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Abstract. We study spatial analyticity properties of solutions of the Navier-
Stokes equation and obtain new growth rate estimates for the analyticity radius.
We also study stability properties of strong global solutions of the Navier-Stokes
equation with data in Hr, r ≥ 1/2 and prove a stability result for the analyticity
radius.
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1. Introduction

We look at the following system of equations in the variables (t, x) ∈ [0,∞[×R3.
The unknown u specifies at each argument a velocity u = u(t, x) ∈ R3. The unknown
p specifies at each argument a pressure p = p(t, x) ∈ R.





∂
∂t
u+ (u · ∇)u+∇p = 4u
∇ · u = 0

u(t = 0) = u0

. (1.1)

We eliminate the pressure in the standard way using the Leray projection P .
It is an orthogonal projection on L2(R3,R3) which is fibered in Fourier space, i.e.
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(̂Pf)(ξ) = P (ξ)f̂(ξ), and it is given according to the following recipe: P (ξ) =

I − |ξ̂〉〈ξ̂|, ξ̂ := ξ/|ξ|.
{(

∂
∂t
u+ P (u · ∇)u−4u

)
(t, ·) = 0

u(t) := u(t, ·) ∈ RanP
. (1.2)

We introduce a notion of strong global solution to (1.2) in terms of A :=
√−4.

In the following the Sobolev space Hr is the Hilbert space with norm ‖f‖Hr =

‖〈A〉rf‖L2 where 〈x〉 =
√

1 + |x|2.

Definition 1.1. Let r ≥ 1/2. The set Gr is the set of u ∈ C([0,∞[, (Hr)3) satisfying:

(1) u(t) ∈ P (Hr)3 for all t ≥ 0,
(2) The expression A5/4u(t) defines an element in C(]0,∞[, (L2)3) and

lim
t→0

t3/8‖A5/4u(t)‖(L2)3 = 0,

(3) u ∈ C1(]0,∞[,S ′(R3)) and

d
dt
u = −A2u− P (u · ∇)u; t > 0.

Here the differentiability in t is meant in the weak* topology and the equation in
(3) is meant in the sense of distributions. We refer to any u ∈ Gr as a strong global
solution to the problem (1.2).

1.1. Discussion of uniform real analyticity. Fix r ∈ R and f ∈ Hr. We say
that f is uniformly Hr real analytic if there exists a > 0 such that the function
R3 3 η → eiη·pf = f(· + η) ∈ Hr, p := −i∇, extends to an analytic function f̃ on
{|Im η| < a} and that

sup
|Im η|<a

‖f̃(η)‖Hr <∞. (1.3)

We define correspondingly the analyticity radius of f as

rad(f) = sup{a > 0| the property (1.3) holds}. (1.4)

If f is not uniformly Hr real analytic we put rad(f) = 0.
We note that the notions of uniform real analyticity and corresponding analyticity

radius are independent of r, and that in fact

rad(f) = sup{a ≥ 0| eaAf ∈ Hr} = sup{a ≥ 0| eaAf ∈ L2}. (1.5)

Moreover if rad(f) > 0 then by the Sobolev embedding theorem, Hs ⊆ L∞ for

s > 3/2, the function R3 3 x → f(x) ∈ C extends to the analytic function f̆ on

{|Im η| < rad(f)} given by f̆(η) = f̃(η)(0). Conversely suppose a given function

R3 3 x → f(x) ∈ C extends to an analytic function f̆ on {|Im η| < b} and that

f̃(η) := f̆(· + η) obeys (1.3) for all a < b then f̃ is an analytic Hr-valued function
and rad(f) ≥ b.

If f ∈ Ḣr for some r ∈]−∞, 3/2[ (see Section 2 for the definition of homogeneous
Sobolev spaces) one can introduce similar notions of uniform real analyticity and
corresponding analyticity radius (by using (1.3) with Hr → Ḣr and (1.4), respec-
tively). If f ∈ Ḣr has a positive analyticity radius then f = f1 + f2 where f1 has
an entire analytic continuation and f2 is uniformly Hs real analytic for any s. Note
however that the concept of uniform Ḣr analyticity is dependent on r.
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In any case a > 0 will be a lower bound of the analyticity radius of f ∈ Hr or
f ∈ Ḣr if eaAf ∈ Hr or eaAf ∈ Ḣr, respectively.

For f = (f1, f2, f3) ∈ (Hr)3 we define rad(f) = minj(rad(fj)).

1.2. Results on real analyticity of solutions. It is a basic fact that for all
u ∈ Gr, r ≥ 1/2,

rad(u(t)) > 0 for all t > 0. (1.6)

In fact for any such u there exists λ > 0 such that

rad(u(t)) ≥ λ
√
t for all t > 0; (1.7)

we note that (1.7) is a consequence of Corollary 7.5, Lemma 7.13 and Proposition 4.1.
The main subject of this paper is the study of lower bounds of the quantity to the

left in (1.6) (and the analogous question for solutions taking values in homogeneous
Sobolev spaces). The study of analyticity of solutions of the Navier-Stokes equations
originated with Foias and Temam in [FT] where they studied analyticity of periodic
solutions in space and time (see also [FMRT]). Later Grujič and Kukavica [GK]
studied space analyticity of the Navier-Stokes equations in R3. Since then many
authors have proven analyticity results. We mention the book by Lemarié-Rieusset
[Le] where some results and references can be found.

There are two regimes to study, the small and the large time regimes. One of
our main results on large time analyticity bounds is the following (a combination of
Theorem 6.1 ii and Lemma 7.13):

Theorem 1.2. Suppose r ≥ 1/2 and u ∈ Gr. Suppose that for some σ ≥ 0 the
following bound holds

‖u(t)‖(L2)3 = O(t−σ/2) for t→∞. (1.8)

Let 0 ≤ ε̃ < ε ≤ 1 be given. Then there exist constants t0 > 1 and C > 0 such
that

‖exp
(√

(1− ε)(2σ + 1)
√
t ln tA

)
u(t)‖(L2)3 ≤ Ct1/4−ε̃(2σ+1)/4 for all t ≥ t0. (1.9)

In particular

lim inf
t→∞

rad(u(t))√
t ln t

≥
√

2σ + 1. (1.10)

Remarks. 1) For any u ∈ Gr the quantity ‖u(t)‖(L2)3 = o(t0) as t → ∞. In
particular (1.8) is valid for σ = 0. Under some further conditions (partly generic,
involving the condition

∫
u0iu0jdx 6= cδij, u0 = u(0)) it is shown in [Sc1] that for

some C > 0, C−1〈t〉−5/4 ≤ ‖u(t)‖(L2)3 ≤ C〈t〉−5/4. References to many further
works on the L2 decay rate can be found in [Sc1] .

2) Our method of proof works more generally, in particular for the class of com-
pressible flows given by taking P = I in (1.2). In this setting we construct an
example for which (1.8)–(1.10) hold with σ = 5/2 and for which all of the bounds
(1.8)–(1.10) with σ = 5/2 are optimal. If P is the Leray projection in (1.2) we do
not know if the bounds (1.9) and (1.10) are optimal under the decay condition
(1.8).

As for the small time regime, we have less complete knowledge. It is a basic fact
that for all u ∈ Gr, r ≥ 1/2,

lim
t→0

rad(u(t))√
t

=∞. (1.11)
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This result is valid for any strong solution to (1.2) defined on an interval I =]0, T ]
only (i.e. I =]0,∞[ is not needed here). This class, Sr,I , is introduced in Defini-
tion 7.1 in a similar way as the set of strong global solutions to (1.2) is introduced
in Definition 1.1. For any u0 ∈ (Hr)3, r ≥ 1/2, there exists a unique strong solution
u ∈ Sr,I with u(0) = u0 to the equations (1.2) provided that T = |I| is small enough
(alternatively, a unique small time solution to the initial value problem (1.1)).

One of our main results on small time analyticity bounds is the following (cf.
Corollary 3.6):

Theorem 1.3. Suppose u0 ∈ (Hr)3 for some r ∈]1/2, 3/2[. Let u be the unique small
time (T = |I| small) strong solution u ∈ Sr,I with u(0) = u0. Let ε ∈]0, 2r−1]. Then
there exist constants t0 = t0

(
ε, r, ‖〈A〉ru0‖

)
∈]0, T ] and C = C

(
ε, r, ‖〈A〉ru0‖

)
> 0

such that

‖e
√

2r−1−ε
√
t| ln t|Au(t)‖(Hr)3 ≤ Ct1/4+ε/4−r/2 for all t ∈]0, t0]. (1.12)

In particular

lim inf
t→0

rad(u(t))√
t| ln t|

≥
√

2r − 1. (1.13)

Remark. There are several natural questions connected with these results: Are the
bounds (1.12) and (1.13) optimal for r ∈]1/2, 3/2[? Are there better bounds than
those deducible from Theorem 1.3 if r > 3/2? Can (1.11) be improved for r = 1/2?
(But in this connection see the discussion of an example in Subsection 3.4.)

1.3. Results on stability of the analyticity radius.

Definition 1.4. For r ≥ 1/2 we denote by

Ir = {u0 ∈ P (Hr)3| ∃u ∈ Gr : u(0) = u0}, (1.14)

and we endow Ir with the topology from the space P (Hr)3.

Our main result on stability of the region of analyticity of global solutions to (1.2)
is the following (from Theorem 7.12 and Lemma 7.13).

Theorem 1.5. For all r ≥ 1/2 the set Ir is open in P (Hr)3. Given u0 ∈ I1/2, if
λ > 0 is given so that the corresponding solution u(t) satisfies

A1/2eλ
√·Au(·) ∈ C([0,∞[, L2), (1.15)

then there is a δ0 > 0 so that if δ ≤ δ0 and v0 ∈ P (H1/2)3 with ‖A1/2(v0 − u0)‖ ≤ δ
the solution v with initial data v0 is in G1/2 and satisfies

‖A1/2eλ
√
tA(v(t)− u(t))‖ ≤ K1δ, (1.16a)

t3/8‖A5/4eλ
√
tA(v(t)− u(t))‖ ≤ K2δ. (1.16b)

If ‖v0 − u0‖H1/2 ≤ δ it follows in addition that

〈t〉−1/4‖eλ
√
tA(v(t)− u(t))‖ ≤ K3δ. (1.16c)

In (1.16a)–(1.16c) the constants K1, K2, K3 > 0 depend on λ, u, and δ0 but not
on δ, and all bounds are uniform in t > 0.

We note that the fact that Ir is open is a known result. References will be given
in Subsection 7.3. We also note that indeed for any u0 ∈ I1/2 the condition (1.15)
holds for some λ > 0, cf. (1.7). We apply Theorem 1.5 (and some other results
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of this paper) to establish a new stability result for the L2 norm. This result is
presented in Subsection 7.4.

Remark. There is a natural question connected with Theorem 1.5: Is the analyt-
icity radius lower semicontinuous in the H1/2 topology? More precisely one may
conjecture that for any fixed u0 ∈ I1/2 and t > 0

lim inf rad(v(t)) ≥ rad(u(t)) in the limit ‖v0 − u0‖H1/2 → 0? (1.17)

For partial results in this direction see Proposition 7.8 and Corollary 7.10.

We shall use the standard notation 〈λ〉 := (1 + |λ|2)1/2 for any real λ. For any
given interval J and Hilbert space H the notation BC(J,H) refers to the set of all
bounded continuous functions v : J → H.

2. Integral equation

We look at the following (generalized) system of equations in the variables (t, x) ∈
[0,∞[×R3. The unknown u specifies at each argument a velocity u = u(t, x) ∈ R3.
The quantity M is a fixed real 3 × 3–matrix. Corresponding to (1.1) M = I. The
quantity P is an orthogonal projection on L2(R3,R3) which is fibered in Fourier

space, i.e. (̂Pf)(ξ) = P (ξ)f̂(ξ). Corresponding to (1.1) P is the Leray projection

given by P (ξ) = I − |ξ̂〉〈ξ̂|, ξ̂ := ξ/|ξ|, but for the most part we will not assume
this. 




(
∂
∂t
u+ (Mu · ∇)u−4u

)
(t, ·) ∈ Ran

(
I − P

)
for t > 0

u(t) := u(t, ·) ∈ RanP for t ≥ 0

u(0) = u0

. (2.1)

Similarly the operator A :=
√−4 on L2(R3,R3) is fibered in Fourier space as

(̂Af)(ξ) = |ξ|f̂(ξ). Upon multiplying the first equation by P and integrating we
obtain (formally)

u(t) = e−tA
2

u0 −
∫ t

0

e−(t−s)A2

P (Mu(s) · ∇)u(s) ds. (2.2)

Conversely, notice (formally) that a solution to (2.2) with u0 ∈ RanP obeys (2.1).
In the bulk of this paper we shall study (2.2) without imposing the condition u0 ∈
RanP . See though Section 7 for an exception. In fact in Subsection 7.1 we shall
study (under some conditions) the relationship between (2.1) and (2.2). For the bulk
of this paper this relationship is minor although traces are used already in Sections 5
and 6. The reader might prefer to read the present section and Subsection 7.1 before
proceeding to Section 3.

In this section we consider the Cauchy problem in the form (2.2) using norms
based essentially on Sobolev spaces. Although this material is well known (see
[FK1], [FK2], and for example [KP], [Le], [Pl]) we give a self-contained account
so that we can use the specific results and methods in our analysis of the spatial
analyticity of solutions of (2.2) in the sections following.

Part of our motivation for studying equations more general than (1.2) is that
such a study emphasizes what we actually use in our analysis. In particular, besides
the case where M = I and P is the Leray projection, we will consider the vector
Burgers’ equation, as an example, where M = I and P = I (see Subsections 3.4
and 6.2). The latter equation has been studied in [KL], [JS], [Ga], and elsewhere.
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We define for any r ∈]−∞, 3/2[ the homogeneous Sobolev space Ḣr to be the set

of f ∈ S ′ such that the Fourier transform f̂ is a measurable function and |ξ|rf̂(ξ) ∈
L2(R3

ξ). The corresponding norm is ‖f‖Ḣr = ‖Arf‖ where here and henceforth ‖ · ‖
refers to the L2-norm. For simplicity we shall use the same notation for vectors
f ∈ (L2)3 = L2 ⊕ L2 ⊕ L2, viz. ‖f‖ =

√
‖f1‖2 + ‖f2‖2 + ‖f3‖2 for f = (f1, f2, f3) ∈

(L2)3.
Let I be an interval of the form I =]0, T ] (if T is finite) or I =]0, T [ (if T =∞).

The closure I ∪ {0} will be denoted Ī. Let ζ : I → R and θ : I → [0,∞[ be given
continuous functions. Let s1, s2 ∈ [0, 3/2[ be given. We shall consider the class
of functions I 3 t → v(t) ∈ (Ḣs2)3 for which the expression e−ζ(t)ts1eθ(t)AAs2v(t)
defines an element in BC(I, (L2)3). The set of such functions, denoted by Bζ,θ,I,s1,s2 ,
is a Banach space with the norm

‖v‖ζ,θ,I,s1,s2 := sup
t∈I

e−ζ(t)ts1‖eθ(t)AAs2v(t)‖. (2.3)

In this section we discuss the case ζ = 0 and θ = 0 only which (upon choos-
ing s1 and s2 suitably) corresponds to part of the pioneering work [FK1, FK2].
Consequently we omit throughout this section the subscripts ζ and θ in the above
notation.

We recall the following class of Sobolev bounds (cf. [RS, (IX.19)]):

Lemma 2.1. For all r ∈]0, 3/2[, f ∈ Ḣr and all g ∈ Ḣ3/2−r the product fg ∈ L2,
and there exists a constant C = C(r) > 0 such that

‖fg‖ ≤ C‖Arf‖‖A3/2−rg‖. (2.4)

Due to Lemma 2.1 we can estimate

‖A5/4e−(t−s)A2

P (Mu(s) · ∇)v(s)‖ ≤ C1(t− s)−5/8s−3/4‖u‖I,3/8,5/4 ‖v‖I,3/8,5/4. (2.5)

Here we used the spectral theorem to bound ‖A5/4e−(t−s)A2‖B(L2) ≤ C(t−s)−5/8 and

the boundedness of P and A1/4∂jA
−5/4.

Motivated by (2.5) let us write the integral equation (2.2) as X = Y + B(X,X)
on the space B = BI,s1,s2 with s1 = 3/8 and s2 = 5/4. Abbreviating |v| = ‖v‖I,s1,s2
we obtain that for all u, v ∈ B

|B(u, v)| ≤ γ|u| |v|; γ = C1 sup
t∈I

t3/8
∫ t

0

(t− s)−5/8s−3/4 ds. (2.6)

Notice that γ does not depend on I since C1 is the constant coming from (2.5) and

γ = C1

∫ 1

0

(1− s)−5/8s−3/4 ds. (2.7)

2.1. Abstract scheme. We shall study (motivated by (2.6)) the equation

X = Y +B(X,X), (2.8)

where B is a continuous bilinear operator B × B → B on a given Banach space B.
Let γ ≥ 0 denote a corresponding bounding constant,

|B(u, v)| ≤ γ|u| |v|. (2.9)

The elementary fixed point theorem applies if there exists R ≥ 0 such that

|Y | ≤ R and κ := 4γR < 1. (2.10)
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In fact letting B eR = {X ∈ B| |X| ≤ R̃} for R̃ ≥ 0 the conditions (2.10) assure
that B2R is mapped into itself by the map X → F (X) := Y + B(X,X) and that
κ is a corresponding contraction constant. (This version of the fixed point theorem
is implicitly used in [Pl], see [Pl, Lemma 1].) In particular under the condition
(2.10) there exists a unique solution to (2.8) in B2R. Letting X0 = Y and Xn =
Y +B(Xn−1, Xn−1) for n ∈ N this solution can be represented as

X = B − lim
n→∞

Xn. (2.11)

2.2. Local solvability in Ḣr and Hr, r ∈ [1/2, 3/2[. We return to the integral
equation (2.2) written as X = Y +B(X,X) in the space B = BI,s1,s2 with s1 = 3/8

and s2 = 5/4. We need to examine the first term Y (t) = e−tA
2
u0 for some “data”

u0 ∈ (S ′)3. More precisely we need to study the condition Y ∈ B. Clearly due to
(2.6) the requirement (2.10) is met if |Y | is sufficiently small.

Let us first examine the special case Y = e−(·)A2
u0 ∈ B∞ where B∞ = B]0,∞[,s1,s2 .

This requirement is equivalent to finiteness of the expression

sup
q∈Z

2q/2
(∫

2q≤|ξ|<2q+1

|û0|2 dξ
)1/2

, (2.12)

cf. [Pl, Lemma 8]. Notice that finiteness of (2.12) and (2.3) are equivalent to finite-
ness of these expressions for each of the three components of u0 and v, respectively.
For notational convenience we shall in the following discussion slightly abuse nota-
tion by treating u0 as a scalar-valued function rather than an R3-valued function
and similarly for the elements in B∞. The (finite) expression (2.12) is the norm of

u0 in the Besov space Ḃ
1/2
2,∞ which indeed consists of all u0 ∈ S ′ with û0 a measurable

function and (2.12) finite. In fact the norms (2.3) (with ζ = 0, θ = 0, s1 = 3/8
and s2 = 5/4) and (2.12) are equivalent on the subspace of B∞ consisting of func-

tions t → e−tA
2
u0 where u0 ∈ Ḃ1/2

2,∞, henceforth for brevity denoted by e−(·)A2
Ḃ

1/2
2,∞.

Introducing Ḃ
1/2,0
2,∞ as the set of u0 ∈ Ḃ1/2

2,∞ with

2q/2
(∫

2q≤|ξ|<2q+1

|û0|2 dξ
)1/2

→ 0 for q → +∞,

obviously

Ḣ1/2 ⊆ Ḃ
1/2,0
2,∞ ⊆ Ḃ

1/2
2,∞ ⊆ ∩1>ε>0

(
Ḣ1/2−ε + Ḣ1/2+ε

)
. (2.13)

Let B0
∞ be the subspace of B∞ consisting of functions v ∈ B∞ obeying

t3/8‖A5/4v(t)‖ → 0 for t→ 0. (2.14)

We have the following identification of subspaces in B∞ (which is easily proven)

e−(·)A2

Ḃ
1/2,0
2,∞ = B0

∞ ∩ e−(·)A2

Ḃ
1/2
2,∞. (2.15)

Now returning to a general interval I we introduce the subspace of B, denoted
by B0, consisting of (vector-valued) functions v obeying (2.14).

Proposition 2.2. Suppose u0 ∈ (Ḣ1/2)3. Then for any T = |I| > 0 small enough
(so that the conditions (2.10) hold for some R > 0) the integral equation (2.8) has
a unique solution in the ball B2R ⊂ B where B = BI,s1,s2 with s1 = 3/8, s2 = 5/4

and Y (t) = e−tA
2
u0. This solution X ∈ B0 ∩ BC(Ī , (Ḣ1/2)3) with X(0) = u0. If in

addition u0 ∈ (L2)3 then X ∈ BC(Ī , (H1/2)3).
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Proof. By combining (2.6) and (2.15) we conclude that the requirements (2.10) are

met in the space B provided that the three components of u0 belong to Ḃ
1/2,0
2,∞ and

that the parameter T is taken small enough (to ensure that |Y | is small). Whence
there exists a unique solution X ∈ B2R. We notice that X is also the unique solution
to the fixed point problem in the ball B0

2R := B0 ∩ B2R (if the components of u0

belong to Ḃ
1/2,0
2,∞ and T > 0 is small).

Using the first inclusion of (2.13) we obtain in particular a unique small time
solution with “data” u0 ∈ (Ḣ1/2)3 in B0

2R. By an estimate very similar to (2.5) we
obtain the bound

‖B(u, v)(t)‖(Ḣ1/2)3 ≤ η|u| |v| for t ∈ I. (2.16)

Using (2.16) we see that in fact B : B0×B0 → BC(Ī , (Ḣ1/2)3) and that the functions
in the range of this map vanish at t = 0. Consequently, the constructed fixed point
X ∈ B0 for u0 ∈ (Ḣ1/2)3 belongs to the space BC(Ī , (Ḣ1/2)3) and the dataX(0) = u0

is attained continuously.
Moreover we have the bound

‖B(u, v)(t)‖ ≤ Ct1/4|u| |v| for t ∈ I. (2.17)

So if in addition u0 ∈ (L2)3 then X ∈ BC(Ī , (L2)3) with the data X(0) = u0 attained
continuously.

�
Remark 2.3. In [FK1, FK2] spaces B and B0 similar to ours are used for treat-
ing (1.1). The powers differ from ours: t3/8 → t1/8 and A5/4 → A3/4. These spaces
are not suitable for the generalized problem (2.1).

If the data u0 ∈ (Ḣr)3 for r ∈]1/2, 3/2[ there is a similar result (in fact, as the
reader will see, proved very similarly).

We let r̃ = max(r, 5/4) and introduce B = BI,s1,s2 with s1 = r̃/2− r/4− 1/8 and
s2 = r̃.

We use Lemma 2.1 to bound

‖A2s2−5/2P (Mu(s) · ∇)v(s)‖ ≤ C‖As2u(s)‖ ‖As2v(s)‖, (2.18)

and we obtain the following analogue of (2.5) by splitting As2 = A5/2−s2A2s2−5/2:

‖As2e−(t−s)A2

P (Mu(s) · ∇)v(s)‖ ≤ C1(t− s)s2/2−5/4s−2s1|u| |v|. (2.19)

Consequently we infer that

|B(u, v)| ≤ γ|u| |v|; γ = C1 sup
t∈I

ts1
∫ t

0

(t− s)s2/2−5/4s−2s1 ds = C2T
r/4−1/8. (2.20)

The space B0 is now defined to be the space of functions v ∈ B obeying

ts1‖As2v(t)‖ → 0 for t→ 0, (2.21)

cf. (2.14).

As for Y := e−(·)A2
u0 indeed Y ∈ B0 with

|Y | ≤ C sup
t∈I

tr/4−1/8‖u0‖Ḣr = CT r/4−1/8‖u0‖Ḣr . (2.22)

Here and henceforth we slightly abuse notation by abbreviating (Ḣr)3 as Ḣr. Simi-
larly from this point on we shall for convenience frequently abbreviate (Hr)3 as Hr
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and (L2)3 as L2, respectively. (Hopefully the interpretation will be obvious in every
concrete context.)

Proposition 2.4. Suppose u0 ∈ Ḣr with r ∈]1/2, 3/2[. Let r̃ = max(r, 5/4), s1 =
r̃/2 − r/4 − 1/8 and s2 = r̃. For any T = |I| > 0 small enough (so that the
conditions (2.10) hold for some R > 0) the integral equation (2.8) has a unique

solution in the ball B2R ⊂ B where B = BI,s1,s2 and Y (t) = e−tA
2
u0. This solution

X ∈ B0 ∩ BC(Ī , Ḣr) with X(0) = u0. If in addition u0 ∈ L2 then X ∈ BC(Ī , Hr)
(possibly we need at this point to take T > 0 smaller if r ∈]5/4, 3/2[).

Proof. Due to (2.20) and the fact that Y ∈ B0 indeed there exists a unique solution
X ∈ B2R for T > 0 small enough, and we notice that X is also the unique solution
to the fixed point problem in the ball B0

2R := B0 ∩B2R.
With the convention alluded to above the analogue of (2.16) reads

‖B(u, v)(t)‖Ḣr ≤ η|u| |v| for t ∈ I, (2.23)

and we infer (as before) that B : B0 × B0 → BC(Ī , Ḣr) and that the functions in
the range of this map vanish at t = 0. (Note incidently that the constant η of (2.23)
can be chosen independently of T but not as a vanishing power of T as in (2.20)
and (2.22).) Whence indeed X ∈ B0 ∩BC(Ī , Ḣr) with X(0) = u0.

Moreover for r ∈]1/2, 5/4] we have the bound

‖B(u, v)(t)‖ ≤ Ctr/2|u| |v| for t ∈ I. (2.24)

So if r ∈]1/2, 5/4] and in addition u0 ∈ L2 then X ∈ BC(Ī , L2) with the data
X(0) = u0 attained continuously. Whence X ∈ BC(Ī , Hr) for u0 ∈ Hr. In fact this
holds for any r ∈]1/2, 3/2[ (possibly by taking a smaller interval I if r ∈]5/4, 3/2[).
In the case r ∈]5/4, 3/2[ we can obtain the result from the case r = 5/4 by invoking
the embedding Hr ⊆ H5/4 and using the representation (2.11) of the solutions with
data in Ḣr and Ḣ5/4, respectively. We deduce that for data in Ḣr ∩ Ḣ5/4 the two
constructed solutions, say X1 ∈ B1 and X2 ∈ B2, coincide on their common interval
of definition I1 ∩ I2.

�

2.3. Local solvability in Hr, r ∈ [5/4,∞[. In this subsection we shall study local
solutions in Hr for r ∈ [5/4,∞[. The method of proof will be similar to that
of Subsection 2.2. In particular our constructions will be based on the following
modification of (2.3) (for simplicity we shall use the same notation).

‖v‖ζ,θ,I,s1,s2 := sup
t∈I

e−ζ(t)ts1‖eθ(t)A〈A〉s2v(t)‖. (2.25)

Again we consider here the case ζ = 0 and θ = 0 only. Let r̃ ∈ [5/4, 3/2[ be
arbitrarily given such that r ≥ r̃. Then the parameters s1 and s2 in (2.25) are
chosen as follows:

s1 = r̃/4− 1/8 and s2 = r, (2.26)

and B = BI,s1,s2 is the class of functions I 3 t→ v(t) ∈ Hs2 for which the expression
ts1〈A〉s2v(t) defines an element in BC(I, L2); I =]0, T ].

To bound B : B × B → B we let

r̄ = 5/2− r̃, (2.27)

9



and split 〈A〉s2 = 〈A〉r̄〈A〉r−r̄. Using again Lemma 2.1 we then obtain

‖〈A〉s2e−(t−s)A2

P (Mu(s) · ∇)v(s)‖ ≤ C1〈T 〉r̄/2(t− s)−r̄/2s−2s1|u| |v|. (2.28)

Consequently we infer that

|B(u, v)| ≤ γ|u| |v|; γ = C1〈T 〉r̄/2 sup
t∈I

ts1
∫ t

0

(t− s)−r̄/2s−2s1 ds = C2〈T 〉r̄/2T s1 .
(2.29)

The space B0 is the subclass of v ∈ B obeying

ts1‖〈A〉s2v(t)‖ → 0 for t→ 0. (2.30)

Now suppose u0 ∈ Hr. Then clearly Y := e−(·)A2
u0 ∈ B0 with

|Y | ≤ C sup
t∈I

ts1‖u0‖Hr = CT s1‖u0‖Hr . (2.31)

Next letting (as before) B2R := {X ∈ B| |X| ≤ 2|Y |} and B0
2R := B0 ∩ B2R we

conclude from (2.29) and the fact that Y ∈ B0 that indeed the contraction condition
(2.10) for the map X → Y +B(X,X) restricted to either B2R or to B0

2R is valid for
any T > 0 small enough. Consequently the common fixed point X ∈ B0. Moreover

‖B(u, v)(t)‖Hr ≤ η〈T 〉r̄/2|u| |v| for t ∈ I, (2.32)

and we infer (as before) that B : B0 × B0 → BC(Ī , Hr) and that the functions in
the range of this map vanish at t = 0. We conclude:

Proposition 2.5. Suppose u0 ∈ Hr with r ∈ [5/4,∞[. Let r̃ ∈ [5/4, 3/2[ be ar-
bitrarily given such that r ≥ r̃. Let s1 and s2 be given as in (2.26). For any
T = |I| > 0 small enough (so that the conditions (2.10) hold for some R > 0) the
integral equation (2.8) has a unique solution in the ball B2R ⊂ B where B = BI,s1,s2
and Y (t) = e−tA

2
u0. This solution X ∈ B0 ∩BC(Ī , Hr) with X(0) = u0.

Remarks 2.6. 1) Clearly we may take r̃ = r in Proposition 2.5 if r ∈ [5/4, 3/2[.
In that case the (small) T -dependence of the bounds (2.22) and (2.20) coincides
with that of (2.31) and (2.29), respectively.

2) Although there are different spaces involved in Propositions 2.2–2.5 the con-
structed solutions coincide on any common interval of definition, cf. the last
argument of the proof of Proposition 2.4.

2.4. Global solvability in Ḣ1/2 and H1/2 for small data. If the data in Ḣ1/2

is small we can improve on the conclusion of Proposition 2.2 to obtain a global
solution. The proof is similar.

Proposition 2.7. Suppose u0 ∈ Ḣ1/2. Then the integral equation (2.8) has a unique
solution in the ball B2R ⊂ B where B = BI,s1,s2 with I =]0,∞[, s1 = 3/8, s2 = 5/4

and Y (t) = e−tA
2
u0 provided that ‖u0‖Ḣ1/2 is sufficiently small (so that for some

R > 0 and with γ given by (2.7) the conditions (2.10) hold). This solution X ∈ B0∩
BC([0,∞[, Ḣ1/2) with X(0) = u0. If in addition u0 ∈ L2 then X ∈ C([0,∞[, H1/2).

3. Analyticity bounds for small times

In this section we shall study analyticity properties of the short-time solutions of
Propositions 2.2–2.5. This will be done by using more general spaces with norms
given by (2.3) or (2.25) and modifying the proofs of Section 2.
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3.1. Local analyticity bounds in Ḣr and Hr , r ∈ [1/2, 3/2[. In this subsection
we specify the functions ζ and θ in the norm (2.3) in terms of a parameter λ ≥ 0 as

ζ = λ2/4 + (r̃ − r) ln〈λ〉 and θ(t) = λ
√
t; (3.1)

here r̃ is given as in Proposition 2.4 (also for r = 1/2). Let s1 and s2 be given as in
Proposition 2.4, and let again I =]0, T ].

For applications in Subsection 3.3 we shall be concerned below with bounding
various quantities independently of the parameter λ ≥ 0 (rather than just proving
Theorem 3.2 stated below). We shall use the following elementary bound (which
follows from the spectral theorem).

Lemma 3.1. For any α ≥ 0 there exists a constant C ≥ 0 such that for all f ∈ L2

sup
λ,t≥0

〈λ〉−αe−λ
2/4‖

(√
tA
)α

eλ
√
tAe−tA

2

f‖ ≤ C‖f‖. (3.2)

Due to (3.2) we can estimate the following norm of Y = e−(·)A2
u0, u0 ∈ Ḣr.

|Y | = ‖Y ‖ζ,θ,I,s1,s2 ≤ C1T
r/4−1/8‖Aru0‖, (3.3)

where the constant C1 is independent of λ ≥ 0.
Let B0 = B0

ζ,θ,I,s1,s2
be the space of functions v ∈ B := Bζ,θ,I,s1,s2 obeying

ts1‖eλ
√
tAAs2v(t)‖ → 0 for t→ 0, (3.4)

Obviously it follows from (3.3) that Y ∈ B0 if r > 1/2. However this is also true for
r = 1/2 which follows from the same bound and a simple approximation argument
(using for instance that H5/4 is dense in Ḣ1/2). Whence indeed

Y = e−(·)A2

u0 ∈ B0 for u0 ∈ Ḣr, r ∈ [1/2, 3/2[. (3.5)

We have the following generalization of Propositions 2.2 and 2.4 (abbreviating as
before the norm on B as | · |). Notice that the solutions of Theorem 3.2 coincide
with those of Propositions 2.2 and 2.4 for T > 0 small enough, cf. Remark 2.6 2.

Theorem 3.2. Let λ ≥ 0 and u0 ∈ Ḣr with r ∈ [1/2, 3/2[ be given. Let r̃ =
max(r, 5/4), s1 = r̃/2 − r/4 − 1/8 and s2 = r̃. For any T = |I| > 0 small enough
(so that the conditions (2.10) hold for some R > 0) the integral equation (2.8) has a

unique solution in the ball B2R ⊂ B where B = Bζ,θ,I,s1,s2 and Y (t) = e−tA
2
u0. This

solution X ∈ B0 ⊆ B, and it obeys that eλ
√

(·)AX ∈ BC(Ī , Ḣr) with X(0) = u0. If

in addition u0 ∈ L2 then eλ
√

(·)AX ∈ BC(Ī , Hr) (possibly we need at this point to
take T > 0 smaller if r ∈]5/4, 3/2[).

Proof. First we show that B : B × B → B. Using the triangle inequality in Fourier
space we obtain the following analogue of (2.18):

‖eλ
√
sAA2s2−5/2P (Mu(s) · ∇)v(s)‖ ≤ C‖eλ

√
sAAs2u(s)‖ ‖eλ

√
sAAs2v(s)‖, (3.6)

and consequently using that
√
t ≤ √t− s+

√
s and Lemma 3.1 we obtain, cf. (2.19),

‖eλ
√
tAAs2e−(t−s)A2

P (Mu(s) · ∇)v(s)‖ ≤ C2〈λ〉5/2−s2eλ
2/4e2ζ(t− s)s2/2−5/4s−2s1|u| |v|.

(3.7)
We conclude, cf. (2.20), that indeed B(u, v) ∈ B with

|B(u, v)| ≤ γ|u| |v|; γ = C3〈λ〉5/2−reλ
2/2T r/4−1/8. (3.8)
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Obviously the same arguments show that B : B0×B0 → B0. In conjunction with
(3.5) we conclude that the integral equation (2.8) has a unique solution X in the
ball B2R provided that first R > 0 and then T > 0 are taken small enough, and that
this X ∈ B0.

For the remaining statements of Theorem 3.2 we similarly mimic the proof of
Proposition 2.4. For completeness of presentation let us state the analogues of
(2.23) and (2.24)

‖eλ
√
tAB(u, v)(t)‖Ḣr ≤ C〈λ〉5/2−re3λ2/4|u| |v| for t ∈ I, (3.9)

and for r ∈ [1/2, 5/4]

‖eλ
√
tAB(u, v)(t)‖ ≤ C̃〈λ〉5/2−2re3λ2/4tr/2|u| |v| for t ∈ I. (3.10)

�

3.2. Local analyticity bounds in Hr, r ∈ [5/4,∞[. In this subsection we assume
r ∈ [5/4,∞[ and specify the functions ζ and θ in the norm (2.25) in terms of a
parameter λ ≥ 0 as

ζ = λ2/4 and θ(t) = λ
√
t. (3.11)

Let s1 and s2 be given as in Proposition 2.5, and let again I =]0, T ].

Due to Lemma 3.1 we can estimate the following norm of Y = e−(·)A2
u0, u0 ∈ Hr.

|Y | = ‖Y ‖ζ,θ,I,s1,s2 ≤ C1T
s1‖〈A〉ru0‖, (3.12)

where the constant C1 is independent of λ ≥ 0.
Let B0 = B0

ζ,θ,I,s1,s2
be the space of functions v ∈ B := Bζ,θ,I,s1,s2 obeying

ts1‖eλ
√
tA〈A〉s2v(t)‖ → 0 for t→ 0, (3.13)

It follows from (3.12) that Y = e−(·)A2
u0 ∈ B0.

We have the following generalization of Proposition 2.5:

Theorem 3.3. Let λ ≥ 0 and u0 ∈ Hr with r ∈ [5/4,∞[ be given. Let r̃ ∈ [5/4, 3/2[
be arbitrarily given such that r ≥ r̃. Let s1 and s2 be given as in (2.26). For any T =
|I| > 0 small enough (so that the conditions (2.10) hold for some R > 0) the integral
equation (2.8) has a unique solution in the ball B2R ⊂ B where B = Bζ,θ,I,s1,s2 and

Y (t) = e−tA
2
u0. This solution X ∈ B0 ⊆ B, and it obeys that eλ

√
(·)AX ∈ BC(Ī , Hr)

with X(0) = u0.

Proof. Mimicking the proof of Proposition 2.5 we obtain

‖eλ
√
tA〈A〉s2e−(t−s)A2

P (Mu(s) · ∇)v(s)‖ ≤ C2〈λ〉r̄eλ
2/4e2ζ〈t〉r̄/2(t− s)−r̄/2s−2s1|u| |v|,

(3.14)
where r̄ is given by (2.27). Consequently we infer that

|B(u, v)| ≤ γ|u| |v|; (3.15)

γ = C2〈λ〉r̄eλ
2/2〈T 〉r̄/2 sup

t∈I
ts1
∫ t

0

(t− s)−r̄/2s−2s1 ds = C3〈λ〉r̄eλ
2/2〈T 〉r̄/2T s1 .

We conclude from (3.12) and (3.15) that indeed the contraction condition (2.10)
for the map X → Y + B(X,X) on B2R (or on B0

2R := B0 ∩ B2R) is valid for any
T > 0 small enough. Moreover

‖eλ
√
tAB(u, v)(t)‖Hr ≤ C〈λ〉r̄e3λ2/4〈T 〉r̄/2|u| |v| for t ∈ I, (3.16)
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and we infer (as before) that eλ
√

(·)AB : B0×B0 → BC(Ī , Hr) and that the functions
in the range of this map vanish at t = 0. �

3.3. Improved local bounds of analyticity radii for r > 1/2. In this subsection
we shall modify the constructions of Subsections 3.1 and 3.2 in that the functions in
(3.1) and (3.11) now will be taken with an additional time-dependence. Explicitly
we define ζ and θ by (3.1) (for the setting of Subsection 3.1) and (3.11) (for the
setting of Subsection 3.2) but now in terms of λ taken to have the following explicit
time-dependence

λ = λ0

√
t/T ; (3.17)

here λ0 ≥ 0 is an auxiliary parameter (which in the end will play the role of the
previous parameter λ) and T > 0 is the right end point of the interval I (as in Sub-
section 3.1). The bounds (3.3), (3.6), (3.12) and (3.14) remain true where λ = λ(s)
in (3.6) and similar interpretations are needed in (3.14).

As for (3.8) the bounding constant has the form, cf. (3.7),

C2 sup
t∈I

e−ζ(t)ts1
∫ t

0

〈λ(t− s)〉5/2−s2eλ2(t−s)/4e2ζ(s)(t− s)s2/2−5/4s−2s1 ds. (3.18)

Since 〈λ(t1)〉α ≤ 〈λ(t2)〉α if 0 ≤ t1 ≤ t2 ≤ T and α ≥ 0, and

e−λ
2(t)/4eλ

2(t−s)/4eλ
2(s)/2 = eλ

2(s)/4 ≤ eλ
2
0/4, (3.19)

we obtain

|B(u, v)| ≤ γ|u| |v| with γ = C3〈λ0〉5/2−reλ
2
0/4T r/4−1/8. (3.20a)

(Notice that the cancellation (3.19) accounts for the “improvement” eλ
2/2 → eλ

2
0/4

compared to (3.8).)
As for (3.9) and (3.10) we obtain similar “improvements”

‖eθ(t)AB(u, v)(t)‖Ḣr ≤ C〈λ0〉5/2−reλ
2
0/2|u| |v| for t ∈ I, (3.20b)

and for r ∈ [1/2, 5/4]

‖eθ(t)AB(u, v)(t)‖ ≤ C̃〈λ0〉5/2−2reλ
2
0/2tr/2|u| |v| for t ∈ I. (3.20c)

Arguing similarly for the setting of Subsection 3.2 we obtain in this case

|B(u, v)| ≤ γ|u| |v| with γ = C3〈λ0〉r̄eλ
2
0/4〈T 〉r̄/2T s1 , (3.21a)

and

‖eθ(t)AB(u, v)(t)‖Hr ≤ C〈λ0〉r̄eλ
2
0/2〈T 〉r̄/2|u| |v| for t ∈ I. (3.21b)

Let us now investigate the conditions (2.10) with R = |Y |: Due to (3.3) and
(3.20a) it suffices to have

C4〈λ0〉5/2−reλ
2
0/4T r/2−1/4 < 1; C4 = 4C1C3‖Aru0‖. (3.22)

Notice that the constants C1 and C3 from (3.3) and (3.20a), respectively, are inde-
pendent of λ0, T and u0. Therefore also C4 is independent of λ0 and T .

Now, assuming r ∈]1/2, 3/2[, we fix ε ∈]0, 2r − 1]. Taking then

λ0 =
√

2r − 1− ε
√
| lnT | (3.23)

indeed (3.22) is valid provided T > 0 is small enough, viz. T ≤ T0 = T
(
ε, r, r̃, ‖Aru0‖

)
.
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Similarly in the setting of Subsection 3.2 (due to (3.12) and (3.21a)) the conditions
(2.10) with R = |Y | are valid if

C4〈λ0〉r̄eλ
2
0/4〈T 〉r̄/2T 2s1 < 1; C4 = 4C1C3‖〈A〉ru0‖. (3.24)

Fix ε ∈]0, 2r̃ − 1]. Taking then

λ0 =
√

2r̃ − 1− ε
√
| lnT | (3.25)

the bound (3.24) is valid provided T ≤ T0 = T
(
ε, r, r̃, ‖〈A〉ru0‖

)
.

We have (almost) proved:

Theorem 3.4. i) Suppose u0 ∈ Ḣr for some r ∈]1/2, 3/2[. Put r̃ = max(r, 5/4),
s1 = r̃/2 − r/4 − 1/8 and s2 = r̃, and let ε ∈]0, 2r − 1]. There exists T0 =
T
(
ε, r, r̃, ‖Aru0‖

)
> 0 such that for any T ∈]0, T0] the integral equation (2.8)

has a unique solution in the ball B2|Y | ⊆ B where B = Bζ,θ,I,s1,s2 has norm (2.3)

with ζ and θ given by (3.1), (3.17) and (3.23), I =]0, T ] and Y (t) = e−tA
2
u0.

This solution X ∈ B0, and it obeys that eθAX ∈ BC(Ī , Ḣr) with X(0) = u0. If
in addition u0 ∈ L2 and r ∈]1/2, 5/4] then eθAX ∈ BC(Ī , Hr).

Moreover there are bounds

‖eθ(t)AX(t)‖Ḣr ≤ CT−(r/2−1/4−ε/4) for t ∈ I, (3.26a)

and assuming in addition u0 ∈ L2 and r ∈]1/2, 5/4]

‖eθ(t)AX(t)‖ ≤ C̃T−(r/2−1/4−ε/4) for t ∈ I. (3.26b)

The dependence of the constants C and C̃ on u0 is through the quantity ‖Aru0‖
and through the quantities ‖Aru0‖ and ‖u0‖, respectively.

ii) Suppose u0 ∈ Hr for some r ∈ [5/4,∞[. Let r̃ ∈ [5/4, 3/2[ be given such that
r ≥ r̃ and let ε ∈]0, 2r̃ − 1]. Put s1 = r̃/4 − 1/8 and s2 = r. There exists
T0 = T

(
ε, r, r̃, ‖〈A〉ru0‖

)
> 0 such that for any T ∈]0, T0] the integral equation

(2.8) has a unique solution in the ball B2|Y | ⊆ B where B = Bζ,θ,I,s1,s2 has
norm (2.25) with ζ and θ given by (3.11), (3.17) and (3.25), I =]0, T ] and

Y (t) = e−tA
2
u0. This solution X ∈ B0, and it obeys that eθAX ∈ BC(Ī , Hr)

with X(0) = u0.
Moreover

‖eθ(t)AX(t)‖Hr ≤ CT−(r̃/2−1/4−ε/4) for t ∈ I. (3.27)

The dependence of the constant C on u0 is through the quantity ‖〈A〉ru0‖.
Proof. We use the arguments preceeding the theorem to get (unique) solutions.

As for i the bounds (3.26a) and (3.26b) follow from (3.20b) and (3.20c), respec-
tively, and (3.3) and Lemma 3.1 (taking α = 0 there). Notice that the contributions
from the non-linear term B(X,X) have better bounds.

As for ii the bound (3.27) follows from (3.12), (3.21b) and Lemma 3.1 (taking
again α = 0 there). Again the contribution from the non-linear term has a better
bound. �

By choosing t = T in (3.26a)–(3.27) we obtain:

Corollary 3.5. Under the conditions of Theorem 3.4 i the solution X obeys

‖e
√

2r−1−ε
√
| ln t|

√
tAX(t)‖Ḣr ≤ Ct−(r/2−1/4−ε/4) for all t ∈]0, T0], (3.28a)
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and assuming in addition u0 ∈ L2 and r ∈]1/2, 5/4]

‖e
√

2r−1−ε
√
| ln t|

√
tAX(t)‖ ≤ C̃t−(r/2−1/4−ε/4) for all t ∈]0, T0]. (3.28b)

Under the conditions of Theorem 3.4 ii the solution X obeys

‖e
√

2r̃−1−ε
√
| ln t|

√
tAX(t)‖Hr ≤ Ct−(r̃/2−1/4−ε/4) for all t ∈]0, T0]. (3.29)

Clearly the dependence of the constant C̃ in (3.28b) of u0 ∈ Hr can be taken
through its norm ‖〈A〉ru0‖. Moreover, if u0 ∈ Hr for some r ∈ [5/4, 3/2[ we can
choose r̃ = r in (3.29). Whence in particular we obtain from Corollary 3.5:

Corollary 3.6. Suppose u0 ∈ Hr for some r ∈]1/2, 3/2[. Let X be the solution to
(2.2) with initial data u0 as given in Proposition 2.4, and let ε ∈]0, 2r − 1]. Then
there exist constants C0 = C

(
ε, r, ‖〈A〉ru0‖

)
> 0 and T0 = T

(
ε, r, ‖〈A〉ru0‖

)
> 0

such that

‖e
√

2r−1−ε
√
t| ln t|AX(t)‖Hr ≤ C0t

−(r/2−1/4−ε/4) for all t ∈]0, T0]. (3.30)

In particular, using notation from Subsection 1.1, for this solution to (2.2)

lim inf
t→0

rad(X(t))√
t| ln t|

≥
√

2r − 1. (3.31)

3.4. Discussion. We are only allowed to put r̃ = r in (3.29) if r ∈ [5/4, 3/2[ due
to the restriction r̃ < 3/2 of Theorem 3.4 ii.

One may conjecture that also in the case r > 3/2 the quantities

‖e
√

2r−1−ε
√
t| ln t|AX(t)‖Hr ; ε ∈]0, 2r − 1], (3.32)

are all finite for t sufficiently small (given that u0 ∈ Hr). However the proof for
r ∈ [5/4, 3/2[ does not provide any indication.

On the other hand if u0 is “much smoother”, in fact analytic, there is indeed an
improvement. Suppose there exists θ0 > 0 such that one of the following conditions
holds

A) In addition to the assumptions of Theorem 3.4 i eθ0Au0 ∈ Ḣr (and possibly
eθ0Au0 ∈ L2).

B) In addition to the assumptions of Theorem 3.4 ii eθ0Au0 ∈ Hr.

Then we have the following version of Corollary 3.5: With A we can in (3.28a) replace
X(t) by eθ0AX(t) (and similarly in (3.28b)). With B we can in (3.29) replace X(t)
by eθ0AX(t).

The proof of these statements goes along the same line as the previous ones.
Notice that we only have to check the previous proofs with θ → θ + θ0 in various
bounds. In particular this replacement is introduced in the construction of Banach
spaces.

Another point to be discussed is the limit r → 1/2. Clearly the expression√
2r − 1, related to (3.32), vanishes in this limit. One may ask if this kind of be-

haviour is expected. Clearly this question is related to whether Theorem 3.2 should
be considered as being “optimal” for r = 1/2. There is a partial affirmative answer
to the latter given by an example: We shall construct a specific (classical) solution
to (2.1) for specific M and P such that

u ∈ BC([0,∞[, Hr) and u0 ∈ Hr ∩ Ḃ1/2
2,∞ for all r < 1/2, (3.33)
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and for which
lim
t→0

rad(u(t))√
t

=
√

6. (3.34)

This u0 /∈ Ḃ1/2,0
2,∞ and hence u0 /∈ Ḣ1/2 (note the inclusions (2.13)).

Note, in comparison with (3.34), that by Theorem 3.2 for any u0 ∈ H1/2 the
corresponding solution obeys

lim
t→0

rad(u(t))√
t

=∞. (3.35)

Moreover the theory of Subsections 2.2 and 3.1 can be extended to the case of data

u0 ∈ Ḃ
1/2,0
2,∞ , cf. a discussion in the beginning of the proof of Proposition 2.2. In

particular for u0 ∈ L2 ∩ Ḃ1/2,0
2,∞ (3.35) remains true for the corresponding solution.

In fact the theory can be extended to the case u0 ∈ Ḃ
1/2
2,∞ provided that ‖u0‖Ḃ1/2

2,∞
is sufficiently small (so that (2.10) is fulfilled). This leads to the existence of a
unique real-analytic global solution, cf. Subsection 2.4. However in that case we can

only conclude weaker analyticity statements. To be specific, if u0 ∈ L2 ∩ Ḃ1/2
2,∞ and

‖u0‖Ḃ1/2
2,∞

is sufficiently small we can conclude that lim inft→0

(
rad(u(t))/

√
t
)
≥ κ for

some κ > 0 that depends on the (small) norm ‖u0‖Ḃ1/2
2,∞

. We have not calculated

this norm for the specific example given below, and consequently we do not know
whether the example and therefore in particular (3.34) fit into this extended theory.

3.4.1. An example. Motivated by [WJZHJ] we use the Hopf-Cole transformation
[Ev] and obtain a solution of the vector Burgers’ equation: If v = v(t, x) is a positive
solution to the heat equation

∂

∂t
v = 4v; t > 0, (3.36)

then w := −2 ln v fulfills
∂

∂t
w + 1

2
|∇w|2 = 4w. (3.37)

Taking first order partial derivatives in (3.37) we get

∂

∂t
∂jw + (∇w · ∇)∂jw = 4∂jw; j = 1, 2, 3. (3.38)

Next take M = I (in fact M can be any invertible real 3× 3–matrix), P = I and
u = ∇w (or more generally u = M−1∇w) we obtain from (3.38)

∂

∂t
u+ (Mu · ∇)u−4u = 0 and u = Pu. (3.39)

In particular we have constructed a solution to (2.1) with u0 = u(0, ·).
We choose

v(t, x) = 1− (t+ 1)−3/2exp
(
− |x|2

4(t+1)

)
. (3.40)

Clearly (3.36) holds. We compute

uj(t, x) = ∂jw(t, x) = −(t+ 1)−5/2xjexp
(
− |x|2

4(t+1)

) /
v(t, x), (3.41)

from which we obtain

(u0)j(x) = ∂jw0(x) = −xjexp
(
− |x|2

4

) / (
1− exp

(
− |x|2

4

))
. (3.42)

Here the denominator vanishes like |x|2/4 at x = 0. Consequently the components of
u0 have a Coulomb singularity at x = 0. In Fourier space this behaviour corresponds
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to a decay like ξj|ξ|−3 at infinity, cf. (3.50) stated below. Whence indeed u0 ∈
L2 ∩

(
Ḃ

1/2
2,∞ \ Ḃ1/2,0

2,∞
)
.

As for the property (3.33) we notice the (continuous) embedding, cf. (2.13),

L2 ∩ Ḃ1/2
2,∞ ⊆ Hr for r ∈ [0, 1/2[, (3.43)

which by a scaling argument leads to the bound

‖f‖Ḣr ≤ Cr‖f‖1−2r
L2 ‖f‖2r

Ḃ
1/2
2,∞

for f ∈ L2 ∩ Ḃ1/2
2,∞ and r ∈ [0, 1/2[. (3.44)

We note the properties

u ∈ BC([0,∞[, L2), (3.45)

u ∈ B([0,∞[, Ḃ
1/2
2,∞). (3.46)

Only (3.46), or equivalently

sup
t≥0
‖u(t, ·)‖

Ḃ
1/2
2,∞

<∞, (3.47)

needs an elaboration.
To prove (3.47) we introduce for κ ≥ 1 and j = 1, 2, 3 the functions

fj(κ, y) = yjexp
(
− |y|2

4

)
/
(
κ− exp

(
− |y|2

4

))
,

f̃j(κ, y) = 4yj/
(
κ̃+ |y|2

)
; κ̃ = 4(κ− 1),

and notice that

uj(t, x) = −(t+ 1)−1/2fj((t+ 1)3/2, x/
√
t+ 1).

We pick χ ∈ C∞c (R) with χ(s) = 1 for |s| < 1. By a scaling argument (3.47) will
follow from the bound

sup
κ≥1
‖χ(| · |)fj(κ, ·)‖Ḃ1/2

2,∞
<∞. (3.48)

The proof of (3.48) relies on a comparison argument. We notice that

sup
κ≥1
‖χ(| · |)f̃j(κ, ·)‖Ḃ1/2

2,∞
<∞, (3.49)

which may be seen as follows: First we notice the representation of the Fourier
transform

(F f̃j)(κ, ξ) = C∂ξj
{
|ξ|−1

∫ ∞

0

s−3/2exp
(
− (4s)−1

)
e−κ̃|ξ|

2sds
}
. (3.50)

By computing the derivative and then estimating the second exponential ≤ 1 we
deduce the bound |(F f̃j)(κ, ξ)| ≤ C|ξ|−2 uniformly in κ ≥ 1. Using this esti-
mate and the convoluton integral representation of the product we obtain that
|(F{χf̃j})(κ, ξ)| ≤ C〈ξ〉−2 uniformly in κ ≥ 1 from which (3.49) follows.

Due to (3.49) and (2.13) it suffices for (3.48) to show

sup
κ≥1
‖χ(| · |){fj(κ, ·)− f̃j(κ, ·)}‖H1 <∞. (3.51)

Clearly (3.51) follows from the uniform pointwise bounds

|χ(|y|){fj(κ, y)− f̃j(κ, y)}| ≤ C|y| and |∇
(
χ(|y|){fj(κ, y)− f̃j(κ, y)}

)
| ≤ C,

which in turn follow from elementary Taylor expansion.
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We conclude from (3.44)–(3.46) that indeed

u ∈ BC([0,∞[, Hr) for r ∈ [0, 1/2[. (3.52)

As for the property (3.34) we claim more generally that

rad(u(t))2 = 6(t+ 1) ln(t+ 1) for all t > 0. (3.53)

To see this note that v(t, iy) is zero on the surface |y|2 = 6(t + 1) ln(t + 1) and if
|y|2 < (1− ε)6(t+ 1) ln(t+ 1) then |v(t, x+ iy)| > 1− (t+ 1)−3ε/2.

4. Analyticity bounds for all times

In this section we shall study analyticity properties of the global small data solu-
tions of Proposition 2.7.

4.1. Global analyticity bounds in Ḣ1/2 and H1/2 for small data. Let us begin
this subsection by considering r ∈ [1/2, 3/2[ as in Subsection 3.1. The contraction
condition (2.10) leads to the following combination of (3.3) and (3.8)

C4〈λ〉5/2−reλ
2/2T r/2−1/4 < 1; C4 = 4C1C3‖Aru0‖. (4.1)

The constants C1 and C3 from (3.3) and (3.8), respectively, are independent of λ, T
and u0 (but depend on r).

Obviously (4.1) cannot be fulfilled for T =∞ unless r = 1/2. On the other hand
if r = 1/2 and ‖Aru0‖ is sufficiently small the condition is fulfilled for T = ∞ for
λ ≥ 0 smaller than some critical positive number. This observation leads to the
following global analyticity result (using again Lemma 3.1, (3.9) and (3.10)):

Proposition 4.1. Suppose u0 ∈ Ḣ1/2 and that the constant C4 = 4C1C3‖A1/2u0‖
in (4.1) (with r = 1/2) obeys C4 < 1. For u0 6= 0 define λ̄ > 0 as the solution to the
equation

4C1C3‖A1/2u0‖〈λ̄〉2eλ̄
2/2 = 1.

If u0 = 0 define λ̄ =∞.
Then the solution X to the integral equation (2.8) as constructed in Proposition 2.7

obeys the following bounds uniformly in λ ∈ [0, λ̄[ and t > 0

‖A5/4eλ
√
tAX(t)‖ ≤ 2C1‖A1/2u0‖〈λ〉3/4eλ

2/4t−3/8, (4.2a)

‖A1/2eλ
√
tAX(t)‖ ≤ C

(
eλ

2/4‖A1/2u0‖+ 〈λ〉2e3λ2/4
(
2C1‖A1/2u0‖

)2
)
, (4.2b)

and if in addition u0 ∈ L2,

‖eλ
√
tAX(t)‖ ≤ C̃

(
eλ

2/4‖u0‖+ 〈λ〉3/2e3λ2/4
(
2C1‖A1/2u0‖

)2
t1/4
)
. (4.2c)

4.2. Improved global analyticity bounds in Ḣ1/2 and H1/2 for small data.
In this subsection we improve on the results of Subsection 4.1 along the line of the
method of Subsection 3.3. Whence we fix u0 ∈ Ḣ1/2 and T ∈]0,∞[ and define
the underlying Banach space B in terms of the finite interval I =]0, T ] and a time-
dependent choice of λ (and (3.1) with r̃− r = 3/4, and the parameters s1 = 3/8 and
s2 = 5/4). Explicitly we choose λ = λ(t) as in (3.17) to be used in the expression
(3.1) (with r̃ − r = 3/4). As in the previous subsection we will need the parameter
λ0 of (3.17) to be smaller than a certain critical positive number dictated by the
contraction condition (3.22) (with r = 1/2). That is we need

C4〈λ0〉2eλ
2
0/4 < 1; C4 = 4C1C3‖A1/2u0‖; (4.3)
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here the constants C1 and C3 from (3.3) and (3.20a), respectively, are (again) inde-
pendent of λ, T and u0. (Notice that (4.3) “improves” (4.1) (for r = 1/2) in that
the exponent λ2/2→ λ2

0/4.) Mimicking the proofs of Theorem 3.4 and Corollary 3.5
we obtain under the condition (4.3) the following improvement of Proposition 4.1:

Theorem 4.2. i) Suppose u0 ∈ Ḣ1/2 and that the constant C4 = 4C1C3‖A1/2u0‖
in (4.3) obeys C4 < 1. For u0 6= 0 define λ̄ > 0 as the solution to the equation

4C1C3‖A1/2u0‖〈λ̄〉2eλ̄
2/4 = 1. (4.4)

If u0 = 0 define λ̄ =∞.
Then the solution X to the integral equation (2.8) as constructed in Proposi-

tion 2.7 obeys the following bounds uniformly in λ0 ∈ [0, λ̄[ and t > 0

‖A5/4eλ0

√
tAX(t)‖ ≤ 2C1‖A1/2u0‖〈λ0〉3/4eλ

2
0/4t−3/8, (4.5a)

‖A1/2eλ0

√
tAX(t)‖ ≤ C

(
eλ

2
0/4‖A1/2u0‖+ 〈λ0〉2eλ

2
0/2
(
2C1‖A1/2u0‖

)2
)
. (4.5b)

ii) Suppose in addition that u0 ∈ L2. Then

‖eλ0

√
tAX(t)‖ ≤ C̃

(
eλ

2
0/4‖u0‖+ 〈λ0〉3/2eλ

2
0/2
(
2C1‖A1/2u0‖

)2
t1/4
)
. (4.5c)

We will use the following corollary in Subsection 7.3. We omit its proof.

Corollary 4.3. Suppose u0 ∈ Ḣ1/2 and that the constant C4 = 4C1C3‖A1/2u0‖ in
(4.3) obeys C4 < 1. Suppose lim inft→∞ ‖A1/2X(t)‖ = 0 where X is the solution to
the integral equation (2.8) as constructed in Proposition 2.7. Then for any λ ≥ 0,
as t→∞

t3/8‖A5/4eλ
√
tAX(t)‖ = o(1), (4.6a)

‖A1/2eλ
√
tAX(t)‖ = o(1). (4.6b)

Remark 4.4. If u0 ∈ H1/2 and λ̄ > 0 obeys (4.4) then clearly λ̄
√
t is a lower bound

of rad(X(t)). In particular in the sense of taking the limit ‖A1/2u0‖ → 0 we obtain

lim inf rad(X(t))√
−4 ln ‖A1/2u0‖

√
t
≥ 1 uniformly in t > 0. (4.7)

Clearly this statement is weak in the small time regime compared to (3.35). On
the other hand, as demonstrated in Section 6, (4.7) is useful for obtaining further
improved bounds of the analyticity radius in the large time regime.

5. Differential inequalities for small global solutions in Ḣ1/2 and
H1/2

In this section we continue our study of analyticity bounds of global small data
solutions in Ḣ1/2 and H1/2 initiated in the previous section. This study will be
continued and completed in Section 6 where some optimal analyticity radius bounds
in the large time regime will be presented. We impose throughout this section the
conditions of Theorem 4.2 i. Notice that a simplified version of the bound (4.5b)
takes the form

‖A1/2eλ0

√
tAX(t)‖ ≤ C̆〈λ̄〉−2 for all λ0 ∈ [0, λ̄[ and t > 0. (5.1)

Our goal is twofold:
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1) Under an additional decay condition of the quantity ‖A1/2X(t)‖ we shall improve
on the right hand side of (5.1) in the large time regime. A similar improvement
of (4.5c) will be established in terms of decay of the quantity ‖X(t)‖.

2) Under an additional decay condition on the quantity ‖X(t)‖ we shall show decay
of the quantity ‖A1/2X(t)‖.

We think 1 has some independent interest, although more refined bounds will be
presented in Section 6 (in particular presumably better bounds on analyticity radii
than can be derived from the methods presented here). As for 2, our result will be
used in Section 6.

The analysis is partly inspired by [FT], [Sc1] and [OT].

5.1. Energy inequality. Partly as a motivation we recall here a version of the
energy inequality well-known for a class of solutions to (1.1). We state it for the
function X of Theorem 4.2 i subject to the further conditions

u0 = Pu0 ∈ L2 and ∇ ·
(
MX(t)

)
= 0 for all t > 0. (5.2)

Notice that the second condition of (5.2) is fulfilled for the problem (1.1). Using
Theorem 4.2, (2.1) and (5.2) we can derive

d
dt
‖X(t)‖2 = −2‖AX(t)‖2 + 2

〈
X(t), (MX(t) · ∇)X(t)

〉
= −2‖AX(t)‖2 for all t > 0.

(5.3)
We refer the reader to Subsection 7.1 for a discussion relevant for this derivation.
(Actually a more general result than (5.3) is stated in Corollary 7.7 in Subsec-
tion 7.2.) We obtain by integrating (5.3)

‖X(t)‖2 = ‖u0‖2 − 2

∫ t

0

‖AX(s)‖2 ds for all t > 0. (5.4)

In particular the energy inequality ‖X(t)‖2 ≤ ‖u0‖2 holds. Clearly this bound
improves the bound ‖X(t)‖ = O(t1/4) of (4.2c) at infinity.

We notice that for the problem (1.1) and under the above conditions it can be
proven that the quantity ‖X(t)‖ = o(t0) as t → ∞. Under some further (partly
generic) conditions it is shown in [Sc1] that ‖X(t)‖ = O(t−5/4) while ‖X(t)‖ 6=
o(t−5/4).

5.2. Differential inequalities for exponentially weighted Sobolev norms.
Under the conditions of Theorem 4.2 i introduce for r ≥ 0 and λ0 ∈]0, λ̄[ the
quantities

Jr(t) = ‖ArX(t)‖2 and Gr(t) = ‖Areλ0

√
tAX(t)‖2 for t > 0. (5.5)

We are mainly interested in these quantities for r = 1/2 and r = 0. Any consid-
eration for r ∈ [0, 1/2[ will involve the additional requirement u0 ∈ L2. Under the
additional conditions (5.2) we have, due to the previous subsection, the a priori
bound J0(t) = O(t−σ) with σ = 0 for t → ∞ however in the following we do not
assume (5.2).

Lemma 5.1. For all κ > 0 and λ0 ∈]0, λ̄[ there exists K = K(κ, λ0) > 0 such that

d
dt
G1/2(t) ≤ −κt−1G1/2(t) +Kt−1J1/2(t) for all t > 0. (5.6)
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Proof. We compute

d
dt
G1/2(t) = −2G3/2(t) + λ0t

−1/2G1(t) +R(t); (5.7)

R(t) = 2〈A1/2eλ0

√
tAX(t), A1/2eλ0

√
tAP (MX(t) · ∇)X(t)〉.

By using the Cauchy-Schwarz inequality and Lemma 2.1 we are led to the bounds

R(t) ≤ 2G1(t)1/2CG1(t)1/2G3/2(t)1/2 ≤ G3/2(t) + C2G1(t)2 for all t > 0. (5.8)

Now, pick any λ1 ∈]λ0, λ̄[. We can estimate the second term on the right hand
side of (5.8) by first using the Cauchy-Schwarz inequality and (5.1) (with λ0 → λ1)
to obtain

G1(t)2 ≤ G3/2(t)G1/2(t) ≤ supx≥0 x
2e−2x

(λ1−λ0)2t
G1/2,λ1(t)G1/2(t) ≤ C̃t−1G1/2(t); (5.9)

C̃ = C(λ0)C̆〈λ̄〉−2.

Clearly (5.7)–(5.9) lead to

d
dt
G1/2(t) ≤ −G3/2(t) + λ0t

−1/2G1(t) + C2C̃t−1G1/2(t). (5.10)

Next we insert 0 = κt−1G1/2(t)−Kt−1J1/2(t)− κt−1G1/2(t) +Kt−1J1/2(t) on the
right hand side of (5.10). We need to examine the condition

−G3/2(t) + λ0t
−1/2G1(t) + (κ+ C2C̃)t−1G1/2(t)−Kt−1J1/2(t) ≤ 0. (5.11)

By the spectral theorem the bound (5.11) will follow from

−x3e2λ0x + λ0x
2e2λ0x + (κ+ C2C̃)xe2λ0x ≤ Kx for all x ≥ 0. (5.12)

The estimate (5.12) is obviously fulfilled for some K = K(κ, λ0) > 0. �

Corollary 5.2. i) For all κ > 0 and λ0 ∈]0, λ̄[ there exists K = K(κ, λ0) > 0
such that

G1/2(t) ≤ Kt−κ
∫ t

0

sκ−1J1/2(s) ds for all t > 0. (5.13)

ii) Suppose that for some σ > −1/2 the bound J1/2(t) = O(t−σ−1/2) for t → ∞
holds. Then Jr(t) = O(t−σ−r) and Gr(t) = O(t−σ−r) for all r ≥ 1/2.

iii) Suppose the conditions of Theorem 4.2 ii and that for some σ > −1/2 the
bound J0(t) = O(t−σ) holds. Then Jr(t) = O(t−σ−r) and Gr(t) = O(t−σ−r) for
all r ≥ 0.

iv) Suppose the conditions of Theorem 4.2 ii and J0(t) = O(1). Then G0(t) = o(1).

Proof. As for i notice that tκ is an integrating factor for (5.6).
For ii we choose κ > 1/2 + σ in the bound (5.13) yielding the bound G1/2(t) =

O(t−σ−1/2). Whence also Gr(t) = O(t−σ−r) for all r ≥ 1/2 (here we used the quantity
G1/2,λ1(t) of (5.9)). In particular Jr(t) = O(t−σ−r) for all r ≥ 1/2.

For iii we first prove that G1/2(t) = O(t−σ−1/2). By the Cauchy-Schwarz inequality

J1/2(t) ≤ sup
x≥0

x1/2e−λ0

√
tx J0(t)1/2G1/2(t)1/2 ≤ C

λ0

√
t
KJ0(t) +G1/2(t)/K. (5.14)

In combination with (5.6) this estimate leads to

d
dt
G1/2(t) ≤ −(κ− 1)t−1G1/2(t) + C(κ, λ0)t−3/2J0(t); C(κ, λ0) = K2 C

λ0
. (5.15)
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By choosing κ > 2 + σ in (5.15) we deduce the following analogue of (5.13) where

K̃ := C(κ, λ0) and κ̃ := κ− 1

G1/2(t) ≤ K̃t−κ̃
∫ t

0

sκ̃−3/2J0(s) ds for all t > 0. (5.16)

It follows from (5.16) that indeed G1/2(t) = O(t−σ−1/2).
To complete the proof of iii it suffices to show that G0(t) = O(t−σ). Split

G0(t) = ‖1[0,1[(
√
tA)eλ0

√
tAX(t)‖2 + ‖1[1,∞[(

√
tA)eλ0

√
tAX(t)‖2.

The first term bounded by e2λ0J0(t) = O(t−σ). The second term is bounded by

‖
(√

tA
)1/2

eλ0

√
tAX(t)‖2 = t1/2G1/2(t) = t1/2O(t−σ−1/2) = O(t−σ).

To prove iv we use the integral equation (2.2) in the form X = Y + B(X,X)

where Y (t) = e−tA
2
u0. The decay of the first term is clear. For the nonlinear term

we split the integral from 0 to t into an integral from 0 to T and another from T
to t. Using the bound on G5/4 from iii in the second integral we obtain a term which

is O(T−1/4) while the first integral is given by e−(t−T )A2
g(T ) for some g(T ) ∈ L2 and

is thus o(1). �

Remark. In studying the types of inequalities proved in Corollary 5.2 we were
motivated by [OT]. However the main theorem in that paper is stated incorrectly
and the proof given there is also incorrect.

For completeness of presentation we end this section by giving another proof of
Corollary 5.2 iii. Although the proof goes along similar lines it is somewhat more
direct.

Theorem 5.3. Suppose that u0 ∈ H1/2. For all κ > 0 and λ0 ∈]0, λ̄[ there exists
K = K(κ, λ0) > 0 such that

d
dt
G0(t) ≤ −κt−1G0(t) +Kt−1J0(t) for all t > 0. (5.17)

Whence

G0(t) ≤ Kt−κ
∫ t

0

sκ−1J0(s) ds for all t > 0. (5.18)

In particular if for some σ > −1/2 the bound J0(t) = O(t−σ) holds, then G0(t) =
O(t−σ) and whence, more generally, Jr(t) = O(t−σ−r) and Gr(t) = O(t−σ−r) for all
r ≥ 0.

Proof. We compute

d
dt
G0(t) = −2G1(t) + λ0t

−1/2G1/2(t) +R(t), (5.19)

where

R(t) ≤ 2G0(t)1/2CG1(t)1/2G3/2(t)1/2 ≤ G1(t) + C2G0(t)G3/2(t). (5.20)

In particular, due to the estimate G3/2(t) = G3/2,λ0(t) ≤ C(λ1 − λ0)t−1G1/2,λ1(t),
λ1 ∈]λ0, λ̄[, and (5.1) applied to G1/2,λ1(t),

R(t) ≤ G1(t) + C̃t−1G0(t). (5.21)
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To obtain (5.17) we insert 0 = κt−1G0(t) − Kt−1J0(t) − κt−1G0(t) + Kt−1J0(t)
on the right hand side of (5.19), and due to (5.21) we need only to examine the
condition

−G1(t) + λ0t
−1/2G1/2(t) + C̃t−1G0(t) + κt−1G0(t)−Kt−1J0(t) ≤ 0. (5.22)

By the spectral theorem the bound (5.22) will follow from

−x2e2λ0x + λ0xe2λ0x + (κ+ C̃)e2λ0x ≤ K for all x ≥ 0, (5.23)

which in turn obviously is valid for someK = K(κ, λ0). Whence we have shown (5.17).
The remaining statements are immediate consequences of (5.17), cf.

the proof of Corollary 5.2. �

6. Optimal rate of growth of analyticity radii

We shall combine Subsections 4.2 and 5.2 to obtain improved analyticity radius
bounds of global solutions with small data in Ḣ1/2 or H1/2 in the large time regime.
An example shows that our bounds are optimal.

6.1. Optimizing bounds of analyticity radii for large times. Suppose the
conditions of Theorem 4.2 i and that for some σ > −1/2 the bound ‖A1/2X(t)‖ =
O(t−(2σ+1)/4) for t→∞ holds. We shall then apply Theorem 4.2 to u0 → X(T ) and
X → uT , where uT (τ) := X(τ + T ); here T > 0 is an auxiliary variable that in the
end will be large (proportional to the time t = τ + T ). Notice that X(T ) ∈ Ḣ1/2

(since we have assumed that u0 ∈ Ḣ1/2), and that uT is the unique small solution
to the integral equation (2.8) with data X(T ), cf. Proposition 2.7. The fact that
here indeed uT is a solution to (2.8) requires an argument not given here. (We refer
the reader to Subsection 7.1 for a thorough discussion of related issues in a different
setting.) Since T−(2σ+1)/4 → 0 for T →∞ we obtain for the critical value, λ̄ = λ̄(T )
of (4.4), that λ̄→∞ for T →∞. In fact

lim inf
T→∞

λ̄/
√

ln(T ) ≥ (2σ + 1)1/2.

Consequently for any ε0 ∈]0, 1[, λ0 :=
√

(2σ + 1)(1− ε0) ln(T ) is a legitimate choice
in Theorem 4.2 with u0 → X(T ) provided T is large enough. We shall use this
observation to prove the following main result.

Theorem 6.1. Suppose the conditions of Theorem 4.2 i, i.e. u0 ∈ Ḣ1/2 and that
the constant 4C1C3‖A1/2u0‖ < 1. Let X denote the corresponding solution to the
integral equation (2.8). We have:

i) Suppose that for some σ > −1/2 the following bound holds

‖A1/2X(t)‖ = O(t−(2σ+1)/4) for t→∞. (6.1)

Let 0 ≤ ε̃ < ε ≤ 1 be given. Then there exist constants t0 > 1 and C > 0 such
that

‖A1/2exp
(√

(1− ε)(2σ + 1)
√
t ln tA

)
X(t)‖ ≤ Ct−ε̃(2σ+1)/4 for all t ≥ t0. (6.2)

ii) Suppose u0 ∈ L2, and that for some σ > −1/2 the following bound holds

‖X(t)‖ = O(t−σ/2) for t→∞. (6.3)

Then (6.1) holds (and therefore in particular the conclusion of i).
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Let 0 ≤ ε̃ < ε ≤ 1 be given. Then there exist constants t0 > 1 and C > 0 such
that

‖exp
(√

(1− ε)(2σ + 1)
√
t ln tA

)
X(t)‖ ≤ Ct1/4−ε̃(2σ+1)/4 for all t ≥ t0. (6.4)

In particular

lim inf
t→∞

rad(X(t))√
t ln t

≥
√

2σ + 1. (6.5)

Proof. We prove first i. So fix 0 ≤ ε̃ < ε ≤ 1. To make contact to the discussion
at the beginning of this subsection let us then choose ε0 ∈]ε̃, ε[. We introduce in
addition to the variable T a “new time” τ and a parameter n by the relations

t = τ + T = (n+ 1)T ; T ≥ T0. (6.6)

We will let the parameters n and T0 be chosen large. First we fix n by the condition

n(1− ε0) > (n+ 1)(1− ε). (6.7)

As noted at the beginning of this subsection we are allowed to choose

λ0 =
√

(2σ + 1)(1− ε0) ln(T ) (6.8)

in Theorem 4.2 with u0 → X(T ) provided T ≥ T0 for some large T0 > 0. We do
that, and estimate using (6.6) and (6.7)

λ0

√
τ =

√
(2σ + 1)(1− ε0) ln(t/(n+ 1))

√
tn/(n+ 1)

≥
√

(2σ + 1)(1− ε) ln(t)
√
t; for all t ≥ t0 := (n+ 1)T0 for a T0 > 0. (6.9)

Here T0 > 0 possibly needs to be chosen larger than before. Now fix such a T0.
Whence also t0 is fixed, and with this value of t0 indeed the left hand side of (6.2)
is finite for all t ≥ t0. The bound (6.2) follows then from (4.5b). We have proved i.

As for ii, the first statement is a consequence of Corollary 5.2 iii. The second
statement follows from the proof of i and (4.5c). �

6.2. Example. For the example presented in Subsection 3.4 we have the conditions
of Theorem 6.1 ii fulfilled after a translation in time of the given solution u; i.e.

by replacing u → ueT for a sufficiently large T̃ > 0. This is with σ = 5/2. The
estimate (6.5) is sharp by (3.53). Similarly the more precise bounds (6.4) are sharp.
More precisely the power of t on the right of (6.4) cannot be improved for any
ε ∈]0, 1[ since indeed the estimate is false with ε̃ = ε. This follows readily from an
examination of the analytic extension of (3.41). Likewise (6.2) is sharp in the same
sense. This can be seen by using the optimality of (6.4) discussed above and an
argument similar to the one presented at the end of the proof of Corollary 5.2 iii.

7. Global solutions for arbitrary data

In this section we shall discuss strong solutions and in particular strong global
solutions without assuming the Ḣ1/2-smallness condition of Subsection 2.4.
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7.1. Strong solutions. Dealing with global large data solutions we need first to de-
fine a notion of global solutions without referring directly to the fixed point equation
(2.8) (since the fixed point condition (2.10) now may fail). The definition needs to be
based directly on (2.1). So we introduce (the equations written slightly differently):

{(
∂
∂t
u+ P (Mu · ∇)u−4u

)
(t, ·) = 0 for t ∈ I

u(t) := u(t, ·) ∈ RanP for t ∈ Ī . (7.1)

As in Subsection 2.1 I is an interval of the form ]0, T ] or of the form I =]0,∞[. We
shall introduce a notion of strong solution to (7.1). The solutions with I =]0,∞[ will
be called strong global solutions. For that purpose we need the spaces appearing
in Proposition 2.2. For simplicity we shall restrict our discussion to the Hr setting
(leaving out the Ḣr setting with r ∈ [1/2, 3/2[).

So let B = BI,3/8,5/4 and B0 ⊆ B be the spaces as specified in the beginning of
Section 2 (constructed in terms of an arbitrarily given interval I).

Definition 7.1. Let r ≥ 1/2. For I =]0, T ] we say that u ∈ C(Ī , Hr) is a strong
solution to the problem (7.1) if the following conditions hold:

(1) u(t) ∈ PHr for all t ∈ Ī,
(2) u ∈ B0,
(3) u ∈ C1(I,S ′(R3)) and

d
dt
u = −A2u− P (Mu · ∇)u; t ∈ I. (7.2)

Here the differentiability in t is meant in the weak* topology and in (7.2) is meant
in the sense of distributions. The class of such functions is denoted by Sr,I . For
I =]0,∞[ we define Gr to be the subset of C(Ī , Hr) consisting of u’s such that
1Ĩu ∈ Sr,Ĩ for all intervals of the form Ĩ =]0, T̃ ], and we refer to any u ∈ Gr as a
strong global solution to the problem (7.1) with I =]0,∞[.

Remarks 7.2. 1) Obviously the condition 2 is redundant if r ≥ 5/4.
2) For any strong solution u on I the first term on the right hand side of (7.2) is an

element of C(I,Hr−2) while the second term is an element of C(I, L2), cf. (2.6).
Consequently u ∈ C1(I,Hmin(r−2,0)).

3) For any u ∈ Sr,I
d
ds

(
e−(t−s)A2

u(s)
)

= −e−(t−s)A2

P (Mu(s) · ∇)u(s) for all 0 < s < t ∈ I,
and consequently (by integration) the integral equation (2.2) with u0 = u(0)
holds for all t ∈ I. In fact it follows that X = u is a solution to (2.8) in B0 (with

Y (t) = e−tA
2
u0). Due to the uniqueness statement of Proposition 2.2 it follows

that u coincides with the function X of Proposition 2.2 on a sufficiently small
interval Ĩ =]0, T̃ ]. As a consequence similarly if r ∈]1/2, 3/2[ or r ∈ [5/4,∞[, u
coincides on a sufficiently small interval with the function X of Propositions 2.4
or 2.5, respectively.

4) Conversely, the solutions X of Propositions 2.2 and 2.7 with data u0 = Pu0 ∈
H1/2 are indeed solutions in the sense of Definitions 7.1 (with r = 1/2 and
on the same interval I). Similarly it is readily verified that the solution X of
Propositions 2.4 or 2.5 with data u0 = Pu0 ∈ Hr for r ∈]1/2, 3/2[ or r ∈ [5/4,∞[,
respectively, is a solution in the sense of Definition 7.1 (with the same r and I).
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5) The class Sr,I is right translation invariant, i.e. if u ∈ Sr,I and t0 ∈]0, T [ (where T
is the right end point of I) then ut0(·) := u(·+ t0) ∈ Sr,I0 ; I0 :=]0,∞[∩

(
I−{t0}

)
.

In particular Gr is right translation invariant (u ∈ Gr ⇒ ut0 ∈ Gr for any t0 > 0).
6) With the modification of Definitions 7.1 given by omitting 1, the previous dis-

cussion, 1–5, is still appropriate (possibly slightly modified). Notice that we did
not impose the condition 1 (viewed as a condition on the data) in the bulk of the
paper.

Strong solutions to the same initial value problem are unique:

Proposition 7.3. Suppose u1 ∈ Sr1,I1 and u2 ∈ Sr2,I2 obey u1(0) = u2(0) = u0 for
some u0 ∈ PHr1 ∩ PHr2. Then u1 = u2 on I1 ∩ I2.

Proof. This is a standard argument for ODE’s. We can assume that r1 = r2 and
I := I1 = I2. Suppose u1 6= u2 on I. Then let

t0 = inf{t ∈ I|u1(t) 6= u2(t)}.
Clearly t0 ∈ Ī, and by continuity t0 < T and u1(t0) = u2(t0). Due to Remark 7.2 5
we can assume that t0 = 0. Due to Remark 7.2 3 it follows that u1(t) = u2(t) for all
t ∈ Ĩ =]0, T̃ ] for some sufficiently small T̃ > 0. This is a contradiction.

�

7.2. Sobolev and analyticity bounds for bounded intervals. In this subsec-
tion we show that strong solutions are smooth, in fact real analytic, in the x-variable.

Proposition 7.4. Let r ≥ 1/2 and 0 < T0 < T < ∞ be given. Let u ∈ Sr,I where
I =]0, T ], and denote by |u| the norm |u| = ‖u‖B. There exist δ = δ(T0, |u|) > 0
and C = C(T0, T, |u|, supt∈I ‖u(t)‖H1/2) > 0 such that

‖eδAu(t)‖H1/2 ≤ C for all t ∈ [T0, T ]. (7.3)

Proof. For all u ∈ B and T̃ ∈]0, T [

sup
t∈[T̃ ,T ]

‖A5/4u(t)‖L2 ≤ T̃−3/8|u|. (7.4)

For any given u ∈ Sr,I we shall obtain an analyticity bound for the restriction of
u to ]t0− ε, t0] for t0 ∈ [T0, T ] and for suitable ε ∈]0, T0[. For that we shall apply the
procedure of the proof of Theorem 3.2 to the strong solution ut0,ε := u(· + t0 − ε)
on the interval Iε =]0, ε]. The application will be with λ = 1 and r = 1/2 in the
definitions of ζ and θ (given in (3.1)) and for ε > 0 small, and the underlying Banach
space will be B̃ = Bζ,θ,Iε,3/8,5/4. Indeed for ε > 0 taken small enough the conditions
(2.10) hold for some R > 0 that can be taken independent of T and t0 ∈ [T0, T ],
cf. (3.8). Notice here that by Lemma 3.1 (with α = 0 and f = A5/4u(t0 − ε)) and
(7.4)

|e−(·)A2

u(t0 − ε)|B̃ ≤ C̃1ε
3/8‖A5/4u(t0 − ε)‖L2 ≤ C̃1ε

3/8(T0 − ε)−3/8|u|. (7.5)

So we can choose R in (2.10) to be equal to the constant on the right hand side
of (7.5), and indeed the conditions (2.10) are fulfilled for all sufficiently small ε > 0,
cf. (3.8). Fix any such ε > 0 and let δ =

√
ε. Then we invoke (3.9) and (3.10)

with u = v = ut0,ε and with time t = ε as well as Lemma 3.1 (with α = 0,
f = 〈A〉1/2u(t0 − ε) and also applied for t = ε).

�
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In combination with Theorems 3.2 and 3.3 we obtain:

Corollary 7.5. Let r ≥ 1/2, 0 < T < ∞ and u ∈ Sr,I be given; I :=]0, T ]. Let
u0 = u(0). There exist δ = δ(u, r) > 0 and C = C(u, T, r) > 0 such that

‖emin(
√
t,δ)Au(t)‖H1/2 ≤ C for all t ∈ I. (7.6)

In particular, for all r̄ ≥ 1/2 and with C̃ = C maxx≥0 x
r̄−1/2e−x

‖Ar̄u(t)‖L2 ≤ C̃ min(
√
t, δ)−(r̄−1/2) for all t ∈ I. (7.7)

If r > 1/2 the dependence of δ and C on u can be chosen to be through |u| and
‖u0‖Hr and through |u|, supt∈I ‖u(t)‖H1/2 and ‖u0‖Hr , respectively.

For all k ∈ N ∪ {0} and for all r̄ ≥ 1/2

u ∈ Ck(I,H r̄). (7.8)

Writing u(t)(x) = u(t, x),

u ∈ C∞(I × R3). (7.9)

Proof. We apply Theorems 3.2 and 3.3 with λ = 1. There exist T0 ∈]0, T [ and C > 0
such that

‖e
√
tAu(t)‖H1/2 ≤ C for all t ∈]0, T0]. (7.10)

These constants are for r = 1/2 chosen in agreement with an approximation property
of u0. This is not the case for r > 1/2 where the bounds (3.3) and (3.12) can be used
directly to get the appropriate smallness in terms of the quantities ‖u0‖Hr and r.
We shall use Proposition 7.4 with the T0 from (7.10). Whence for r > 1/2 we apply
Proposition 7.4 with T0 chosen as a function of the quantities ‖u0‖Hr and r. For
r = 1/2 we apply Proposition 7.4 with T0 depending on u through u0.

As for (7.8) with k = 0 we apply (7.7) in combination with Propositions 2.5 and 7.3
(notice that we can assume that r̄ > 5/4 from the very definition of Sr,I). The
statement (7.8) with arbitrary k ≥ 1 follows inductively by repeated differentiation
of (7.2).

The statement (7.9) follows from (7.8) and the Sobolev embedding theorem.
�

Remark 7.6. For r > 1/2 the Sobolev bounds (7.7) can be improved in the short
time regime due to Theorems 3.2 and 3.3: For any given r̄ ≥ r the quantity has a
bound of the form Ct−(r̄−r)/2 for small t > 0.

The energy inequality was studied under certain conditions in Subsection 5.1. We
can now prove it more generally:

Corollary 7.7. Let r ≥ 1/2, an interval I =]0, T ] and u ∈ Sr,I be given. Let
u0 = u(0). Suppose in addition the condition

∇ ·
(
Mu(t)

)
= 0 for all t ∈ I. (7.11)

Then

‖u(t)‖2 = ‖u0‖2 − 2

∫ t

0

‖Au(s)‖2 ds for all t ∈ I. (7.12)

In particular ‖u(t)‖ ≤ ‖u0‖ for all t ∈ I.
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Proof. Due to (7.7) (applied for the first identity with r̄ = 3/2 in combination with
Remark 7.2 2) and (7.11) the computation

d
dt
‖u(t)‖2 = −2‖Au(t)‖2 + 2

〈
u(t), (Mu(t) · ∇)u(t)

〉
= −2‖Au(t)‖2 for all t ∈ I,

(7.13)
is legitimate. By integration of (7.13) we obtain (7.12). Note incidentally that
‖Au(s)‖2 = O(s−1/2), due to (7.7), yielding an independent proof of the convergence
of the integral in (7.12). �

7.3. Global analyticity stability. We shall study the set of data for which we
have global solutions. There are several works (for example [PRST],[GIP1], [GIP2],
[ADT], [FO], [Zh]) which study the stability of solutions to the Navier-Stokes equa-
tions. Perhaps the first result is [PRST] but there are many further results for
different spaces. In particular the fact that Ir defined below is an open set in our
setting is a known result ([GIP1], [GIP2], [ADT]). Although we give the openness
result we concentrate particularly on the stability of the region of analyticity and
corresponding estimates.

We shall prove two stability results. The first is for bounded intervals only, how-
ever it is used in the proof of our second (global) stability result (and besides it has
some independent interest, see for example Corollary 7.10):

Proposition 7.8. Let I be an interval of the form I =]0, T ], and let θ : Ī → [0,∞[
be a continuous function obeying the following estimate for some λ ≥ 0:

θ(s+ t) ≤ λ
√
s+ θ(t) for s, t, s+ t ∈ Ī . (7.14)

Suppose u ∈ S1/2,I obeys

A1/2eθ(·)Au(·) ∈ C(Ī , L2). (7.15)

Let u0 = u(0). There exists δ0 > 0 such that:

i) If δ ≤ δ0, v0 ∈ PH1/2 and ‖A1/2eθ(0)A(v0 − u0)‖ ≤ δ it follows that there exists
v ∈ S1/2,I with v(0) = v0 obeying

‖A1/2eθ(t)A(v(t)− u(t))‖ ≤ K1δ, (7.16a)

t3/8‖A5/4eθ(t)A(v(t)− u(t))‖ ≤ K2δ. (7.16b)

ii) If δ ≤ δ0, v0 ∈ PH1/2 and ‖eθ(0)A(v0 − u0)‖H1/2 ≤ δ it follows in addition that

‖eθ(t)A(v(t)− u(t))‖ ≤ K3δ. (7.16c)

In (7.16a)–(7.16c) the constants K1, K2, K3 > 0 depend on θ, u, T and δ0 but not
on δ, and all bounds are uniform in t ∈ I.

In the proof we will use norms of the form

|w|s0,t0 := sup
0<s≤min(s0,T−t0)

s3/8‖A5/4eθ(s+t0)Aw(s)‖; s0 > 0, t0 ∈ [0, T [. (7.17)

Mimicking Subsection 3.1 thus with ζ(s) = 1 and θ(s)→ θ(s+ t0) we find

|B(w1, w2)|s0,t0 ≤ γλ|w1|s0,t0 · |w2|s0,t0 , (7.18a)

‖A1/2eθ(s+t0)AB(w1, w2)(s)‖ ≤ γλ|w1|s0,t0 · |w2|s0,t0 , (7.18b)

‖eθ(s+t0)AB(w1, w2)(s)‖ ≤ s1/4γλ|w1|s0,t0 · |w2|s0,t0 . (7.18c)
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Here γλ = dcλ where d is independent of λ, s0, t0 and T and

cλ := sup
x≥0
〈x〉5/4eλxe−x

2

.

We will need the following lemma:

Lemma 7.9. Suppose θ and u ∈ S1/2,I are given as in Proposition 7.8. Let ε ∈
]0, (2γλ)

−1[ be given. Then there is an s0 ∈]0, 1[, s0 = s0(ε, θ, u), so that

∀t0 ∈ [0, T [ ∀s ∈]0,min(s0, T − t0)] : (7.19)

2s3/8‖A5/4eθ(s+t0)Ae−sA
2

u(t0)‖ ≤ ε and s3/8‖A5/4eθ(s+t0)Au(s+ t0)‖ ≤ ε.

Proof. Using θ(s + t0) ≤ λ
√
s + θ(t0) and the spectral theorem we have for any

N > 0

s3/8‖A5/4eθ(s+t0)Ae−sA
2

u(t0)‖
≤ ‖(√sA)3/4eλ

√
sAe−sA

2‖ · ‖1[N,∞[(A)A1/2eθ(t0)Au(t0)‖
+ s3/8‖eλ

√
sAe−sA

2‖ · ‖A3/41[0,N ](A)A1/2eθ(t0)Au(t0)‖
≤ cλ‖1[N,∞[(A)A1/2eθ(t0)Au(t0)‖+ cλs

3/8N3/4‖A1/2eθ(t0)Au(t0)‖. (7.20)

Since the map Ī 3 t0 → A1/2eθ(t0)Au(t0) is continuous, it maps into a compact set
on which 1[N,∞[(A)→ 0 uniformly as N →∞. We then fix N so that the first term
of (7.20) is less than ε/4 for all t0 ∈ Ī. Once N is fixed we can choose s0 ∈]0, 1[ so
that the second term in (7.20) is less than ε/4 for s ∈ [0, s0]. We have proved the

first estimate of (7.19), |e−(·)A2
u(t0)|s0,t0 ≤ ε/2.

To show the second estimate of (7.19) we go back to the integral equation (2.2) and
use u(t0) as initial data following the scheme of Subsection 2.1 (with R = ε/2). We
use the first estimate in combination with (7.18a). By uniqueness the constructed
fixed point w = ut0 where ut0(s) = u(s+ t0). �
Proof of Proposition 7.8. We now choose ε = (3γλ)

−1 and s0 in accordance with
Lemma 7.9. We can assume that m0 := T/s0 ∈ N. We build the solution v in the
interval I by constructing it in a series of intervals [(m−1)s0,ms0],m = 1, 2, . . . ,m0.
We assume inductively we have constructed v(t) in the interval 0 ≤ t ≤ ms0 (with
m ≤ m0 − 1) and that we have the estimate

‖A1/2eθ(t)A(v(t)− u(t))‖ ≤ (2cλ)
mδ (7.21)

in this interval (this is true for m = 0). Let t0 = ms0 and ut0(s) = u(s + t0).
Consider the map

F (w)(s) := e−sA
2

(v(t0)− u(t0)) +B(w, ut0)(s) +B(ut0 , w)(s) +B(w,w)(s). (7.22)

We have

|F (w)|s0,t0 ≤ cλ(2cλ)
mδ + 2γλ|w|s0,t0 · |ut0|s0,t0 + γλ|w|2s0,t0 , (7.23a)

|F (w1)− F (w2)|s0,t0 ≤ γλ(2|ut0|s0,t0 + |w1|s0,t0 + |w2|s0,t0) · |w1 − w2|s0,t0 . (7.23b)

Then a simple computation shows F : B2R → B2R is a strict contraction if R =
cλ(2cλ)

mδ and δ ≤ δ0 where δ0 > 0 is chosen small enough. If the fixed point is
denoted by w, we define v(t) = u(t) + w(t − t0) for t ∈ [ms0, (m + 1)s0]. The
bound (7.21) with m → m + 1 in the interval [ms0, (m + 1)s0] follows from w =
F (w) and the estimate (7.18b). This completes the induction and gives (7.21) with
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m = m0 for t ∈ I. We have constructed a solution v obeying (7.16a). From the
very construction we have partly shown (7.16b), however our bounds are somewhat
poor at ms0, m = 1, . . . ,m0 − 1 (assuming here m0 ≥ 2). In order to show (7.34b)
near ms0, m = 1, . . . ,m0 − 1, we can repeat the above procedure in the intervals
[(m−1/2)s0, (m+1/2)s0]. The consistency of our definitions in overlapping intervals
follows from uniqueness. For (7.16c) we use (7.18c) to show inductively

‖eθ(t)A(v(t)− u(t))‖ ≤ (2cλ)
mδ for 0 ≤ t ≤ ms0, (7.24)

cf. (7.21). �
We will use Proposition 7.8 to shed some light on (1.17), the conjectured lower

semicontinuity of the analyticity radius of u ∈ S1/2,I . To motivate the construction
in the following corollary, it should be noted that by definition of rad(u(t)), if t > 0
and

lim inf
s↑t

rad(u(s)) ≥ rad(u(t)) (7.25)

then
∀α < rad(u(t))∃ a < t so that ‖eαAu(s)‖ <∞∀s ∈]a, t] (7.26)

but the uniform bound

∀α < rad(u(t))∃ a < t so that sup
s∈]a,t]

‖eαAu(s)‖ <∞ (7.27)

does not readily follow from the definitions.

Corollary 7.10. Fix u ∈ S1/2,I and let u0 = u(0). For t ∈ I and any v ∈ S1/2,I let
v0 = v(0) and define

rt(v0) := sup
{
α ≥ 0| sup

s∈]a,t]

‖eαAv(s)‖ <∞ for some a < t
}

(7.28)

Then rt(·) is lower semicontinous at u0 as a function of the initial data v0 in the
H1/2 topology. More precisely, for t ∈ I

lim inf
‖v0−u0‖H1/2→0

rt(v0) ≥ rt(u0). (7.29)

If the analyticity radius of u satisfies (7.25) and (7.27) then rt(u0) = rad(u(t))
and the analyticity radius at t is lower semicontinous as a function of the initial
data at u0. More precisely, (1.17) is valid.

Proof. Fix t ∈ I. Without loss we can assume rt(u0) > 0 and I =]0, t]. Choose
0 < α < rt(u0). Then there exists 0 < a < t so that sups∈]a,t] ‖eαAu(s)‖ < ∞.
Define θ : [0, t]→ [0,∞[:

θ(s) =

{
0, if s ∈ [0, a];

( s−a
t−a )α, if s ∈ [a, t].

(7.30)

Note that θ(τ+s) ≤ λ
√
τ+θ(s) with λ = α(t−a)−1/2 so that Proposition 7.8 applies.

It follows that if ‖v0− u0‖H1/2 is small enough, supτ∈]a,t] ‖eθ(τ)Av(τ)‖ <∞. Thus by
definition, for these v0, rt(v0) ≥ α. This gives (7.29). As for the last statement of the
corollary, following through the definitions it is easy to see that rt(u0) = rad(u(t))
under the stated conditions. The definition of rt(v0) also implies rad(v(t)) ≥ rt(v0)
for any v ∈ S1/2,I and thus (7.29) gives the stated result. �

We now continue with our discussion of global stability.
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Definition 7.11. For r ≥ 1/2 we denote by

Ir = {u0 ∈ PHr| ∃u ∈ Gr : u(0) = u0}, (7.31)

and we endow Ir with the topology from the space PHr.

Our result on global stability is as follows:

Theorem 7.12. Suppose u0 ∈ I1/2 and that the corresponding strong global solution
u obeys

lim inf
t→∞

‖A1/2u(t)‖ = 0. (7.32)

Suppose in addition that λ > 0 is given so that

A1/2eλ
√·Au(·) ∈ C([0,∞[, L2). (7.33)

There exists δ0 > 0 such that:

i) If δ ≤ δ0, v0 ∈ PH1/2 and ‖A1/2(v0 − u0)‖ ≤ δ it follows that v0 ∈ I1/2 and that
for all t > 0 the corresponding strong global solution v satisfies

‖A1/2eλ
√
tA(v(t)− u(t))‖ ≤ K1δ, (7.34a)

t3/8‖A5/4eλ
√
tA(v(t)− u(t))‖ ≤ K2δ. (7.34b)

ii) If in addition u0 ∈ PHr with r > 1/2, then u0 ∈ Ir and u0 is an interior point
of Ir.

iii) If δ ≤ δ0, v0 ∈ PH1/2 and ‖v0 − u0‖H1/2 ≤ δ it follows in addition that

〈t〉−1/4‖eλ
√
tA(v(t)− u(t))‖ ≤ K3δ. (7.34c)

In (7.34a)–(7.34c) the constants K1, K2, K3 > 0 depend on λ, u, and δ0 but not on
δ, and all bounds are uniform in t > 0.

Proof. Choose T0 > 1 and large enough so that with w(s) = uT0(s) = u(s+ T0)

|w|∞,T0 := sup
s>0

s3/8‖A5/4eλ
√
s+T0Aw(s)‖ ≤ (3γλ)

−1. (7.35)

This is possible by Corollary 4.3. On the one hand we apply Proposition 7.8 with
T = 2T0 and θ(t) = λ

√
t to construct a solution v in the interval [0, T ]. We now

construct v in the interval [T0,∞[ using the bound (7.35). This is done in a similar
way as in the proof of Proposition 7.8 using the map F defined in (7.22) with the
replacement t0 → T0 and using the Banach space with norm |·|∞,T0 defined in (7.35).
The contraction mapping argument then gives a fixed point w with |w|∞,T0 ≤ Kδ.
Finally we extend v to [T0,∞[ by setting v(t) = u(t) + w(t − T0). The estimates
(7.34a)–(7.34c) follow easily. The statement ii follows from i in combination with
Propositions 2.4 and 2.5 and Corollary 7.5.

�
Lemma 7.13. Let r ≥ 1/2. Suppose a given u ∈ Gr obeys (7.11) with I =]0,∞[.
Then the condition (7.32) holds.

Proof. Let u0 = u(0), and let n ∈ N be given. Pick δ > 0 such that δ‖u0‖ < n−2,
and pick ñ ≥ n such that δ22ñ > ‖u0‖2. Then, due to (7.12) with t = 2ñ, for some
tn ∈]ñ, 2ñ] we have ‖Au(tn)‖ < δ. For this time tn

‖A1/2u(tn)‖2 ≤ ‖Au(tn)‖ ‖u(tn)‖ ≤ δ‖u0‖ < n−2,

so ‖A1/2u(tn)‖ < 1/n. Whence limn→∞ ‖A1/2u(tn)‖ = 0 for some sequence tn →∞.
�
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Using Theorem 7.12 and Lemma 7.13 we obtain for the system (1.1):

Corollary 7.14. Let M = I and P be given as the Leray projection. Then for all
r ≥ 1/2 the set Ir is open in PHr.

7.4. L2 stability. Our final result on the stability of the L2 norm is motivated by
various previous works on L2 decay properties, in particular [Sc1, Sc2, Wi]. In the
following main result note the asymmetry between the solutions u and v reflected
in the dependence of the constant K in (7.37) on u.

Proposition 7.15. Suppose u, v ∈ G1/2 where M = I and P is the Leray projection.

Let u0(t) = e−tA
2
u(0) and v0(t) = e−tA

2
v(0). We suppose

‖u0(t)‖+ ‖v0(t)‖ ≤ L〈t〉−σ/2 (7.36)

where σ ≥ 0. Let z(t) = v(t)− u(t)− w0(t) where w0(t) = v0(t)− u0(t).
There exists δ0 > 0 such that if 0 < δ ≤ δ0 and ‖v(0)− u(0)‖H1/2 ≤ δ we have for

any ε ∈ [0, 1] such that (1− ε/2)σ 6= 1,

‖z(t)‖ ≤ Kδε〈t〉−min((1−ε/2)σ+1/4, 5/4). (7.37)

Here K depends on L, δ0, ε, and u.

Remarks 7.16. 1) The condition ‖u0(t)‖ = O(t−σ/2) of (7.36) is equivalent to
the condition ‖1[0,r](A)u0(0)‖ = O(rσ). This is one route to familiar sufficient
conditions in terms of the Lp norms of u0(0) and of xu0(0). For these conditions
and additional inequalities see [BJ].

2) The condition ‖u0(t)‖ = O(t−σ/2) of (7.36) implies the following decay of the
solution u ∈ G1/2,

‖u(t)‖ ≤ C〈t〉−min(σ/2, 5/4). (7.38)

The inequality (7.38) is proved in [Wi]. It follows from an argument similar to
but simpler than an argument used in the proof of Proposition 7.15 to follow.
Thus we omit the proof.

3) The positive parameter δ0 of Proposition 7.15 can be determined as follows:
Choose u0 = u(0) in Theorem 7.12 and λ > 0 in agreement with (7.33). Then
according to Theorem 7.12 there exists δ0 > 0 so that (7.34c) holds. This δ0

applies in Proposition 7.15 (in fact we shall only need (7.34c) with λ = 0).
4) The condition (1 − ε/2)σ 6= 1 is introduced for simplicity to avoid logarithms

in (7.37). If in addition to the hypotheses of Proposition 7.15 (excluding the
requirement on ε) we require ‖w0(t)‖ ≤ δ〈t〉−σ/2, then by repeating the proof of
Proposition 7.15 the estimate (7.37) can be improved to

‖z(t)‖ ≤
{
Kδ〈t〉−min(σ+1/4, 5/4), if σ 6= 1

Kδ〈t〉−5/4 ln(t+ 2), if σ = 1
. (7.39)

We will need the following lemma:

Lemma 7.17. Assume the hypotheses of Proposition 7.15 and in addition the bound
‖u(t)‖ ≤ L〈t〉−σ/2. Then for any ε ∈ [0, 1], and 0 < δ ≤ 1,

‖∇w0(t)‖∞ ≤ Cδεt−1〈t〉−(1/4+(1−ε)σ/2), (7.40a)

‖∇u(t)‖∞ ≤ Ct−1〈t〉−(1/4+σ/2), (7.40b)

‖w0(t)‖ ≤ Cδε〈t〉−(1−ε)σ/2. (7.40c)
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Proof. In the following the definition of C may change from line to line. We have

‖∇w0(t)‖∞ = ‖∇e−tA
2

w0(0)‖∞ = ‖K0(t) ∗ w0(0)‖∞ ≤ δ‖K0(t)‖ (7.41)

where K0(t) is a (constant times) the inverse Fourier transform of ξe−t|ξ|
2
. We easily

calculate ‖K0(t)‖ = Ct−5/4 and thus ‖∇w0(t)‖∞ ≤ Cδt−5/4. We also have

‖∇w0(t)‖∞ = ‖∇e−tA
2/2w0(t/2)‖∞ = ‖K0(t/2) ∗ w0(t/2)‖∞ ≤ 2LCt−5/4 · t−σ/2.

Thus interpolating these two results we find for large time

‖∇w0(t)‖∞ ≤ Cδεt−5/4−(1−ε)σ/2. (7.42)

For small and intermediate times

‖∇w0(t)‖∞ = ‖∇A−1/2e−tA
2

A1/2w0(0)‖∞ = ‖K1(t) ∗ A1/2w0(0)‖∞ ≤ δ‖K1(t)‖
(7.43)

where K1(t) is a (constant times) the inverse Fourier transform of ξ|ξ|−1/2e−t|ξ|
2
. We

easily calculate ‖K1(t)‖ = Ct−1 and thus we have proved (7.40a).
The proof of (7.40b) goes along the same lines. We obtain (taking here λ > 0

sufficiently small)

‖∇u(t)‖∞ = ‖∇e−λ
√
tAeλ

√
tAu(t)‖∞ = ‖K2(t) ∗ eλ

√
tAu(t)‖∞ ≤ ‖K2(t)‖ ·G0(t)1/2

(7.44)

where here K2(t) is a (constant times) the inverse Fourier transform of ξe−λ
√
t|ξ| and

G0(t) = ‖eλ
√
tAu(t)‖2. We calculate ‖K2(t)‖ = Ct−5/4 and using Corollary 5.2 iii we

deduce G0(t) ≤ Ct−σ. Thus we have the large time estimate

‖∇u(t)‖∞ ≤ Ct−5/4−σ/2. (7.45)

To obtain the result for small and intermediate times we use (7.33) which gives

‖∇u(t)‖∞ = ‖∇A−1/2e−λ
√
tAA1/2eλ

√
tAu(t)‖∞ = ‖K3(t) ∗ A1/2eλ

√
tAu(t)‖∞

≤ C‖K3(t)‖. (7.46)

We calculate ‖K3(t)‖ = Ct−1, completing the proof of (7.40b).
The proof of (7.40c) proceeds by interpolating the two bounds ‖w0(t)‖ ≤ δ and
‖w0(t)‖ ≤ 2L〈t〉−σ/2. �
Remark. We will not use the bounds in (7.40a) and (7.40b) for small t. We include
these estimates for completeness.

Proof of Proposition 7.15. Note that from (7.34c) we have

‖z(t)‖ ≤ Cδ〈t〉1/4, t ≥ 0. (7.47)

For large time we use Schonbek’s technique [Sc1], [Sc2]. We differentiate ‖z(t)‖2

and find (after an integration by parts)

1

2

d

dt
‖z(t)‖2 = −‖Az‖2−〈z, z·∇(u+w0)〉−〈z, u·∇w0+w0·∇u〉−〈z, w0·∇w0〉. (7.48)

We will need the estimate (7.38). Without loss of generality we can assume
σ ≤ 5/2. In the following we shall also assume that δ0 ≤ 1 (in addition to the
requirement of Remark 7.16 3); this is just to minimize notation.

We have (with some abbreviation)

ẑ(t, ξ) = −P (ξ)

∫ t

0

e−(t−s)|ξ|2iξ[û⊗ w(s, ξ) + ŵ ⊗ u(s, ξ) + ŵ ⊗ w(s, ξ)]ds (7.49)
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where P (ξ) is the Leray projection in Fourier space. As a first step we get an
initial bound for ‖z(t)‖ of the form ‖z(t)‖ ≤ Cδε for all t > 0. Define k so that
supt≥0‖z(t)‖ = kδε. In the last term of (7.49) we estimate

|ŵ ⊗ w(s, ξ)| ≤ ‖w(s)‖2 ≤ (‖u(s)‖+ ‖v(s)‖) · ‖w(s)‖ ≤ (2‖u(0)‖+ δ)‖w(s)‖.
We note that by definition of k

‖w(s)‖ ≤ ‖w(0)‖+ kδε ≤ δ + kδε ≤ (1 + k)δε.

From (7.49) it thus follows that

|ẑ(t, ξ)| ≤ C|ξ|−1(1 + k)δε. (7.50)

Using (7.48) we obtain for t ≥ 1

1

2

d

dt
‖z(t)‖2 ≤ −

∫

|ξ|2t≥a
|ξ|2|ẑ(t, ξ)|2 dξ + ‖z(t)‖2(‖∇w0(t)‖∞ + ‖∇u(t)‖∞)

+ ‖z(t)‖
(
‖u(t)‖ · ‖∇w0(t)‖∞ + ‖w0(t)‖ · ‖∇u(t)‖∞ + ‖w0(t)‖ · ‖∇w0(t)‖∞

)

≤ − (at−1 − Ct−5/4−σ/2)‖z(t)‖2

+ ‖z(t)‖Cδεt−5/4−(1−ε/2)σ + at−1

∫

|ξ|2t≤a
|ẑ(t, ξ)|2 dξ

≤ − (a/2t)‖z(t)‖2 + Cδ2εt−3/2−2(1−ε/2)σ + at−1

∫

|ξ|2t≤a
|ẑ(t, ξ)|2 dξ. (7.51)

Here we have used (7.38), (7.40a)–(7.40c), and the ”squaring inequality” for the
term linear in ‖z(t)‖. We have also taken a large. Inserting (7.50) and integrating
we find for a large enough and t ≥ 1

‖z(t)‖ ≤ t−a/2kδε + Ct−1/4(1 + k)δε.

We take t0 > 1 large enough so that for t ≥ t0

‖z(t)‖ ≤ kδε/3 + (1 + k)δε/3.

If the supremum of ‖z(t)‖ does not occur for t ≤ t0 then

kδε ≤ kδε/3 + (1 + k)δε/3

so k ≤ 1. Otherwise kδε ≤ Cδ〈t0〉1/4 by (7.47) so that k ≤ C〈t0〉1/4. Thus
‖z(t)‖ ≤ Cδε. We now make the inductive assumption that ‖z(t)‖ ≤ Cδε〈t〉−µ/2.
From (7.49) we obtain

|ẑ(t, ξ)| ≤ |ξ|
∫ t

0

(2‖u(s)‖ · ‖w(s)‖+ ‖w(s)‖2) ds

≤ C|ξ|
∫ t

0

(
‖u(s)‖ · (‖w0(s)‖+ ‖z(s)‖) + ‖w0(s)‖2 + ‖z(s)‖2

)
ds

≤ C|ξ|
∫ t

0

δε
(
〈s〉−(1−ε/2)σ + 〈s〉−(σ+µ)/2 + 〈s〉−µ

)
ds

≤ C|ξ|
∫ t

0

δε
(
〈s〉−(1−ε/2)σ + 〈s〉−µ

)
ds. (7.52)

In the third inequality above we have used (7.40c). Assuming that |ξ|2t ≤ a and
integrating we find that if µ 6= 1 and µ ≤ (1− ε/2)σ then |ẑ(t, ξ)| ≤ Cδε|ξ|min(2µ−1,1)

whereas if µ ≥ (1 − ε/2)σ but (1 − ε/2)σ < 1 then |ẑ(t, ξ)| ≤ Cδε|ξ|(2(1−ε/2)σ−1). If
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µ ≥ (1− ε/2)σ > 1 then |ẑ(t, ξ)| ≤ Cδε|ξ|. Substituting in the differential inequality
(7.51) and integrating we obtain (noting (7.47)) that in these three circumstances
‖z(t)‖ ≤ C〈t〉−µ′/2 where µ′ = min(2µ+1/2, 5/2), µ′ = 1/2+2(1−ε/2)σ or µ′ = 5/2,
respectively. Tracing through the iterations starting from µ = 0 we find that at most
three iterations gives the stated result. �

Acknowledgement. I.H. would like to thank the Mathematics Institute of Aarhus
University and the Schrödinger Institute in Vienna for their support and hospitality
while some of this research was completed.

References

[ADT] P. Auscher, S. Dubois, and P. Tchamitchian, On the stability of global solutions of the
Navier-Stokes equations in the space, J. Math. Pures Appl. 83 (2004) 673–697.

[BJ] H.-O. Bae and B. Jin, Temporal and spatial decays for the Navier-Stokes equations,
Proc. Roy. Soc. Edinburgh Sect. A 135 (2005), 441–477.

[Ev] L.C. Evans, Partial differential equations, Providence, Rhode Island, Am. Math. Soc.
1998.

[FO] J. Fan and T. Ozawa, Asymptotic stability of the Navier-Stokes equations, J. Evol. Equ.
8 (2008), 379–389.

[FMRT] C. Foias, O. Manley, R. Rosa, and R. Temam, Navier-Stokes equations and turbulence
Encylopedia of Mathematics and its Applications, 83 Cambridge University Press,
Cambridge 2001.

[FT] C. Foias, R. Temam, Gevrey class regularity for the solutions of the Navier-Stokes
equations, J. Funct. Anal. 87 (1989), 359–369.

[FK1] H. Fujita, T. Kato, On the non-stationary Navier-Stokes system, Rend. Sem. Math.
Univ. Padova 32 (1962), 243–260.

[FK2] H. Fujita, T. Kato, On the Navier-Stokes initial value problem I, Arch. Rat. Mech.
Anal. 16 (1964), 269–315.

[Ga] G.P. Galdi An introduction to the Navier-Stokes initial-boundary value problem; In
Fundamental directions in mathematical fluid mechanics 1–70, Adv. Math. Fluid
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