.7) only from the
right and the question is whether we can give a rigorous meaning to W±F0(λ)∗.
Again, under the condition (1.1) one can show that there exists a unique strongly
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continuous function ]0,∞[3 λ 7→ W±(λ) with values in the space of bounded oper-
ators from L2(Sd−1) to L2,−s(Rd) with s > 1

2
such that for f ∈ L2,s(Rd)

W±f =

∫
]0,∞[

W±(λ)F0(λ)fdλ.

The operator W±(λ) is called the wave matrix at energy λ. One can also extend the
domain of W±(λ) so that it can act on the delta-function at ω ∈ Sd−1, denoted δω.
Now w±(ω, λ) := W±(λ)δω is an element of L2,−p(Rd) for p > d

2
. It satisfies(−1

2
∆ + V (x)− λ)w±(ω, λ) = 0. (1.9)

It behaves in the outgoing/incoming region as a plane wave. It will be called the
generalized eigenfunction of H at energy λ and at asymptotic normalized velocity ω;
this terminology is justified in Subsection 1.4.

1.3. Short-range and Dollard wave and scattering operators. Let us recall
that (1.5) and (1.6) are only one of possible definitions of wave and scattering oper-
ators. In the short-range case, that is µ > 1, the usual definitions are

W±
sr f := lim

t→±∞
eitHe−itH0f, (1.10)

Ssr := W+∗
sr W

−
sr . (1.11)

The operators W± and W±
sr differ by a momentum-dependent phase factor:

W± = W±
sr eiψ±sr(p), (1.12)

S = e−iψ+
sr(p)Ssre

iψ−sr(p). (1.13)

Similarly, in the case µ > 1
2
one can use the so-called Dollard construction:

W±
dolf := lim

t→±∞
eitHUdol(t)f, (1.14)

Udol(t) := e−i
R t
0 (p2/2+V (sp)1{|sp|≥R0}) ds, R0 > 0, (1.15)

Sdol := W+∗
dolW

−
dol. (1.16)

Analogously, we have

W± = W±
dole

iψ±dol(p), (1.17)

S = e−iψ+
dol(p)Ssre

iψ−dol(p). (1.18)

1.4. Asymptotic normalized velocity operator. The reader may ask why W±,
W±

sr , W
±
dol are all called wave operators. In fact, it is natural to define a whole family

of wave operators associated with a given Schrödinger operator. In this subsection
we briefly describe a possible definition of this family, following essentially [De, DG].

Suppose that V satisfies (1.1) (or even much weaker conditions). Then it can be
shown that there exists the following operator:

v± := s− lim
t→±∞

±eitH x̂e−itH1c(H); x̂ = x
|x| . (1.19)

v± can be called the asymptotic normalized velocity operator. It is a vector of
commuting self-adjoint operators (on the space 1c(H)L2(Rd)) satisfying

(v±)2 = 1c(H), [v±, H] = 0. (1.20)
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We say that W̆± is an outgoing/incoming wave operator associated with H if it is
isometric and satisfies

W̆±H0 = HW̆±, W̆±p̂ = v±W̆±, (1.21)

where p̂ = p
|p| .

Note that if W̆±
1 and W̆±

2 are two wave operators associated with a given H, then
there exists a function ψ± such that

W̆±
1 = W̆±

2 eiψ±(p). (1.22)

Therefore, scattering cross-sections, which are usually considered to be the only
measurable quantities in scattering theory, are insensitive to the choice of a wave
operator.

It is easy to show that W±, W±
sr , W

±
dol are all wave operators in the sense of the

above definition. We also note that for the wave operators W± the corresponding
generalized eigenfunctions, see (1.9), jointly diagonalize H and v±.

1.5. Low-energy asymptotics of classical orbits. In the remaining part of the
introduction we consider a more restricted class of potentials. To simplify the pre-
sentation, in this introduction let us assume that the potential takes the form

V (x) = −γ|x|−µ +O(|x|−µ−ε), (1.23)

where µ ∈]0, 2[ and γ, ε > 0. For derivatives, assume that ∂β (V (x) + γ|x|−µ) =
O(|x|−µ−ε−|β|). Compactly supported singularities can be included.

For potentials satisfying (1.23) we would like to extend the results described in
Subsection 1.1 down to the energy λ = 0. To this end we change variables to
“blow up” the discontinuity at λ = 0. This amounts to looking at ξ =

√
2λω as

depending on two independent variables λ ≥ 0 and ω ∈ Sd−1. It is proven in [DS1]
that for any ω ∈ Sd−1, λ ∈ [0,∞[ and x from an appropriate outgoing/incoming
region there exists a solution of the problem

ÿ(t) = −∇V (y(t)),

λ = 1
2
ẏ(t)2 + V (y(t)),

y(±1) = x,

ω = ± limt→±∞ y(t)/|y(t)|.
(1.24)

One obtains a family y±(t, x, ω, λ) of solutions smoothly depending on parameters.
All scattering orbits are of this form. Using these solutions one can construct a
solution φ±(x, ω, λ) to the eikonal equation

1
2

(∇xφ
±(x, ω, λ)

)2
+ V (x) = λ (1.25)

satisfying ∇xφ
±(x, ω, λ) = ẏ(±1, x, ω, λ).

1.6. Low-energy asymptotics of wave and scattering matrices. In the quan-
tum case, we can use the new functions φ±(x, ω, λ) in the modifiers J±, which lead
to the definitions of the wave operators W± and the scattering operator S. We
can also improve on the choice of the symbols a±(x, ξ) by assuming that in the
incoming/outgoing region they satisfy the appropriate transport equations.

The main new result of our paper about wave matrices can be summarized in the
following theorem:
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Theorem 1.2. There exists the norm limit of wave matrices at zero energy:

W±(0) = lim
λ↘0

W±(λ)

in the sense of operators in B(L2(Sd−1), L2,−s(Rd)), where s > 1
2

+ µ
4
.

The operator W±(0) can be called the wave matrix at zero energy. We can in-
troduce w±(ω, 0) := W±(0)δω, called the generalized eigenfunction of H at zero
energy and fixed asymptotic normalized velocity ω. It belongs to the weighted space
L2,−p(Rd) where p > d

2
+ µ

2
− dµ

4
. We shall also show weighted L2– bounds on its

ω-derivatives.
It is interesting to note that the behaviour of the generalized eigenfunction w±(ω, 0)

depends strongly on the dimension. In dimension 1 it is unbounded, in dimension 2
it is almost bounded and in dimension greater than 2 it decays at infinity (without
being square integrable).

The main result of our paper about scattering matrices reads

Theorem 1.3. There exists the strong limit of scattering matrices at zero energy:

S(0) = s− lim
λ↘0

S(λ)

in the space B(L2(Sd−1)). This limit S(0) is unitary on L2(Sd−1).

We remark that neither W (λ) nor S(λ) are smooth in λ ≥ 0 at the threshold 0,
which can seem somewhat surprising given the fact that the boundary value of the
resolvent R(λ + i0) = (H − λ − i0)−1 (interpreted as acting between appropriate
weighted spaces) has this property (see [BGS] for explicit expansions in the purely
Coulombic case).

1.7. Geometric approach to scattering theory. There exists an alternative
approach to scattering theory, based on the study of generalized eigenfunctions. It
allows us to characterize scattering matrices by the spatial asymptotics of generalized
eigenfunctions. It was used in particular in Vasy [Va1] or [Va2, Remark 19.12]. We
shall study this approach, including the case of the zero energy, in Subsection 8.3.

1.8. Low energy asymptotics of short-range and Dollard operators. Let us
stress that the existence of the limits of wave and scattering matrices at zero energy
is made possible not only by appropriate assumptions on the potentials, but also
by the use of appropriate modifiers. Wave matrices W±

sr (λ) defined by the standard
short-range procedure, as well as the Dollard modified wave operators W±

dol(λ), do
not have this property. They differ from our W±(λ) by a momentum dependent
phase factor that has an oscillatory behaviour as λ↘ 0. In particular,

W±
sr (λ) = W±(λ) exp

(
iO(λ

1
2
− 1
µ )
)
, 1 < µ < 2; (1.26a)

W±
dol(λ) = W±(λ) exp

(
iO(λ−

1
2 lnλ)

)
, µ = 1; (1.26b)

W±
dol(λ) = W±(λ) exp

(
iO(λ

1
2
− 1
µ )
)
, 1

2
< µ < 1. (1.26c)

We remark that oscillatory behaviour similar to (1.26a) was proved in [Ya1] in
the one-dimensional setting.
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1.9. Location of singularities of the zero energy scattering matrix. A re-
current idea of scattering theory is the parallel behaviour of classical and quantum
systems. One of its manifestations is the relationship between scattering orbits at a
given energy and the location of singularities of the scattering matrix.

In the case of positive energies the relationship is simple and well-known. To
describe it note that scattering orbits of positive energy have the deflection angle
that goes to zero when the distance of the orbit to the center goes to infinity. In the
quantum case this corresponds to the fact that the integral kernel of scattering ma-
trices S(λ)(ω, ω′) at positive energies λ are smooth for ω 6= ω′ and has a singularity
at ω = ω′.

This picture changes at the zero energy. For potentials considered in our paper,
the deflection angle of zero-energy orbits does not go to zero for orbits far from
the center. The angle of deflection is small for small µ and goes to infinity as µ
approaches 2.

For the strictly homogeneous potential, V (r) = −γr−µ, one can solve the equa-
tions of motion at zero energy. The (non-collision) zero-energy orbits are given by
the implicit equation (in polar coordinates)

sin(1− µ

2
)θ(t) =

(r(t)
rtp

)−1+µ
2
, (1.27)

see [DS1, Example 4.3]. Whence the deflection angle of such trajectories equals
− µπ

2−µ . In particular, for attractive Coulomb potentials it equals −π, which corre-
sponds to the well-known fact that in this case zero-energy orbits are parabolas (see
[Ne, p. 126] for example).

One of the main results of our paper is a quantum analogue of this fact:

Theorem 1.4. The integral kernel of the zero-energy scattering matrix S(0)(ω, ω′)
is smooth away from ω, ω′ satisfying ω · ω′ = cos µπ

2−µ .

Note that this fact was known before in the case of Coulomb potentials, at least
in dimension d ≥ 3. In this case S(0) = eicP , where (Pτ)(ω) = τ(−ω). Moreover in
this case one can compute (using special functions, see Yafaev [Ya3] for an explicit
formula)

Sdol(λ) = eiλ−1/2{C1 lnλ+C2+o(λ0)}(P + o(λ0)). (1.28)

1.10. Type of singularity of the scattering matrix. Let Λ be the operator on
L2(Sd−1) such that ΛYl = (l+d/2−1)Yl, where Yl is a spherical harmonic of order l.
Alternatively, it can be introduced as follows

Λ :=
√
L2 + (d/2− 1)2,

where
L2 =

∑
1≤i<j≤d

L2
ij; iLij = xi∂xj − xj∂xi .

Note that, for any θ, the distributional kernel of eiθΛ can be computed explicitly
and its singularities appear at ω ·ω′ = cos θ. This is expressed in the following result:

Proposition 1.5. eiθΛ equals
(1) cθI, where I is the identity, if θ ∈ π2Z;
(2) cθP , where P is the parity operator, if θ ∈ π(2Z + 1);
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(3) the operator whose Schwartz kernel is of the form cθ(ω · ω′ − cos θ + i0)−
d
2 if

θ ∈]π2k, π(2k + 1)[ for some k ∈ Z;
(4) the operator whose Schwartz kernel is of the form cθ(ω · ω′ − cos θ − i0)−

d
2 if

θ ∈]π(2k − 1), π2k[ for some k ∈ Z.

Note that for all θ, the operator eiθΛ belongs to the class of Fourier integral
operators of order 0 in the sense of Hörmander [Hö2, Hö4].

The operator Λ can be used to describe the leading asymptotics of the scattering
matrix at zero energy:

Theorem 1.6. If (1.23) holds with V being spherically symmetric (up to a compactly
supported possibly singular term) now with the number ε obeying ε > 1− µ

2
, then

S(0) = eice−i µπ
2−µΛ +K

where K is compact.

We shall prove Theorem 1.6 by one-dimensional WKB-analysis.

1.11. Kernel of S(0) as an explicit oscillatory integral. In the case V =

−γ|x|−µ + O
(|x|−1−µ

2
−ε), ε > 0, it is possible to represent the distributional kernel

of the scattering matrix S(0) (modulo a smoothing term) in terms of a fairly ex-
plicit oscillatory integral. This provides an alternative way to prove Theorem 1.4
on the location of singularities of the scattering matrix – given the stronger condi-
tions on the potential (we remark that our proof of Theorem 1.4 is rather abstract,
see Subsection 1.13). Moreover, although we shall not elaborate in this paper, it is
actually feasible to prove a partial version of Theorem 1.6 (more precisely for the
cases 2

2−µ /∈ N) using this fairly explicit integral.

1.12. Generalized eigenfunctions. A solution of the equation

(−∆ + V (x)− λ)u = 0 (1.29)

in
⋃
s L

2,−s(Rd) will be called a generalized eigenfunction with energy λ. One of our
results says that each generalized eigenfunction with positive or zero energy is of
the form W±(λ)τ , where τ is a distribution on the sphere Sd−1.

Such generalized eigenfunctions are never square-integrable. A rough method to
describe their behaviour for large x is to use weighted spaces L2,s(Rd) with appro-
priate s. A more precise description is provided by the so-called Besov spaces. One
of our results says that the range of (incoming and outgoing) wave matrices can
be described precisely by an appropriate Besov space. One can also describe quite
precisely their spatial asymptotics. In the case of zero energy, these results are new.

1.13. Propagation of singularities for zero-energy generalized eigenfunc-
tions. It is well-known that some of the properties of solutions of PDE’s of the form
P (x,D)u = 0 can be explained by the behaviour of classical hamiltonian dynamics
given by the principal symbol of P . One of the best known expressions of this idea
is Hörmander’s theorem about propagation of singularities.

Similar ideas are true in the case of Schrödinger operators. This is well understood
for positive energies. In the case of zero energy a similar analysis is possible. It has
an especially clean formulation if we assume that the potential is V (x) = −γ|x|−µ.
Under this condition, the set of orbits of the classical system given by h(x, ξ) is
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invariant with respect to an appropriate scaling. This allows us to reduce the phase
space.

In the quantum case, We introduce an appropriate concept of a wave front set
adapted to the solutions to (1.29), different from Hörmander’s. One of our main
results describes a possible location of this special wave front set for solutions to
(1.29) for λ = 0 – the statement is very similar to the statement of the original
Hörmander’s theorem; it is used in a proof of Theorem 1.4.

1.14. Sommerfeld radiation condition. Another of our main results is a version
of the Sommerfeld radiation condition for zero energies. It says that given v in
a certain weighted space a solution u of the equation (H − λ)u = v satisfying
appropriate outgoing/incoming phase space localization is always of the form u =
R(λ± i0)v.

This somewhat technical result has a number of interesting applications. In par-
ticular, we use it in our proof that S(0) can be expressed in terms of an oscillatory
integral, and also in the description of the asymptotics of generalized eigenfunctions
at large distances.

1.15. Organization of the paper. The paper is organized as follows: In Section 2
we impose conditions on the potential. In the case we allow the potential to have
a non-spherically symmetric term we shall need certain regularity properties of the
leading spherically symmetric term. These properties are stated in Condition 2.2;
they are fulfilled for the example (1.23) discussed above.

In Section 3 we describe and extend some of results from our previous papers.
In particular, we recall the construction of scattering phases in [DS1] (given there
under the same conditions). We describe and to some extend continue the study of
the properties of these objects.

In Section 4 we recall various microlocal resolvent estimates from [FS] (slightly
extended). We also introduce the concept of the scattering wave front set adapted
to energy zero. We give its applications, in particular a result about the Sommerfeld
radiation condition at zero energy.

In Section 5 we describe the modifiers used in our paper. They are given by a
WKB-type ansatz, which involves solving transport equations.

In Section 6 we introduce wave operators and wave matrices. We describe their
low-energy asymptotics.

In Section 7 we introduce scattering operators and matrices. We analyse their
low-energy asymptotics.

In Section 8 we study properties of generalized eigenfunctions for non-negative
energies.

In Section 9 we restrict our attention to potentials of the form (1.23). We show
the classical rule, ω · ω′ = cos µ

2−µπ, for the location of zero-energy singularities
(cf. Theorem 1.4). We also show a “propagation of scattering singularities result”,
see Proposition 9.1, on generalized zero-energy eigenfunctions. Under stronger con-
ditions than (1.23) we represent the kernel of S(0) as an explicit oscillatory integral.

In Section 10 we study an explicit Fourier integral operator on the unit sphere
– the evolution operator for the wave equation – and we show that it coincides,
modulo a compact term, with S(0) (again, under stronger conditions than (1.23)).

In Appendix A we present, in an abstract setting, various elements of stationary
scattering theory used in our paper.
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2. Conditions

We shall consider a classical Hamiltonian h = 1
2
ξ2+V on Rd×Rd where V satisfies

Condition 2.1 (in classical mechanics we can take V3 = 0) and possibly Condition 2.2
(both stated below). We shall throughout the paper use the non-standard notation
〈x〉 for x ∈ Rd to denote a function 〈x〉 = f(r); r = |x|, where here f ∈ C∞([0,∞[)
is taken convex, and obeys f = 1

2
for r < 1

4
and f = r for r > 1. We shall often use

the notation x̂ = x/r for vectors x ∈ Rd \ {0}. Let L2,s = L2,s(Rd
x) = 〈x〉−sL2(Rd

x)
for any s ∈ R (the corresponding norm will be denoted by ‖ · ‖s). Introduce also
L2,−∞(= L2,−∞(Rd)) = ∪s∈RL

2,s and L2,∞ = ∩s∈RL
2,s. The notation F (s > ε)

denotes a smooth increasing function = 1 for s > 3
4
ε and = 0 for s < 1

2
ε; F (· < ε) :=

1 − F (· > ε). The notation g will be used extensively; it stands for the function
g(r) =

√
2λ− 2V1(r) (for V1 obeying Condition 2.1 and λ ∈ [0,∞[).

Condition 2.1. The function V can be written as a sum of three real-valued mea-
surable functions, V = V1 + V2 + V3, such that: For some µ ∈]0, 2[ we have
(1) V1 is a smooth negative function that only depends on the radial variable r in

the region r ≥ 1 (that is V1(x) = V1(r) for r ≥ 1). There exists ε1 > 0 such
that

V1(r) ≤ −ε1r−µ; r ≥ 1.

(2) For all γ ∈ (N ∪ {0})d there exists Cγ > 0 such that

〈x〉µ+|γ||∂γV1(x)| ≤ Cγ.

(3) There exists ε̃1 > 0 such that

rV ′1(r) ≤ −(2− ε̃1)V1(r); r ≥ 1. (2.1)

(4) V2 = V2(x) is smooth and there exists ε2 > 0 such that for all γ ∈ (N ∪ {0})d
〈x〉µ+ε2+|γ||∂γV2(x)| ≤ Cγ.

(5) V3 = V3(x) is compactly supported.

The following condition will be needed only in the case V2 6= 0.

Condition 2.2. Let V1 be given as in Condition 2.1 and α := 2
2+µ

. There exists
ε̄1 > max(0, 1− α(µ+ 2ε2)) such that

lim sup
r→∞

r−1V ′1(r)
(∫ r

1

(−2V1(ρ))−
1
2 dρ
)2

< 4−1(1− ε̄21), (2.2)

lim sup
r→∞

V ′′1 (r)
(∫ r

1

(−2V1(ρ))−
1
2 dρ
)2

< 4−1(1− ε̄21). (2.3)

We notice that (2.1) and (2.2) tend to be somewhat strong conditions for µ≈2.
On the other hand Conditions 2.1 and 2.2 hold for all ε2 > 0 for the particular
example V1(r) = −γr−µ (with ε1 = γ, ε̃1 = 2− µ and some ε̄1 < 1− αµ).

In quantum mechanics we consider H = H0 + V ; H0 = 1
2
p2, p = −i∇, on H =

L2(Rd), and we need the following additional condition. Clearly Condition 2.3 (1)
assures that H is self-adjoint. For an elaboration of Condition 2.3 (2), see [FS]; it
guarantees that zero is not an eigenvalue of H. Condition 2.3 (3) is included here
only for convenience of presentation; with the other conditions there are no small
positive eigenvalues, cf. [FS].
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Condition 2.3. In addition to Condition 2.1
(1) V3(H0 + i)−1 is a compact operator on L2(Rd).
(2) H satisfies the unique continuation property at infinity.
(3) H does not have positive eigenvalues.

3. Classical orbits

In this section we recall and extend the results of [DS1] about low energy classical
orbits that we will need in our paper.

3.1. Scattering orbits at positive energies. We introduce for R ≥ 1 and σ > 0

Γ+
R,σ(ω) = {y ∈ Rd | y · ω ≥ (1− σ)|y|, |y| ≥ R}; ω ∈ Sd−1,

Γ+
R,σ = {(y, ω) ∈ Rd × Sd−1 | y ∈ Γ+

R,σ(ω)}.
Lemma 3.1. Suppose that V1 satisfies (1.1). Let σ ∈]0, 2[. Then there exists a de-
creasing function ]0,∞[3 λ 7→ R0(λ) such that for all |ξ| ≥ √2λ and x ∈ Γ+

R0(λ),σ(ξ̂)

there exists a unique solution y(t) = y+(t, x, ξ) of the problem (1.2) such that
y(t) ∈ Γ+

R0(λ),σ(ξ̂) for t > 1. If we set

F+(x, ξ) := ẏ+(1, x, ξ),

then rotxF
+(x, ξ) = 0.

For any ξ 6= 0 we let λ = 2−1ξ2, ω = ξ̂ and R = R(λ). For (x, ω) ∈ Γ+
R,σ we choose

a path [0, 1] 3 l 7→ γ(l) ∈ Γ+
R,σ(ω) such that γ(0) = Rω and γ(1) = x. We set

φ+(x, ξ) :=

∫ 1

0

F+(γ(τ), ξ) · dγ(l)

dl
dl + |ξ|R.

Note that φ+(x, ξ) does not depend on the choice of the path γ. For instance, we
can take the interval joining these two points and then

φ+(x, ξ) = (x−Rω) ·
∫ 1

0

F+(l(x−Rξ̂) +Rξ̂, ξ)dl + |ξ|R. (3.1)

Another possible choice is the radial interval from Rω to |x|ω and then the arc
towards x:

φ+(x, ξ) =

∫ |x|
R

F+(lω, ξ) · ωdl +

∫ arccosω·x̂

0

F+(|x|vα, ξ) · |x|dvα
dα

dα + |ξ|R, (3.2)

where vα := cosαω + sinα x̂−ω ω·x̂√
1−(ω·x̂)2

.

The phase function constructed above essentially coincides with the Isozaki Kitada
(outgoing) phase function, cf. [Is1], [IK1, Definition 2.3] or [DG, Proposition 2.8.2].
In particular, for any ξ 6= 0, there are bounds

∂κξ ∂
γ
x(φ+(x, ξ)− ξ · x) = O

(|x|δ−|γ|) for |x| → ∞; (3.3)
δ > max(1− µ, 0).

These bounds are not uniform in ξ 6= 0, they are however uniform on compact
subsets of Rd \ {0}.
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3.2. Scattering orbits at low energies. Let us now recall some results about
scattering orbits taken from [DS1].

We assume Conditions 2.1 and 2.2 (only Condition 2.1 if V2 = 0). The fact
that our Condition 2.1 includes a possibly singular potential V3 is irrelevant for this
subsection since by assumption this term is compactly supported. More precisely
we just need to make sure that the R0 ≥ 1 in Lemma 3.2 stated below is taken so
large that V3(x) = 0 for |x| ≥ R0, then [DS1] applies.

Lemma 3.2. There exist R0 ≥ 1 and σ0 > 0 such that for all R ≥ R0 and for all
positive σ ≤ σ0 the problem (1.24) is solved for all data (x, ω) ∈ Γ+

R,σ and λ ≥ 0 by a
unique function y+(t, x, ω, λ), t ≥ 1 such that y+(t, x, ω, λ) ∈ Γ+

R,σ(ω) for all t ≥ 1.
Define a vector field F+(x, ω, λ) on Γ+

R0,σ0
(ω) by

F+(x, ω, λ) = ẏ+(t = 1;x, ω, λ); (3.4)

Then
rotxF

+(x, ω, λ) = 0.

Note that under the assumptions of Lemma 3.2, we can suppose that R0(λ),
introduced in Lemma 3.1, equals R0 for all λ > 0. We can define φ+(x, ω, λ) on
(x, ω, λ) ∈ Γ+

R,σ × [0,∞[. For further reference let us record the analogues of (3.1)
and (3.2):

φ+(x, ω, λ) = (x−R0ω) ·
∫ 1

0

F+(l(x−R0ω) +R0ω)dl +
√

2λR0,

φ+(x, ω, λ) =

∫ |x|
R0

F+(lω, ω, λ) · ωdl +

∫ arccosω·x̂

0

F+(|x|vα, ω, λ) · dvα
dα

dα +
√

2λR0.

We will add the subscript “sph” to all objects where V is replaced by the (spher-
ically symmetric) potential V1. The following result is proven in [DS1]:

Proposition 3.3. There exists ε̆ = ε̆(µ, ε̄1, ε2) > 0 and uniform bounds

F+(x)− F+
sph(x) = O

(|x|−µ/2−ε̆). (3.5a)

In particular for constants C, c > 0 independent of x, ω and λ∣∣∣ F+(x)

|F+(x)| −
F+

sph(x)

|F+
sph(x)|

∣∣∣ ≤ C|x|−ε̆, (3.5b)

and
F+(x)

|F+(x)| · x̂ ≥ 1− C(1− x̂ · ω)− C|x|−ε̆, (3.5c)

F+(x)

|F+(x)| · x̂ ≤ 1− c(1− x̂ · ω)+ C|x|−ε̆, (3.5d)

F+(x)

|F+(x)| · ω ≥ 1− C(1− x̂ · ω)− C|x|−ε̆. (3.5e)

More generally (with the same ε̆ > 0), for all multiindices δ and γ there are
uniform bounds

∂δω∂
γ
xF

+(x) = 〈x〉−|γ|O (g(|x|)) , (3.5f)

∂δω∂
γ
x

(
F+(x)− F+

sph(x)
)

= 〈x〉−ε̆−|γ|O (g(|x|)) . (3.5g)
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The vector field F+(x, ω, λ) as well as all derivatives ∂δω∂γxF+ are jointly contin-
uous in the variables (x, ω) ∈ Γ+

R0,σ0
and λ ≥ 0.

The problem (1.24) in the case of t → −∞ can also be solved. We introduce for
R ≥ 1 and σ > 0

Γ−R,σ(ω) = {y ∈ Rd | y · ω ≤ (σ − 1)|y|, |y| ≥ R}; ω ∈ Sd−1,

Γ−R,σ = {(y, ω) ∈ Rd × Sd−1| y ∈ Γ−R,σ(ω)}.
Mimicking the previous procedure, starting from the mixed problem (1.24) in the

case of t → −∞, we can similarly construct a solution φ−(x, ω, λ) to the eikonal
equation in some Γ−R,σ(ω). This amounts to setting

φ−(x, ω, λ) = −φ+(x,−ω, λ); x ∈ Γ−R0,σ0
(ω) = Γ+

R0,σ0
(−ω). (3.6)

3.3. Radially symmetric potentials. In this subsection we assume that V2 = 0,
which means that the potential is spherically symmetric. More precisely, we assume
that for r ≥ R0

|∂nr V (r)| ≤ cnr
−n−µ, V (r) ≤ −cr−µ, c > 0, rV ′(r) + 2V (r) < 0.

Note that motion in such a potential is confined to a 2-dimensional plane. In the case
of the trajectory y+(t, x, ω, λ) it is the plane spanned by ω and x̂. It is also convenient
to introduce the vectors x⊥ := ω−cos θ1x̂

sin θ1
and ω⊥ := x̂−cos θ1ω

sin θ1
, where ω · x̂ = cos θ1.

Therefore, we can restrict temporarily our attention to a 2-dimensional system.
We will use the polar coordinates (r cos θ, r sin θ). Note that the energy λ and the
angular momentum L are preserved quantities. Therefore, the Newton equations
(for outgoing orbits) can be reduced to{

θ̇ = Lr−2,

ṙ =
√

2λ− 2V (r)− L2r−2.
(3.7)

Lemma 3.4. For some θ0 > 0, for all r1 ≥ R0, |θ1| ≤ θ0 and λ ≥ 0 we can find a
solution of (3.7) satisfying

r(1) = r1, ṙ(1) > 0, lim
t→∞

θ(t) = 0, θ(1) = θ1.

There exists a function (r1, θ1, λ) 7→ L(r1, θ1, λ) ∈ R specifying the total angular
momentum of the solution y+(t, x, ω, λ). This function L is an odd function in θ1.
We have the following estimates:

∂nr1∂
m
θ21
L2 = O

(
r2−n

1 g(r1)2
)
, n,m ≥ 0; (3.8a)

∂nr1∂
m
θ21

L

θ1

= O
(
r1−n

1 g(r1)
)
, n,m ≥ 0. (3.8b)

This allows us to compute the initial velocity of the trajectory:

F+(x, ω, λ) =
√

2λ− 2V (r)− L2/r2x̂− L

r
x⊥.

The function φ+ equals, with r = |x| and cos θ = x̂ · ω,

φ+(x, ω, λ) =
√

2λR0 +

∫ r

R0

√
2λ− 2V (r′)dr′ +

∫ θ

0

L(r, θ′, λ)dθ′. (3.9)
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Therefore, using also that ∇ωθ = −ω⊥,
∇ωφ

+ = −L(r, θ, λ)ω⊥. (3.10)

This gives the following estimates (in any dimension):

Lemma 3.5. There exist constants C, c > 0 such that

|x̂ · F+(x)− g(|x|)| ≤ C(1− x̂ · ω)g(|x|), (3.11a)

|F+(x)− x̂ x̂ · F+(x)| ≤ C
√

1− x̂ · ωg(|x|), (3.11b)

|∇ωφ
+| ≥ c

√
1− x̂ · ωg(|x|)|x|, (3.11c)

∂δω∂
γ
xφ

+ = 〈x〉1−|γ|O(g(|x|)). (3.11d)

We calculate for λ > 0:

∇ξF
+ = (2λ)−

1
2∇ωF

+ + (2λ)
1
2∂λF

+ ⊗ ω;

∇ωF
+ = L∂θL(2λ− 2V (r) + L2r−2)−

1
2 r−2ω⊥ ⊗ x̂+ ∂θLr

−1ω⊥ ⊗ x⊥ − L

r
∇ωx

⊥,

∂λF
+ = (2λ− 2V (r)− L2r−2)−

1
2 (1− L∂λLr−2)x̂− ∂λLr−1x⊥.

Specifying to x parallel to ω and noting that L(x, x̂, λ) = 0, we obtain

∇ξF
+ = (2λ)1/2∂λ(2λ− 2V (|x|))1/2x̂⊗ x̂

− (2λ)−1/2|x|−1∂θL x⊥ ⊗ x⊥
= (2λ)1/2(2λ− 2V (|x|))−1/2x̂⊗ x̂ (3.12)

+ (2λ)−1/2|x|−1
(∫ ∞
|x|

r−2(2λ− 2V (r))−1/2dr
)−1

x⊥ ⊗ x⊥,

cf. [DS1, (4.5)].
In an arbitrary dimension, the formula is the same except that the second term

is repeated d− 1 times on the diagonal. Therefore,

det
(
∇ξ∇xφ

+(x,
√

2λx̂)
)1/2

= (2λ)(2−d)/4g(r)−1/2
(
r−1h(r)

)(d−1)/2

, (3.13)

where we have introduced the notation

h(r) :=
(∫ ∞

r

r′−2g(r′)−1dr′
)−1

. (3.14)

Note the (uniform) bounds

crg(r) ≤ h(r) ≤ Crg(r). (3.15)

Whence, combining (3.13) and (3.15),

c(2λ)(2−d)/4g(r)(d−2)/2 ≤ det
(∇ξ∇xφ

+(x,
√

2λx̂)
)1/2

≤ C(2λ)(2−d)/4g(r)(d−2)/2. (3.16)
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4. Boundary values of the resolvent

In this section we impose Conditions 2.1 and 2.3. We shall recall (and extend)
some resolvent estimates of [FS]. They are important tools used throughout our
paper.

In Subsection 4.2 we will also introduce the notion of the scattering wave front
set, which is well adapted to scattering theory at various energies. We will return
to this concept in particular in Section 9, where we will prove a theorem about
propagation of singularities for potentials with a homogeneous principal part. A
somewhat cruder version of this theorem is given already in Subsection 4.2 (valid,
however, for a more general class of potentials).

In Subsection 4.4 we prove a version of the Sommerfeld radiation condition for
the zero energy.

4.1. Low energy resolvent estimates. Let c be a function on the phase space
Rd × Rd. The left and right Kohn-Nirenberg quantization of the symbol c are the
operators Opl(c) and Opr(c) acting as

(Opl(c)f)(x) = (2π)−d/2
∫

eix·ξc(x, ξ)f̂(ξ) dξ,

(Opr(c)f)(x) = (2π)−d
∫∫

ei(x−y)·ξc(y, ξ)f(y) dydξ,

respectively. Notice that Opl(c)∗ = Opr(c̄). In Proposition 4.1 stated below we use for
convenience both of these quantizations although they can be used interchangeably.
Alternatively one can use Weyl quantization denoted by Opw(c), cf. [FS]. We will
often use the following (λ-dependent) symbols:

a(x, ξ) =
ξ2

g(|x|)2
, b(x, ξ) =

ξ

g(|x|) ·
x

〈x〉 . (4.1)

It is convenient to introduce the following symbol class: Let c ∈ S(m, gµ,λ) gµ,λ =
〈x〉−2dx2 + g−2dξ2 and m = mλ = mλ(x, ξ) be a uniform weight function [Hö3].
Here λ ∈ [0, λ0] (for an arbitrarily fixed λ0 > 0) is considered as a parameter; the
function m obeys bounds uniform in this parameter (see [FS, Lemma 4.3 (ii)] for
details). For a uniform weight function m the symbol class Sunif(m, gµ,λ) is defined
to be the set of parameter-dependent smooth symbols c = cω,λ satisfying

|∂δω∂γx∂βξ cω,λ(x, ξ)| ≤ Cδ,γ,βmλ(x, ξ)〈x〉−|γ|g−|β|. (4.2)

We notice that the “Planck constant” for this class is 〈x〉−1g−1. The corresponding
class of quantizations is denoted by Ψunif(m, gµ,λ) (it does not depend on whether left
or right quantization is used). Finally we remark that the quantizations appearing
in Proposition 4.1 stated below belong to Ψunif(1, gµ,λ) and hence they are bounded
uniformly in λ (these symbols are independent of ω).

We can obtain the following estimates by mimicking the proof of [FS, Theorem 4.1]
(first for the smooth case V3 = 0, and then the general case by a resolvent equation,
see [FS, Subsection 5.1]; here the unique continuation assumption Condition 2.3 (2)
comes into play). In particular, Proposition 4.1 (i) follows from [FS, Corollary 3.5]
and a resolvent identity (cf. [FS, (5.12)]). Similarly Proposition 4.1 (ii) follows from
[FS, Lemma 4.5] and the proof of [FS, Lemma 4.6] (notice that it suffices to show
the bounds (4.3b) and (4.3c) for t = 0 due to this proof), while Proposition 4.1 (iii)
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follows from [FS, Lemma 4.9] and the same minor modification of the proof of [FS,
Lemma 4.6]. As for the continuity statement at the end of the proposition we refer
the reader to the end of this subsection.

The notation R(λ+ i0) refers to the limit of the resolvent R(λ+ iε) as ε→ 0+ in
the sense of a form on the Schwartz space S(Rd), cf. Remark 4.2 2).

Proposition 4.1. Fix any λ0 > 0. The following conclusions, (i)–(v), hold uni-
formly in λ ∈ [0, λ0]:
(i) For all δ > 1

2
there exists C > 0 such that

‖〈x〉−δg 1
2R(λ+ i0)g

1
2 〈x〉−δ‖ ≤ C. (4.3a)

(ii) There exists C0 ≥ 1 such that if χ+ ∈ C∞(R), supp(χ+) ⊂]C0,∞[ and χ′+ ∈
C∞c (R), then for all δ > 1

2
and all s, t ≥ 0 there exists C > 0 such that

‖(〈x〉g)s〈x〉t−δg 1
2 Opl(χ+(a))R(λ+ i0)g

1
2 〈x〉−t−δ(〈x〉g)−s‖ ≤ C, (4.3b)

‖(〈x〉g)−s〈x〉−t−δg 1
2R(λ+ i0)Opr(χ+(a))g

1
2 〈x〉t−δ(〈x〉g)s‖ ≤ C. (4.3c)

(iii) Let σ̄ > 0 and χ− ∈ C∞c (R). Suppose χ̃−, χ̃+ ∈ C∞(R) satisfy

sup supp χ̃− ≤ 1− σ̄, inf supp χ̃+ ≥ σ̄ − 1.

Then for all δ > 1
2
and all s, t ≥ 0 there exists C > 0 such that

‖(〈x〉g)s〈x〉t−δg 1
2 Opl(χ−(a)χ̃−(b))R(λ+ i0)g

1
2 〈x〉−t−δ(〈x〉g)−s‖ ≤ C, (4.3d)

‖(〈x〉g)−s〈x〉−t−δg 1
2R(λ+ i0)Opr(χ−(a)χ̃+(b))g

1
2 〈x〉t−δ(〈x〉g)s‖ ≤ C. (4.3e)

(iv) Suppose χ1
−, χ

2
− ∈ C∞c (R), χ̃− and χ̃+ satisfy the assumptions from (iii) and in

addition
sup supp χ̃− < inf supp χ̃+.

Then for all s ≥ 0 there exists C > 0 such that

‖〈x〉sOpl(χ1
−(a)χ̃−(b))R(λ+ i0)Opr(χ2

−(a)χ̃+(b))〈x〉s‖ ≤ C. (4.3f)

(v) Suppose χ+ is given as in (ii), some functions χ̃+, χ̃−, χ− are given as in (iii)
and suppose

dist(suppχ−, suppχ+) > 0.

Then for all s ≥ 0 there exists C > 0 such that

‖〈x〉sOpl(χ+(a))R(λ+ i0)Opr(χ−(a)χ̃+(b))〈x〉s‖ ≤ C, (4.3g)

‖〈x〉sOpl(χ−(a)χ̃−(b))R(λ+ i0)Opr(χ+(a))〈x〉s‖ ≤ C. (4.3h)

All the forms appearing in (i)–(v) are continuous in λ ≥ 0. In fact the families of
corresponding operators are continuous B(L2(Rd))–valued functions.

Remarks 4.2. 1) Although this will not be needed we have in fact (ii) with
C0 = 1; see Corollary 4.4 for a related result.

2) The paper [FS] contains a stronger version of the so-called limiting absorption
principle than can be read from Proposition 4.1 (i): For all δ > 1

2
there exists

C > 0 such that

sup
λ+iε∈M

‖〈x〉−δg 1
2R(λ+ iε)g

1
2 〈x〉−δ‖ ≤ C; M := [0, λ0]× i ]0, 1],
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and the B(L2(Rd)–valued function 〈x〉−δ−µ4R(ζ)〈x〉−δ−µ4 is uniformly Hölder
continuous in ζ ∈ M . The (well-known) positive energy analogue of this as-
sertion states that for any positive λ1 < λ0 the B(L2(Rd)–valued function
〈x〉−δR(ζ)〈x〉−δ is uniformly Hölder continuous in ζ ∈M \ {Re ζ < λ1}; see 4)
for a related remark.

3) The paper [FS] also contains an extension of Proposition 4.1 to powers of
the resolvent, however this will not be useful in the forthcoming sections; see
Example 7.5 for a discussion. This is related to the fact that our classical
constructions are not smooth in λ at zero energy, cf. [DS1, Remarks 4.7 1)].
The collection of all estimates in Proposition 4.1 (more precisely a collection
of similar estimates with a complex spectral parameter) yields similar esti-
mates for powers of the resolvent by a completely algebraic reasoning, cf. [FS,
Appendix A].

4) Assume that the potential satisfies Condition 1.1. Then all the bounds of
Proposition 4.1 remain true uniformly in λ ∈ [λ1, λ0] for any positive λ1 < λ0

provided we replace

a→ a :=
ξ2

2λ
, b→ b :=

ξ√
2λ
· x〈x〉 and g → 1. (4.4)

(Under the stronger Conditions 2.1 and 2.3 the validity of this modification is
a direct consequence of the bounds of Proposition 4.1.) Also in this case the
families of associated operators are norm continuous (now in λ > 0 only).

Proof of continuity statements in Proposition 4.1. Due to Remark 4.2 2) and the
calculus of pseudodifferential operators all appearing forms in Proposition 4.1 are
continuous in λ ≥ 0.

Norm continuity of the corresponding operator-valued functions also follows from
Remark 4.2 2). This can be seen as follows for Bδ(λ) := 〈x〉−δg 1

2R(λ + i0)g
1
2 〈x〉−δ

(appearing in (i)):
Pick δ′ ∈]1

2
, δ[, insert for (small) κ > 0 the identity I = F (κ|x| < 1) +F (κ|x| > 1)

on both sides of Bδ(λ) and expand (into three terms). This yields

‖Bδ(λ)− F (κ|x| < 1)Bδ(λ)F (κ|x| < 1)‖ ≤ Cκδ−δ
′‖Bδ′(λ)‖.

Due to Proposition 4.1 (i) the right hand side is O
(
κδ−δ

′) uniformly λ ≥ 0. On the
other hand due to Remark 4.2 2) (and the calculus of pseudodifferential operators)
for fixed κ > 0 the B(L2(Rd))–valued function F (κ|x| < 1)Bδ(·)F (κ|x| < 1) is
continuous. Hence Bδ(·) is a uniform limit of continuous functions and therefore
indeed continuous.

The other operator-valued functions can be dealt with in the same fashion. �

4.2. Scattering wave front set. The remaining subsections of Section 4 are de-
voted to a number of somewhat technical estimates on solutions to the equation
(H − λ)u = v for a fixed λ ≥ 0. Although they are proved under Conditions 2.1
and 2.3 we remark that there are similar estimates under Condition 1.1 for a fixed
λ > 0. The reader may skip this material on the first reading.

Throughout the remaining part of this section we will use the notation 〈ξ〉1 =
(1 + |ξ|2)1/2 and X = (1 + |x|2)1/2 for ξ, x ∈ Rd.

With reference to the symbol class Sunif(m, gµ,λ) from Subsection 4.1 clearly
h1, h2 ∈ Sunif(m, gµ,λ) with h1 := 1

2
ξ2 + V1, h2 := 1

2
ξ2 + V1 + V2 and m = g2〈ξ/g〉21.
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In the remaining part of Section 4 we shall however only need a reminiscence of
this symbol class given by disregarding the uniformity in λ ≥ 0. Whence we shall
consider symbols c ∈ S(m, gµ,λ) meaning, by definition, that

|∂γx∂βξ c(x, ξ)| ≤ Cγ,βm(x, ξ)〈x〉−|γ|g−|β|. (4.5)

The corresponding class of standardWeyl quantizations Opw(c) is denoted Ψ(m, gµ,λ).
It is convenient to introduce the following constants:

s0 =

{
(1 + µ

2
)/2,

1/2,
s1 =

{
1− µ

2
,

1,
s2 =

{
µ, for λ = 0,

0, for λ > 0.
(4.6)

If ε > 0, then 〈x〉−s0−ε will be a typical weight that appears in resolvent estimates.
(Notice that in the uniform estimates of Proposition 4.1 the corresponding weight
is g

1
2 〈x〉− 1

2
−ε.) The weight 〈x〉−s1 plays the role of the “Planck constant” for the

class Ψ(m, gµ,λ). Finally, 〈x〉−s2 will appear in the “elliptic regularity estimate” of
Proposition 4.3. Clearly s0 > s2 and s1 > 0.

Let us decompose the normalized momentum ξ/g as follows:

ξ

g
= b

x

〈x〉 + c̄; b :=
x

〈x〉 ·
ξ

g
and c̄ :=

(
I − ∣∣ x〈x〉〉〈 x〈x〉 ∣∣)ξg . (4.7)

Notice that b was already defined in Subsection 4.1, besides for r = |x| ≥ 1, b2 + c̄2 =
a with a also defined in Subsection 4.1. Moreover for r ≥ 1 we have the identification
b = x̂ · ξ

g
∈ R and c̄ = (I − |x̂〉〈x̂|) ξ

g
∈ T ∗x̂ (Sd−1) with x̂ = x/r ∈ Sd−1, which obvi-

ously constitute canonical coordinates for “the phase space” T∗ := T ∗(Sd−1)× R =
Sd−1 × Rd. This partly motivates the following definition:

The wave front set WF s
sc(u) of a distribution u ∈ L2,−∞ is the subset of T∗ given

by the condition

z1 = (ω1, c̄1, b1) = (ω1, b1ω1 + c̄1) = (ω1, η1) /∈ WF s
sc(u)

⇔ (4.8)
∃ neighbourhoods Nω1 3 ω1, Nη1 3 η1 ∀χω1 ∈ C∞c (Nω1), χη1 ∈ C∞c (Nη1) :

Opw
(
χz1F (r > 2)

)
u ∈ L2,s where χz1(x, ξ) = χω1(x̂)χη1(bx̂+ c̄).

Notice that this quantization is defined by the substitution bx̂+ c̄→ ξ/g, cf. (4.7).
Keep in mind that the whole concept depends on the given energy λ ∈ [0,∞[ in
consideration (through g, which enters in the definition of b and c̄).

The above notion of wave front set is of course adapted to the problem in hand.
The classical definition is taylored to measure decay in momentum space; see for
example [Hö1, Chapter VIII]. Our definition concerns decay in position space, and
thus it is more related to the wave front set introduced in [Me, Section 7] (dubbed
there as “the scattering wave front set”).

Obviously
u ∈ L2,s ⇒ WF s

sc(u) = ∅.
Conversely (by a compactness argument), if for some χ ∈ C∞c (Rd)

u−Opw(χ(ξ/g))u ∈ L2,s, (4.9)

then
WF s

sc(u) = ∅ ⇒ u ∈ L2,s.
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Proposition 4.3. Let λ ≥ 0 and s2 be defined in (4.6). Let u ∈ L2,−∞, v ∈ L2,s+s2

and (H − λ)u = v. Then the estimates (4.9) and

WF s
sc(u) ⊆ {z ∈ T∗|b2 + c̄2 = 1} (4.10)

hold.
More generally, suppose u ∈ L2,−∞, g−1v ∈ L2,s and (H − λ)u = v. Then the

following estimates hold:

For all ε > 0 : gOpw(F (b2 + c̄2 − 1 > ε))u ∈ L2,s, (4.11a)

For all ε > 0, gOpw
(〈ξ/g〉21F (b2 + c̄2 − 1 > ε)

)
u ∈ L2,s, (4.11b)

For all ε > 0 : gOpw
(
F (1− b2 − c̄2 > ε)

)
u ∈ L2,s, (4.11c)

WF s
sc(gu) ⊆ {z ∈ T∗|b2 + c̄2 = 1}. (4.11d)

Proof. Obviously (4.11b) is stronger than (4.11a). Notice also that (4.11a) in some
sense is stronger than Proposition 4.1 (ii) (involves weaker weights). It is also obvious
that (4.11d) is a consequence of (4.11b) and (4.11c).

The proof of (4.11b) given below is somewhat similar to the proof of the analogue
of Proposition 4.1 (ii) given in [FS]. For convenience we have divided the proof
into four steps. For the calculus of pseudodifferential operators, used tacitly below,
we refer to [Hö1, Theorems 18.5.4, 18.6.3, 18.6.8] (the reader might find it more
convenient to consult [FS] for an elaboration).

The bounds (4.11c) can be proved by mimicking Steps III and IV below. We note
that the complication due to high energies, cf. Step II below, is absent. For this
reason (4.11c) is somewhat easier to establish than (4.11b) and we shall leave the
details of proof to the reader.

Step I. At various points in the proof of (4.11b) we need to control the possibly
existing local singularities of the potential V3. This is done in terms of the following
elementary bounds.

T1 := 〈x〉t′g−1V3(H − i)−1g−1〈x〉−t ∈ B(L2); t, t′ ∈ R, (4.12a)

T̃1 := 〈x〉t′g−1V3(1 + p2)−1g−1〈x〉−t ∈ B(L2); t, t′ ∈ R. (4.12b)

T2 := 〈x〉t(1 + p2)g(H − i)−1g−1〈x〉−t ∈ B(L2); t ∈ R. (4.12c)

Step II. Suppose gu ∈ L2,t for some fixed t ≤ s. We shall prove that then Agu ∈ L2,t

for all A ∈ Ψ(〈ξ/g〉21, gµ,λ), in fact that

For all A ∈ Ψ(〈ξ/g〉21, gµ,λ) : ‖Agu‖t ≤ C(‖gu‖t + ‖g−1v‖s). (4.13)

For any such operator A and any m ∈ R we decompose

〈x〉tA = Bm〈x〉tOpw(〈ξ/g〉21) +Rm, (4.14)

where Bm ∈ Ψ(1, gµ,λ) and Rm ∈ Ψ(〈ξ/g〉21〈x〉−m, gµ,λ).
Now, cf. [FS, proof of Lemma 4.5],

Opw(〈ξ/g〉21) = g−1p2g−1 + Opw(a1)

= 2g−1(H − λ)g−1 + Opw(a2)− 2g−2V3; (4.15)

a1 = 1− |∇g−1|2 + 4−1∆g−2, a2 = a1 + 1− 2g−2V2 ∈ S(1, gµ,λ).
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We substitute (4.15) in (4.14), expand into altogether four terms and apply the
resulting sum to the state gu. The contribution from the first term of (4.15) is
estimated as

‖Bm〈x〉t2g−1(H − λ)g−1(gu)‖ ≤ C1‖g−1v‖t ≤ C2‖g−1v‖s.
Similarly, the contribution from the second term of (4.15) is estimated as

‖Bm〈x〉tOpw(a2)gu‖ ≤ C‖gu‖t.
As for the third term of (4.15) we use (4.12a) with t = t′ to bound

2‖Bm〈x〉tg−2V3gu‖ ≤ 2‖Bm‖ ‖T1〈x〉tg(H − i)u‖
≤ C1

(‖gv‖t + ‖(λ− i)gu‖t
) ≤ C2(‖gu‖t + ‖g−1v‖s).

To treat the contribution from the second term of (4.14) we note that

Ψ(〈ξ/g〉21〈x〉−m, gµ,λ) ⊆ Ψ(〈ξ〉21〈x〉2−m, gµ,λ).
Whence, using (4.12c) and choosing m = 2− t,

‖Rmgu‖ ≤ C1‖T2〈x〉tg(H − i)u‖ ≤ C2(‖gu‖t + ‖g−1v‖s).
We conclude (4.13).

Step III. Suppose gu ∈ L2,t for some fixed t < s. Fix s′ ∈]t, t + 1 − µ/2] with
s′ ≤ s. We shall show that (4.11a) holds with s replaced by s′. We set Fε :=
F (b2 + c̄2 − 1 > ε).

We need a regularization in x-space given in terms of ικ = X
−2−µ

2
κ where we for

κ ∈]0, 1] let
Xκ := (1 + κ|x|2)1/2. (4.16)

Mimicking [FS, proof of Lemma 4.5], clearly for R > 1 chosen large enough

F 2
ε F (r > R)2 ≤ 3

ε
Re
(2h2 − 2λ

g2

)
F 2
ε F (r > R)2.

Let

D = Opw(d); d = 〈ξ/g〉−1
1 〈x〉1−s

′
= ~−1〈ξ/g〉−1

1 g−1〈x〉−s′ ,
Pκ = Opw(pκ); pκ = q2

κ

(6

ε
Re (h2 − λ)− g2

)
, qκ = 〈x〉s′FεικF (r > R).

Since 0 ≤ pκ ∈ S(~−2d−2, gµ,λ)

D∗PκD ≥ −C
uniformly in κ. Since 0 < d ∈ S(d, gµ,λ) we can for any m ∈ R find em ∈ S(d−1, gµ,λ)
such that

DEm − I ∈ Ψ(〈x〉−2m, gµ,λ); Em = Opw(em).

Consequently we have the uniform bound

Pκ ≥ −CE∗mEm +Rm; Rm ∈ Ψ(〈ξ/g〉21g2〈x〉2s′−2m, gµ,λ),

and therefore by choosing m = s′ − t and by using (4.13) that the expectation

〈Pκ〉u ≥ −C((‖gu‖t + ‖g−1v‖s)2. (4.17)

On the other hand for any δ ∈]0, 1[

〈Pκ〉u ≤ C((‖gu‖t + ‖g−1v‖s)2 − (1− δ)〈Q∗κQκ〉gu; Qκ = Opw(qκ), (4.18)
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here we use that

Opw
(
q2
κRe (h2 − λ)

)
= Re

(
(Qκg)∗Qκg

−1(H − V3 − λ)
)

+Rκ;

Rκ ∈ Ψ(〈ξ/g〉21~2〈x〉2s′g2, gµ,λ)) ⊆ Ψ(〈ξ/g〉21〈x〉2tg2),

and the fact that Rκ is bounded in κ ∈]0, 1] in the class Ψ(〈ξ/g〉21〈x〉2tg2). Notice
that

6

ε
〈Re

(
(Qκg)∗Qκg

−1(H − λ)
)〉u

≤ C‖Qκgu‖ ‖g−1v‖s′ ≤ δ‖Qκgu‖2 + Cδ‖g−1v‖2
s,

and that the contributions from V3 and the term Rκ can be treated by (4.12a)
and (4.13), respectively.

Now, combining (4.17) and (4.18) we conclude that

‖Qκgu‖2 ≤ C((‖gu‖t + ‖g−1v‖s)2

uniformly in κ ∈]0, 1]. Letting κ→ 0 completes Step III.

Step IV. Note that (4.11b) is equivalent to the following, seemingly stronger state-
ment:

For all ε > 0, A ∈ Ψ(〈ξ/g〉21, gµ,λ) : AgOpw(Fε)u ∈ L2,s. (4.19)
We will show (4.19) by induction.

By assumption gu ∈ L2,t for a sufficently small t ≤ s and consequently, due to
Step II, it follows that Agu ∈ L2,t for all A ∈ Ψ(〈ξ/g〉21, gµ,λ). Consider for all k ∈ N
the following claim given in terms of tk := min(s, t+ (1− µ/2)(k − 1)):

The bound/localization (4.11b) holds for all ε > 0 and all A ∈ Ψ(〈ξ/g〉21, gµ,λ)
provided u → uε := Opw(Fε/2)u and s is replaced by tk. (Notice that this implies
in particular that the state gu2ε ∈ L2,tk and hence, since ε > 0 is arbitrary, that
guε ∈ L2,tk .)

We have seen that this claim holds for k = 1. So suppose k > 1 and that the
claim is true for k → k − 1. To show the claim for k we can assume that tk−1 < s.
First, we notice that vε := (H − λ)uε obeys the condition g−1vε ∈ L2,tk due to the
induction hypothesis, (4.13), (4.12a) and (4.12b). Notice at this point that

[H − V3 − λ,Opw(Fε/2)] ∈ Ψ(g2〈ξ/g〉21~, gµ,λ),
and that in fact (for any m ∈ R)

[H − V3 − λ,Opw(Fε/2)] = gAgOpw(Fε/4) +Rm;

A ∈ Ψ(〈ξ/g〉21〈x〉µ/2−1, gµ,λ), Rm ∈ Ψ(〈ξ/g〉21〈x〉−m, gµ,λ).
Now, by Step III (4.11a) applies to u→ uε, t→ sk−1 and with s replaced by s′ = tk.
Next, by applying Step II to the state u → ũε := Opw(Fε)uε (note that as above
g−1(H−λ)ũε ∈ L2,tk) we conclude that indeed the bound (4.11b) holds with u→ uε
and s replaced by tk. The induction is complete.

Finally we obtain, using the above claim, that the bound (4.11b) holds without
changing u and with s replaced by tk. Since clearly tk = s for k sufficiently large
(4.11b) follows. �

The following corollary follows immediately from Proposition 4.3. At a fixed
energy, it strengthens Proposition 4.1 (ii).
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Corollary 4.4. Let χ ∈ C∞c (R), χ = 1 around 1. Then for any s > s0 we have
(with λ ≥ 0, and s0 and s2 as given in (4.6))

‖〈x〉s−s2Opw
(
(a2 + 1)(1− χ(a)

)
R(λ± i0)〈x〉−s‖ ≤ C (4.20)

The following proposition is similar to Proposition 9.1 stated later, although the
flavour is somewhat “global”. These results (as well as their proofs) are modifications
of [Hö3, Proposition 3.5.1] (and its proof), see also [Me] and [HMV]. The condition
(4.21) is similar to (4.11b); it implies that WF s

sc(u) ⊆ {(b2 + c̄2 ≤ 1} and hence that
WF s

sc(u) is compact.

Proposition 4.5. Let λ ≥ 0 and s0 be defined in (4.6). Suppose u, v ∈ L2,−∞,
(H−λ)u = v, s ∈ R, k ∈]− 1, 1[ and {b = k}∩WF s

sc(u) = ∅. Suppose the following
condition:

For all δ > 0, Opw
(〈ξ/g〉21F (b2 + c̄2 − 1 > δ)

)
u ∈ L2,s. (4.21)

Define

k+ = sup{k̃ ≥ k| {b ∈ [k, k̃]} ∩WF s
sc(u) = ∅}, (4.22)

k− = inf{k̃ ≤ k| {b ∈ [k̃, k]} ∩WF s
sc(u) = ∅}. (4.23)

Then

k+ < 1 ⇒ {b = k+} ∩WF s+2s0
sc (v) 6= ∅, (4.24)

k− > −1 ⇒ {b = k−} ∩WF s+2s0
sc (v) 6= ∅. (4.25)

Proof. We shall only deal with the case of superscript "+"; the case of "−"is similar.
For convenience we shall assume that ε2 ≤ 2−µ and divide the proof into two steps.
Step I. We will first show the following weaker statement: Suppose u ∈ L2,s−ε2/2,
v ∈ L2,s+2s0 and (H − λ)u = v (in this case (4.21) follows from Proposition 4.3).
Then

k+ ≥ 1. (4.26)
Now, suppose on the contrary that k+ < 1. By a compactness argument we can

then find a point in WF s
sc(u) of the form z1 = (ω1, c̄1, k

+). For ε > 0 chosen small
enough (less than (k+ − k)/2 suffices here)

{b ∈]k+ − 2ε, k+[} ∩WF s
sc(u) = ∅. (4.27)

We can assume that J :=]k+ − 2ε, k+ + ε[⊆]− 1, 1[. Pick a non-positive f ∈ C∞c (J)
with f ′ ≥ 0 on [k+ − ε,∞[ and f(k+) < 0, and consider for K > 0 and κ ∈]0, 1] the
symbol

bκ = Xs0aκ; aκ = XsX−ε2/2κ F (r > 2) exp(−Kb)f(b)F (b2 + c̄2 < 3); (4.28)

here Xκ is defined by (4.16).
We compute the Poisson bracket

{h2, b} =
g

r
c̄2 +

V ′1(b2 − 1)

g
− x · ∇V2

g〈x〉
=
g

r

((
1− rV ′1g−2

)
c̄2 + rV ′1g

−2
(
b2 + c̄2 − 1

)
+O

(
r−ε2

))
(4.29)

=
g

r

((
1− rV ′1g−2

)(
1− b2

)
+ g−22(h2 − λ) +O

(
r−ε2

))
. (4.30)
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We expand the right hand side of (4.30) into three terms and notice that due to
(2.1) the first term has the following positive lower bound on supp bκ

· · · ≥ c
g

r
; c =

ε̃1
2

(
1− sup{t2 | t ∈ supp f}).

First we fix K: A part of the Poisson bracket with b2
κ is

{h2, X
2s+2s0X−ε2κ } =

g

r
YκbX

2s+2s0X−ε2κ , (4.31)

where Yκ = Yκ(r) is uniformly bounded in κ. We pick K > 0 such that for all κ

2Kc ≥ |Yκ|+ 2
r

g
X−2s0 on supp bκ.

From (4.30), (4.31) and the properties of K and f , we conclude the following
bound at {f ′(b) ≥ 0}
{h2, b

2
κ} ≤ −2a2

κ + g−2(h2 − λ)aκO
(
rs
)

+O
(
r2s
)
(F 2)′(b2 + c̄2 < 3) +O

(
r2s−ε2).

To use this bound effectively we introduce a partition of unity: Let f1, f2 ∈ C∞c (J)
be chosen such that supp f1 ⊆]k+−2ε, k+[, supp f2 ⊆]k+− ε, k+ + ε[ and f 2

1 +f 2
2 = 1

on supp f . We multiply both sides by f 2
2 (= 1−f 2

1 ) and obtain after a rearrangement

{h2, b
2
κ} ≤ − 2a2

κ + g−2(h2 − λ)aκdκ

+K1f
2
1F (b2 + c̄2 < 3)〈x〉2s

−K2(F 2)′(b2 + c̄2 < 3)〈x〉2s +K3〈x〉2s−ε2 ; (4.32)
dκ ∈ S(〈x〉s, gµ,λ);

here K1, K2, K3 > 0 are independent of κ, and the symbols dκ are bounded in κ in
the indicated class.

We introduceAκ = Opw(aκ), Bκ = Opw(bκ) and regularization uR = F (|x|/R < 1)u
in terms of a parameter R > 1. First we compute

〈i[H,B2
κ]〉u = lim

R→∞
〈i[H,B2

κ]〉uR = −2Im 〈v,B2
κu〉. (4.33)

Using (4.33) and the calculus, cf. [Hö1, Theorems 18.5.4, 18.6.3, 18.6.8], we estimate

|〈i[H,B2
κ]〉u| ≤ C1‖v‖s+2s0

(‖Aκu‖+ ‖u‖s−ε2/2
) ≤ 1

2
‖Aκu‖2 + C2. (4.34)

On the other hand using (4.21), (4.27) and (4.32) we infer that

〈i[H − V3, B
2
κ]〉u = lim

R→∞
〈i[H − V3, B

2
κ]〉uR

≤ −2‖Aκu‖2 + C3‖(H − V3 − λ)u‖s+µ‖Aκu‖+ C4,

and whence using (4.12a) to bound ‖(H − V3 − λ)u‖s+µ ≤ C
(‖v‖s+µ + ‖u‖s−ε2/2

)
that

〈i[H − V3, B
2
κ]〉u ≤ −3

2
‖Aκu‖2 + C5. (4.35)

Clearly another application of (4.12a) yields

〈i[V3, B
2
κ]〉u ≤ C6. (4.36)

Combining (4.34)–(4.36) yields

‖Aκu‖2 ≤ C7 = C2 + C5 + C6,
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which in combination with the property that f(k+) < 0 in turn gives a uniform
bound

‖X−ε2/2κ Opw
(
χz1F (r > 2)

)
u‖2

s ≤ C8; (4.37)
here χz1 signifies any phase-space localization factor of the form entering in (4.8)
supported in a sufficiently small neighbourhood of the point z1 = (ω1, c̄1, k

+).
We let κ → 0 in (4.37) and infer that z1 /∈ WFsc(u) which is a contradiction;

whence (4.26) is proven.

Step II. We need to remove the conditions of Step I, u ∈ L2,s−ε2/2 and v ∈ L2,s+2s0 .
This will be accomplished by an iteration and modification of the procedure of Step I.

Pick t1 ∈ R such that v ∈ L2,t1 . Pick t < s such that u ∈ L2,t and define
sm = min(s, t+mε2/2) for m ∈ N. Let correspondingly k+

m be given by (4.22) with
s→ sm. Clearly

k+
m ≤ k+

m−1; m = 2, 3, . . . (4.38)
If u ∈ L2,sm−ε2/2 and v ∈ L2,sm+2s0 then (4.24) with k+ → k+

m and s→ sm follows
from Step I. Although we shall not verify these conditions we remark that a suitable
micro-local modification will come into play in an inductive procedure, see (4.41)
and (4.43) below. We shall indeed (inductively) show (4.24) with k+ → k+

m and
s→ sm, i.e. that

k+
m < 1⇒ {b = k+

m} ∩WF sm+2s0
sc (v) 6= ∅. (4.39)

Notice that (4.24) follows by using (4.39) for an m taken so large that sm = s.
Let us consider the start of induction given by m = 1. In this case obviously

u ∈ L2,sm−ε2/2. Suppose on the contrary that (4.39) is false. Then we consider the
following case:

k+
m < 1 and {b = k+

m, b
2 + c̄2 ≤ 6} ∩WF sm+2s0

sc (v) = ∅. (4.40)

We let ε > 0, J and f be chosen as in Step I with k+ → k+
m. Let f̃ ∈ C∞c (]k+ − 3ε,

k+ + 2ε[) with f̃ = 1 on J . It follows from (4.40), possibly by taking ε > 0 smaller
than needed in Step I, that

Iεv ∈ L2,sm+2s0 ; Iε = Opw
(
f̃(b)F (b2 + c̄2 < 6)

)
. (4.41)

Next, we introduce the symbol bκ by (4.28) (with s→ sm) and proceed as in Step I.
As for the bounds (4.34) we can replace v by Iεv up to addition of a term of the form
C
(‖v‖2

t1
+‖u‖2

sm−ε2/2
)
. Similarly we can verify (4.35) and (4.36) (using conveniently

(4.12b)). So again we obtain (4.37) (with s→ sm) and therefore a contradiction as
in Step I. We have shown (4.39) for m = 1.

Now suppose m ≥ 2 and that (4.39) is verified for m − 1. We need to show
the statement for the given m. Due to (4.38) and the induction hypothesis we can
assume that

k+
m < k+

m−1. (4.42)
Again we argue by contradiction assuming (4.40). We proceed as above noticing
that it follows from (4.42) that in addition to (4.41) we have

Iεu ∈ L2,sm−1 ; (4.43)

at this point we possibly need choosing ε > 0 even smaller (viz. ε < (k+
m−1−k+

m)/2).
By replacing v by Iεv and u by Iεu at various points in the procedure of Step I
(using (4.41) and (4.43), respectively) we obtain again a contradiction. Whence
(4.39) follows. �
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Corollary 4.6. Let s ∈ R, u ∈ L2,−∞, v ∈ L2,s+2s0, (H − λ)u = v, k ∈]− 1, 1[ and
{b = k} ∩WF s

sc(u) = ∅. Then

WF s
sc(u) ⊆ {b = 1} ∪ {b = −1}. (4.44)

Proof. The condition (4.21) is guaranteed by Proposition 4.3. Then we apply Propo-
sition 4.5. �

4.3. Wave front set bounds of the boundary value of the resolvent. Propo-
sition 4.1 implies, that the symbol R(λ ± i0) in many cases can be treated as an
operator although initially it is defined in terms of a quadratic form. Notice that
Remark 4.2 2) in one situation gives a slightly different and direct interpretation of
R(λ± i0) (as a limit of operators and hence avoiding quadratic forms). It will how-
ever be convenient to investigate possible other interpretations of states R(λ± i0)v
(for which in particular Remark 4.2 2) does not apply) and study associated wave
front set bounds. The case of R(λ− i0) is similar to that of R(λ+ i0) and will not
be elaborated regarding proofs.

For sufficiently decaying states v we have (using in (ii) the slightly abused notation
a := b2 + c̄2 for generic points z = (ω, c̄, b) = (ω, bω + c̄) ∈ T∗):

Proposition 4.7. Let s > s0 and v ∈ L2,s. Then the following is true:
(i) For any t > s0

R(λ± i0)v = lim
ε↘0

R(λ± iε)v exists in L2,−t.

(ii)
WF s−s2

sc (R(λ± i0)v) ⊆ {a = 1}.
(iii) For any ε > 0,

WF s−2s0−ε
sc (R(λ± i0)v) ⊆ {b = ±1}. (4.45)

Proof. Ad (i). This statement follows from Remark 4.2 2); notice that the notation
for the limit conforms with Proposition 4.1 (i).
Ad (ii). We have (H − λ)u = v. Therefore (ii) follows from Proposition 4.3

(alternatively by using Corollary 4.4).
Ad (iii). Let χ− ∈ C∞c (R) such that χ− is zero around 1. Let χ ∈ C∞c (R). Then

by Proposition 4.1 (iii), for any ε > 0

Opw(χ(a)χ−(b))R(λ+ i0)v ∈ L2,s−2s0−ε.

�

Based completely on Proposition 4.1 one can give a meaning to R(λ ± i0)v also
for some states v with a slower decay provided they have an appropriate phase
space localization. (In the statement below C0 ≥ 1 is given in agreement with
Proposition 4.1 (ii).)

Proposition 4.8. Let s ≤ s0 and v ∈ L2,s. Suppose that for some t > s0 and
k ∈]− 1, 1] (or k ∈ [−1, 1[)

WF t
sc(v) ∩ {b < k, a < 2C0} = ∅ (or WF t

sc(v) ∩ {b > k, a < 2C0} = ∅). (4.46)
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(i) For any ε > 0 there exists

R(λ+ i0)v = lim
κ↘0

R(λ+ i0)vκ

(R(λ− i0)v := lim
κ↘0

R(λ− i0)vκ) in L2,s−2s0−ε,

where vκ(x) := F (κ|x| < 1)v(x).
(ii)

WF s−s2
sc (R(λ+ i0)v) ⊆ {a = 1} (WF s−s2

sc (R(λ− i0)v) ⊆ {a = 1}).
(iii) For any ε > 0

WF t−2s0−ε
sc (R(λ+ i0)v) ∩ {b < k, a ≤ C0} = ∅ (4.47)

(WF t−2s0−ε
sc (R(λ− i0)v) ∩ {b > k, a ≤ C0} = ∅).

Proof. Ad (i). Let χ ∈ C∞c (]−∞, 2C0[), χ = 1 around [0, C0]. Let χ− ∈ C∞(R) be
chosen such that χ− = 1 around ]−∞,−1] and χ− = 0 in [(k − 1)/2,∞[. Then by
the condition (4.46) and the calculus of pseudodifferential operators

Opw(χ(a)χ−(b))vκ −→ Opw(χ(a)χ−(b))v in L2,t as κ↘ 0.

Whence by Proposition 4.1 (i), for any ε > 0

u1 := lim
κ↘0

R(λ+ i0)Opw(χ(a)χ−(b))vκ exists in L2,−s0−ε.

By Proposition 4.1 (ii) we have

u2 := lim
κ↘0

R(λ+ i0)Opw(1− χ(a))vκ exists in L2,s−2s0−ε.

By Proposition 4.1 (iii) we have

u3 := lim
κ↘0

R(λ+ i0)Opw(χ(a)(1− χ−(b))vκ exists in L2,s−2s0−ε.

But s− 2s0 ≤ −s0. Hence

R(λ+ i0)v := lim
κ↘0

R(λ+ i0)vκ = u1 + u2 + u3 ∈ L2,s−2s0−ε.

Ad (ii). This statement is proven as (ii) of the previous proposition.

Ad (iii). Let χ1, χ2 ∈ C∞c (]−∞, 2C0[), χ2 = 1 around [0,max(sup suppχ1, C0)].
Let χ1

− ∈ C∞c (]−∞, k[) and χ2
− ∈ C∞(R) such that χ2

− = 1 around ]−∞, sup suppχ1
−]

and suppχ2
− ⊆]−∞, k[. Then by the condition (4.46)

Opw(χ2(a)χ2
−(b))v ∈ L2,t.

Whence by Proposition 4.1 (i), noting that t > s0, we obtain

R(λ+ i0)Opw(χ2(a)χ2
−(b))v ∈ L2,−s0−ε

and
WF t−2s0−ε

sc

(
R(λ+ i0)Opw(χ2(a)χ2

−(b))v
) ⊆ {b = 1}. (4.48)

By Proposition 4.1 (iv)

Opw(χ1(a)χ1
−(b))R(λ+ i0)Opw(χ2(a)(1− χ2

−(b)))v ∈ L2,∞, (4.49)

and by Proposition 4.1 (v)

Opw(χ1(a)χ1
−(b))R(λ+ i0)Opw(1− χ2(a))v ∈ L2,∞. (4.50)
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Now (4.48)–(4.50) yields

Opw(χ1(a)χ1
−(b))R(λ+ i0)v ∈ L2,t−2s0−ε,

which implies (4.47). �
We have yet another interpretation very similar to Proposition 4.7 (i):

Proposition 4.9. Fix real-valued χ ∈ C∞c (R) and χ̃ ∈ C∞(R) such that
inf supp χ̃ > −1 (or sup supp χ̃ < 1). Let A := Opw(χ(a)χ̃(b)). Suppose v ∈ L2,s for
some s ≤ s0.

For any ε > 0 there exists

R(λ+ i0)Av = lim
κ↘0

R(λ+ iκ)Av in L2,s−2s0−ε

(or R(λ− i0)Av = lim
κ↘0

R(λ− iκ)Av in L2,s−2s0−ε).

Moreover this limit agrees with the interpretation of Proposition 4.8 (i).

Proof. We need to invoke an extended version of the bound (4.3e), see [FS, Lem-
ma 4.10]. First notice that the symbols g and hence also a and b obviously depend
on λ. Let ζ = λ+ iκ and define gζ , aζ and bζ by replacing λ by |ζ| in the definition
of g in Section 2.1 and of a and b in (4.1), respectively. Now we have the following
extension of the bound (4.3e):

For all δ > 1
2
and all s, t ≥ 0 there exists C > 0 such that for all κ ∈]0, 1]

‖(〈x〉gζ)−s〈x〉−t−δg
1
2
ζ R(ζ)Opw(χ−(aζ)χ̃+(bζ))g

1
2
ζ 〈x〉t−δ(〈x〉gζ)s‖ ≤ C. (4.51)

Although this will not be needed, the bound (4.51) is in fact locally uniform in
λ ≥ 0.

We pick in (4.51) the functions χ− and χ̃+ in agreement with Proposition 4.1 (iii)
such that in addition we have χ− = 1 around [0, sup suppχ] and χ̃+ = 1 around
[min(0, inf supp χ̃),∞[. Using the bounds g ≤ gζ , aζ ≤ a and |bζ | ≤ |b| we then
obtain that for any m ∈ R(

Opw(χ−(aζ)χ̃+(bζ))− 1
)
A ∈ Ψ(〈x〉m, gµ,λ). (4.52)

By combining Remark 4.2 2), (4.51) (with s = 0, t = s0 − s+ ε
2
and δ = 1

2
+ ε

2
) and

(4.52) we obtain the uniform bound: For all κ ∈]0, 1]

‖〈x〉−t−δg 1
2R(ζ)Ag

1
2 〈x〉t−δ‖ ≤ C. (4.53)

Obviously we obtain from (4.53) and a density argument that indeed there exists
the limit

u := lim
κ↘0

R(λ+ iκ)Av in L2,s−2s0−ε.

Since u = R(λ+i0)Av for v ∈ L2,∞ we are done (by using density and interchanging
limits). �

4.4. Sommerfeld radiation condition. In this subsection we describe a version
of the Sommerfeld radiation condition close in spirit to [Hö2, Theorem 30.2.7], [Is2]
and [Me].

We introduce for s > 0 Besov spaces Bs and corresponding duals B∗s as in [AH]
(see [Hö2, Section 14.1] for details about these spaces). They consist of local L2

functions with a certain (norm) expression being finite.
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We shall actually throughout this subsection only use the duals B∗s for which we
can take the norm squared to be

‖u‖2
B∗s

:= sup
R>1

R−2s

∫
|x|<R

|u|2dx.

An equivalent norm is given by the square root of the expression∫
|x|<1

|u|2dx+ sup
R>1

R−2s

∫
R/2<|x|<R

|u|2dx.

In particular we see that for all s, s′ > 0 the map Xs′−s : B∗s → B∗s′ is bicontinuous.
The subspace B∗s,0 ⊆ B∗s is specified by the additional condition

lim
R→∞

R−2s

∫
|x|<R

|u|2dx = 0,

or equivalently,

lim
R→∞

R−2s

∫
R/2<|x|<R

|u|2dx = 0.

There are inclusions

L2,−s ⊆ B∗s,0 ⊆ B∗s ⊆ ∩s′>sL2,−s′ . (4.54)

We introduce a notion of scattering wave front set of a distribution u ∈ L2,−∞

relative to the Besov space B∗s,0, s > 0, say denoted by WF (B∗s,0, u). It is the com-
plement within T∗ given by replacing WF−ssc (u) → WF (B∗s,0, u) and L2,−s → B∗s,0
in (4.8) (here (4.8) is considered with s→ −s). Obviously (4.54) implies the inclu-
sions

WF−ssc (u) ⊇ WF (B∗s,0, u) ⊇ WF−s
′

sc (u); s′ > s. (4.55)

Proposition 4.10. Suppose v ∈ L2,s′0 for some s′0 > s0 (here s0 is given in (4.6)).
Then the equation (H−λ)u = v has a unique solution u ∈ L2,−∞ obeying one of the
following conditions
(i) WF−s0sc (u) ⊆ {b > −1},
(ii) WF (B∗s0,0, u) ⊆ {b > 0}.

This solution is given by u = R(λ + i0)v ∈ L2,−s for all s > s0 and WF−s0sc (u) ⊆
{b = 1}.

Similarly, under the same condition on v, the equation (H−λ)u = v has a unique
solution u ∈ L2,−∞ obeying one of the following conditions
(i)’ WF−s0sc (u) ⊆ {b < 1},
(ii)’ WF (B∗s0,0, u) ⊆ {b < 0};

and this solution is given by u = R(λ− i0)v ∈ L2,−s for all s > s0 and WF−s0sc (u) ⊆
{b = −1}.
Proof. We shall only consider the first mentioned cases (i) or (ii) (they will be
treated in parallel); the other cases can be treated similarly. By Proposition 4.7,
the function u = ũ := R(λ+ i0)v is a solution to (H − λ)u = v enjoying the stated
properties (including (i) and (ii)). Suppose in the sequel that u ∈ L2,−t for some
t > s0, (H − λ)u = v and WF s0

sc (u) ⊆ {b > −1} or WF (B∗s,0, u) ⊆ {b > 0}. It
remains to be shown that u = ũ.
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Step I. We shall show that u ∈ L2,−s for all s > s0. By Proposition 4.3

WF−s0sc (u) ⊆ {b2 + c̄2 = 1}, (4.56)

AOpw
(
F (b2 + c̄2 > 3)

)
u ∈ L2,−s0 for all A ∈ Ψ(〈ξ/g〉21, gµ,λ). (4.57)

It follows from (4.55), Propositions 4.3 and 4.5 and a compactness argument that

WF−ssc (u) ⊆ {b = 1} for all s > s0. (4.58)

Pick a real-valued decreasing ψ ∈ C∞c ([0,∞)) such that ψ(r) = 1 in a small
neighbourhood of 0 and ψ′(r) = −1 if 1/2 ≤ r ≤ 1. Let ψR(x) = ψ

(|x|/R); R > 1.
We also introduce

δ = max
(
t− s0, 2t− 2s0 + µ− 2

)
,

and check that

δ + s′0 ≥ t, s0 + δ/2 + 1− µ/2 ≥ t and s0 + δ/2 < t.

By undoing the commutator we have on one hand that

〈i[H,X−δψR]〉u = −2 Im 〈v,X−δψRu〉, (4.59)

yielding the estimate

|〈i[H,X−δψR]〉u| ≤ C1‖v‖s′0‖ ‖u‖−δ−s′0 ≤ C2‖v‖s′0‖ ‖u‖−t = O(R0). (4.60)

On the other hand

i[H,X−δψR] = Re
(
g〈x〉hδ,ROpw(b)

)
;

hδ,R(x) = −δX−2−δψR(x) +X−δ(|x|R)−1ψ′
(|x|/R),

yielding by using (4.57), (4.58) and the calculus (cf. [Hö1, Theorems 18.5.4, 18.6.3,
18.6.8])

〈i[H,X−δψR]〉u = Re 〈g〈x〉hδ,ROpw
(
bF (b > 1/2)F (b2 + c̄2 < 6)

)〉u +O(R0),

which in turn (by the same arguments) implies that

〈i[H,X−δψR]〉u ≤ −δ4−1〈g〈x〉X−2−δψR〉u +O(R0). (4.61)

By combining (4.60) and (4.61) we obtain

〈g〈x〉X−2−δψR〉u ≤ C (4.62)

for some constant C which is independent of R > 1. Whence letting R→∞ we see
that u ∈ L2,−t1 ; t1 := s0 + δ/2.

More general, we define for k ∈ N
tk = s0 + 2−1 max

(
tk−1 − s0, 2tk−1 − 2s0 + µ− 2

)
; t0 := t,

iterate the above procedure and conclude that u ∈ L2,−tk and hence that indeed
u ∈ L2,−s for all s > s0.

Step II. Due to Step I it suffices to show that u = 0 is the only solution to the
equation (H − λ)u = 0 subject to the conditions u ∈ L2,−s for all s > s0 and either
WF−s0sc (u) ⊆ {b > −1} or WF (B∗s0,0, u) ⊆ {b > 0}. Consider in the following
Steps III and IV this problem.

Step III. We shall show that u ∈ B∗s0,0. Under Condition (i) the bound (4.58) holds
for s = s0 (by Proposition 4.5) which implies that

There exists ε > 0 : WF (B∗s,0, u) ⊆ {b > ε}.
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Under Condition (ii) we have the same conclusion due to (4.56) and a compactness
argument. Next, we apply the same scheme as in Step I now with δ = 0 and using
a factor of F (b > ε) instead of a factor of F (b > 1/2). This leads to

R−1〈g〈x〉|x|−1ψ′
(| · |/R−1

)〉u = o(R0),

and hence u ∈ B∗s0,0.
Step IV. We shall show that u = 0. For convenience we assume that ε2 ≤ 2 − µ.
First, letting s ∈]s0−ε2/2, s0[ be given arbitrarily, our goal is to show that u ∈ L2,−s.
For that consider for κ ∈]0, 1/2]

bκ = Xs0aκ; aκ =
(
X
Xκ

)−s
X−s0κ F (−b > 1/2)F (b2 + c̄2 < 3); (4.63)

here we use the regularization factor of (4.16). We calculate the Poisson bracket{
h2,
(
X
Xκ

)2s0−2s}
= (1− κ)(2s0 − 2s)〈x〉X−1X−3

κ

(
X
Xκ

)2s0−2s−1

gb;

obviously this is negative on the support of bκ, in fact with the (uniform) upper
bounds

· · · ≤ −8−1(2s0 − 2s)
(
〈x〉X2s0−2g

)
X−2
κ

((
X
Xκ

)−s
X−s0κ

)2

≤ −cX−2
κ

((
X
Xκ

)−s
X−s0κ

)2

; c > 0.

Similarly, by (4.29),{
h2, F

2(−b > 1/2)
}

= −g
r

(F 2)′(−b > 1/2)
((

1− rV ′1g−2
)
c̄2 +

(
rV ′1g

−2
)
g−22(h2 − λ) +O

(
r−ε2

))
;

expanding the right hand side into a sum of three terms the first term is non-positive.
We introduce the quantizations Aκ = Opw(aκ) and Bκ = Opw(bκ), and the states

uR(x) = ψR(x)u(x); R > 1. By Step III

lim
R→∞
〈i[H,B2

κ]〉uR = 0. (4.64)

On the other hand due to the above considerations the expectation of i[H,B2
κ] in uR

tends to be negative. Keeping the precise upper bounds in mind we can let R→∞
(using the calculus, (4.12a) to deal with a contribution from V3 and (4.64)) obtaining

c‖X−1
κ Aκu‖2

(
= lim

R→∞
c‖X−1

κ AκuR‖2
) ≤ C,

where the constants c (the one given above) and C are positive and independent
of κ. Whence letting κ→ 0 we conclude that

Opw
(
F (−b > 1/2)F (b2 + c̄2 < 3)

)
u ∈ L2,−s. (4.65)

Upon replacing the factor F (−b > 1/2) in (4.63) by F (b > 1/2) we can argue
similarly and obtain

Opw
(
F (b > 1/2)F (b2 + c̄2 < 3)

)
u ∈ L2,−s. (4.66)

In combination with Proposition 4.5 the bounds (4.65) and (4.66) and the fact
that (4.56) holds with s0 replaced by s (note this is trivial since by assumption now
v = 0) yield that u ∈ L2,−s.
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Next, the above procedure can be iterated: Assuming that u ∈ L2,−s for all
s > tk := s0 − kε2/2 (for some k ∈ N) the procedure leads to u ∈ L2,−s for all
s > tk+1. Consequently u ∈ L2,s for all s ∈ R; in particular u ∈ L2 and therefore
u = 0. �

5. Fourier integral operators

In this section we construct and study certain modifiers in the form of Fourier
integral operators; they will enter in the construction of wave operators in Section 6.

5.1. The WKB ansatz. Assume first that Condition 1.1 holds. Fix σ0 ∈]0, 2[.
Recall from Lemma 3.1 that there exists a decreasing function ]0,∞[3 λ 7→ R0(λ)
such that on the set{

(x, ξ) ∈ Rd × (Rd \ {0}) | x ∈ Γ+
R0(|ξ|2/2),σ0

(ξ̂)
}

we can construct a solution φ+ of the eikonal equation satisfying the (non-uniform
in energy) bounds (3.3).

We fix 0 < σ < σ′ < σ0. Next we introduce smoothed out characteristic functions

χ1(r) =

{
1 for r ≥ 2

0 for r ≤ 1
, (5.1)

and

χ2(l) =

{
1 for l ≥ 1− σ
0 for l ≤ 1− σ′ . (5.2)

Define

a+
0 (x, ξ) := χ2(x̂ · ξ̂)χ1

(|x|/R0(|ξ|2/2)
)
.

The basic idea of Isozaki-Kitada is to use the modifier given by a Fourier integral
operator J+

0 on L2(Rd) of the form

(J+
0 f)(x) = (2π)−d/2

∫
eiφ+(x,ξ)a+

0 (x, ξ)f̂(ξ)dξ, (5.3)

where

f̂(ξ) := (2π)−d/2
∫

e−ix·ξf(x)dx

denotes the (unitary) Fourier transform of f .
If we assume that the potentials satisfy Conditions 2.1 and 2.2, then we can

assume that the function R0(λ) is the constant R0 given by Lemma 3.2. Thus in
this case the solution φ+(x, ω, λ) of the eikonal equation is defined in Γ+

R0,σ0
× [0,∞[

(here σ0 is also given by Lemma 3.2; possibly it is much smaller than 2), and the
amplitude a0 is simply given by

a+
0 (x, ξ) := χ2(x̂ · ξ̂)χ1(|x|/R0).
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5.2. The improved WKB ansatz. The modifier J+
0 (and its incoming counter-

part, say J−0 ) is sufficient only for the most basic purposes, such as the existence of
the outgoing (incoming) wave operator. To study finer properties of wave operators
it is useful to use a more refined construction suggested by the WKB method.

This more refined construction is possible and useful already under Condition 1.1.
However, for simplicity of presentation, in the remaining part of the section we will
assume that the potentials satisfy the more restrictive Conditions 2.1 and 2.2. These
conditions allow us to extend this and related constructions (see Subsection 5.5)
down to (and including) λ = 0. Therefore, it will be convenient to switch between
the two notations φ+(x, ξ) and φ+(x, ω, λ). This will be done tacitly in the following,
and in fact, we shall often slightly abuse notation by writing (x, ξ) ∈ Γ+

R0,σ0
instead

of (x, ω, λ) ∈ Γ+
R0,σ0

× [0,∞[.
TheWKBmethod suggests to approximate the wave operator by a Fourier integral

operator J+ on L2(Rd) of the form

(J+f)(x) = (2π)−d/2
∫

eiφ+(x,ξ)a+(x, ξ)f̂(ξ)dξ, (5.4)

where the symbol a+(x, ξ) is supported in Γ+
R0,σ0

and constructed by an iterative
procedure to make the difference T+ := i(HJ+−J+H0) small in an outgoing region
Γ+
R,σ for some R > R0, σ < σ0. We have

(T+f)(x) = (2π)−d/2
∫

eiφ+(x,ξ)t+(x, ξ)f̂(ξ)dξ, (5.5)

where

t+(x, ξ) =
(
(∇xφ

+(x, ξ)) · ∇x + 1
2
(4xφ

+(x, ξ))
)
a+(x, ξ)− i

2
4xa

+(x, ξ). (5.6)

As it is well-known from the WKB method, it is possible to improve on the ansatz
by putting (here we need ξ 6= 0)

a+(x, ξ) :=
(
det∇ξ∇xφ

+(x, ξ)
)1/2

b+(x, ξ), (5.7)

t+(x, ξ) :=
(
det∇ξ∇xφ

+(x, ξ)
)1/2

r+(x, ξ). (5.8)

We have (
(∇xφ

+(x, ξ)) · ∇x + 1
2
(4xφ

+(x, ξ)
) (

det∇ξ∇xφ
+(x, ξ)

)1/2
= 0,

and therefore

r+(x, ξ) = (∇xφ
+(x, ξ)) · ∇xb

+(x, ξ)

− (det∇ξ∇xφ
+(x, ξ)

)−1/2 i
2
4x

(
det∇ξ∇xφ

+(x, ξ)
)1/2

b+(x, ξ).

It is useful to introduce

ζ+(x, ξ) = ln (det∇ξ∇xφ(x, ξ))1/2 ; ξ 6= 0. (5.9)

Note that it satisfies the equation

(∇xφ(x, ξ)) · ∇xζ
+(z, ξ) + 1

2
4xφ(x, ξ) = 0. (5.10)

Proposition 5.1. For (x, ξ) ∈ Γ+
R,σ, ξ 6= 0,

ζ+(x, ξ) =
1

2

∫ ∞
1

4yφ
+(y+(t;x, ξ), ξ)dt. (5.11)
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Proof. Both ζ+(x, ξ) and the right hand side of (5.11) satisfy the first order equa-
tion (5.10). Both go to zero as |x| → ∞. In particular, they go to zero along the
characteristics t→ y+(t, x, ξ). Therefore, they coincide. �
Lemma 5.2. There exist the uniform limits

lim
λ↘0

∂δω∂
γ
x

(
ζ+(x, ξ)− ζ+

sph(x, ξ)
)
.

Besides, we have uniform estimates with ε̆ given as in Proposition 3.3

∂δω∂
γ
x

(
ζ+(x, ξ)− ζ+

sph(x, ξ)
)

= O(|x|−|γ|−ε̆); |δ|+ |γ| ≥ 0.

Proof. Below div and ∇ will always involve the derivatives w.r.t. the first argument.

ζ+(x, ξ)− ζ+
sph(x, ξ) =

∫ ∞
1

1

2

(
divF+(y+(t), ξ)− divF+

sph(y+
sph(t), ξ)

)
dt

=

∫ ∞
1

dt
1

2

∫ 1

0

∇divF+(y+
l (t), ξ) · (y+(t)− y+

sph(t)
)

dl

+

∫ ∞
1

1

2

(
divF+(y+

sph(t), ξ)− divF+
sph(y+

sph(t), ξ)
)

dt

= I + II,

where y+
l (t) = ly+(t) + (1− l)y+

sph(t).
Now I can be estimated (cf. (3.5f) and [DS1, (6.43)]) by

C1

∫ ∞
1

|y+|−2g(|y+|)tα−εdt ≤ C2

∫ ∞
|x|
|y+|−2|y+|(α−ε)/αd|y+|

= O(|x|−ε/α) = O(|x|−ε̆); (5.12)

here α = 2/(2 + µ) and ε > 0 is specified in [DS1, Subsection 6.1]. We used that
d|y+|

dt
≥ cg(|y+|), |y+| ≥ ctα, c > 0.

Splitting the time-integral as
∫ T0

1
dt +

∫∞
T0

dt the argument above yield (uniform)
smallness of the second term (provided T0 is chosen big). As for the contribution
from the first term we can apply the dominated convergence theorem; whence we
obtain the existence of limλ↘0 I.

Next ∂δω∂γxI is a sum integrals of terms of the following form:

∂δ1ω ∂
γ1
x y

+
l · · · ∂δnω ∂γnx y+

l ∂
n
y+l
∂νω∇divF (y+

l , ξ) · ∂αω∂βx
(
y+(t)− y+

sph(t)
)
.

where δ1 + · · · + δn + ν + α = δ and γ1 + · · · + γn + β = γ. This can be estimated
(cf. (3.5f) and [DS1, (4.41) and (6.43)]) by

C|x|−|γ||y+|−2g(|y+|)tα−ε.
We argue as above to obtain uniform bounds on ∂δω∂γxI as well as the existence of
limλ↘0 ∂

δ
ω∂

γ
xI.

Now II is bounded (cf. (3.5g)) by

C1

∫ ∞
1

|y+|−1−ε̆g(|y+|)dt ≤ C2

∫ ∞
|x|
|y+|−1−ε̆d|y+| = O(|x|−ε̆). (5.13)

Then we apply the dominated convergence theorem as above, and we obtain the
existence of limλ↘0 II.
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∂δω∂
γ
xII is a sum of integrals of terms of the form

∂δ1ω ∂
γ1
x y

+ · · · ∂δnω ∂γnx y+∂ny+∂
ν
ω

(
divF+(y+, ξ)− divF+

sph(y+, ξ)
)
,

where δ1 + · · ·+ δn + ν = δ and γ1 + · · ·+ γn = γ. This can be estimated (cf. (3.5g)
and [DS1, (4.41) and (6.43)]) by

C|x|−|γ||y+|−1−ε̆g(|y+|).
Then we can argue as above. �

Define
ζ̃+(x, ω, λ) := ζ+(x,

√
2λω)− ln(2λ)(2−d)/4.

Proposition 5.3. (i) There exist (uniform) estimates

|ζ̃+(x, ω, λ)− ln g(|x|)(d−2)/2)| ≤ C, (5.14a)

∂δω∂
γ
x ζ̃

+(x, ω, λ) = O
(|x|−|γ|), for |δ|+ |γ| ≥ 1 (5.14b)

(ii) There exist (uniform) estimates

(2λ)(d−2)/4∂δω∂
γ
x

(
det∇ξ∇xφ

+(x, ξ)
)1/2

,

= g(|x|)(d−2)/2O
(|x|−|γ|), for |δ|+ |γ| ≥ 0. (5.14c)

(iii) There exist the locally uniform limits

∂δω∂
γ
x ζ̃

+(x, ω, 0) := lim
λ↘0

∂δω∂
γ
x ζ̃

+(x, ω, λ).

Proof. Let us first prove the estimates (5.14b) for |δ| = 0, |γ| ≥ 1 in the spherically
symmetric case. ∂γxζ

+
sph(x, ξ) is an integral of terms of the form

∂γ1x y · · · ∂γnx y∂ny divF+
sph(y+(t), ξ),

where γ1 + · · ·+ γn = γ. Using ∂γxy+ = O
(|x|1−|γ|g(|x|)g(|y+|)−1

)
, cf. [DS1, Propo-

sition 4.9], these integrals are bounded by

C1

∫ ∞
1

|x|−|γ|+ng(|x|)ng(|y+|)−n+1|y+|−n−1dt

≤ C2

∫ ∞
|x|
|x|−|γ|+ng(|x|)ng(|y+|)−n|y+|−n−1d|y+| = O(|x|−|γ|).

Thus
∂γxζ

+
sph(x, ξ) = O

(|x|−|γ|) for |γ| ≥ 1.

Clearly we can argue as above for |δ| > 0 as well. If |γ| = 0 we can use the formula
(valid due to spherical symmetry)

ζ+
sph(x,Rηξ) = ζ+

sph(R−1
η x, ξ),

for any d-dimensional rotation Rη. Clearly this converts ω-derivatives to x-deriva-
tives, and consequently we have shown (5.14b) in the general case.

Taking into account Lemma 5.2 we obtain the estimates (5.14b) in the general
case (when V is not necessarily radial).

We have

ζ̃+
sph(x, ξ) = ζ̃+

sph(x,
√

2λx̂) +

∫ θ

0

∇ω ζ̃
+
sph(x,

√
2λω(l)) · ω⊥(l)dl,
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where [0, θ] 3 l 7→ ω(l) is the arc joining x̂ and ω and ω⊥(l) is the tangent vector.
Using (3.16) and (5.14b) with |δ| = 1, |γ| = 0 and Lemma 5.2 we obtain (5.14a).

The above arguments in conjunction with the proof of Lemma 5.2 can be used to
prove that there exist the limits

lim
λ↘0

∂δω∂
γ
x ζ̃

+(x, ω, λ); |δ|+ |γ| ≥ 1.

We know from the explicit formula (3.13) that limλ↘0 ζ̃
+
sph(x, x̂, λ) exists locally

uniformly in x. Hence so does limλ↘0 ζ̃
+(x, ω, λ) locally uniformly in (x, ω) ∈ Γ+.

As for the bounds (5.14c) we use (5.14a) and (5.14b). �

5.3. Solving transport equations. Introduce the operator

M =
(
det∇ξ∇xφ

+(x, ξ)
)−1/2 i

2
4x

(
det∇ξ∇xφ

+(x, ξ)
)1/2

= e−ζ̃
+(x,ξ) i

2
4xe

ζ̃+(x,ξ)

= i
2

(4x + 2∇xζ
+(x, ξ) · ∇x +4xζ

+(x, ξ) +∇xζ
+(x, ξ)2

)
.

Notice that due to Proposition 5.3 this operator is well-defined at λ = 0 (more
precisely for (x, ω, λ) ∈ Γ+

R0,σ0
× {0}).

We define inductively for (x, ξ) ∈ Γ+
R,σ0

:

b+
0 (x, ξ) := 1;

b+
m+1(x, ξ) :=

∫ ∞
1

Mb+
m(y(t, x, ξ, t), ξ)dt.

Proposition 5.4. There exist the following (uniform) estimates:

∂δω∂
γ
xb

+
m(x, ξ) = O(|x|−m(1−µ/2)−|γ|), (5.15a)

∂δω∂
γ
xMb+

m(x, ξ) = O(|x|−2−m(1−µ/2)−|γ|). (5.15b)

Proof. For a given m, (5.15a) easily implies (5.15b).
Integrating ∂δω∂γxMbm(x, ξ) we can bound ∂δω∂γxbm+1(x, ξ) by∫ ∞

1

|y+|−2−m(1−µ/2)−|γ|dt

≤ C1

∫ ∞
|x|
|y+|−2−m(1−µ/2)−|γ|g(|y+|)−1d|y+|

≤ C2

∫ ∞
|x|
|y+|−2−m(1−µ/2)−|γ|+µ/2d|y+| = O(|x|−(m+1)(1−µ/2)−|γ|).

This shows the induction step. �

We set

b+(x, ξ) := χ2(x̂ · ω)b̆+(x, ξ); b̆+(x, ξ) =
∞∑
m=0

b+
m(x, ξ)χ1(|x|/Rm)

for an appropriately chosen sequence Rm → ∞ (this is an example of the so-called
Borel construction, cf. [Hö2, Proposition 18.1.3]). There are (uniform) bounds

∂δω∂
γ
xb

+(x, ξ) = O(|x|−|γ|).
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We introduce

r+(x, ξ) =
(∇xφ

+(x, ξ) · ∇x +M
)
b+(x, ξ),

r+
pr(x, ξ) = χ2(x̂ · ω)

(∇xφ
+(x, ξ) · ∇x +M

)
b̆+(x, ξ),

r+
bd(x, ξ) = r+(x, ξ)− r+

pr(x, ξ). (5.16)

(The subscript pr stands for the propagation and bd stands for the boundary).

Proposition 5.5. There exist (uniform) bounds

∂δω∂
γ
xr

+
pr(x, ξ) = O(|x|−∞),

and r+
bd(x, ξ) is supported away from Γ+

R0,σ
and

∂δω∂
γ
xr

+
bd(x, ξ) = O(g(|x|)|x|−1−|γ|).

5.4. Constructions in incoming region. Via the phase function φ− = φ−(x, ω, λ)
given in (3.6) we can construct a symbol a− = eζ

−
b− with t− = eζ

−
(r−pr + r−bd), r−pr =

O(|x|−∞) and the symbol r−bd = O
(
g(|x|)|x|−1

)
vanishing on a given Γ−R,σ ⊆ Γ−R0,σ0

and obeying appropriate analogues of the conditions of the previous subsection.
Similar to (5.4) we consider the Fourier integral operator J− on L2(Rd) given by

(J−f)(x) = (2π)−d/2
∫

eiφ−(x,ξ)a−(x, ξ)f̂(ξ)dξ. (5.17)

5.5. Fourier integral operators at fixed energies. For all τ ∈ L2(Sd−1) we
introduce

(J±(λ)τ)(x) := (2π)−d/2
∫

eiφ±(x,ω,λ)ã±(x, ω, λ)τ(ω)dω; (5.18)

(T±(λ)τ)(x) := (2π)−d/2
∫

eiφ±(x,ω,λ)t̃±(x, ω, λ)τ(ω)dω; (5.19)

where

ã±(x, ω, λ) := (2λ)(d−2)/4a±(x,
√

2λω),

t̃±(x, ω, λ) := (2λ)(d−2)/4t±(x,
√

2λω).

The functions ã± and t̃± are continuous in (x, ω, λ) ∈ Rd×Sd−1×[0,∞). This fact
will be very important in the forthcoming sections. Due to these properties we can
define J±(λ) and T±(λ) at λ = 0 by the expressions (5.18) and (5.19), respectively.
We can split T±(λ) = T±bd(λ) + T±pr(λ) in agreement with the decomposition (5.16)
(cf. (5.8)).

Throughout this subsection ε̆ signifies the ε̆ > 0 appearing in Proposition 3.3
(it is tacitly assumed that ε̆ < 1 − µ/2)). For the problems at hand we can use
coordinates for ω ∈ Sd−1 sufficiently close to the d’th standard vector ed ∈ Rd

specified as follows (using a partition of unity in the x̂–variable and a rotation of
coordinates this is without loss of generality):

ω = ω⊥ + ωded; ωd =
√

1− ω2
⊥, ω⊥ ∈ Rd−1, |ω⊥| small. (5.20)

Proposition 5.6. There exist a (large) R ≥ R0 and a (small) σ̃ ∈]0, σ0] such that
for all |x| ≥ R there exists a unique ω ∈ Sd−1 satisfying ω · x̂ ≥ 1− σ̃ (alternatively:
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x ∈ Γ+
R,σ̃(ω)) and ∂ωφ+(x, ω, λ) = 0. We introduce the notation ω+

crt = ω+
crt(x, λ) for

this vector. It is smooth in x and we have

∂γx(ω+
crt − x̂) = O(|x|−ε̆−|γ|).

Let
φ(x, λ) = φ+(x, ω+

crt(x, λ), λ). (5.21)
This function solves the eikonal equation

(∂xφ(x, λ))2/2 + V (x) = λ.

In the spherically symmetric case we have ω+
crt = x̂ and

φsph(x, λ) =
√

2λR0 +

∫ |x|
R0

√
2λ− 2V (r)dr. (5.22)

The proposition is obvious in the case V2 = 0, cf. (3.9). The general case follows
by an application of the fixed point theorem, cf. the proof of the similar statement
[II, Lemma 4.1]. At this point one needs some control of the Hessian; we refer the
reader to the proof of Theorem 5.7.

Of course, there is an analogue of Proposition 5.6 in the − case; we then need to
replace φ+ with φ−, and x̂ with −x̂. We obtain ω−crt(x, λ) = −ω+

crt(x, λ). Note the
identity

φ(x, λ) = −φ−(x, ω−crt(x, λ), λ).

Theorem 5.7. Let τ ∈ C∞(Sd−1). Then(
J±(λ)τ

)
(x) = (2π)−

1
2 e∓iπ

d−1
4 g−

1
2 (r, λ)r−

d−1
2
(
e±iφ(x,λ)τ(±x̂) +O(r−ε̆

))
. (5.23)

Moreover (5.23) is uniform in (x̂, λ) ∈ Sd−1 × [0,∞[. The same asymptotics holds
for

±g−1x̂ · pJ±(λ)τ(x).

Proof. We invoke the method of stationary phase (with parameter given by the
expression h = h(r) of (3.14)), cf. [Hö1, Theorem 7.7.6] or [II, Theorem 4.3]. For
simplicity we consider only the + case and we abbreviate ωcrt = ω+

crt. This method
yields (up to a minor point that is resolved below) that

(J+(λ)τ
)
(x) = (2π)−

d
2 e−iπ

d−1
4 | det(∂2

ωφ
+(x, ωcrt, λ)/2π)|−1

2

× eiφ+(x,ωcrt,λ)
(
ã+(x, ωcrt, λ)τ(ωcrt) + g

d−2
2 O(r−ε̆)

)
. (5.24)

Let us consider the Hessian. We first compute it in the case V2 = 0 choosing
coordinates such that x̂ = ed and using (5.20):

∂2
ω⊥φ

+
sph(ω = x̂) = −∂ω⊥∂x̂φ+

sph(ω = x̂),

and using the fact that
∂ω⊥∂x̂φ

+
sph(ω = x̂) = hI, (5.25)

cf. the computation (3.12) (here I refers to the form on TSd−1
x̂=ω × TSd−1

ω given by
the Euclidean metric), we obtain that

∂2
ω⊥φ

+
sph(ω = x̂) = −hI. (5.26)

In particular the critical point is non-degenerate in this case.
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Since ωcrt is a critical point, the second derivative has an invariant geometric
meaning. Therefore, we can drop the reference to the special coordinates ω⊥ and
we can write simply ∂2

ω for ∂2
ω⊥ in the left hand side of (5.26). The formula (5.26) is

then valid for all x̂ ∈ Sd−1.
The general case is similar. In particular, after applying Proposition 3.3 and (5.26),

we obtain
| det(∂2

ωφ
+(x, ωcrt, λ))| = hd−1(1 +O(r−ε̆)). (5.27)

We conclude by combining (3.13), Lemma 5.2, Proposition 5.3, (5.27) and the
construction of the symbol ã+ that (5.24) and indeed also (5.23) hold.

The second part of the theorem follows similarly. �

6. Wave matrices

In this section we study (modified) wave matrices. We prove that they have a
limit at zero energy, in the sense of maps into an appropriate weighted space. This
implies asymptotic oscillatory formulas for the standard short-range and Dollard
scattering matrices.

6.1. Wave operators. The following theorem is essentially well-known (follows
from (3.3)). It describes a construction of modified wave operators similar to that of
Isozaki-Kitada [IK1, IK2]. Notice, however, that the original construction involved
energies strictly bounded away from zero. Notice also that the construction of J± in
Section 5, although given under Conditions 2.1 and 2.2, in fact can be done under
Condition 1.1 as well.

Theorem 6.1. Suppose that V satisfies Condition 1.1. Then

W±f = lim
t→±∞

eitHJ±0 e−itH0f = lim
t→±∞

eitHJ±e−itH0f ; f̂ ∈ Cc(Rd \ {0}). (6.1)

The “wave operator” W± extends to an isometric operator on L2(Rd) satisfying
HW± = W±H0, and its range is the absolutely continuous spectral subspaces of
H. Moreover,

0 = lim
t→∓∞

eitHJ±0 e−itH0f = lim
t→∓∞

eitHJ±e−itH0f ; f̂ ∈ Cc(Rd \ {0}). (6.2)

Remarks. We know that J±0 1]ε,∞[(H0) and J±1]ε,∞[(H0) are bounded for any ε > 0,
but we do not know if J±0 and J± are bounded (not even under Conditions 2.1
and 2.2). This is the reason for restricting the choice of vectors in (6.1) and (6.2).
An alternative, and equivalent, definition of W± as a bounded operator on L2(Rd)
is the following:

W± = s− lim
ε↘0

s− lim
t→±∞

eitHJ±1]ε,∞[(H0)e−itH0 .

The following general fact serves as the basic formula in stationary scattering
theory, see Appendix A for a derivation.

Lemma 6.2. Suppose there are densely defined operators J̆± and T̆± on L2(Rd)

such that J̆±1]ε,∞[(H0) and T̆±1]ε,∞[(H0) are bounded for any ε > 0 and that T̆±f =

i(HJ̆± − J̆±H0)f for any f ∈ L2(Rd) with f̂ ∈ Cc(Rd \ {0}). Suppose there exists

W̆±f := lim
t→±∞

eitH J̆±e−itH0f ; f̂ ∈ Cc(Rd \ {0}).
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Then we have the following formula

W̆±f = lim
ε↘0

∫
(J̆± + iR(λ∓ iε)T̆±)δε(λ)fdλ, (6.3)

where δε(λ) = R0(λ+iε)−R0(λ−iε)
2πi

= ε
π

((H0 − λ)2 + ε2)
−1.

6.2. Wave matrices at positive energies. For any s ∈ R we recall the definition
of weighted spaces L2,s(Rd) := (1 + x2)−s/2L2(Rd).

Let ∆ω denote the Laplace-Beltrami operator on the sphere Sd−1. For n ∈ R we
define the Sobolev spaces on the sphere L2,n(Sd−1) := (1−∆ω)−n/2L2(Sd−1).

For λ > 0 we introduce F0(λ) by

F0(λ)f(ω) = (2λ)(d−2)/4f̂(
√

2λω).

Let s > 1
2
and n ≥ 0. Note that F0(λ) is a bounded operator in the space

B(L2,s+n(Rd), L2,n(Sd−1)) and depends continuously on λ > 0. Likewise, F0(λ)∗ ∈
B(L2,−n(Sd−1), L2,−s−n(Rd)) and it also depends continuously on λ > 0. Note also
that the operator ∫

⊕F0(λ) dλ : L2(Rd)→
∫ ∞

0

⊕L2(Sd−1) dλ (6.4)

is unitary; consequently the operators F0(λ) diagonalize the operator H0. Finally,

s− lim
ε↘0

δε(λ) = F0(λ)∗F0(λ) in B(L2,s(Rd)), L2,−s(Rd)). (6.5)

Due to the limiting absorption principle we have the following partial analogue of
(6.5) for the full Hamiltonian, defined under Condition 1.1: Let s > 1

2
and

δVε (λ) :=
R(λ+ iε)−R(λ− iε)

2πi
. (6.6)

Then there exists

δV (λ) := s− lim
ε↘0

δVε (λ) in B(L2,s(Rd)), L2,−s(Rd)). (6.7)

The operator-valued function δV (·) is a strongly continuous function of λ > 0.
If Conditions 2.1–2.3 are true then we can extend the definition of δV (λ) to include

λ = 0 if we demand that s > 1
2

+ µ
4
, and the corresponding operator-valued function

will be a strongly continuous (in fact a norm continuous) function of λ ≥ 0, cf.
Remark 4.2 2).

In the remaining part of this section we shall assume that the positive parameter σ′
in (5.2) is sufficiently small (this requirement can be fulfilled uniformly in λ ≥ 0).
Notice that the condition conforms well with Lemma 3.2; we need it at various
points, see for example the proof of Lemma 6.9.

Formally, we have J±(λ) = J±F0(λ)∗ and T±(λ) = T±F0(λ)∗. This suggests that
(6.3) can be used to define wave operators at a fixed energy. This idea is used in
the following theorem (which is essentially well-known).

Theorem 6.3. Suppose that the potential satisfies Condition 1.1. Let ε > 0, n ≥ 0
and λ > 0. Then

W±(λ) := J±(λ) + iR(λ∓i0)T±(λ) (6.8)

defines a bounded operator in B(L2,−n(Sd−1), L2,− 1
2
−ε−n(Rd)), which depends contin-

uously on λ > 0. It depends only on the splitting of the potential V into V1 and V3
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(but does not depend on the details of the construction of J±). For all f ∈ L2, 1
2

+ε(Rd)
and g ∈ Cc(]0,∞[), we have

W±g(H0)f =

∫ ∞
0

g(λ)W±(λ)F0(λ)fdλ. (6.9)

Moreover,
W±(λ)W±(λ)∗ = δV (λ) (6.10)

We set
w±(ω, λ) = W±(λ)δω,

where δω denotes the delta-function at ω ∈ Sd−1. Then for all multiindices δ the
function

Sd−1×]0,∞[3 (ω, λ) 7→ ∂δωw
±(ω, λ) ∈ L2,−p(Rd); p > |δ|+ d/2,

is continuous.

Remark. The operator W±(λ) : D′(Sd−1) → L2,−∞ is called the wave matrix at
the energy λ. Its range consists of generalized eigenfunction at the energy λ. The
function w±(ω, λ) (which belongs to W±(λ)L2, 1

2
−p(Sd−1) for p > d

2
) is called the

generalized eigenfunction at the energy λ and outgoing (or incoming) asymptotic
normalized velocity ω.

Let us explain the steps of a proof of Theorem 6.3 (in the case of “+”–superscript
only); our (main) results contained in Theorems 6.5 and 6.6 will be proved by a
parallel procedure.

First one introduces a partition of unity of the form

I = Opr(χ+(a)) + Opr(χ−(a)χ̃−(b)) + Opr(χ−(a)χ̃+(b))

=: Opr(χ1) + Opr(χ2) + Opr(χ3). (6.11)

Here a and b are the symbols introduced in (4.4) (rather than in (4.1) since we do
not here impose Conditions 2.1–2.3) and χ+ is a real-valued function as in Propo-
sition 4.1 (ii) such that χ+(t) = 1 for t ≥ 2C0, and χ− = 1 − χ+. Moreover
χ̃−, χ̃+ ∈ C∞(R) are real-valued functions obeying χ̃− + χ̃+ = 1 and

supp χ̃− ⊆ (−∞, 1− σ̄], (6.12)
supp χ̃+ ⊆ [1− 2σ̄,∞[. (6.13)

The number σ̄ needs to be taken (small) positive depending on the parameter σ of
Subsection 5.1. (For the proof of Theorems 6.5 and 6.6 to be elaborated on later we
refer at this point to (6.38) for the precise requirement.)

The proof of Theorem 6.3 is based on the following lemma:

Lemma 6.4. Suppose that the potential satisfies Condition 1.1.
(i) For all n ≥ 0 and ε > 0, J+(λ) is a continuous function in λ > 0 with values

in B(L2,−n(Sd−1), L2,− 1
2
−ε−n(Rd)).

(ii) For all n ∈ R and ε > 0, T+
bd(λ) is a continuous function in λ > 0 with values

in B(L2,−n(Sd−1), L2, 1
2
−ε−n(Rd)).

(iii) For all m,n ∈ R, Opr(χ3)T+
bd(λ) is a continuous function in λ > 0 with values

in B(L2,−n(Sd−1), L2,m(Rd)).
(iv) For all m,n ∈ R, T+

pr(λ) is a continuous function in λ > 0 with values in
B(L2,−n(Sd−1), L2,m(Rd)).
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More general statements than Lemma 6.4 (i)–(iv) will be given and proven in
the context of treating small energies (see Lemma 6.8); these statements are under
Conditions 2.1 and 2.2. Let us here use (i)–(iv) in an

Outline of a proof of Theorem 6.3. The expression (6.8) is a well-defined element of
B(L2,−n(Sd−1), L2,− 1

2
−ε−n(Rd)) due to the positive energy version of Proposition 4.8

and Lemma 6.4; this is for any ε > 0 and n ≥ 0. (Notice that (4.46) holds for any
t ∈ R by Lemma 6.4.) Effectively this argument is based on the following scheme
(to be used below): We insert the right hand side of (6.11) to the right of the
resolvent in (6.8) and expand into three terms. Whence by using Remark 4.2 4)
and Lemma 6.4 we see that W+(λ) is a sum of four well-defined operators in
B(L2,−n(Sd−1), L2,− 1

2
−ε−n(Rd)

)
, hence well-defined.

Next note that λ 7→ W+(λ) is norm continuous due to norm continuity of each of
the above mentioned four operators, which in turn may be seen by combining the
continuity statements of Remark 4.2 4) and Lemma 6.4.

The statement on the independence of details of construction of J± is based on
the positive energy version of Proposition 4.10; the interested reader will realize this
by using arguments from the proof of Lemma 6.10 stated later.

The formula (6.9) can be verified by combining (6.3) with arguments used above,
see Appendix A for an abstract approach. The identity (6.10) is a consequence
of (6.9).

Finally due to the fact that ∂δωδω ∈ L2, 1
2
−p(Sd−1) for p > |δ|+ d

2
(with continuous

dependence of ω ∈ Sd−1) we conclude that indeed ∂δωw
+(ω, λ) ∈ L2,−p(Rd) with a

continuous dependence of ω and λ.

6.3. Wave matrices at low energies. Until the end of this section we assume
that Conditions 2.1–2.3 are true. The main new result of this section is expressed
in the following two theorems which concern the low-energy behaviour of the wave
matrices of Theorem 6.3:

Theorem 6.5. For s > 1
2

+ µ
4
and n ≥ 0

W±(0) := J±(0) + iR(∓i0)T±(0) (6.14)

defines a bounded operator in B(L2,−n(Sd−1), L2,−s−n(1−µ/2)(Rd)). It depends only
on the splitting of the potential V into V1 + V2 and V3 (but does not depend on the
details of the construction of J±). We have

W±(0)W±(0)∗ = δV (0). (6.15)

If we set
w±(ω, 0) = W±(0)δω,

then we obtain an element of L2,−p(Rd) with p > d
2

+ µ
2
− dµ

4
depending continuously

on ω. In fact, more generally, ∂δωw±(ω, 0) ∈ L2,−p(Rd) with p > (|δ|+ d
2
)(1− µ

2
) + µ

2
with continuous dependence on ω.

Theorem 6.6. For all ε > 0 and n ≥ 0

(〈x〉g)−n〈x〉− 1
2
−εg

1
2W±(λ) (6.16)

is a continuous B(L2,−n(Sd−1), L2(Rd))–valued function in λ ∈ [0,∞[.

42



For all ε > 0 and all multiindices δ the function

Sd−1 × [0,∞[3 (ω, λ) 7→ (〈x〉g)−|δ|+
1
2
− d

2 〈x〉− 1
2
−εg

1
2∂δωw

±(ω, λ) ∈ L2(Rd)

is continuous.

The following corollary interprets Theorem 6.6 in terms of the usual weighted
spaces:

Corollary 6.7. Let n ≥ 0. We have

W±(0) = lim
λ↘0

W±(λ)

in the sense of operators in B(L2,−n(Sd−1), L2,−s̃n(Rd)), where
s̃n >

1
2

+ n+ max
(
0, µ

4
− nµ

2

)
. For all multiindices δ the function

Sd−1 × [0,∞[3 (ω, λ) 7→ ∂δωw
±(ω, λ) ∈ L2,−p̃(Rd)

is continuous with p̃ > d
2

+ |δ| for d ≥ 2 and p̃ > 1
2

+ |δ| + max(0, (1 − 2|δ|)µ
4
) for

d = 1.

The proof of Theorems 6.5 and 6.6 is based on the following analogue of Lemma 6.4
(for convenience we focus as before on the case of “+”–superscript only). The symbol
χ3 appearing in the statement (iii) below is specified as before, i.e. by (6.11) and
the subsequent discussion.

Lemma 6.8. (i) For all n ≥ 0 and ε > 0

(〈x〉g)−n〈x〉− 1
2
−εg

1
2J+(λ) (6.17a)

is a continuous B(L2,−n(Sd−1), L2(Rd))–valued function in λ ∈ [0,∞[.
(ii) For all n ∈ R and ε > 0

(〈x〉g)−n〈x〉 12−εg− 1
2T+

bd(λ) (6.17b)

is a continuous B(L2,−n(Sd−1), L2(Rd))–valued function in λ ∈ [0,∞[.
(iii) For all m,n ∈ R

〈x〉mOpr(χ3)T+
bd(λ) (6.17c)

is a continuous B(L2,−n(Sd−1), L2(Rd))–valued function in λ ∈ [0,∞[.
(iv) For all m,n ∈ R

〈x〉mT+
pr(λ) (6.17d)

is a continuous B(L2,−n(Sd−1), L2(Rd))–valued function in λ ∈ [0,∞[.

Later on we will need a slightly stronger bound than the one of Lemma 6.8 (i)
with n = 0, which we state below (referring to notation of (4.6) and (4.54)):

Lemma 6.9. For all τ ∈ L2(Sd−1), J+(λ)τ ∈ B∗s0. In fact with a bounding constant
independent of λ ≥ 0

g
1
2J+(λ) ∈ B(L2(Sd−1), B∗1

2
).

Proof. We need to bound the operator PR := R−1J+(λ)∗g1{|x|<R}J+(λ) indepen-
dently of R > 1 and λ ≥ 0. Writing PR = R−1

∫ R
0

dr
∫
Sr
Qrdx with Sr = {|x| = r}

it thus suffices to bound the operator
∫
Sr
Qrdx independently of r > 0 and λ ≥ 0.

Step I. Analysis of
∫
Sr
Qrdx. The kernel of Qr is given by

Qr(ω, ω
′) = ei(φ+(x,ω′,λ)−φ+(x,ω,λ))a(x, ω, ω′, λ),
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where
a(x, ω, ω′, λ) = (2π)−dg(|x|, λ)ã+(x, ω, λ)ã+(x, ω′, λ).

For simplicity we shall henceforth omit the superscript +, r > 0 and λ ≥ 0 in the
notation.

Our goal is to show that
∫
Sr
Qrdx is a PsDO on L2(Sd−1) with symbol b(ω, ω′, z)

obeying uniform bounds (uniform in r > 0 and λ ≥ 0)

|∂β1
ω ∂

β2

ω′ ∂
α
z b| ≤ Cβ1,β2,α〈z〉−|α|. (6.18)

Clearly this would prove the lemma.
We can use a partition of unity on Sd−1, and therefore we can assume that the

vectors ω, ω′ and x̂ are close to the d’th standard vector ed ∈ Rd. Consequently we
can use coordinates

ω = ω⊥ + ωded; ωd =
√

1− ω2
⊥, (6.19)

x = x⊥ + xded; xd =
√
r2 − x2

⊥. (6.20)

Next we write

φ(x, ω′)− φ(x, ω) = (ω⊥ − ω′⊥) · z; z = −
∫ 1

0

∂ω⊥φ(x, s(ω′ − ω) + ω)ds.

Step II. We shall show that the map

Sr ⊃ U 3 x→ Tx = z ∈ Rd−1 is a diffeomorphism onto its range; (6.21)

here U is an open neighbourhood of ed containing the supports of a(·, ω, ω′).
To this end we investigate the bilinear form ∂x∂ωφ(x, ω) on TSd−1

x ×TSd−1
ω . Note

that
∂x∂ωφ

+
sph(x̂ = ω) = r−1hI, (6.22)

cf. (5.25).
In the coordinates (6.19) and (6.20), the identity (6.22) reads for zsph = (Tx)sph

(here we consider the case where V2 = 0)

∂xjzsph, i(ω = ω′ = x̂) = −r−1h
(
δij + ω−2

d ωiωj
)
; i, j ≤ d− 1. (6.23)

Due to (3.15), Proposition 3.3 and (6.23) we obtain the more general result

∂xjzi = −r−1h
(
δij + ω−2

d ωiωj +O(σ′) +O(r−ε̆)
)
; i, j ≤ d− 1; (6.24)

here O(σ′) refers to a term obeying |O(σ′)| ≤ Cσ′ where σ′ > 0 is given in (5.2)
(assumed to be small).

In particular T is a local diffeomorphism with inverse determinant

|∂xjzi|−1 = (−r−1h)1−d(ω′d)
2
(
1 +O(σ′) +O(r−ε̆)

)
. (6.25)

For a later application we note the uniform bounds

∂β1
ω ∂

β2

ω′ ∂
α
x |∂xjzi|−1 = g1−dr−|α|O(r0). (6.26)

Also T is injective: Suppose Tx1 = Tx2, then

0 =

∫ 1

0

∂xjzi(s(x
1 − x2) + x2)(x1

j − x2
j)ds

= −r−1h
(
(δij + ω−2

d ωiωj) +O(σ′) +O(r−ε̆)
)
(x1

j − x2
j).

Using the invertibility of the matrix δij + ω−2
d ωiωj it follows that x1 = x2.
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Step III. Analysis of symbol b. Due to Step II we can change coordinates and obtain
that

∫
Sr
Qrdx is a PsDO with symbol b = |∂xjzi|−1a. It remains to show (6.18). For

zero indices β1 = β2 = α = 0, we obtain the bound by combining Proposition 5.3
and (6.25). For derivatives we note the bounds

|∂β1
ω ∂

β2

ω′ ∂
α
x z| ≤ Cβ1,β2,αgr

1−|α|, (6.27)

which by a little bookkeeping yields to

|∂β1
ω ∂

β2

ω′ ∂
γ
z x| ≤ Cβ1,β2,γr〈z〉−|γ|. (6.28)

Another bookkeeping using Proposition 5.3, (6.25) and (6.28) yields (6.18). �
Proof of Lemma 6.8. We drop the superscript “+” and the parameter λ in the no-
tation. We first prove uniform boundedness on any compact interval [0, λ1].

Re (i). We replace J = J(·) by Jχ(ω) where χ ∈ C∞(Sd−1) with a sufficiently
small support. We can assume that n is a non-negative integer. Instead of studying
J(1−∆ω)n/2, it then suffices to study J∂νω for |ν| ≤ n.

Integrating by parts we observe that the corresponding integral kernel equals

C∂νω
(
eiφ(x,ω)ã(x, ω)

)
= eiφ(x,ω)ãν(x, ω),

where ãν is a linear combinations of terms of the form

∂ν1ω φ(x, ω) · · · ∂νkω φ(x, ω)∂ν0ω ã(x, ω),

with ν0 + ν1 + · · · + νk = ν. Thus, using that |∂δωφ| ≤ C〈x〉g (cf. (3.11d)) and
Proposition 5.3, we obtain

∂δω∂
γ
x ãν(x, ω) = O(〈x〉n−|γ|gn+ d−2

2 ). (6.29)

Then we follow the proof of Lemma 6.9.

Re (ii). Assume first that n ≥ 0. Then we follow the same scheme as above. The
bound on the relevant kernel needs to be replaced by

∂δω∂
γ
x t̃ν(x, ω) = O(〈x〉n−1−|γ|gn+ d

2 ), (6.30)

cf. Proposition 5.5. Using (6.30) we can proceed as before.
Assume next that n < 0. We can assume that n is a negative integer. For fixed

x we decompose ω = ω⊥ +
√

1− ω2
⊥x̂, where ω⊥ · x = 0. By (3.11c) we have the

uniform lower bound

|∇ω⊥φ(x, ω)| ≥ c|x|g for x̂ · ω ≤ 1− σ, (6.31)

and by (3.11d) the uniform upper bounds

|∂δω⊥φ(x, ω)| ≤ C|x|g. (6.32)

We apply the non-stationary method based on the identity(
i
∇ω⊥φ

|∇ω⊥φ|2
· ∇ω⊥

)−n
eiφ+(x,ω) = eiφ(x,ω).

After performing −n integrations by parts, the bounds (6.31) and (6.32) yield

Tχτ =
∑
|ν|≤−n

∫
t̃ν(x, ω)∂νω⊥τ(ω)dω,

where the functions t̃ν also satisfy the bounds (6.30). Then we proceed as before.
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Re (iii). The kernel of Opr(χ3)Tbd(·) is given by the integral∫
dξeix·ξ

∫
ei(φ(y,ω)−y·ξ)k(ω, y, ξ)dy; k(ω, y, ξ) = (2π)−3d/2χ3(y, ξ)t̃bd(y, ω).

It suffices to show that

|∂βξ ∂δω
∫

ei(φ(y,ω)−y·ξ)k(ω, y, ξ)dy| ≤ Cβ,δ uniformly in ξ, ω and λ; (6.33)

notice that the symbol k is compactly supported in ξ. First we observe that (using
notation of Subsection 4.1)

k = kω,λ ∈ Sunif(g
d
2 〈x〉−1, gµ,λ).

We can substitute k → k = F (|y| > 2R̄)k(ω, y, ξ).
Next we integrate by parts writing first(

i
ξ −∇yφ

|ξ −∇yφ|2 · ∇y

)`
ei(φ(y,ω)−y·ξ) = ei(φ(y,ω)−y·ξ).

We need to argue that ξ−∂yφ 6= 0 on the support of the involved symbol. For that
we recall the following elementary inequality valid for all z1, z2 ∈ Rd and κ1, κ2 > 0

|z1 − z2|2 ≥ min(κ2
1/2, κ2 − κ2

2/2)(|z1|2 + |z2|2), (6.34)

provided one of the following three conditions holds

|z2| ≤ (1− κ1)|z1|, |z1| ≤ (1− κ1)|z2| or z1 · z2 ≤ (1− κ2)|z1||z2|.
Now, on the support of the symbol k we have (1 − σ′)|y| ≤ y · ω ≤ (1 − σ)|y|,

cf. (5.2). We use these inequalities in (3.5c) and (3.5d) yielding

1− Cσ′ − C|y|−ε̆ ≤ ∇yφ(y, ω)

|∇yφ(y, ω)| · ŷ ≤ 1− cσ + C|y|−ε̆,

which in turn (if R̄ is taken large enough) implies that

1− 2Cσ′ ≤ ∇yφ(y, ω)

g(|y|) · y〈y〉 ≤ 1− c

2
σ. (6.35)

We claim that there exists a small c′ = c′(σ, σ′) > 0 such that∣∣ξ −∇yφ(y, ω)
∣∣ ≥ c′

(
|ξ|+ ∣∣∇yφ(y, ω)

∣∣) (6.36)

on the support of k (showing in particular that ξ − ∂yφ 6= 0).
Obviously (6.36) follows from (6.34) with

z1 = ξ
g(|y|) and z2 =

∇yφ(y, ω)

g(|y|)
provided one of the above three conditions hold. If all of those conditions fail, so
that intuitively z1 ≈ z2, we can replace z2 in (6.35) by z1 yielding

1− 3Cσ′ ≤ b(x, ξ) ≤ 1− c

3
σ. (6.37)

Here we applied (6.34) for some κ1 and κ2 depending on σ and σ′. Now, the second
inequality of (6.37) is violated on the support of χ̃+(b(y, ξ)) provided the σ̄ > 0
of (6.13) is chosen such that

2σ̄ <
c

3
σ. (6.38)

46



We have shown the bound (6.36) on the support of the symbol k and therefore in
particular on the support of the relevant symbol after performing the y–integrations
by parts. The estimate (6.33) follows.

Re (iv). First we assume that n ≥ 0. Integrating by parts in ω, as in the proof of (i)
and using Proposition 5.5, which says that tpr with all its derivatives is O(〈x〉−∞),
we obtain that 〈x〉mTpr(λ) is in B(L2,−n(Sd−1), L2(Rd)) for any m. The case n < 0
then follows trivially.

Let us now prove the continuity. Consider for instance (i). Let τ ∈ C∞(Sd−1)
and set

Jn,ε(λ) := (〈x〉g)−n〈x〉− 1
2
−εg

1
2J(λ).

Clearly for (small) κ > 0,

Jn,ε(λ)τ = F (κ|x| < 1)Jn,ε(λ)τ + F (κ|x| > 1)〈x〉−ε/2Jn,ε/2(λ)τ. (6.39)

We know that Jn,ε/2(λ) is bounded uniformly in λ. Hence the second term on the
right of (6.39) is O(κε/2).

We know that a(x, ω, λ), φ(x, ω, λ) and g(x, λ)±1 are continuous down to λ = 0.
The first term on the right of (6.39) involves only variables in a compact set. There-
fore it is continuous in λ. Hence Jn,ε(λ)τ is continuous as the uniform limit of
continuous functions.

By the uniform bound, which we proved before, we conclude that Jn,ε(λ) is
strongly continuous in B(L2,−n(Sd−1), L2(Rd)).

Now
Jn,ε(λ) = gε/2Jn+ε/2,ε/2(λ)(1−∆ω)−ε/4(1−∆ω)ε/4,

where gε/2 is strongly continuous, Jn+ε/2,ε/2(λ) is strongly continuous in

B(L2,−n−ε/2(Sd−1), L2(Rd)),

(1 − ∆ω)−ε/4 is a compact operator on L2,−n−ε/2(Sd−1) and (1 − ∆ω)ε/4 is a uni-
tary element of B(L2,−n(Sd−1), L2,−n−ε/2(Sd−1)). We invoke the general fact that
the product of a strongly continuous operator-valued function and a compact op-
erator is norm continuous. Whence we obtain the norm continuity of Jn,ε(λ) in
B(L2,−n(Sd−1), L2(Rd)).

The proof of the norm continuity of the operators in the remaining parts of the
lemma is similar. �

Outline of a proof of Theorems 6.5 and 6.6. The proof goes along the lines of the
proof of Theorem 6.3. In particular this amount to inserting the right hand side of
(6.11) to the right of the resolvent in (6.8) and expand into three terms. Next, using
Proposition 4.1 and Lemma 6.8 we conclude that W+(λ) is well-defined as a sum of
four operators, say Tj(λ). In fact all of the four maps

[0,∞[3 λ→ (〈x〉g)−n〈x〉− 1
2
−εg

1
2Tj(λ) ∈ B(L2,−n(Sd−1), L2(Rd))

are continuous.
For the independence of W+(λ) of cutoffs we use Propositions 4.8 and 4.10 in the

same way as in the arguments for deducing (6.40) stated below.
The formula (6.15) follows by combining (6.10), Remark 4.2 2) and the shown

continuity properties of W+(λ) and W+(λ)∗. �
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Lemma 6.10. For any λ ≥ 0, R(λ±i0)T±(λ) is well-defined as a map from D′(Sd−1)
to L2,−∞ and

0 = J±(λ) + iR(λ±i0)T±(λ). (6.40)

Proof. Note that we can extend Lemma 6.8 as follows: Let χ− ∈ C∞c (R) and χ̃− ∈
C∞c (R) with supp χ̃− ⊆]−∞, 2σ̄ − 1[ for some small σ̄ > 0. Then for all m,n ∈ R

Opr(χ−(a)χ̃−(b))T+
bd(λ), Opr(χ−(a)χ̃−(b))J+(λ) ∈ B(L2,−n(Sd−1), L2,m(Rd)),

cf. (6.37) (recall the standing hypothesis of this subsection that the positive param-
eter σ′ in (5.2) is sufficiently small).

Therefore, for all τ ∈ D′(Sd−1) and s ∈ R(
WF s

sc(T
+(λ)τ) ∪WF s

sc(J
+(λ)τ)

) ∩ {b < σ̄ − 1} = ∅. (6.41)

By the definition of T+(λ)

(H − λ)J+(λ)τ = −iT+(λ)τ = −i(H − λ)R(λ+i0)T+(λ)τ. (6.42)

Notice that due to (6.41) and Proposition 4.8 (iii), the vector u = R(λ+i0)T+(λ)τ
is in fact well-defined and

WF s
sc(u) ∩ {b < σ̄ − 1} = ∅. (6.43)

Using (6.41)–(6.43) and Proposition 4.10 we conclude that the generalized eigen-
function

J+(λ)τ + iR(λ+ i0)T+(λ)τ = 0. (6.44)

�

Remark. There exists an alternative time-dependent proof of Lemma 6.10 that
avoids the use of Proposition 4.10: Due to (6.2)

0 = lim
ε↘0

∫
(J± + iR(λ± iε)T±)δε(λ)fdλ, f̂ ∈ Cc(Rd\{0}),

cf. Lemma 6.2 or Appendix A. The right hand is given by∫
(J± + iR(λ± i0)T±)δ0(λ)fdλ,

cf. Appendix A. Whence, by a density argument, (6.40) follows. �

We complete this subsection by discussing a certain refined mapping property of
W±(λ). Besides its own interest its application (see Corollary 6.12 stated below)
will be needed in Section 8. The result is related to the fact that the continuity in λ
of the operators in (6.16) and (6.17a) is proven only for n ≥ 0 while the continuity
in λ of the operator in (6.17b) is valid for all n ∈ R.

Theorem 6.11. Fix real-valued χ, χ̃− ∈ C∞c (R) and χ+ ∈ C∞(R) such that supp χ̃−
⊂] − 1, 1[, χ′+ ∈ C∞c (R) and suppχ+ ⊂]C0,∞[ . Let Ã := Opw(χ(a)χ̃−(b)) and
A+ := Opw(χ+(a)) for λ ≥ 0. For all n ∈ R, ε > 0 and with A = Ã or A = A+

W±
n,ε(λ) := (〈x〉g)−n〈x〉− 1

2
−εg

1
2AW±(λ) (6.45)

is a continuous B(L2,−n(Sd−1), L2(Rd))–valued function in λ ∈ [0,∞[.
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Proof. With reference (4.2) (this class of symbols is used extensively in [FS])

B(λ) := (〈x〉g)−n〈x〉− 1
2
−εg

1
2Ag−

1
2 〈x〉 12+ ε

2 (〈x〉g)n ∈ Ψunif(〈x〉− ε2 , gµ,λ).
Whence by the calculus, B(λ) ∈ B(L2(Rd)) with a bound locally independent of
λ ≥ 0 and in fact B(·) is norm continuous. By using this continuity and Theorem 6.6
we conclude that it suffices to consider the case n < 0.

Re A = Ã. Since the construction of W+(λ) is independent of the (small) parame-
ters σ and σ′ in (5.2) we can take them smaller (if needed) to assure that

sup suppχ− < 1− 3Cσ′; (6.46)

here we refer to the left hand side of (6.37).
Now, to show that W+

n,ε(λ) is an element of B(L2,−n(Sd−1), L2(Rd)) we consider
for λ > 0 the two terms of (6.8) separately (if λ = 0 we use instead (6.14)): The
contribution from the first term (i.e. from J+(λ)) has better mapping properties
than specified, cf. Lemma 6.8 (iii). In fact using (6.46) we can mimic the proof
of Lemma 6.8 (iii) to handle this contribution. As for the contribution from the
second term (i.e. from iR(λ − i0)T+(λ)) we combine Lemma 6.8 (ii) and (iv) and
Proposition 4.1 (iii).

By the same arguments continuity in λ ≥ 0 is valid for the contribution from each
of the mentioned two terms, hence for W+

n,ε(λ).

Re A = A+. Again we consider for λ > 0 the two terms of (6.8) separately
(if λ = 0 we use instead (6.14)). The contribution from the first term J+(λ) has again
better mapping properties than needed, precisely we have the following analogue of
Lemma 6.8 (iii):

For all m ∈ R the family of operators 〈x〉mA+J
+(λ) constitutes a continuous

B(L2,−n(Sd−1), L2(Rd))–valued function of λ ∈ [0,∞[.
To show this we can again follow the proof of Lemma 6.8 (iii). It suffices to

show locally uniform boundedness in the indicated topology and we may replace
A+ → Opr(χ+(a)). The kernel of Opr(χ+(a))J+(λ) is given by the integral∫

dξeix·ξ
∫

ei(φ(y,ω)−y·ξ)kω,λ(y, ξ)dy;

kω,λ(y, ξ) = (2π)−3d/2χ+(ξ2/g
(|y|, λ)2

)
ã+(y, ω, λ).

It suffices to show that∣∣∣∂βξ ∂δω ∫ ei(φ(y,ω)−y·ξ)kω,λ(y, ξ)dy
∣∣∣ ≤ Cβ,δ〈ξ〉−d−1 uniformly in ξ, ω and λ. (6.47)

For that we notice that
k = kω,λ ∈ Sunif(g

d
2
−1, gµ,λ).

It suffices to show (6.47) with k → k = F (|y| > 2R̄)kω,λ(y, ξ).
Next we integrate by parts writing first(

i
ξ −∇yφ

|ξ −∇yφ|2 · ∇y

)`
ei(φ(y,ω)−y·ξ) = ei(φ(y,ω)−y·ξ),

and then we invoking the uniform bounds

C|ξ| ≥ ∣∣ξ −∇yφ(y, ω)
∣∣ ≥ c

(|ξ|+ ∣∣∇yφ(y, ω)
∣∣), (6.48)
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which are valid on the support of k (provided R̄ is chosen sufficiently large). Clearly
we obtain (6.47) by this procedure if ` (i.e. the number of integrations by parts) is
chosen sufficiently large.

As for the contribution from the second term iR(λ− i0)T+(λ) we combine Lem-
ma 6.8 (ii) and (iv) and Proposition 4.1 (ii). �

We can extend the identities (6.10) and (6.15) (which below corresponds to s = 0):

Corollary 6.12. Let χ, χ− ∈ C∞c (R) be given as in Theorem 6.11. Fix λ ≥ 0 let
again Ã := Opw(χ(a)χ−(b)). For all δ > 1

2
and s ≤ 0 there exists the strong limit

s− lim
ε↘0

g
1
2 δVε (λ)Ãg

1
2 = g

1
2 δV (λ)Ãg

1
2 = g

1
2W±(λ)W±(λ)∗Ãg

1
2 (6.49)

in B(L2,s+δ(Rd), L2,s−δ(Rd)).

Proof. It follows from Proposition 4.9 that indeed there exists the limit

B := s− lim
ε↘0

g
1
2 δVε (λ)Ãg

1
2 in B(L2,s+δ(Rd), L2,s−δ(Rd)).

Let n = s/s1 where s1 is given as in (4.6). Due to Theorem 6.11

W±(λ)∗Ãg
1
2 =

(
g

1
2 ÃW±(λ)

)∗ ∈ B(L2,s+δ(Rd), L2,n(Sd−1)),

and due to Theorem 6.6
g

1
2W±(λ) ∈ B(L2,n(Sd−1), L2,s−δ(Rd)).

We have shown that
g

1
2W±(λ)W±(λ)∗Ãg

1
2 ∈ B(L2,s+δ(Rd), L2,s−δ(Rd)).

Since
Bv = g

1
2W±(λ)W±(λ)∗Ãg

1
2v for v ∈ L2,∞,

cf. (6.10) and (6.15), we are done by a density argument. �
6.4. Asymptotics of short-range wave matrices. Clearly, if µ > 1 there exists

W±
sr f = lim

t→±∞
eitHe−itH0f, (6.50)

which is the usual definition of wave operators in the short-range case. In the case
µ ∈]1, 2[ we can compare our wave matrices with the wave matrices defined by (6.50).

Recall p̂ := p/|p|.
Theorem 6.13. For µ ∈]1, 2[ the operators

ψ+
sr(p) := i

∫ ∞
R0

(|p| − F+(lp̂, p, p2/2) · p̂) dl,

ψ−sr(p) := −i

∫ ∞
R0

(|p|+ F+(−lp̂,−p, p2/2) · p̂) dl

are well-defined. If V2 = 0, then ψ±sr(p) = ψ±sr(|p|) with

ψ±sr(|p|) = ±i

∫ ∞
R0

(|p| −√p2 − 2V1(r))
)

dr.

We have

W+
sr = W+eiψ+

sr(p), (6.51a)

W−
sr = W−eiψ−sr(p). (6.51b)

50



Whence in particular, for all λ > 0

W+
sr (λ) = W+(λ)eiψ+

sr(
√

2λ·), (6.52a)

W−
sr (λ) = W−(λ)eiψ−sr(

√
2λ·). (6.52b)

Proof. One can readily show the theorem from well-known properties of the free
evolution and the fact that

φ+(x, ω, λ) +

∫ ∞
R0

(
√

2λ− F+(lω, ω, λ) · ω) dl =
√

2λω · x+ o(|x|0), (6.53)

which in turn follows from [DS1, (4.50)] and a change a contour of integration. The
asymptotics is locally uniform in (ω, λ) ∈ Sd−1×]0,∞[. �
Remark 6.14. ψ±sr is indeed oscillatory. Notice that for V1(r) = −γr−µ, as λ→ 0+

we have

ψ+
sr(
√

2λ) =

∫ ∞
R0

(√
2λ−

√
2(λ+ γr−µ)

)
dr

= (2λ)
1
2
− 1
µ

∫ ∞
R0(2λ)

1
µ

(1−
√

1 + 2γs−µ)ds

= (2λ)
1
2
− 1
µ

∫ ∞
0

(1−
√

1 + 2γs−µ)ds+O
(
λ0
)
,

cf. [Ya1, (7.11)]. See Remark 6.16 for a similar result.

6.5. Asymptotics of Dollard-type wave matrices. For µ > 1
2
and µ + ε2 > 1

the Dollard-type wave operators are given by
W±

dolf = lim
t→±∞

eitHUdol(t)f,

where
Udol(t) = e−i

R t
0 (p2/2+V1(sp)1{|sp|≥R0}) ds.

We have the following analogue of Theorem 6.13.

Theorem 6.15. For 1
2
< µ < 2, ε2 < 1 and µ+ ε2 > 1, the operators

ψ+
dol(p) = i

∫ ∞
R0

(|p| − F+(lp̂, p̂, p2/2) · p̂− |p|−1V1(l)) dl,

ψ−dol(p) = −i

∫ ∞
R0

(|p|+ F+(−lp̂,−p̂, p2/2) · p̂− |p|−1V1(l)) dl

are well-defined. If V2 = 0, then ψ±dol(p) = ψ±dol(|p|) and

ψ±dol(|p|) = ±i

∫ ∞
R0

(|p| −
√
p2 − 2V1(r)− |p|−1V1(r)) dr.

We have

W+
dol = W+eiψ+

dol(p), (6.54a)

W−
dol = W−eiψ−dol(p). (6.54b)

Whence in particular, for all λ > 0

W+
dol(λ) = W+(λ)eiψ+

dol(
√

2λ·), (6.55a)

W−
dol(λ) = W−(λ)eiψ−dol(

√
2λ·). (6.55b)
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Proof. First we notice that ψ±dol are well-defined due to the fact that

(F+ − F+
sph)(lω, ω, λ) = O(l−δ)

for any δ < min(µ+ ε2, 2µ), and hence integrable; here F+
sph refers to the F+ for the

case V2 = 0, whence F+
sph(lω, ω, λ) = g(l, λ)ω. For this estimate we refer to [DS1,

Remarks 6.2 2)] and the proof of [DS1, Lemma 6.4]; it appears stronger at the price
of not being uniform in (small) λ. There is an extension of this estimate that allows
us to integrate along the line segment joining x and Rω and taking the limit:∫ ∞ω

x

(F+ − F+
sph)(x̄, ω, λ) · dx̄ = lim

R→∞

∫ Rω

x

(F+ − F+
sph)(x̄, ω, λ) · dx̄

= o(|x|0). (6.56)
Introduce the auxillary phases

φ±dol(x, ω, λ) =
√

2λx · ω ∓ (2λ)−
1
2

∫ ±x·ω
R0

V1(l) dl,

φ±aux(x, ω, λ) = φ±aux = φ±dol −
∫ ±∞ω
x

(F+
sph −∇xφ

±
dol) · dx̄,

and corresponding modifiers

(J±] f)(x) = (2π)−d/2
∫

eiφ±] (x,ξ)χ(x,±ξ̂)f̂(ξ)dξ; ξ =
√

2λω.

Here we can take the function χ of the form χ(x, ω) = χ1(|x|/R)χ2(x̂ · ω) with χ1

and χ2 given as in (5.1) and (5.2), respectively.
By the stationary phase method, [Hö1, Theorem 7.7.6], one derives the following

asymptotics in L2(Rd) for any state f with f̂ ∈ C∞c (Rd \ {0}):
Udol(t)f � J±dole

itH0f � J±auxeitH0f as t→ ±∞.
Next we notice the following analogue of (6.53), cf. (6.56),

φ±(x, ω, λ) +

∫ ∞
R0

(∇φ+
dol − F+)(±lω,±ω, λ) · ω dl

= φ±aux(x, ω, λ) + o(|x|0).

Again this asymptotics is locally uniform in (ω, λ) ∈ Sd−1×]0,∞[. �
Remark 6.16. The first factor on the right hand side of (7.11) is oscillatory. Let us
state the following asymptotics for the special case where V1(r) = −γr−µ for r ≥ R0:

ψ+
dol(
√

2λ) =

∫ ∞
R0

(√
2λ−

√
2(λ+ γr−µ) + (2λ)−

1
2γr−µ

)
dr

= (2λ)
1
2
− 1
µ

∫
R0(2λ)

1
µ

(1−
√

1 + 2γs−µ + γs−µ)ds.

For λ↘ 0, this behaves as

(2λ)
1
2
− 1
µCµ +O

(
λ−

1
2

)
; 1

2
< µ < 1,

−γ(2λ)−
1
2 ln 2λ+ (2λ)−

1
2C1 +O (1) ; µ = 1,

(2λ)−
1
2
R1−µ

0 γ

µ−1
+O

(
λ

1
2
− 1
µ

)
; 1 < µ < 2.
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Here

Cµ :=

∫ ∞
0

(1−
√

1 + 2γs−µ + γs−µ)ds,

C1 :=

∫ ∞
1

(1−
√

1 + 2γs−1 + γs−1)ds+

∫ 1

0

(1−
√

1 + 2γs−1)ds− γ lnR0.

7. Scattering matrices

In this section we study (modified) scattering matrices. We prove that they have a
limit at zero energy. This implies low energy oscillatory asymptotics for the standard
short-range and Dollard scattering matrices.

7.1. Scattering matrices at positive energies. The scattering operator com-
mutes with H0, which is diagonalized by the direct integral decomposition (6.4).
Because of that, the general theory of decomposable operators says that there exists
a measurable family ]0,∞[3 λ 7→ S(λ), with S(λ) unitary operators on L2(Sd−1)
defined for almost all λ, such that

S '
∫ ∞

0

⊕S(λ) dλ, (7.1)

using the decomposition (6.4).
The following theorem is (essentially) well-known:

Theorem 7.1. Assume Condition 1.1. Then

S(λ) = −2πJ+(λ)∗T−(λ) + 2πiT+(λ)∗R(λ+ i0)T−(λ) (7.2a)

= −2πW+(λ)∗T−(λ) (7.2b)

defines a unitary operator on L2(Sd−1) depending strongly continuously on λ > 0.
Moreover, (7.1) is true. Furthermore, for all n ∈ R and ε > 0

S(λ) ∈ B(L2,n(Sd−1), L2,n−ε(Sd−1))

depending norm continuously on λ > 0. (Hence in particular S(λ) maps C∞(Sd−1)
into itself.)

For a derivation of the formula (7.2a) we refer the reader to Appendix A. For the
remaining part of the theorem we refer the reader to the proof of Theorem 7.2 stated
below (one can use Theorem 6.3 and Lemma 6.4 as substitutes for Theorem 6.6 and
Lemma 6.8, respectively).

7.2. Scattering matrices at low energies. Until the end of this section we as-
sume that Conditions 2.1–2.3 are true. The main new result of this section is the
following theorem:

Theorem 7.2. The result of Theorem 7.1 is true for all λ ∈ [0,∞[. Specifically,
defining

S(0) = −2πJ+(0)∗T−(0) + 2πiT+(0)∗R(+i0)T−(0) (7.3a)

= −2πW+(0)∗T−(0), (7.3b)

then S(0) is unitary, s− limλ↘0 S(λ) = S(0) in the sense of B(L2(Sd−1)) and also
limλ↘0 S(λ) = S(0) in the sense of B(L2,n(Sd−1), L2,n−ε(Sd−1)) for any n ∈ R and
ε > 0.
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Proof. First we notice that the expression

S(λ) = −2πW+(λ)∗T−(λ) ∈ B(L2,n(Sd−1), L2,n−ε(Sd−1)) for n > 0

with a norm continuous dependence of λ ≥ 0. Indeed, fix n > 0 and ε ∈]0, n] and
pick ε1, ε2 ∈ R such that εµ

2
< ε1 < ε and ε2 = 1

2
(ε− ε1). We write

W+(λ)∗T−(λ) (7.4)

=
(
W+(λ)∗g

1
2 〈x〉− 1

2
−ε2(〈x〉g)−n+ε

)(
g−ε〈x〉−ε1)((〈x〉g)n〈x〉 12−ε2g− 1

2T−(λ)
)
.

We shall use the analogues of Lemma 6.8 (ii) and (iv) with T+(λ) replaced by
T−(λ) (proved in the same way). The third factor on the right of (7.4) is continuous
in λ with values in B(L2,n(Sd−1), L2(Rd)). The second factor is continuous in λ
as an operator on L2(Rd). The first factor is continuous in λ as an operator in
B(L2(Rd), L2,n−ε(Sd−1)) due to Theorem 6.6. This proves the norm continuity of
S(λ) in B(L2,n(Sd−1), L2,n−ε(Sd−1)) for n > 0.

Let us prove the same property for n ≤ 0 using a slight extension of the above
scheme: Notice that the positive sign condition above entered only in the condition
n − ε ≥ 0 needed for applying Theorem 6.6. Since n ≤ 0 we have n − ε < 0
and therefore we need a substitute for Theorem 6.6. This is provided by Theorem
6.11 and an analogue of Lemma 6.8 for T−(λ). In fact, choose for (small) σ̄ > 0
real-valued χ̃− ∈ C∞c (R) and χ+ ∈ C∞(R) such that supp χ̃− ⊂] − 1, 1[, χ̃− = 1
in [σ̄ − 1, 1 − σ̄], suppχ+ ⊂]C0,∞[ and χ+ = 1 in [2C0,∞[. Let χ = 1 − χ+,
Ã = Opw(χ(a)χ̃−(b)), A+ = Opw(χ+(a)) and Ā = Opw(χ(a)(1 − χ̃−(b))). We insert
the identity I = Ã+ A+ + Ā

W+(λ)∗T−(λ) = ((Ã+ A+)W+(λ))∗T−(λ) +W+(λ)∗(ĀT−(λ)). (7.5)

Due to Theorem 6.11 the above argument can be repeated for the first term on
the right hand side, and if σ̄ > 0 is chosen sufficiently small we have the following
analogue of Lemma 6.8 (iii) and (iv) (here stated in combination): For all m ∈ R the
family of operators 〈x〉mĀT−(λ) constitutes a continuous B(L2,−n(Sd−1), L2(Rd))–
valued function of λ ∈ [0,∞[. By choosing m > 1

2
+ µ

4
and using Theorem 6.6 we

conclude norm continuity of the second term of (7.5).
But from the isometricity of S we see that S(λ) is isometric for almost all λ as

a map on L2(Sd−1). Therefore, it is isometric and strongly continuous as a map on
L2(Sd−1) for all λ ≥ 0.

By repeating this argument for S∗ (not to be elaborated on) we obtain that S(λ)∗

is isometric and strongly continuous in λ ≥ 0 as a map on L2(Sd−1). Whence S(λ)
is unitary as a map on L2(Sd−1). �

Remark. There is an alternative and completely stationary approach to proving the
unitarity of the scattering matrices. In fact taking (7.2b) and (7.3b) as definitions
the unitarity is a consequence of the formula (8.11), which in turn can be verified
directly along the lines of Section 8.

7.3. Asymptotics of short-range scattering matrices. In the case µ ∈]1, 2[ we
can compare S(λ) with the S–matrix Ssr(λ) defined similarly

Ssr = W+∗
sr W

−
sr '

∫ ∞
0

⊕Ssr(λ) dλ.
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Under the condition of radial symmetry Yafaev considered in [Ya1] the component
of Ssr(λ) for each sector of fixed angular momentum. He computed an explicit oscil-
latory behaviour as λ→ 0. The following result is a consequence of Theorem 6.13;
in combination with Theorem 7.2 it yields oscillatory behaviour in a more general
situation than considered in [Ya1].

Theorem 7.3. For µ ∈]1, 2[ the operators Ssr and S are related by

Ssr = e−iψ+
sr(p)Seiψ−sr(p). (7.6)

In particular for all λ > 0

Ssr(λ) = e−iψ+
sr(
√

2λ·)S(λ)eiψ−sr(
√

2λ·), (7.7)

and if V2 = 0 then

Ssr(λ) = e
−i2

R∞
R0

(√
2λ−
√

2(λ−V1(r))
)

dr
S(λ). (7.8)

7.4. Asymptotics of Dollard-type scattering matrices. For µ > 1
2

and
µ+ ε2 > 1 the Dollard-type S–matrix is diagonalized as before

Sdol = W+∗
dolW

−
dol '

∫ ∞
0

⊕Sdol(λ) dλ.

We have the following analogue of Theorem 7.3, cf. Theorem 6.15.

Theorem 7.4. For 1
2
< µ < 2, ε2 < 1 and µ + ε2 > 1 the operators Sdol and S are

related by
Sdol = e−iψ+

dol(p)Seiψ−dol(p). (7.9)
In particular for all λ > 0

Sdol(λ) = e−iψ+
dol(
√

2λ·)S(λ)eiψ−dol(
√

2λ·), (7.10)

and if V2 = 0 then

Sdol(λ) = e
−i2

R∞
R0

“√
2λ−
√

2(λ−V1(r)−(2λ)−1/2V1(r)
”

dr
S(λ). (7.11)

Example 7.5. For the purely Coulombic case V = −γr−1 in dimension d ≥ 3 one
can compute

S(0) = eicP ; c ∈ R, (7.12)
where (Pτ)(ω) = τ(−ω). This formula can be verified using (7.11) and Remark 6.16,
the explicit formula [Ya3, (4.3)] for the Coulombic (Dollard) scattering matrix
(slightly different from our definition, asymptotics of the gamma function (see for
example the reference [3] of [Ya3]) and, for example, the stationary phase formula
[Hö1, Theorem 7.7.6] (alternatively one can use the formula [Ya3, (3.4)]).

It follows from (7.12) that the singularities of the kernel S(0)(ω, ω′) in this par-
ticular case are located at {(ω, ω′) ∈ Sd−1×Sd−1|ω = −ω′}. We devote Section 9 to
an extension of this result. In Section 10 we provide a different proof of (7.12) (up
to a compact term); this approach yields c = 4

√
2γR0 − π d−2

2
.

We also note that for the purely Coulombic case there is in fact a complete as-
ymptotic expansion S(λ) �∑∞j=0 Sjλ

j/2. Here (of course) S0 is given by (7.12), and
one can readily check that S1 6= 0. In particular we see that S(λ) is not smooth at
λ = 0, cf. Remark 4.2 3). We refer to [BGS] (and references cited therein) for ex-
plicit expansions of the generalized purely Coulombic eigenfunctions at zero energy
(for d = 3); those are also in

√
λ.
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8. Generalized eigenfunctions

Throughout this section we impose Conditions 2.1–2.3. For any λ ≥ 0 we define

V−∞(λ) = {u ∈ L2,−∞|(H − λ)u = 0} ⊆ S ′(Rd).

Elements of V−∞(λ) will be called generalized eigenfunctions of H at energy λ. In
this section we study all generalized eigenfunctions of H.

Remark. Note that by Proposition 4.3, for any u ∈ V −∞(λ) and s ∈ R

WF s
sc(u) ⊆ {b2 + c̄2 = 1}. (8.1)

8.1. Representations of generalized eigenfunctions. In this subsection we show
that all generalized eigenfunctions can be represented by their incoming or outgoing
data.

Theorem 8.1. For any λ ≥ 0 the map

W±(λ) : D′(Sd−1)→ V−∞(λ)(⊆ L2,−∞)

is continuous and bijective.

Proof. Step I. Clearly W±(λ) : D′(Sd−1)→ V−∞(λ) is well-defined and continuous,
cf. Theorem 6.6.

Step II. We show that W±(λ) is onto. Let u ∈ V−∞(λ) be given. Let

χ± = χ−(a)χ̃±(b) + 1
2
χ+(a), (8.2)

where χ+ = 1 − χ− is a real-valued function as in Proposition 4.1 (ii) such that
χ+(t) = 1 for t ≥ 2C0, and χ̃−, χ̃+ ∈ C∞(R) are real-valued functions obeying
χ̃− + χ̃+ = 1 and

supp χ̃− ⊆]−∞, 1/2[, (8.3)
supp χ̃+ ⊆]− 1/2,∞[. (8.4)

Now

lim
ε↓0

R(λ± iε)(H − λ)Opr(χ±)u = Opr(χ±)u± lim
ε↓0

iεR(λ± iε)Opr(χ±)u (8.5)

Note that limε↓0R(λ ± iε)Opr(χ±)u exists, due to Propositions 4.3, 4.7, and 4.9.
Therefore the second term on the right of (8.5) is zero. Therefore, we have

0 = Opr(χ±)u−R(λ±i0)(H − λ)Opr(χ±)u. (8.6)

Adding the two equations of (8.6) yields

u = 2πiδV (λ)(H − λ)Opr(χ+)u,

which in turn in conjunction with Proposition 4.3, (6.10), (6.15) and Corollary 6.12
yields

u = W±(λ)τ ; τ = ±2πiW±(λ)∗[H,Opr(χ±)]u ∈ D′(Sd−1). (8.7)

Step III. We show that W±(λ) is injective. For convenience we shall only treat the
case of superscript +. By (8.7) we need to show that for all τ ∈ D′(Sd−1)

τ = 2πiW+(λ)∗(H − λ)Opr(χ+)W+(λ)τ. (8.8)
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By continuity it suffices to verify (8.8) for τ ∈ C∞(Sd−1). This can be done as
follows. Pick non-negative f ∈ C∞c (R) with

∫∞
0
f(s)ds = 1, and let FR(t) =

1− ∫ t/R
0

f(s)ds; R > 1. We write the right hand side of (8.8) as

w− lim
R→∞

2πiW+(λ)∗FR(〈x〉)(H − λ)Opr(χ+)W+(λ)τ ; (8.9)

and pull the factor (H − λ) to the left. Thus (8.9) equals

w− lim
R→∞

2πR−1W+(λ)∗f(〈x〉/R)gOpr(bχ+)W+(λ)τ.

If λ ≥ 0 we insert (6.8) for W+(λ) (if λ = 0 we use instead (6.14)). By Propo-
sition 4.1 (ii) and (iii) and Lemma 6.8 (ii) and (iv) we can replace each factor of
W+(λ) by a factor of J+(λ), cf. the proof of Theorem 6.11. Moreover we can replace
the factor Opr(bχ+) by the operator g−1x̂ · p. Therefore, (8.9) becomes

w− lim
R→∞

2πR−1J+(λ)∗f(〈x〉/R)x̂ · pJ+(λ)τ. (8.10)

By Theorem 5.7, (8.10) equals τ . The identity (8.8) follows. �
Remarks. 1) A somewhat similar representation formula has been derived for

representing positive solutions to a PDE, see for example [Mu]. This involves
a notion of so-called Martin boundary. In our case, the notion analogous to
the “Martin boundary” would be Sd−1.

2) For V3 = 0 we have

V−∞(λ) = {u ∈ S ′(Rd) | (H − λ)u = 0}
and hence the set V−∞(λ) is closed in S ′(Rd) (with respect to the weak-∗ topol-
ogy of S ′(Rd)). Moreover, in this case W±(λ) maps D′(Sd−1) bicontinuously
onto V−∞(λ)).

In fact, suppose u ∈ S ′(Rd) obeys (H − λ)u = 0. Then for some m ∈ N
we have 〈p〉−2mu ∈ L2,−∞. But (H − λ + i)−m〈p〉2m is bounded on any L2,s.
Whence, showing that indeed u ∈ V−∞(λ),

i−mu = (H − λ+ i)−mu = (H − λ+ i)−m〈p〉2m(〈p〉−2mu
) ∈ L2,−∞.

8.2. Scattering matrices – an alternative construction. The construction of
scattering matrices given in Subsections 7.1 and 7.2 involved a detailed knowledge
of appropriate operators, see the proof of Theorem 7.2. However, given the theory of
wave matrices developed in Subsection 8.1 and the basic formulas (6.10) and (6.15)
for the spectral resolution we could have constructed the scattering matrix more
easily.

Recall from Theorem 8.1 that W±(λ) : D′(Sd−1) → L2,−∞ is injective. Hence,
W±(λ)∗ : L2,∞ → C∞(Sd−1) has a dense range.

For τ ∈ L2(Sd−1) of the form τ = W−(λ)∗v with v ∈ L2,∞ we define S(λ)τ :=
W+(λ)∗v. By (6.10) and (6.15) we know that

‖W+(λ)∗v‖2 = ‖W−(λ)∗v‖2 = 〈v, δV (λ)v〉.
Hence S(λ) is indeed well-defined and isometric. But W±(λ)∗L2,∞ is dense in
C∞(Sd−1), and therefore also in L2(Sd−1). Whence S(λ) extends to an isomet-
ric operator on L2(Sd−1). Reversing the role of + and − we obtain that S(λ) is
actually unitary. By construction, it satisfies

S(λ)W−(λ)∗ = W+(λ)∗; λ ≥ 0. (8.11)
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8.3. Geometric scattering matrices. The following type of result was proved for
a class of constant coefficient Hamiltonians (with no potential) in [AH], and gener-
alized to Schrödinger operators with long-range potentials (for a class including the
one given by Condition 1.1) at positive energies by [GY]. It gives a characterization
of the spaceW±(λ)L2(Sd−1) which in turn yields yet another characterization of the
scattering matrix S(λ).

Let s0 = s0(λ) be given as in (4.6), and introduce in terms of a dual Besov space

V−s0(λ) := B∗s0 ∩ V−∞(λ)

endowed with the topology of B∗s0 . The statement (iv) below is given in terms of
the phase function φ = φ(x, λ) of (5.21).

Theorem 8.2. (i) For all τ ∈ L2(Sd−1)

WF−s0sc (W±(λ)τ) ⊆ {b = −1} ∪ {b = 1}.
(ii) The operatorW±(λ) maps L2(Sd−1) bijectively and bicontinuously onto V−s0(λ).
(iii) The operator W±(λ)∗ (defined a priori on B∗∗s0 ⊇ Bs0) maps Bs0 onto L2(Sd−1).
(iv) For all τ ∈ L2(Sd−1)

W−(λ)τ(x)− eiπ
d−1

4 e−iφ(x,λ)τ(−x̂) + e−iπ
d−1

4 eiφ(x,λ)(S(λ)τ)(x̂)

(2π)
1
2 g

1
2 (r, λ)r

d−1
2

∈ B∗s0,0, (8.12)

W+(λ)τ(x)− e−iπ
d−1

4 eiφ(x,λ)τ(x̂) + eiπ
d−1

4 e−iφ(x,λ)(S(λ)∗τ)(−x̂)

(2π)
1
2 g

1
2 (r, λ)r

d−1
2

∈ B∗s0,0, (8.13)

‖τ‖2
L2(Sd−1) = lim

R→∞
R−1

∫
r<R

|√πg 1
2 (r, λ)W±(λ)τ |2dx. (8.14)

Proof. Re (i). Again we concentrate on the case of superscript +. Let τ ∈ L2(Sd−1)
be given. We shall use the partition (6.11) as in the proof of Theorems 6.5 and 6.6,
so let σ̄ > 0 be given as before, cf. (6.12) and (6.13). As for the partition functions
(8.2) we modify (8.3) and (8.4) by replacing here χ̃± → χ̃±,right

supp χ̃−,right ⊆]−∞, 1− σ̄/4[, (8.15)
supp χ̃+,right ⊆]1− σ̄/2,∞[. (8.16)

Then it follows from Propositions 4.1 and 4.3 and Lemmas 6.8 and 6.9 that

Opr(χ+
right)W

+(λ) ∈ B(L2(Sd−1), B∗s0). (8.17)

(The fact that this bound holds for W+(λ) → J+(λ) is indeed a consequence of
Lemma 6.9 due to interpolation, cf. [Hö2, Theorem 14.1.4], but it can also be
proved concretely along the lines of the proofs of Lemma 6.9 and Theorem 6.11.)

Since 〈W+(λ)τ, i[H,FROpr(χ+
right)]W

+(λ)τ〉 = 0, we conclude from (4.30) and
(8.17) that

sup
R>1

Re 〈W+(λ)τ,Opw(FRχ−(a)χ̃′right(b)gr
−1)W+(λ)τ〉 ≤ C‖τ‖2; (8.18)

here we used the calculus of pseudodifferential operators, cf. [Hö1, Theorem 18.6.8].
In combination with Propositions 4.3 and 4.5 we conclude that

{−1 < b < 1} ∩WF−s0sc (W+(λ)τ) = ∅. (8.19)
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Re (ii) (Boundedness).
To proceed from here we change (8.15) and (8.16) as follows

supp χ̃−,left ⊆]−∞,−1 + σ̄/2[, (8.20)
supp χ̃+,left ⊆]− 1 + σ̄/4,∞[. (8.21)

With these cutoffs we can show analogously that

Opr(χ−left)W
−(λ) ∈ B(L2(Sd−1), B∗s0). (8.22)

Using (8.11) this leads to

Opr(χ−left)W
+(λ) ∈ B(L2(Sd−1), B∗s0). (8.23)

Finally writing (with χmiddle := 1− χ+
right − χ−left)

W+(λ) = Opr(χ+
right)W

+(λ) + Opr(χ−left)W
+(λ) + Opr(χmiddle)W

+(λ)

we conclude from we (4.54), (8.17), (8.19) and (8.23) that indeed

W+(λ) ∈ B(L2(Sd−1), B∗s0). (8.24)

Whence W+(λ) maps L2(Sd−1) continuously into V−s0(λ).

Re (ii) (Bijectiveness). We shall show that W+(λ) maps L2(Sd−1) onto V−s0(λ).
Using the expression (8.7) for the inverse τ ∈ D′(Sd−1), mimicking the first part of
Step III in the proof of Theorem 8.1 and using the Riesz’ representation theorem (see
for example [Yo]) in conjunction with (8.24), we obtain that indeed τ ∈ L2(Sd−1).
This argument also shows that

W+(λ)−1 ∈ B(V−s0(λ), L2(Sd−1)). (8.25)

Re (iii). The result follows from (ii) by the Banach’s closed range theorem, see [Yo].

Re (iv). Let

u±,τ (x) = (2π)−
1
2 e∓iπ

d−1
4 g−

1
2 (r, λ)r−

d−1
2 e±iφ(x,λ)τ(±x̂).

Clearly u±,τ ∈ B∗s0 with a continuous dependence of τ . We claim (with reference
to (8.2)) that

Opr(χ±)W±(λ)τ − u±,τ ∈ B∗s0,0. (8.26)
Notice that also the first term is in B∗s0 with a continuous dependence of τ , cf. (8.17)
and (8.19), hence it suffices to show (8.26) for τ ∈ C∞(Sd−1) in which case the
asymptotics follows from Theorem 5.7, cf. Step III of the proof of Theorem 8.1.

Now, combining (8.26) and the identity (8.11) we obtain

Opr(χ+)W−(λ)τ − u+,S(λ)τ , Opr(χ−)W+(λ)τ − u−,S(λ)∗τ ∈ B∗s0,0. (8.27)

By (8.26) and (8.27)

W−(λ)τ − (u−,τ + u+,S(λ)τ ), W
+(λ)τ − (u+,τ + u−,S(λ)∗τ ) ∈ B∗s0,0,

showing (8.12) and (8.13).
As for (8.14) we use (8.12) and (8.13); notice that the cross terms do not contribute

to the limit which can be seen by an integration by parts with respect to the variable
r = |x| invoking Proposition 3.3. �

On the basis of Theorem 8.2 we can characterize the scattering matrix S(λ) geo-
metrically as follows.
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Corollary 8.3. For all τ− ∈ L2(Sd−1) there exist uniquely determined u ∈ V−s0(λ)
and τ+ ∈ L2(Sd−1) such that

u− eiπ
d−1

4 e−iφ(x,λ)τ−(−x̂) + e−iπ
d−1

4 eiφ(x,λ)τ+(x̂)

(2π)
1
2 g

1
2 (r, λ)r

d−1
2

∈ B∗s0,0. (8.28)

We have τ+ = S(λ)τ−, u = W−(λ)τ− = W+(λ)τ+.

Proof. The existence part (with τ+ = S(λ)τ−) follows from (8.12).
To show the uniqueness, suppose that ui, τ+

i , i = 1, 2, satisfy the requirements of
(8.28) with the same τ−. Then for the difference, u = u1−u2, we have (H−λ)u = 0
and WF

(
B∗s0,0, u

) ⊆ {b = 1}. Hence by Proposition 4.10, u = 0. �

Corollary 8.4. Let d ≥ 2 and λ ≥ 0. Suppose (in addition to Conditions 2.1
and 2.3) that V2 and V3 are spherically symmetric and that

∫∞
0
r|V3(r)| dr < ∞

(Condition 2.2 is not needed since V2 can be absorbed into V1). Then there exists
a real-valued continuous function σl(·) such that for all spherical harmonics Y of
order l we have S(λ)Y = ei2σl(λ)Y .

Let ul(r) denote the regular solution of the reduced Schrödinger equation on the
half-line ]0,∞[

−u′′ + Vlu = 0; Vl(r) = 2(V (r)− λ) +
(l + d

2
− 1)2 − 4−1

r2
; l ≥ 0,

where, “regular” refers to the asymptotics u(r) � rl+
d−1
2 as r → 0. Then σl(·) is

uniquely determined mod 2π by the asymptotics

ul(r)

r
d−1
2

− C sin
( ∫ r

R0

√
2(λ− V (r′)) dr′ +

√
2λR0 − d−3+2l

4
π + σl(λ)

)
(λ− V (r))

1
4 r

d−1
2

∈ B∗s0,0,

where C = C(l, λ) is a (uniquely determined) positive constant.

Proof. Let Y be a spherical harmonic of order l. Note that its parity is (−1)l, i.e.
Y (−ω) = (−1)lY (ω). Besides, u := r−

d−1
2 ul(r)Y (x̂) solves (H − λ)u = 0. We apply

Corollary 8.3 with this u and with τ− = Y , so that τ+ = ei2σl(λ)Y . Then

eiπ
d−1

4 e−iφ(x,λ)τ−(−x̂) + e−iπ
d−1

4 eiφ(x,λ)τ+(x̂)

=
(

eiπ
d−1

4
−iφ(x,λ)+iπl + e−iπ

d−1
4

+iφ(x,λ)+i2σl(λ)
)
Y (x̂)

= 2eiπ l
2

+iσl(λ) sin
(
φ(x, λ)− d−3+2l

4
π + σl(λ)

)
Y (x̂).

We finish the proof using (5.22). �

9. Homogeneous potentials – location of singularities of S(0)

In this section we impose Conditions 2.1–2.3 with d ≥ 2 and the condition V1(r) =
−γr−µ for r ≥ 1 and hence V (r) = −γr−µ +O(r−µ−ε2), cf. (1.23). Throughout the
section g = g(λ = 0) =

√−2V1.
Our goal is to prove a statement about the localization of the singularities of the

(Schwartz) kernel S(0)(ω, ω′). The purely Coulombic case for which µ = 1 and d ≥ 3
was treated explicitly in Example 7.5. Under an additional condition we can write
down a fairly explicit integral that carries the singularities.
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In Section 10 we shall study the nature of these singularities (under the condition
of spherical symmetry) using one-dimensional WKB-analysis.

9.1. Reduced classical equations. Consider the classical system given by the
Hamiltonian h1(x, ξ) = 1

2
ξ2− γ|x|−µ for x 6= 0. The equations of motion for h1(x, ξ)

are invariant with respect to the transformation

(x, ξ) 7→ (λx, λ−µ/2ξ), λ ∈ R+, (9.1)

upon rescaling of time t 7→ tλ1+µ/2.
Let

T∗ := (Rd\{0})× Rd/ ∼,
where (x1, ξ1) ∼ (x2, ξ2) iff there exists λ > 0 such that (x1, ξ1) 7→ (λx2, λ

−µ/2ξ2).
Note that T∗ can be conveniently identified with T ∗(Sd−1)×R. We shall introduce
coordinates of T∗ by setting b = x̂ · ξ

g
∈ R and c̄ = (I − |x̂〉〈x̂|) ξ

g
∈ T ∗x̂ (Sd−1) with

x̂ ∈ Sd−1. (At this point we are slightly abusing the notation of Subsection 4.2,
however as noticed there the b and c̄ given by (4.7) agree with the above definition
for r ≥ 1.) The equations of motion for the hamiltonian h1 can be reduced to T∗.
Introducing the “new time” τ by dτ

dt
= g/r we have the following system of reduced

equations of motion: 
d
dτ
x̂ = c̄,

d
dτ
c̄ = −(1− µ

2
)bc̄− c̄2x̂,

d
dτ
b = (1− µ

2
)c̄2 + µ

2
(b2 + c̄2 − 1).

(9.2)

(Notice that the last equation follows from (4.29)). The maximal solution of (9.2)
that passes z = (x̂, b, c̄) ∈ T∗ at τ = 0 is denoted by γ(τ, z).

Beside (9.2), we shall consider a related dynamics given by the equations
d
dτ
x̂ = c̄,

d
dτ
c̄ = −(1− µ

2
)bc̄− c̄2x̂,

d
dτ
b = (1− µ

2
)c̄2.

(9.3)

The (maximal) solution of the system (9.3) that passes z = (x̂, b, c̄) ∈ T∗ at τ = 0
will be denoted by γ0(τ, z). Clearly the equation c̄ = 0 defines the fixed points, and
the system is complete.

Notice that the surface h−1
1 (0) in the coordinates (x̂, b, c̄) corresponds to the con-

dition b2 + c̄2 = 1. This surface is preserved both by the flow γ and γ0, and on this
surface both flows coincide.

Note that the flow γ0 is exactly solvable. The variable b is always increasing and
k = b2 + c̄2 is a conserved quantity; of course the relevant value is k = 1. For
non-fixed points we can compute its dependence on the modified time

b(τ) =
√
k tanh

√
k(1− µ

2
)(τ − τ0). (9.4)

Values k 6= 1 correspond in this picture to replacing the coupling constant γ → kγ.
Precisely, if k = b2 + c̄2 for a solution to (9.3) we can define r(τ) = r0 exp(

∫ τ
0
bdτ ′),

introduce t =
∫ τ

0
r
g(r)

dτ ′ and check that indeed{
x(t) = rx̂,

ξ(t) = g(r)(bx̂+ c̄),
(9.5)
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defines a zero energy solution to Hamilton’s equations with V → kV . The equation
b = 0 corresponds to a turning point (at which |x(t)| is smallest).

Clearly it follows from (9.4) that limτ→∞ b =
√
k, limτ→−∞ b = −√k. Upon

writing x̂(τ) · x̂(∞) = cos θ(τ) for some monotone continuous function θ(·) we obtain
from (1.27) that

|θ(∞)− θ(−∞)| = 2
2−µπ. (9.6)

9.2. Propagation of singularities. We will use the scattering wave front set at
zero energy, introduced in Subsection 4.2. The following proposition is somewhat
similar to Hörmander’s theorem about propagation of singularities adapted to scat-
tering at the zero energy. It is a “local” version of Proposition 4.5 which takes into
account the fact that in the case of a homogeneous potential we can use the dynam-
ics in the reduced phase space. Again the proof is a modification of that of [Hö3,
Proposition 3.5.1], see also [Me] and [HMV].

Proposition 9.1. Suppose u, v ∈ L2,−∞, Hu = v, s ∈ R, z ∈ T∗ and z 6∈ WF s
sc(u).

Define
τ+ = sup{τ ≥ 0| γ0(τ̃ , z) /∈ WF s

sc(u) for all τ̃ ∈ [0, τ ]},
τ− = inf{τ ≤ 0| γ0(τ̃ , z) /∈ WF s

sc(u) for all τ̃ ∈ [τ, 0]}.
If τ+ <∞, then γ0(τ+, z) ∈ WF s+2s0

sc (v). If τ− > −∞, then γ0(τ−, z) ∈ WF s+2s0
sc (v).

Proof. The proof is similar to the one of Proposition 4.5. We shall only deal with
the case of forward flow; the case of superscript "−"is similar (actually it follows
from the case of "+"by time reversal invariance). For convenience we shall assume
that ε2 ≤ 2− µ.
Step I. We will first show the following weaker statement: Suppose u ∈ L2,s− ε2

2 ,
v ∈ L2,s+2s0 and Hu = v. Then

γ0(τ, z) /∈ WF s
sc(u) for all τ ≥ 0. (9.7)

Suppose on the contrary that (9.7) is false. Then we obtain from Proposition 4.3
that the flows of (9.2) and (9.3), starting at z, coincide. Letting γ(τ) = γ(τ, z), it
thus needs to be shown that

τ+ := sup{τ ≥ 0|γ(τ̃) /∈ WF s
sc(u) for all τ̃ ∈ [0, τ ]} =∞. (9.8)

Suppose on the contrary that τ+ is finite. Then γ(τ+) is not a fixed point.
Consequently we can pick a slightly smaller τ̃+ < τ+ and a transversal (2d − 2)–
dimensional submanifold at γ(τ̃+), sayM, such that with J =]− ε+ τ̃+, τ+ + ε[ for
some small ε > 0 the map

J ×M 3 (τ,m)→ Ψ(τ,m) = γ(τ − τ̃+,m) ∈ T∗,

is a diffeomorphism onto its range.
We pick χ ∈ C∞c (M) supported in a small neighbourhood of γ(τ̃+) such that

χ(γ(τ̃+)) = 1 and

Ψ(]− ε+ τ̃+, τ̃+]× suppχ) ∩WF s(u) = ∅. (9.9)

We pick a non-positive function f ∈ C∞c (J) such that f ′ ≥ 0 on a neighbourhood of
[τ̃+, τ+ + ε) and f(τ+) < 0.

62



Let fK(τ) = exp(−Kτ)f(τ) for K > 0, and Xκ = (1 + κr2)1/2 for κ ∈]0, 1]. We
consider the symbol

bκ = g−1/2X1/2aκ; aκ = XsX−ε2/2κ F (r > 2)(fK ⊗ χ) ◦Ψ−1. (9.10)

First we fix K: A part of the Poisson bracket with b2
κ is

{h2, g
−1X2s+1X−ε2κ } = r−1YκbX

2s+1X−ε2κ , (9.11)

where Yκ = Yκ(r) is uniformly bounded in κ. We fix K such that 2K ≥ |Yκb|+ 2 on
supp bκ.

We compute

{h1, (fK ⊗ χ) ◦Ψ−1} =
g

r

([
d

dτ
fK

]
⊗ χ

)
◦Ψ−1. (9.12)

From (9.11) and (9.12), and by the choice of f and K, we conclude that

{h2, b
2
κ} ≤ −2a2

κ +O
(
r2s−ε2) at P ⊆ T∗ (9.13)

given by
P = Ψ({τ ∈ J |f ′(τ) ≥ 0} × suppχ).

Introducing Aκ = Opw(aκ) and Bκ = Opw(bκ) we have

〈i[H,B2
κ]〉u = −2Im 〈v,B2

κu〉, (9.14)

and we estimate the right hand side using the calculus of pseudodifferential opera-
tors, cf. [Hö1, Theorems 18.5.4, 18.6.3, 18.6.8], to obtain the uniform bound

|〈i[H,B2
κ]〉u| ≤ C1‖v‖s+2s0‖Aκu‖+ C2 ≤ ‖Aκu‖2 + C3. (9.15)

On the other hand using (9.9) and (9.13) we infer that

〈i[H − V3, B
2
κ]〉u ≤ −2‖Aκu‖2 + C4. (9.16)

An application of (4.12a) yields

〈i[V3, B
2
κ]〉u ≤ C5. (9.17)

Combining (9.15)–(9.17) yields

‖Aκu‖2 ≤ C6 = C3 + C4 + C5,

which in turn gives a uniform bound

‖X−ε2/2κ Opw
(
χγ(τ+)F (r > 2)

)
u‖2

s ≤ C7; (9.18)

here χγ(τ+) signifies a phase-space localization factor of the form entering in (4.8)
supported in a sufficiently small neighbourhood of the point γ(τ+).

We let κ → 0 in (9.18) and infer that τ+ /∈ WF s
sc(u), which is a contradiction.

We have proved (9.8) and hence (9.7).

Step II. To relax the assumptions on u and v used in Step I we modify the above
proof (using localization) in an iterative procedure very similar to Step II of the
proof of Proposition 4.5.

Pick t < s such that u ∈ L2,t and define sm = min(s, t + mε2/2) for m ∈ N. Let
correspondingly τ+

m be given as τ+ upon replacing s→ sm. Clearly

τ+
m ≤ τ+

m−1; m = 2, 3, . . . (9.19)

We shall show that

τ+
m <∞⇒ γ0(τ+

m, z) ∈ WF sm+2s0
sc (v). (9.20)
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We are done by using (9.20) for an m taken so large that sm = s.
Let us consider the start of induction given by m = 1, in which case obviously

u ∈ L2,sm−ε2/2. Suppose on the contrary that (9.20) is false. Then we consider the
following case:

τ+
m <∞ and γ0(τ+

m, z) /∈ WF sm+2s0
sc (v). (9.21)

It follows from (9.21) and an ellipticity argument that b2 + c̄2 = 1 at γ0(τ+
m, z)

(using that γ0(τ+
m, z) /∈ WF sm+µ

sc (Hu)). Consequently we can henceforth use the
flow of (9.2), γ(τ) = γ(τ, ·), exactly as in Step I.

We let ε > 0, J , f , fK , χ and Ψ be chosen as in Step I with τ+ → τ+
m and

τ̃+ → τ̃+
m. Let f̃ ∈ C∞c (]τ̃+

m − 2ε, τ+
m + 2ε[) with f̃ = 1 on J . Similarly let χ̃ ∈

C∞c (M) be supported in a small neighbourhood of γ(τ̃+
m) such that χ̃(γ(τ̃+

m)) = 1 in
a neighbourhood of suppχ.

It follows from (9.21), possibly by shrinking the supports of f̃ and χ̃, that

Iεv ∈ L2,sm+2s0 ; Iε = Opw
(
F (r > 2)(f̃K ⊗ χ̃) ◦Ψ−1

)
. (9.22)

Next, we introduce the symbol bκ by (9.10) (with s→ sm) and proceed as in Step I.
As for the bounds (9.15) we can replace v by Iεv up to addition of a term that
is bounded uniformly in κ. Clearly we can verify (9.16) and (9.17). So again we
obtain (9.18) (with s → sm) and therefore a contradiction as in Step I. We have
shown (9.20) for m = 1.

Now suppose m ≥ 2 and that (9.20) is verified for m − 1. We need to show
the statement for the given m. Due to (9.19) and the induction hypothesis we can
assume that

τ+
m < τ+

m−1. (9.23)

Again we argue by contradiction assuming (9.21). We proceed as above noticing
that it follows from (9.23) that in addition to (9.22) we have

Iεu ∈ L2,sm−1 ; (9.24)

at this point we possibly need to shrink the supports of f̃ and χ̃ even more (viz.
taking ε < (τ+

m−1 − τ+
m)/2). By replacing v by Iεv and u by Iεu at various points

in the procedure of Step I (using (9.22) and (9.24), respectively) we obtain again a
contradiction. Whence (9.20) follows. �

Remark 9.2. Suppose u ∈ L2,t1 , v ∈ L2,t2 and Hu = v. Suppose z0 6∈ WF s
sc(u)

for some s > t1. Fix τ̃+ ∈]0,∞[ and suppose that γ0(τ, z0) 6∈ WF s+2s0
sc (v) for all

τ ∈ [0, τ̃+]. Write γ0(τ̃+, z0) = (ω1, c̄1, b1) = (ω1, η1). Then there exist neighbour-
hoods Nω1 3 ω1 and Nη1 3 η1 such that for all χω1 ∈ C∞c (Nω1) and χη1 ∈ C∞c (Nη1) :
Opw
(
χz1F (r > 2)

)
u ∈ L2,s; here χz1(x, ξ) = χω1(x̂)χη1(ξ/g). Notice that this con-

clusion is already contained in Proposition 9.1; however the above proof yields an
additional bound:

First, writing z0 = (ω0, η0), we can pick any similarly defined localization factor,
say denoted by χz0 , with χω0 = 1 and χη0 = 1 around the points ω0 and η0, respec-
tively, and such that Opw

(
χz0F (r > 2)

)
u ∈ L2,s (this is by assumption). Next we

pick a small neighbourhood U of γ0([0, τ̃+], z0) ⊂ T∗ and χ ∈ C∞c (U) with χ = 1
around this orbit segment. If U is small enough we have (again by assumption)
that Opw

(
χγ0F (r > 2)

)
v ∈ Ls+2s0 , χγ0(x, ξ) := χ(x̂, ξ/g). Now, there are neigh-

bourhoods Nω1 3 ω1 and Nη1 3 η1 depending only on χz0 and χγ0 such that for all
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χω1 ∈ C∞c (Nω1) and χη1 ∈ C∞c (Nη1) :

‖Opw
(
χz1F (r > 2)

)
u‖s

≤ C
(‖Opw

(
χz0F (r > 2)

)
u‖s + ‖u‖t1 + ‖Opw

(
χγ0F (r > 2)

)
v‖s+2s0 + ‖v‖t2

)
;

the constant C only depends on the various localization factors.

9.3. Location of singularities of the kernel of the scattering matrix. In this
subsection we describe the location of the singularities of the scattering matrix at
zero energy.

Theorem 9.3. Suppose that V1(r) = −γr−µ for r ≥ 1. Then the kernel S(0)(ω, ω′)
is smooth outside the set {(ω, ω′)| ω · ω′ = cos µ

2−µπ}.
To analyse S(0)(ω, ω′) we shall use the representation (7.3a), which we write

(formally) as
S(0)(ω, ω′) = −2π〈j+(·, ω), v−(·, ω′)〉+ 2πi〈v+(·, ω), R(+i0)v−(·, ω′)〉,

where
j±(x, ω) = (2π)−d/2

(
eiφ± ã±

)
(x, ω, 0),

v±(x, ω) = (2π)−d/2
(
eiφ± t̃±

)
(x, ω, 0).

Let φ+
sph denote the solution of the eikonal equation for the potential V1 at zero

energy, cf. (3.9). It is given by

φ+
sph(x, ω) =

√
2γ

1− µ/2
(
r1−µ/2 cos(1− µ/2)θ −R1−µ/2

0

)
; (9.25)

here cos θ = x̂ · ω. Using x⊥ = ω−x̂ cos θ
sin θ

and ∇xθ = −x⊥
r
, we can also compute

F+
sph(x, ω) = ∇xφ

+
sph(x, ω)

=
√

2γr−µ/2
(
x̂ cos(1− µ/2)θ + x⊥ sin(1− µ/2)θ

)
Lemma 9.4. For all s ∈ R, ω ∈ Sd−1 and multiindices δ

WF s
sc(∂

δ
ωv
±(·, ω))

⊆
{
z = (x̂, c̄, b) ∈ T∗

∣∣1− σ′ ≤ ±x̂ · ω ≤ 1− σ, bx̂+ c̄ = ±F
+
sph(x̂,±ω)

(2γ)1/2

}
, (9.26)

WF s
sc(∂

δ
ωj
±(·, ω))

⊆
{
z = (x̂, c̄, b) ∈ T∗

∣∣1− σ′ ≤ ±x̂ · ω, bx̂+ c̄ = ±F
+
sph(x̂,±ω)

(2γ)1/2

}
. (9.27)

Suppose in addition that χ+ ∈ C∞(R), χ′+ ∈ C∞c (R) and suppχ+ ⊂]1,∞[. Then

Opw(χ+(a))∂δωv
±(·, ω), Opw(χ+(a))∂δωj

±(·, ω) ∈ L2,s. (9.28)

Proof. Only the “+” case needs to be considered (can be seen by complex conjuga-
tion). Upon multiplying by a localization operator supported outside of the right
hand side of (9.26) we need to demonstrate that the result is in L2,s, cf. the defini-
tion (4.8). Using right Kohn-Nirenberg quantization (instead of Weyl quantization)
this can be done by integrating by parts in the explicit integrals, exactly as in the
proofs of Lemma 6.8 (iii) and Theorem 6.11. The arguments for (9.27) and (9.28)
are the same, in particular, (9.28) follows from the proof of Theorem 6.11. �
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Proof of Theorem 9.3. Due to Proposition 4.8 and Lemma 9.4 we are allowed to act
by R(+i0) on ∂δ′ω′v−(·, ω′)). In fact, for all τ ∈ C∞(Sd−1)

R(+i0)T−(0)τ =

∫
Sd−1

R(+i0)v−(·, ω′)τ(ω′) dω′. (9.29)

Using the representation (7.3a), interpreted as a form on C∞(Sd−1), and (9.29)
we have Sκ(0)→ S(0) as κ↘ 0 where the kernel of Sκ(0) is the well-defined smooth
expression

Sκ(0)(ω, ω′) = − 2π〈j+(·, ω), F (κ| · | < 1)v−(·, ω′)〉
+ 2πi〈v+(·, ω), F (κ| · | < 1)R(+i0)v−(·, ω′)〉.

It remains to be shown that Sκ(0)(·, ·) has a limit in C∞
({ω · ω′ 6= cos µπ

2−µ}
)
.

By integration by parts it follows that the first term has a limit, in fact in
C∞
(
Sd−1 × Sd−1

)
, cf. the proof of Lemma 9.4. Whence we only look at the second

term.
By Lemma 9.4 and Proposition 3.3, for all s

WF s
sc(∂

δ
ωv

+(·, ω)) ⊆ {c̄ 6= 0, b2 + c̄2 = 1}
∩ {z | lim

τ→+∞
x̂(τ) = ω, where γ0(τ, z) = (x̂(τ), b(τ), c̄(τ))}; (9.30)

here γ0(τ, z) refers to the flow defined by (9.3).
By Propositions 4.8 and 9.1, for all s

WF s
sc(R(+i0)∂δ

′
ω′v
−(·, ω′))

⊆ {γ0(τ, z) | τ ≥ 0, z ∈ WF s
sc(∂

δ′
ω′v
−(·, ω′))} ∪ {c̄ = 0, b > 0}

⊆ {z | lim
τ→−∞

x̂(τ) = −ω′} ∪ {c̄ = 0, b > 0}. (9.31)

By invoking (9.6) we see that the sets on the right hand side of (9.30) and (9.31)
are disjoint away from {ω · ω′ 6= cos µπ

2−µ}. Hence also

WF s
sc(∂

δ
ωv

+(·, ω)) ∩WF s
sc(R(+i0)∂δ

′
ω′v
−(·, ω′)) = ∅,

which implies, upon taking s = 0 and using (9.28) and a suitable partition of unity,
that

〈∂δωv+(·, ω, 0), R(+i0)∂δ
′
ω′v
−(·, ω′, 0)〉

is well-defined.
By the same arguments

∂δω∂
δ′
ω′〈v+(·, ω, 0), F (κ| · | < 1)R(+i0)v−(·, ω′, 0)〉
→ 〈∂δωv+(·, ω, 0), R(+i0)∂δ

′
ω′v
−(·, ω′, 0)〉

locally uniformly in {ω · ω′ 6= cos µπ
2−µ}. Notice that the bound (9.28) is uniform in

ω; a similar statement is valid for the bounds underlying (9.26), and we also need
at this point to invoke Remark 9.2. �
Remarks 9.5. 1) The somewhat abstract procedure of the proof of Theorem 9.3

does not provide information about the nature of the singularities at the cone
ω · ω′ = cos µ

2−µπ. In the study of the singularities at the diagonal of the
kernel of scattering matrices for positive energies (see [IK2] and [Ya2]) it is
important that the eikonal and transport equations can be solved in sufficiently
big sectors. In combination with resolvent estimates this allows one to put the
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singularities in a rather explicit term similar to the first one on the right hand
side of (7.2a). A very similar procedure can be used (at least for V2 = 0) for
S(0)(ω, ω′) provided µ < 1, however for µ ∈ [1, 2[ there is a “glueing problem”
due to the fact that in order to apply resolvent estimates in this case the
constructed solutions to the eikonal equations φ± need to be extended, viz. as
to including some θ > π

2−µ . Therefore, multivalued φ± are needed. We devote
Subsection 9.4 to a discussion of this question.

2) Under Condition 1.1 it follows essentially by the same method of proof that
the kernel S(λ)(ω, ω′) for λ > 0 is smooth outside the set {(ω, ω′)| ω = ω′}; for
that we use (9.3) with µ = 0. See [Va2, Chapter 19] for a related result and
procedure.

3) There is a discrepancy between our results and the main result of [Kv]. The
idea of [Kv] is to use a partial wave analysis to obtain an asymptotic expression
of the scattering amplitude for λ → 0 (with the assumption of radial symme-
try and under the short-range condition µ > 1). Unfortunately [Kv, (17)] is
incompatible with Theorems 7.2, 7.3 and 9.3.

9.4. Distributional kernel of S(0) as an oscillatory integral. In addition to
the previous assumption V1(r) = −γr−µ for r ≥ 1 we shall here assume that V2 = 0,
see though Remark 9.6 1). We shall explain a procedure which in principle allows
us to calculate the singularities of the kernel S(0)(ω, ω′); a fairly explicit oscillatory
integral will be specified. Using this integral we derive below the location of the sin-
gularities of S(0) by the method of non-stationary phase, which gives an alternative
proof of Theorem 9.3 (under the condition that V2 = 0).

We shall improve on the representation (7.3a) for S(0). Notice that the functions
ã+ and φ+ used up to now are supported near the forward region cos θ = x̂ · ω ≈ 1
only. Now we shall take advantage of the fact that the expression (9.25) defines a
solution to the eikonal equation for all values of θ. We shall consider a cut-off at
larger values of θ, in fact slightly to the left of the critical angle θ = (1 − µ/2)−1π.
The basic idea is similar to the one applied in the study of the kernel of scattering
matrices for positive energies, cf. Remark 9.5 1). If we can extend the construction
of the phase and amplitude as indicated above then we can apply a “two-sided”
resolvent estimate to deal with the second term on the right hand side of (7.3a),
i.e. to show that it contributes by a smooth kernel; in our case the appropriate
“two-sided” estimate is given by (4.3f).

Now to the problem of extending the phase up to θ = (1 − µ/2)−1π there is
obviously an issue of well-definedness since θ as a function of x is multi-valued; for
the case of positive energies this problem does not occur since the cut off in this
case occurs before the angle θ = π. We have

(J+τ)(x) = (2π)−d/2
∫
Sd−1

(
eiφ+

ã+
)
(x, ω, 0)τ(ω)dω. (9.32)

In fact in the present spherically symmetric case the dependence of the variables x
and ω is through r = |x| and x̂ · ω only. Writing

ω = cos θ x̂+ sin θ ω̃,

where ω̃ · x̂ = 0, (9.32) can be written as

(2π)−d/2
∫
Sd−2

dω̃

∫ π

0

(
eiφã

)
(r, θ)τ(cos θ x̂+ sin θ ω̃) sind−2 θ dθ; (9.33)
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for convenience we dropped the superscript. The phase φ is given by (9.25), and
using this expression and the orbit (1.27) we can extend the support of ã by solving
transport equations as in Subsection 5.3, the cut off is now taken slightly to the left
of θ = (1−µ/2)−1π. Precisely the cut off is defined as follows: First pick L ∈ N such
that (1−µ/2)L < 1 while (1−µ/2)(L+ 1) ≥ 1. We shall assume that the analogue
of σ′ for the construction of J−, entering in (5.2) for the construction of J+, is so
small that

(1− µ/2)(Lπ + cos−1(1− σ′)) < π. (9.34)
Next the version of (5.2) that we need is given in terms of the σ of the construction
of J− as follows: Choose angles πL < θ0 < θ′0 < π(L+ 1) such that (1− µ/2)θ′0 < π
and (1 − µ/2)

(
θ0 + cos−1(1 − σ)

)
> π. Introduce a smoothed out characteristic

function

χ2(s) =

{
1 for s ≤ θ0

0 for s ≥ θ′0
, (9.35)

and with this choice the new cut off function takes the (essentially same) form
χ = χ1(r)χ2(θ).

The extended ã has similar properties as before due to the cut off. Whence we
are lead to consider the following modification of the expression (9.33):∫

Sd−2

dω̃

∫ ∞
0

f(r, θ)τ(cos θ x̂+ sin θ ω̃) | sind−2 θ| dθ; f = (2π)−d/2eiφã,

where the θ–integration (due to the cut off) effectively takes place on the interval
[0, (1 − µ/2)−1π]. The next step is to change variable writing for θ in intervals of
the form (2kπ, (2k + 1)π],

cos θ x̂+ sin θ ω̃ = cosψ x̂+ sinψ ω̃; ψ = θ − 2kπ,

while on intervals of the form (2k + 1)π, (2k + 2)π],

cos θ x̂+ sin θ ω̃ = cosψ x̂+ sinψ (−ω̃); ψ = (2k + 2)π − θ,
respectively; here k ∈ N ∪ {0}. Whence we consider the expression∫

Sd−1

F (r, ψ)τ(ω)dω,

where

F (r, ψ) =
∞∑
k=0

{
f(r, ψ + 2kπ) + f(r, (2k + 2)π − ψ)

}
,

and as above

ω = cosψ x̂+ sinψ ω̃ with ω̃ · x̂ = 0 and ψ ∈ [0, π],

i.e. ψ = cos−1 x̂ · ω.
We claim that F (r, ψ) is smooth in x and ω. Notice that this is not an obvious

fact, since although the function ψ = cos−1 x̂ ·ω is continuous it has cusp singularity
at x̂ ·ω = ±1. However, as can easily verified ψ2 is smooth at x̂ ·ω = 1 and (π−ψ)2

is smooth at x̂ · ω = −1, respectively. Moreover, f(r, ψ) and f(r, ψ + 2(k + 1)π) +
f(r, (2k + 2)π − ψ) are in fact smooth functions of ψ2 near x̂ · ω = 1, and similarly
f(r, ψ+2kπ)+f(r, (2k+2)π−ψ) = f(r, (2k+1)π−(π−ψ))+f(r, (2k+1)π+(π−ψ))
is a smooth function of (π − ψ)2 at x̂ · ω = −1.
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Recall that we have the representation (7.3b)

S(0)(ω, ω′) = −2π〈w+(ω, 0), eiφ− t̃−(·, ω′, 0)〉, (9.36)

where w+(ω, 0) is the generalized eigenfunction of Theorem 6.5.
Define w = w(x, ω) = F (r, ψ) − R(−i0)HF . Due to Proposition 4.10, Propo-

sition 4.1 (iii) and Lemma 6.8 (iii) this w agrees with the eigenfunction w+(ω, 0),
cf. the proof of Lemma 6.10. Therefore, our (extended) version of (7.3a) reads

S(0)(ω, ω′) = −2π〈F, eiφ− t̃−(·, ω′, 0)〉+ 2π〈R(−i0)HF, eiφ− t̃−(·, ω′, 0)〉. (9.37)

As indicated above the contribution to S(0)(ω, ω′) from the second term on the right
hand side of (9.37) is smooth in ω and ω′, if we use a cut off sufficiently close (but
to the left of) the critical angle θ = (1 − µ/2)−1π; this is indeed accomplished by
using (9.35) as cut off function.

We conclude that the singularities of the kernel of S(0) are the same as those of
the kernel of the operator S̃(0) given by

〈τ1, S̃(0)τ2〉 = −2π
〈∫

F (r, ψ)τ1(ω)dω,

∫ (
eiφ− t̃−

)
(·, ω′, 0)τ2(ω′)dω′

〉
.

Whence (formally)

S̃(0)(ω, ω′) = −2π

∫
F (r, ψ)

(
eiφ− t̃−

)
(·, ω′, 0) dx. (9.38)

Next we introduce the variable θ′ = cos−1 x̂ · (−ω′) ∈ [0, π/2); we can represent
φ−(x, ω′, 0) = −φ(r, θ′), cf. (3.6). The integrand on the right hand side of (9.38) is
given as

∑∞
k=0 fk where fk has the form

e−i
(
φ(r,ψ+2kπ)+φ(r,θ′)

)
g(r, ψ + 2kπ, θ′)

+ e−i
(
φ(r,(2k+2)π−ψ)+φ(r,θ′)

)
g(r, (2k + 2)π − ψ, θ′). (9.39)

Let us argue that the integral (9.38) is well-defined in {ω ·ω′ 6= cos µ
2−µπ}, in agree-

ment with Theorem 9.3. The argument is based on the method of non-stationary
phase. First we notice that the cusp singularities at ψ = 0 and ψ = π correspond
to non-stationary points. More precisely we can write

x = r(cosψ ω + sinψ ˜̂x),

and perform the x–integration as∫
· · · dx =

∫ π

0

sind−2 ψ dψ

∫
Sd−2

d˜̂x∫ ∞
0

· · · rd−1dr. (9.40)

Now on the support of g the factor cos(1−µ/2)θ′ ≥ cos θ′ ≥ 1−σ′ while the factors
cos(1− µ/2)(ψ + 2kπ) and cos(1− µ/2)((2k + 2)π − ψ) stay sufficiently away from
−1 (given that ψ ≈ 0 or ψ ≈ π) to ensure that the sum of phases does not vanish;
here we use (9.34). Thus the phases of fk are nonzero near the ψ–endpoints of
integration and consequently integration by parts with respect to r regularizes the
integral (9.38) (upon first substituting (9.40) and localizing near the ψ–endpoints).

By the same reasoning as above, depending on whether L is even or odd (viz.
L = 2l or L = 2l + 1) only the integral of one term of (9.39) (and only with
k = l) carries singularities. We first look at the case for which only the first term of
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(9.39) e−i(φ(r,ψ+2lπ)+φ(r,θ′))g(r, ψ + 2lπ, θ′) contributes by singularities. Clearly for a
stationary point

cos((1− µ/2)(ψ + 2lπ)) + cos((1− µ/2)θ′) = 0, (9.41)

which leads to the condition

cos(ψ + θ′) = cos( 2
2−µπ). (9.42)

There are three cases to consider.

Case I. ω = −ω′. In this case θ′ = ψ so that
d

dψ

(
φ(r, ψ + 2lπ) + φ(r, θ′)

)
= −

√
2γr1−µ/2( sin(1− µ/2)(ψ + 2lπ) + sin(1− µ/2)ψ

)
< 0. (9.43)

Whence there are no stationary points.

Case II. ω = ω′. In this case θ′ = π − ψ so that (9.42) reads

ω · ω′ = 1 = − cos( 2
2−µπ) = cos( µ

2−µπ).

This agrees with the “rule” of Theorem 9.3.

Case III. ω 6= Cω′. In dimension d ≥ 3 the vectors ˜̂x = ±y/|y| where y = ω′−ω′·ω ω
are the only possible critical points of the map

Sd−2 3 ˜̂x→ θ′ = cos−1(−(cosψ ω + sinψ ˜̂x) · ω′) ∈ R.

Consequently for any stationary point, x̂ must belong to the plane spanned by ω
and ω′ (like for d = 2). Let us introduce the angle γ = cos−1 ω · (−ω′). There are
three possible relationships to be considered a) γ = |ψ − θ′|, b) γ = ψ + θ′ and c)
γ = 2π − (ψ + θ′). For a) θ′ = ψ ∓ γ can be substituted into the sum of phases and
we compute as in (9.43). Again there will not be any stationary point. For b) we
can use (9.42) to compute

ω · ω′ = − cos γ = − cos( 2
2−µπ) = cos( µ

2−µπ),

which agrees with the “rule” of Theorem 9.3. Similarly for c) we compute

ω · ω′ = − cos γ = − cos(ψ + θ′) = − cos( 2
2−µπ) = cos( µ

2−µπ).

Next we look at the case for which only e−i
(
φ(r,2(l+1)π−ψ)+φ(r,θ′)

)
g(r, 2(l+1)π−ψ, θ′)

contributes by singularities. For a stationary point

cos((1− µ/2)(2(l + 1)π)− ψ) + cos((1− µ/2)θ′) = 0, (9.44)

which leads to the condition

cos(ψ − θ′) = cos( 2
2−µπ). (9.45)

Again there are three cases to consider.

Case I. ω = −ω′. In this case θ′ = ψ so that

ω · ω′ = −1 = − cos( 2
2−µπ) = cos( µ

2−µπ),

which agrees with Theorem 9.3.
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Case II. ω = ω′. We have θ′ = π − ψ so that
d

dψ

(
φ(r, 2(l + 1)π − ψ) + φ(r, θ′)

)
(9.46)

=
√

2γr1−µ/2( sin(1− µ/2)(2(l + 1)π − ψ) + sin(1− µ/2)(π − ψ)
)
> 0;

whence there are no stationary points.

Case III. ω 6= Cω′. As in the previous “Case III”, for any stationary point the vector
x̂must belong to the plane spanned by ω and ω′. Again we define γ = cos−1 ω ·(−ω′),
and there are three possible relationships to be considered a) γ = |ψ − θ′|, b)
γ = ψ + θ′ and c) γ = 2π − (ψ + θ′). For a)

ω · ω′ = − cos γ = − cos(ψ − θ′) = − cos( 2
2−µπ) = cos( µ

2−µπ),

which agrees with Theorem 9.3. For b) and c) we compute as in (9.46); there are
no stationary points.

Remarks 9.6. 1) For the above considerations (on the location of singularities) it
is not strictly needed that V2 = 0. In fact we can include a V2 as in Condition 2.1
with ε2 > 1 − 1

2
µ and solve transport equations as before using the same phase

function (the one determined by V1 only).
2) Suppose in addition to 1) that V2 is spherically symmetric. Then the operators

T = S(0) as well as T = S̃(0) obey that RTR−1 = T for all d-dimensional
rotations R. This means that the kernel T (ω, ω′) of these operators is a function
of ω · ω′ only. Using the stationary phase method it is feasible for µ

2−µ /∈ Z to
write (as a possible continuation of the above analysis) the singular part of the
kernel of S̃(0) as a sum of terms of the form (ω · ω′ − ν ± i0)−

s
2a(ω · ω′) (at least

for poly-homogeneous V2); we shall not elaborate. The next section is devoted
to an alternative approach that we find more elementary, and besides, by that
method we can extract the singular part in the exceptional cases µ

2−µ ∈ Z too.

10. Homogeneous potentials – type of singularities of S(0)

In this section we shall compute the main contribution of the scattering matrix
S(0) for a potential homogeneous of degree µ (plus a lower order term), see Sub-
section 10.3 for precise conditions. It will turn out to be the evolution operator for
the wave equation on the sphere at time −µ

2−µπ. We devote Subsections 10.1–10.3 to
a study of this operator. In particular, we will compute explicitly its distributional
kernel and determine the location of its singularities. We assume throughout the
section that d ≥ 2.

10.1. Evolution operator of the wave equation on the sphere. For any
1 ≤ i < j ≤ d, define the corresponding angular momentum operator

Lij := −i(xi∂xj − xj∂xi).
Set

L2 :=
∑

1≤i<j≤d
L2
ij, Λ :=

√
L2 + (d/2− 1)2.

Note that Λ is a self-adjoint operator on L2(Sd−1) and its eigenfunctions with eigen-
value l + d/2− 1 are lth order spherical harmonics for l = 0, 1, . . .
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For any θ one can compute exactly the integral kernel of eiθΛ. Although the result
already appears in the literature, see [Ta, Chapter 4, (2.13)], we shall for the readers
convenience give a complete derivation (this proof is different from Taylor’s). Note
that the operator appears naturally when we solve the wave equation on the sphere,
therefore we call it the evolution operator of the wave equation on the sphere.

First we need to introduce some notation about distibutions. For any ε > 0 and
s ∈ R, the expression

R ∈ y 7→ (y ± iε)−
s
2

defines uniquely a function on a real line, which can be viewed as a distribution in
S ′(R). It is well known that for any φ ∈ S(R) there exists a limit

lim
ε↘0

∫
(y ± iε)−

s
2φ(y)dy =:

∫
(y ± i0)−

s
2φ(y)dy,

which defines a distribution in S ′(R). In the sequel we will treat this distribution
as if it were a function denoting it by (y± i0)−

s
2 . Note that for s, ε > 0 we have the

identity

(y ± iε)−
s
2 =

e∓iπ s
4

Γ(s/2)

∫ ∞
0

eit(±y+iε)t
s−2
2 dt. (10.1)

We shall in this section show the following result:

Proposition 10.1. (1) If θ = π2k, k ∈ Z, then eiθΛ = (−1)kd times the identity.
(2) If θ = π(2k + 1), k ∈ Z, then eiθΛ = eiπ(2k+1)(d/2−1)P , where P is the parity

operator.
(3) If θ ∈]π2k, π(2k + 1)[, k ∈ Z, then eiθΛ has the distributional kernel

eiθΛ(ω, ω′) = (2π)−d/2 sin θ Γ(d/2)e−iπ/2(−ω · ω′ + cos θ − i0)−d/2.

(4) If θ ∈]π(2k − 1), π2k[, k ∈ Z, then eiθΛ has the distributional kernel

eiθΛ(ω, ω′) = (2π)−d/2 sin θ Γ(d/2)e−iπ/2(−ω · ω′ + cos θ + i0)−d/2.

10.1.1. Tchebyshev and Gegenbauer polynomials. Recall that the Tchebyshev poly-
nomials (of the first kind) are defined by the identity

Tn(cosφ) := cosnφ, n = 0, 1, . . . .

Let |t| < 1. The following generating function of Tchebyshev polynomials follows
by an elementary calculation:

− ln(1− 2wt+ t2) =
∞∑
l=1

2tl

l
Tl(w). (10.2)

Gegenbauer polynomials are defined by the generating function [Mü, AAR]

1

(1− 2wt+ t2)(d−2)/2
=
∞∑
l=0

tlC
(d−2)/2
l (w). (10.3)

The left hand sides of (10.2) and (10.3) look different. But after simple manipula-
tions (involving differentiation of both sides) they become quite similar

−t+ t−1

(t− 2w + t−1)
d
2

=


T0(w) +

∑∞
l=1 t

l2Tl(w), d = 2;

∑∞
l=0 t

l+ d
2
−1 2l+d−2

d−2
C

(d−2)/2
l (w), d ≥ 3.

(10.4)
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By substituting t = eiθ for Im θ > 0, we rewrite this as

−i2 sin θ

2d/2(cos θ − w)
d
2

=


T0(w) +

∑∞
l=1 eilθ2Tl(w), d = 2;

∑∞
l=0 ei(l+ d

2
−1)θ 2l+d−2

d−2
C

(d−2)/2
l (w), d ≥ 3.

(10.5)

10.1.2. Projection onto lth sector of spherical harmonics. It is well-known that the
integral kernel of the projection onto lth sector of spherical harmonics in L2(Sd−1)
can be computed explicitly. This fact is usually presented in the literature as the
addition theorem for spherical harmonics, see e.g. Theorem 2, Sect. 2 of [Mü]. In
the case d = 3 it can also be found in [Vl].

Proposition 10.2. Let Y be an lth order spherical harmonic in L2(Sd−1).
(1) In the case d = 2,∫

S1

1

2π
T0(x̂ · ŷ)Y (ŷ)dŷ = δl0Y (x̂). (10.6)∫

S1

1

π
Tn(x̂ · ŷ)Y (ŷ)dŷ = δlnY (x̂), n = 1, 2, . . . .

(2) In the case d ≥ 3,∫
Sd−1

(d− 2 + 2l)Γ(d/2− 1)

4πd/2
C(d−2)/2
n (x̂ · ŷ)Y (ŷ)dŷ = δlnY (x̂). (10.7)

Proof. The case (10.6) is elementary. In the proof below we restrict ourselves
to d ≥ 3.

Let us first recall the formula for the Green’s function in Rd for d ≥ 3:

Gd(x) = −Γ(d/2− 1)

4πd/2|x|d−2
= − 1

sd−1(d− 2)|x|d−2
, (10.8)

where sd−1 = 2πd/2

Γ(d/2)
is the area of Sd−1. It satisfies

∆Gd = δ0,

where δ0 is Dirac’s delta at zero. Recall also the 3rd Green’s identity: if ∆g = 0
and Ω is a sufficiently regular domain containing x, then

g(x) =

∫
∂Ω

g(y)∇yGd(x− y)d~s(y)−
∫
∂Ω

(∇g)(y)Gd(x− y)d~s(y). (10.9)

We extend Y to Rd by setting g(x) = |x|lY (x̂). Note that

∆g(x) = 0, x̂∇xg(x) = lg(x).

By the (10.3), for |x| < |y|

Gd(x− y) = −Γ(d/2− 1)

4πd/2

∞∑
n=0

C(d−2)/2
n (x̂ŷ)|x|n|y|−d+2−n,

ŷ · ∇yGd(x− y) =
Γ(d/2− 1)

4πd/2

∞∑
n=0

(d− 2 + n)C(d−2)/2
n (x̂ŷ)|x|n|y|−d+1−n.
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We apply (10.9) to the unit ball, so that |y| = 1 and |x| < 1:

|x|lY (x̂) =

∫
Sd−1

g(ŷ)ŷ · ∇Gd(x− ŷ)dŷ −
∫
Sd−1

(ŷ · ∇g)(ŷ)Gd(x− ŷ)dŷ

=
Γ(d/2− 1)

4πd/2

∞∑
n=0

(d− 2 + n+ l)

∫
Sd−1

Y (ŷ)C(d−2)/2
n (x̂ŷ)|x|ndŷ. (10.10)

Comparing the powers of |x| on both sides of (10.10) we obtain (10.7). �

10.1.3. Proof of Proposition 10.1. Let Qd−1
l be the orthogonal projection onto lth

order spherical harmonics on Sd−1. We multiply (10.5) by Γ(d/2)2−1π−d/2, set w =
ω · ω′ and use Proposition 10.2. We obtain

−i sin θ Γ(d/2)

(2π)d/2(cos θ − ω · ω′)d/2 =
∞∑
l=0

Qd−1
l (ω, ω′)ei(l+d/2−1)θ

= eiθΛ(ω, ω′).

Replace θ with θ + iε, where θ is real and ε positive. For small ε we have

cos(θ + iε) ≈ cos θ − i sin θε.

Now sin θ > 0 for θ ∈]π2k, π(2k + 1)[ and sin θ < 0 for θ ∈]π(2k − 1), π2k[, which
ends the proof for the case θ ∈ R \ πZ.

The case θ ∈ πZ is obvious.

10.2. Evolution operator of the wave equation on the sphere as a FIO.
Let X be a smooth compact manifold of dimension n. Let us recall some basic
definitions related to Fourier integral operators on X, cf. [Hö4].

We say that X × X × Rk 3 (x, x′, θ) 7→ φ(x, x′, θ) is a non-degenerate phase
function if it is a function homogeneous of degree 1 in θ, smooth and satisfying
∇φ 6= 0 away from θ = 0, and such that

{(x, x′, θ) ∈ X ×X × Rk | ∇θφ(x, x′, θ) = 0}
is a smooth manifold on which ∇∇θ1φ, . . . ,∇∇θkφ are linearly independent.

Let χ be a smooth and homogeneous transformation on T∗X \ X×{0}. We say
that it is associated to a non-degenerate phase function φ iff two pairs (x, ξ), (x′, ξ′) ∈
T∗X \ {0}×X satisfy χ(x′, ξ′) := (x, ξ) exactly when

ξ = ∇xφ(x, x′, θ),

ξ′ = −∇x′φ(x, x′, θ),

0 = ∇θφ(x, x′, θ). (10.11)

The transformation χ is automatically canonical, that is, it preserves the symplectic
form.

We say that a smooth functionX×X×Rk 3 (x, x′, θ) 7→ u(x, x′, θ) is an amplitude
of order m iff

∂αx∂
α′
x′ ∂

β
θ u = O(〈θ〉m−|β|).

Recall from [Hö4] that an operator U from C∞(X) to D′(X) is called a Fourier
integral operator of order

m− n

2
+
k

2
.
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iff in local coordinate patches its distributional kernel can be written as

U(x, x′) =

∫
eiφ(x,x′θ)u(x, x′, θ) dθ, (10.12)

where θ ∈ Rk are auxiliary variables, the function φ is a non-degenerate phase
function, and u is an amplitude of order m.

If the phase of U is associated to a canonical transformation χ, we say that U itself
is associated to χ. We note that in such a case there are conditions under which we
have for all v ∈ D′(X) (using here the notion of wave front set of a distribution, cf.
[Hö4, Section 2.5])

WF (Uv) ⊆ χ(WF (v));

see [Hö4, Proposition 2.5.7 and Theorem 2.5.14] (these conditions are fulfilled for
the example U = Uθ given below).

Theorem 10.3. The operator Uθ := eiθΛ is a FIO of order 0.

Proof. If θ ∈ πZ, then eiθΛ is a so-called point transformation. But point trans-
formations given by diffeomorphisms of the underlying manifold are always FIO of
order zero.

Assume that θ /∈ πZ. Consider e.g. the case θ ∈]π2k, π(2k + 1)[. By (10.1) and
Proposition 10.1 the kernel of Uθ can then be written as

Uθ(ω, ω
′) = C

∫ ∞
0

eit(ω·ω′−cos θ)t
d−2
2 dt. (10.13)

If we compare (10.13) with the definition of a FIO given above, we see that t(ω ·
ω′ − cos θ) is a non-degenerate phase function. We also have n = d − 1, m = d−2

2
and k = 1. Thus Uθ is a FIO of order

d− 2

2
− d− 1

2
+

1

2
= 0.

�

Let us describe the canonical transformation associated to the FIO Uθ. Let
(ω, ξ) ∈ T∗(Sd−1). It is enough to assume that |ξ| = 1. Then the canonical trans-
formation χθ associated to Uθ is given by χθ(ω′, ξ′) = (ω, ξ), where

ω = ω′ cos θ − ξ′ sin θ,
ξ = ω′ sin θ + ξ′ cos θ.

10.3. Main result. The main result of this section is

Theorem 10.4. Suppose Conditions 2.1–2.3 with d ≥ 2, the condition V1(r) =
−γr−µ for r ≥ 1, V2 is spherically symmetric and that the number ε2 of Condition 2.1
obeys ε2 > 1− µ

2
(viz. dk

drk
V2(r) = O

(
r−1−µ

2
−ε−k); ε > 0). Then

S(0) = eic0e−i µπ
2−µΛ +K,

where K is compact and

c0 = 4
√

2γ
2−µ R

1−µ
2

0 + 2

∫ ∞
R0

(√
−2V1(r′)−

√
−2V (r′)

)
dr′.
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Let us remark, as a first reduction of the proof of Theorem 10.4, that we can
assume that V3 = 0. This can readily be seen by using resolvent equations in
the representation formula (7.3a) and Proposition 4.1. Another manifestation is
provided by Subsection 9.4 (including Remarks 9.6 1)): Clearly the term S̃(0) that
carries the singularities is independent of V3 = 0.

The analysis will go through under slightly weaker conditions than needed for
Theorem 10.4 (given that V3 = 0). Specifically we shall in this subsection impose
the following

Condition 10.5. The potential V splits into a sum of three spherically symmetric
terms V = V1 +V2 +V3, where all terms V1, V2, and V3 are real and continuous func-
tions on ]0,∞[, V1(r) = −γr−µ for r ≥ 1, V2 = O

(
r−1−µ

2
−ε) for some ε > 0, V1 and V2

vanish in a neighbourhood of r = 0, V3 has bounded support and |V3(r)| ≤ Cr−2+κ

for some constants C, κ > 0.

Under Condition 10.5 we can define the phase shift σl(0) as follows: Fix l ∈ N∪{0}
and fix R0 ≥ 0 so large that V (r) < 0 for all r > R0. Then all real solutions zero
energy of the reduced Schrödinger equation on the half-line ]0,∞[

−u′′ + Vlu = 0; Vl(r) = 2V (r) +
(l+

d
2
−1)2−4−1

r2
(10.14)

obey
u(r)

r
d−1

2

− C sin
( ∫ r

R0

√−2V1(r′) dr′ +D
)

(−2V1(r))
1
4 r

d−1
2

F (r > 1) ∈ B∗s0,0

for some C > 0 and D ∈ R (can be seen from the WKB-analysis given in the
bulk of Subsection 10.4). The regular solution is characterized by the requirement
limr→0 r

−l− d−1
2 u(r) = 1 (existence and uniqueness of the regular solution is usually

proven by studying an integral equation of Volterra type, cf. [Ne]). Now we define
in terms of the constant D for the regular solution

σl(0) = D +

∫ ∞
R0

(√
−2V1(r′)−

√
−2V (r′)

)
dr′ + d−3+2l

4
π. (10.15)

Note that (10.15) and Corollary 8.4 are consistent; in particular this justifies the
joint use of the symbol σl(0) in (10.15) and Corollary 8.4, see Remark 10.7 for a
related discussion.

We shall show the following asymptotics

Proposition 10.6. Under Condition 10.5 the phase shift obeys

σl(0) = − µπ
2(2−µ)

l +
c

2
+ o(l0); (10.16)

c

2
= −πµ(d−2)

4(2−µ)
+ 2

√
2γ

2−µ R
1−µ

2
0 +

∫ ∞
R0

(√
−2V1(r)−

√
−2V (r)

)
dr.

Clearly Theorem 10.4 is a consequence of from Proposition 10.6.

Remark 10.7. Note that for 0 < µ < 2, V (x) = −γ|x|−µ is an infinitesimal form
bounded perturbation of −∆ in dimension d ≥ 2. Therefore, Hµ := ∆ − γ|x|−µ is
well-defined and self-adjoint (even though Condition 2.3 (1) may fail). (Actually,
Hµ extends to an analytic family of operators for Reµ ∈]0, 2[.) It may be tempting
to claim that in the cases where operator boundedness fails one can still follow
the procedures of Section 9, i.e. use the function φ+

sph in (9.25) as the zero energy
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solution of the eikonal equation to construct and analyse the zero energy scattering
matrix. However since the resolvent estimates from [FS] are only derived for operator
bounded potentials these estimates would need to be reconsidered. On the other
hand since this potential V (x) = −γ|x|−µ, 0 < µ < 2, indeed fulfills Condition 10.5
we can use (10.15) in this case to the define zero energy scattering matrix (by the
formula S(0)Y = ei2σl(0)Y for spherical harmonics Y of order l). Based on this
definition and Proposition 10.6 it is natural to conjecture that it equals exactly
S(0) = eic0e−i µπ

2−µΛ, or alternatively, that the terms o(l0) in Proposition 10.6 vanishes
identically. We leave this as an open problem for the interested reader.

10.4. One-dimensional WKB-analysis. This subsection is devoted to the main
part of the proof of Proposition 10.6. It is based on detailed 1-dimensional analysis.

For convenience let us note that the effective potential Vl of (10.14) for V2 = V3 = 0
is given by

Vl(r) = 2V1(r) +
k(k + 1)

r2
= −2γr−µ +

k(k + 1)

r2
; k := l +

d− 3

2
.

Abusing slightly notation we shall henceforth denote this expression (whether V2 =
V3 = 0 or not) by Vk and similarly σk(0) := σl(0).

In the case V2 = V3 = 0 there is a unique zero, say denoted r0, of the effective
potential Vk. Explicitly

Vk(r0) = 0 for r0 =
(k(k+1)

2γ

) 1
2−µ . (10.17)

For later applications let us notice that

V ′k(r0) = −(2− µ)k(k+1)

r30
. (10.18)

Clearly Vk is positive to the left of r0 and negative to the right of r0.

Proposition 10.8. Under Conditions 10.5, the regular solution (up to multiplica-
tion by a positive constant) satisfies

u(r) = (−Vk)− 1
4 (r)

(
sin
(∫ r

r0

√
−Vk(r′) dr′ + π

4
+ o(k0)

)
+O(r−εk)

)
, (10.19)

where o(k0) signifies a vanishing term that is independent of r and εk > 0.

10.4.1. Scheme of proof of Proposition 10.8. We shall first concentrate on the case
where V2 = V3 = 0; the general case will be treated by the same scheme (to be
discussed later).

We introduce a partition of ]0,∞[ into four subintervals given as follows in terms
of ε1, ε2, ε3 ∈ (0, 1] to be fixed later:

1. I1 =]0, r1]; r1 = r0k
− ε1

2−µ .
2. I2 =]r1, r2]; r2 = r0(1− k−ε2).
3. I3 =]r2, r3]; r3 = r0(1 + k−ε3).
4. I4 =]r3,∞[.

In each of the intervals Ij where j = 2, 3 or 4 we shall specify a certain model
Schrödinger equation together with its two linearly independent solutions φ±j . In
terms of these we can construct exact solutions to the reduced equation

−u′′ + Vku = 0 (10.20)
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by the method of variation of parameters, cf. for example [HS]. Our subject of
study is formulas for the regular solution u = uk. Specifically, in the interval I1 we
shall use a comparison argument to get estimates of the regular solution at r = r1.
Then we shall use a connection formula to get estimates of the “coefficients” a+

2 and
a−2 of the ansatz

u = a+
j φ

+
j + a−j φ

−
j (10.21)

with j = 2 at the same point r = r1. Next, using the ODE for a+
2 and a−2 we

shall derive estimates of these quantities at r = r2. Proceeding similarly we shall
consecutively represent u by (10.21) on I3 and I4 using connection formulas at r2

and r3 and eventually get estimates in the interval I4 and whence derive the relevant
asymptotics of u.

Suppose φ− and φ+ solve the same one-dimensional Schrödinger equation, say

−φ′′ + Aφ = 0.

The variation of parameter method for the equations (10.20) and (10.21) yields[
φ+ φ−

d
dτ
φ+ d

dτ
φ−

]
d

dτ

[
a+

a−

]
= (V − A)

[
0 0
φ+ φ−

] [
a+

a−

]
. (10.22)

(We have omitted the subscript j). We introduce the notation W (φ−, φ+) for the
Wronskian W (φ−, φ+) = φ− d

dr
φ+ − φ+ d

dr
φ−. Then we write B = Vk − A and

transform (10.22) into
d

dr

(a+

a−

)
= N

(a+

a−

)
,

where

N =
B

W (φ−, φ+)

(
φ−φ+ (φ−)2

−(φ+)2 −φ−φ+

)
.

For a positive increasing continuous function f on I (to be specified) we introduce
the matrix T = diag(1, f−1). We compute

TNT−1 =
B

W (φ−, φ+)

(
φ−φ+ f(φ−)2

−f−1(φ+)2 −φ−φ+

)
.

Introducing the operator (Mjz)(r) =
∫ r
rj−1

Nj(r
′)z(r′) dr′, j ≥ 2, acting on continu-

ous functions z(·) : Ij → R2, the above ODE is solved by(a+
j

a−j

)
(r)− zj =

∞∑
m=1

Mm
j zj; zj =

(a+
j

a−j

)
(rj−1).

Whence we have the bound∥∥∥Tj(r){(a+
j

a−j

)
(r)− zj

}∥∥∥ ≤ ∞∑
m=1

∥∥∥((TjMjT
−1
j

)m
Tjzj

)
(r)
∥∥∥; (10.23)

to the right Tj is considered as an operator acting as (Tjz)(r′) = (Tj)(r
′)z(r′). Using

that fj is increasing we can estimate

‖(TjMjT
−1
j z)(r)‖ ≤

∫ r

rj−1

∥∥(TjNjT
−1
j )(r′)

∥∥ ‖z(r′)‖ dr′,
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which applied repeatedly in (10.23) yields the following bound for r ∈ Ij:∥∥∥Tj(r){(a+

a−

)
(r)− zj

}∥∥∥
≤
{(

exp

∫ r

rj−1

∥∥(TjNjT
−1
j )(r′)

∥∥ dr′
)
− 1
}

sup
r̃∈Ij
‖Tj(r̃)zj‖

=
{(

exp

∫ r

rj−1

∥∥(TjNjT
−1
j )(r′)

∥∥ dr′
)
− 1
}
‖zj‖. (10.24)

We specify in the following φ±j , Bj and fj for j = 2, 3 and 4; in all cases
W (φ−j , φ

+
j ) = 1:

Ad interval I2. We define

φ±2 (r) = 2−
1
2V
− 1

4
k e

± R rr1 √Vk dr′
, (10.25a)

compute

B2 = −(V − 1
4

k

)′′
V

1
4
k = − 5

16

(V ′k
Vk

)2

+ 1
4

V ′′k
Vk

(10.25b)

and let

f2(r) =
φ+

2 (r)

φ−2 (r)
= e

2
R r
r1

√
Vk dr′

. (10.25c)

Ad interval I3. We define (in terms of the Airy function, cf. [HS] and [Hö1,
Definition 7.6.8])

φ+
3 (r) =

√
πζ−1Ai

(− ζ2(r − r0)
)
; ζ := |V ′k(r0)| 16 , (10.26a)

φ−3 (r) =
√
πe

πi
6 ζ−1Ai

(− ζ2e
2πi
3 (r − r0)

)
+
√
πe−

πi
6 ζ−1Ai

(− ζ2e−
2πi
3 (r − r0)

)
, (10.26b)

compute

B3(r) = Vk(r)−
(
Vk(r0) + V ′k(r0)(r − r0)

)
=

∫ r

r0

(r − r̃)V ′′k (r̃) dr̃ (10.26c)

and let

f3(r) =

{
exp

(− 4
3
ζ3(r0 − r) 3

2

)
if r < r0

1 if r ≥ r0

. (10.26d)

Ad interval I4. We define

φ+
4 (r) = (−Vk)− 1

4 sin
(∫ r

r0

√
−Vk dr′ +

π

4

)
, (10.27a)

φ−4 (r) = (−Vk)− 1
4 cos

(∫ r

r0

√
−Vk dr′ +

π

4

)
, (10.27b)

compute

B4 = −((−Vk)− 1
4

)′′
(−Vk) 1

4 = − 5
16

(V ′k
Vk

)2

+ 1
4

V ′′k
Vk

(10.27c)

and let
f4 = 1. (10.27d)
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10.4.2. Details of proof of Proposition 10.8. We start implementing the scheme out-
lined in Subsubsection 10.4.1.

In the interval I1 we shall use a standard comparison argument. With Vk replaced
by V = k̃(k̃+1)

r2
the regular solution is given by the expression u = rk̃+1 and the

corresponding Riccati equation

ψ′ = V − ψ2 (10.28)

is solved by ψ = φ′
φ

= k̃+1
r
.

We fix ε1 ∈]0, 1] (actually ε1 > 0 can be chosen arbitrarily) and notice the following
uniform bound in r ∈ I1

Vk(r) =
k(k + 1)

r2

(
1 +O(k−ε1)

)
. (10.29)

Using (10.29) we can find C > 0 such that with k± := k(1±Ck−ε1) and V ±k (r) :=
k±(k±+1)

r2
there are estimates

Vk(r)

{
≤ V +

k (r)

≥ V −k (r)
; r ∈ I1.

Now, by using [BR, Theorem 1.8] and the Riccati equation it follows that the
regular solution u of (10.20) is positive in I1 and that v := u′

u
obeys the bounds

v(r)

{
≤ k++1

r

≥ k−+1
r

; r ∈ I1.

We conclude the uniform bound

v(r) =
k + 1

r

(
1 +O(k−ε1)

)
; r ∈ I1. (10.30)

The connection formula at r = r1 reads

cj

(
1

v

)
r=rj−1

=

(
a+
j φ

+
j + a−j φ

−
j

a+
j (φ+

j )′ + a−j (φ−j )′

)
r=rj−1

; j = 2. (10.31)

Obviously (10.31) is solved for the coefficients by(
a+
j

a−j

)
r=rj−1

=
cj

W (φ−j , φ
+
j )

(
(−φ−j )′ + φ−j v

(φ+
j )′ − φ+

j v

)
r=rj−1

; j = 2. (10.32)

Next, from (10.25a) we compute

(φ±2 )′ =
(
±
√
Vk − 1

4

V ′k
Vk

)
φ±2 . (10.33)

We substitute these expressions and (10.30) in the right hand side of (10.32) and
obtain (

a+
2 (r1)

a−2 (r1)

)
= c2

2k

r1

(
1 +O

(
k−ε1

)
O
(
k−ε1

) )
. (10.34)

To apply (10.24) we notice that

T2N2T
−1
2 = B2φ

−
2 φ

+
2

(
1 1
−1 −1

)
= B2O

(
V
− 1

2
k

)
.

80



Whence (for the first inequality below we assume that the integral is bounded in
k so that the inequality expx− 1 ≤ Cx applies; this will be justified by (10.36))∥∥∥T2(r2)

{(a+
2

a−2

)
(r2)−

(a+
2

a−2

)
(r1)

}∥∥∥
=
{(

exp

∫ r2

r1

∣∣∣(− 5
16

(V ′k
Vk

)2

+ 1
4

V ′′k
Vk

)
O
(
V
− 1

2
k

)∣∣∣ dr′)− 1
}
O
( k
r1

)
≤ C1

k
r1
r0

∫ r2/r0

r1/r0

((
V ′k
)2

V
5
2
k

+

∣∣V ′′k ∣∣
V

3
2
k

)
ds (changing variables r′ = r0s)

≤ C2r
−1
1

∫ r2/r0

r1/r0

(
s−6(

s−2 − s−µ) 5
2

+
s−4(

s−2 − s−µ) 3
2

)
ds

= C2r
−1
1

(∫ r2/r0

1/2

· · · ds+

∫ 1/2

r1/r0

· · · ds

)

≤ C3r
−1
1 max

(∫ r2/r0

1/2

(1− s2−µ)− 5
2 ds,

∫ 1/2

r1/r0

s−1 ds
)

≤ C4k
3
2
ε2−1 k

r1
; (10.35)

we need here
3
2
ε2 − 1 < 0. (10.36)

We conclude by combining (10.34) and (10.35):

(
a+

2 (r2)

a−2 (r2)

)
= c2

2k

r1

(
1 +O

(
k−ε1

)
+O

(
k

3
2
ε2−1
)

O
(
k−ε1

)
+ e

2
R r2
r1

√
Vk dr′

O
(
k

3
2
ε2−1
)). (10.37)

Next we repeat the above procedure passing from the interval I2 to I3.
The first issue is the connection formula (10.31) with j = 2 replaced by j = 3. The

left hand side can be estimated using (10.33), (10.37) and the following estimates
(where (10.36) is used)

√
Vk(r2) =

√
k(k + 1)

r2

(
1− (1− k−ε2)2−µ) 1

2
,

=
k

r0

(2− µ)
1
2k−

ε2
2

(
1 +O

(
k−ε2

))
, (10.38)

V ′k(r2)

Vk(r2)
=
O
(
k2

r32

)
Vk(r2)

= r−1
2 O

(
kε2
)
. (10.39)

Notice that (10.38) dominates (10.39) (by (10.36) again) so that(√
Vk − 1

4

V ′k
Vk

)
(r2) = (2− µ)

1
2
k

r0

k−
ε2
2

(
1 +O

(
k−ε2

))
.
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We conclude that

v(r2) =
(φ+

2 )′(r2)

φ+
2 (r2)

(
1 +O

(
k

3
2
ε2−1
))

= (2− µ)
1
2
k

r0

k−
ε2
2

(
1 +O

(
k−ε2

)
+O

(
k

3
2
ε2−1
))
. (10.40)

By (10.31) and (10.32) with j = 2 replaced by j = 3, up to multiplication by a
positive constant (

a+
3

a−3

)
r=r2

=

(
(−φ−3 )′ + φ−3 v
(φ+

3 )′ − φ+
3 v

)
r=r2

. (10.41)

It remains to examine the asymptotics of φ±3 and their derivatives at r2. For that we
notice the asymptotics as r − r0 → −∞, cf. [HS, Appendix B] and [Hö1, (7.6.20)],

φ+
3 =

exp
(− 2

3
ζ3(r0 − r) 3

2

)
2ζ

3
2 (r0 − r) 1

4

(
1 +O

(
ζ−3(r0 − r)− 3

2

))
, (10.42a)

(φ+
3 )′ = ζ3(r0 − r) 1

2
exp

(− 2
3
ζ3(r0 − r) 3

2

)
2ζ

3
2 (r0 − r) 1

4

(
1 +O

(
ζ−3(r0 − r)− 3

2

))
, (10.42b)

φ−3 =
exp

(
2
3
ζ3(r0 − r) 3

2

)
ζ

3
2 (r0 − r) 1

4

(
1 +O

(
ζ−3(r0 − r)− 3

2

))
, (10.42c)

(φ−3 )′ = −ζ3(r0 − r) 1
2

exp
(

2
3
ζ3(r0 − r) 3

2

)
ζ

3
2 (r0 − r) 1

4

(
1 +O

(
ζ−3(r0 − r)− 3

2

))
. (10.42d)

Since ζ3(r0 − r2)
3
2 � √2− µk1− 3

2

ε2
2−µ , cf. (10.18), these asymptotics are applicable.

By the same computation (10.40) can be rewritten as

v(r2) = ζ3(r0 − r2)
1
2

(
1 +O(k−ε2

)
+O

(
k

3
2
ε2−1)

)
. (10.43)

Whence in conjunction (10.41) we obtain (up to multiplication by a positive con-
stant)(

a+
3 (r2)

a−3 (r2)

)
=

exp
(

2
3
ζ3(r0 − r2)

3
2

)(
1 +O

(
k−ε2

)
+O

(
k

3
2
ε2−1
))

exp
(− 2

3
ζ3(r0 − r2)

3
2

)(
O
(
k−ε2

)
+O

(
k

3
2
ε2−1
))
 . (10.44)

Next, to apply (10.24) with j = 3 we need the following asymptotics of φ±3 and
their derivatives as r − r0 → +∞, cf. [HS, Appendix B] and [Hö1, (7.6.20) and
(7.6.21)],

φ+
3 = ζ−

3
2 (r − r0)−

1
4

(
sin
(

2
3
ζ3(r − r0)

3
2 + π

4

)
+O

(
ζ−3(r − r0)−

3
2

))
, (10.45a)

(φ+
3 )′ = ζ

3
2 (r − r0)

1
4

(
cos
(

2
3
ζ3(r − r0)

3
2 + π

4

)
+O

(
ζ−3(r − r0)−

3
2

))
, (10.45b)

φ−3 = ζ−
3
2 (r − r0)−

1
4

(
cos
(

2
3
ζ3(r − r0)

3
2 + π

4

)
+O

(
ζ−3(r − r0)−

3
2

))
, (10.45c)

(φ−3 )′ = −ζ 3
2 (r − r0)

1
4

(
sin
(

2
3
ζ3(r − r0)

3
2 + π

4

)
+O

(
ζ−3(r − r0)−

3
2

))
. (10.45d)

In particular
T3N3T

−1
3 = B3ζ

−2O
(
k0
)
uniformly in r ∈ I3.
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In conjunction with (10.24), (10.18) and the fact that

V ′′k (r) = O
(
k
−4+2µ

2−µ
)
uniformly in r ∈ I3 (10.46)

we obtain ∥∥∥T3(r3)
{(a+

3

a−3

)
(r3)−

(a+
3

a−3

)
(r2)

}∥∥∥
≤ C1

(
(r3 − r0)3 + (r0 − r2)3

)
k
−4+2µ

2−µ k
2
3

1+µ
2−µa+

3 (r2)

≤ C2k
4
3
−3 min(ε2,ε3)a+

3 (r2); (10.47)

here we need
4
3
− 3 min(ε2, ε3) < 0, (10.48)

cf. (10.36). At this point let us for convenience take ε3 = ε2, so that (10.48) simplifies
and in conjunction with (10.36) leads to the single requirement

2
3
> ε2 = ε3 >

4
9
. (10.49)

We conclude that (up to multiplication by the positive constant a+
3 (r2))(

a+
3 (r3)

a−3 (r3)

)
=

(
1 +O

(
k

4
3
−3ε2
)

O
(
k

4
3
−3ε2
) )

. (10.50)

Next we need to study the connection formula passing from I3 to I4; a little linear
algebra takes it to the form(a+

4

a−4

)
=

(
W (φ−4 , φ

+
3 ) W (φ−4 , φ

−
3 )

W (φ+
3 , φ

+
4 ) W (φ−3 , φ

+
4 )

)(a+
3

a−3

)
; r = r3.

So we need to compute the appearing Wronskians. To this end we note the following
uniform asymptotics for r ∈ [r0, r3] which are readily obtained from (10.18) and
(10.46) (recall that by now ε3 = ε2):

Vk(r) = V ′k(r0)(r − r0)
(
1 +O

(
k−ε2

))
, (10.51a)

V ′k(r) = V ′k(r0)
(
1 +O

(
k−ε2

))
, (10.51b)√

−Vk(r) = ζ3(r − r0)
1
2

(
1 +O

(
k−ε2

))
, (10.51c)∫ r

r0

√
−Vk(r′) dr′ =

2

3
ζ3(r − r0)

3
2

(
1 +O

(
k−ε2

))
= 2

3
ζ3(r − r0)

3
2 +O

(
k1− 5

2
ε2
)
. (10.51d)

Due to (10.51c) and (10.51d) the asymptotics (10.45a)–(10.45d) at the point r = r3

can be written in terms of

θ :=

∫ r3

r0

√
−Vk(r′) dr′ +

π

4
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as

φ+
3 (r3)

(−Vk(r3))−
1
4

= sin
(
θ +O

(
k1− 5

2
ε2
))

+O
(
k−ε2

)
+O

(
k

3
2
ε2−1
)
, (10.52a)

(φ+
3 )′(r3)

(−Vk(r3))
1
4

= cos
(
θ +O

(
k1− 5

2
ε2
))

+O
(
k−ε2

)
+O

(
k

3
2
ε2−1
)
, (10.52b)

φ−3 (r3)

(−Vk(r3))−
1
4

= cos
(
θ +O

(
k1− 5

2
ε2
))

+O
(
k−ε2

)
+O

(
k

3
2
ε2−1
)
, (10.52c)

(φ−3 )′(r3)

(−Vk(r3))
1
4

= − sin
(
θ +O

(
k1− 5

2
ε2
))

+O
(
k−ε2

)
+O

(
k

3
2
ε2−1
)
. (10.52d)

Next, using that

−V ′k
(−Vk) 3

2

(r3) = O
(
k

3
2
ε2−1
)
,

cf. (10.51a) and (10.51b), we obtain for the functions φ±4

φ+
4 (r3) = (−Vk(r3))−

1
4 sin

(
θ
)
, (10.53a)

(φ+
4 )′(r3) = (−Vk(r3))

1
4

(
cos
(
θ
)

+O
(
k

3
2
ε2−1
))
, (10.53b)

φ−4 (r3) = (−Vk(r3))−
1
4 cos

(
θ
)
, (10.53c)

(φ−4 )′(r3) = −(−Vk(r3))
1
4

(
sin
(
θ
)

+O
(
k

3
2
ε2−1
))
. (10.53d)

The matrix of Wronskians are readily computed using (10.45a)–(10.45d) and
(10.52a)– (10.52d), in combination with (10.50) we obtain (using in the second step
(10.49))(

a+
4 (r3)− 1

a−4 (r3)

)
= O

(
k−ε2

)
+O

(
k

3
2
ε2−1
)

+O
(
k

4
3
−3ε2
)

+O
(
k1− 5

2
ε2
)

= O
(
k−ε2

)
+O

(
k

3
2
ε2−1
)

+O
(
k

4
3
−3ε2
)
. (10.54)

Now we estimate in I4 using (10.54) (and mimicking partially (10.35))

∥∥∥(a+
4

a−4

)
(r)−

(a+
4

a−4

)
(r3)

∥∥∥
≤ C1

{(
exp

∫ r

r3

∣∣∣(− 5
16

(V ′k
Vk

)2

+ 1
4

V ′′k
Vk

)
O
(
(−Vk)− 1

2

)∣∣∣ dr′)− 1
}

≤ C2r0

∫ r/r0

r3/r0

((− V ′k)2

(−Vk) 5
2

+

∣∣− V ′′k ∣∣
(−Vk) 3

2

)
ds (changing variables r′ = r0s)

≤ C3r
µ/2−1
0

∫ r/r0

r3/r0

sµ/2−2
((

1− sµ−2
)− 5

2 +
(
1− sµ−2

)− 3
2

)
ds
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≤ C4r
µ/2−1
0

(∫ ∞
2

sµ/2−2 ds+

∫ 2

r3/r0

(
1− sµ−2

)− 5
2 ds

)
≤ C5r

µ/2−1
0 k

3
2
ε2

= O
(
k

3
2
ε2−1
)
. (10.55)

By the same type of estimation we also deduce that for fixed k there exist εk > 0
and a±4 (∞) ∈ R such that

a±4 (r) = a±4 (∞) +O(r−εk).

By applying (10.55) with r =∞ in combination with (10.54) (and using an elemen-
tary trigonometric formula), we conclude that (10.19) is true.

The general case. It remains to prove (10.19) under Condition 10.5 (i.e. without
assuming that V2 = V3 = 0). All previous constructions and estimates carry over,
so below we consider only some additional estimates that are needed. Denoting
U = 2V2 + 2V3 the functions φ±j and fj and the potentials Aj are exactly the same
while the potentials Bj are given as the old Bj plus U ; j = 2, 3, 4.

Ad interval I1. We notice that (10.29) is valid (here with Vk defined upon replacing
2V1 → 2V = 2V1 + U). Whence we can proceed exactly as before.

Ad interval I2. In addition to (10.35) we need the following estimation (assuming
in the last step that µ

2
+ ε < 1)∫ r2

r1

∣∣UO(V − 1
2

k

)∣∣ dr′O( k
r1

)
≤ C1

k
r1
r0

∫ r2/r0

r1/r0

r−1−µ
2
−ε

V
1
2
k

ds (changing variables r = r0s)

≤ C2
k
r1

r
1−µ2−ε
0

k

∫ r2/r0

r1/r0

s−
µ
2
−ε(

1− s2−µ) 1
2

ds

≤ C3k
− 2ε

2−µ k
r1

; (10.56)

Ad interval I3. In addition to (10.47) we need the following estimation∫ r3

r2

∣∣Uζ−2
∣∣ dr′ ≤ C1

∫ r3

r2

k
2
3

1+µ
2−µ r′−1−µ

2
−ε dr′

≤ C2k
2
3

1+µ
2−µ r

−µ
2
−ε

0 (k−ε2 + k−ε3)

≤ C3k
1
3
−ε2− 2ε

2−µ . (10.57)

Due to (10.49) the right hand side of (10.57) vanishes.
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Ad interval I4. In addition to (10.55) we need the following estimation∫ r

r3

∣∣UO((−Vk)− 1
2

)∣∣ dr′
≤ C1r

−ε
0

∫ r/r0

r3/r0

s−1−ε

(1− sµ−2
) 1

2

ds (changing variables r′ = r0s)

≤ C2k
− 2ε

2−µ . (10.58)

This ends the proof of (10.19). �

10.5. End of proof of Proposition 10.6. We need the following elementary iden-
tity:

Lemma 10.9. Let µ < 2. Then∫ ∞
1

(
√
r−µ − r−2 −

√
r−µ)dr =

2− π
2− µ. (10.59)

Proof. We first substitute r = s
1

µ−2 and then s = sin2 φ. Thus the left hand side of
(10.59) equals

1

2− µ
∫ 1

0

s−
3
2

(√
1− s− 1

)
ds =

2

2− µ
∫ π

2

0

(
1− cosφ

sin2 φ
− 1

)
dφ

=
2

2− µ
(

1− cosφ

sinφ
− φ
) ∣∣∣π/2

0
=

2− π
2− µ.

�

Proof of Proposition 10.6. Using Proposition 10.8 we calculate

σk(0) = lim
r→∞

(∫ r

r0

√
−Vk(r̃)dr̃ +

π

4

−
∫ r

R0

√
−2V (r̃)dr̃ +

kπ

2

)
+ o(k0)

=

∫ ∞
r0

(√
−Vk(r)−

√
−2V1(r)

)
dr

+

∫ ∞
R0

(√
−2V1(r)−

√
−2V (r)

)
dr

−
∫ r0

R0

√
−2V1(r)dr +

(k + 1
2
)π

2
+ o(k0)

Now (using Lemma 10.9)∫ ∞
r0

(√−Vk −√−2V1(r)
)
dr =

√
k(k + 1)

∫ ∞
1

(√
r−µ − r−2 −

√
r−µ
)
dr

=
√
k(k + 1)

2− π
2− µ ;∫ R0

r0

√
V1(r)dr = − 2

2−µ
√
k(k + 1) + 2

√
2γ

2−µ R
1−µ

2
0 .
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Thus

σk(0)−
∫ ∞
R0

(√
−2V1(r)−

√
−2V (r)

)
dr

= −
√
k(k + 1)

π

2− µ +
(k + 1

2
)π

2
+

2
√

2γ

2− µR
1−µ

2
0 + o(k0)

= −(k + 1
2
)πµ

2(2− µ)
+

2
√

2γ

2− µR
1−µ

2
0 + o(k0).

�

Appendix A. Elements of abstract scattering theory

Various versions of stationary scattering theory can be found in the literature.
In this appendix we give, in an abstract setting, a self-contained presentation of its
elements used in our paper. It is a version of the standard approach contained e.g. in
[Ya4], adapted to our paper. In our stationary formulas for the scattering operator
we use in addition ideas due to Isozaki-Kitada, see the proof of [IK2, Theorem 3.3].

A.1. Wave operators. Let H0 and H be two self-adjoint operators on a Hilbert
space H. We assume that H0 has only continuous spectrum. Let throughout this
appendix Λn, n ∈ N, be a sequence of compact subsets of σ(H0) such that Λn is a
subset of the interior of Λn+1 and such that σ(H0) \ ∪nΛn has Lebesgue measure
zero. Pick a sequence hn ∈ C∞c (Λn+1) with hn = 1 on Λn. Let D := ∪nRan1Λn(H0);
it is dense in H.

We will write R(z) = (H − ζ)−1 and R0(ζ) = (H0 − ζ)−1 for ζ /∈ σ(H0), and

δε(λ) =
ε

π((H0 − λ)2 + ε2)
=
ε

π
R0(λ− iε)R0(λ+ iε); ε > 0.

Note that if I is an interval and f ∈ H, then

‖
∫
I

ε

π
R0(λ− iε)R0(λ+ iε)fdλ‖ ≤ ‖f‖, (A.1)

lim
ε↘0

∫
I

ε

π
R0(λ− iε)R0(λ+ iε)fdλ = EI(H0)f. (A.2)

Theorem A.1. Suppose J± is a densely defined operator whose domain contains D
such that J±n := J±hn(H0) is bounded for any n, and

lim
t→±∞

‖J±eitH0f‖2 = ‖f‖2, f ∈ D.

We also suppose that there exists the wave operator

W±f := lim
t→±∞

eitHJ±e−itH0f ; f ∈ D. (A.3)

Then
(i) W± extends to an isometric operator and W±H0 = HW±.
(ii) For any interval I and f ∈ D,

W±1I(H0)f = lim
ε↘0

∫
I

ε

π
R(λ∓ iε)J±R0(λ± iε)fdλ. (A.4)
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(iii) For any continuous function g : R→ C vanishing at infinity, interval I and
f ∈ D,

W±g(H0)1I(H0)f = lim
ε↘0

∫
I

ε

π
g(λ)R(λ∓ iε)J±R0(λ± iε)fdλ. (A.5)

(iv) Suppose in addition that J± maps D into DomH. Suppose that T± is a
densely defined operator such that T±n := T±hn(H0) is bounded for any n and
that T±f = i(HJ± − J±H0)f for any f ∈ D. Then we have the following
modifications of (A.4) and (A.5):

W±1I(H0)f = lim
ε↘0

∫
I

(J± + iR(λ∓ iε)T±)δε(λ)fdλ, (A.6)

W±g(H0)1I(H0)f = lim
ε↘0

∫
I

g(λ)(J± + iR(λ∓ iε)T±)δε(λ)fdλ. (A.7)

Proof. (i) is well-known.
Let us prove (ii): By (A.3)

W±f = lim
ε↘0

2ε

∫ ∞
0

e−2εte±itHJ±e∓itH0fdt.

By the vector-valued Plancherel formula we obtain

W±f = lim
ε↘0

∫
ε

π
R(λ∓ iε)J±R0(λ± iε)fdλ (A.8)

Therefore,

W±1I(H0)f = lim
ε↘0

∫
I

ε

π
R(λ∓ iε)J±R0(λ± iε)fdλ

− lim
ε↘0

∫
I

ε

π
R(λ∓ iε)J±R0(λ± iε)1R\I(H0)fdλ

+ lim
ε↘0

∫
R\I

ε

π
R(λ∓ iε)J±R0(λ± iε)1I(H0)fdλ.

We need to show that the last two terms vanish. The proof for both terms is iden-
tical. Consider the last one term. Let f1 ∈ H and pick an n so that f = 1Λn(H0)f .
Then (using (A.1) in the last estimation)∣∣∣ ∫

R\I

ε

π
〈f1, R(λ∓ iε)J±R0(λ± iε)1I(H0)f〉dλ

∣∣∣
≤ ‖J±n ‖

(∫
R\I

ε

π
‖R(λ± iε)f1‖2 dλ

) 1
2
(∫

R\I

ε

π
‖R0(λ± iε)1I(H0)f‖2 dλ

) 1
2

≤ Cε‖f1‖; Cε := ‖J±n ‖
(∫

R\I

ε

π
‖R0(λ± iε)1I(H0)f‖2 dλ

) 1
2

.

Due to (A.2), Cε → 0 as ε→ 0. Whence (ii) follows.
Let us prove (iii): Let f1 ∈ H and pick an n so that f = 1Λn(H0)f . Any continuous

function g vanishing at infinity can be uniformly approximated by gm, finite linear
combinations of characteristic functions of intervals. By (ii) and (A.1),

W±gm(H0)1I(H0)f = lim
ε↘0

∫
I

ε

π
gm(λ)R(λ∓ iε)J±R0(λ± iε)fdλ.
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Now∣∣∣∣∫
I

ε

π

(
gm(λ)− g(λ)

)〈f1, R(λ∓ iε)J±R0(λ± iε)f〉dλ
∣∣∣∣

≤ ‖J±n ‖
(∫

ε

π
‖R(λ± iε)f1‖2 dλ

) 1
2
(∫

ε

π
‖R0(λ± iε)f‖2 dλ

) 1
2

sup |gm − g|
≤ Cm‖f1‖; Cm := ‖J±n ‖f‖ sup |gm − g|.

Since Cm → 0 we are done.
To prove (iv) we use (iii) and the identity

R(λ∓ iε)J± = (J± + iR(λ∓ iε)T±)R0(λ∓ iε).

�
Remark. In the context of our paper, we can take Λn = [ 1

n
, n].

A.2. Scattering operator. Define the scattering operator via S := W+∗W−.
Clearly, H0S = SH0.

Theorem A.2. Suppose that the conditions of Theorem A.1 hold. Let the operator
J− satisfy

lim
t→+∞

eitHJ−e−itH0f = 0; f ∈ D. (A.9)

Then for all f ∈ D
Sf = − lim

ε↘0
2π

∫
δε(λ)W+∗T−δε(λ)fdλ. (A.10)

Proof.

W−f = − lim
t→+∞

(
eitHJ−e−itH0 − e−itHJ−eitH0

)
f

= − lim
t→+∞

∫ t

−t
eisHT−e−isH0fds

= − lim
ε↘0

ε

∫ ∞
0

e−εtdt
∫ t

−t
eisHT−e−isH0fds

= − lim
ε↘0

∫
e−ε|s|eisHT−e−isH0fds.

Then we use the definition of S and the intertwining property of W+∗ to obtain

Sf = − lim
ε↘0

∫
e−ε|s|eisH0W+∗T−e−isH0fds.

Finally, we use the vector-valued Plancherel theorem. �

A.3. Method of rigged Hilbert spaces applied to wave operators. Consider
a family of separable Hilbert spaces H and Vs, s > 1

2
, such that Vs is densely and

continuously embedded inH, and similarly, Vs is densely and continuously embedded
in Vt if s > t. Let V∗s be the space dual to Vs, so that we have nested Hilbert spaces

Vs ⊆ Vt ⊆ H ⊆ V∗t ⊆ V∗s ; s > t.

We remark that H equipped with such a structure is sometimes called a rigged
Hilbert space.

The following theorem allows us to introduce wave matrices:
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Theorem A.3. Fix s > t > 1
2
. Suppose that there exists for almost all λ the limit

s− lim
ε→0

δε(λ) =: δ0(λ) ∈ B(Vt,V∗t ).

Suppose the conditions of Theorem A.1 and that the operators J±n and R(λ∓ iε)T±n
with λ ∈ Λn and ε > 0 extend to elements of B(V∗t ,V∗s ). Suppose that for fixed n
and almost everywhere in Λn there exists

R(λ∓ i0)T±n := s− lim
ε↘0

R(λ∓ iε)T±n ∈ B(V∗t ,V∗s ).

Suppose furthermore that for any n there exists εn > 0 such that

sup
λ∈Λn

sup
ε<εn

‖δε(λ)‖Vt→V∗t , sup
λ∈Λn

sup
ε<ε0

∥∥R(λ∓ iε)T±n
∥∥
V∗t→V∗s

<∞. (A.11)

Let I be an interval with I ⊆ Λn for some n, and let f ∈ Vt be given such that
f = hn(H0)f (in particular this means that f ∈ D ∩ Vt). Then (in terms of an
integral of a V∗s –valued function) for all g ∈ C∞(R)

W±g(H0)1I(H0)f =

∫
I

g(λ)
(
J±n + iR(λ∓ i0)T±n

)
δ0(λ)fdλ. (A.12)

Proof. We can replace T± → T±n in the integrand of (A.7). Then, by the assump-
tions, it has a pointwise limit as an element of V∗s . Due to (A.11) we can apply the
dominated convergence theorem. �
Remark. In the context of our paper, we take Vs := L2,s.

A.4. Method of rigged Hilbert spaces applied to the scattering operator.
The method of rigged Hilbert spaces allows us to introduce scattering matrices:

Theorem A.4. Suppose that the conditions of Theorem A.3 hold for some s > t > 1
2

and suppose (A.9). Fix r > s. Suppose that for all n ∈ R and ε > 0 the operators
T−n δε(λ) ∈ B(Vr,Vs) with a measurable dependence of λ ∈ R. Suppose that for fixed
n and almost everywhere in Λn there exists the limit

s− lim
ε→0

T−n δε(λ) =: T−n δ0(λ) ∈ B(Vr,Vs).
Suppose furthermore that for any n there exists εn > 0 such that

sup
λ∈R

sup
ε<εn

∥∥T−n δε(λ)
∥∥
Vr→Vs <∞. (A.13)

Let I be an interval with I ⊆ Λn for some n, and let f1 ∈ D ∩Vt and f2 ∈ D ∩Vr
be given such that f1 = 1I(H0)f1 and f2 = hn(H0)f2. Then

〈f1, Sf2〉 = − 2π

∫
I

〈f1, δ0(λ)J+∗
n T−n δ0(λ)f2〉dλ

+ 2πi

∫
I

〈f1, δ0(λ)T+∗
n R(λ+ i0)T−n δ0(λ)f2〉dλ.

Proof. We insert (A.12) with g(λ) = g(λ− λ1, ε) := ε
π((λ−λ1)2+ε2)

into (A.10):

〈f1, Sf2〉 = − lim
ε↘0

2π

∫
〈f1, δε(λ1)W+∗T−δε(λ1)f2〉dλ1

= − lim
ε↘0

2π

∫ ∫
I

g(λ, λ1, ε)〈f1, δ0(λ)
(
J+∗
n − iT+∗

n R(λ+ i0)
)
T−n δε(λ1)f2〉

= − lim
ε↘0

2π

∫
I

〈f1, δ0(λ)
(
J+∗
n − iT+∗

n R(λ+ i0)
)
T−n δ2ε(λ)f2〉dλ.
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In the last step we interchanged integrals, using (A.13) and the Fubini theorem, and
we used that ∫

δε(λ1)g(λ, λ1, ε)dλ1 = δ2ε(λ).

Then we pass with ε→ 0 using (A.13) and the dominated convergence theorem. �
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