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Abstract

The present paper is concerned with various aspects of Gaussian semimartin-
gales. Firstly, generalizing a result of Stricker (1983), we provide a convenient
representation of Gaussian semimartingales Xt = X0 + Mt + At as an (FMt )t≥0-
semimartingale plus a process of bounded variation which is independent of (Mt)t≥0.
Secondly, we study stationary Gaussian semimartingales and their canonical de-
composition. Thirdly, we give a new characterisation of the covariance function of
Gaussian semimartingales which enable us to characterize the class of martingales
and the processes of bounded variation among the Gaussian semimartingales. We
conclude with two applications of the results.
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1 Introduction

Recently, there has been renewed interest in some of the fundamental properties of Gaus-
sian processes, such as the semimartingale property and the existence of quadratic varia-
tion; see e.g. Barndorff-Nielsen and Schmiegel (2007).

Cheridito (2004), Cherny (2001) and Jeulin and Yor (1993) studied the semimartingale
property of a certain class of Gaussian processes with stationary increments (or of a deter-
ministic transformation of such processes). Jain and Monrad (1982) studied, among other
topics, certain properties of Gaussian process of bounded variation. A good review of the
literature about Gaussian semimartingales can be found in Liptser and Shiryayev (1989).

Stricker (1983, Théorème 2) showed the following. Let (Xt)t≥0 be a Gaussian semi-
martingale with canonical decomposition Xt = Wt+

∫ t
0
Zs ds, where (Wt)t≥0 is a Brownian

motion. Then there exists a Gaussian process (Yt)t≥0 which is independent of (Wt)t≥0 and
a deterministic function (r, s) 7→ Ψr(s) such that

Xt = Wt +

∫ t

0

(∫ r

0

Ψr(s) dWs

)
dr +

∫ t

0

Yr dr.

∗E-mail: basse@imf.au.dk, Phone: +45 89423534
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One of the purposes of the present paper is to generalize this result. Indeed, we show that
a Gaussian process (Xt)t≥0 is a semimartingale if and only if it can be decomposed as

Xt = X0 +Mt +

∫ t

0

(∫ r

0

Ψr(s) dMs

)
µ(dr) +

∫ t

0

Yr µ(dr). (1.1)

where (Mt)t≥0 is a Gaussian martingale, (Yt)t≥0 is a Gaussian process which is independent
of (Mt)t≥0, µ is a Radon measure on R+ and (r, s) 7→ Ψr(s) is a deterministic function.
As a part of this we study Gaussian processes of bounded variation.

A second purpose of the paper is to study the canonical decomposition of stationary
Gaussian semimartingales. Let (Xt)t∈R be a stationary Gaussian process such that (Xt)t≥0

is a semimartingale. We study the canonical decomposition of (Xt)t≥0 and give a necessary
and sufficient condition for (Xt)t≥0 to be an (FX,∞t )t≥0-semimartingale, where FX,∞t :=
σ(Xs : s ∈ (−∞, t]) for t ≥ 0.

In the last section of the paper we study the the covariance structure of Gaussian
semimartingales. Let (Xt)t∈R be a stationary Gaussian process. Then, Proposition 19 in
Jeulin and Yor (1993) gives a necessary and sufficient condition on the spectral measure
of (Xt)t∈R for (Xt)t∈R to be a semimartingale. Emery (1982) showed that a Gaussian pro-
cess (Xt)t≥0 is a semimartingale if and only if the mean-value function and the covariance
function Γ of (Xt)t≥0 are of bounded variation and there exists an right-continuous in-
creasing function F such that for each 0 ≤ s < t and each elementary function u 7→ fs(u)
with fs(u) = 0 for u > s we have∣∣∣∫ t

s

∫ s

0

fs(v) Γ(du, dv)
∣∣∣√∫ s

0

∫ s

0

fs(u)fs(v) Γ(du, dv)

≤ F (t)− F (s).

However, based on the decomposition (1.1) we provide a new alternative characterisation
of the covariance function (see Theorem 5.2). Some applications will be given as well. For
example, we study the fractional Brownian motion.

The paper is organised as follows. Section 2 contains some preliminary results. We
show that Gaussianity is preserved under various operations on a Gaussian semimartin-
gale. Moreover, a suitable version of Fubini’s Theorem is provided. Section 3 contains
some representation results for Gaussian semimartingales. First, extending a result of
Jeulin (1993), we characterize Gaussian process of bounded variation. Afterwards the
decomposition (1.1) is provided. In section 4 the covariance function of Gaussian semi-
martingales is considered. We conclude with a few examples.

1.1 Notation
Let (Ω,F , P ) be a complete probability space. By a filtration we mean an increasing family
(Ft)t≥0 of σ-algebras satisfying the usual conditions of right-continuity and completeness.
If (Xt)t≥0 is a stochastic process we denote by (FXt )t≥0 the least filtration to which (Xt)t≥0

is adapted.
A separable subspace G of L2(P ) which contains all constants, is called a Gaussian

space if (X1, . . . , Xn) follows a multivariate Gaussian distribution whenever n ≥ 1 and
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X1, . . . , Xn ∈ G. Let G denote a Gaussian space and (Ft)t≥0 be a filtration. Then we say
that G is (Ft)t≥0-stable if X ∈ G implies E[X|Ft] ∈ G for all t ≥ 0. A typical example is
G := sp{Xt : t ≥ 0} for a càdlàg Gaussian process (Xt)t≥0 (sp denotes the L2(P )-closure
of the linear span) and (Ft)t≥0 = (FXt )t≥0.

We say that a stochastic process (Xt)t≥0 has stationary increments if for all n ≥ 1,
0 ≤ t0 < · · · < tn and 0 < t we have

(Xt1 −Xt0 , . . . , Xtn −Xtn−1)
D
= (Xt1+t −Xt0+t, . . . , Xtn+t −Xtn−1+t),

where D= denotes equality in distribution.
Let µ be a σ-finite measure on R and f : R+ → R be a function. Then f is said

to be absolutely continuous w.r.t. µ if f is of bounded variation and the total variation
measure of f is absolutely continuous w.r.t. µ. A stochastic process (Xt)t≥0 starting at
0 is said to be absolutely continuous w.r.t. µ if almost all sample paths of (Xt)t≥0 are
absolutely continuous w.r.t. µ. Moreover for a locally µ-integrable function f we define∫ b
a
f dµ :=

∫
(a,b]

f dµ for all 0 ≤ a < b.

Let (Ft)t≥0 be a filtration. Recall that an (Ft)t≥0-adapted càdlàg process (Xt)t≥0 is
said to be an (Ft)t≥0-semimartingale, if there exists a decomposition of (Xt)t≥0 as

Xt = X0 +Mt + At, (1.2)

where (Mt)t≥0 is a càdlàg (Ft)t≥0-local martingale starting at 0 and (At)t≥0 is a càdlàg
(Ft)t≥0-adapted process of finite variation starting at 0. We say that (Xt)t≥0 is a semi-
martingale if it is an (FXt )t≥0-semimartingale. Moreover (Xt)t≥0 is called a special (Ft)t≥0-
semimartingale if it is an (Ft)t≥0-semimartingale such that (At)t≥0 in (1.2) can be chosen
(Ft)t≥0-predictable. In this case the representation (1.2) with (At)t≥0 (Ft)t≥0-predictable
is unique and is called the canonical decomposition of (Xt)t≥0. From Liptser and Shiryayev
(1989, Chapter 4, Section 9, Theorem 1) it follows that if (Xt)t≥0 is an (Ft)t≥0-semimartin-
gale then it is also an (FXt )t≥0-semimartingale.

If (At)t≥0 is a right-continuous Gaussian process of bounded variation then (At)t≥0 is
of integrable variation (see Stricker (1983, Proposition 4 and 5)) and we let µA denote
the Lebesgue-Stieltjes measure induced by the mapping t 7→ E[Vt(A)]. For every Gaussian
martingale (Mt)t≥0 let µM denote the Lebesgue-Stieltjes measure induced by the mapping
t 7→ E[M2

t ].

2 Preliminary results

In the following µ denotes a Radon measure on R+ and (E, E , ν) is a σ-finite measure
space.

Lemma 2.1. Let Ψt ∈ L2(ν) for t ≥ 0 and define S := sp{Ψt : t ≥ 0}. Assume S is a
separable subset of L2(ν) and t 7→ ∫

Ψt(s)g(s) ν(ds) is measurable for g ∈ S. Then, there
exists a measurable mapping R × E 3 (t, s) 7→ Ψ̃t(s) ∈ R such that Ψ̃t = Ψt ν-a.s. for
t ≥ 0.

Proof . Since S is a separable normed space, the Borel σ-algebra on S induced by the
norm-topology equals the σ-algebra induced by the mappings S 3 f 7→ ∫

fg dν ∈ R for
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g ∈ S. Therefore t 7→ Ψt is Bochner measurable, and thus a uniform limit of elements
of the form Ψn

t (s) =
∑

k≥1 f
n
k (s)1An

k
(t) where fnk ∈ L2(ν) for n, k ≥ 1 and (Ank)k≥1 are

disjoint B(R+)-measurable sets for n ≥ 1. Reducing if necessary to a subsequence we may
assume that

sup
t∈R+

‖Ψn
t −Ψt‖L2(ν) ≤ 2−n, n ≥ 1. (2.1)

Let B := {(t, s) ∈ R+ × E : lim supn→∞|Ψn
t (s)| <∞} and define

Ψ̃t(s) := lim sup
k→∞

Ψn
t (s)1B((t, s)), (t, s) ∈ R+ × E.

Then (t, s) 7→ Ψ̃t(s) is measurable. Moreover by (2.1) it follows that Ψ̃t = Ψt ν-a.s. for
t ∈ R+, which completes the proof.

Let L2,1(ν, µ) denote the space of all measurable mappings R+ × E 3 (t, s) 7→
Ψt(s) ∈ R satisfying Ψt ∈ L2(ν) for t ≥ 0 and∫ t

0

‖Ψr‖L2(ν) µ(dr) <∞, t > 0.

Furthermore BV(ν) denotes the space of all measurable mappings R+ × E 3 (t, s) 7→
Ψt(s) ∈ R for which Ψt ∈ L2(ν) for all t ≥ 0 and there exists a right-continuous increasing
function f such that ‖Ψt −Ψu‖L2(ν) ≤ f(t)− f(u) for 0 ≤ u ≤ t.

Lemma 2.2. Let Ψ ∈ L2,1(ν, µ). Then r 7→ Ψr(s) is locally µ-integrable for ν-a.a. s ∈ E
and by setting

∫ t
0

Ψr(s)µ(dr) = 0 if r 7→ Ψr(s) is not locally µ-integrable we have

(t, s) 7→
∫ t

0

Ψr(s)µ(dr) ∈ BV(ν). (2.2)

If in addition S is a closed subspace of L2(ν) such that Ψr ∈ S for all r ∈ [0, t], then

s 7→
∫ t

0

Ψr(s)µ(dr) ∈ S. (2.3)

Proof . Let t ≥ 0 be given. Tonelli’s Theorem and Cauchy-Schwarz’ inequality imply∫ (∫ t

0

|Ψr(s)|µ(dr)
)2

ν(ds) (2.4)

=

∫ t

0

∫ t

0

(∫
|Ψr(s)Ψv(s)| ν(ds)

)
µ(dr)µ(dv) ≤

(∫ t

0

‖Ψr‖L2(ν) µ(dr)
)2

<∞.

This shows that r 7→ Ψr(s) is locally µ-integrable for ν-a.a. s ∈ E. By setting∫ t

0

Ψr(s)µ(dr) = 0 if r 7→ Ψr(s) is not locally µ-integrable,

4



we have that (t, s) 7→ ∫ t
0

Ψr(s)µ(dr) is measurable and s 7→ ∫ t
0

Ψr(s)µ(dr) ∈ L2(ν).
Calculations as in (2.4) show that∥∥∥∫ t

0

Ψr µ(dr)−
∫ u

0

Ψr µ(dr)
∥∥∥
L2(ν)

≤
∫ t

u

‖Ψr‖L2(ν) µ(dr)

=

∫ t

0

‖Ψr‖L2(ν) µ(dr)−
∫ u

0

‖Ψr‖L2(ν) µ(dr),

which yields (2.2). To show (2.3) fix t ≥ 0. By the Projection Theorem it is enough to
show 〈∫ t

0

Ψr µ(dr), g
〉
L2(ν)

= 0 for g ∈ S⊥.

Fix g ∈ S⊥. Tonelli’s Theorem and Cauchy-Schwarz’ inequality shows that∫∫ t

0

|Ψr(s)g(s)|µ(dr) ν(ds) ≤ ‖g‖L2(ν)

∫ t

0

‖Ψr‖L2(ν) µ(dr) <∞.

Thus Fubini’s Theorem shows that〈∫ t

0

Ψr µ(dr), g
〉
L2(ν)

=

∫ t

0

〈Ψr, g〉L2(ν) µ(dr) = 0,

which completes the proof.

For Ψ ∈ L2,1(ν, µ) we always define (t, s) 7→ ∫ t
0

Ψr(s)µ(dr) as in the above lemma.

Lemma 2.3. For every Ψ ∈ BV(ν) there exists a measurable mapping (t, s) 7→ Ψ̃t(s) such
that t 7→ Ψ̃t(s) is right-continuous and of bounded variation for s ∈ E and Ψt = Ψ̃t ν-a.s.
for t ≥ 0.

Proof . Define D := {i2−n : n ≥ 1, i ≥ 0}.We first show that (At)t∈D has finite upcrossing
over each finite interval P -a.s. by showing that (Ψt)t∈D∩[0,N ] is of bounded variation ν-a.s.
for all N ≥ 1. Fix N ≥ 1. We have∫

sup
n≥1

N2n∑
i=1

|Ψi2−n −Ψ(i−1)2−n| dν =

∫
lim inf
n→∞

N2n∑
i=1

|Ψi2−n −Ψ(i−1)2−n| dν

≤ lim inf
n→∞

N2n∑
i=1

∫
|Ψi2−n −Ψ(i−1)2−n| dν ≤ lim inf

n→∞

N2n∑
i=1

‖Ψi2−n −Ψ(i−1)2−n‖L2(ν) <∞,

where the last inequality follows since Ψ ∈ BV(ν). Since (Ψt)t∈D has finite upcrossing over
each finite interval ν-a.s.

Ψ̃t := lim
u↓t, u∈D

Ψu, t ≥ 0,

is a well-defined càdlàg process. Moreover, since Ψ ∈ BV(ν), t 7→ Ψt ∈ L2(ν) is right-
continuous. This implies that Ψ̃t = Ψt ν-a.s. for t ≥ 0 and so Ψ̃ ∈ BV(ν). Thus it follows
from calculations as above that (Ψ̃t)t≥0 is of integrable variation. This completes the
proof.
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3 General properties of Gaussian semimartingales

Our next result shows that the Gaussian property is preserved under various
operations on a Gaussian semimartingale.

Lemma 3.1. Let (Ft)t≥0 be a filtration and G denote an (Ft)t≥0-stable Gaussian space.
We have the following.

(i) Let (Xt)t≥0 ⊆ G be an (Ft)t≥0-semimartingale. Then (Xt)t≥0 is a special (Ft)t≥0-
semimartingale. Let Xt = Mt + At + X0 be the (Ft)t≥0-canonical decomposition
of (Xt)t≥0. Then, (At)t≥0, (Mt)t≥0 ⊆ G and (Mt)t≥0 is a (true) (Ft)t≥0-martingale
which is independent of X0.

(ii) Let (Mt)t≥0 ⊆ G be a Gaussian martingale starting at 0. Then{∫ t

0

f(s) dMs : f ∈ L2(µM)} = sp{Mu : u ≤ t
}
, t ≥ 0. (3.1)

In particular if Y ∈ G is an FMt -measurable random variable with mean zero then
there exists an f ∈ L2(µM) such that

Y =

∫ t

0

f(s) dMs.

Proof . (i) follows by Stricker (1983, Proposition 4 and 5).
(ii): Fix t ≥ 0. To show the inclusion ’⊆’ let f ∈ L2(µM) be given. Since

∫ t
0
f(s) dMs

is the L2(P )-limit of
∫ t

0
fn(s) dMs where the fn’s are step functions such that fn → f in

L2(µM), it follows that ∫ t

0

f(s) dMs ∈ sp{Mu : u ≤ t}.

Since Mu =
∫ t

0
1(0,u](s) dMs for u ∈ [0, t] and the left-hand side of (3.1) is closed the

’⊇’ inclusion follows and thus we have shown (3.1). Now assume that Y ∈ G is an
FMt -measurable random variable with mean zero. Let (an)n≥1 be a dense subset of [0, t]
containing t. By Lévy’s Theorem it follows that

E[Y |Ma1 , . . . ,Man ]→ E[Y |FMt ] = Y in L2(P ). (3.2)

Since (Y,Ma1 , . . . ,Man) is simultaneously Gaussian for every n ≥ 1 the left-hand side of
(3.2) belongs to the linear span of {Mai

: 1 ≤ i ≤ n}. This shows that Y ∈ sp{Mu : u ≤ t},
which by (3.1) completes the proof of (ii).

Let (Mt)t≥0 denote a càdlàg Gaussian martingale and (t, s) 7→ Ψt(s) be a measurable
mapping satisfying Ψt ∈ L2(µM) for t ≥ 0. Then we may and do choose (

∫
Ψt(s) dMs)t≥0

jointly measurable in (t, ω). To see this note that S := sp{Mt : t ≥ 0} is a separable
subspace of L2(P ). Moreover Lemma 3.1 (ii) shows that each element in S is on the form∫
f(s) dMs for such f ∈ L2(µM). Thus for

∫
f(s) dMs ∈ S we have

E
[∫

Ψt(s) dMs

∫
f(s) dMs

]
=

∫
Ψt(s)f(s)µM(ds),

which shows that t 7→ E[
∫

Ψt(s) dMs

∫
f(s) dMs] is measurable. Hence by Lemma 2.1

there exists a measurable modification of (
∫

Ψt(s) dMs)t≥0.
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Lemma 3.2 (Stochastic Fubini result). Let µ be a σ-finite measure on R+, (Mt)t≥0 be
a càdlàg Gaussian martingale and Ψ ∈ L2,1(µM , µ). Then t 7→ ∫

Ψt(s) dMs is locally
µ-integrable P -a.s. and∫ t

0

(∫
Ψr(s) dMs

)
µ(dr) =

∫ (∫ t

0

Ψr(s)µ(dr)
)
dMs, t ≥ 0. (3.3)

Proof . We have

E
[∫ t

0

∣∣∣∫ Ψr(s) dMs

∣∣∣µ(dr)
]
≤
∫ t

0

‖Ψr‖L2(µM ) µ(dt) <∞,

which shows that r 7→ ∫
Ψr(s) dMs is locally µ-integrable P -a.s. Thus both sides of (3.3)

are well-defined. The right-hand side belongs to sp{Mt : t ≥ 0} and so does the left-hand
side by Lemma 2.2. From Lemma 3.1 (ii) it follows that all elements in sp{Mt : t ≥ 0}
are on the form

∫
g(s) dMs for a g ∈ L2(µM). Fix

∫
g(s) dMs ∈ sp{Mt : t ≥ 0}. We have

E
[∫

g(s) dMs

∫ (∫ t

0

Ψr(s)µ(dr)
)
dMs

]
=

∫
g(s)

∫ t

0

Ψr(s)µ(dt)µM(ds).

Moreover, it follows from Fubini’s Theorem that

E
[∫

g(s) dMs

∫ t

0

(∫
Ψr(s) dMs

)
µ(dr)

]
=

∫ t

0

E[

∫
g(s) dMs

∫
Ψr(s) dMs]µ(dr)

=

∫ t

0

∫
g(s)Ψr(s)µM(ds)µ(dr) =

∫∫ t

0

g(s)Ψt(s)µ(dr)µM(ds).

Hence, the left- and the right-hand side of (3.3) have the same inner product with all
elements of sp{Mt : t ≥ 0} which means that they are equal. This completes the proof.

4 Representation of Gaussian semimartingales

Proposition 4.1. Let (Ft)t≥0 be a filtration and G be a Gaussian space. Moreover let
(At)t≥0 ⊆ G be (Ft)t≥0-adapted, right-continuous and of bounded variation. Then there
exists an (Ft)t≥0-optional process (Yt)t≥0 ⊆ G such that ‖Yt‖L2(P ) ≤ 3 for t ≥ 0 and

At =

∫ t

0

Ys µA(ds), t ≥ 0. (4.1)

If (At)t≥0 is (Ft)-predictable then (Yt)t≥0 can be chosen (Ft)t≥0-predictable and if (At)t≥0

is a centered process we have ‖Yr‖L2(P ) =
√
π/2 for r ≥ 0.

Proof . It follows from Jeulin (1993, Proposition 2) that (At)t≥0 is absolutely continuous
w.r.t. µA. By Jacod and Shiryaev (2003, Proposition 3.13) there exists an (Ft)t≥0-optional
process (Zt)t≥0 such that At =

∫ t
0
Zs µA(ds) for t ∈ R+. Define

Zn
s :=

n2n∑
i=1

Ai2−n − A(i−1)2−n

µA(((i− 1)2−n, i2−n])
1((i−1)2−n,i2−n](s), s ≥ 0,
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where 0/0 := 0. By reducing to probability measures we get from Dellacherie and Meyer
(1982, page 50) that for almost all ω ∈ Ω, Zn

· (ω) converges to Z·(ω) µA-a.s. Thus, Tonelli’s
Theorem shows that there exists a measurable µA-null set N such that for t /∈ N, we have
Zn
t converges to Zt P -a.s. For t ≥ 0 define Yt := Zt1Nc(t). Then (Yt)t≥0 is (Ft)t≥0-

optional, (Yt)t≥0 ⊆ G and (Yt)t≥0 satisfies (4.1). For all Gaussian random variables X we
have ‖X‖L2(P ) ≤ 3‖X‖L1(P ). Now it follows

µA((0, t]) = E
[∫ t

0

|Ys|µA(ds)
]
≥ 1/3

∫ t

0

‖Ys‖L2(P ) µA(ds),

by which we conclude that ‖Yt‖L2(P ) ≤ 3 for µA-a.a. t ≥ 0.
If (At)t≥0 is (Ft)t≥0-predictable Jacod and Shiryaev (2003, Proposition 3.13) shows

that the above (Zt)t≥0 can be chosen (Ft)t≥0-predictable and therefore (Yt)t≥0 will be
(Ft)t≥0-predictable as well.

The above result characterizes Gaussian processes of bounded variation. Indeed it
follows from Proposition 4.1 and Lemma 2.2 that (At)t≥0 is a Gaussian process which is
right-continuous and of bounded variation if and only if

At =

∫ t

0

Yr µ(dr) t ≥ 0,

for a Radon measure µ onR+ and a measurable Gaussian process (Yt)t≥0 which is bounded
in L2(P ).

Recall the definition of µM on page 3. Moreover, recall (e.g. from Rogers and Williams
(1987)) the definition of the dual predictable projection of non-adapted processes.

Proposition 4.2. Let µ be Radon measure on R+, (Mt)t≥0 be a càdlàg Gaussian mar-
tingale and Ψ ∈ L2,1(µM , µ). Define

At :=

∫ t

0

(∫
Ψr(s) dMs

)
µ(dr), t ≥ 0.

Then the dual (Ft)t≥0-predictable projection of (At)t≥0 is for t ≥ 0 given by

Ap
t =

∫ t

0

(∫ t

s

Ψr(s)µ(dr)
)
dMs =

∫ t

0

(∫
1(0,r)(s)Ψr(s) dMs

)
µ(dr). (4.2)

In particular (At)t≥0 is (FMt )t≥0-predictable if and only if Ψt(s) = 0 for µM ⊗µ-a.a. (s, t)
with s ≥ t.

Proof . Since Ψ ∈ L2,1(µM , µ) Lemma 2.2 shows that
(t, s) 7→ ∫ t

0
Ψr(s)µ(dr) ∈ BV(µ). Now Lemma 3.2 and Lemma 4.3 below shows that

Ap
t =

∫ t

0

(∫ t

s

Ψr(s)µ(dr)
)
dMs, t ≥ 0.

The last identity in (4.2) follows from Lemma 3.2.

8



To conclude we note that (At)t≥0 is (FMt )t≥0-predictable if and only if At = Ap
t for all

t ≥ 0. From (4.2) this is the case if and only if for P ⊗ µ-a.a. (ω, r) we have∫
1(0,r)(s)Ψr(s) dMs(ω) =

∫
Ψr(s) dMs(ω).

which by the isometric property of the integral corresponds to 1(0,r)(s)Ψr(s) = Ψr(s) for
µM ⊗ µ-a.a. (s, r).

Lemma 4.3. Let (Mt)t≥0 be a càdlàg Gaussian martingale and let Ψ ∈ BV(µM) satisfy
that t 7→ Ψt(s) is càdlàg for s ≥ 0. Then s 7→ Ψs(s) is locally µM -square integrable. Let
furthermore (At)t≥0 be a modification of (

∫
Ψt(s) dMs)t≥0 which is right-continuous and

of bounded variation. (Such a modification exists according to Lemma 2.3). Then the dual
(FMt )t≥0-predictable projection of (At)t≥0 exists and is given by

Ap
t =

∫ t

0

(
Ψt(s)−Ψs(s)

)
dMs, t ≥ 0. (4.3)

In particular, (At)t≥0 is (FMt )t≥0-predictable if and only if for t ≥ 0 we have Ψt(s) = 0
for µM -a.a. s ∈ [t,∞).

Proof . Fix t ≥ 0. General theory shows that for t ≥ 0 we have

1

h

∫ t

0

E[Au+h − Au|FMu ] du→ Ap
t in the σ(L1, L∞)-topology, as h ↓ 0, (4.4)

see e.g. Dellacherie and Meyer (1982, Theorem 21.1). Thus from Gaussianity the conver-
gence also takes place in the σ(L2, L2)-topology. We have

1

h

∫ t

0

E[Au+h − Au|FMu ] du =
1

h

∫ t

0

(∫ u

0

(
Ψu+h(s)−Ψu(s)

)
dMs

)
du

=

∫ t

0

(1

h

∫ t

s

(
Ψu+h(s)−Ψu(s)

)
du
)
dMs,

where the second equality follows from Lemma 3.2 since Ψ ∈ BV(µM) ⊆ L2,1(µM , λ) (λ
denotes the Lebesgue measure on R). Thus (4.4) implies that there exists an ft ∈ L2(µM)
such that

1[0,t](s)
1

h

∫ t

s

(
Ψu+h(s)−Ψu(s)

)
du −→h↓0 ft(s) in the σ(L2, L2)

and Ap
t =

∫ t
0
ft(s) dMs. Fix s ∈ [0, t]. The right-continuity of t 7→ Ψt(s) implies that

1

h

∫ t

s

(
Ψu+h(s)−Ψu(s)

)
du

=
1

h

∫ t+h

t

Ψu(s) du− 1

h

∫ s+h

s

Ψu(s) du→ Ψt(s)−Ψs(s), as h ↓ 0.

This shows ft(s) = Ψt(s)−Ψs(s) for µM -a.a. s ∈ [0, t] and the proof of (4.3) is complete.
Since (At)t≥0 is (FMt )t≥0-predictable if and only if At = Ap

t for t ≥ 0 the last part of
the result is immediate.
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Remark 4.4. By writing s 7→ Ψs(s) as a telescoping sum of the functions s 7→ Ψt(s) it can
also be seen directly that s 7→ Ψs(s) is locally µM -square integrable.

We are now ready to state and prove one of the main results of the paper which
describes the bounded variation component of a Gaussian semimartingale and generalizes
a result of Stricker (1983).

Theorem 4.5. (Xt)t≥0 is a Gaussian semimartingale if and only if for t ≥ 0 we have

Xt = X +Mt +
(∫ t

0

(∫
Ψr(s) dMs

)
µ(dr) +

∫ t

0

Yr µ(dr)
)
, (4.5)

where µ is a Radon measure, (Mt)t≥0 is a Gaussian martingale starting at 0, Ψ is a
measurable mapping such that (Ψr)r≥0 is bounded in L2(µM) and Ψt(s) = 0 for µM⊗µ-a.a.
(s, t) with s ≥ t, (Yt)t≥0 is a measurable process which is bounded in L2(P ) and X is a
random variable such that {Yt, X : t ≥ 0} is Gaussian and independent of (Mt)t≥0.

In this case, (Xt)t≥0 is (in addition) an (Ft)t≥0-semimartingale, where Ft := FMt ∨
σ(X, Ys : s ≥ 0) for t ≥ 0 and (4.5) is the (Ft)t≥0-canonical decomposition of (Xt)t≥0.

Remark 4.6. We actually prove the following. Let (Ft)t≥0 be a filtration and G be an
(Ft)t≥0-stable Gaussian space. Assume (Xt)t≥0 ⊆ G and (Xt)t≥0 is an (Ft)t≥0-semimartin-
gale with (Ft)t≥0-canonical decomposition Xt = X0 + Mt + At. Then (Xt)t≥0 can be
decomposed as in (4.5) with µ = µA, (Yt)t≥0 (Ft)t≥0-predictable and (Mt)t≥0, (Yt)t≥0 ⊆ G.

Theorem 4.5 also shows the following.

Remark 4.7. A Gaussian semimartingale (Xt)t≥0 with martingale component (Mt)t≥0 can
be decomposed as Xt = Zt + Bt, where (Zt)t≥0 is a Gaussian (FMt )t≥0-semimartingale
and (Bt)t≥0 is a Gaussian (FXt )t≥0-predictable process independent of (Mt)t≥0 which is
right-continuous and of bounded variation. In particular FXt = FMt ∨ FBt .
Proof of Theorem 4.5. Only if : We prove the more general result stated in Remark 4.6.
Thus let (Ft)t≥0 be a filtration and G be an (Ft)t≥0-stable Gaussian space. Assume
(Xt)t≥0 ⊆ G and that (Xt)t≥0 is an (Ft)t≥0-semimartingale with (Ft)t≥0-canonical decom-
position Xt = X0 + Mt + At. It follows from Lemma 3.1 (i) that (At)t≥0, (Mt)t≥0 ⊆ G,
and since (At)t≥0 is of bounded variation, Proposition 4.1 shows that there exists an
(Ft)t≥0-predictable process (Zt)t≥0 ⊆ G such that ‖Zr‖L2(P ) ≤ 3 for r ≥ 0 and

At =

∫ t

0

Zs µA(ds), t ≥ 0.

Let (pZt)t≥0 denote the (FMt )t≥0-predictable projection of (Zt)t≥0. The definition of (pZt)t≥0

shows that for t ≥ 0 we have pZt = E[Zt|FMt− ]. From Gaussianity it follows that pZt is
the projection of Zt on sp{Ms : s < t} and thus pZt ∈ G for t ≥ 0. This means that
‖Zs‖L2(P ) ≥ ‖pZs‖L2(P ) for r ≥ 0. Define Yt := Zt − pZt for t ≥ 0. Then (Yt)t≥0 ⊆ G is
bounded in L2(P ). We claim that

E[YuMt] = 0 for t, u ≥ 0. (4.6)
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Since pZu is the projection of Zu on sp{Mv : v < t}, (4.6) is obviously true for 0 ≤ t < u.
Moreover since (Mt)t≥0 is an (Ft)t≥0-martingale it remains to be shown E[YuMu] = 0 for
u ≥ 0. Fix u ≥ 0. We have

E[YuMu] = E[YuE[Mu|Fu−]] = E[YuMu−] = 0,

where the first equality follows since Yu is Fu− measurable and the second equality follows
since (Mt)t≥0 is an (Ft)t≥0-martingale. This completes the proof of (4.6).

Since (Yt)t≥0 and (Mt)t≥0 both are subsets of G and (Mt)t≥0 is a centered process,
(4.6) implies that (Yt)t≥0 is independent of (Mt)t≥0. It follows from Lemma 3.1 (ii) and
Lemma 2.1 that pZt = E[pZt] +

∫
Ψt(s) dMs for t ≥ 0 and some measurable mapping Ψ

such that (Ψr)r≥0 is bounded in L2(µM). Since (pZt)t≥0 is (FMt )t≥0-predictable, Propo-
sition 4.2 shows Ψt(s) = 0 for µM ⊗ µA-a.a. (s, t) with s ≥ t. This completes the proof
of (4.5), by using Ỹt := Yt + E[pZt] instead of (Yt)t≥0.

If : Assume conversely that (4.5) is satisfied. By Lemma 4.2∫ t

0

(∫
Ψr(s) dMs

)
µ(dr), t ≥ 0,

is (FMt )t≥0-predictable. Hence, (Xt)t≥0 is an (Ft)t≥0-semimartingale (Ft := FMt ∨σ(X, Ys :
s ≥ 0)) and the (Ft)t≥0-canonical decomposition of (Xt)t≥0 is (4.5). Since (Xt)t≥0 is an
(Ft)t≥0-semimartingale, Stricker’s Theorem (see Protter (2004, Chapter 2, Theorem 4))
shows that (Xt)t≥0 in particular is a semimartingale, that is an (FXt )t≥0-semimartingale.
This completes the proof.

In the following we study the canonical decomposition of a Gaussian semimartingales.
For a stochastic process (Xt)t∈R we let (FX,∞t )t≥0 denote the least filtration for which Xs

is FX,∞t -measurable for t ≥ 0 and s ∈ (−∞, t].
Theorem 4.8. Let (Xt)t∈R be Gaussian process which either is stationary or has station-
ary increments and satisfies X0 = 0. Assume (Xt)t≥0 is a semimartingale with canonical
decomposition Xt = X0 +Mt + At. Then we have

(i) (Mt)t≥0 is a Wiener process and hence µM equals the Lebesgue measure up to a
scaling constant. Moreover µA is absolutely continuous with increasing density.

(ii) (At)t≥0 has stationary increments if and only if (Mt)t≥0 is independent of (Xt)t≤0.

(iii) (Xt)t≥0 is an (FX,∞t )t≥0-semimartingale if and only if µA has a bounded density.

Proof . The stationary increments of (Xt)t≥0 imply that (Xt)t≥0 has no fixed points of
discontinuity. Since in addition (Xt)t≥0 is a Gaussian semimartingale, it is continuous
(see Stricker (1983, Proposition 3)). By continuity of (Xt)t≥0 it follows that (At)t≥0 is
continuous as well.

(i): Since (At)t≥0 is continuous we have [M ]t = [X]t for t ≥ 0. (For a process (Zt)t≥0,
[Z]t denotes the quadratic variation of (Zt)t≥0 on [0, t].) By the stationary increments of
(Xt)t≥0, it follows that [X]t = Kt for all t ≥ 0 and some constant K ∈ R+. Thus by
Gaussianity it follows that (Mt)t≥0 has stationary increments and therefore is a Wiener
process with parameter K.
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Let v ≥ 0 be given and define FX,vt := FXt ∨ σ(Xs : s ∈ [−v, 0]) for t ≥ 0. In the
following we shall use that for 0 ≤ t0 < t1 < · · · < tn we have

(E[Xti+v −Xti−1+v|FXti−1+v])
n
i=1

D
= (E[Xti −Xti−1

|FX,vti−1
])ni=1. (4.7)

In the case where (Xt)t∈R has stationary increments and satisfies X0 = 0 this is due to(
Xti+v −Xti−1+v, (Xs)s∈[0,ti−1+v]

)n
i=1

D
=
(
Xti −Xti−1

, (Xs −X−v)s∈[−v,ti−1]

)n
i=1
,

and σ(Xs −X−v : s ∈ [−v, ti−1]) = FX,vti−1
for i = 1, . . . , n. In the stationary case it follows

since (
Xti+v −Xti−1+v, (Xs)s∈[0,ti−1+v]

)n
i=1

D
=
(
Xti −Xti−1

, (Xs)s∈[−v,ti−1]

)n
i=1
.

From (4.7) it follows that (Xt)t≥0 is an (FX,vt )t≥0-local quasimartingale and therefore
also an (FX,vt )t≥0-special semimartingale. Let (Avt )t≥0 be the bounded variation compo-
nent of (Xt)t≥0 in the filtration (FX,vt )t≥0. For 0 ≤ u ≤ t we have

At − Au = lim
n→∞

[t2n]∑
i=1

E[Xi/2n −X(i−1)/2n|FX(i−1)/2n ]

= lim
n→∞

[t2n]∑
i=1

E[Avi/2n − Av(i−1)/2n|FX(i−1)/2n ] in L2(P ),

which shows

‖At − Au‖L1(P ) ≤ lim
n→∞

[t2n]∑
i=[u2n]+1

‖Avi/2n − Av(i−1)/2n‖L1(P ) = µAv((u, t]). (4.8)

From (4.7) it follows that (the limits are in L2(P ))

Avt − Avu = lim
n→∞

[t2n]∑
[u2n]+1

E[Xi/2n −X(i−1)/2n|FX,v(i−1)/2n ]

D
= lim

n→∞

[t2n]∑
[u2n]+1

E[Xi/2n+v −X(i−1)/2n+v|FX(i−1)/2n+v] = At+v − Au+v,

and hence µAv((u, t]) = µA((u+ v, t+ v]). Thus by (4.8) we conclude that

µA((u, t]) ≤ µA((u+ v, t+ v]), 0 ≤ u ≤ t, 0 ≤ v. (4.9)

Define f(t) := µA((0, t]) for t ≥ 0 and let T ≥ 0 be given. Choose a t0 ≥ T such that f is
differentiable at t0. Moreover let t, h ≥ 0 satisfy t+ h ≤ T. Then

µA((t, t+ h]) = f(t+ h)− f(t) =
n∑
i=1

f(t+ ih/n)− f(t+ (i− 1)h/n)

≤
n∑
i=1

f(t0 + h/n)− f(t0) = h
f(t0 + h/n)− f(t0)

h/n
−−−→
n→∞

hf ′(t0),
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which shows f is locally Lipschitz continuous and hence µA is absolutely continuous. From
(4.9) it follows that µA has an increasing density.

(ii): Assume (At)t≥0 has stationary increments. For t ≥ 0 (4.7) shows

At
D
=At+v − Av = lim

n→∞

[t2n]∑
i=1

E[Xi/2n+v −X(i−1)/2n+v|FX(i−1)/2n+v]

D
= lim

n→∞

[t2n]∑
i=1

E[Xi/2n −X(i−1)/2n|FX,v(i−1)/2n ] =: Avt in L2(P ).

By the rules of successive conditioning it follows that E[AtA
v
t ] = E[A2

t ]. Since in addition
At
D
= Avt this shows that

E[(At − Avt )2] = E[(Avt )
2]− E[A2

t ] = 0,

and hereby

At = lim
n→∞

[t2n]∑
i=1

E[Xi/2n −X(i−1)/2n|FX,v(i−1)/2n ] in L2(P ).

This yields

Mt = lim
n→∞

[t2n]∑
i=1

Xi/2n −X(i−1)/2n − E[Xi/2n −X(i−1)/2n|FX,v(i−1)/2n ] in L2(P ),

which implies thatMt is independent ofXu for u ∈ [−v, 0]. Since v, t ∈ R+ were arbitrarily
chosen, we conclude that (Mt)t≥0 is independent of (Xt)t≤0.

Assume on the other hand that (Mt)t≥0 is independent of (Xt)t≤0. Then (Xt)t≥0 is an
(FX,∞t )t≥0-semimartingale with (FX,∞t )t≥0-canonical decomposition given by Xt = X0 +
At +Mt. For 0 ≤ u ≤ t and 0 ≤ v we have

At+v − Au+v = lim
n→∞

[t2n]∑
i=[u2n]+1

E[Xi/2n+v −X(i−1)/2n+v|FX,∞(i−1)/2n+v] in L2(P )

from which we conclude that (At)t≥0 has stationary increments.
(iii): Let (Xt)t≥0 be an (FX,∞t )t≥0-semimartingale and let (Bt)t≥0 denote the (FX,∞t )t≥0-

bounded variation component of (Xt)t≥0. By arguments as above it follows that (Bt)t≥0

has stationary increments and hence E[|Bt − Bu|] ≤ K(t − u) for 0 ≤ u ≤ t and some
constant K ∈ R+. For t ≥ 0 we have

At = lim
n→∞

[t2n]∑
i=1

E[Bi/2n −B(i−1)/2n|FX(i−1)/2n ] in L2(P ),

and hence

E[|At − Au|] ≤ lim
n→∞

[t2n]∑
i=[u2n]+1

E[|E[Bi/2n −B(i−1)/2n|FX(i−1)/2n ]|] ≤ K(t− u),
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which shows µA has a bounded density.
Assume conversely that µA has a bounded density and let K ∈ R+ be a constant

dominating the density. For 0 ≤ u ≤ t we have

E[|E[Xt −Xu|FX,∞u ]|] = lim
n→∞

E[|E[Xt −Xu|FX,nu ]|]
= lim

n→∞
E[|E[Xt+n −Xu+n|FXu+n]|] = lim

n→∞
E[|E[At+n − Au+n|FXu+n]|]

≤ lim
n→∞

µA((u+ n, t+ n]) ≤ K(t− u).

This shows (Xt)t≥0 is an (FX,∞t )t≥0-quasimartingale on bounded intervals and hence an
(FX,∞t )t≥0-semimartingale.

Let (Xt)t≥0 be a stationary Gaussian semimartingale with covariance function γ(t) :=
Cov(Xu+t, Xu) = E[XtX0]− E[X2

0 ] for t ≥ 0. Then γ is locally Lipschitz continuous and
Lipschitz continuous if (Xt)t≥0 is an (FX,∞t )t≥0-semimartingale.

To show this, let (At)t≥0 be the bounded variation component of (Xt)t≥0. For 0 ≤ u, t
we have

|γ(t+ u)− γ(u)| = |E[(At+u − Au)X0]| ≤ ‖At − Au‖L2(P )‖X0‖L2(P ),

and the statement thus follows from Theorem 4.8.
We believe that among the stationary Gaussian processes (Xt)t≥0, the class of (FXt )t≥0-

semimartingales is strictly larger than the class of (FX,∞t )t≥0-semimartingales. However,
we haven’t found an example of an (FXt )t≥0-semimartingale which isn’t an (FX,∞t )t≥0-
semimartingale. This is equivalent (according to Theorem 4.8 (iii)) to finding a stationary
Gaussian semimartingale (Xt)t≥0 for which µA has an unbounded density ( (At)t≥0 denotes
the bounded variation component of (Xt)t≥0).

5 The covariance function of Gaussian
semimartingales

If (Xt)t≥0 is a Gaussian process we let ΓX denote the corresponding covariance function,
i.e. ΓX(t, s) := E[(Xt − E[Xt])(Xs − E[Xs])] for all s, t ≥ 0. We need the following.

Condition 5.1. A function G : R2
+ → R satisfies Condition 5.1, if G is symmetric,

positive semi-definite and there exists a right-continuous increasing function f such that
for all 0 ≤ s ≤ t √

G(t, t) +G(s, s)− 2G(s, t) ≤ f(t)− f(s).

Recall that G is positive semi-definite if

n∑
i,j=1

aiG(ti, tj)aj ≥ 0

for all n ≥ 1, a1, . . . , an ∈ R and t1, . . . , tn ∈ R+.
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Assume that G satisfies Condition 5.1 and denote by (At)t≥0 a centered Gaussian
process satisfying ΓA = G. Then by Lemma 2.3 there exists a modification of (At)t≥0

which is right-continuous and of bounded variation. Conversely, if (At)t≥0 is a right-
continuous Gaussian process of bounded variation, then ΓA satisfies Condition 5.1 with
f(t) = E[Vt(A)] for t ≥ 0 since (At)t≥0 is of integrable variation.

ThusG satisfies Condition 5.1 if and only ifG = ΓA for some right-continuous Gaussian
process (At)t≥0 of bounded variation.

A measurable mapping R2
+ 3 (t, s) 7→ Ψt(s) ∈ R is said to be a Volterra type kernel

if Ψt(s) = 0 for all s > t. (A Volterra kernel is often assumed to be an L2(λ)-kernel see
e.g. Baudoin and Nualart (2003) and Smithies (1958). However, the latter assumption
is not needed here.) Let 1 denote the Volterra type kernel given by R2

+ 3 (t, s) 7→
1t(s) = 1[0,t](s).

The next result is a new characterization of the covariance function of Gaussian semi-
martingales. The result is only formulated for centered Gaussian processes. This is no
restriction since a Gaussian process (Xt)t≥0 is a semimartingale if and only if t 7→ E[Xt]
is right-continuous and of bounded variation and (Xt−E[Xt])t≥0 is a semimartingale. To
see this it is enough to show that the mean-value function of a Gaussian semimartingale is
of bounded variation. Let (Xt)t≥0 be a Gaussian semimartingale with bounded variation
component (At)t≥0. For 0 ≤ u ≤ t we have

|E[Xt]− E[Xu]| = |E[At]− E[Au]| ≤ E[Vt(A)]− E[Vu(A)],

by which we conclude that the mean-value function of (Xt)t≥0 is of bounded variation.

Theorem 5.2. Let (Xt)t≥0 be a centered Gaussian process. Then the following conditions
are equivalent:

(i) (Xt)t≥0 is a semimartingale.

(ii) There exists a Radon measure µ on R+, a Volterra type kernel Φ such that Φ− 1 ∈
BV(µ), and a function G satisfying Condition 5.1 such that

ΓX(t, u) = G(t, u) +

∫
Φt(s)Φu(s)µ(ds), u, t ≥ 0.

(iii) There exist Radon measures µ and ν on R+, a function G satisfying Condition 5.1
and a Volterra type kernel Ψ such that (Ψr)r≥0 is bounded in L2(ν) and such that
for 0 ≤ u, t we have

ΓX(t, u) =G(t, u) + ν((0, t ∧ u]) +

∫ t

0

∫ u

0

Ψr(s) ν(ds)µ(dr) (5.1)

+

∫ t

0

∫ u

0

Ψr(s)µ(dr)ν(ds) +

∫ t

0

∫ u

0

〈Ψr,Ψv〉L2(ν) µ(dr)µ(dv).
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Proof . We show (iii)⇒ (ii)⇒ (i)⇒ (iii).
Assume (iii) is satisfied. Equation (5.1) can be written as

ΓX(t, u) = G(t, u) +

∫ (
1t(s) +

∫ t

0

Ψr(s)µ(dr)
)(
1u(s) +

∫ u

0

Ψr(s)µ(dr)
)
ν(ds).

By Lemma 2.2, (t, s) 7→ ∫ t
0

Ψr(s)µ(dr) ∈ BV(ν) which shows (ii).
Assume (ii) is satisfied. To show that (Xt)t≥0 is a semimartingale it is enough to

show that there exists a Gaussian semimartingale (Zt)t≥0 such that (Zt)t≥0 is distributed
as (Xt)t≥0. Indeed, assume that (Zt)t≥0 has been constructed. Then since (Zt)t≥0 is a
càdlàg process, (Xt)t≥0 is càdlàg through the rational numbers, and since (Xt)t≥0 is right-
continuous in L2(P ), is it possible to choose a càdlàg modification of (Xt)t≥0. For all
0 ≤ s ≤ t we have

E[|E[Zt − Zs|FZs ]|] = E[|E[Xt −Xs|FXs ]|]. (5.2)

Since a Gaussian process is a semimartingale if and only if it is quasimartingale on [0, T ]
for all T > 0 according to Liptser and Shiryayev (1989) [Chapter 4, Section 9, Corollary
of Theorem 1] and [Chapter 2, Section 1, Theorem 4], equation (5.2) shows that (Xt)t≥0

is a semimartingale.
To construct (Zt)t≥0, note that since G satisfies Condition 5.1 there exist two indepen-

dent processes (At)t≥0 and (Mt)t≥0, with the properties that (Mt)t≥0 is a càdlàg centered
Gaussian martingale with µM = µ for all t ≥ 0 and (At)t≥0 is a right-continuous centered
Gaussian process of bounded variation such that ΓA = G. Let Θ := Φ− 1 and

Zt := Mt +

∫
Θt(s) dMs + At.

Then (Zt)t≥0 is a well-defined centered Gaussian process. Since Θ ∈ BV(µ), Lemma 2.3
implies that (

∫
Θt(s) dMs)t≥0 can be chosen right-continuous and of bounded variation.

Moreover, since Θ is a Volterra type kernel, (
∫

Θt(s) dMs)t≥0 is (FMt )t≥0-adapted. Hence,
since (At)t≥0 is independent of (Mt)t≥0, (Zt)t≥0 is a semimartingale. Since ΓX = ΓZ ,
Gaussianity implies that (Xt)t≥0 is distributed as (Zt)t≥0, which completes the proof of (i).

Assume finally (i) is satisfied i.e. that (Xt)t≥0 is a semimartingale. Choose, according
to Remark 4.6, (Mt)t≥0, (Yt)t≥0,Ψ and µA such that for t ≥ 0 we have

Xt = Mt +

∫ t

0

(∫
Ψr(s) dMs

)
µA(dr) +

∫ t

0

Yr µA(dr) +X0.

Since
( ∫ t

0
Yr µA(dr)

)
t≥0

is a Gaussian process of bounded variation, it follows that

G(t, u) := E
[( ∫ t

0

Yr µA(dr) +X0

)(∫ u

0

Yr µA(dr) +X0

)]
, t, u ≥ 0

satisfies Condition 5.1. Since {(Mt)t≥0, (Yt)t≥0, X0} are centered simultaneously Gaussian
random variables and (Mt)t≥0 is independent of {X0, (Yt)t≥0}, it follows that (5.1) is
satisfied. This completes the proof.

The following definitions are taken from Jain and Monrad (1982). Let
f : R2

+ → R. For 0 ≤ s1 ≤ s2 and 0 ≤ t1 ≤ t2 define

∆f((s1, t1); (s2, t2)) := f(s2, t2)− f(s1, t2)− f(s2, t1) + f(s1, t1)
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and

Vs,t(f) := sup
∑
i,j

|∆f((si−1, tj−1); (si, tj))|+
∑
j

|f(0, tj)− f(0, tj−1)|

+
∑
i

|f(si, 0)− f(si−1, 0)|+ |f(0, 0)|,

where the sup is taken over all subdivisions 0 = s0 < · · · < sp = s and 0 = t0 < · · · < tq = t
of [0, s]× [0, t].

We say that f is of bounded variation if Vs,t(f) <∞ for all s, t > 0 and in this case f
induces a signed Radon measure λf on R2

+ given by

λf ([0, t]× [0, s]) = f(t, s), s, t ≥ 0.

A function f : R2
+ → R of bounded variation is said to be absolutely continuous if (s, t) 7→

Vs,t(f) is the restriction to R2
+ of the distribution function of a measure on R2 which is

absolutely continuous w.r.t. λ2 (the planar Lebesgue measure). This is equivalent to the
existence of three locally integrable functions h1, h2 and g such that

f(s, t) =

∫ s

0

∫ t

0

g(u, v) du dv +

∫ s

0

h1(u) du+

∫ t

0

h2(v) dv + f(0, 0).

If µ is a Radon measure on R+, let µ∆µ denote the measure on R2
+ for which (µ∆µ)(A×

B) = µ(A ∩ B) for all A,B ∈ B(R+). Let ∆ := {(x, y) ∈ (0,∞)2 : x = y} denote the
diagonal of (0,∞)2 and note that µ∆µ is concentrated on ∆ if µ has no mass at zero.

From the representation (5.1) it is easily seen that the covariance function of a Gaussian
semimartingale is of bounded variation (a direct proof can be found e.g. in Liptser and
Shiryayev (1989)). Thus if (Xt)t≥0 is a Gaussian semimartingale then ΓX induces a signed
Radon measure λΓX

on R2
+. The following result characterizes the martingales and the

processes of bounded variation among the Gaussian semimartingales.

Corollary 5.3. Let (Xt)t≥0 be a continuous Gaussian semimartingale with canonical de-
composition Xt = X0 + Mt + At. Then λΓX

equals µM∆µM on ∆ and λΓX
is absolutely

continuous with respect to µ×µ on R2
+ \∆, where µ = µM +µA + δ0 (δ0 denote the Dirac

measure at 0). This shows that (Xt)t≥0 is a martingale if and only if λΓX
is concentrated

on ∆∪ {(0, 0)} and is of bounded variation if and only if λΓX
is concentrated on R2

+ \∆.

Proof . Decompose (At)t≥0 as in Remark 4.6 and let u, t ≥ 0. By Fubini’s Theorem,

ΓX(t, u) = Cov
[
Mt +

∫ t

0

∫
Ψr(s) dMs µA(dr),Mu +

∫ u

0

∫
Ψr(s) dMs µA(dr)

]
+ Cov

[
X0 +

∫ t

0

Yr µA(dr), X0 +

∫ u

0

Yr µA(dr)
]

= µM([0, t ∧ u]) +

∫ t

0

∫ u

0

Ψr(s)µM(ds)µA(dr) +

∫ t

0

∫ u

0

Ψr(s)µA(dr)µM(ds)

+

∫ t

0

∫ u

0

〈Ψr,Ψv〉L2(µM ) µA(dr)µA(dv) +

∫ t

0

∫ u

0

E[YrYv]µA(dr)µA(dv)

+

∫ t

0

E[X0Yr]µA(dr) +

∫ u

0

E[X0Yr]µA(dr) + E[X2
0 ],
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which shows that there exists a measurable function f : R2
+ → R such that with µ :=

µM + µA + δ0 we have

λΓX
([0, t]× [0, u]) = µM∆µM([0, t]× [0, u]) +

∫
[0,t]×[0,u]

f dµ× µ. (5.3)

Furthermore, the continuity of (Xt)t≥0 implies that µ is nonatomic on (0,∞) and by (5.3)
we derive that λΓX

equals µM∆µM on ∆. From (5.3) we also derive that λΓX
is absolutely

continuous with respect to µ× µ on R2
+ \∆ and the proof is complete.

Note that the distribution of a Gaussian martingale (Mt)t≥0 is uniquely determined
by µM . Moreover Corollary 5.3 shows that for a continuous Gaussian semimartingale
(Xt)t≥0 with martingale component (Mt)t≥0 we have

µM((0, t]) = λΓX
((s1, s2) ∈ R2

+ : s1 = s2 ≤ t), t ≥ 0.

Thus it is easy to find the distribution of the martingale component (Mt)t≥0 from ΓX .
The following two examples are applications of Corollary 5.3.

Example 5.4. The fractional Brownian Motion (fBm) with Hurst parameter H ∈ (0, 1)
is a centered Gaussian processes (Xt)t≥0 with covariance function

ΓX(t, u) = 1
2
(t2H + u2H − |t− u|2H). (5.4)

Let ε > 0 be given. Below we prove that the fBm is not a semimartingale on [0, ε] if
H 6= 1/2. Let H 6= 1/2 and assume (for contradiction) that (Xt)t∈[0,ε] is a semimartingale.
The Kolmogorov Continuity Theorem shows that (Xt)t≥0 can be chosen continuous and
using (5.4) it follows that∫ t

0

∫ u

0

∂2ΓX
∂s∂v

dλ2 = ΓX(t, u), t, u ≥ 0, (5.5)

which shows ΓX is absolutely continuous. Hereby we deduce that (Xt)t∈[0,ε] is of bounded
variation on [0, ε] (Corollary 5.3) and therefore also of integrable variation by Gaussianity.
This contradicts that

‖Xt −Xu‖L1(P ) =
√

2/π |t− u|H , t, u ≥ 0,

and we conclude that (Xt)t∈[0,ε] is not a semimartingale. For H = 1/2, we have
∂2ΓX

∂s∂v
= 0 λ2-a.s. and hence (5.5) doesn’t hold. ♦

Example 5.5. Let (Wt)t≥0 be a Brownian Motion and define (Xt)t≥0 := (Wt+1−Wt)t≥0.
We want to show that (Xt)t∈[0,α] is not a semimartingale for any α > 1. Notice that

ΓX(t, u) = (1− |t− u|)+, t, u ≥ 0.

For contradiction assume that (Xt)t∈[0,α] is a semimartingale. Theorem 4.8 shows that µM
and µA are absolutely continuous and this implies by Corollary 5.3 that λΓX

is absolutely
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continuous on [0, α]2 \∆. Since ∂2ΓX

∂u∂t
= 0 λ2-a.s. there exist two functions g1 and g2 such

that

ΓX(u, t) =

∫ t

0

g1(s) ds+

∫ u

0

g2(s) ds+ 1, 0 ≤ u < t ≤ α.

For all u ∈ [0, α− 1] we have

0 = ΓX(u, α) =

∫ α

0

g1(s) ds+

∫ u

0

g2(s) ds+ 1,

which shows that g2(s) = 0 for λ-a.a. s ∈ [0, α− 1]. This contradicts

u = ΓX(u, 1) =

∫ 1

0

g1(s) ds+ 0 + 1, u ∈ [0, α− 1],

and we have shown that (Xt)t∈[0,α] is not a semimartingale.
Even though (Xt)t≥0 is not a semimartingale on R+, we now show that on [0, 1] it is.

By Yor (1997), (Wt +W1)t∈[0,1] is a semimartingale with canonical decomposition(
Wt −

∫ t

0

W1 −Ws

1− s ds
)

+

∫ t

0

W1 −Ws

1− s ds+W1. (5.6)

Let
Ft := σ(Ws+1 −W1 : s ∈ [0, t]) ∨ σ(Ws : s ∈ [0, t]) ∨ σ(W1), t ≥ 0.

Then (5.6) shows that (Xt)t∈[0,1] is a (Ft)t∈[0,1]-semimartingale with (Ft)t∈[0,1]-canonical
decomposition given by

Xt =
[
Wt+1 −W1 −Wt +

∫ t

0

W1 −Ws

1− s ds
]
−
∫ t

0

W1 −Ws

1− s ds+X0, (5.7)

where the term in the first bracket is the martingale component. By forming the dual
(FXt )t∈[0,1]-predictable projection on the bounded variation component of (5.7) it follows
that the (FXt )t∈[0,1]-canonical decomposition of (Xt)t∈[0,1] is given by

Xt =
(
Wt+1 −W1 −Wt +

∫ t

0

W1 − E[Ws|FXs ]

1− s ds
)
−
∫ t

0

W1 − E[Ws|FXs ]

1− s ds+X0.

Note that, even though (Xt)t≥0 is not a semimartingale on R+ the quadratic variation of
(Xt)t≥0 does exist, and it is given by [X]t = 2t for all t ≥ 0. ♦

It is known that the processes in Example 5.4 and 5.5 not are semimartingales (for the
fBm case see Rogers (1997)). However, the proofs presented here are new and indicate
the usefulness of the results in this paper.
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