
U N I V E R S I T Y OF A A R H U S
D E P A R T M E N T OF M A T H E M A T I C S

ISSN: 1397–4076

ALL EXTENSIONS BY C∗
r (Fn) ARE

SEMI-INVERTIBLE

by Klaus Thomsen

Preprint Series No.: 1 January 2008
2008/01/23

Ny Munkegade, Bldg. 1530 http://www.imf.au.dk
DK-8000 Aarhus C, Denmark institut@imf.au.dk





ALL EXTENSIONS BY C∗r (Fn) ARE SEMI-INVERTIBLE

KLAUS THOMSEN

1. Introduction

Extensions of non-nuclear C∗-algebras need not be invertible. The first exam-
ple of this phenomenon was exhibited by J. Anderson, [A], and the stock of such
examples has been slowly and steadily growing since then. Motivated by this fact
and the asymptotic homomorphism approach to extensions of Connes and Higson,
[CH], Vladimir Manuilov and the author introduced in [MT1] a theory of extensions
which basically only differs from the conventional theory, introduced in the work
of Brown, Douglas and Fillmore, [BDF], in that the split extensions are replaced
by extensions which are only asymptotically split. It was shown in [MT1] that the
resulting theory is a version of the E-theory of Connes and Higson when the algebra
which plays the role of the quotient in the extensions is a suspended C∗-algebra.
Furthermore, it was shown in [MT1] that any extension of a suspended C∗-algebra
is semi-invertible in the sense that one can find another extension, namely the one
obtained by reversing the orientation in the suspension, such that the addition of the
two extensions is asymptotically split. Subsequently it was shown in [MT3] that this
nice situation, that all extensions are semi-invertible, does not persist in the general
case; certain non-invertible extensions introduced by S. Wasserman were shown not
to be semi-invertible. At about the same time U. Haagerup and S. Thorbjørnsen
were able to exhibit the first example of a non-invertible extension of the reduced
group C∗-algebra C∗r (Fn) of a free group, cf. [HT]. Since the example in [MT3] was
based on groups with property T, which is a property free groups do not have, it
became interesting to decide if there are examples of extensions of C∗r (Fn) which
are not semi-invertible. Very recently V. Manuilov has shown that the extension
constructed by Haagerup and Thorbjørnsen is not only semi-invertible; it can be
made asymptotically split by addition of a split extension, [M]. Manuilovs method
actually works to obtain the same conclusion for any quasi-diagonal extension of
C∗r (Fn) and he conjectured that all extensions of C∗r (Fn) (by compact operators)
are semi-invertible. The purpose of this note is to prove this conjecture. Since
asymptotically split extensions are homotopic to 0 it follows that all extensions of
C∗r (Fn) by the compact operators are invertible up to homotopy; a property which
can fail for certain separable C∗-algebras as shown in [MT3].

2. Definitions, results and a proof

Let A be a separable C∗-algebra and let K denote the C∗-algebra of compact
operators on a separable infinite dimensional Hilbert space H . In this note an
extension of A is a short exact sequence

0 // K // E
p // A // 0 (2.1)
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of C∗-algebras. The extension is asymptotically split when there is an asymptotic
∗-homomorphism ϕ = (ϕt)t∈[1,∞) : A→ E, cf. [CH], such that p ◦ ϕt = idA for all t.
Let Q denote the Calkin algebra B(H)/K and let q : B(H) → Q be the quotient
map. If ψ : A→ Q is the Busby invariant of (2.1) the extension (2.1) is split, resp.
asymptotically split, exactly when there is a ∗-homomorphism π : A→ B(H) such
that q ◦ π = ψ, resp. an asymptotic ∗-homomorphism π = (πt)t∈[1,∞) : A → B(H)
such that ψ = q ◦ πt for all t. An extension π : A → Q is invertible, resp. semi-
invertible, when there is another extension π̃ : A → Q such that π ⊕ π̃ is split,
respectively, asymptotically split. Our results concern the case where A is C∗r (Fn),
the reduced C∗-algebra of the free group Fn on n generators.

Theorem 2.1. Let π : C∗r (Fn) → Q be an extension. There is then an invertible
extension π̃ : C∗r (Fn) → Q such that π ⊕ π̃ is asymptotically split.

The proof depends on the notion of strong homotopy of extensions, cf. [MT1].
Two extensions ψ0, ψ1 : A→ Q are strongly homotopic when they are homotopic as
∗-homomorphisms, that is when there is a ∗-homomorphism ψ : A → C ([0, 1], Q)
such that ψi = evi ◦ψ, i = 0, 1, where evt : C ([0, 1], Q) → Q denotes evaluation
at t. We emphasize that strong homotopy is very different from the much weaker
and somewhat more natural notion of homotopy of extensions which is defined in a
similar way, but with C ([0, 1], Q) replaced by M (C ([0, 1],K)) /C([0, 1],K), where
M (C ([0, 1],K)) is the multiplier algebra of C ([0, 1],K). It is the latter notion of
homotopy which is alluded to in the concluding remarks of the introduction. Strong
homotopy comes in here because of the following lemma which is a special case of
Lemma 4.3 in [MT2].

Lemma 2.2. Assume that the extension ϕ : A→ Q is strongly homotopic to a split
extension. It follows that ϕ is asymptotically split.

Thanks to this lemma Theorem 2.1 is a consequence of the following

Theorem 2.3. Let π : C∗r (Fn) → Q be an extension. There is then an invertible
extension π̃ : C∗r (Fn) → Q such that π⊕ π̃ is strongly homotopy to a split extension.

Proof. As in the work of Manuilov,[M], the main ingredience in the proof is a ho-
motopy of representations of Fn which was constructed by J. Cuntz based on work
of Pimsner and Voiculescu, [PV]. It is described on p. 187 of [C]. It consists of
norm-continuous paths, st

i, t ∈ [0, 1], i = 1, 2, . . . , n, of unitaries on H = l2 (Fn) such
that the corresponding family of representations νt : Fn → B(H) has the following
properties:

a) ν0 = λ,
b) νt(g)− λ(g) ∈ K for all t ∈ [0, 1] and all g ∈ Fn, and
c) ν1 is unitarily equivalent to t⊕ λ(n).

Here λ is the regular representation, t the trivial representation and λ(n) is the
direct sum of n copies of λ. Let µ : C∗ (Fn) → C∗r (Fn) be the canonical surjective ∗-
homomorphism and ui, i = 1, 2, . . . , n, the canonical unitary generators of C∗ (Fn).
Set vi = µ (ui). Let π : C∗r (Fn) → Q be an extension of C∗r (Fn). Since π(1)
lifts to a projection in B(H) we can add a split extension to π in order to arrange
that the resulting extension is unital. We can therefore assume that π(1) = 1.
By the universal property of C∗ (Fn) there is an extension π1 : C∗ (Fn) → Q such
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that π1 (ui) = π (vi)
∗ for all i. Since µ : C∗ (Fn) → C∗r (Fn) is invertible in KK-

theory by the work of Cuntz,[C], there is a split extension ϕ : C∗ (Fn) → Q and an
invertible extension π−1 : C∗r (Fn) → Q such that π−1 ◦ µ⊕ ϕ is unitarily equivalent
to π1 ⊕ ϕ. In particular, [π−1 (vi)] = [π−1 ◦ µ (ui)] = [π1 (ui)] = [π (vi)

∗] in K1(Q)
for all i. Set ω = π ⊕ π−1 : C∗r (Fn) → Q. Since ω (vi) is homotopic to 1 in the
unitary group of Q there is a representation R of Fn on H such that ω ◦ µ = q ◦ hR,
where hR : C∗ (Fn) → B(H) is the ∗-homomorphism corresponding to R. Set
ωt = q ◦ hR⊗νt , t ∈ [0, 1]. Since R⊗ ν1 is equivalent to R⊕ (

R⊗ λ(n)
)

by c), we find
that ω1 is unitarily equivalent to ω ◦ µ⊕ q ◦ hR⊗λ(n). By Fell’s absorbtion principle,

which was also heavily used in [M], the representation R⊗λ(n) of Fn is equivalent to
a multiple of the regular representation and hence hR⊗λ(n) factors through C∗r (Fn).
Thus ω1 : C∗r (Fn) → Q is (unitarily equivalent to) the direct sum of ω and the split
extension q ◦ hR⊗λ(n) : C∗r (Fn) → Q. Furthermore, thanks to a), ω0 = q ◦ hR⊗λ,
where also hR⊗λ factors through C∗r (Fn) by Fell’s absorbtion principle. That is,
ω0 : C∗r (Fn) → Q is a split extension. It suffices therefore to show that ωt, t ∈ [0, 1],
defines a strong homotopy of extensions of C∗r (Fn). Since it clearly defines a strong
homotopy of extensions of C∗ (Fn), it remains only to verify that this homotopy
factors through C∗r (Fn). To this end we take an element x =

∑
j cjgj ∈ C [Fn],

where cj ∈ C and gj ∈ Fn. We will complete the proof by showing that

‖ωt(x)‖ ≤ 3 ‖x‖C∗
r (Fn) (2.2)

for any t ∈ [0, 1]. To this end write

hR⊗νt(x) =
∑

j

cjR (gj)⊗ λ (gj)−
∑

j

cjR (gj)⊗∆ (gj) , (2.3)

where ∆ (gj) = νt (gj) − λ (gj). Note that ∆ (gj) ∈ K by b). It follows from Fell’s
absorbtion principle that ‖∑

j cjR (gj)⊗ λ (gj) ‖ ≤ ‖x‖C∗
r (Fn) and hence∥∥∥q(∑

j

cjR (gj)⊗ λ (gj)
)∥∥∥ ≤ ‖x‖C∗

r (Fn) . (2.4)

To handle the second term in (2.3) we use that B(H) ⊗ K/K ⊗ K ≃ Q ⊗ K to
conclude that∥∥∥q(∑

j

cjR (gj)⊗∆ (gj)
)∥∥∥

Q
=

∥∥∥∑
j

cjω (gj)⊗∆ (gj)
∥∥∥

Q⊗K
.

Since ω : C∗r (Fn) → Q is injective and ω ⊗ idK isometric,∥∥∥∑
j

cjω (gj)⊗∆ (gj)
∥∥∥

Q⊗K
=

∥∥∥∑
j

cjλ (gj)⊗∆ (gj)
∥∥∥

C∗
r (Fn)⊗K

.

And ∥∥∥∑
j

cjλ (gj)⊗∆ (gj)
∥∥∥

C∗
r (Fn)⊗K

=
∥∥∥∑

j

cjλ (gj)⊗ νt (gj)−
∑

j

cjλ (gj)⊗ λ (gj)
∥∥∥ ≤ 2‖x‖,

(2.5)

by a final application of Fell’s absorbtion principle. In combination with (2.4) this
conclusion yields (2.2). �
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[CH] A. Connes and N. Higson, Déformations, morphismes asymptotiques et K-théories bivari-
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