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Preface

This dissertation is written as a part of the requirements in the PhD program in The
Department of Mathematical Sciences at Aarhus University. It represents the research part
of my work during my PhD studies, which has been carried out under the supervision of
Morten S. Risager (University of Copenhagen) and Alexei B. Venkov (Aarhus University).

Abstract

In this thesis three different distribution problems are studied. In the first problem
we consider the Eisenstein series E(g, s, χ) on GL2(A), where A is the adele ring of a
number field. We prove (quantitatively) that the measure |E(g, 1/2 + it, χ)|2dµ becomes
equidistributed in the limit t→∞. Here dµ is the measure derived from the Haar measure
on GL2(A). This generalizes previous results due to W. Luo and P. Sarnak and S. Koyama.

The second problem concerns angles in hyperbolic lattices. We prove that in a suitable
(and natural) setting these angles are equidistributed with an effective error term for the
equidistribution rate. We use this to generalize a result due to F. Boca.

The last problem studied in the thesis is about the pair correlation for the fractional
parts of n2α. It has been proved by Z. Rudnick and P. Sarnak that the pair correlation
is Poissonian for almost all α. However, one does not know of any specific α for which it
holds. We show that the problem is closely related to a divisor problem, which gives a
better arithmetic understanding of the problem. The divisor problem considered seems to
be hard, but we can show that it is true on average in a suitable sense.

About the Dissertation

Due to various circumstances during my PhD studies (as I will describe) I have –
in agreement with my advisors – worked on three different problems. While two of the
problems concern spectral theory of automorphic forms the last one is a problem in more
classical analytic number theory. The dissertation consists of four manuscripts:
Manuscript A: Quantum Unique Ergodicity of Eisenstein Series on the Hilbert Modular

Group over a Totally Real Field. Submitted.
Manuscript B: Quantitative Mass Equidistribution of Eisenstein Series on GL2.
Manuscript C: Distribution of Angles in Hyperbolic Lattices. Joint with M. Risager.

Accepted for publication in Quarterly Journal of Mathematics.
Manuscript D: Divisor Problems and the Pair Correlation for the Fractional Parts of
n2α.
In addition to the four manuscripts there are brief introductions to the problems stu-

died in the manuscripts.
In Chapter 1 we review some very basic facts about spectral theory of automorphic

forms. The purpose of the chapter is to set the stage for Chapters 2 and 3 and Manuscripts
A, B and C.

In Chapter 2 we introduce the problem studied in Manuscripts A and B. This was the
problem originally suggested to me by M. Risager for my PhD. The research carried out

v



vi PREFACE

during the first two years of my studies resulted in Manuscript A. In this manuscript we
generalize the Luo-Sarnak result [29] on QUE of Eisenstein series on the modular group to
Eisenstein series on the Hilbert modular group over a real field. We also give an expository
account for the theory of Hecke operators on non-holomorphic Hilbert modular forms.

In the spring semester 2008 I had the opportunity to visit P. Sarnak and Claus M.
Sørensen at Princeton University. During that period the bulk of the work for Manuscript
B was made, which generalizes the equidistribution result in Manuscript A to Eisenstein
series on GL2 over a number field.

Chapter 3 is an introduction to Manuscript C which is joint with M. Risager. In this
manuscript we prove an effective equidistribution result for angles in hyperbolic lattices.
We use this to generalize a result due to F. Boca [5]. I worked on this problem just after
I obtained my masters degree (as a part of the PhD program), i.e. in the beginning of my
third year.

Chapter 4 is an introduction to Manuscript D. We study the pair correlation for the
fractional parts of n2α for specific α’s. An unsolved conjecture in the area is to show
that the pair correlation for the sequence is Poissonian for a class of α’s with a certain
Diophantine approximation property. We make a conjecture for a divisor problem and
show that this conjecture implies the pair correlation conjecture. Furthermore, we show
that the conjecture for the divisor problem holds on average.

The problem was suggested to me by P. Sarnak (since I had read the paper [41] on a
different occasion). In the fall semester 2008 I was visiting D. R. Heath-Brown in Oxford
who was interested in the problem and he has had great influence on Manuscript D.

We note that it is not the purpose of the introductory chapters to be references for
researchers in the area. They should merely give a brief introduction to the problems
considered in this dissertation (and provide motivation). Therefore the statements can be
imprecise and the accounts given are by no means complete.
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CHAPTER 1

A Brief Introduction to Spectral Theory of Automorphic
Forms

In this chapter we give a (very) concise introduction to spectral theory of automorphic
forms. More details can be found in [21]. It is the most basic prerequisites – certainly not
sufficient to understand the problems in detail – needed in order to read Chapters 2 and
3 and Manuscripts A, B and C.

1. Fuchsian Groups

We let H denote the upper half-plane of C,

H = {x+ iy ∈ C | y > 0}
and we equip H with the Poincaré metric

ds2 =
dx2 + dy2

y2
.

The hyperbolic distance derived from the metric is usually denoted ρ. This metric induces
a measure dµ on H which is given by

dµ =
dxdy

y2
.

It is well known that SL2(R) (the invertible 2×2 matrices with real entries and determinant
1) acts on H as Möbius transformations

(
a b
c d

)
z =

az + b

cz + d
,

and these transformations are orientation preserving isometries on H. In fact SL2(R) acts
on the one-point compactification of C.

We let PSL2(R) denote the orientation preserving isometries on H and it is well known
that PSL2(R) ∼= SL2(R)/{±I}. A Fuchsian group of the first kind (also called a cofinite
group) Γ is a discrete subgroup of PSL2(R) such that Γ\H has finite volume – the metric
(and measure) on H transfers to the quotient Γ\H. It is well known that any compact
hyperbolic Riemann surface is of the form Γ\H for suitable Γ.

A function f : H → C is automorphic (with respect to Γ) if f(γz) = f(z) for all z ∈ H
and γ ∈ Γ. Thus an automorphic function is a function on Γ\H.

A point w ∈ R ∪ {∞} is called a cusp of Γ if w is fixed by some non-identity element
in Γ. Two cusps w and w′ of Γ are said to be equivalent if there exists γ ∈ Γ such that
γw = w′. A Fuchsian group of the first kind has a finite number of inequivalent cusps.
Our main example of a non-cocompact Fuchsian group of the first kind is the modular
group PSL2(Z), which has the classical fundamental domain

{z ∈ H | |z| > 1, |Re(z)| < 1/2}.

3



4 CHAPTER 1. A BRIEF INTRODUCTION TO SPECTRAL THEORY OF AUTOMORPHIC FORMS

Using this fundamental domain one can check that the volume of PSL2(Z)\H is π/3. One
easily checks that the cusps of PSL2(Z) are Q ∪ {∞} and they are all equivalent. More
generally the principal congruence subgroups of the modular group

Γ(N) =
{
±
(

a b
c d

)
∈ PSL2(Z) | a ≡ d ≡ 1(modN), b ≡ c ≡ 0(modN)

}

are all cofinite but non-cocompact.
Let a denote a cusp of Γ. It is well known that the stabilizer subgroup Γa ⊂ Γ is cyclic.

Let γa denote a generator of Γa. We choose σa ∈ PSL2(R) such that

σa∞ = a

and

σ−1
a γaσa = ±

(
1 1

1

)
.

We will refer to σa as a scaling matrix.

2. The Automorphic Laplacian

Let us first consider the Laplace-Beltrami operator ∆ on a Riemannian manifold M of
dimension n. The manifolds considered are always assumed to be connected and oriented.
In local coordinates this operator is given in terms of the metric gij by

∆ = − 1√
det(gij)

∂

∂xj

(√
det(gij)gij ∂

∂xi

)
.(1.1)

Assume that the manifold M is compact. In this case ∆ has pure point spectrum
contained in [0,∞)

0 = λ0 < λ1 ≤ λ2 ≤ . . .

(listed with multiplicity) and λk →∞ as k →∞. In fact we have the so-called Weyl law

#{j ∈ N0 | λj ≤ Λ} ∼ Vol(M)Vol(Bn)
(2π)n

Λn/2,

where Bn is the unit ball in Rn.
The Laplace-Beltrami operator on H is given by

∆ = −y2

(
∂2

∂x2
+

∂2

∂y2

)
.

It induces an essentially self-adjoint operator on smooth bounded functions f ∈ L2(Γ\H)
with the property that ∆f is also bounded. The closure of this operator is called the
automorphic Laplacian. By abuse of notation this operator is also denoted ∆. An auto-
morphic form (with respect to Γ) is an eigenfunction of ∆ (it does not have to be square
integrable). A non-zero, smooth and bounded automorphic form is called a cusp form if

∫ 1

0
f(σaz)dx = 0

for any cusp a, i.e. if the zeroth Fourier coefficient is 0 at every cusp. An important
property of these function is that together with the so-called incomplete Eisenstein series
they span L2(Γ\H) (see (1.3) below).

As mentioned before PSL2(Z) has finite volume but is not cocompact. However, it is
known that there are infinitely many eigenvalues. They all have finite multiplicity and we
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still have a Weyl law. More precisely let λj = 1
4 + t2j denote the eigenvalues of ∆ counted

with multiplicity. Then

#{j ∈ N0 | |tj | ≤ T} ∼ Vol(PSL2(Z)\H)
4π

T 2.(1.2)

More generally let Γ be a non-cocompact Fuchsian group of the first kind with inequiv-
alent cusps a1, . . . , am and scaling matrices σak

. In this case there is both a continuous
spectrum (which covers the segment [1/4,∞) with multiplicity m) and a discrete spec-
trum. The eigenvalues fall into two categories – residual eigenvalues (which all lie in the
interval [0, 1/4) and are finite in number) and cuspidal eigenvalues (which are eigenfunc-
tions of so-called cusp forms – a certain type of automorphic form) – but for the moment
it is not necessary to know the precise definitions. Eigenvalues in (0,1/4) play a special
role in the theory and these are called small eigenvalues. The modular group has no small
eigenvalues. It has been conjectured by A. Selberg that there are no small eigenvalues for
the groups Γ(N).

For each cusp we have an Eisenstein series

Eak
(z, s) =

∑

γ∈Γak
\Γ

Im(σ−1
ak
γz)s,

which is convergent for Re(s) > 1, and it has a meromorphic continuation to the entire
complex plane. Note that the Eisenstein series is simply the Poincaré series (elements are
taken modulo Γak

since z = x+ iy 7→ y is invariant under translation in x) formed by the
formal eigenfunctions z 7→ ys of the Laplacian on H.

One easily checks that Eak
(z, s) is an automorphic form with eigenvalue s(1− s), but

Eak
(z, s) is not square integrable. Using the Eisenstein series the spectral resolution of ∆ on

Γ\H can be made explicit. Let {ϕj} denote a complete set of orthonormal eigenfunctions
of ∆ (ordered according to the eigenvalues). Let C denote the j’s for which ϕj is a cusp
form. Functions of the form (the first sum is finite)

f(z) =
∑

j∈C

ajϕj(z) +
m∑

k=1

∑

γ∈Γak
\Γ
hk(Im(σ−1

ak
γz)),(1.3)

where hk ∈ C∞
c (R+), are dense in L2(Γ\H) and they have the expansion

f(z) =
∑

j

〈f, ϕj〉ϕj(z) +
m∑

k=1

1
4π

∫ ∞

−∞
〈f,Eak

(·, 1/2 + ir)〉Eak
(z, 1/2 + ir)dr.(1.4)

Here

〈f, g〉 =
∫

Γ\H
f(z)g(z)dµ

is the inner product on L2(Γ\H). The bracket in the last sum is technically not an inner
product since Eak

(z, 1/2 + ir) is not square integrable. The corresponding integral is
convergent though, since the functions in first term of (1.3) are of rapid decay at every
cusp and the last term is compactly supported. The functions appearing in the last term
of (1.3) are called incomplete Eisenstein series.

3. The Fourier Expansion of an Automorphic Form and Hecke Operators

Let f be an automorphic form on Γ = PSL2(Z) with Laplace eigenvalue s(1 − s)
satisfying the growth condition

f(z) = o(e2πy)
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as y →∞. Then f has the Fourier expansion

f(z) =
a0(f)

2
(ys + y1−s) +

b0(f)
2s− 1

(ys + y1−s) +
∑

n6=0

cn(f)
√
yKs−1/2(2πy)e(x).

Here e(x) = e2πix and Kν denotes the Macdonald Bessel function

Kν(y) =
1
2

∫ ∞

0
exp(−y(t+ 1/t)/2)tν−1dt.

As an example the Fourier expansion of the Eisenstein series on the modular group is

E(z, s) = ys + c(s)y1−s +
∑

n6=0

cn(s)
√
yKs−1/2(2πy)e(x),

where

c(s) =
√
π

Γ(s− 1/2)
Γ(s)

ζ(2s− 1)
ζ(s)

and

cn(s) =
2πs

Γ(s)ζ(2s)
√
n

∑

ab=|n|

(a
b

)s−1/2
.

Let f be an automorphic function on Γ\H. We then define the Hecke operator Tn (see
[21] Section 8.5) by

(Tnf)(z) =
1√
n

∑

ad=n

∑

b mod d

f

(
az + b

d

)
.

The Hecke operators are arithmetic objects. We can also define Hecke operators on other
Fuchsian groups such as Γ(N), but the groups must be arithmetic in some sense.

The Hecke operators satisfy the multiplication identity

TmTn =
∑

d|(m,n)

Tmnd−2 .(1.5)

In particular the Hecke operators commute. Moreover these operators are self-adjoint
and they commute with the Laplacian. It turns out that we can choose a basis for the
space spanned by cusp forms which are eigenfunctions of both the Laplacian and all the
Hecke operators. Such cusp forms are called primitive. A very important fact is that
with a suitable normalization the Fourier coefficients of the primitive cusp forms are the
Hecke eigenvalues. The Hecke eigenvalues (and hence the Fourier coefficients) satisfy a
multiplication identity similar to (1.5). This “extra information” is extremely useful and
it is often the reason why one can obtain stronger results for Fuchsian groups that are
arithmetic in nature.

It is important to mention that we can attach an L-function L(s, ϕ) to a primitive
cusp form ϕ defined by

L(s, ϕ) =
∞∑

n=1

λ(n)
ns

,

where λ(n) is the eigenvalue of Tn. This L-function will show up in Chapter 2, Section 3.
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4. The Hilbert Modular Group and Adele Groups

The purpose of this section is to introduce the notation for Chapter 2, Section 3. A
good amount of algebraic number theory is needed. This can be found in [35] and [39].

We want to consider a generalization of PSL2(Z)\H. Rather than considering Z we
want to consider the ring of integers O in a totally real number field F of degree n over
Q. Let

Gal(F/Q) = {ψ1, . . . , ψn}.
For α ∈ F we set α(j) = ψj(α). The Hilbert modular group Γ = PSL2(O) embeds
discretely in PSL2(R)n by

±
(

a b
c d

)
7→
(
±
(

a(1) b(1)

c(1) d(1)

)
, . . . ,±

(
a(n) b(n)

c(n) d(n)

))
.(1.6)

We will use the convention z = (z1, . . . , zn) ∈ Hn and z = (x, y) where x = (x1, . . . , xn) ∈
Rn and y = (y1, . . . , yn) ∈ Rn

+. It is immediate from the embedding (1.6) that Γ acts on
Hn.

We can regard Hn as a Riemannian manifold with the metric

ds2 =
dx2

1 + dy2
1

y2
1

+ · · ·+ dx2
n + dy2

n

y2
n

and it is known that the quotient Γ\Hn has finite volume. The Laplace-Beltrami operator
associated with this metric is

∆ = ∆1 + · · ·+ ∆n

where

∆j = −y2
j

(
∂2

∂x2
j

+
∂2

∂y2
j

)
.

We want to study functions which are eigenfunctions of all the Laplacians ∆1, . . . ,∆n.
Spectral theory and Hecke theory for automorphic functions on the space Γ\Hn can be
developed analogous to the theory described in the first sections, but we will not go into
further details.

If we want to consider more general number fields, it is natural to change to an adelic
setting. An excellent account is given in [6].

Let A denote the adele groups of F. We define the quotient

X(F) = Z(A)GL2(F)\GL2(A)/K,

where Z is the 2× 2 scalar matrices and K =
∏

v Kv with

Kv =





O(2) if v is real
U(2) if v is complex
GL2(Ov) if v is finite

.

Here Ov is the ring of integers in Fv. The group GL2(A) is equipped with a Haar measure
which induces a measure on X(F). We note that

X(Q) ∼= PSL2(Z)\H
and the measure on X(Q) coincides with the Poincaré measure.

While it is relatively straight forward (at least philosophically) to go from spectral
theory on PSL2(Z)\H to spectral theory on PSL2(O)\Hn, it is perhaps less obvious how
to go from the spectral theory described in the previous sections to the “spectral theory”
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of functions on X(F), and we will not make an attempt to explain this. We will merely
study the space X(F) as a generalization of the quotient PSL2(Z)\H.



CHAPTER 2

Mass Equidistribution of Eisenstein Series on GL(2)

In this chapter we motivate the study of quantum unique ergodicity and mention some
of the results that have been obtained. This part is inspired by the survey papers [23],
[44], [45] and [46] by P. Sarnak. Finally we explain the results obtained in Manuscripts
A and B.

1. Hamiltonian Mechanics and Quantum Chaos

We briefly review the mathematical setting of Hamiltonian mechanics (see Arnold’s
book [1] for a detailed account). Recall that the Lagrangian for a mechanical system
L(q, q̇, t) is a function of the generalized coordinates qi, the generalized velocities q̇i and
time t defined by L = T − U , where T and U are the kinetic and potential energy,
respectively. In this setting the equations of motion are

d

dt

(
∂L

∂q̇i

)
− ∂L

∂qi
= 0,

and these are referred to as Lagrange’s equations.
We define the generalized momenta by

pi =
∂L

∂q̇i
.

The Hamiltonian H(q, p, t) is defined as

H(q, p, t) = p · q̇ − L(q, q̇, t),

and it may be identified with the sum of the kinetic and the potential energy for the
system. With these definitions the equations of motion are

ṗ = −∂H
∂q

(2.1)

and

q̇ =
∂H

∂p
,(2.2)

and these are referred to as Hamilton’s equations.
If one consider our configuration space to be some Riemannian manifold M – with

the metric given in local coordinates by the matrix gij – each point (q, p) can be regarded
as an element in the cotangent bundle T ∗M . Thus we will regard the Hamiltonian as a
function on T ∗M .

From now on we consider the time-independent Hamiltonian defined in local coordi-
nates by

H(q, p) =
1
2
gij(q)pipj .(2.3)

This may be regarded as the Hamiltonian for a free particle moving around in M without
friction and it is well known (see [25] Section 1.6) that this Hamiltonian gives rise to the

9



10 CHAPTER 2. MASS EQUIDISTRIBUTION OF EISENSTEIN SERIES ON GL(2)

cogeodesic flow on T ∗M via the equations (2.1) and (2.2). We also know that for all λ > 0
the cogeodesic flow maps the set

Eλ = {(q, p) ∈ T ∗M | H(q, p) = λ}
to itself. In physics terms this reflects the fact that we consider a particle with constant
kinetic energy. If (q(t), p(t)) is a solution to Hamilton’s equations we see that ‖q̇‖q =
2H(q, p). Thus we are led to consider the unit tangent bundle

SM =
∐

q

{v ∈ TqM | ‖v‖q = 1} ⊂ TM.

It is not hard to see that SM is an embedded submanifold of TM and that dimSM =
2 dimM − 1. We can even put a Riemannian structure on SM where the metric is given
by

dr2((q1, v1), (q2, v2)) = dq2(q1, q2) + dv2(v′1, v2).

Here dq is the metric on M and dv is the distance between v′1 and v2 (induced by the inner
product on Tq2M) where v′1 is the vector obtained from v1 by parallel transport. We let ν
denote the measure on SM induced by the Riemannian metric.

The geodesic flow on SM is the one-parameter semi-group {St} of transformations
that translate a linear element (q, v) ∈ SM a distance of length t > 0 along the geodesic
determined by (q, v). The geodesic flow preserves the measure ν on SM (see [48] for
references). This explains how ergodic theory enters the picture, since we have a family of
measure preserving maps.

2. Quantum Ergodicity

As in Chapter 1 we let ∆ denote the Laplace-Beltrami operator on M . Note that ~2

2 ∆
can be regarded as a quantization of H(q, p) defined in (2.3) in the sense that H(q, p)
indeed is the leading symbol of −1

2∆ (by quantization we mean the transition from the
Hamiltonian H(q, p) to a differential operator by substituting q and p with suitable differ-
ential operators). Thus the equation for the stationary eigenstates (the time-independent
Schrödinger equation with an appropriate choice of units) is

~2

2
∆ψk = λkψk.(2.4)

Let M be a compact Riemannian manifold. In that case we know that ∆ has pure
point spectrum. From the equation (2.4) above we see that the semi classical limit (i.e.
~ → 0) is the same as the large eigenvalue limit (i.e. k → ∞). Now assume that our
quantum system has a classical analogue. Quantum chaos is the study of the quantized
system when the classical system is “chaotic”. Here “chaotic” means that the geodesic flow
{St} is ergodic (i.e. S−1

t (B) = B implies ν(B) = 0 or ν(B) = 1 for all t > 0). Sometimes
one requires more in the definition of “chaotic” but we will only focus on the ergodicity
condition. Assume that the geodesic flow on M is ergodic. This holds for example if M
has constant, negative sectional curvature. Let {ϕk} be an orthonormal basis for L2(M) of
eigenfunctions of ∆ with eigenvalues λk (listed with multiplicity and in increasing order).
Y. Colin de Verdière [8], A. Schnirelman [47] and S. Zelditch [53] have proved that there
exists a subsequence {ϕkj} of full density such that the probability measure

dµkj = |ϕkj |2dµ→ dµ(2.5)
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in the weak-∗ topology, where µ is the normalized Riemannian volume on M . Here full
density means that

#{j ∈ N | λkj ≤ N}
#{k ∈ N0 | λk ≤ N} → 1

as N →∞.
This result is known as “quantum ergodicity”. Z. Rudnick and P. Sarnak [40] con-

jectured that if M is a compact Riemannian manifold with constant, negative sectional
curvature then

dµk → dµ(2.6)

in the weak-∗ topology. In other words it is not necessary to omit a subsequence of the
eigenfunctions in (2.5). This is known as the quantum unique ergodicity conjecture and it
is an aspect of this conjecture we will be concerned with. Note that (2.6) means that the
measures dµk becomes equidistributed in the limit k →∞.

Recall from quantum mechanics that for A ⊂M the integral
∫
A |ϕj |2dµ is interpreted

as the probability for a particle in state ϕj to be in A. If our classical system was not
chaotic, we would not expect the behavior in (2.6). Indeed we would expect that in the
semi classical limit the support of the weak-∗ limit of the measures |ϕj |2dµ would be the
classical path of the particle.

Discussion of other significant conjectures concerning quantum chaos can be found in
the four papers mentioned in the beginning of the chapter.

Let us consider compact hyperbolic surfaces of the form Γ\H (as in Chapter 1). To
approach the quantum unique ergodicity conjecture one must assume that Γ is arithmetic.
Such arithmetic surfaces are derived from quaternion algebras over totally real number
fields. In this case E. Lindenstrauss [27] has proved the conjecture.

Now consider Γ = PSL2(Z). In the light of (1.2) the problem of quantum unique
ergodicity still makes sense for the modular group. We simply consider a complete set
of orthonormal eigenfunctions {ϕk} of ∆, i.e. an orthonormal basis for the discrete spec-
trum. This version of the quantum unique ergodicity conjecture has been proved by K.
Soundararajan [50].

We mention that a similar result for holomorphic Hecke eigenforms has been proved by
R. Holowinsky and K. Soundararajan [16] (the problem was originally studied bu W. Luo
and P. Sarnak [30]). They proved that if f is a holomorphic Hecke eigenform of (even)
weight k on the modular group then

|f(z)|2yk−2dxdy → 3
π
y−2dxdy

as k →∞.

3. Mass Equidistribution of Eisenstein Series on GL(2)

W. Luo and P. Sarnak [29] have proved a continuous spectrum analogue of the quantum
unique ergodicity conjecture – recall the spectral expansion (1.4) – in the following sense:
Let A,B ⊂ PSL2(Z)\H be compact and Jordan measurable, and assume that µ(B) 6= 0.
Let dµt = |E(z, 1/2 + it)|2dµ. Then

µt(A)
µt(B)

→ µ(A)
µ(B)

(2.7)

as t→∞, where E(z, s) is the Eisenstein series for PSL2(Z) (recall that there is only one
cusp for this group). Moreover the result is quantitative in the sense that they actually



12 CHAPTER 2. MASS EQUIDISTRIBUTION OF EISENSTEIN SERIES ON GL(2)

prove the asymptotics

1
log t

∫

Γ\H
F (z)dµt →

3
π

∫

Γ\H
F (z)dµ(2.8)

as t→∞ – (2.7) follows easily from (2.8). The main results in Manuscripts A and B are
generalizations of this result. The strategy used in these papers is the same. However,
the proofs are more complicated due to the fact that we work with more general number
fields.

Though we won’t address it further it should be mentioned that D. Jakobson [24] has
proved a result analogous to (2.7) for a microlocal lift of the distribution dµt to the unit
tangent bundle SM of Γ\H which is isomorphic to PSL2(Z)\PSL2(R). A microlocal lift
is a certain family of measures on SM such that dµt are the pushforward measures of the
lifted measures under the natural projection map – see [53] and [24] for correct definitions.

We briefly outline the proof of (2.8) – this should give the reader a better picture than
if chose to work with the more general settings in Manuscripts A and B.

The idea is to use the decomposition (1.3) – i.e. that L2(Γ\H) is the direct sum of
the space spanned by cusp forms and the space of incomplete Eisenstein series – and then
establish the equidistribution for functions that span these spaces ((2.9) and (2.10) below).
Once we know that (2.8) follows from standard approximation arguments.

It is important that we have an arithmetic surface – certainly the arguments below
do not apply to a general non-cocompact Fuchsian group. The fact that the Fourier
coefficients of the Eisenstein series and the cusp forms are “arithmetic” is crucial.

For an incomplete Eisenstein series F (z, h) we have

1
log t

∫

Γ\H
F (z, h)dµt →

3
π

∫

Γ\H
F (z, h)dµ(2.9)

as t→∞. For a primitive cusp forms ϕ we get
∫

Γ\H
ϕ(z)dµt → 0(2.10)

as t→∞. This indeed corresponds to the desired equidistribution as
∫

Γ\H
ϕ(z)dµ = 0.

The idea in the proof of (2.9) is to unfold the incomplete Eisenstein series and then use
the Fourier expansion of the Eisenstein series E(z, s). The main terms of the integral can
then be expressed in terms of Γ-factors (which are controlled by Stirling’s formula) and the
Riemann zeta-function ζ(s). The result (2.9) then follows from known estimates for ζ(s).
The two non-trivial estimates needed are a subconvexity estimate for ζ(s) in t-aspect (due
to Weyl) as well as a sufficiently good estimate for ζ ′(1 + it)/ζ(1 + it) (this follows from
the classical Vinogradov zero-free region for ζ). Here “subconvexity estimate in t-aspect”
means an estimate of the form

|ζ(1/2 + it)| ≪ |t|α,
where the exponent α is smaller than the exponent obtained from the Phragmén-Lindelöf
principle and the functional equation (see e.g. [22]).

The proof of (2.10) is based in the Rankin-Selberg method. It is well known that the
integral considered can be expressed as a product of Γ-factors, the Riemann zeta-function
and the standard L-function L(s, ϕ). The result then follows from a subconvexity estimate
for L(s, ϕ) in t-aspect due to [32].
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We mention that S. Koyama [26] has proved an analogue of (2.8) for Eisenstein series
on SL2(O)\H3, where O is the ring of integers in a quadratic imaginary field with class
number one and H3 is the 3-dimensional upper half-space. Manuscript B generalizes this
result.

In Manuscript A we generalize 2.8 to Eisenstein series on the Hilbert modular group
over a totally real field F of degree n with narrow class number one. In order to give a self-
contained account we also give an expository treatment of the theory of Hecke operators
on non-holomorphic Hilbert modular forms. The setting in this manuscript is entirely
classical (as in [11]), i.e. “non-adelic”. On the Hilbert modular group we consider the
(family of) Eisenstein series considered by I. Efrat [11]

E(z, s,m) =
∑

γ∈Γ∞\Γ

n∏

j=1

Im(γ(j)zj)sj ,

where sj = s + iρj(m), m ∈ Zn−1. Here ρj(m) is a real number such that β 7→∏n
j=1 |β(j)|iρj(m) is a Hecke character on F. The spectral theory described in Chapter

1 generalizes to this setting. We extend (2.8) and prove that for F ∈ Cc(Γ\Hn)
1

log t

∫

Γ\Hn

F (z)|E(z, s,m)|2dµ→ πnnR

2DζF(2)

∫

Γ\Hn

F (z)dµ(2.11)

as t → ∞. Here ζF is the Dedekind zeta-function, D is the discriminant and R is the
regulator of F.

In Manuscript B we generalize (2.11) to Eisenstein series on GL2 over a general number
field F with r1 real places and r2 complex places and class number h. We let W denote
the number of roots of unity in F×. In this case it is more convenient to work with an
adelic setting.

We consider the Eisenstein series E(g, s, χ) on X(F) (defined in Chapter 1, Section 4)
defined by (B is the upper triangular matrices)

E(g, s, χ) =
∑

γ∈B(F)\GL2(F)

f(γg),

where χ is an everywhere unramified character on A×/F×. The function f : GL2(A)/K →
C is identical 1 on K and satisfies the condition that (| · |A denotes the idele norm)

f (( y1 x
y2 ) g) =

χ(y1)|y1|sA
χ(y2)|y2|sA

f(g)

for g ∈ GL2(A), y1, y2 ∈ A× and x ∈ A. By the Iwasawa decomposition this determines
f completely.

For F ∈ Cc(X(F)) we prove that
1

log t

∫

X(F)
F (g)|E(g, 1/2 + it, χ)|2dµ→ 2r2πr1nhR

ζF(2)WD

∫

X(F)
F (g)dµ(2.12)

as t→∞.
We mention that the subconvexity estimate in t-aspect for the standard L-function,

which is necessary to prove (2.11) and (2.12), has just recently been established by A.
Diaconu and P. Garrett [10] and P. Michel and A. Venkatesh [33]. A subconvexity estimate
for the Hecke L-function is also needed [49]. Finally an estimate for the logarithmic
derivative of the Hecke L-function on the line Re(s) = 1 is required. This follows from the
zero-free region derived in [7].





CHAPTER 3

Distribution of Angles in Hyperbolic Lattices

In this chapter we review the classical Gauss circle problem and its hyperbolic ana-
logues. We also explain the results obtained in Manuscript C.

1. The Gauss Circle Problem

A classical problem in analytic number theory is to count the number of Gaussian
integers lying inside a disc of radius R with center 0 in the complex plane. This is known
as the Gauss circle problem. We let

E(R) = |πR2 −#{(m,n) ∈ Z2 | m2 + n2 ≤ R2}|.
Since the circumference of the disc of radius R is 2πR it is elementary to show that

E(R) ≪ R.

This is illustrated in Figure 1. We see that E(6) can be estimated by the number of
hatched squares.

A more refined estimate can be obtained by studying
∑

(m,n)∈Z2

F (
√
m2 + n2),

Figure 1. Area approach to the Gauss circle problem.
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Figure 2. Counting Gaussian integers in angular sectors.

where F is a suitable smooth approximation to the characteristic function on the interval
[0, R]. Using the Poisson summation formula we can obtain an estimate for E by estimating
the Fourier coefficients of (x, y) 7→ F (

√
x2 + y2) (which naturally should be studied in

polar coordinates). Using standard estimates for the J-Bessel functions one can prove
that

E(R) ≪ R3/4.

The current record for E(R) is due to M. N. Huxley [20] who proved

E(R) ≪ R131/208+ε

for any ε > 0, and it is believed that

E(R) ≪ R1/2+ε.

It has been proved by Hardy [14] that

E(R) = Ω(R1/2(logR)1/4 log logR).

The result has been improved by Hafner [13].
We can also refine the Gauss circle problem by counting Gaussian integers in angular

sectors. Let I ⊂ [0, 2π] be an interval and let θ(x, y) denote the angle (in [0, 2π]) be-
tween the x-axis and the line through (x, y) ∈ R2 (we may set θ(0, 0) = 0). Since the
circumference of the angular sector

{(x, y) ∈ R2 | x2 + y2 ≤ R2, θ(x, y) ∈ I}
is O(R) it is elementary to show that

{(m,n) ∈ Z2 | m2 + n2 ≤ R2, θ(m,n) ∈ I} =
|I|R2

2π
+O(R)

where |I| is the length of the interval I (see Figure 2).
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2. The Hyperbolic Lattice Point Problem

In the Gauss circle problem we may view R2 as a Riemannian manifold with the Eu-
clidean metric and Z2 as a discrete subgroup of the isometry group (acting by translation).
We see that

#{(m,n) ∈ Z2 | m2 + n2 ≤ R2} = #{g ∈ Z2 | |g(0, 0)| ≤ R}.
Rather than considering R2 we consider the upper half plane H with the Poincaré metric
and a Fuchsian group Γ ⊂ PSL2(R) of finite covolume. The hyperbolic lattice point
problem is the problem of estimating

NΓ(R, z0, z1) = #{γ ∈ Γ | ρ(γz1, z0) ≤ R}.
The only “satisfactory” answer would be

NΓ(R, z0, z1) ∼
πeR

Vol(Γ\H)
(3.1)

since the hyperbolic area of a disc of radius R is

4π sinh2(R/2) ∼ πeR.

However, the hyperbolic lattice point problem is fundamentally more difficult than the
Gauss circle problem since the circumference of the hyperbolic circle is

2π sinhR ∼ πeR.

Thus the boundary is of the same size as the area of the entire disc. Therefore a simple
area approach to (3.1) will not work. It turns out that (3.1) is the correct asymptotics.
This has been proved by (among others) J. Delsarte [9], A. Good [12], H. Huber [17], [18]
and [19] and S. J. Patterson [37].

One approach to the hyperbolic lattice-point problem is to use spectral theory of the
automorphic Laplacian. We briefly describe an idea due to A. Selberg (see Theorem 12.1
in [21]), which (at least to some extend) resembles the method outlined in Section 1 which
gave the R3/4 estimate in the Gauss circle problem. Consider the automorphic kernel
K : H×H → C defined by

K(z, w) =
∑

γ∈Γ

k(u(z, γw)),

where k ∈ C∞
c ([0,∞)) and u is the point pair invariant

u(z, w) =
cosh ρ(z, w)− 1

2
.

We want to consider a suitable approximation to the characteristic function on [0, (X −
2)/4] and then use the fact that K has a spectral expansion of the form (see Theorem 7.4
in [21] – also compare with (1.4))

K(z, w) =
∑

j

h(tj)ϕj(z)ϕj(w) +
∑

a

1
4π

∫ ∞

−∞
h(r)Ea(z, 1/2 + ir)Ea(w, 1/2 + ir)dr,

(3.2)

where the first sum is over the eigenvalues and the last sum is over the cusps of Γ, and h is
the Harish-Chandra-Selberg transform of k. Note that (3.2) plays (roughly) the same role
as the Poisson summation formula in Section 1. With a suitable choice of k one obtains

NΓ(R, z0, z1) =
√
π

∑

1/2<tj≤1

Γ(tj − 1/2)
Γ(tj + 1)

ϕj(z0)ϕj(z1)etjR +O(e2R/3).(3.3)
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z0

γz1

2πϕz0,z1(γ)

Figure 3. Hyperbolic lattice-points in angular sectors.

This proves (3.1). Note that the asymptotics of NΓ(R, z0, z1) depends on the small eigen-
values of Γ. The estimate in (3.3) is the best known. It has been proved by R. Phillips
and Z. Rudnick [38] that the error term must be at least O(e1/2). It is believed that the
optimal error term (in many cases) is O(e1/2+ε).

3. Distribution of Angles in Hyperbolic Lattices

A natural question to ask now is whether the angles in the hyperbolic lattices are
equidistributed. Let ϕz0,z1(γ) denote the normalized angle between the vertical geodesic
from z0 to ∞ and the geodesic between z0 and γz1 (see Figure 3). For an interval I ⊂ R/Z
we define

N I
Γ(R, z0, z1) = #{γ ∈ Γ | ρ(z0, γz1) ≤ R, ϕz0,z1(γ) ∈ I}.

It has been proved by A. Good [12] and P. Nicholls [36] that

N I
Γ(R, z0, z1) ∼

π|I|
Vol(Γ\H)

eR.(3.4)

From Weyl’s criterion we know that (3.4) follows if
∑

γ∈Γ
ρ(z0,γz1)≤R

e(nϕz0,z1(γ)) = o(NΓ(z0, z1, R)),(3.5)

as R→∞ for all n ∈ N.
Indeed this is the approach in [12], where the estimate in (3.5) is proved using spectral

theory.
In Manuscript C we prove (3.4) with an error term. By conjugation we may assume that

z0 = i. We let (r(z), ϕ(z)) denote the hyperbolic polar coordinates of z, i.e. r(z) = ρ(z, i)
and ϕ(z) is half the angle between the vertical geodesic from i to ∞ and the geodesic
between i and z. The idea is to consider the series

Gn(z, s) =
∑

γ∈Γ

e(nϕ(γz)/π)
(cosh(r(γz)))s

,(3.6)



3. DISTRIBUTION OF ANGLES IN HYPERBOLIC LATTICES 19

which is convergent for Re(s) > 1 (for any z ∈ H). Furthermore Gn(z, s) satisfies the
equation

(∆− s(1− s))Gn(z, s) = s(s+ 1)Gn(z, s+ 2) +
∑

γ∈Γ

n2e(nϕ(γz)/π)
sinh2(r(γz))(cosh(r(γz)))s

.

Using the resolvent R(s) = (∆(s)− s(1− s))−1 we see that

Gn(z, s) = R(s)


s(s+ 1)Gn(z, s+ 2) +

∑

γ∈Γ

n2e(nϕ(γz)/π)
sinh2(r(γz))(cosh(r(γz)))s


 .

By standard spectral theory arguments this implies that Gn(z, s) has a meromorphic
continuation to Re(s) > 1/2 with potential poles at as s = tj where tj(1 − tj) is a small
eigenvalue of ∆. Since there is a spectral gap between the 0-eigenvalue and the first
eigenvalue of the Laplacian the pole at s = 1 is isolated. This pole has residue

2πδn,0

Vol(Γ\H)
.

We now consider a suitable smooth approximation ψ to the characteristic function on
[0, 1] and let (Mψ)(s) denote the Mellin transform of ψ, i.e.

(Mψ)(s) =
∫ ∞

0
ψ(t)ts−1dt.

From the Mellin inversion formula it follows that
∑

γ∈Γ

e(nϕ(γz)/π)ψ
(

cosh(r(γz))
T

)
=

1
2πi

∫

Re(s)=2
Gn(z, s)(Mψ)(s)T sds.(3.7)

We want to move the complex line integral on the right hand side of (3.7) to a line strictly
to the left of Re(s) = 1 but also strictly to the right of Re(s) = 1/2 if there are no small
eigenvalues or t1 if λ1 ∈ (0, 1/4). By doing so we pick up the residue from the pole at
s = 1, but no other poles contribute due to the spectral gap. Estimating Gn using standard
Sobolev estimates one obtains an effective bound (i.e. explicit in n and T ) for the sum

∑

γ∈Γ
cosh(r(γz))≤T

e(nϕ(γz)/π).

Using the Erdös-Turán inequality, which is an effective version of Weyl’s criterion one
concludes that there exists α < 1 (which can be computed effectively in terms of the first
eigenvalue) such that

N I
Γ(R, z0, z1) =

π|I|
Vol(Γ\H)

eR +O(eαR).(3.8)

If there are no small eigenvalues of ∆ we may take α = 11/12 + ε for any ε > 0.
We may now consider a different problem. Let

N I
Γ(R, z0, z1, w) = #{γ ∈ Γ | ρ(z1, γw) ≤ R, ϕz0,w(γ) ∈ I}.

Again we may ask for the asymptotics of N I
Γ(R, z0, z1, w) as R→∞. Clearly ρ(z1, γw) =

ρ(z0, γw) + O(1) but because the boundary of a hyperbolic circle is huge the question is
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z0

R

t

Qz0,z1(t, R)

w′

z1

Figure 4. Hyperbolic circle with center z1 and radius R.

non-trivial – the analogous question for lattices in Euclidean space would be trivial. For
the principal congruence subgroups Γ(N) F. Boca [5] proved that for any ε > 0

#{γ ∈ Γ(N) | ρ(z1, γz1) ≤ R, 2πϕz0,z1(γ) ∈ J ∪ (J + π)} =

6eR

π[Γ(1) : Γ(N)]

∫

J
ηz0,z1(t)dt+O(e(7/8+ε)R)

(3.9)

where

ηz0,z1(ω) =
2y0y1(y2

0 + y2
1 + (x0 − x1)2)

(y2
0 + y2

1 + (x0 − x1)2)2 − ((y2
0 − y2

1 + (x0 − x1)2) cos(t) + 2y0(x0 − x1) sin(t))2

for an interval J ⊂ [0, π]. Note that 2πϕz0,z1(γ) ∈ J ∪ (J + π) means that angles are
counted modulo π rather than 2π (i.e. opposite angles are “identified”). The proof of
(3.9) is based on the Weil estimate for Kloosterman sums.

In Manuscript C we generalize (3.9) (with an inferior error term though). The idea
is to find the hyperbolic distance (this will be denoted Qz0,z1(t, R)) from z0 to the inter-
section between the hyperbolic circle with center at z1 and radius R determined by the
(normalized) angle t ∈ [0, 1] relative to the vertical geodesic through z0 (see Figure 4). We
prove that

eQz0,z1 (t,R) = ρz0,z1(t)e
R +O(1),

where

ρz0,z1(ω) =
2y0y1

(y2
0 + y2

1 + (x0 − x1)2)(1− cos(2πω)) + 2y2
0 cos(2πω) + 2(x1 − x0)y0 sin(2πω)

.

Using (3.8) we can make a Riemann sum approximation to prove that there exists α′ < 1
(which can be computed in terms of the first eigenvalue of the Laplacian) such that

N I
Γ(R, z0, z1, w) =

πeR

Vol(Γ\H)

∫

I
ρz0,z1(ω)dω +O(eα

′R),

for any interval I ⊂ [0, 1]. We remark that α′ need not be as small as α in (3.8).



CHAPTER 4

Pair Correlation for the Fractional Parts of n2α

In this chapter we introduce some of the recent developments in the study of the
pair correlation for the fractional parts of n2α with emphasis on the approach taken in
Manuscript D. We remark that most of the proofs in Manuscript D are elementary.

1. Poissonian Behavior

Let {an}∞1 denote an equidistributed sequence in [0, 1), with ai 6= aj for i 6= j. A
natural question to ask is whether {an}∞1 has Poissonian behavior, i.e. if the sequence
has the same distribution as a sequence of independent random variables with uniform
distribution in [0, 1). We explain this more precisely. Let AN = {a1, . . . , aN} and let
ã1, . . . , ãN denote the elements in AN in increasing order (we also set ãj−N = ãj for
j = 1, . . . , N). The sequence {an}∞1 has Poissonian behavior if for any m ≥ 1

1
N

N∑

n=1

δ(t−N(ãn − ãn−m))dt→ tm−1

(m− 1)!
e−tdt

as N →∞ (δ is the Dirac function).
One way to decide if {an}∞1 has Poissonian behavior is to look at the m-level correla-

tion. Let B be a box in Rm−1. We define Rm(B, N, {an}∞1 ) to be

N−1#{(x1, . . . , xm) ∈ Am
N | xi distinct, (x1 − x2, . . . , xm−1 − xm) ∈ N−1B + Zm−1}.

We say that the m-level correlation is Poissonian if for any B ⊂ Rm−1

Rm(B, N, {an}∞1 ) → Vol(B)

as N → ∞. The m-level correlation is Poissonian for all m ≥ 2 if and only if {an}∞1 has
Poissonian behavior.

Let α be an irrational number and g : N → N a (strictly) increasing function. It is well
known that for almost all α (with respect to the Lebesgue measure) the fractional parts
of αg(n) are equidistributed. An interesting question is whether the sequence an = αg(n)
has Poissonian behavior. If

lim inf
n

g(n+ 1)
g(n)

> 1(4.1)

Z. Rudnick and A. Zaharescu [43] has shown that {an}∞1 has Poissonian behavior for
almost all α.

The rest of this chapter will be devoted to the sequence n2α. Clearly g(n) = n2 does
not satisfy (4.1). However, it has been conjectured by Rudnick, Sarnak and Zaharescu
[42] that the fractional parts of n2α have Poissonian behavior for almost all α. For the
pair (or 2-level) correlation more is known. This will be the topic of the next section.

21
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2. Pair Correlation for the Fractional Parts of n2α

Approximation problems for the fractional parts of n2α have been studied by various
people. It is a classical result due to H. Weyl [51] that for all irrational α the sequence
ndα is equidistributed modulo 1 for any positive integer d. For t ∈ R we define

‖t‖ = inf
n∈Z

|t− n|

and this defines a norm on R/Z. A. Zaharescu [52] has shown that for θ < 2/3 and any
α ∈ R

‖n2α‖ < n−θ

has infinitely many solutions. The sequence is also interesting because the spacings be-
tween the elements correspond to the spacings between the energy levels of the “boxed
oscillator” in quantum mechanics [3].

We will focus on the pair correlation for the fractional parts of n2α. We define

R2(x,N, α) = R2([−x, x], N, {n2α}∞1 )

= N−1#
{

(m,n) | m,n ≤ N, n 6= m, ‖m2α− n2α‖ ≤ x

N

}
.

The goal is to understand for which α the pair correlation is Poissonian, i.e. for which α

R2(x,N, α) → 2x

as N →∞ for any x > 0.
It has been proved by Z. Rudnick and P. Sarnak [41] that for d ≥ 2 the pair correlation

for the fractional parts of ndα is Poissonian for almost all α. Subsequently J. Marklof and
A. Strömbergsson [31] and D. R. Heath-Brown [15] have given different proofs in the case
d = 2. However, one does not know of any specific α for which it holds. It is not true that
the pair correlation for the fractional parts of ndα is Poissonian for any irrational α. A
condition on the Diophantine approximation is necessary in order for the pair correlation
to be Poissonian. We say that an irrational number α is of type κ if

|α− p/q| ≫ 1
qκ
.

for all p ∈ Z and q ∈ N.
We say that α is “Diophantine” if α is of type 2 + ε for all ε > 0. Note that all real,

irrational algebraic numbers are Diophantine (Roth’s theorem) and that almost all α are
Diophantine. We will now explain why a Diophantine condition is needed (the argument
below is taken from [41]).

Assume that there are infinitely many (p, q) ∈ Z×N such that

|α− p/q| ≤ 1
10q3

.

This implies that

‖m2α− n2α‖ =
∥∥∥∥
(m2 − n2)p

q
+
t(m2 − n2)

10q3

∥∥∥∥

for some t with |t| ≤ 1. For m,n ≤ q we see that

‖m2α− n2α‖ ≤ 1
10q
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if q | m2 − n2 and

‖m2α− n2α‖ ≥ 9
10q

if q ∤ m2 − n2. Thus there are no normalized differences q‖m2α − n2α‖ in (1/10, 9/10)
along the subsequence determined by the q’s. From this we see that if the pair correlation
for n2α is Poissonian then α must be at least of type 3.

Rudnick and Sarnak conjectured that if α is Diophantine then the pair correlation for
the fractional parts of n2α is Poissonian. Heath-Brown was able to show (using a lattice
point strategy) that for α of type 9/4

R2(x,N, α) = 2x+O(x
7
8 ),(4.2)

whenever 1 ≤ x ≤ logN , where the constant implied depends on α. This supports the
Rudnick-Sarnak conjecture and suggests that perhaps the condition on the Diophantine
approximation in the conjecture can be relaxed to some extend. In Manuscript D it is
suggested that it is sufficient that α is of type 3− δ for some δ > 0.

We remark that for the m-level correlation (for general m) for the fractional parts of
n2α to be Poissonian it is probably not sufficient to assume that α is Diophantine. In [42]
it is suggested that one must also assume that the numerators of the convergents of α are
“almost” square free. However, this last condition does not seem to be necessary for the
pair correlation.

3. Divisor Problems Related to the Rudnick-Sarnak Conjecture

In Manuscript D we suggest an arithmetic line of attack for the Rudnick-Sarnak con-
jecture that is based on the study of the function

τM,N (m) = #{(a, b) ∈ N2 | a ≤M, b ≤ N, ab = m},
where m ∈ N and M,N ≥ 1. We will always assume that M ≍ N .

Let K,M,N ≥ 1 with K ≥ Nη for some fixed η > 0. Assume also that q ≤ N2−δ for
some δ > 0 and (q, ρ) = 1. We conjecture that

∑

r≤K

∑

m≡ρr(q)

τM,N (m) ∼ KMN

q
(4.3)

as N → ∞ uniformly in M , K, q and ρ. Manuscript D is mainly devoted to finding
evidence for this conjecture.

In Manuscript D we show that this conjecture implies that the pair correlation for
the fractional parts of n2α is Poissonian for any α of type 3 − δ for any δ ∈ (0, 1). As
mentioned before the pair correlation for the fractional parts of n2α is not Poissonian if α
is not of type 3, and this appears to be the “limit”. The conjecture (4.3) seems bold but
natural. Indeed it is elementary to show that (4.3) holds if q ≤ N1−δ.

Let τ denote the usual divisor function. From the Dirichlet divisor problem we know
that ∑

n≤x

τ(n) = x log x+ (2γ − 1)x+O(
√
x).

It is folklore that one expects that
∑

n≤x
n≡r(q)

τ(n) ∼ x

q2
log x

∑

d|(q,r)

∑

c| q
d

dcµ
( q
dc

)
(4.4)
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as x → ∞ for q ≤ x1−δ for some δ > 0. Average results supporting this conjecture have
been considered by Banks, Heath-Brown and Shparlinski [2] and Blomer [4]. Also it is a
classical result due to Linnik and Vinogradov [28] that

∑

m≤x
m≡r(q)

τ(m) ≪ ϕ(q)x log x
q2

(4.5)

for q ≤ x1−δ and (r, q) = 1, where the constant implied depends on δ > 0 only.
Let us consider some simple heuristics to explain why we should expect (4.4). We see

that
∑

m≤x
m≡r(q)

τ(m) =
∑

a≤x

#{b ∈ N | b ≤ x/a, ab ≡ r(q)}

=
∑

d|(r,q)

∑

a′≤x/d
(a′,q/d)=1

#{b ∈ N | b ≤ x/(a′d), b ≡ a′r/d(q/d)}.

Now x/a′ can be much smaller than q but we should expect “on average” (when summing
over a′) that

#{b ∈ N | b ≤ x/(a′d), b ≡ a′r/d(q/d)} ≈ x

a′q
.

We continue with this assumption and consider

x

q

∑

d|(r,q)

∑

a′≤x/d
(a′,q/d)=1

1
a′
.(4.6)

In Manuscript D we show that
∑

a≤x
(a,q)=1

1
a
∼ ϕ(q)

q
log x.

for q ≤ x1−δ. Using this we see that (4.6) is roughly

x log x
q2

∑

d|(r,q)
dϕ
(q
d

)
.

This “explains” (4.4).
If we adapt (4.4) to τM,N we should expect that

∑

n≡r(q)

τM,N (n) ∼ MN

q2

∑

d|(q,r)

∑

c| q
d

dcµ
( q
dc

)
.(4.7)

In Manuscript D we show that (4.7) holds for most values of q and r if (q, r) is small.
Indeed we have

∑

(r,q)=k


 ∑

m≡r(q)

τM,N (m)− MN

q2

∑

d|k

∑

c| q
d

dcµ
( q
dc

)



2

≪ Nmax( 7
2
+ε,4−δ)

q
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uniformly for q ≤ N2−δ for all ε > 0. From this we can deduce that (4.3) holds on average
in the sense that for K ≥ Nη and

√
N ≤ q ≤ N2−δ we have

1
ϕ(q)

∑

(ρ,q)=1


 q

KMN

∑

r≤K

∑

m≡ρr(q)

τM,N (m)− 1




2

≪ N−min(1/2,δ,2η)+ε

for ε > 0.
The function τM,N is complicated. There is another function of interest

τN (m) = #{d ∈ N | d ≤ N, d | m},
which is simpler. It is elementary to show that

∑

m≤x

τN (m) = x logN +O(N + x).

The estimate corresponding to (4.5) holds. More precisely we have
∑

m≡r(q)
m≤x

τN (m) ≪ ϕ(q)x logN
q2

.

for (r, q) = 1, N ≥ qκ and x ≥ q1+δ. This is proved using a result due to M. Nair and G.
Tenenbaum [34]. For τM,N one should expect that

∑

m≡r(q)

τM,N (m) ≪ ϕ(q)MN

q2
.(4.8)

for (r, q) = 1 and N2−δ ≤ q. This conjecture was also mentioned by Heath-Brown [15].
Though the function τM,N is complicated (4.8) seems (in the words of Heath-Brown) more
“pure” than the Linnik-Vinogradov estimate (4.5) since in that problem we also have to
deal with the Dirichlet divisor problem. A serious obstacle (at least when it comes to using
the ideas of Nair and Tenenbaum) seems to be that τN (mn) ≤ τN (m)τ(n), (m,n) = 1 is
a “good” estimate, while τM,N (mn) ≤ τM,N (m)τ(n), (m,n) = 1 is a “bad” estimate. It
appears that the best estimate which can be derived using the Nair-Tenenbaum strategy
is

∑

m≡r(q)

τM,N (m) ≪ N2(logN)ε

q

for q ≤ N2−δ, (r, q) = 1. This is obtained by estimating τM,N with the Hooley ∆-function

∆(n) = max
u∈R

#{d ∈ N | eu < d ≤ eu+1, d | n}.
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Quantum Unique Ergodicity of Eisenstein Series on the
Hilbert Modular Group over a Totally Real Field





QUANTUM UNIQUE ERGODICITY OF EISENSTEIN SERIES ON THE
HILBERT MODULAR GROUP OVER A TOTALLY REAL FIELD

JIMI L. TRUELSEN

Abstract. W. Luo and P. Sarnak have proved the quantum unique ergodicity property
for Eisenstein series on PSL(2,Z)\H. Their result is quantitative in the sense that
they find the precise asymptotics of the measure considered. We extend their result to
Eisenstein series on PSL(2,O)\Hn, where O is the ring of integers in a totally real field
of degree n over Q with narrow class number one, using the Eisenstein series considered
by I. Efrat. We also give an expository treatment of the theory of Hecke operators on
non-holomorphic Hilbert modular forms.

1. Introduction

Let H denote the upper half-plane and Γ be a Fuchsian group of the first kind. We equip
the surface Γ\H with the measure induced by the Poincaré measure dµ = dxdy

y2
on H. If

Γ is hyperbolic we know that the quotient Γ\H is compact and that the Laplace-Beltrami
operator ∆ associated with this surface, given in local coordinates by −y2

(
∂2

∂x2 + ∂2

∂y2

)
,

has pure point spectrum

0 = λ0 < λ1 ≤ . . .
and that λn → ∞ as n → ∞. Inspired by quantum chaos (see [19] and [20] for excellent
surveys) Z. Rudnick and P. Sarnak [18] conjectured that

|ϕj |2dµ→
1

µ(Γ\H)
dµ,(1.1)

where {ϕj} is an orthonormal basis for L2(Γ\H) of eigenfunctions of ∆ with ∆ϕj = λjϕj ,
and the convergence is in the weak-∗ topology. This is known as the quantum unique
ergodicity conjecture. It has been established by Y. Colin de Verdière [3], A. Shnirelman
[21] and S. Zelditch [28] that (1.1) holds for a subsequence of full density.

If Γ = PSL(2,Z) the quotient Γ\H is no longer compact, and ∆ does not have pure
point spectrum. However, by the Weyl law it is known that

#{j ∈ N0 | |tj | ≤ T} ∼
µ(Γ\H)

4π
T 2,

where λj = 1/4 + t2j are the eigenvalues of ∆. Thus the analogue of the quantum unique
ergodicity conjecture is

|ϕj |2dµ→
3
π
dµ

where {ϕj} is a complete set of orthonormal eigenfunctions of ∆. It was proved in [14]
that if the ϕj ’s are Hecke eigenforms then the conjecture is true for a (large) subsequence
of the full sequence and K. Soundararajan [26] has proved that the conjecture holds for
the full sequence.
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In [14] a continuous spectrum analogue of the quantum unique ergodicity conjecture
was proved. More precisely it was proved that for A,B ⊂ Γ\H compact and Jordan
measurable, such that µ(B) 6= 0, we have the limit

∫
A |E(z, 1/2 + it)|2dµ∫
B |E(z, 1/2 + it)|2dµ →

µ(A)
µ(B)

as t → ∞, where E(z, s) is the Eisenstein series on PSL(2,Z). The authors even found
explicit asymptotics for the measure |E(z, 1/2+it)|2dµ (in terms of integration of a contin-
uous function with compact support). In this paper we generalize this result to Eisenstein
series E(z, s,m) (it will be defined in Section 11) on Γ\Hn, where Γ = PSL(2,O) and O is
the ring of integers in a totally real field K of degree n over Q with narrow class number
one. Note that instead of just one Eisenstein series as in the case of PSL(2,Z) we have a
family of Eisenstein series parametriced by m ∈ Zn−1.

We investigate the asymptotic behaviour of the measure dµm,t = |E(z, 1/2 + it,m)|2dµ,
where µ is the measure on Γ\Hn induced by the measure dx1...dxndy1...dyn

y21 ...y
2
n

on Hn:

Theorem 1.1. For F ∈ Cc(Γ\Hn) we have that
1

log t

∫

Γ\Hn

F (z)dµm,t(z)→
πnnR

2DζK(2)

∫

Γ\Hn

F (z)dµ(z)

as t → ∞, where ζK denotes the Dedekind zeta-function and D and R denote the discri-
minant and regulator of K, respectively.

From this one easily deduces that:

Theorem 1.2. Let A,B ⊂ Γ\Hn be compact and Jordan measurable, and assume that
µ(B) 6= 0. Then

µm,t(A)
µm,t(B)

→ µ(A)
µ(B)

as t→∞.

To prove Theorem 1.1 we follow the same strategy as in [14]. The idea in the proof is
to find the asymptotics of

∫
Γ\Hn fdµm,t, where f is either an incomplete Eisenstein series

or a Hecke eigenform, and then use the spectral decomposition of L2(Γ\Hn). Estimates
for various L-functions play a crucial role in the proof, and we will collect these results,
as we go along. It should be mentioned that a similar result was shown in the case of a
quadratic imaginary field with class number one in [13] using a subconvexity estimate (in
the t-aspect) for the standard L-function proved in [17].

I would like to thank my advisor Morten S. Risager for suggesting this problem to me
and for excellent guidance and supervision. I would also like to thank Akshay Venkatesh
as well as the anonymous referee for useful comments.

2. Notation and Terminology

Let K be a totally real field of degree n over Q and narrow class number one (these
are the standard assumptions which are usually made to work with a non-adelic setup in
textbooks such as [1] and [6]) and let O denote the ring of integers in K. Here narrow
class number one means that O is a principal ideal domain and that each non-zero ideal
in O has a generator which is totally positive (this term is explained below).

Let

Gal(K/Q) = {ψ1, . . . , ψn}(2.1)

with ψ1 equal to the identity map on K. In this way we may regard O as a lattice in Rn,
by the injection O ↪→ Rn defined by a 7→ (a(1), . . . , a(n)), where a(j) = ψj(a). Note that
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this embedding depends on the choice of ordering of the elements in Gal(K/Q) given in
(2.1).

We let O× denote the group of units in O and O∗ = O − {0}. The elements in O∗ for
which all the embeddings are positive (such elements are called totally positive) will be
denoted O+. We let O×+ = O+ ∩ O× which clearly is a multiplicative group.

We let D denote the different, i.e. the inverse ideal of

D−1 = {v ∈ K | Tr(vO) ⊂ Z}.
It is a well known fact that D−1 ⊃ O is a fractional ideal, and since K has narrow class
number one there exists ω ∈ O+ such that D = (ω) = ωO and D−1 = ω−1O.

It is well known that O is a free abelian group of rank n, and O×/{±1} is a free abelian
group of rank n− 1. In addition we know that for each u ∈ O× we have |u(1) . . . u(n)| = 1.
We will assume that ε1, . . . , εn−1 ∈ R+ together with −1 generate O×. For later use let



e1,1 · · · e1,n−1 1/n
· · · · · · · · · · · ·
en,1 · · · en,n−1 1/n


 =




log |ε(1)
1 | · · · log |ε(n)

1 |
· · · · · · · · ·

log |ε(1)
n−1| · · · log |ε(n)

n−1|
1 · · · 1




−1

.(2.2)

Note that we have the relations
n∑

j=1

ej,q = 0,(2.3)

and
n∑

j=1

ej,q′ log |ε(j)
q | = δq,q′(2.4)

for q, q′ = 1, . . . , n− 1.
We let H denote the upper half-plane of C, i.e.

H = {z ∈ C | Im(z) > 0}.
We will use the convention z = (z1, . . . , zn) ∈ Hn and z = (x, y) where x = (x1, . . . , xn) ∈
Rn and y = (y1, . . . , yn) ∈ Rn

+. Furthermore we will use the notation dx = dx1 . . . dxn
and dy = dy1 . . . dyn.

We set Γ = PSL(2,O) ⊂ PSL(2,R). This group is often referred to as the Hilbert
modular group. The group Γ does not in general embed discretely in PSL(2,R), but it
does embed discretely in PSL(2,R)n by the action on Hn defined by

±
(
a b
c d

)
z =

(
a(1)z1 + b(1)

c(1)z1 + d(1)
, . . . ,

a(n)zn + b(n)

c(n)zn + d(n)

)

which clearly is an extension of the classical action of PSL(2,Z) on H by Möbius trans-
formations. For γ = ±

(
a b
c d

)
∈ PSL(2,O) we define γ(j) = ±

(
a(j) b(j)

c(j) d(j)

)
.

If we regard Hn as a Riemannian manifold with the metric

ds2 =
dx2

1 + dy2
1

y2
1

+ · · ·+ dx2
n + dy2

n

y2
n

the Laplace-Beltrami operator associated with this metric is

∆ = ∆1 + · · ·+ ∆n

where ∆j = −y2
j

(
∂2

∂x2
j

+ ∂2

∂y2j

)
. In the natural way the metric on Hn transfers to the

quotient Γ\Hn. We also see that the ∆j ’s induce symmetric and positive differential
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operators on C∞b (Γ\Hn) which admit self-adjoint extensions (the Friedrichs extension). It
is known that the quotient Γ\Hn has finite volume and as in the case n = 1 we will often
regard functions on Γ\Hn as functions on the space Hn which are invariant under Γ. The
measure on Γ\Hn induced by the Riemannian metric is denoted µ and one can check that
dµ = dxdy

y21 ...y
2
n

in local coordinates.

3. The Hecke L-function

In the following it will be convenient to set ρj(m) = π
∑n−1

q=1 mqej,q for m ∈ Zn−1. Let
χm denote the following function on C∗n:

χm(w) = exp


iπ

n−1∑

q=1

mq

n∑

j=1

ej,q log |wj |


 =

n∏

j=1

|wj |iρj(m).(3.1)

Clearly we can regard χm as a multiplicative function on O∗ by the usual embedding. For
β ∈ O+ we note that χm(β) only depends on the ideal (β), so in this way we can regard
χm as a multiplicative function on the non-zero ideals in O (a so-called Grössencharacter).
Note also that for m even, χm is trivial on O×. We can now define the Hecke L-function.
It is defined by the series

ζ(s,m) =
∑

a⊂O
a 6=0

χm(a)
N (a)s

,

which converges absolutely for Re(s) > 1, and it can also be written as an Euler product
over the prime ideals p, i.e.

ζ(s,m) =
∏

p

(
1− χm(p)
N (p)s

)−1

.

The Hecke L-function has a meromorphic continuation to the entire complex plane.
Furthermore ζ(s,m) is entire if m 6= 0. The Dedekind zeta function ζ(s, 0) (sometimes
also denoted ζK) has a simple pole at s = 1 with residue 2n−1R√

D
(cf. [1] Section 1.7), and is

holomorphic elsewhere. Here D = N (D) = |N(ω)| is the discriminant of K and R is the
regulator of K, i.e. the absolute value of the determinant

∣∣∣∣∣∣∣

log |ε(1)
1 | · · · log |ε(n−1)

1 |
· · · · · · · · ·

log |ε(1)
n−1| · · · log |ε(n−1)

n−1 |

∣∣∣∣∣∣∣
.

First we will make a convexity bound for the Hecke L-function on the line Re(s) = σ,
where 1

2 ≤ σ ≤ 1. It is well known (see [1] Theorem 1.7.2) that the Hecke L-function
ζ(s,m) satisfies the functional equation

ξ(s,m) = χm(ω)iTr(τ)ξ(1− s,−m)(3.2)

where ξ(s,m) denotes the completed L-function defined by

ξ(s,m) = Ds/2π−ns/2ζ(s,m)
n∏

j=1

Γ
(
s+ τj − iρj(m)

2

)
,

and τ = (τ1, . . . , τn) is a binary vector depending on m with the property that

χm((β)) = χm(β)
n∏

j=1

sgn(β(j))τj(3.3)

for β ∈ O∗.
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Stirling’s formula, i.e. the asymptotics of the Γ-function on vertical lines, plays a crucial
role in the proof of Theorem 1.1. For any σ ∈ R we have

|Γ(σ + it)| ∼
√

2πe−π|t|/2|t|σ−1/2(3.4)

and
Γ′(σ + it)
Γ(σ + it)

∼ log |t|(3.5)

as |t| → ∞. Using the Phragmén-Lindelöf principle (see [12] Section 5.A), the functional
equation (3.2) and Stirling’s formula we easily derive the convexity bound

ζ(σ + it,m)� |t|n2 (1−σ)+ε(3.6)

as |t| → ∞, for any ε > 0 and 1
2 ≤ σ ≤ 1. Note that (3.6) gives the estimate

ζ(1/2 + it,m)� |t|n4 +ε

for any ε > 0. For later use it turns out that we need something slightly better (n4 − ε in
the exponent will do), i.e. we need a subconvexity estimate for ζ(s,m) on the critical line.
Such an estimate was proved by P. Söhne [24] (generalizing ideas due to D. R. Heath-Brown
[8] and [9]):

Theorem 3.1. Let ε > 0. Then

ζ(1/2 + it,m)� |t|n6 +ε

as |t| → ∞.

It is conjectured (and implied by the generalized Riemann hypothesis) that one in fact
has

ζ(1/2 + it,m)� |t|ε

for any ε > 0 as |t| → ∞.
It will also be necessary to estimate the logarithmic derivative of ζ(s,m) on the line

Re(s) = 1. We introduce a von Mangoldt type function on the non-zero ideals in O defined
by

Λm(a) =

{
χm(a) logN (p) if a = pk

0 otherwise
,

where p denotes a prime ideal. For Re(s) > 1 we see using the Euler product that

−ζ
′(s,m)
ζ(s,m)

= −
∑

p

(
1− χm(p)
N (p)s

)
d

ds


 1

1− χm(p)
N (p)s




=
∑

p

χm(p) logN (p)

N (p)s
(

1− χm(p)
N (p)s

)

=
∑

p

logN (p)
∞∑

k=1

χm(p)k

N (p)sk

=
∑

a

Λm(a)
N (a)s

.

Thus as in the case of the Riemann zeta-function the logarithmic derivative of ζ(s,m) can
be written as a Dirichlet series.

To estimate the logarithmic derivative of the Hecke L-function we need a zero-free
region. By considering exponential sums one can obtain a zero-free region for the Hecke
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L-function similar to Vinogradov’s bound for the Riemann zeta-function (see [27] Chapter
6). This was done by M. Coleman [2]:

Theorem 3.2. There exist positive constants C and L such that ζ(σ + it,m) 6= 0 for
|t| ≥ L and σ ≥ 1− C

(log |t|)2/3(log log |t|)1/3 .

At present this is the best zero-free region we know, but the generalized Riemann
hypothesis asserts that all zeros of ζ(s,m) in the critical strip 0 < Re(s) < 1 are on the
line Re(s) = 1

2 .
To obtain a sufficiently good estimate for the logarithmic derivative we follow Landau’s

strategy (cf. [27] Sections 3.9-3.11), which is based on the Borel-Carathéodory theorem.
We remark that in order to use this approach it is necessary to estimate the Hecke L-
function from below. To this end we consider the following generalization of the Möbius
function to non-zero ideals in O defined by

µ(pα1
1 . . . pαkk ) =

{
(−1)k if α1, . . . , αk ≤ 1
0 otherwise

.

The function µ has the following property (“Möbius inversion”):

(3.7)
∑

b⊂a

µ(a) =

{
1 if b = O
0 otherwise

,

and the proof is the same as in the classical case (see [12] Section 1.3). From this it is
clear that

1
ζ(s,m)

=
∑

a

χm(a)µ(a)
N (a)s

(3.8)

for Re(s) > 1. Thus
1

|ζ(σ + it,m)| ≤ ζ(σ, 0)

for σ > 1.
We have the following result due to Landau:

Proposition 3.3. Let s = σ + it and assume that ζ(s,m) = O(eϕ(|t|)) for |t| ≥ L and
1 − θ(|t|) ≤ σ ≤ 2 for some positive L, where ϕ(t) and 1/θ(t) are positive increasing
functions defined for t ≥ L such that θ(t) ≤ 1, ϕ(t) → ∞ as t → ∞ and ϕ(t)/θ(t) =
o(eϕ(t)). Assume also that there exists a positive constant C such that ζ(s,m) 6= 0 for
|t| ≥ L and σ ≥ 1− C θ(|t|)

ϕ(|t|) . Then

ζ ′(s,m)
ζ(s,m)

= O

(
ϕ(|t|)
θ(|t|)

)

and
1

ζ(s,m)
= O

(
ϕ(|t|)
θ(|t|)

)

for |t| ≥ L+ 1 and σ ≥ 1− Cθ(t)
4ϕ(t) .

Using Theorem 3.2 we can apply Proposition 3.3 with ϕ(t) = (log t)
2
3 and θ(t) =

(log log t)−
1
3 to obtain the following:

Corollary 3.4. There exists a positive number L such that for |t| ≥ L we have the estimate

ζ ′(1 + it,m)
ζ(1 + it,m)

= O((log t)
2
3 (log log t)

1
3 ).
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In the same way we obtain an explicit lower bound for the Hecke L-function:

Corollary 3.5. There exists a positive number L such that for |t| ≥ L we have the estimate
1

ζ(1 + it,m)
= O((log t)

2
3 (log log t)

1
3 ).

4. Hecke Operators

In this section we give an expository treatment of the theory of Hecke operators on
non-holomorphic Hilbert modular forms analogous to the treatment of Hecke operators on
holomorphic Hilbert modular forms in [1] Section 1.7 and [6] Section 1.15.

We recall the abstract definition of the Hecke ring (see [22]). We set G = GL(2,K),
Γ = SL(2,O) and let D ⊂ GL(2,K) denote the 2×2 matrices with entries in O and totally
positive determinant. The Hecke algebra R(Γ,D) is the C-vector space of finite formal
sums

∑
k ckΓαkΓ, where αk ∈ D and ck ∈ C. The addition in R(Γ,D) is the obvious

one, while the multiplication is defined as follows. Let α, β ∈ D. It is well known that
there exist distinct cosets Γα1, . . . ,Γαd and Γβ1, . . . ,Γβd′ , where αi, βi′ ∈ D, such that
ΓαΓ = ∪di=1Γαi and ΓβΓ = ∪d′i′=1Γβi′ . We define ΓαΓ ·ΓβΓ =

∑
i,i′ Γαiβi′Γ, which clearly

is independent of the choice of the αi’s and βi′ ’s. We extend this multiplication in the
obvious way, making R(Γ,D) an algebra.

We can define a homomorphism from GL(2,R)+ to PSL(2,R) by mapping τ =
(
a b
c d

)
∈

GL(2,R)+ to w 7→ aw+b
cw+d in PSL(2,R). Thus for w ∈ H we simply define

τw =
aw + b

cw + d
.

Therefore we get a map from D to PSL(2,R)n and we see that R(Γ,D) can be regarded as
an algebra of operators on L2(Γ\Hn) (or even the vector space of automorphic functions)
if we define (ΓαΓf)(z) =

∑d
i=1 f(αiz).

Two double cosets ΓαΓ and ΓβΓ are said to be equivalent if α = ηβ where η = ( u 0
0 u ) for

some u ∈ O×. Note that if α = ηβ then α(j)zj = β(j)zj for all j = 1, . . . , n. Let ν ∈ O+.
Inspired by Hecke operators in the case of holomorphic Hilbert modular forms (see [6]) we
define

(4.1) Tνf =
1√
|N(ν)|

∑

detα=uν
u∈O×+

ΓαΓf.

Here the sum should be taken over inequivalent double cosets.
We can use the class number one assumption to make this more explicit. Consider(
a b
c d

)
∈ D. Write a = ra′ and c = rc′ where a′ and c′ are relative prime (i.e. (a′) + (c′) =

O). There exist b′, d′ ∈ O such that a′d′ − b′c′ = 1 and we see that
(
d′ −b′
−c′ a′

)(
a b
c d

)

is upper triangular. Thus for any α ∈ D we can find β ∈ D, which is upper triangular and
satisfies that Γα = Γβ. Using this we can write the Hecke operator as follows

(4.2) Tνf(z) =
1√
|N(ν)|

∑

ad=uν
u∈O×+

∑

b∈O/(d)

f
((

a b
0 d

)
z
)
.

The outer sum is finite by unique factorization and the inner sum is finite since O/(d) is
a finite group. Thus Tνf is well defined.

If ν, ν ′ ∈ O+ and ν = uν ′ for some u ∈ O×+ then by definition Tν = Tν′ . Thus we can
define T(ν) = Tν . Since we assumed that all ideals have a generator in O+ there is a Hecke
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operator associated with each non-zero ideal. Modifying Theorem 3.12.4 in [7] we obtain
that the Hecke operators are self-adjoint.

Now we will investigate the properties of the Hecke operators. We have the following
proposition:

Proposition 4.1. Let ν1, ν2 ∈ O+ be relative prime. Then

Tν1Tν2 = Tν1ν2 .

Proof. Let f ∈ L2(Γ\Hn). We have that
√
|N(ν1ν2)|(Tν1Tν2f)(z) =

∑

a1d1=u1ν1
u1∈O×+

∑

a2d2=u2ν2
u2∈O×+

∑

b1∈O/(d1)
b2∈O/(d2)

f
((

a2 b2
0 d2

)(
a1 b1
0 d1

)
z
)

=
∑

a1d1=u1ν1
u1∈O×+

∑

a2d2=u2ν2
u2∈O×+

∑

b1∈O/(d1)
b2∈O/(d2)

f
((

a1a2 b1a2+d1b2
0 d1d2

)
z
)

=
∑

ad=uν1ν2
u∈O×+

∑

b∈O/(d)

f
((

a b
0 d

)
z
)

=
√
|N(ν1ν2)|(Tν1ν2f)(z)

where we have used the Chinese remainder theorem, i.e. that

O/((d1) ∩ (d2)) ∼= O/(d1)⊕O/(d2)

which holds since (ν1) + (ν2) = O. �
We need the following important lemma:

Lemma 4.2. Let p ∈ O+ be a prime element. Then for any positive integers k, k′ we have

TpkTpk′ =
min{k,k′}∑

d=0

Tpk+k′−2d .

Proof. Let f ∈ L2(Γ\Hn). We see that
√
|N(pk+k′)|(TpkTpk′f)(z) =

∑

l1+l2=k
l′1+l′2=k′

∑

b∈O/(pl2 )

b′∈O/(pl′2 )

f

((
pl1 b

0 pl2

)(
pl
′
1 b′

0 pl
′
2

)
z

)

=
∑

l1+l2=k
l′1+l′2=k′

∑

b∈O/(pl2 )

b′∈O/(pl′2 )

f

((
pl1+l′1 bpl

′
2+b′pl1

0 pl2+l′2

)
z

)
.

Removing common factors we get
min{k,k′}∑

d=0

∑

l1+l2=k−d
l′1+l′2=k′−d
min{l′2,l1}=0

∑

b∈O/(pl2 )

∑

b′∈O/(pl′2+d)

f

((
pl1+l′1 bpl

′
2+b′pl1

0 pl2+l′2

)
z

)
.

We note that as (b, b′) runs over all pairs in O/(pl2)×O/(pl′2+d) the expression bpl
′
2 + b′pl1

will assume each value in O/(pl2+l′2) exactly |N(p)|d times. Thus

√
|N(pk+k′)|TpkTpk′ =

min{k,k′}∑

d=0

|N(pd)|
√
|N(pk+k′−2d)|Tpk+k′−2d ,



JIMI L. TRUELSEN 9

and this proves the theorem. �

Combining Proposition 4.1 and Lemma 4.2 we get:

Theorem 4.3. Let (ν1), (ν2) be non-zero ideals in O. Then

T(ν1)T(ν2) =
∑

(d)⊃(ν1)+(ν2)

T(ν1)(ν2)/(d)2 .

In particular the Hecke operators commute.

From Lemma 4.2 we obtain the following proposition:

Proposition 4.4. Let p ∈ O+ be a prime element. Then for k ∈ N0 we have that

(4.3) Tp2k =
k∑

l=0

(−1)k+l

(
k + l

2l

)
Tp

2l

and

(4.4) Tp2k+1 =
k+1∑

l=1

(−1)k+l+1

(
k + l

2l − 1

)
Tp

2l−1.

Proof. We first consider (4.3). The claim certainly holds for k = 0 and k = 1. Now let
k′ ≥ 2 be an integer and assume that the formula holds for k ≤ k′. Using Lemma 4.2 we
get

Tp2k′+2 = Tp2k′Tp2 − Tp2k′ − Tp2k′−2

= (T 2
p − 2)Tp2k′ − Tp2k′−2

= T 2k′+2
p − (2k′ + 1)T 2k′

p + (−1)k
′+1+

k′−1∑

l=1

(−1)k
′+l+1

(
2
(
k′ + l

2l

)
+
(
k′ + l − 1

2l − 2

)
−
(
k′ + l − 1

2l

))
Tp

2l

=
k′+1∑

l=0

(−1)k
′+l+1

(
k′ + l + 1

2l

)
Tp

2l.

By induction this proves (4.3), and (4.4) is proved by similar arguments. �

5. The Fourier Expansion of an Automorphic Form

An automorphic form f is a formal eigenfunction of the Laplacians ∆j (i.e. f need not
be square integrable and we allow f to be identically zero also) which satisfies the growth
condition

f(z) = o(exp(2πyj))

as yj → ∞ for all j = 1, . . . , n. This holds in particular if f is square integrable. By
construction we have f(z + l) = f(z) for all l ∈ O. Thus f has a Fourier expansion (see
[10]):

Theorem 5.1. Let f be an automorphic form with Laplace eigenvalues sj(1− sj). Then
f admits a Fourier expansion of the form

f(z) =
∑

l∈O
al(y)e(Tr(ω−1lx)),
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where e(x) = exp(2πix). Since f(z) is an eigenfunction for the Laplacians ∆1, . . . ,∆n the
l-th Fourier coefficient al(y) must satisfy the differential equations

(5.1)
∂2al(y)
∂y2

j

+

(
sj(1− sj)

y2
j

− 4π2|(ω−1l)(j)|2
)
al(y) = 0

for j = 1, . . . , n and hence be of the form

al(y) = cl
√
y1 . . . yn

n∏

j=1

Ksj− 1
2
(2π|(ω−1l)(j)|yj)

for l 6= 0. The zeroth Fourier coefficient can be written as a linear combination of
∏n
j=1 y

sj
j

and
∏n
j=1 y

1−sj
j . Furthermore the coefficients cl satisfy the bound

cl � exp(ε|N(l)|)
for any ε > 0.

Here Kν denotes the usual Macdonald Bessel function

Kν(y) =
1
2

∫ ∞

0
exp(−y(t+ 1/t)/2)tν−1dt,

which is defined for y > 0 and ν ∈ C. It is well known that these functions decay
exponentially as y →∞.

Note that if f is automorphic with respect to Γ then f(z) = f(uz) for u ∈ O+, where

uz = (u(1)z1, . . . , u
(n)zn),

since all such u’s are squares of units (by the assumption that K has narrow class number
one). This implies that cl = clu for l ∈ O and u ∈ O×+.

A non-zero square integrable automorphic form f is called a cusp form if
∫

F
f(z)dx = 0.(5.2)

Here

F = {t1a1 + · · ·+ tnan | 0 ≤ tj < 1}
where a1, . . . , an is a Z-basis for O and each aj is regarded as a vector in Rn by the
embedding aj 7→ (a(1)

j , . . . , a
(n)
j ). We will refer to F as the fundamental mesh for O and

one can check that the definition of cuspidal is independent of the choice of Z-basis. By
the exponential decay of the Macdonald Bessel function one can deduce that f must be of
exponential decay as yj →∞.

Using the Hilbert-Schmidt kernel from [5] Section II.9 one can prove using Lemma I.2.1
in [5] that the vector space of square integrable automorphic forms with given Laplace
eigenvalues λ1, . . . , λn is finite dimensional (see [10] for bounds on the dimensions of the
eigenspaces). Now define

ιj(z) = (z1, . . . , zj−1,−zj , zj+1, . . . , zn)

for j = 1, . . . , n. One easily checks that if f is an automorphic form then so is f ◦ ιj with
the same Laplace eigenvalues. Since the eigenspaces are finite dimensional this means that
the eigenvalues of ιj must be ±1. We also see that the Hecke operators, the ∆j ’s and the
ιj ’s commute. Furthermore all these operators are self-adjoint. Hence we can choose a
basis for the vector space spanned by cusp forms which consists of cusp forms that are
also eigenfunctions for all the Hecke operators and all the ιj ’s. These are called primitive
cusp forms. Note that being an eigenfunction of the ιj ’s is simply the same as saying that
the function is either even or odd in each xj .
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6. Hecke Eigenvalues and Automorphic Forms

In this section we will study automorphic forms which are common eigenfunctions for
all the Hecke operators. We first note that the identities derived in Theorem 4.3 and
Proposition 4.4 give similar identities for the Hecke eigenvalues:

Theorem 6.1. Assume that f is a common eigenfunction for all the Hecke operators, i.e.
that

T(ν)f = λ((ν))f

for all ν ∈ O∗. Then for ν1, ν2 ∈ O∗ we have

λ((ν1))λ((ν2)) =
∑

(d)⊃(ν1)+(ν2)

λ((ν1ν2/d
2)).(6.1)

For a prime element p ∈ O and k ∈ N0 we have that

(6.2) λ((p2k)) =
k∑

l=0

(−1)k+l

(
k + l

2l

)
λ((p))2l

and

(6.3) λ((p2k+1)) =
k+1∑

l=1

(−1)k+l+1

(
k + l

2l − 1

)
λ((p))2l−1.

Using the identities above, we can derive a connection between the Fourier coefficients
of T(ν)f and f , where f is a primitive cusp form:

Theorem 6.2. Let f be a primitive cusp form with Laplace eigenvalues sj(1 − sj), and
assume that f has the Fourier expansion

f(z) =
∑

l∈O∗
cl
√
y1 . . . yn




n∏

j=1

Ksj− 1
2
(2π|(ω−1l)(j)|yj)


 e(Tr(ω−1lx)).

Then the l-th Fourier coefficient of T(ν)f is
∑

d|gcd(l′,ν)
l′ν=d2l

cl′

for ν ∈ O+. In particular cνu = λ((ν))cu for u ∈ O×.

Proof. We apply Tν on the Fourier expansion

√
|N(ν)|Tνf(z) =

∑

l′∈O∗
cl′
∑

ad=uν
u∈O×+

√
|a(1)|
|d(1)|y1 . . .

|a(n)|
|d(n)|yn×




n∏

j=1

Ksj− 1
2
(2π|(ω−1l′a/d)(j)|yj)


 ∑

b∈O/(d)

e
(
Tr
(
ω−1l′(ax+ b)/d

))
,

where by abuse of notation

(ax+ b)/d = ((a(1)x1 + b(1))/d(1), . . . , (a(n)xn + b(n))/d(n)).

Now if d | l′ then
∑

b∈O/(d)

e

(
Tr
(
ω−1l′

b

d

))
= |N(d)|.
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If d - l′ there exist b′ ∈ O/(d) such that Tr
(
ω−1l′ b

′
d

)
/∈ Z. Thus

∑

b∈O/(d)

e

(
Tr
(
ω−1l′

b

d

))
=

∑

b∈O/(d)

e

(
Tr
(
ω−1l′

b+ b′

d

))

= e

(
Tr
(
ω−1l′

b′

d

)) ∑

b∈O/(d)

e

(
Tr
(
ω−1l′

b

d

))
.

But this implies that
∑

b∈O/(d)

e

(
Tr
(
ω−1l′

b

d

))
= 0.

Thus

√
|N(ν)|T(ν)f(z) =

∑

l′∈O∗
cl′
∑

ad=uν
u∈O×+

√
|a(1)|
|d(1)|y1 . . .

|a(n)|
|d(n)|yn×




n∏

j=1

Ksj− 1
2
(2π|(ω−1l′ν/d2)(j)|yj)


×

∑

b∈O/(d)

e
(
Tr
(
ω−1l′(ax+ b)/d

))

=
∑

l′∈O∗
cl′

∑

d|gcd(l′,ν)

|N(d)|
√
|ν(1)|
|d(1)|2 y1 . . .

|ν(n)|
|d(n)|2 yn×




n∏

j=1

Ksj− 1
2
(2π|(ω−1l′ν/d2)(j)|yj)


×

e
(

Tr
(
ω−1l′

ν

d2
x
))

.

From this it is clear that the l-th Fourier coefficient is
∑

d|gcd(l′,ν)
l′ν=d2l

cl′ .

�

7. The Fundamental Domain for Γ∞

Before we can prove the functional equation for the standard L-function we need a
fundamental domain for O×+\Rn

+ and this immediately gives us a fundamental domain for
Γ∞ as well.

Let F denote the interior of the fundamental mesh of the lattice O in Rn given by the
embedding defined earlier. Let Γ∞ denote the stabilizer subgroup at ∞, i.e.

Γ∞ =
{
±
(
u l
0 u−1

)
| u ∈ O×, l ∈ O

}
.

From [23] we know the fundamental domain for Γ∞:

Proposition 7.1. The set

F∞ = {z ∈ Hn | x ∈ F, y ∈ U∞} ,
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is a fundamental domain for Γ∞. Here U∞ ⊂ Rn
+ is a fundamental domain for O×+\Rn

+.
Explicitly we can choose U∞ to be the preimage of

R+ × [−1, 1]n−1 ⊂ R+ ×Rn−1

under the map (defined on Rn
+)

y 7→




n∏

j=1

yj ,
n∑

j=2

(ej,1 − e1,1) log
yj

n
√∏n

i=1 yi
, . . . ,

n∑

j=2

(ej,n−1 − e1,n−1) log
yj

n
√∏n

i=1 yi


 ,

which is injective.

Let ỹ denote the image of y under the map above. Note that we have the relations
n∑

j=2

ỹj log |ε(k)
j−1| = log

yk
n
√
ỹ1

(7.1)

for k = 2, . . . , n which follows since


e2,1 · · · e2,n−1

· · · · · · · · ·
en,1 · · · en,n−1



−1

=




log |ε(2)
1 | · · · log |ε(n)

1 |
· · · · · · · · ·

log |ε(2)
n−1| · · · log |ε(n)

n−1|


 (In−1 + En−1).

Here In−1 denotes the (n− 1)× (n− 1) identity matrix and En−1 is the (n− 1)× (n− 1)
matrix with all entries equal to 1. Inserting (7.1) in (3.1) we get the relation

χm(y) = exp


iπ

n−1∑

q=1

mqỹq+1


 .(7.2)

Note also that by (7.1) the ratios yj/yi are bounded.
Later we want to integrate so-called incomplete Eisenstein series. To do so it will be

convenient to use the transformation from Proposition 7.1 and for that purpose we need
to know the Jacobian determinant:

Lemma 7.2. The numerical value of the Jacobian determinant of the map in Proposition
7.1 is R−1 where R is the regulator of K.

Proof. Let Ω denote the Jacobian matrix. Note that
∂ỹ1

∂yj
=
ỹ1

yj

and

∂ỹk+1

∂yj
=

1
yj

n∑

j′=2

δj,j′(ej′,k − e1,k)−
1
nyj

n∑

j′=2

(ej′,k − e1,k)

for k = 1, . . . , n− 1. Thus the yj ’s cancel in the Jacobian determinant and we get

det(Ω) =

∣∣∣∣∣∣∣∣

1 1 · · · 1
A1 e2,1 − e1,1 +A1 · · · en,1 − e1,1 +A1

· · · · · · · · · · · ·
An−1 e2,n−1 − e1,n−1 +An−1 · · · en,n−1 − e1,n−1 +An−1

∣∣∣∣∣∣∣∣

where Ak = − 1
n

∑n
j=2(ej,k − e1,k) for 1 ≤ k ≤ n − 1. By recursively subtracting column

j − 1 from column j we do not change the determinant. Expanding by minors in the first
row (which has 1 in the first entry and 0 in the other entries) we see that

det(Ω) = det([ej+1,k − ej,k]1≤j,k≤n−1).
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Now using a similar trick on the matrix



e1,1 · · · e1,n−1 1/n
· · · · · · · · · · · ·
en,1 · · · en,n−1 1/n


 =




log |ε(1)
1 | · · · log |ε(n)

1 |
· · · · · · · · ·

log |ε(1)
n−1| · · · log |ε(n)

n−1|
1 · · · 1




−1

recursively subtracting row k − 1 from row k we see that

±det(Ω)
n

=

∣∣∣∣∣∣∣∣

log |ε(1)
1 | · · · log |ε(n)

1 |
· · · · · · · · ·

log |ε(1)
n−1| · · · log |ε(n)

n−1|
1 · · · 1

∣∣∣∣∣∣∣∣

−1

.

But the determinant on the right-hand side is ±nR (see e.g. [25]). �

8. The Standard L-function

In this section we will consider the L-function associated with a primitive cusp form –
the so-called standard L-function – and show that it has a functional equation.

For a primitive cusp form ϕ with Hecke eigenvalues λ(a) we consider the L-function
(defined for Re(s) > 3

2)

L(s, ϕ,m) =
∑

a 6=0

χm(a)λ(a)
N (a)s

.

It should be mentioned that one often uses the notation L(s, ϕ⊗χm) instead of L(s, ϕ,m).
If we use the relations from Theorem 6.1 we can write L(s, ϕ,m) as the Euler product

L(s, ϕ,m) =
∏

p

1

1− χm(p)λ(p)
N (p)s + χm(p)2

N (p)2s

where the product is taken over all prime ideals.
Before we go on we need the following result:

Lemma 8.1. Let f be a formal eigenfunction of the Laplacians ∆1, . . . ,∆n with eigenval-
ues λ1, . . . , λn. Assume that f(iy) = 0 for all y ∈ Rn

+ where iy = (iy1, . . . , iyn). Assume
also that

∂f

∂xj
(z1, . . . , zj−1, iyj , zj , . . . , zn) = 0(8.1)

for all zj′ ∈ H with j′ 6= j, yj ∈ R+ and j = 1, . . . , n. Then f(z) = 0 for all z ∈ Hn.

Proof. Since f is an eigenfunction of the ∆j ’s which are elliptic differential operators we
conclude that f must be real analytic. Hence it suffices to prove that

∂|a+b|f

∂xa1
1 . . . ∂xann ∂y

b1
1 . . . ∂ybnn

(iy) = 0

for all a = (a1, . . . , an), b = (b1, . . . , bn) ∈ Nn
0 and y ∈ Rn

+ – note that we use the notation
|a| = ∑n

j=1 aj . But clearly this would follow if we could prove that

∂|a|f
∂xa1

1 . . . ∂xann
(iy) = 0

for all (a1, . . . , an) ∈ Nn
0 and y ∈ Rn

+.
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If aj ∈ {0, 1} for some j, the result follows immediately from (8.1). Now assume that
the result holds if for some j we have aj ≤ q, q ≥ 2. Consider (a1, . . . , an) ∈ Nn

0 such that
min{a1, . . . , an} = q + 1; say a1 = q + 1. Then we see that

∂|a|f(iy)
∂xa1

1 . . . ∂xann
=

∂|a|−2

∂xa1−2
1 ∂xa2

2 . . . ∂xann

(
− 1
y2

1

∆1f(iy)− ∂2f(iy)
∂y2

1

)

= −λ1

y2
1

∂|a|−2f(iy)
∂xa1−2

1 ∂xa2
2 . . . ∂xann

− ∂2

∂y2
1

∂|a|−2f(iy)
∂xa1−2

1 ∂xa2
2 . . . ∂xann

= 0

by induction. This proves the lemma. �

Now we can extend the holomorphic function L(s, ϕ,m) to an entire function with a
functional equation of the usual form:

Theorem 8.2. Let ϕ be a primitive cusp form with Laplace eigenvalues 1
4 + r2

j and Hecke
eigenvalues λ(a). Then L(s, ϕ,m) has an analytic continuation to the entire complex plane
and it satisfies the functional equation

Λ(s, ϕ,m) = (−1)Tr(κ)χ2m(D)Λ(1− s, ϕ,−m)(8.2)

where

Λ(s, ϕ,m) = Dsπ−nsL(s, ϕ,m)×
n∏

j=1

Γ
(
s+ κj + irj − iρj(m)

2

)
Γ
(
s+ κj − irj − iρj(m)

2

)

and κj = 0 if ϕ is even in xj and κj = 1 if ϕ is odd in xj.

Proof. Consider the function

f(z) =
1

(2πi)Tr(κ)

∂Tr(κ)ϕ

∂xκ1
1 . . . ∂xκnn

(z)

=
∑

l∈O∗
cle(Tr(lx/ω))

n∏

j=1

(
lκj

ωκj

)(j)√
yjKirj (2π|(l/ω)(j)|yj),

which is even in all the xj-variables. For Re(s) large (this ensures that we can use the
Fourier expansion) consider the integral

χm(D)
Ds

∫

O×+\Rn
+

f(iy)
n∏

j=1

y
s−iρj(m)+κj−3/2
j dy

=
∑

a⊂O

χm(a)λ(a)
N (a)s

n∏

j=1

∫ ∞

0
Kirj (2πyj)y

s−iρj(m)+κj−1
j dyj×

∑

β∈O×+\O×
cβ

n∏

j=1

(sgn(β(j)))τj
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= L(s, ϕ,m)
n∏

j=1

Γ
(
s+κj+irj−iρj(m)

2

)
Γ
(
s+κj−irj−iρj(m)

2

)

4πs+κj−iρj(m)
×

∑

β∈O×+\O×
cβ

n∏

j=1

(sgn(β(j)))τj

where τ is the binary vector satisfying (3.3). Note that we have used the formula (see [1]
Lemma 1.9.1)

∫ ∞

0
Kν(2πy)ys−1dy =

Γ
(
s+ν

2

)
Γ
(
s−ν

2

)

4πs

which is valid for Re(s) > |Re(ν)|. That the integral above is convergent follows from the
fact that f(iy) = (−1)Tr(κ)

∏n
j=1 y

2κj
j

f(i/y) (we use the notation 1/y = (1/y1, . . . , 1/yn)).

If we can prove that

∑

β∈O×+\O×
cβ

n∏

j=1

(sgn(β(j)))τj 6= 0(8.3)

we have the analytic continuation since

∫

O×+\Rn
+

f(iy)
n∏

j=1

y
s−iρj(m)+κj−3/2
j dy

is an entire function in s (due to exponential decay of f in the yj-variables). So let us
assume that

∑

β∈O×+\O×
cβ

n∏

j=1

(sgn(β(j)))τj = 0.(8.4)

This implies that the integral considered above vanishes for all s and m ∈ Zn−1. But using
the structure of U∞ we see that (f̃ is y 7→ f(iy) composed with the inverse of the map in
Proposition 7.1)

∫

O×+\Rn
+

f(iy)
n∏

j=1

y
s−iρj(m)+κj−3/2
j dy =

R

∫ 1

−1
. . .

∫ 1

−1

∫ ∞

0
f̃(ỹ)ỹs−3/2+Tr(κ)/n

1 ×

exp



n−1∑

q=1

n∑

j=2

(κq+1 − κ1)ỹj log |ε(q+1)
j−1 |


 exp


−iπ

n−1∑

q=1

mqỹq+1


 dỹ,

where we have used (7.2). Since this holds for all m we must have f(iy) = 0 for all y ∈ Rn
+.

We also have that f is a formal eigenfunction of the ∆j ’s and since f is even in all the
xj-variables condition (8.1) in Lemma 8.1 is also satisfied. Thus we conclude that f is
identically 0. But by the Fourier expansion of f this implies that cl = 0 for all l ∈ O∗
which contradicts that ϕ is a primitive cusp form and hence non-zero.
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Now we prove the functional equation. As remarked earlier f(iy) = (−1)Tr(κ)

∏n
j=1 y

2κj
j

f(i/y).

From this one easily deduces that
∫

O×+\Rn
+

f(iy)
n∏

j=1

y
s−iρj(m)+κj−3/2
j dy = (−1)Tr(κ)

∫

O×+\Rn
+

f(i/y)
n∏

j=1

y
s−iρj(m)−κj−3/2
j dy

= (−1)Tr(κ)

∫

O×+\Rn
+

f(iy)
n∏

j=1

y
iρj(m)−s+κj−1/2
j dy

where we have used that the map y 7→ 1/y maps a fundamental domain of O×+\Rn
+ to

another fundamental domain. Now (8.2) follows immediately from the calculation above
since

∑n
j=1 ρj(m) = 0. �

Using the Phragmén-Lindelöf principle and the functional equation (8.2) one obtains
that

L(1/2 + it, ϕ,m)� |t|n2 +ε

for any ε > 0 as |t| → ∞. This is not enough for our purpose, but any improvement in
the exponent will do. In the case K = Q T. Meurman [15] proved that

L(1/2 + it, ϕ)� √reπr/2|t| 13+ε,

where 1
4 +r2 is the Laplace eigenvalue and the constant implied only depends on ε. Recently

P. Michel and A. Venkatesh [16] and A. Diaconu and P. Garrett [4] proved the estimate
that we need in general:

Theorem 8.3. There exists some δ > 0 such that

L(1/2 + it, ϕ,m)� |t|n2−δ

as |t| → ∞.

The generalized Riemann hypothesis implies much more, namely that you can take any
ε > 0 in the exponent (the Lindelöf hypothesis for the standard L-function). It should be
mentioned that the techniques in [17] probably are adequate to provide the subconvexity
estimate in Theorem 8.3.

9. The Eisenstein Series

In the case where K = Q we have the Eisenstein series

E(z, s) =
∑

γ∈Γ∞\Γ
Im(γz)s.

In our case of the Hilbert modular group over general K our candidate for the Eisenstein
series would be

(9.1)
∑

γ∈Γ∞\Γ

n∏

j=1

Im(γ(j)zj)sj .

Now for this to be well defined we need every term to be independent of the choice of γ in
the coset Γ∞\Γ. This puts some constraints on the choices of the sj ’s. In fact, for (9.1)
to be well defined it is necessary and sufficient that

(9.2) |u(1)|2s1 . . . |u(n)|2sn = 1

for all u ∈ O×. The condition (9.2) is certainly equivalent to

(9.3) s1 log |ε(1)
j |+ · · ·+ sn log |ε(n)

j | = iπmj
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for j = 1, . . . , n− 1 where mj ∈ Z. Let m = (m1, . . . ,mn−1) ∈ Zn−1 be a fixed vector. If
we fix the parameter s ∈ C and solve the system of equations




log |ε(1)
1 | · · · log |ε(n)

1 |
· · · · · · · · ·

log |ε(1)
n−1| · · · log |ε(n)

n−1|
1 · · · 1






s1

· · ·
sn


 =




iπm1

· · ·
iπmn−1

ns


 ,

we get the solution (cf. (2.2))

sj = s+ iπ
n−1∑

q=1

mqej,q = s+ iρj(m)

for j = 1, . . . , n. From now on we will view sj as a function of m and s. Thus in conclusion
we define the Eisenstein series for Γ as

E(z, s,m) =
∑

γ∈Γ∞\Γ

n∏

j=1

Im(γ(j)zj)sj ,(9.4)

which is absolutely convergent for Re(s) > 1 (cf. [5] p. 42). It was proved in [5] that
E(z, s,m) has a meromorphic continuation to the entire s-plane, and that E(z, s,m) is
holomorphic on the line Re(s) = 1/2.

One can verify that the Eisenstein series is an automorphic form with Laplace eigen-
values sj(1 − sj) and thus it admits a Fourier expansion. When we calculate the Fourier
coefficients it will be convenient to consider the following generalization of the divisor
function

σs,m(l) =
∑

(c)⊂O
c|l

χ2m(c)|N(c)|s.

Note that σs,m only depends on the ideal (l). The Fourier coefficients are known from [5]
Section II.2:

Theorem 9.1. For l ∈ O let al(y, s,m) denote the l-th Fourier coefficient of E(z, s,m).
For l 6= 0 we have that

al(y, s,m) =
2nπnsσ1−2s,−m(l)

χm(D)Dsζ(2s,−2m)

n∏

j=1

√
yjKsj− 1

2
(2π|(l/ω)(j)|yj)|l(j)|sj−

1
2

Γ(sj)
.

The zeroth Fourier coefficient is given by

a0(y, s,m) =




n∏

j=1

yj



s

χm(y) + ϕ(s,m)




n∏

j=1

yj




1−s

χ−m(y)

where

ϕ(s,m) =
ζ(2s− 1,−2m)π

n
2

ζ(2s,−2m)
√
D

n∏

j=1

Γ(sj − 1
2)

Γ(sj)
.

Note that ϕ(s,m) is unitary for Re(s) = 1
2 .

As in the classical case we also need to consider incomplete Eisenstein series, i.e. au-
tomorphic functions on Γ\Hn formed as Poincaré series which fail to be eigenfunctions of
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the automorphic Laplacian. Let h ∈ C∞b (R+) and assume that h(y)yp → 0 as y →∞ and
h(y)y−p → 0 as y → 0 for all p ∈ N. For m ∈ Zn−1 we define

F (z, h,m) =
∑

γ∈Γ∞\Γ
h




n∏

j=1

Im(γ(j)zj)




n∏

j=1

Im(γ(j)zj)iρj(m).(9.5)

We will refer to F (z, h,m) as the incomplete Eisenstein series induced by h with para-
meter m. One easily checks that the incomplete Eisenstein series decay faster than any
polynomial in the cusp. In particular they are square integrable since they are bounded.
Choosing explicit representatives we see that

F (z, h, 0) = h




n∏

j=1

yj


+ h




n∏

j=1

yj
x2
j + y2

j


+

1
2

∑

c,d∈O×\O∗
gcd(c,d)=1

h




n∏

j=1

yj

(c(j)xj + d(j))2 + (c(j)yj)2


 .

(9.6)

The following proposition reflects the fact that the Hecke L-function ζ(s,m) has a pole at
s = 1 if m = 0 but is regular at s = 1 if m 6= 0:

Proposition 9.2. For m 6= 0 we have∫

Γ\Hn

F (z, h,m)dµ(z) = 0.

We also have ∫

Γ\Hn

F (z, h, 0)dµ(z) = 2n−1R
√
D

∫ ∞

0

h(w)
w2

dw.

Proof. The last statement follows immediately from change of variables using the injective
map from Proposition 7.1 and Lemma 7.2.

The first statement follows from a similar argument. Using again the map from Propo-
sition 7.1 and the relation (7.1) we are lead to consider the integral (which only differs
from the integral we wish to compute by scaling with a factor of R)

∫

R+×[−1,1]n−1

h(ỹ1)
ỹ2

1

exp


iπ

n−1∑

q=1

mq

n∑

i=2

ỹi

n∑

j=1

ej,q log |ε(j)
i−1|


 dỹ

=
∫

R+×[−1,1]n−1

h(ỹ1)
ỹ2

1

exp


iπ

n−1∑

q=1

mqỹq+1


 dỹ.

From this the statement is obvious. �
The space spanned by incomplete Eisenstein series will be denoted E(Γ\Hn). Using

the transformation from Proposition 9.2 it is clear that the orthogonal complement to
E(Γ\Hn) is the set of functions f ∈ L2(Γ\Hn) for which

∫

F
f(z)dx = 0,(9.7)

i.e. the zeroth Fourier coefficient vanishes. As in the classical case K = Q the space
E(Γ\Hn)⊥ is the closure of the space spanned by cusp forms C(Γ\Hn) (see [5] Theorem
II.9.8). Thus we have the decomposition:

L2(Γ\Hn) = C(Γ\Hn)⊕ E(Γ\Hn).(9.8)
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Note that the functions in C(Γ\Hn) are orthogonal to the constant functions.

10. Quantum Unique Ergodicity

We wish to investigate the behaviour of the measure

dµm,t = |E(z, 1/2 + it,m)|2dµ
as t→∞. This is the large eigenvalue limit, since the Laplace eigenvalue of E(z, 1/2+it,m)
is nt2 + n/4 +

∑n
j=1 ρj(m)2.

In the subsequent sections we will prove the following two results:

Theorem 10.1. Consider an incomplete Eisenstein series F (z, h, k). Then we have that
1

log t

∫

Γ\Hn

F (z, h, k)dµm,t(z)→
πnnR

2Dζ(2, 0)

∫

Γ\Hn

F (z, h, k)dµ(z)(10.1)

as t→∞. Note in particular that for k 6= 0
1

log t

∫

Γ\Hn

F (z, h, k)dµm,t(z)→ 0(10.2)

as t→∞, cf. Proposition 9.2.

It is interesting that the asymptotics in (10.1) do not depend on m. The constant
πnnR

2Dζ(2,0) can also be given in terms of the volume, since (see [6])

µ(Γ\Hn) =
2ζ(2, 0)D

3
2

πn
.(10.3)

Note that since ζ(2) = π2

6 the result above reduces to the result found by W. Luo and P.
Sarnak in [14] for K = Q. The results differ by a factor of 16 – they obtain the asymptotics∫

Γ\Hn

F (z, h)dµt(z) ∼
48
π

log t
∫

Γ\Hn

F (z, h)dµ(z)(10.4)

as t → ∞. This difference is due to a disagreement regarding the value of the integral
(12.3) below, which exactly accounts for the factor of 16. In this connection two other
errors in [14] should be mentioned. A factor of 2 is missing in the Fourier expansion of the
Eisenstein series on page 211. This error is cancelled though since a factor of 1

2 is missing
in front of the logarithmic derivatives of Γ(s/2± it) on page 216.

We also obtain the asymptotics for primitive cusp forms:

Theorem 10.2. Let ϕ be a primitive cusp form. Then∫

Γ\Hn

ϕ(z)dµm,t(z)→ 0(10.5)

as t→∞.

Combining Theorem 10.1 and Theorem 10.2 we can now prove Theorem 1.1:

Proof of Theorem 1.1. Let ε > 0 be given and set Θ = πnnR
2Dζ(2,0) . One can prove that

the functions which are a sum of a finite number of primitive cusp forms and incomplete
Eisenstein series are dense in the space of continuous functions which vanish in the cusp
C0(Γ\Hn) equipped with the sup norm. Hence let F ∈ Cc(Γ\Hn) and choose primitive
cusp forms g1, . . . , gk, functions h1, . . . , hl ∈ C∞c (R+) and parameters m1, . . . ,ml such
that

‖F −G‖∞ ≤
ε

2Mµ(Γ\Hn)
,

where G(z) =
∑k

j=1 gj(z) +
∑l

i=1 F (z, hi,mi) and M is a constant depending on the field
K – in the case K = Q one can choose M = 4. Now since cusp forms decay exponentially
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in the cusp it follows from (9.6) that we can choose a non-negative h ∈ C∞(R+) of
sufficiently rapid decay such that

|F (z)−G(z)| ≤ F (z, h, 0) <
ε

2µ(Γ\Hn)

for all z ∈ Γ\Hn. Thus by Theorem 10.1

lim sup
t→∞

1
Θ log t

∣∣∣∣∣

∫

Γ\Hn

(F (z)−G(z))dµm,t(z)

∣∣∣∣∣ <
ε

2
.

Theorem 10.1 and Theorem 10.2 give us that

lim
t→∞

1
Θ log t

∫

Γ\Hn

G(z)dµm,t(z) =
∫

Γ\Hn

G(z)dµ(z).

Hence

lim sup
t→∞

∣∣∣∣∣
1

Θ log t

∫

Γ\Hn

F (z)dµm,t(z)−
∫

Γ\Hn

F (z)dµ(z)

∣∣∣∣∣ < ε.(10.6)

This proves the theorem, since (10.6) holds for any ε > 0. �

Finally, this enables us to prove the main theorem:

Proof of Theorem 1.2. Let F,G, f, g ∈ Cc(Γ\Hn) be chosen such that

F ≥ 1A ≥ f ≥ 0

and

G ≥ 1B ≥ g ≥ 0,

where 1A denotes the indicator function. Then
∫

Γ\Hn f(z)dµm,t(z)∫
Γ\Hn G(z)dµm,t(z)

≤ µm,t(A)
µm,t(B)

≤
∫

Γ\Hn F (z)dµm,t(z)∫
Γ\Hn g(z)dµm,t(z)

.

By Theorem 1.1 we see that
∫

Γ\Hn f(z)dµ(z)
∫

Γ\Hn G(z)dµ(z)
≤ lim inf

t→∞
µm,t(A)
µm,t(B)

≤ lim sup
t→∞

µm,t(A)
µm,t(B)

≤
∫

Γ\Hn F (z)dµ(z)
∫

Γ\Hn g(z)dµ(z)
.

Since this holds for all F , G, f and g the result follows. �

11. Proof of Theorem 10.1

Consider F (z, h, k) ∈ E(Γ\Hn). By standard unfolding arguments we see that
∫

Γ\Hn

F (z, h, k)dµm,t =
∫

Γ\Hn

F (z, h, k)|E(z, 1/2 + it,m)|2 dxdy

y2
1 . . . y

2
n

=
∫

U∞
h




n∏

j=1

yj



∫

F
|E(z, 1/2 + it,m)|2 dxdy

∏n
j=1 y

2−iρj(k)
j

.
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Using the Fourier expansion of the Eisenstein series we get

1√
D

∫

F
|E(z, 1/2 + it,m)|2dx = 2

n∏

j=1

yj + 2Re




n∏

j=1

y1+2it
j χ2m(y)ϕ (1/2 + it,m)


+

4nπn
∏n
j=1 yj

D|ζ(1 + 2it,−2m)|2
∑

l∈O∗
|σ−2it,−m(l)|2×

n∏

j=1

∣∣Kit+iρj(m)

(
2π|(ω−1l)(j)|yj

)∣∣2

|Γ(1/2 + it+ iρj(m))|2 .

Now write
∫

Γ\Hn

F (z, h, k)dµm,t = F1(t) + F2(t)

where

F1(t) = 2
√
D

∫

U∞
h




n∏

j=1

yj


×




n∏

j=1

yj + Re




n∏

j=1

y1+2it
j χ2m(y)ϕ (1/2 + it,m)




 dy
∏n
j=1 y

2−iρj(k)
j

and

F2(t) =
4nπn√

D|ζ(1 + 2it,−2m)|2
∑

l∈O∗

∫

U∞
h




n∏

j=1

yj


 |σ−2it,−m(l)|2×

n∏

j=1

∣∣Kit+iρj(m)

(
2π|(ω−1l)(j)|yj

)∣∣2

|Γ(1/2 + it+ iρj(m))|2
dy

∏n
j=1 y

1−iρj(k)
j

=
4nπn√

D|ζ(1 + 2it,−2m)|2
∑

l∈O×+\O∗

∫

Rn
+

h




n∏

j=1

yj


 |σ−2it,−m(l)|2×

n∏

j=1

∣∣Kit+iρj(m)

(
2π|(ω−1l)(j)|yj

)∣∣2

|Γ(1/2 + it+ iρj(m))|2
dy

∏n
j=1 y

1−iρj(k)
j

.

It is clear that F1(t) is a bounded function of t.
Before we go on we need to consider a new L-function. For a purely imaginary we

associate to σa,m an L-function which can be computed in terms of ζ(s,m):

∑

a 6=0

χm′(a)|σa,m(a)|2
N (a)s

=
∏

p

∞∑

k=0

χm′(p)kσa,m(pk)σ−a,−m(pk)
N (p)ks

=
∏

p

∞∑

k=0

χm′(p)k

N (p)ks
1− χ2m(p)k+1N (p)a(k+1)

1− χ2m(p)N (p)a
1− χ−2m(p)k+1N (p)−a(k+1)

1− χ−2m(p)N (p)−a
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=
∏

p

1
(1− χ−2m(p)N (p)−a)(1− χ2m(p)N (p)a)

×

∞∑

k=0

(2χm′(p)kN (p)−sk − χm′(p)kχ2m(p)k+1N (p)(a−s)k+a−

χm′(p)kχ−2m(p)k+1N (p)−(a+s)k−a)

=
∏

p

1
(1− χ−2m(p)N (p)−a)(1− χ2m(p)N (p)a)

×
(

2
1− χm′(p)N (p)−s

− χ2m(p)N (p)a

1− χm′+2m(p)N (p)a−s
− χ−2m(p)N (p)−a

1− χm′−2m(p)N (p)−a−s

)

=
∏

p

1 + χm′(p)N (p)−s

(1− χm′(p)N (p)−s)(1− χm′+2m(p)N (p)a−s)(1− χm′−2m(p)N (p)−a−s)

=
ζ(s,m′)2ζ(s− a,m′ + 2m)ζ(s+ a,m′ − 2m)

ζ(2s, 2m′)
.

To deal with F2(t) we consider the Mellin transform Mh of h, i.e.

(Mh)(r) =
∫ ∞

0
h(w)w−r−1dw.

Note that we have the opposite sign convention in the definition of the Mellin transform
than the usual one. However, this is also the convention used in [14], and it is the practical
one since we then avoid considering ζ(−s,m) on the left half-plane. By the Mellin inversion
formula we have

h(w) =
1

2πi

∫

(σ)
(Mh)(r)wrdr

for all σ ∈ R. Thus using the L-function we considered earlier we can rewrite the integral
F2(t) as

F2(t) =
(4π)n

2πi
√
D|ζ(1 + 2it,−2m)|2

∑

l∈O×+\O∗

∫

Rn
+

∫

(2)
(Mh)(r)|σ−2it,−m(l)|2×

n∏

j=1

∣∣Kit+iρj(m)

(
2π|(ω−1l)(j)|yj

)∣∣2

|Γ(1/2 + it+ iρj(m))|2 y
iρj(k)+r−1
j drdy

=
(4π)n

2πi
√
D|ζ(1 + 2it,−2m)|2∏n

j=1 |Γ(1/2 + it+ iρj(m))|2
∫

(2)
(Mh)(r)×

∑

l∈O×+\O∗
|σ−2it,−m(l)|2

∫

Rn
+

n∏

j=1

∣∣Kit+iρj(m)

(
2π|(l/ω)(j)|yj

)∣∣2yiρj(k)+r−1
j dydr
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=
(4π)n

2πi23n
√
D|ζ(1 + 2it,−2m)|2∏n

j=1 |Γ(1/2 + it+ iρj(m))|2
∫

(2)
(Mh)(r)×

∑

l∈O×+\O∗
|σ−2it,−m(l)|2

n∏

j=1

|ω(j)|iρj(k)+rΓ((iρj(k) + r)/2)2

πiρj(k)+r|l(j)|iρj(k)+rΓ(iρj(k) + r)
×

Γ((iρj(k) + r)/2 + it+ iρj(m))Γ((iρj(k) + r)/2− it− iρj(m))dr

=
(4π)n

2πi23n
√
D|ζ(1 + 2it,−2m)|2∏n

j=1 |Γ(1/2 + it+ iρj(m))|2
∫

(2)
Bk(r, t, h)dr

where

Bk(r, t, h) = (Mh)(r)
ζ(r,−k)2ζ(r + 2it,−k − 2m)ζ(r − 2it,−k + 2m)

ζ(2r,−2k)πnr
×

n∏

j=1

|ω(j)|iρj(k)+rΓ((iρj(k) + r)/2)2

Γ(iρj(k) + r)
×

Γ((iρj(k) + r)/2 + it+ iρj(m))Γ((r + iρj(k))/2− it− iρj(m)).

Note that we have used the fact that for any b ∈ R we have the formula (see [11] Section
B.4)

(11.1)
∫ ∞

0
|Kib(2πt)|2ts−1dt =

Γ(s/2 + ib)Γ(s/2− ib)Γ(s/2)2

23πsΓ(s)
.

Clearly (Mh)(r) is bounded for 1
2 ≤ Re(r) ≤ 2 and Γ decays exponentially in vertical

strips by Stirling’s formula. Furthermore ζ(σ + it, k) is polynomially bounded in t for
1
2 ≤ σ ≤ 2. Hence we can move the integration from the vertical line Re(r) = 2 to the
vertical line Re(r) = 1

2 perhaps picking up residues from poles at r = 1 and r = 1± 2it:

F2(t) =
(π/2)n

∫
(1/2)Bk(r, t, h)dr

2πi
√
D|ζ(1 + 2it,−2m)|2∏n

j=1 |Γ(1/2 + it+ iρj(m))|2
+

(π/2)nresr=1Bk(r, t, h)√
D|ζ(1 + 2it,−2m)|2∏n

j=1 |Γ(1/2 + it+ iρj(m))|2
+O(t−10)

where the O(t−10) term comes from the possible residues from poles at r = 1± 2it, since
(Mh)(σ + it) is of rapid decay as t → ∞. Let us evaluate the first term. Since Stirling’s
formula is no good near the real axis in our case, we have to work around that. Note that
for a, b ∈ R we have

e−|a+b|e−|a−b| ≤ e−2|a|.

If |a+ b| ≥ 1 and a 6= 0 we also have that

1
|a+ b| ≤

1 + |b|
|a| .

We can now evaluate the first term. Since we are only interested in the asymptotics as
t→∞ we can assume that t ≥ 1. Using the subconvexity estimate from Theorem 3.1 and
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Stirling’s formula we see that (C1, C2, C3 > 0 are suitable constants)
∫

(1/2)
|Bk(r, t, h)|dr ≤ e−πtnt−n6 +εC1

∫ ∞

−∞
|(Mh)(1/2 + iw)| (1 + |w|) 2n

3
+ε dw+

e−πtnt−
n
4

+εC2

∫ 2(t+ρj(m)+1)−ρj(k)

2(t+ρj(m)−1)−ρj(k)
|(Mh)(1/2 + iw)|dw+

e−πtnt−
n
4

+εC3

∫ −2(t+ρj(m)−1)−ρj(k)

−2(t+ρj(m)+1)−ρj(k)
|(Mh)(1/2 + iw)|dw.

Since Mh is of rapid decay the first term dominates, and we obtain the estimate∫

(1/2)
Bk(r, t, h)dr � e−tπn|t|−n6 +ε.

By Corollary 3.5 and Stirling’s formula we see that∫
(1/2)Bk(r, t, h)dr

|ζ(1 + 2it,−2m)|2∏n
j=1 |Γ(1/2 + it+ iρj(m))|2 � |t|

−n
6

+ε

for any ε > 0.
Now we turn to the residue term. Since ζ(s, k) is regular at s = 1 for k 6= 0 the residue

term will vanish in this case and we are done. Assume therefore that k = 0. We know
that

ζ(s, 0) =
ζ−1

s− 1
+ ζ0 +O(s− 1)

and hence

ζ(s, 0)2 =
ζ2
−1

(s− 1)2
+

2ζ−1ζ0

s− 1
+O(1)

as s→ 1 where ζ−1 = 2n−1R√
D

and ζ0 is some constant. Now introduce G(r, t, h) defined by

B0(r, t, h) = ζ(r, 0)2G(r, t, h).

We see that

resr=1B0(r, t, h) = G(1, t, h)ζ−1

(
2ζ0 + ζ−1

G′(1, t, h)
G(1, t, h)

)
.

Note that

G(1, t, h) =
(Mh)(1)|ζ(1− 2it, 2m)|2

ζ(2, 0)πn
DΓ(1/2)2n

n∏

j=1

|Γ(1/2 + it+ iρj(m))|2

and
G′(1, t, h)
G(1, t, h)

=
ζ ′(1 + 2it,−2m)
ζ(1 + 2it,−2m)

+
ζ ′(1− 2it, 2m)
ζ(1− 2it, 2m)

+

1
2

n∑

j=1

(
Γ′(1/2 + it+ iρj(m))
Γ(1/2 + it+ iρj(m))

+
Γ′(1/2− it− iρj(m))
Γ(1/2− it− iρj(m))

)
+ C

where C is a constant that does not depend on t. Since

(Mh)(1) =
21−n
√
DR

∫

Γ\Hn

F (z, h, 0)dµ(z)

by Proposition 9.2 we see using Corollary 3.4 and Stirling’s formula that
1

log t
F2(t)→ πnnR

2Dζ(2, 0)

∫

Γ\Hn

F (z, h, 0)dµ(z)
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as t→∞.

12. Proof of Theorem 10.2

Let ϕ be a primitive cusp form with eigenvalues 1
4 + r2

j of the Laplacians ∆j and Hecke
eigenvalues λ(a).

We wish to investigate the asymptotic behaviour of the integral

(12.1)
∫

Γ\Hn

ϕ(z)dµm,t =
∫

Γ\Hn

ϕ(z)E(z, 1/2 + it,m)E(z, 1/2− it,−m)dµ

where we have used the fact that E(z, s,m) = E(z, s,−m). To this end we consider the
integral

(12.2) I(s) =
∫

Γ\Hn

ϕ(z)E(z, 1/2 + it,m)E(z, s,−m)dµ

for Re(s) > 1. We unfold the integral and get using the Fourier expansions of cusp forms
and Eisenstein series that

I(s) =
∫

F∞
ϕ(z)E(z, 1/2 + it,m)

n∏

j=1

y
sj(−m)−2
j dxdy

=
2nπn(1/2+it)

ζ(1 + 2it,−2m)χm(D)Dit

∫

U∞

∑

l∈O∗
σ−2it,−m(l)cl

n∏

j=1

y
sj(−m)−1
j |l(j)|it+iρj(m)×

Kit+iρj(m)(2π|(l/ω)(j)|yj)Kirj (2π|(l/ω)(j)|yj)
Γ(1/2 + it+ iρj(m))

dy

=
2nπn(1/2+it)(

∏n
j=1 |ω(j)|s−iρj(m))

ζ(1 + 2it,−2m)χm(D)Dit
∏n
j=1 Γ(1/2 + it+ iρj(m))

∑

l∈O×+\O∗
χ2m(l)×

N ((l))it−sσ−2it,−m(l)cl

∫

Rn
+

n∏

j=1

Kit+iρj(m)(2πyj)Kirj (2πyj)y
sj(−m)−1
j dy.

For a, b ∈ R consider the meromorphic function on C:

Γ(s, a, b) =
Γ((s+ ia+ ib)/2)Γ((s+ ia− ib)/2)Γ((s− ia− ib)/2)Γ((s− ia+ ib)/2)

23πsΓ(s)
.

It is well known (see [11] Section B.4) that

∫ ∞

0
Kia(2πt)Kib(2πt)ts−1dt = Γ(s, a, b).(12.3)

So we get

I(s) =
2nπn(1/2+it)R(s)

ζ(1 + 2it,−2m)χm(D)Dit

n∏

j=1

|ω(j)|s−iρj(m)Γ(sj(−m), rj , t+ ρj(m))
Γ(1/2 + it+ iρj(m))

∑

β∈O×+\O×
cβ
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where

R(s) =
∑

a⊂O
χ2m(a)N (a)it−sσ−2it,−m(a)λ(a)

=
∏

p

∞∑

k=0

χ2m(p)kN (p)k(it−s)σ−2it,−m(pk)λ(pk)

=
∏

p

∞∑

k=0

χ2m(p)kN (p)k(it−s)λ(pk)
k∑

j=0

χ−2m(p)jN (p)−2ijt

=
∏

p

∞∑

k=0

χ2m(p)kN (p)k(it−s)λ(pk)
1− χ−2m(p)k+1N (p)−2(k+1)it

1− χ−2m(p)N (p)−2it

=
∏

p

1
1− χ−2m(p)N (p)−2it

( ∞∑

k=0

χ2m(p)kN (p)k(it−s)λ(pk)−

χ−2m(p)N (p)−2it
∞∑

k=0

λ(pk)N (p)k(−it−s)
)

=
∏

p

1
1− χ−2m(p)N (p)−2it

×
(

1
1− λ(p)χ2m(p)N (p)it−s + χ2m(p)2N (p)2(it−s)−

χ−2m(p)N (p)−2it

1− λ(p)N (p)−it−s +N (p)2(−it−s)

)

=
∏

p

1− χ2m(p)N (p)−2s

(1− χ2m(p)λ(p)N (p)it−s + χ2m(p)2N (p)2(it−s))
×

1
(1− λ(p)N (p)−it−s +N (p)2(−it−s))

=
L(s− it, ϕ, 2m)L(s+ it, ϕ, 0)

ζ(2s, 2m)
.

From this we see that I(s) has an analytic continuation to the entire s-plane, and we wish
to investigate the asymptotic behaviour of I(1/2− it) as t→∞. From Stirling’s formula
we deduce that

n∏

j=1

Γ(1/2− it− iρj(m), rj , t+ ρj(m))
Γ(1/2 + it+ iρj(m))

� |t|−n/2

as t → ∞. Using Corollary 3.5 the proof of Theorem 10.2 boils down to proving a
subconvexity estimate for L(s, ϕ, 2m) on the line Re(s) = 1

2 . More precisely we need the
estimate

L(1/2 + it, ϕ, 2m)� |t|n2−δ

as |t| → ∞ for some δ > 0, and this follows from Theorem 8.3. Note that if ϕ is odd then
I(1/2− it) = 0, since L(1/2, ϕ, 0) = 0 by the functional equation.
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MANUSCRIPT B

Quantitative Mass Equidistribution of Eisenstein Series on
GL2





QUANTITATIVE MASS EQUIDISTRIBUTION OF EISENSTEIN
SERIES ON GL2

JIMI L. TRUELSEN

Abstract. We consider the Eisenstein series E(g, s, χ) on GL2 over a number field and
prove quantitatively that the measure |E(g, 1/2 + it, χ)|2dµ becomes equidistributed in
the limit t → ∞. This generalizes previous results due to W. Luo and P. Sarnak, S.
Koyama and the author.

1. Introduction

Let F be a number field of degree d over Q. We let A denote the adele ring of F
and O the ring of integers of F. Let r1 denote the number of real embeddings and r2

denote the number of complex embeddings. Hence d = r1 + 2r2 and n = r1 + r2 is the
number of places at infinity. We let G(A) = GL2(A) and G(F) = GL2(F) which embeds
discretely in G(A). We set K =

∏
vKv (the product is taken over all places v of F) where

Kv = GL2(Ov) if v is finite, Kv = O(2) if v is real and Kv = U(2) if v is complex. We
let B ⊂ G denote the subgroup of upper triangular matrices and Z ⊂ G the subgroup of
scalar matrices.

We consider the Eisenstein series E(g, s, χ) on G(A) defined by

E(g, s, χ) =
∑

γ∈B(F)\G(F)

f(γg),

where χ =
∏
v χv is an everywhere unramified character on A×/F× and f : G(A)→ C is

a product of local functions f =
∏
v fv. The functions fv satisfy the condition that (| · |v

denotes the norm on Fv)

fv
(( y1,v xv

y2,v

)
gv
)

=
χv(y1,v)|y1,v|sv
χv(y2,v)|y2,v|sv

fv(gv)

for gv ∈ G(Fv), y1,v, y2,v ∈ F×v and xv ∈ Fv. Furthermore fv is identical 1 on Kv. By the
Iwasawa decomposition this determines f completely.

Let

X(F) = Z(A)G(F)\G(A)/K ∼= ClF × SL2(O)\(Hr1
2 ×Hr2

3 ),

where H2 is the upper half-plane of C, H3 is C ×R+ inside the quaternions and ClF is
the ideal class group (h = |ClF| is the class number). The action of SL2(O) on Hr1

2 ×Hr2
3

is the one considered in [16]. The space X(F) is equipped with a measure dµ induced by
the Haar measure on G(A) which will be described in Section 4.

Clearly E(g, s, χ) may be regarded as a function on the quotient space X(F). We set

dµχ,t = |E(g, 1/2 + it, χ)|2dµ.
The main result in this paper is the following quantitative mass equidistribution result:
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2 QUANTITATIVE MASS EQUIDISTRIBUTION OF EISENSTEIN SERIES ON GL2

Theorem 1.1. Let F ∈ Cc(X(F)). We have

1
log t

∫

X(F)
F (g)dµχ,t →

2r2πr1nhR
ζF(2)WD

∫

X(F)
F (g)dµ

as t→∞.

Here D and R is the discriminant and regulator of F, W is the number of roots of unity
in F× and ζF is the Dedekind zeta-function associated with F.

From Theorem 1.1 we easily obtain the following equidistribution result (see [17] for
more details):

Theorem 1.2. Let A,B ⊂ X(F) be compact and Jordan measurable, and assume that
µ(B) 6= 0. Then

µχ,t(A)
µχ,t(B)

→ µ(A)
µ(B)

as t→∞.

The question was first investigated by Luo and Sarnak [9] in the case F = Q and may
be viewed as a continuous spectrum analogue of the quantum unique ergodicity conjecture
by Rudnick and Sarnak [12] (see [13] and [14] for connections to quantum chaos). Later
Koyama [8] considered the case where F is a quadratic imaginary field with class number
1, and the author [17] considered the case where F is a totally real field with narrow class
number 1. The strategy in this paper is the same as in the precursors and is due to Luo
and Sarnak [9]. However, we work with an adelic setting which is more convenient since
we want to deal with general number fields.

The idea in the proof of Theorem 1.1 is to use the fact that L2(X(F)) is the direct sum
of the space spanned by cusp forms and the space of P -series (to be defined in Section 4),
and then establish the equidistribution for functions that span these spaces (Theorems 1.3
and 1.4 below). Theorem 1.1 then follows from standard approximation arguments.

Theorem 1.3. For a P -series P (g,H, χ′) we have

1
log t

∫

X(F)
P (g,H, χ′)dµχ,t →

2r2πr1nhR
ζF(2)WD

∫

X(F)
P (g,H, χ′)dµ

as t→∞.

Note that
1

log t

∫

X(F)
P (g,H, χ′)dµχ,t → 0

as t→∞ if χ′ 6= χ0 (here χ0 denotes the identity character), since
∫

X(F)
P (g,H, χ′)dµ = 0.

This will be shown in Section 4.
For cusp forms we get:

Theorem 1.4. Let ϕ be a cusp form. Then
∫

X(F)
ϕ(g)dµχ,t → 0

as t→∞.
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This indeed corresponds to the desired equidistribution as
∫

X(F)
ϕ(g)dµ = 0.

The idea in the proofs of Theorems 1.3 and 1.4 is to use the fact that the Eisenstein
series E(g, s, χ) admit a Fourier expansion (see [1] Section 3.7) of the form

E(g, s, χ) =
∑

α∈F
cα(g, s),

where

cα(g, s) =
1√
D

∫

A/F
E

((
1 w

1

)
g, s, χ

)
ψ(−αw)dw.(1.1)

The character ψ will be defined in Section 2. One must know the Fourier coefficients of the
Eisenstein series rather explicitly. In Section 2 we write down the coefficients in explicit
form for elements g of the form ( y x1 ). Using standard unfolding techniques one can express
the relevant integrals in terms of the Hecke L-function and the standard L-function. The
results then follow from subconvexity estimates in t-aspect.

I would like to thank Claus Sorensen for the many discussions in his office on how to
“adelize” [17]. His help is much appreciated.

2. The Fourier Expansion of the Eisenstein Series

First we describe the Haar measure on Fv. If v is a finite place we normalize the Haar
measure such that the volume of Ov is 1. If Fv = R the Haar measure is just the Lebesgue
measure. Finally for Fv = C the Haar measure is 2 times the Lebesgue measure (on R2).

Let χ be an everywhere unramified character on A×/F×. We can write χ = χfχ∞
where χ∞ is a character on R×n1 ×C×n2 . Fix an ordering of the infinite places such that
the r1 first places are real and the last r2 places are complex. These correspond to the
different embeddings of F in R and C. For α ∈ F let α(j) denote the embedding of α
corresponding to the j-th place. We let | · |C denote the usual norm on C squared. We
also set | · |j = | · | if the j-th place is real and | · |j = | · |C if the j-th place is complex.
Finally we let | · |A denote the idele norm.

We know that χ∞ =
∏n
j=1 χj . Since χj is unramified χj must be of the form | · |iρj(χ)

j

for some ρj(χ) ∈ R. For a finite place v we let | · |v denote the norm on the completion
Fv. It is well known that the ring of integers Ov (in Fv) is a local ring with maximal ideal
pv and we let ωv denote a generator of pv. We also set qv = |Ov/pv|. Note that χv(ωv) is
independent of the choice of generator for an unramified character χv on Fv.

The rest of this section will be devoted to calculating the Fourier coefficients (1.1). First
we look at the constant term cα(g, s). Unfolding the integral (1.1) we obtain

c0(g, s) = f(g) +
1√
D

∫

A
f

(
w0

(
1 w

1

)
g

)
dw

with w0 =
( −1

1

)
. The integral factorizes into a product of local integrals

∫

A
f

(
w0

(
1 w

1

)
g

)
dw =

∏

v

(Mv(s)fv)(gv)

where

(Mv(s)fv)(gv) =
∫

Fv

fv

(
w0

(
1 wv

1

)
gv

)
dwv.
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A straight forward calculation shows that

w0

(
1 w

1

)(
y x

1

)
=
(

1
y

)
w0

(
1 x/y + w/y

1

)
.(2.1)

We will use this identity several times.
First we calculate the integral for a real place (corresponding to the j-th embedding).

We see that

(Mv(s)fv)(gv) =
∫

R
fv

(
w0

(
1 wv

1

)(
yv xv

1

))
dwv

= |yv|1−sj(χ)

∫

R
fv

(
w0

(
1 wv

1

))
dwv.

Here sj(χ) = s+ iρj(χ).
One can write

w0

(
1 t

1

)
=
(

∆−1
t −t∆−1

t

∆t

)(
t∆−1

t −∆−1
t

∆−1
t t∆−1

t

)
(2.2)

where ∆t =
√

1 + t2. Note that the last matrix is in O(2). Thus we see that
∫

R
fv

(
w0

(
1 wv

1

))
dwv =

∫ ∞

−∞

1
(1 + t2)sj(χ)

dt =
√
π

Γ(sj(χ)− 1/2)
Γ(sj(χ))

.(2.3)

The evaluation of the last integral can be found in [7].
Now we look at a complex place (corresponding to the j-th embedding). As before we

see that

(Mv(s)fv)(gv) = |yv|1−sj(χ)
C

∫

C
fv

(
w0

(
1 wv

1

))
dwv

and

w0

(
1 z

1

)
=
(

∆−1
|z| −z∆

−1
|z|

∆|z|

)(
z∆−1
|z| −∆−1

|z|
∆−1
|z| z∆−1

|z|

)
(2.4)

where the last matrix is in U(2). Changing to polar coordinates one easily obtains
∫

C
fv

(
w0

(
1 wv

1

))
dwv =

2π
sj(χ)− 1

.

We now turn to the finite places. Essentially the same reduction applies and we obtain

(Mv(s)fv)(gv) = |yv|1−sv χv(yv)−1

∫

Fv

fv

(
w0

(
1 wv

1

))
dwv.

We note that
∫

Ov

fv

(
w0

(
1 wv

1

))
dwv = 1.

From the matrix identity

w0

(
1 w

1

)
=
(
w−1 −1

w

)(
1
w−1 1

)

and the fact that p−mv − p−m+1
v , m > 0 has volume qmv (1− q−1

v ) we conclude that
∫

p−m
v −p−m+1

v

fv

(
w0

(
1 wv

1

))
dwv = (1− q−1

v )α−2m
v q(1−2s)m

v
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if m ≥ 1. Here αv = χv(ωv). Summing these terms we see that
∫

Fv

fv

(
w0

(
1 wv

1

))
dwv = 1 + (1− q−1

v )q1−2s
v α−2

v (1− q1−2s
v α−2

v )−1

=
1− q−2s

v α−2
v

1− q1−2s
v α−2

v
.

The calculations above show that
∏

v finite

(Mv(s)fv)(gv) =
L(2s− 1, χ−2)
L(2s, χ−2)

∏

v<∞
|yv|1−sv χv(yv)−1.

Thus we have calculated the constant term:

Proposition 2.1. Let g ∈ GL2(A) be of the form g = ( y x1 ). Then the constant term
c0(g, s) is given by

|y|sAχ(y) +
2r2πd/2

χ(y)
√
D

L(2s− 1, χ−2)
L(2s, χ−2)

|y|1−sA

∏

j≤r1

Γ(sj(χ)− 1/2)
Γ(sj(χ))

∏

j>r1

1
sj(χ)− 1

.

Now we turn to the other terms. We define

(W (s)f)(g) =
∫

A
f

(
w0

(
1 w

1

)
g

)
ψ(−w)dw =

∏

v

(Wv(s)fv)(gv),

where

(Wv(s)fv)(gv) =
∫

Fv

fv

(
w0

(
1 wv

1

)
gv

)
ψv(−wv)dwv.

Note that cα(g, s) = 1√
D

(W (s)f) (( α 1 ) g).
The additive characters ψv are described in Section 7.1 in [11]. If v is a real place

we have ψv(x) = e(x) = e2πix. If v is a complex place we have ψv(z) = e(2Re(z)).
Finally we consider a finite place v (that lies over the prime p ∈ Z). In that case we have
ψv(wv) = e((Q ◦ P )(Tr(wv))), where P : Qp → Qp/Zp is the canonical projection map,
Q : Qp/Zp → Q/Z is the map that “removes” the integer part of an element in Qp, and
Tr : Fv → Qp is the trace map.

As before we assume that g is of the form ( y x1 ). First we look at a finite place v. The
conductor of ψv is p−dv

v . One easily checks that (Wv(s)fv) (( yv xv
1 )) = 0 if yv /∈ p−dv

v .
Consider (Wv(s)fv) (( yv xv

1 )) where yv ∈ p−dv
v . We see that

(Wv(s)fv) (( yv xv
1 )) =

|yv|1−sv

χv(yv)

∫

Fv

fv
(
w0

(
1 wv

1

))
ψv(−yvwv)dwvψv(xv).

Thus it remains to evaluate the integral
∫
Fv
fv
(
w0

(
1 wv

1

))
ψv(−yvwv)dwv. We see that

∫

Fv

fv
(
w0

(
1 wv

1

))
ψv(−yvwv)dwv

= 1 +
ordFv (yv)+dv∑

j=1

qjv(1− q−1
v )

α2j
v q

2sj
v

− q
ordFv (yv)+dv
v

α
2(ordFv (yv)+dv+1)
v q

2s(ordFv (yv)+dv+1)
v

=
(

1− α−2
v

q2s
v

) ordFv (yv)+dv∑

j=0

α−2j
v q(1−2s)j

v

=
σv(yv, 1− 2s, χ−2

v )
Lv(2s, χ−2

v )
,
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where σv(yv, s, χv) denotes the local divisor function. For the sake of notation we extend
the definition of σv(yv, s, χv):

σv(yv, s, χv) =

{∑ordFv (yv)+dv

j=0 αjvq
sj
v if yv ∈ p−dv

v

0 if yv /∈ p−dv
v

.

Note that

σv(yv, s, χv) =
1− α(ordFv (yv)+dv+1)

v q
(ordFv (yv)+dv+1)s
v

1− αvqsv
for yv ∈ p−dv

v .
Now we consider a real place v (corresponding to the j-th embedding). We see that

(Wv(s)fv) (( yv xv
1 )) = |yv|1−sj(χ)

∫

R
fv
(
w0

(
1 wv

1

))
e(−yvwv)dwve(xv)

= |yv|1−sj(χ)

∫ ∞

−∞

e(−yvt)
(1 + t2)sj(χ)

dte(xv)

= 2πsj(χ)
√
|yv|

Ksj(χ)−1/2(2π|yv|)
Γ(sj(χ))

e(xv).

The integral above was evaluated in [16].
Finally we look at a complex place v (corresponding to the j-th embedding) and obtain

(Wv(s)fv) (( yv xv
1 )) = |yv|1−sj(χ)

C

∫

C
fv
(
w0

(
1 wv

1

))
e(−2Re(yvwv))dwve(2Re(xv))

= 2|yv|1−sj(χ)
C

∫ ∞

−∞

∫ ∞

−∞

e(−2Re(yv(t1 + it2)))
(1 + t21 + t22)2sj(χ)

dt1dt2e(2Re(xv))

= 2(2π)2sj(χ)|yv|
K2sj(χ)−1(4π|yv|)

Γ(2sj(χ))
e(2Re(xv)).

We summarize our results in the following proposition:

Proposition 2.2. Let g = ( y x1 ). Assume yv ∈ p−dv
v for all finite v. Then

(W (s)f)(g) = 2πs1(χ)Ks1(χ)−1/2(2π|y1|)
Γ(s1(χ))

. . . 2(2π)2sn(χ)K2sn(χ)−1(4π|yn|)
Γ(2sn(χ))

×
√
|y|A

L(2s, χ−2)
ψ(x)

∏

v finite

|yv|
1
2
−s

v

χv(yv)
σv(yv, 1− 2s, χ−2

v ).

If yv /∈ p−dv
v for some finite v then (W (s)f)(g) = 0.

Thus we have calculated the Fourier coefficients.

3. The Fourier Expansion of a Cusp Form

We recall the Fourier expansion of a (spherical) cusp form (see [1] Section 3.5). Let ϕ
be a cusp form. Then ϕ admits a Fourier expansion of the form

ϕ(g) =
∑

α∈F×
cϕα(g),

where

cϕα(g) =
1√
D

∏

v

Wϕ
v (( αv

1 ) gv)
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and Wϕ
v (gvkv) = Wϕ

v (gv) for kv ∈ Kv. For the finite places we know that

Wϕ
v (( yv xv

1 )) =




ψv(xv)q

−ordFv (yv)/2
v

β
ordFv

(yv)+1+dv
1,v −βordFv

(yv)+1+dv
2,v

β1,v−β2,v
if yv ∈ p−dv

v

0 if yv /∈ p−dv
v

,

where β1,v and β2,v are the Satake parameters. This is known as Shintani’s formula (see
[1] Theorem 4.6.5). The finite part of the standard L-function L(s, ϕ, χ) (we also set
L(s, ϕ) = L(s, ϕ, χ0)) associated with ϕ (twisted with an everywhere unramified character
χ) is

L(s, ϕ, χ) =
∏

v<∞

1
(1− β1,vχv(ωv)q−s)(1− β2,vχv(ωv)q−s)

.

We will not be concerned with the exact behaviour at the infinite places. From [1]
Sections 2.8 and 3.5 we know we can assume that there exist constants Cv(ϕ) s.t.

Wϕ
v (( yv xv

1 )) =

{
Cv(ϕ)

√
|yv|Kirj (2π|yv|)e(xv) if v is real

Cv(ϕ)|yv|K2irj (4π|yv|)e(2Re(xv)) if v is complex
.

4. P -series

We wish to identify the orthogonal complement to the space spanned by cusp forms.
Let H : R+ → C be smooth and compactly supported. Let fH,χ : G(A)/K → C be
defined by

fH,χ (( y1 x
y2 ) g) = H

( |y1|A
|y2|A

)
χ(y1)
χ(y2)

fH,χ(g)

and fH,χ(k) = 1 for k ∈ K.
We define the P -series as

P (g,H, χ) =
∑

γ∈B(F)\G(F)

fH,χ(γg).(4.1)

It is well known (see [4]) that these span a dense subspace of the orthogonal complement
(in L2(X(F))) of the subspace spanned by cusp forms. This follows from the Stone-
Weierstrass theorem since the quotient A×1 /F

× is compact. Here A×1 denotes the ideles
of norm 1.

It is clear that we may view X(F) as a subset of G(A) of matrices in G(A) of the form
( y x1 ) where y ∈ A× and x ∈ A. Following Section 1.5 in [5] we see that the measure
induced on X(F) is dxdy

|y|2A
.

From Section 3.8 in [1] we know that integration over

Z(A)B(F)\G(A)

can be replaced by integration over

B(A)\G(A)× T1(F)\T1(A)×N(F)\N(A),(4.2)

where N ⊂ G is matrices of the form ( 1 x
1 ) and T1 ⊂ G is matrices of the form ( y 1 ).

From this we see that∫

Z(A)G(F)\G(A)/K
P (g,H, χ)dµ =

∫

A/F

∫

A×/F×
fH,χ (( y x1 ))

dydx

|y|2A
=
√
D

∫ ∞

0
H(t)

∫

A×1 /F
×
χ(y)dy

dt

t2
.

(4.3)
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It follows from (4.3) that
∫

Z(A)G(F)\G(A)/K
P (g,H, χ)dµ = 0

if χ 6= χ0 and
∫

Z(A)G(F)\G(A)/K
P (g,H, χ0)dµ =

2nπr2hR
W

∫ ∞

0

H(t)
t2

dt,

since Vol(A×1 /F
×) = 2nπr2hR

W
√
D

(see Theorem 7.21 in [11]).

5. Proof of Theorem 1.3

Using (4.2) we deduce that
∫

X(F)
P (g,H, χ′)dµχ,t =

∫

A×/F×
fH,χ′ ((

y x
1 ))
∫

A/F
|E (( y x1 ) , s, χ)|2 dx dy

|y|2A
.

From the Fourier expansion we get
∫

A/F
|E (( y x1 ) , 1/2 + it, χ)|2 dx = |c0 (( y x1 ) , 1/2 + it)|2 +

4dπd|y|A
D|L(1 + 2it, χ−2)|2

×
∑

ζ∈F×

∏

v finite

σv(ζvyv,−2it, χ−2
v )

∏

j≤r1

Kit+iρj(χ)(2π|ζ(j)yj |)
Γ(1/2 + it+ iρj(χ))

∏

j>r1

K2it+2iρj(χ)(4π|ζ(j)yj |)
Γ(1 + 2it+ 2iρj(χ))

.

Let MH denote the Mellin transform of H defined by

(MH)(r) =
∫ ∞

0
H(t)t−r−1dt.

Since |c0 (( y x1 ) , 1/2 + it)| is bounded it is enough to consider

F (t) =
∫

A×/F×
fH,χ′ ((

y x
1 ))
∫

A/F
|E (( y x1 ) , s, χ)− c0 (( y x1 ) , 1/2 + it)|2 dx dy

|y|2A

=
4dπd

D|L(1 + 2it, χ−2)|2
∫

A×
H(|y|A)χ′(y)|y|A

∏

v finite

|σv(yv,−2it, χ−2
v )|2

×
∏

j≤r1

∣∣∣∣
Kit+iρj(χ)(2π|yj |)

Γ(1/2 + it+ iρj(χ))

∣∣∣∣
2 ∏

j>r1

∣∣∣∣
K2it+2iρj(χ)(4π|yj |)
Γ(1 + 2it+ 2iρj(χ))

∣∣∣∣
2
dy

|y|2A

=
4dπd

2πiD|L(1 + 2it, χ−2)|2
∫

(2)
(MH)(r)

∫

A×
|y|r−1

A χ′(y)
∏

v finite

|σv(yv,−2it, χ−2
v )|2

×
∏

j≤r1

∣∣∣∣
Kit+iρj(χ)(2π|yj |)

Γ(1/2 + it+ iρj(χ))

∣∣∣∣
2 ∏

j>r1

∣∣∣∣
K2it+2iρj(χ)(4π|yj |)
Γ(1 + 2it+ 2iρj(χ))

∣∣∣∣
2

dydr,

where we have used the Mellin inversion formula. We now consider the innermost integral
as a product of local integrals. First we look at a finite place v. Let a ∈ R and χv, χ

′
v be

unramified characters on F×v . We set αv = χv(ωv) and α′v = χ′v(ωv). Then
∫

F×v
|yv|svχ′v(yv)|σv(yv, ai, χv)|2

dyv
|yv|v

=
∫

p−dv
v −{0}

|yv|svχ′v(yv)|σv(yv, ai, χv)|2
dyv
|yv|v

=
qsdv
v

α′dv
v

∣∣∣1− αv

qia
v

∣∣∣
2

∞∑

k=0

α′kv
qksv

∣∣∣1− αk+1
v qia(k+1)

v

∣∣∣
2
.
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This is evaluated in the same way as in [17] and we get
∏

v finite

∫

F×v
|yv|svχ′v(yv)|σv(yv, ai, χv)|2

dyv
|yv|v

=

N (D)sL(s, χ′)2L(s− ia, χχ′)L(s+ ia, χ−1χ′)
χ′f (D)L(2s, χ′2)

.

Now we look at the infinite places. From Section B.4 in [6] we recall the formula
∫ ∞

0
Kµ(t)Kν(t)ts−1dt =

2s−3

Γ(s)

∏
Γ
(
s± µ± ν

2

)

for Re(s) > |Re(µ)|+ |Re(ν)|. From this we see that
∫ ∞

0
|Kit+iρj(χ)(2πt)|2tr+iρj(χ′)−1dt =

Γ((r + iρj(χ′χ2))/2 + it)Γ((r + iρj(χ′χ−2))/2− it)Γ((r + iρj(χ′))/2)2

23πr+iρj(χ′)Γ(r + iρj(χ′))

and ∫ ∞

0
|K2it+2iρj(χ)(4πt)|2t2r+2iρj(χ′)−1dt =

Γ(r + iρj(χχ′) + it)Γ(r + iρj(χ′χ−1)− it)Γ(r + iρj(χ′) + 1)Γ(r + iρj(χ′))
23(2π)2r+2iρj(χ′)Γ(2r + 2iρj(χ′))

.

We set

B(r, t) = (MH)(r)
L(r, χ′)2L(r + 2it, χ−2χ′)L(r − 2it, χ2χ′)Dr

4r2rπdrL(2r, χ′2)

×
∏

j≤r1

Γ((r + iρj(χ′χ2))/2 + it)Γ((r + iρj(χ′χ−2))/2− it)Γ((r + iρj(χ′))/2)2

Γ(r + iρj(χ′))

×
∏

j>r1

Γ(r + 1/2 + iρj(χχ′) + it)Γ(r + 1/2 + iρj(χ′χ−1)− it)
Γ(2r + 2iρj(χ′) + 1)

× Γ(r + iρj(χ′) + 1)Γ(r + iρj(χ′)).

Thus

F (t) =
22r2−r1πd

2πiDχ′f (D)|L(1 + 2it, χ−2)|2∏j>r1
4iρj(χ′)

× 1
|∏j≤r1 Γ(1/2 + it+ iρj(χ))

∏
j>r1

Γ(1 + 2it+ 2iρj(χ))|2
∫

(2)
B(r, t)dr.

As in [17] we estimate the complex integral by moving the integration from the line Re(r) =
2 to the curve Re(r) = 1/2 and get

∫

(2)
B(r, t)dr =

∫

(1/2)
B(r, t)dr + 2πiresr=1B(r, t) +O(|t|−10),

From [15] it is well known that

L(1/2 + it, χ)� |t| d6 +ε.

We also recall Stirling’s formula

|Γ(σ + it)| ∼
√

2πe−π|t|/2|t|σ−1/2.(5.1)
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Proceeding as in [17] we obtain the estimate
1

|L(1 + 2it, χ−2)
∏
j≤r1 Γ(1/2 + it+ iρj(χ))

∏
j>r1

Γ(1 + 2it+ 2iρj(χ))|2×
∫

(2)
B(r, t)dr � |t|−n

6
+ε.

for any ε > 0.
Now we look at the residue term. It is well known that L(s, χ) is entire if χ 6= χ0 so in

that case the residue term vanishes and we are done. Assume therefore that χ = χ0. In
this case L(s, χ0) = ζF(s) has a pole of order 1 at s = 1, i.e. there exist constants C1 and
C2 such that

L(s, χ0) =
C1

s− 1
+ C2 +O(s− 1).

In fact we know that

C1 =
2r1(2π)r2hR
W
√
D

.

We define G(r, t) by

B(r, t) = L(s, χ0)2G(r, t).

We see that

resr=1B(r, t) = G(1, t)C1

(
2C2 + C1

G′(1, t)
G(1, t)

)
.

As in [17] we obtain the estimate

L′(1 + it, χ)
L(1 + it, χ)

� (log t)
2
3

using the zero free region derived in [2]. Further more we know that

Γ′(σ + it)
Γ(σ + it)

∼ log t.

Since

(MH)(1) =
W

2nπr2hR

∫

X(F)
P (g,H, χ0)dµ

this implies that
F (t)
log t

→ 2r2πr1nhR
ζF(2)WD

∫

X(F)
P (g,H, χ0)dµ

as t→∞ and we are done.

6. Proof of Theorem 1.4

Let ϕ denote a cusp form with a Fourier expansion as in Section 3. We want to use the
Rankin-Selberg method to evaluate the integral

∫

X(F)
ϕ(g)dµχ,t =

∫

X(F)
ϕ(g)E(g, 1/2 + it, χ)E(g, 1/2− it, χ−1)dµ,

where we have used the identity E(g, s, χ) = E(g, s, χ−1). Therefore we consider the
integral

I(s) =
∫

X(F)
ϕ(g)E(g, 1/2 + it, χ)E(g, s, χ−1)dµ
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for Re(s) > 1 and then later use the fact that the integral has an analytic continuation.
We unfold the integral using the series defining the Eisenstein series (C collects constants
from the Fourier coefficients of ϕ and E(g, s, χ))

I(s) =
∫

A×/F×
f (( y x1 ))

∫

A/F
ϕ(g)E (( y x1 ) , 1/2 + it, χ) dx

dy

|y|2A
= Cπdit4r2itL(1 + 2it, χ−2)−1

∫

A×/F×
χ−1(y)|y|s+1

A ×

∑

α∈F×

∏

j≤r1
|α(j)|it+iρj(χ)

Kiρj(χ)+it(2π|α(j)yj |)Kirj (2π|α(j)yj |)
Γ(1/2 + it+ iρj(χ))

×

∏

j>r1

|α(j)|it+iρj(χ)
C

K2iρj(χ)+2it(4π|α(j)yj |)K2irj (4π|α(j)yj |)
Γ(2 + 2it+ 2iρj(χ))

×

∏

v finite

σv(αvyv,−2it, χ−2
v )

|yv|itv χv(yv)
β

ordFv (αvyv)+1+dv

1,v − βordFv (αvyv)+1+dv

2,v

β1,v − β2,v

dy

|y|2A

= Cπdit4r2itL(1 + 2it, χ−2)−1

∫

A×
χ−2(y)|y|s−1−it

A ×
∏

j≤r1
|yj |it+iρj(χ)

Kiρj(χ)+it(2π|yj |)Kirj (2π|yj |)
Γ(1/2 + it+ iρj(χ))

×

∏

j>r1

|yj |it+iρj(χ)
C

K2iρj(χ)+2it(4π|yj |)K2irj (4π|yj |)
Γ(2 + 2it+ 2iρj(χ))

×

∏

v finite

σv(yv,−2it, χ−2
v )

β
ordFv (yv)+1+dv

1,v − βordFv (yv)+1+dv

2,v

β1,v − β2,v
dy

Define

Γ(s, a, b) =

Γ((s+ ia+ ib)/2)Γ((s+ ia− ib)/2)Γ((s− ia− ib)/2)Γ((s− ia+ ib)/2)
23πsΓ(s)

.

It is well known (see [6] Section B.4) that
∫ ∞

0
Kia(2πt)Kib(2πt)ts−1dt = Γ(s, a, b).(6.1)

Thus the contribution from the local integrals at the real places is (the constant Γ-factor
is ignored)

Γ(s− iρj(χ), ρj(χ) + t, rj).

Similarly the contribution from the local integrals at the complex places is

21+2iρj(χ)−2sΓ(2s− 1− iρj(χ), 2ρj(χ) + 2t, 2rj).

Finally we must evaluate the integrals over the finite places, and we obtain

qdv(s−it)
v χv(ωv)2dv

∞∑

k=0

qk(it−s)
v χv(ωv)−2k

βk+1
1,v − βk+1

2,v

β1,v − β2,v

1− χv(ωv)−2(k+1)q
−2it(k+1)
v

1− χv(ωv)−2q−2it
v

which can be written in terms of local L-factors (see [17]) as

qdv(s−it)
v χv(ωv)2dv

Lv(s− it, ϕ, χv)Lv(s+ it, ϕ)
Lv(2s, χ2

v)
.
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From this we conclude that I(s) has a meromorphic continuation to the entire s-plane,
which is holomorphic on the line Re(s) = 1

2 and

I(1/2− it)� |L(1/2− 2it, ϕ, χ)|
|L(1 + 2it, χ−2)|2

∏

j≤r1

Γ(1/2− it− iρj(χ), ρj(χ) + t, rj)
Γ(1/2 + it+ iρj(χ))

×

∏

j>r1

Γ(−2it− iρv(χ), 2ρv(χ) + 2t, 2rj)
Γ(2 + 2it+ 2iρj(χ))

.

From Stirling’s formula (5.1) we obtain
∏

j≤r1

Γ(1/2− it− iρj(χ), ρj(χ) + t, rj)
Γ(1/2 + it+ iρv(χ))

� |t|−
r1
2

and
∏

j>r1

Γ(1− 2it− iρj(χ), 2ρj(χ) + 2t, 2rj)
Γ(1 + 2it+ 2iρv(χ))

� |t|−r2 .

From [3] and [10] we know that there exists some δ > 0 such that

L(1/2 + it, ϕ, χ)� (1 + |t|) d
2
−δ

and this proves the theorem.
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Abstract

We prove an effective equidistribution result about angles in a hyperbolic lattice. We use this to
generalize a result from the study by Boca.

1. Introduction

Consider the group G = SL2(R) that acts on the upper halfplane H by linear fractional transfor-
mations. Let � ⊂ G be a cofinite discrete group, and let d : H × H → R+ denote the hyperbolic
distance. Consider the counting function

N�(R, z0, z1) = #{γ ∈ �| d(z0, γ z1) ≤ R}.

The hyperbolic lattice point problem is the problem of estimating this function as R → ∞. A typical
result would be an asymptotic expansion of the form

N�(R, z0, z1) = κ�π

vol(�\H)
eR + O(eR(α+ε)) (1)

for some α < 1, where κ� = 2 if −I ∈ � and κ� = 1 otherwise. The problem has been considered
by numerous people including Delsarte [3], Huber [8–10] (� cocompact), Patterson [20] (α = 3/4 if
there are no small eigenvalues), Selberg (unpublished) and Good [6] (α = 2/3 if there are no small
eigenvalues). Higher dimensional analogues have also been considered (see e.g [4, 14, 15]), as well
as the analogous problem for manifolds with non-constant curvature [7, 16]. For a discussion of the
optimal choice of α, we refer to [21], where the authors prove that α must be at least 1/2 and they
indicate that in many cases we should maybe expect (1) to hold with α = 1/2.

Let ϕz0,z1(γ ) be (2π)−1 times the angle between the vertical geodesic from z0 to ∞ and the
geodesic between z0 and γ z1 (Fig. 1).

1Corresponding author. E-mail: risager@math.ku.dk
2E-mail: lee@imf.au.dk
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Figure 1. Angle between geodesic rays.

These normalized angles are equidistributed modulo one, i.e. for every interval I ⊂ R/Z we have

NI
�(R, z0, z1)

N�(R, z0, z1)
→ |I | as R → ∞, (2)

where
NI

�(R, z0, z1) = #{γ ∈ �| d(z0, γ z1) ≤ R, ϕz0,z1(γ ) ∈ I }, (3)

and |I | is the length of the interval. This has been proved by Selberg (unpublished, see comment in
[6, p. 120]), Nicholls [19] and Good [6].

In this paper we start by proving (2) with an error term:

THEOREM 1.1 Let K ⊂ H be a compact set. There exists a constant α < 1 possibly depending on �

and K such that for all z0, z1 ∈ K and all intervals I in R/Z

NI
�(R, z0, z1)

N�(R, z0, z1)
= |I | + O(eR(α−1+ε)).

If we assume that the automorphic Laplacian on �\H has no exceptional eigenvalues, i.e.
eigenvalues in ]0, 1/4[, we prove that we can take

α = 11/12.

If there are exceptional eigenvalues, the exponent could become larger, depending on how close to
zero they are. We prove Theorem 1.1 by proving asymptotic expansions for the exponential sums

∑
γ∈�

d(z0,γ z1)≤R

e(nϕz0,z1(γ )), (4)

where n ∈ Z and e(x) = exp(2πix). The exponent 11/12 can certainly be improved. In fact our proof
uses a variant of Huber’s method [8] that does not give the optimal bound even for the expansion
(1). In principle, Theorem 1.1 could be proved using the method of Good from [6], which gives the
best known error term in the hyperbolic lattice point problem (1). The one missing point in [6] to
prove Theorem 1.1 is the dependence of n in the expansion of the exponential sum (4). Rather than
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Figure 2. Definition of ωz0,z1 (γ ).

patiently tracking down the n-dependence, we found it more to the point — albeit at the expense of
poor error terms — to provide an alternative and more direct proof inspired by [8].

Recently, Boca [2] considered a related problem: What happens if we order the elements accord-
ing to d(z1, γ z1) instead of d(z0, γ z1)? Let �(N) be the principal congruence group of level N ,
i.e. the set of 2 × 2 matrices γ satisfying γ ≡ I mod N . Boca identified for these groups the lim-
iting distribution using non-trivial bounds for Kloosterman sums. He proved the following1: Let
z0, z1 ∈ H and let ωz0,z1(γ ) denote the angle in [−π/2, π/2] between the vertical geodesic through
z0 and the geodesic containing z0 and γ z1 (Fig. 2). If z0 = γ z1 you can assign ωz0,z1(γ ) the value 0
— it does not matter what you choose, since there are only a finite number of such γ ’s.

For any interval I ⊂ [−π/2, π/2], we consider the counting function

NI
�(R, z0, z1) = #{γ ∈ � | d(z1, γ z1) ≤ R, ωz0,z1(γ ) ∈ I }.

We emphasize that the elements are ordered according to d(z1, γ z1) instead of d(z0, γ z1). We shall
write N�(R, z0, z1) instead of N

[−π/2,π/2]
� (R, z0, z1). Following Boca we define

ηz0,z1(t) = 2y0y1(y
2
0 + y2

1 + (x0 − x1)
2)

(y2
0 + y2

1 + (x0 − x1)2)2 − ((y2
1 − y2

0 + (x0 − x1)2) cos(t) + 2y0(x0 − x1) sin(t))2
.

Then Boca proves the following result:

THEOREM 1.2 Let � = �(N). For any interval I ⊂ [−π/2, π/2]

NI
�(R, z0, z1)

N�(R, z0, z1)
= 1

π

∫
I

ηz0,z1(t) dt + O(e(7/8−1+ε)R)

for any ε > 0.

1Readers consulting [2] should be warned that our notation differs slightly from Boca’s.
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In the view of (1) Theorem 1.2 is equivalent to an expansion of NI
�(N)(R, z0, z1). We generalize

and refine Boca’s result: with data as above, I ⊂ R/Z and w ∈ H we consider the counting function

N I
� (R, z0, z1, w) = #{γ ∈ �| d(z1, γw) ≤ R, ϕz0,w(γ ) ∈ I }.

We emphasize that we order according to d(z1, γw). As before we shall write N�(R, z0, z1, w)

instead of N [−1/2,1/2]
� (R, z0, z1, w). Besides the more general ordering, our result is more refined in

the sense that we can distinguish between angles that differ by π . Consider

ρz0,z1(ω) = 2y0y1

((x0 − x1)2 + y2
0 + y2

1 )(1 − cos(2πω)) + 2y2
0 cos(2πω) + 2(x1 − x0)y0 sin(2πω)

.

Then we prove the following result:

THEOREM 1.3 Let � be any cofinite Fuchsian group. There exists α < 1 such that for any I ⊂ R/Z
we have

N I
� (R, z0, z1, w)

N�(R, z0, z1, w)
=

∫
I

ρz0,z1(ω)dω + O(e(α−1+ε)R)

for any ε > 0.

Note that in the special case of � = �(N) and w = z1, this implies Theorem 1.2 (with a poorer
error term though), since

ηz0,z1(2πt) = ρz0,z1(t) + ρz0,z1(t + 1/2).

We will prove that Theorem 1.3 follows from Theorem 1.1.
Whereas Boca is using a non-trivial bound for Kloosterman sums, we are utilizing the fact that for

any group there is a spectral gap between the zero eigenvalue of the Laplacian and the first non-zero
eigenvalue. As in Theorem 1.1, α in Theorem 1.3 generally depends on the size of the first non-zero
eigenvalue.

We remark that all the results presented here can easily be phrased in terms of points in the orbit
�z1, rather than elements in �, since

#{z ∈ �z1 | d(z0, z) ≤ R} = N�(R, z0, z1)

|�z1 |
,

where �z1 denotes the stabilizer of z1.

2. Effective equidistribution of angles

Let G = SL2(R). The group G acts on the upper halfplane H by linear fractional transformations

gz = az + b

cz + d
, g =

(
a b

c d

)
∈ G, z ∈ H.

Let � ⊂ SL2(R) be discrete and cofinite. For simplicity we assume that −I /∈ �. If −I ∈ � we need
to multiply all main terms by 2.
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For z ∈ H, we let r = r(z) and ϕ = ϕ(z) be the geodesic polar coordinates of z. These are related
to the rectangular coordinates by

z =
(

cos ϕ(z) sin ϕ(z)

− sin ϕ(z) cos ϕ(z)

)
exp (−r(z))i. (5)

We note that if z0 = x0 + iy0 and we let

γ0 =
(

1/
√

y0 −x0/
√

y0

0
√

y0

)

then it is straightforward to check that γ0z0 = i. We see that

ϕz0,z1(γ ) = ϕi,γ0z1(γ0γ γ −1
0 ) = ϕ(γ0γ γ −1

0 (γ0z1))

π

and
d(z0, γ z1) = d(i, γ0γ γ −1

0 (γ0z1)) = r(γ0γ γ −1
0 (γ0z1)).

Therefore, after conjugation of the group � the counting problems in the introduction may be
formulated in terms of r(γ z) and ϕ(γ z) with z = γ0z1.

The Laplacian for the G-invariant measure dμ(z) = dxdy/y2 on H is given in Cartesian
coordinates by

� = y2

(
∂2

∂x2
+ ∂2

∂y2

)
.

In geodesic polar coordinates, the Laplace operator is given by

� = ∂2

∂r2
+ 1

tanh r

∂

∂r
+ 1

4 sinh2(r)

∂2

∂ϕ2
. (6)

Consider L2(�\H, dμ(z)) with inner product 〈f, g〉 = ∫
�\H f g dμ(z) and norm ‖f ‖2 = √〈f, f 〉.

The Laplacian induces an operator on L2(�\H, dμ(z)) called the automorphic Laplacian defined as
follows: consider the operator defined by −�f on smooth, bounded, �-invariant functions satisfying
that −�f is also bounded. This operator is densely defined in L2(�\H) and is in fact essentially
self-adjoint. The closure of this operator is called the automorphic Laplacian. By standard abuse of
notation, we also denote this operator by −�.

The automorphic Laplacian is self-adjoint and non-negative and has eigenvalues

0 = λ0 < λ1 ≤ λ2 ≤ · · · λi ≤ · · ·

with the number of eigenvalues being finite or λi → ∞. It has a continuous spectrum [1/4, ∞[ with
multiplicity equal to the number of inequivalent cusps.

By standard operator theory for self-adjoint operators (see e.g. [13]) the resolvent
R(s) = (−� − s(1 − s))−1 is a bounded operator that is meromorphic in s for s(1 − s) off the
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spectrum of −�. For an eigenvalue λi outside the continuous spectrum, the operator R(s) − Pi/(λi −
s(1 − s)) is analytic at s satisfying s(1 − s) = λi where Pi is the projection to the λi eigenspace. In
particular, for λ = 0, we note that

R(s) − P0

−(s(1 − s))
(7)

is analytic for �(s) > 1 − δ for some δ where P0f = ∫
f (z) dμ(z)/vol(�\H) is the projection to the

0 eigenspace. (Alternatively one may quote [11, Theorem 7.5] to obtain the same result.)
We define for �(s) > 1

Gn(z, s) =
∑
γ∈�

e(nϕ(γ z)/π)

(cosh(r(γ z)))s
. (8)

We recall that
cosh(r(γ z)) = 1 + 2u(γ z, i), (9)

where u(z, w) is the point pair invariant defined by

u(z, w) = |z − w|2
4
(z)
(w)

. (10)

Hence ∣∣∣∣ e(nϕ(z)/π)

(cosh(r(z)))s

∣∣∣∣ ≤ 1

(1 + 2u(z, i))�(s)
.

It therefore follows from [22, Theorem 6.1] and the discussion leading up to it that the sum (10)
converges absolutely and uniformly on compact sets and the limit is �-automorphic, and bounded in
z – in particular square integrable on � \ H.

By applying the Laplace operator to Gn(z, s) a straightforward calculation shows that

(−� − s(1 − s))Gn(z, s) = s(s + 1)Gn(z, s + 2) +
∑
γ∈�

n2e(nϕ(γ z)/π)

sinh2(r(γ z))(cosh(r(γ z)))s
. (11)

The sum on the right converges absolutely and uniformly on compacta for �(s) > −1. Since Gn(z, s)

is square integrable, we may invert (11) using the resolvent

R(s) = (−� − s(1 − s))−1, (12)

so we have

Gn(z, s) = R(s)

⎛
⎝s(s + 1)Gn(z, s + 2) +

∑
γ∈�

n2e(nϕ(γ z)/π)

sinh2(r(γ z))(cosh(r(γ z)))s

⎞
⎠ . (13)

The right-hand side is meromorphic in s for �(s) > 1/2 since the resolvent is holomorphic for
s(1 − s) not in the spectrum of the automorphic Laplacian. This gives the meromorphic continuation
of Gn(z, s) to �(s) > 1/2. The only potential poles are at s = 1 and s = sj where sj (1 − sj ) is
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a small eigenvalue for the automorphic Laplacian. Using the analyticity of (7), we see that the pole
at s = 1 has residue

1

vol(�\H)

∫
�\H

⎛
⎝2Gn(z, 3) +

∑
γ∈�

n2e(nϕ(γ z)/π)

sinh2(r(γ z)) cosh(r(γ z))

⎞
⎠ dμ(z). (14)

By unfolding the integral we find that this equals

1

vol(�\H)

∫
H

(
2
e(nϕ(z)/π)

cosh3(r(z))
+ n2e(nϕ(z)/π)

sinh2(r(z)) cosh(r(z))

)
dμ(z). (15)

Changing to polar coordinates, we find

1

vol(�\H)

∫ ∞

0

∫ π

0

(
2
e(nϕ/π)

cosh3(r)
+ n2e(nϕ/π)

sinh2(r) cosh(r)

)
2 sinh(r) dϕ dr, (16)

which equals
2πδn=0

vol(�\H)
. (17)

This follows since ∫ ∞

0

2 sinh(r)

cosh(r)3
dr = 1.

From a Wiener–Ikehara Tauberian theorem (see e.g. [18, Theorem 3.3.1 and Exercises
3.3.3 + 3.3.4]) we may conclude that

∑
γ∈�

cosh(r(γ z))≤R

e(nϕ(γ z)/π) = 2π
δn=0

vol(�\H)
R + o(R). (18)

This implies immediately – via Weyl’s criterion – that the angles ϕ(γ z)/π are equidistributed
modulo 1.

Since we intend to obtain a power saving in the remainder term we investigate Gn(z, s) a bit
more carefully:

LEMMA 2.1 Write s = σ + it . For z in a fixed compact set K ⊂ H, |t | >1 and σ>σ0 > 1/2 we have

Gn(z, s) = O(|t | (|t |2 + n2)),

where the implied constant may depend on �, K and σ0.
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Proof . We recall that [13, V (3.16)]

‖R(s)‖∞ ≤ 1

dist(s(1 − s), spec(−�))
≤ 1

|t | (2σ − 1)
, (19)

where ‖ · ‖∞ denotes the operator norm. For σ > 3/2 we have

‖Gn(z, s)‖2 ≤ ‖G0(z, 3/2)‖2 = O(1). (20)

For σ > σ0 we may use (20) and (13) to conclude that

‖Gn(z, s)‖2 ≤ ‖R(s)‖∞

⎛
⎝‖s(s + 1)Gn(z, s + 2)‖2 +

∥∥∥∥∥∥
∑
γ∈�

n2e(nϕ(γ z)/π)

sinh2(r(γ z))(cosh(r(γ z)))s

∥∥∥∥∥∥
2

⎞
⎠

≤ 1

|t | (2σ − 1)

⎛
⎝|t |2 ‖G0(z, 3/2)‖2 +

∥∥∥∥∥∥
∑
γ∈�

n2

sinh2(r(γ z))(cosh(r(γ z)))1/2

∥∥∥∥∥∥
2

⎞
⎠ (21)

= O(|t |−1 (|t |2 + n2)).

Using (21) and (11) we find

‖�Gn(z, s)‖2 = O(|t | (|t |2 + n2)). (22)

We can now use the Sobolev embedding theorem and elliptic regularity theory to get a pointwise
bound.

For any non-empty open set � in R2 we consider the classical Sobolev space Wk,p(�) with
corresponding norm ‖·‖Wk,p(�) (see [1, p. 59]). Whenever � satisfies the cone condition (see [1, p.
82]) the Sobolev embedding theorem [1, Theorem 4.12]) gives an embedding

W 2,2(�) → CB(�) (23)

where CB(�) is the set of bounded continuous functions on � equipped with the sup norm. In
particular, for f ∈ W 2,2(�), we have

sup
z∈�

|f (z)| ≤ C ‖f ‖W 2,2(�) (24)

where C is a constant which depends only on �.
By elliptic regularity theory, if �E = ∂2/∂x2 + ∂2/∂y2 is the Euclidean Laplace operator we have

also that if u ∈ W 1,2(�) satisfies �Eu ∈ L2(�) (weak derivative) then

‖u‖W 2,2(�′) ≤ C ′(‖u‖L2(�) + ‖�Eu‖L2(�)) (25)

for all �′ ⊂ �, which satisfies that the closure of �′ is compact and contained in �. Here C ′ is a
constant, which depends only on � and �′ (see [12, Theorem 8.2.1]).
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We can use this general theory to bound |Gn(z, s)| in the following way: for every z in the compact
set K we fix a small open (Euclidean) disc �z centered at z with some radius such that its closure �z

is contained in H. Let �′
z be the open disc with half the radius. By compactness of K , the cover {�′

z}
admits a finite subcover, i.e. K ⊂ ∪n

i=1�zi
for zi ∈ K . Choose as a fundamental domain for �\H a

normal polygon F . Since � is a discrete subgroup of SL2(R), �zi
intersects non-trivially with γF

for only finitely many (say ni) γ ∈ � (see [17, 1.6.2 (3)]).
Therefore, for any automorphic function f ,

‖f ‖2
L2(�zi

) :=
∫

�zi

|f (z)|2 dx dy

≤ niy
2
i

∫
F

|f (z)|2 dμ(z) = niy
2
i ‖f ‖2

2 (26)

and

‖�Ef ‖2
L2(�zi

) :=
∫

�zi

|�Ef (z)|2 dx dy

≤ niy
−2
i

∫
F

|�f (z)|2 dμ(z) = niy
−2
i

‖�f ‖2
2 (27)

where yi < ∞ and y
i
> 0 are heights over and under �i . It is straightforward to verify that Gn(z, s)

is in W 1,2(�i) (since it is continuously differentiable) and that �i has the cone property, so we may
use the above inequalities to conclude

sup
z∈K

|Gn(z, t)| ≤ n
max
i=1

sup
z∈�′

zi

|Gn(z, s)|

≤ max
i

Ci ‖Gn(z, s)‖W 2,2(�′
zi

) by (24)

≤ max
i

CiC
′
iC

′′
i (‖Gn(z, s)‖L2(�zi

) + ‖�EGn(z, s)‖L2(�zi
)) by (25)

≤ max
i

BiB
′
iB

′′
i (‖Gn(z, s)‖2 + ‖�Gn(z, s)‖2) by (26) and (27)

≤ CK(|t | (n2 + |t |2)) by (21) and (22)

which concludes the proof.

We note that Lemma 2.1 implies that

Gn(z, s) = O(|t |3) (28)

when |n| ≤ |t |, and by applying the Phragmén-Lindelöf theorem we may reduce the exponent to
max(6(1 − σ) + ε, 0) for any ε > 0.

We may now use the meromorphic continuation of Gn(z, s) and Lemma 2.1 to get an asymptotic
expansion with error term for the sum in (18).We will assume that there are no exceptional eigenvalues,
which implies that Gn(z, s) is regular in �(s) > 1/2. If this is not the case, Gn(z, s) will still be regular
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in �(s) > h for some h < 1. In (33) we then move the line of integration to �(s) > h + ε. Proceeding
with the obvious changes still gives a non-trivial error term in the end. We shall not dwell on the details.

Let ψU : R+ → R, U ≥ U0, be a family of smooth non-increasing functions with

ψU(t) =
{

1 if t ≤ 1 − 1/U

0 if t ≥ 1 + 1/U,
(29)

and ψ
(j)

U (t) = O(Uj ) as U → ∞. For �(s) > 0 we let

MU(s) =
∫ ∞

0
ψU(t)t s−1 dt

be the Mellin transform of ψU . Then we have

MU(s) = 1

s
+ O

(
1

U

)
as U → ∞ (30)

and for any c > 0

MU(s) = O

(
1

|s|
(

U

1 + |s|
)c)

as |s| → ∞. (31)

Both estimates are uniform for �(s) bounded. The first is a mean value estimate whereas the second is
successive partial integration and a mean value estimate. We use here the estimate ψ

(j)

U (t) = O(Uj ).
The Mellin inversion formula now gives

∑
γ∈�

e(nϕ(γ z)/π)ψU

(
cosh(r(γ z))

R

)
= 1

2πi

∫
�(s)=2

Gn(z, s)MU(s)Rs ds. (32)

We note that by Lemma 2.1 the integral is convergent as long as Gn(z, s) has polynomial growth
on vertical lines. We now move the line of integration to the line �(s) = h with h < 1 by integrating
along a box of some height and then letting this height go to infinity. Using Lemma 2.1 we find that
the contribution from the horizontal sides goes to zero. Assume that s = 1 is the only pole of the
integrand with �(s) ≥ 1/2 + ε. Then using Cauchy’s residue theorem we obtain

1

2πi

∫
�(s)=2

Gn(z, s)MU(s)Rs ds

= Ress=1
(
Gn(z, s)MU(s)Rs

) + 1

2πi

∫
�(s)=1/2+ε

Gn(z, s)MU(s)Rs ds (33)

= δn=0

(
2πR

vol(�\H)
+ O(R/U)

)
+ 1

2πi

∫
�(s)=1/2+ε

Gn(z, s)MU(s)Rs ds.

If there are other small eigenvalues, there are additional main terms. In bypassing we note that
their coefficients will depend on the n-th hyperbolic Fourier coefficients of the eigenfunctions corre-
sponding to small eigenvalues. (See [6, Theorem 4 p. 116].) If we choose c = 3 + ε and use Lemma
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2.1, the last integral is O(R1/2+εU 3+ε(n2 + 1)). The interval with |
(s)| ≤ 1 can easily be dealt with
using the bound

‖R(s)‖∞ ≤ max
j

∣∣∣∣ 1

σ(1 − σ)
− 1

σj (1 − σj )

∣∣∣∣ ,
which in turn gives us an estimate for Gn(z, s).

If n = 0 we see that by further requiring ψU(t) = 0 if t ≥ 1 and ψ̃U (t) = 1 if t ≤ 1, we have

∑
γ∈�

ψU

(
cosh(r(γ z))

R

)
≤

∑
γ∈�

cosh(r(γ z))≤R

1 ≤
∑
γ∈�

ψ̃U

(
cosh(r(γ z))

R

)
.

Choosing U = R1/8 we therefore obtain:

LEMMA 2.2 With assumptions as above we have

#{γ ∈ �| cosh(r(γ z)) ≤ R} = 2πR

vol(�\H)
+ O(R7/8+ε). (34)

We note that this implies (1) with α = 7/8. Using this we can now deal with the general case. To
get from a smooth cut-off to a sharp one we notice that if ψU(t) = 1 for t ≤ 1 then we may bound
the difference

∑
γ∈�

e(nϕ(γ z)/π)ψU

(
cosh(r(γ z))

R

)
−

∑
γ∈�

cosh(r(γ z))≤R

e(nϕ(γ z)/π) = O

( ∑
γ∈�

R<cosh(r(γ z))≤R(1+1/U)

1

)

which by Lemma 2.2 is O(R/U + R7/8+ε). Combining the above we find that for n �= 0∑
γ∈�

cosh(r(γ z))≤R

e(nϕ(γ z)/π) = O(R1/2+εU 3+ε(n2 + 1) + R/U + R7/8+ε).

Using the Erdös–Turán inequality [5, Theorem 3] we find that

#{γ ∈ �| cosh(r(γ z)) ≤ R, ϕ(γ z)/π ∈ I }
#{γ ∈ �| cosh(r(γ z)) ≤ R } = |I | + O(1/M + R−1/2+εU 3+εM2

+ log M(1/U + R−1/8+ε))

for any M . Letting M = U = R1/12 we arrive at the following (still assuming that there are no small
eigenvalues):

THEOREM 2.3 For all ε > 0 and I ⊂ R/Z we have

#{γ ∈ �| cosh(r(γ z)) ≤ R, ϕ(γ z)/π ∈ I }
#{γ ∈ �| cosh(r(γ z)) ≤ R } = |I | + O(R−1/12+ε).

Theorem 1.1 follows easily.
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3. Proof of Theorem 3

We wish to find the limiting distribution of the number of lattice points in angular sectors defined
from z0 when ordering the lattice points γw according to the distance to z1. More precisely, we want
to find the asymptotics of

N I
� (R, z0, z1, w) = #{γ ∈ �|d(z1, γw) ≤ R, ϕz0,w(γ ) ∈ I }. (35)

Our strategy for finding the asymptotics is the following: we find the hyperbolic distance from z0

to the intersection(s) between the hyperbolic circle with center at z1 and radius R and the geodesic
through z0 determined by an angle t ∈ [−π, π ] relative to the vertical geodesic through z0. Once we
have an asymptotic expression for this distance we can make a Riemann sum approximation of the
counting function (35). The summands can be estimated through Theorem 1.1 leading to a proof of
Theorem 1.3.

We may safely assume that z0 = i – it is easy to extend our results to the general case. We would like
to find the distance from i to the relevant intersection point which will be denoted by w′ = x ′ + iy ′.
There are two intersection points, but we choose the one that has negative real part for t > 0. This
distance will be denoted Q(z1, t, R).

Now fix z1, t and R. Let α ∈ R and δ ∈ R+ denote the center and the radius, respectively, of the
Euclidean half-circle, which is the geodesic through i and w′. From Fig. 3 it is clear that

δ = 1/| sin(t)|, α = − cot(t) (36)

if t �= 0, ±π . Thus we see that

y ′ =
√

δ2 − (x ′ − α)2 =
√

1 − x ′2 + 2αx ′. (37)

Figure 3. Hyperbolic circle with center z1 and radius R.
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On the other hand, it is well-known that the locus of points on the hyperbolic circle with center at
x1 + iy1 and radius R is determined by the equation

|x1 + iy1 cosh(R) − z| = y1 sinh(R),

which is equivalent to
x2 + y2 + x2

1 − 2xx1 + y2
1 = 2y1y cosh(R).

Using the expression for y ′ given in (37) we obtain the equation

β

2
+ (α − x1)x

′ = y1 cosh(R)
√

δ2 − (x ′ − α)2 (38)

for x ′, where β = |z1|2 + 1. By squaring (38) we get the quadratic equation

(
(α − x1)

2

y2
1 cosh2(R)

+ 1

)
x ′2 +

(
β(α − x1)

y2
1 cosh2(R)

− 2α

)
x ′ + β2

4y2
1 cosh2(R)

− 1 = 0,

with the solution

x ′ =
α − β(α−x1)

2y2
1 cosh2(R)

− sign(t)
√

δ2 + (α−x1)2

y2
1 cosh2(R)

− β2

4y2
1 cosh2(R)

− αβ(α−x1)

y2
1 cosh2(R)

1 +
(

α−x1
y1 cosh(R)

)2 . (39)

Naturally, the quadratic equation has two solutions, but the solution above is the intersection point
we are interested in. The distance Q(z1, t, R) is

Q(z1, t, R) = log

( |w′ + i| + |w′ − i|
|w′ + i| − |w′ − i|

)
. (40)

We note that

|w′ + i| + |w′ − i|
|w′ + i| − |w′ − i| = x ′2 + y ′2 + 1 + √

(x ′2 + y ′2 + 1)2 − 4y ′2

2y ′

= 1 + αx ′ + δ|x ′|
y ′ (41)

= 1 + αx ′ − δ′x ′

y ′ ,

where δ′ = 1/ sin(t). Using Taylor’s formula with remainder we see that

sign(t)

√
δ2 + (α − x1)2

y2
1 cosh2(R)

− β2

4y2
1 cosh2(R)

− αβ(α − x1)

y2
1 cosh2(R)

= δ′ +
(α−x1)

2

y2
1 cosh2(R)

− β2

4y2
1 cosh2(R)

− αβ(α−x1)

y2
1 cosh2(R)

2δ′ + O

(
δ

cosh4(R)

)
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as R → ∞, where the constant implied depends on z1. From the above equation and (41) we
deduce that

x ′ = α − δ′

1 +
(

α−x1
y1 cosh(R)

)2 + O((1 + δ)e−R)

1 +
(

α−x1
y1 cosh(R)

)2 (42)

and hence

1 + αx ′ − δ′x ′ = 1 + (α − δ′)2

1 + ((α − x1)/y1 cosh(R))2
+ O(δ(1 + δ)e−R)

1 + ((α − x1)/y1 cosh(R))2
. (43)

This implies that

sin2(t)

(
1 +

(
α − x1

y1 cosh(R)

)2
)

(1 + αx ′ − δ′x ′) = 2 + 2 cos(t) + O(e−R). (44)

Now we look at

y ′2
(

1 +
(

α − x1

y1 cosh(R)

)2
)

.

Using Taylor’s formula as before we get

y ′2
(

1 +
(

α − x1

y1 cosh(R)

)2
)2

=
(

1 +
(

α − x1

y1 cosh(R)

)2
)2

−
(

α − β(α − x1)

2y2
1 cosh2(R)

− sign(t)

√
δ2 + (α − x1)2

y2
1 cosh2(R)

− β2

4y2
1 cosh2(R)

− αβ(α − x1)

y2
1 cosh2(R)

)2

+ 2α

(
1 +

(
α − x1

y1 cosh(R)

)2
) (

α − β(α − x1)

2y2
1 cosh2(R)

− sign(t)

√
δ2 + (α − x1)2

y2
1 cosh2(R)

− β2

4y2
1 cosh2(R)

− αβ(α − x1)

y2
1 cosh2(R)

)

= 1

y2
1 cosh2(R)

(
β2

4
+ (α − x1)

2 + αβ(α − x1) + 2α2(α − x1)
2

− δ′(α − x1)(β + 2α(α − x1))

)
+ O

(
δ4

cosh4(R)

)

= (β − (β − 2) cos(t) + 2x1 sin(t))2(1 + cos(t))2

4y2
1 cosh2(R) sin4(t)

+ O

(
δ4

cosh4(R)

)
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as R → ∞. From this we conclude that

1 + cos(t)

2y ′
(

1 +
(

α−x1
y1 cosh(R)

)2
)

sin2(t)

= y1 cosh(R)

β − (β − 2) cos(t) + 2x1 sin(t)
+ O(e−4R)

= y1e
R

2(β − (β − 2) cos(t) + 2x1 sin(t))
+ O(e−R). (45)

We are interested in eQ(z1,t,R). Combining (41), (40), (45) and (44) we conclude that

eQ(z1,t,R) = 1 + αx ′ + δ′x ′

y ′ = 2y1e
R

β − (β − 2) cos(t) + 2x1 sin(t)
+ O(1). (46)

To finish the proof we use the following elementary lemma which ‘integrates’ Theorem 1.1 over
more general regions:

LEMMA 3.1 Let D(R, θ) : R+ × R/Z → R+ be a function which satisfies eD(R,θ) = k(θ)eR +
O(eβR) for some β < 1 uniformly in θ . Assume that k(θ) ∈ C1(R/Z). Then as R → ∞

NI
�,D(R, z0, z1) : = #{γ ∈ � | d(z0, γ z1) ≤ D(R, ϕz0,z1(γ )), ϕz0,z1(γ ) ∈ I }

= κ�π

vol(�\H)

∫
I

k(θ) dθ eR + O(eδR)

for some δ < 1.

Proof . Let B = B(R) be an integer-valued function of R to be determined later. For each integer
j ≤ B, we choose ωj ,

ωj ∈
[
a + (j − 1)(b − a)

B
, a + j (b − a)

B

]

such that

k(ωj ) = inf

{
k(ω)

∣∣∣∣ ω ∈
[
a + (j − 1)(b − a)

B
, a + j (b − a)

B

]}

and

k(ωj ) = sup

{
k(ω)

∣∣∣∣ ω ∈
[
a + (j − 1)(b − a)

B
, a + j (b − a)

B

]}
.

We split the interval in B equal intervals (and compensate for counting the endpoints twice) to get

NI
�,D(R, z0, z1) =

B∑
j=0

N
[a+ (j−1)

B
(b−a),a+ j

B
(b−a)]

�,D (R, z0, z1)

−
B−1∑
j=1

N
[a+ j

B
(b−a),a+ j

B
(b−a)]

�,D (R, z0, z1).
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The last sum is O(BeαR) by Theorem 1.1 and the assumption on D(R, θ). The first sum can be
evaluated as follows. By using Theorem 1.1 again we have

κ�π(b − a)

B vol (�\H)
ωje

R − CeαR ≤ N
[a+ (j−1)

B
(b−a),a+ j

B
(b−a)]

�,D (R, z0, z1)

≤ κ�π(b − a)eR

B vol (�\H)
ωj + CeαR.

Summing this inequality we find the Riemann sums

B∑
j=1

ωj

(b − a)

B
,

B∑
j=1

ωj (b − a)

B
.

Since k is C1 these converge to
∫
I
k(θ) dθ with rate O(1/B) as is seen using the mean value theorem.

We therefore find that

NI
�,D(R, z0, z1) = κ�π

vol(�\H)

∫
I

k(θ) dθ eR + O(eR/B) + O(BeαR).

Balancing the error terms we get the result.

We can now finish the proof of Theorem 1.3. Let ρz0,z1(ω) denote the fraction

2y0y1

((x0 − x1)2 + y2
0 + y2

1 )(1 − cos(2πω)) + 2y2
0 cos(2πω) + 2(x1 − x0)y0 sin(2πω)

.

We start with the case z0 = i. Equation (46) allows us to use Lemma 3.1, which gives Theorem 1.3
immediately. The general case can easily be reduced to the case where z0 = i by conjugation of �

with the element
( √

y0 x0/
√

y0

0 1/
√

y0

)
. This finishes the proof of Theorem 1.3.
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Divisor Problems and the Pair Correlation for the
Fractional Parts of n2α





DIVISOR PROBLEMS AND THE PAIR CORRELATION FOR THE
FRACTIONAL PARTS OF n2α

JIMI L. TRUELSEN

Abstract. Z. Rudnick and P. Sarnak have proved that the pair correlation for the fractional
parts of n2α is Poissonian for almost all α. However, they were not able to find a specific α
for which it holds. We show that the problem is related to the problem of determining the
number of (a, b, r) ∈ N3 such that a ≤M , b ≤ N , r ≤ K and pab ≡ r(q) for p and q coprime.
With suitable assumptions on the relative size of K, M , N and q one should expect there to
be KMN/q such triples asymptotically and we will show that this holds on average.

1. Introduction

For t ∈ R and q ∈ N let

‖t‖q = inf
n∈Z
|t− qn|,

and set ‖ · ‖ = ‖ · ‖1. Clearly ‖ · ‖q defines a norm on R/qZ. For a sequence {an}∞1 ⊂ R/Z,
x > 0 and N ∈ N we define

R2(x,N, {an}∞1 ) = N−1#
{

(m,n) ∈ N2
∣∣m,n ≤ N, n 6= m, ‖am − an‖ ≤

x

N

}
.

We say that the pair correlation for {an}∞1 is Poissonian if for every x > 0 we have that

lim
N→∞

R2(x,N, {an}∞1 ) = 2x.

Note that the limit is not uniform in x. We will be particularly interested in the case where
an equals the fractional parts of n2α for α irrational. The spacings between the elements of
this sequence correspond to the spacings between the energy levels of the boxed oscillator in
quantum mechanics [2]. We define (by an obvious abuse of notation)

R2(x,N, α) = R2(x,N, {n2α}∞1 ) = N−1#
{

(m,n) | m,n ≤ N, n 6= m, ‖m2α− n2α‖ ≤ x

N

}
.

Clearly we may as well assume that 0 < α < 1. We will be interested in α with certain
Diophantine properties. We say that an irrational number α is of type κ if

|α− p/q| � 1
qκ
.

for all p ∈ Z and q ∈ N. We say that α is “Diophantine” if α is of type 2 + ε for any
ε > 0. In particular all real, irrational algebraic numbers are Diophantine (Roth’s theorem –
see Theorem 5.7.1 in [10]). Note also that almost all α (with respect to the Lebesgue measure)
are Diophantine. To see this we use the identity of sets

{β ∈ R | β is not Diophantine} =
∞⋃

n=1

⋃

l∈Z

∞⋂

k=1

∞⋃

q=k

q⋃

p=1

[
l +

p

q
− 1
q2+1/n

, l +
p

q
+

1
q2+1/n

]
.
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Let L denote the Lebesgue measure on the real line. We see that

L




q⋃

p=1

[
l +

p

q
− 1
q2+1/n

, l +
p

q
+

1
q2+1/n

]
 = 2q−(1+1/n).

Since
∞∑

q=1

q−(1+1/n) <∞

it follows from the Borel-Cantelli lemma that

L



∞⋂

k=1

∞⋃

q=k

q⋃

p=1

[
l +

p

q
− 1
q2+1/n

, l +
p

q
+

1
q2+1/n

]
 = 0.

Thus the set of non-Diophantine real numbers is a null set.
It is a classical result due to H. Weyl [16] that the sequence ndα is equidistributed modulo 1

for any integer d ≥ 1. However, it is not true that the pair correlation for the fractional parts
of ndα, d ≥ 2 is Poissonian for all irrational α (for d = 1 it is never the case – see Exercise
12.6.3 in [10]). A simple construction shows (see [12] p. 62) that α must be at least of type
d+ 1.

Z. Rudnick and P. Sarnak have proved [12, Theorem 1] that the pair correlation for the frac-
tional parts of ndα is Poissonian for almost all α. Subsequently J. Marklof and A. Strömbergsson
[9], and D. R. Heath-Brown [5] have given different proofs in the case d = 2. However, one
does not know of any specific α for which it holds, but Rudnick and Sarnak made the following
conjecture:

Conjecture 1.1. Assume α is Diophantine. Then the pair correlation for the fractional parts
of n2α is Poissonian.

Furthermore, in [5] Heath-Brown was able to show (using a lattice point strategy) that for
α of type 9/4

R2(x,N, α) = 2x+O(x7/8),(1.1)

whenever 1 ≤ x ≤ logN , where the constant implied depends on α. This supports Conjecture
1.1 and suggests that perhaps the condition on the Diophantine approximation in the conjecture
can be relaxed to some extend.

We remark that the m-level correlation for the fractional parts of n2α has been studied
by Rudnick, Sarnak and Zaharescu in [13] and by Zaharescu in [17]. It is not known if the
fractional parts of n2α for almost all α have Poissonian behavior, i.e. have the same distribution
as a sequence of independent and uniformly distributed random variables, but it is expected
(cf. the conjecture on page 38 in [13]).

In this paper we will only be concerned with Conjecture 1.1 (not higher level correlations).
We suggest a line of attack that is based on the study of the function

τM,N (m) = #{(a, b) ∈ N2 | a ≤M, b ≤ N, ab = m},
where m ∈ N and M,N ≥ 1. We also define τ∗M = τM,M . We make the following conjecture:

Conjecture 1.2. Let K,M,N ≥ 1 with M � N (i.e. C1N ≤ M ≤ C2N) and K ≥ Nη for
some η > 0. Assume also that q ≤ N2−δ for some δ > 0 and (q, ρ) = 1. Then

∑

r≤K

∑

m≡ρr(q)
τM,N (m) ∼ KMN

q

as N →∞ uniformly in M , K, q and ρ. The rate of convergence may depend on η, δ, C1 and
C2.
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Conjecture 1.2 has applications to the pair correlation problem at hand. We will show that:

Proposition 1.3. Conjecture 1.2 implies that the pair correlation for the fractional parts of
n2α is Poissonian for any α of type 3− δ for any δ ∈ (0, 1).

This is an immediate consequence of Proposition 2.3. As mentioned previously the pair
correlation for the fractional parts of n2α is not Poissonian if α is not of type 3. Conjecture
1.2 claims that 3− δ is sufficient.

Conjecture 1.2 seems bold but natural. Indeed the conjecture provably holds if q is smaller
than N1−δ (see Proposition 3.2 below). However, it turns out that we need q ≥ N

3
2

+δ for our
purpose. We can actually obtain partial results for larger q as well based on a lattice point
approach using the ideas of Heath-Brown [5]. Before we can state the result we introduce some
terminology. We say that a rational number p/q is of type (e,K) if

∣∣∣∣
p

q
− u

v

∣∣∣∣ ≥
1
Kve

for any rational number u/v with u/v 6= p/q. One easily checks that if α is an irrational number
of type e then there exists K > 0 such that the convergents will be of type (e,K) from some
step.

Modifying the proof of (1.1) we prove the following (τ denotes the ordinary divisor function):

Theorem 1.4. Let K,M,N ≥ 3 with M � N and let γ ∈ (0, 1). Assume that

q1+δ ≤
(
N2

K

)1/(1+γ)

(1.2)

for some δ > 0 and KN/q ≥ 1. Then

∑

|r|≤K

∑

pm≡r(q)
τM,N (m) =

2KMN

q
+O

(
N(KN/q)7/8 +

N2

q

(
τ(q)2(logN)3 +

K(log logN)2

(logN)1/4

))

uniformly in M , K, p and q for p/q of type (2 + γ,K).

It is well known (see e.g. [6]) that one expects that
∑

n≤x
n≡r(q)

τ(n) ∼ x

q2
log x

∑

d|(q,r)

∑

c| q
d

dcµ
( q
dc

)
(1.3)

as x → ∞ for q ≤ x1−δ for some δ > 0. Average results supporting this conjecture have been
considered by Banks, Heath-Brown and Shparlinski [1], and Blomer [3]. If we adapt (1.3) to
τM,N we should expect that

∑

n≡r(q)
τM,N (n) ∼ MN

q2

∑

d|(q,r)

∑

c| q
d

dcµ
( q
dc

)
.(1.4)

Note that
∑

d|(q,r)

∑

c| q
d

dcµ
( q
dc

)
=
∑

d|(q,r)
dϕ
(q
d

)
.(1.5)

It has been proved by Linnik and Vinogradov [8] that
∑

m≤x
m≡r(q)

τ(m)� ϕ(q)x log x
q2

(1.6)
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for q ≤ x1−δ and (r, q) = 1, where the constant implied depends on δ > 0 only. In view of
Conjecture 1.2 and (1.6) it would be interesting to find upper bounds for

∑

m≡r(q)
τ∗N (m).

Heath-Brown [5] suggested the following conjecture which is the analogue of (1.6) for τ∗N :

Conjecture 1.5. Let δ ∈ (0, 1). Then
∑

m≡r(q)
τ∗N (m)� ϕ(q)N2

q2

uniformly for (r, q) = 1 and q ≤ N2−δ, where the constant implied depends only on δ.

Using the work of M. Nair and G. Tenenbaum [11] we prove an upper bound for the sum in
Conjecture 1.5.

Proposition 1.6. Let q ≤ N2−δ. Then
∑

m≡r(q)
τ∗N (m)� N2

ϕ(q)
e
√

(2+ε)(log logN)(log log logN)

uniformly for (r, q) = 1 for any ε > 0.

Note that the estimate in the proposition above is off by less than a factor of (logN)ε

compared to Conjecture 1.5 since q/ϕ(q)� log log q.
The function τM,N is complicated. There is another similar function of interest

τM (m) = #{d ∈ N | d ≤M, d | m}.
The function τM is in many ways simpler than τM,N . The estimate corresponding to Conjecture
1.5 holds. More precisely we prove:

Theorem 1.7. Let 0 < δ ≤ 1, 0 < ε < 1
8 , 0 < κ and 2 ≤ N . Assume also that N ≥ qκ. Then

∑

x<n≤x+y
n≡r(q)

τN (n)� yϕ(q) logN
q2

uniformly for N , (r, q) = 1, x
1+4εδ
1+δ ≤ y ≤ x, x ≥ c0q

1+δ, where c0 and the constant implied
depends at most on δ and ε. In particular

∑

m≡r(q)
m≤x

τN (m)� ϕ(q)x logN
q2

.

Note that with N = x+ y we obtain
∑

m≡r(q)
x<m≤x+y

τ(m)� yϕ(q) log x
q2

.

This extension of (1.6) was also obtained by P. Shiu [14].
Finally we show that Conjecture 1.2 and Conjecture 1.5 holds on average. Indeed we start

by proving that (1.4) holds for most values of q and r if (q, r) is small:

Theorem 1.8. Let δ > 0 and assume M � N . Then

∑

(r,q)=k


 ∑

m≡r(q)
τM,N (m)− MN

q2

∑

d|k

∑

c| q
d

dcµ
( q
dc

)



2

� Nmax( 7
2

+ε,4−δ)

q

uniformly for q ≤ N2−δ.
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From Theorem 1.8 we can deduce the following:

Theorem 1.9. Let M,N ≥ 1 with M � N , q ∈ N and K ≥ Nη for some η > 0. Assume also
that q ≤ N2−δ for some δ > 0. Then

∑

(ρ,q)=1


∑

r≤K

∑

m≡ρr(q)
τM,N (m)− KMN

q




2

� K2N4

q

(
qε
(

1
q

+
1
K

)2

+Nmax(−1/2+ε,−δ)
)

for any ε > 0.

In Proposition 3.2 we show that Conjecture 1.2 holds for q ≤ N1−δ. Thus we can safely
restrict our attention to the case where q ≥

√
N . We have the following corollary, which states

that Conjecture 1.2 is true on average:

Corollary 1.10. Let M,N ≥ 1 with M � N , q ∈ N and K ≥ Nη for some η > 0. Assume
also that

√
N ≤ q ≤ N2−δ for some δ > 0. Then

1
ϕ(q)

∑

(ρ,q)=1


 q

KMN

∑

r≤K

∑

m≡ρr(q)
τM,N (m)− 1




2

� N−min(1/2,δ,2η)+ε

for any ε > 0.

The author would like to thank P. Sarnak for suggesting the problem of relating Conjecture
1.1 to a divisor problem and D. R. Heath-Brown for generously sharing his ideas on the problem
and providing crucial assistance at various stages. The author would also like to thank M.
Risager for comments on an earlier version of the manuscript.

2. Reducing the Question to an Arithmetic Problem

Set

S(x,N, α) =
#
{

(a, b) ∈ N× Z | 1 ≤ a < 2N, 1 ≤ |b| ≤ N − |N − a|, 2 | a+ b, ‖abα‖ ≤ x
N

}

N

By factoring m2 − n2 into a = m+ n and b = m− n we see that

0 ≤ S(x,N, α)−R2(x,N, α)

≤ 2
N

+
2
N

#
{
n ∈ N | n ≤ N, ‖n2α‖ ≤ x

N

}

→ 0

as N → ∞ (the difference between S and R2 is that in S we do not exclude all the cases
corresponding to m or n equal to 0). This follows since the fractional parts of n2α becomes
equidistributed in the unit interval. Thus if we want to study Poissonian behavior we may as
well study S(x,N, α) rather than R2(x,N, α).

From the elementary theory of continued fractions (see [10] Chapter 7) we know that the
convergents pn/qn of α satisfy

∣∣∣∣α−
pn
qn

∣∣∣∣ ≤
1

qnqn+1
(2.1)

and

qn+1pn − pn+1qn = ±1.(2.2)

Define R(y,N, p, q) by

# {(a, b) ∈ N× Z | 1 ≤ a < 2N, 1 ≤ |b| ≤ N − |N − a|, 2 | a+ b, ‖abp‖q ≤ y} .
We have the following:
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Proposition 2.1. Let α be irrational with convergents pn/qn. The pair correlation for the
fractional parts of n2α is Poissonian if and only if there for all fixed x > 0 exists κ > 0 and a
sequence {nk}∞1 such that N3+κ � qnN qnN+1 and

R
(xqnN

N
,N, pnN , qnN

)
∼ 2xN

as N →∞.

Proof. Note that

‖abα‖ ≤ x

N

if and only if
∥∥∥∥abpn + abqn

(
α− pn

qn

)∥∥∥∥
qn

≤ xqn
N

.

Now ∣∣∣∣abqn
(
α− pn

qn

)∣∣∣∣ ≤
N2

qn+1
,

and this implies that

R

(
xqn
N
− N2

qn
, N, pn, qn

)
≤ NS(α,N, x) ≤ R

(
xqn
N

+
N2

qn
, N, pn, qn

)
.

Assume N2

qn+1
= o

(xqn
N

)
as N →∞. Since R(y,N, p, q) is an increasing function of y we conclude

that for any ε > 0

R

(
(x− ε)qn

N
,N, pn, qn

)
≤ NS(α,N, x) ≤ R

(
(x+ ε)qn

N
,N, pn, qn

)

for N sufficiently large. From this the result follows easily. �

Now we have an arithmetic version of Conjecture 1.1. However, the constraints on a and
b in the definition of R(y,N, p, q) are a bit complicated. We can split R(y,N, p, q) into some
nicer pieces. The hope is that we can say something about these. This is where Conjecture 1.2
enters the picture as we will see below. First we make a (technical) conjecture:

Conjecture 2.2. Let K, λ, ζ, c > 0 be constants with λ < 1. Let N ≥ 1 and assume p/q ∈ Q

(with (p, q) = 1) is of type (2 + λ,K) and N
3

2+λ ≤ q ≤ N
3(1+λ)
2+λ . Then

∑

|r|≤ ζq
N

∑

pm≡r(q)
τcN,N (m) ∼ 2ζcN

as N →∞ uniformly in q and p.

Clearly Conjecture 1.2 implies Conjecture 2.2. From the next proposition we may therefore
conclude that Conjecture 1.2 implies Conjecture 1.1.

Proposition 2.3. Assume Conjecture 2.2 holds with some λ ∈ (0, 1) and for any K > 1. For
α of type 2 + β with β < λ the pair correlation for the fractional parts of n2α is Poissonian.
In particular Conjecture 1.1 holds.

Proof. Let us first ignore the technical conditions on N , p and q. We see that

R
(xq
N
,N, p, q

)
= #

{
(a, b) ∈ N2 | a, b ≤ N, 2 | a+ b, ‖abp‖q ≤ xq/N

}
+

2#
{

(a, b) ∈ N2 | N < a < 2N, 0 < b ≤ 2N − a, 2 | a+ b, ‖abp‖q ≤ xq/N
}
.

(2.3)
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We will see that the two terms are of the same size (if we assume Conjecture 2.2). We start by
considering the first term. We define

TM (m) = #{(a, b) ∈ N2 | a, b ≤M, a ≡ b(2), ab = m}.
Note that

TM (m) =





τ∗M (m) if m ≡ 1(2)
0 if m ≡ 2(4)
τ∗M/2(m/4) if m ≡ 0(4)

.(2.4)

Using this notation we see that

#
{

(a, b) ∈ N2 | a, b ≤ N, 2 | a+ b, ‖abp‖q ≤ xq/N
}

=
∑

|r|≤xq
N

∑

m≡rp(q)
TN (m),

where p is the inverse of p modulo q. Using (2.4) we can write this as
∑

|r|≤xq
N

∑

m≡rp(q)
TN (m) =

∑

|r|≤xq
N

( ∑

2k+1≡rp(q)
τ∗N (2k + 1) +

∑

4l≡rp(q)
τ∗N/2(l)

)
.

Furthermore we see that

∑

|r|≤xq
N

∑

4l≡rp(q)
τ∗N/2(l) =





∑
|r|≤xq

N

∑
l≡r4p(q) τ

∗
N/2(l) if q ≡ 1(2)

∑
|r|≤ xq

2N

∑
l≡r2p(q/2) τ

∗
N/2(l) if 2 ‖ q

∑
|r|≤ xq

4N

∑
l≡rp(q/4) τ

∗
N/2(l) if 4 | q

.(2.5)

By (2.5) Conjecture 2.2 implies that
∑

|r|≤xq
N

∑

4l≡rp(q)
τ∗N/2(l) ∼ 1

2
xN.

Note also that ∑

2k+1≡rp(q)
τ∗N (2k + 1) =

∑

m≡rp(q)
τ∗N (m)−

∑

2m≡rp(q)
τ∗N (2m).

If q is odd then
∑

2m≡rp(q)
τ∗N (2m) = 2

∑

m≡r2p(q)
τN,N/2(m)−

∑

m≡r2p(q)
τ∗N/2(m).

Thus Conjecture 2.2 implies
∑

|r|≤xq
N

∑

2k+1≡rp(q)
τ∗N (2k + 1) ∼ 1

2
xN.

Now assume q is even. This implies that p and p are odd. Thus m is even if and only if r is
even. Hence

∑

|r|≤xq
N

∑

2m≡rp(q)
τ∗N (2m) =

∑

|r|≤ xq
2N


2

∑

m≡rp(q/2)

τN,N/2(m)−
∑

m≡rp(q/2)

τ∗N/2(m)


 ∼ 3

2
xN.

Thus we conclude that ∑

|r|≤xq
N

∑

m≡rp(q)
TN (m) ∼ xN.

Now we consider the second term in (2.3) and we set

S = #
{

(a, b) ∈ N2 | N < a < 2N, 0 < b ≤ 2N − a, 2 | a+ b, ‖abp‖q ≤ xq/N
}
.
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For k, l1, l2 ∈ N such that l1 + l2 ≤ 2k we define

Tl1,l2(k) = #
{

(a, b) ∈ N2 | a ∈ I(k, l1), b ∈ J(k, l2), 2 | a+ b, ‖abp‖q ≤ xq/N
}
,

where

I(k, l1) = (N(1 + (l1 − 1)/2k), N(1 + l1/2k)]

and

J(k, l2) = (N(l2 − 1)/2k, Nl2/2k].

As before we deduce (using Conjecture 2.2) that

Tl1,l2(k) ∼ 1
4k
xN(2.6)

uniformly in l1 and l2 (since k is fixed). Clearly we have
∑

l1,l2
l1+l2≤2k−1

Tl1,l2(k)

≤ #
{

(a, b) ∈ N2 | N < a < 2N, 0 < b ≤ 2N − a, 2 | a+ b, ‖abp‖q ≤ xq/N
}

≤
∑

l1,l2
l1+l2≤2k

Tl1,l2(k).

Recall that #{(l1, l2) ∈ N2 | l1 + l2 ≤ m} = m(m+1)
2 . Using (2.6) we see that

1− 2−k

2
x ≤ lim inf

N

S

N
≤ lim sup

N

S

N
≤ 1 + 2−k

2
x.

Since this holds for any k we must have S ∼ xN/2 as desired. By Proposition 2.1 it remains
to prove that there exists κ > 0 such that for each N sufficiently large we can choose qn and

qn+1 such that N3+κ � qnqn+1. By Conjecture 2.2 we must take qn ≤ N
3(1+λ)
(2+λ) . Recall that α

is of type 2 + β. Choose n such that

qn ≤ N
3(1+λ)
(2+λ) ≤ qn+1.

The condition that α is of type 2 + β implies that

qnqn+1 � q2+β
n

and hence

qnqn+1 � q
1+ 1

1+β

n+1 ≥ N
3(1+λ)
(2+λ)

(1+ 1
1+β

)
.

Thus we can choose κ = λ−β
(1+β)(2+λ) . �

It should be mentioned that there may be some loss in using the rational approximation at
an early stage in Proposition 2.1. For this approach to work we must be able to work with
q ≥ N 3

2
+δ. In Theorem 1.4 we can say something about values of q that are slightly smaller. In

the proof of (1.1) Heath-Brown was able to work with α rather than its convergents and only
use the Diophantine approximation at the very end of the proof allowing the use of smaller
values of q.

By condition (2.2) we see that the inverse of pn modulo qn is ±qn+1. To begin with one
could study

∑

|r|≤xqn
N

∑

m≡rqn+1(qn)

τ∗N (m).

Perhaps one can use this information to say more about the pair correlation problem for specific
α’s such as

√
2 or the golden ratio where the qn’s are known.
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3. Preliminary Evidence for Conjecture 1.2

We will now explain why we should expect the asymptotics in Conjecture 1.2. We try the
“naive” approach. Define

δd(n) =

{
1 if d | n
0 if d - n

.

Assume M,N ≥ 2. Clearly τM,N (m) =
∑M

d=dm/Ne δd(m). Thus

∑

r≤K

∑

m≡ρr(q)
τM,N (m) =

∑

r≤K

∑

l≤MN−[rρ]q
q

(r,l)6=(0,0)

M∑

d=d(ql+[rρ]q)/Ne
δd(ql + [rρ]q)

=
∑

r≤K
r 6=0

∑

l≤MN−[rρ]q
q

∑

(ql+[rρ]q)/N≤d≤M
δd(ql + [rρ]q) +O(MNq−1+ε)

=
∑

r≤K
r 6=0

∑

[rρ]q/N≤d≤M

∑

0≤l≤(Nd−[rρ]q)/q

δd(ql + [rρ]q) +O(MNq−1+ε)

where [·]q denotes the remainder when dividing by q. Now the length of the l-interval can be
much smaller than d and this is where the approach fails. We should expect that

∑

[rρ]q/N≤d≤M

∑

0≤l≤(Nd−[rρ]q)/q

δd(ql + [rρ]q)

is roughly

∑

[rρ]q/N≤d≤M
(d,q)|r

Nd− [rρ]q
dq

(d, q) =
N

q

∑

d≤M
(d,q)|r

(d, q) +O



∑

d≤M
(d,q)|r

(d, q)
d


+O



N

q

∑

d≤q/N
(d,q)|r

(d, q)


 ,

and it is the case if q ≤ N1−δ. Using Lemma 3.1 below we see that the “expected” value of∑
r≤K

∑
m≡ρr(q) τM,N (m) is

KMN

q
+O((K +M)Nq−1+ε).

On numerous occasions we will use the fact that

ϕ(x, q) = #{n ∈ N | n ≤ x, (n, q) = 1} =
∑

d|q
µ(d)

[x
d

]
=
ϕ(q)x
q

+O(τ(q)).(3.1)

This implies that

#{r ∈ N | r ≤ K, (r, q) = k} =
Kϕ(q/k)

q
+O(qε).(3.2)

Lemma 3.1. Let N,K ≥ 1 and q ∈ N. Then
∑

r≤K

∑

d≤N
(d,q)|r

(d, r) = KN +O((K +N)qε),(3.3)

∑

r≤K

∑

d≤N
(d,q)|r

(d, r)
d

= K logN +O(Kqε) +O(qε logN)(3.4)
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and
∑

r≤K
r
∑

d≤N
(d,q)|r

(d, r) =
1
2
NK2 +O(K(K +N)qε)(3.5)

for any ε > 0.

Proof. We see that
∑

r≤K

∑

d≤N
(d,q)|r

(d, r) =
∑

k|q
k≤K

k#{(r, d) ∈ N2 | r ≤ K, d ≤ N, (d, q) = k, k | r}

=
∑

k|q
k≤K

k

[
K

k

]
#{d ∈ N | d ≤ N, (d, q) = k}

=
∑

k|q
k≤K

k

[
K

k

] ∑

a|q/k
µ(a)

[
N

ak

]

=
∑

k|q
k≤K

k

(
K

k
+O(1)

) ∑

a|q/k
µ(a)

(
N

ak
+O(1)

)

= KN
∑

k|q
k≤K

∑

a|q/k

µ(a)
ak

+O(Kqε) +O(Nqε)

for any ε > 0. Now
∑

k|q
k≤K

∑

a|q/k

µ(a)
ak

= q−1
∑

k|q
k≤K

ϕ(q/k) = 1− q−1
∑

k|q
k>K

ϕ(q/k)

and
∑

k|q
k>K

ϕ(q/k) ≤ q
∑

k|q
k>K

1
k
≤ q

K

∑

k|q
k>K

1 = O

(
q1+ε

K

)
.

Thus
∑

r≤K

∑

d≤N
(d,q)|r

(d, r) = KN

(
1 +O

(
qε

K

))
+O(Kqε) +O(Nqε) = KN +O((K +N)qε).

Using partial summation we see that
∑

r≤K

∑

d≤N
(d,q)|r

(d, r)
d

= N−1
∑

r≤K

∑

d≤N
(d,q)|r

(d, r) +
∫ N

1

1
t2

∑

r≤K

∑

d≤t
(d,q)|r

(d, r)dt

= K +O((K/N + 1)qε) +K logN +O(Kqε) +O(qε logN)

= K logN +O((K + 1)qε) +O(qε logN).

The last part of the proposition is also proved using partial summation. We omit the details. �

The difficulty in proving Conjecture 1.2 obviously lies in dealing with the fact that we only
consider a very small number of all the residue classes (K can be much smaller than q) and
at the same time M and N can be much smaller than q (as pointed out earlier). Indeed the
above shows:
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Proposition 3.2. Let K,M,N ≥ 1 with M � N and K ≥ Nη for some fixed η > 0. Assume
also that q ≤ N1−δ for some δ > 0 and (q, ρ) = 1. Then

∑

r≤K

∑

m≡ρr(q)
τM,N (m) ∼ KMN

q

as N →∞ uniformly in M , K, q and ρ.

Conjecture 1.2 says that the asymptotic formula above still holds if we extend the range of
q to q ≤ N2−δ. In the same way we see that Conjecture 1.5 holds for small values of q. More
precisely we have

∑

m≡r(q)
τ∗N (m)� N2ϕ(q)

q2

for q ≤ N1−δ.
The following lemma will be useful in the next section. It shows that (1.4) would imply the

asymptotics in Conjecture 2.2.

Lemma 3.3. Let q ∈ N. Then

q∑

r=1

∑

d|(q,r)

∑

c| q
d

dcµ
( q
dc

)
= q2.

If K > 0 then for any ε > 0
∑

r≤K

∑

d|(q,r)

∑

c| q
d

dcµ
( q
dc

)
= Kq +O((K + q)qε).

Proof. We see that

q∑

r=1

∑

d|(q,r)

∑

c| q
d

dcµ
( q
dc

)
=
∑

k|q
ϕ(q/k)

∑

d|k

∑

c| q
d

dcµ
( q
dc

)
.

Since the left hand side is a multiplicative function of q it suffices to prove that

l∑

n=0

ϕ(pl−n)
n∑

m=0

l−m∑

j=0

pm+jµ(pl−m−j) = p2l.(3.6)

for a prime p. One easily checks that

l∑

n=0

ϕ(pl−n)
n∑

m=0

l−m∑

j=0

pm+jµ(pl−m−j) = pl−1 + pl(1− p−1)
l∑

n=0

ϕ(pl−n)(n+ 1)

= pl−1 + pl(1− p−1)

(
l + 1 + pl(1− p−1)

l−1∑

n=0

n+ 1
pn

)
.

The identity (3.6) now follows since

l−1∑

n=0

n+ 1
pn

=
1− p−l−1

(1− p−1)2
− l + 1
pl(1− p−1)

.
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From the first part we deduce using (3.2) that
∑

r≤K

∑

d|(q,r)

∑

c| q
d

dcµ
( q
dc

)
=
K

q

∑

k|q
k≤K

ϕ
( q
k

)∑

d|k

∑

c| q
d

dcµ
( q
dc

)
+O(Kqε)

= Kq +
K

q

∑

k|q
k>K

ϕ
( q
k

)∑

d|k
dϕ
(q
d

)
+O(Kqε)

= Kq +O((q +K)qε).

�

4. Average Results

From [4] we know how to count elements of an arithmetic progression in a given interval:

Lemma 4.1. Let a < b, r ∈ Z and H ∈ N with H < q. Then
∑

a<m≤b
m≡r(q)

1 =
b− a
q

+
∑

1≤|h|≤H
Ca,b(h)e(−hr/q) +O (θH((a− r)/q) + θH((b− r)/q)) ,

where

θH(s) =

{
min(1, 1/(H‖s‖)) if s /∈ Z
1 if s ∈ Z

and

Ca,b(n) =
e(bn/q)− e(an/q)

2πin
.

Note that H1 ≤ H2 implies that θH1(s) ≥ θH2(s). It will be convenient to set

EH(a, b, r, q) = θH((a− r)/q) + θH((b− r)/q).
In [1] the following lemma was proved:

Lemma 4.2. Let (r, q) = 1, H as in Lemma 4.1 and t ∈ R. Then
∑

c∈Zq
θH((t− rc)/q)� q1+ε

H

for any ε > 0, where the constant implied depends at most on ε.

We will use these results to prove a technical lemma. Define

I(m,M,α, β, b, t) = {x ∈ N | max(m, (α+ t)/b) ≤ x ≤ min(M, (β + t)/b)}
and

J(m,M,α, β, b, t) = {x ∈ N | max(m, (α+ t)/b) < x ≤ min(M, (β + t)/b)} .
Lemma 4.3. Let N ≥ 1. Then

∑

a≤N1
b≤N2

∑

c∈Z
# {x ∈ I(1, N3, a,N4a, b, r + cq) | xb ≡ r + cq(a)}

=
∑

a≤N1
b≤N2

∑

c∈Z
(a,b)|cq+r

(a, b)
a

∫ N3

0
1{t∈R|(r+cq)/b≤t≤(N4a+r+cq)/b}(t)dt+O

(
N

7
2

+ε

q

)

for Ni � N , q ≤ N2−δ and |r| � N2. In the first sum a, b ∈ N.
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Proof. We see that
∑

a≤N1
b≤N2

∑

c∈Z
# {x ∈ I(1, N3, a,N4a, b, r + cq) | xb ≡ r + cq(a)}

=
∑

a≤N1
b≤N2

∑

c∈Z
# {x ∈ J(0, N3, 0, N4a, b, r + cq) | xb ≡ r + cq(a)}+O

(
N3+ε

q

)
.

We apply Lemma 4.1 and get
∑

a≤N1
b≤N2

∑

c∈Z
# {x ∈ J(0, N3, 0, N4a, b, r + cq) | xb ≡ r + cq(a)}

=
∑

a≤N1
b≤N2

∑

c∈Z
(a,b)|cq+r

(a, b)
a

∫ N3

0
1{t∈R|(r+cq)/b≤t≤(N4a+r+cq)/b}(t)dt+ F + E1 + E2

where the error term E1 accounts for the contribution from EH (we choose H = [Nλ]) for a
and b such that

min
(

a

(a, r + cq)
,

b

(b, r + cq)

)
> Nλ,(4.1)

F is the exponential sum (we set M = maxNi)

∑

|c|≤M2

q

∑

k|cq+r

∣∣∣∣
∑

Nλ≤α≤N1
k

∑

Nλ≤β≤N2
k

(α,β)=1

∑

1≤|h|≤H
C

max
(

0, r+cq
βk

)
,min

(
N,Nαk+r+cq

βk

)(h)e
(−h(r + cq)β

αk

)∣∣∣∣,

and E2 accounts for the the entire error coming from a and b not satisfying (4.1). We estimate
E2 trivially by

E2 �
∑

|c|≤M2

q

∑

k|cq+r
(N1 +N2)Nλ � N3+λ+ε

q
.

We see that the error term E1 is at most of order
∑

|c|≤M2

q

∑

k|cq+r

∑

δ1,δ2| r+cqk

∑

(α,β)∈A
EH

(
max

(
0,
r + cq

βk

)
,min

(
N,

Nαk + r + cq

βk

)
,
β(r + cq)

k
, α

)
,

where

A =
{

(α, β) ∈ N2

∣∣∣∣α ∈ I1, β ∈ I2, (α, β) = 1,
(
α,
r + cq

k

)
= δ1,

(
β,
r + cq

k

)
= δ2

}
,

I1 = [δ1N
λ, N1/k] and I2 = [δ2N

λ, N2/k]. First we consider

∑

(α,β)∈A
θH

(
β(r + cq)

αk

)
.

From Lemma 4.2 it follows that

∑

β∈I2
(α,β)∈A

θH

(
β(r + cq)

αk

)
� N−λ

(
N2

(
α, r+cqk

)

αk
+ 1

)(
α(

α, r+cqk
)
)1+ε

,
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and

∑

α≤N1
k

(
N2

(
α, r+cqk

)

αk
+ 1

)(
α(

α, r+cqk
)
)1+ε

� N2+2ε.

Thus it follows that

∑

|c|≤M2

q

∑

k|cq+r

∑

(α,β)∈A
θH

(
β(r + cq)

αk

)
� N4−λ+3ε

q
.

We now consider

∑

(α,β)∈A
θH

(
(β − 1/β)(r + cq)

αk

)
=

∑

(α,β)∈A
θH

(
α(r + cq)

βk

)
,

where α is the inverse of α modulo β. Again we apply Lemma 4.2 and obtain

∑

|c|≤M2

q

∑

k|cq+r

∑

(α,β)∈A
θH

(
(β − 1/β)(r + cq)

αk

)
� N4−λ+ε

q
.

The remaining terms of similar type are estimated in the same way.
We now consider the exponential sum

∑

Nλ<α≤N1
k

∑

Nλ<β≤N2
k

(α,β)=1

∑

1≤|h|≤H
C

max
(

0, r+cq
βk

)
,min

(
N,Nαk+r+cq

βk

)(h)e
(−h(r + cq)β

αk

)
.

First we look at

∑

1≤|h|≤H

1
2πih

∑

Nλ<α≤N1
k

∑

Nλ<β≤N2
k

(α,β)=1

e

(−h(r + cq)β
αk

)
.

Using standard exponential sum techniques we rewrite the inner sum (see e.g. [1])

∑

Nλ<β≤N2
k

(α,β)=1

e

(−h(r + cq)β
αk

)
=

α−1∑

β=0
(α,β)=1

e

(−h(r + cq)β
αk

) ∑

Nλ<ζ≤N2
k

1
α

α−1∑

ξ=0

e

(
ξ(β − ζ)

α

)

=
1
α

α−1∑

ξ=0

α−1∑

β=0
(α,β)=1

e

(
ξβ − hβ(r + cq)/k

α

) ∑

Nλ<ζ≤N2
k

e

(
−ξζ
α

)
.

The last sum is just a Weyl sum and is easily estimated (see e.g. [7] Section 8.2) by
∣∣∣∣
∑

Nλ<ζ≤N2
k

e

(
−ξζ
α

)∣∣∣∣ ≤ min
(
N2,

α

ξ

)
.
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Thus using the Weil bound for Kloosterman sums we obtain

∣∣∣∣
∑

Nλ<β≤N2
k

(α,β)=1

e

(−h(r + cq)β
αk

)∣∣∣∣ ≤
1
α

α−1∑

ξ=0

∣∣∣∣
α−1∑

β=0
(α,β)=1

e

(
ξβ − hβ(r + cq)/k

α

)∣∣∣∣
∣∣∣∣
∑

Nλ<ζ≤N2
k

e

(
−ξζ
α

)∣∣∣∣

� α−
1
2

+ε

(
α, h

r + cq

k

) 1
2


N +

α−1∑

ξ=1

α

ξ




� N
1
2

+2ε

(
α, h

r + cq

k

) 1
2

and hence

∑

α≤N1

(
α, h

r + cq

k

) 1
2

=
∑

d|h r+cq
k

√
d#
{
α ∈ N

∣∣∣∣α ≤ N1,

(
α, h

r + cq

k

)
= d

}

�
∑

d|h r+cq
k

d≤N1

√
dN1

d

� N1+ε.

The contribution to F is

∑

|c|≤M2

q

∑

k|cq+r

∑

1≤h≤Nλ

N
3
2

+3ε

h
� N

7
2

+5ε

q
.

The remaining terms are handled in a similar way. Choosing λ = 1/2 yields the desired
result. �

We need a slightly different version of the previous lemma as well

Lemma 4.4. Let N ≥ 1, k | q and d1, d2 | k. Then

∑

ai≤M/di
(ai,q/di)=1

∑

c∈Z
# {x ∈ I(1, Nd1/k, a2, Na2d2, ka1, cq) | xa1 ≡ cq/k(a2), (x, q/k) = 1}

=
kϕ(q/k)

q

∑

ai≤M/di
(ai,q/di)=1

∑

c∈Z
(a1,a2)|c

(a1, a2)
a2

∫ Nd1/k

0
1{t∈R|cq/(ka1)≤t≤(Na2d2+cq)/(ka1)}(t)dt+

O

(
N

7
2

+ε

q

)

for M � N and q ≤ N2−δ.
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Proof. As in the proof of Lemma 4.3 we see that
∑

ai≤M/di
(ai,q/di)=1

∑

c∈Z
# {x ∈ I(1, Nd1/k, a2, Na2d2, ka1, cq) | xa1 ≡ cq/k(a2), (x, q/k) = 1}

=
∑

ai≤M/di
(ai,q/di)=1

∑

c∈Z
# {x ∈ J(0, Nd1/k, 0, Na2d2, ka1, cq) | xa1 ≡ cq/k(a2), (x, q/k) = 1}+

O

(
N3+ε

q

)
.

Assume (q, l) = 1 and l | r. Then

#{x ∈ Z | a < x ≤ b, x ≡ r(q), (x, l) = 1} = #{c ∈ Z | (a− r)/q < c ≤ (b− r)/q, (c, l) = 1}

=
∑

d|l
µ(d)

([
b− r
qd

]
−
[
a− r
qd

])

=
∑

d|l
µ(d)#{x ∈ Z | a < x ≤ b, x ≡ r(qd)}.

Thus

# {x ∈ J(0, Nd1/k, 0, Na2d2, ka1, cq) | xa1 ≡ cq/k(a2), (x, q/k) = 1} =
∑

d| q
k

µ(d)# {x ∈ J(0, Nd1/k, 0, Na2d2, ka1, cq) | xa1 ≡ cq/k(a2)} .

We can now proceed as in the proof of Lemma 4.4. The idea is the same so we only sketch the
rest of the proof.

For the θH sums we are lead to consider (essentially) sums of the form
∑

|c|≤N2

q

∑

δ| q
k

∑

αi≤M/di
(αi,q/di)=1

θH

(
cqα1

kδα2

)

and these can be estimated just as in Lemma 4.4 since (roughly speaking) the sum above just
has fewer terms than the ones considered in the previous lemma (we exclude the terms that do
not meet a certain coprimality condition) and all terms are non-negative. We have to be more
careful with the exponential sum terms. We consider sums of the form

∑

|c|≤N2

q

∑

l| q
k

∑

δ|c

∣∣∣∣
∑

H<αi≤ M
δdi

(α1,α2)=(αi,q/di)=1

∑

1≤|h|≤H

1
h
e

(
−hcqα1

klδα2

)∣∣∣∣.(4.2)

In the inner sum we replace the coprimality condition (α1, q/d1) = 1 with a Möbius sum (setting
α1 = γλ) and get

∑

γ| q
d1

µ(γ)
∑

1≤|h|≤H

1
h

∑

H<α2≤ M
δd2

(α2,γq/d2)=1

∑

H
γ
<λ≤ M

γδd1
(λ,α2)=1

e

(
−γhcqλ
klδα2

)
.

The inner sum is estimated as in Lemma 4.3 by

∑

H<α2≤ M
δd2

(α2,γq/d2)=1

∣∣∣∣
∑

H
γ
<λ≤ M

γδd1
(λ,α2)=1

e

(
−γhcqλ
klδα2

)∣∣∣∣� N
1
2

+ε
∑

α2≤M
(α2,γq/d2)=1

(
α2,

hcq

lkδ

) 1
2

� N
3
2

+2ε.
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Thus we can estimate (4.2) by N
7
2+3ε

q . �

Using Lemma 4.3 we can now prove the following:

Theorem 4.5. Let K,M,N ≥ 1, q ∈ N and Nη ≤ K for some η > 0. Assume also that
q ≤ N2−δ for some δ > 0 and (ρ, q) = 1. Then

q∑

s=1


∑

r≤K

∑

m≡ρr+s(q)
τM,N (m)− KMN

q




2

� K2Nmax( 7
2

+ε,4−δ,4−η+ε)

q

for any ε > 0.

Proof. We see that

q∑

s=1


∑

r≤K

∑

m≡ρr+s(q)
τM,N (m)




2

=
∑

r≤K
r′≤K

∑

m≡m′+ρ(r−r′)(q)
τM,N (m)τM,N (m′)

=
∑

|l|≤K
Rl

∑

m≡m′+lρ(q)

τM,N (m)τM,N (m′)

where Rl = [K] + 1− |l|. We consider the innermost sum
∑

m≡m′+lρ(q)

τM,N (m)τM,N (m′) =

#{(a1, b1, a2, b2) ∈ N4 | a1, b1 ≤ N, a2, b2 ≤M, a1b1 ≡ a2b2 + ρl(q)}
(4.3)

We want to “switch” the roles of q and a2 and apply Lemma 4.3. Note that

a1b1 ≡ a2b2 + ρl(q)

exactly if there exists c ∈ Z such that

a1b1 − ρl − cq = a2b2.

Now fix a1 and a2. We see that (4.3) is
∑

a1,a2≤N
c∈Z

#
{
x ∈ I(1,M, a2,Ma2, a1, ρl + cq)

∣∣∣ xa1 ≡ ρl + cq(a2)
}

=
∑

a1,a2≤N
c∈Z

(a1,a2)|cq+ρl

(a1, a2)
a2

∫ M

0
1{t∈R|(ρl+cq)/a1≤t≤(ρl+cq)/a1+Ma2/a1}(t)dt+O

(
N

7
2

+ε

q

)

=
∑

a2,a1≤N
(a2,a1,q)|l

(a2, a1)
a2

∫ M

0

∑

(ta1−lρ)/q−Ma2/q≤c≤(ta1−lρ)/q
(a2,a1)|cq+ρl

1dt+O

(
N

7
2

+ε

q

)

= M
∑

a2,a1≤N
(a2,a1,q)|l

(a2, a1)
a2

Ma2(a2, a1, q)
q(a2, a1)

+O

(
N2 +

N
7
2

+ε

q

)

=
M2

q

∑

a2,a1≤N
(a2,a1,q)|l

(a2, a1, q) +O

(
Nmax( 7

2
+ε,4−δ)

q

)
.
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Again we consider the entire sum and see (using Lemma 3.1)

∑

|l|≤K
Rl

∑

a2,a1≤N
(a2,a1,q)|l

(a2, a1, q) =
N∑

a1=1

∑

|l|≤K
Rl

∑

a2≤N
(a2,a1,q)|l

(a2, a1, q)

= 2([K] + 1)
N∑

a1=1

(KN +O((K +N)qε)) +O(N2qε)−

N∑

a1=1

(
K2N +O(K(K +N)qε)

)

= K2N2 +O(NK(N +K)qε).

Thus

q∑

s=1


∑

r≤K

∑

m≡ρr(q)
τM,N (m)− KMN

q




2

=
∑

r≤K
r′≤K

∑

m≡m′+ρ(r−r′)(q)
τM,N (m)τM,N (m′)−

K2M2N2

q

= O

(
K2Nmax( 7

2
+ε,4−δ,4−η+ε)

q

)
.

�

This also shows that for the individual terms the asymptotics one should expect from Con-
jecture 2.2 holds for a subset of {s ∈ N | 1 ≤ s ≤ q} of full density in the following sense:

Corollary 4.6. Let ν > 0 and assumptions be as in Theorem 4.5. Then

#
{
s ∈ {1, . . . , q}

∣∣∣
∣∣∣1− q

KMN

∑

r≤K

∑

m≡ρr+s(q)
τM,N (m)

∣∣∣ > ν
}
� qN−min(δ, 1

2
,η)+ε

uniformly in K, q and ρ for any ε > 0.

In this connection it should be mentioned that if s is “bad” then so is its neighbors. In fact
we see that just one bad s (in the sense of Corollary 4.6) will imply that there are at least K1−ε

bad values of s.
We now proceed to the proof of Theorem 1.8.

Proof of Theorem 1.8. Recall that ϕ(q)/q � q1−ε for any ε > 0. Applying (3.2) we see that
∑

(r,q)=k

∑

m≡r(q)
τM,N (m) =

∑

(m,q)=k

τM,N (m)

=
∑

c|k
ϕ(M/c, q/c)ϕ(Nc/k, q/k)

=
∑

c|k

ϕ(q/c)ϕ(q/k)cMN

q2
+O(qεN).
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We proceed as in the proof of Theorem 4.5 and obtain using Lemma 4.4
∑

(q,r)=k

∑

m≡r(q)
m′≡r(q)

τM,N (m)τM,N (m′)

=
∑

di|k

∑

αi≤Mdi
(α,q/di)=1

∑

c∈Z
(α1,α2)|c

#
{
x ∈ I

(
1,
Nd1

k
, α2, Nα2d2, kα1, cq

) ∣∣∣∣xα1 ≡
cq

k
(α2),

(
x,
q

k

)
= 1
}

=
∑

di|k

∑

αi≤Mdi
(α,q/di)=1

∑

c∈Z
(α1,α2)|c

(α1, α2)ϕ(q/k)k
α2q

×

∫ Nd1
k

0
1{t∈R|cq/(kα1)<t≤(cq+Nα2d2)/(kα1)}(t)dt+O

(
N

7
2

+ε

q

)

=
N2ϕ(q/k)

q2

∑

di|k
d1d2

∑

αi≤Mdi
(α,q/di)=1

1 +O

(
Nmax(4−δ, 7

2
+ε)

q

)

=
M2N2ϕ(q/k)

q2


∑

d|k
dϕ(q/d)




2

+O

(
Nmax(4−δ, 7

2
+ε)

q

)
.

This proves the theorem. �

Finally we prove Theorem 1.9.

Proof of Theorem 1.9. We see that
∑

(ρ,q)=1

∑

r≤K

∑

m≡ρr(q)
τM,N (m) =

∑

r≤K

ϕ(q)
ϕ(q/(q, r))

∑

(m,q)=(r,q)

τM,N (m)

=
∑

k≤K
k|q

ϕ(q)
ϕ(q/k)

#{r ∈ N | r ≤ K, (r, q) = k}×

#{(a, b) ∈ N2 | a ≤M, b ≤ N, (ab, q) = k}.
In the same way we see that

#{(a, b) ∈ N2 | a ≤M, b ≤ N, (ab, q) = k} =
∑

l|k
#{b ∈ N | b ≤ N, (b, q) = l}×

#{a ∈ N | a ≤M, (a, q/l) = k/l}

=
∑

l|k

N

q
(ϕ(q/l) +O(qε))

Ml

q
(ϕ(q/k) +O(qε))

=
ϕ(q/k)N2

q2

∑

l|k
lϕ(q/l) +O

(
MN

q1−ε

)

≤ MNd(k)
k

+O

(
N2

q1−ε

)
.

(4.4)
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Thus

∑

k≤K
k|q

#{(a, b) ∈ N2 | a ≤M, b ≤ N, (ab, q) = k}

= MN −
∑

k>K
k|q

#{(a, b) ∈ N2 | a ≤M, b ≤ N, (ab, q) = k}

= MN +O

(
N2qε

K

)
.

(4.5)

Combining (3.2) and (4.5) it follows that

∑

(ρ,q)=1

∑

r≤K

∑

m≡ρr(q)
τM,N (m) =

ϕ(q)KMN

q
+O

(
ϕ(q)N2qε

q

)
.(4.6)

Now we look at


∑

r≤K

∑

m≡rρ(q)

τM,N (m)− KMN

q




2

and rewrite it as


∑

r≤K


 ∑

m≡rρ(q)

τM,N (m)− MN

q2

∑

d|(r,q)
dϕ
(q
d

)





2

+


MN

q2


Kq −

∑

r≤K

∑

d|(r,q)
dϕ
(q
d

)





2

+

2


∑

r≤K


 ∑

m≡rρ(q)

τM,N (m)− MN

q2

∑

d|(r,q)
dϕ
(q
d

)





MN

q2


Kq −

∑

r≤K

∑

d|(r,q)
dϕ
(q
d

)



 .

Lemma 3.3 implies that

∣∣∣∣∣∣
MN

q2


Kq −

∑

r≤K

∑

d|(r,q)
dϕ
(q
d

)


∣∣∣∣∣∣
� N2(K + q)qε

q2
.(4.7)

We also see that Lemma 3.3 and (4.6) implies

∣∣∣∣∣∣
∑

(ρ,q)=1

∑

r≤K


 ∑

m≡rρ(q)

τM,N (m)− MN

q2

∑

d|(r,q)
dϕ
(q
d

)


∣∣∣∣∣∣
� Kϕ(q)N2qε

q

(
1
K

+
1
q

)
.(4.8)

Thus it remains to look at

∑

(ρ,q)=1


∑

r≤K


 ∑

m≡rρ(q)

τM,N (m)− MN

q2

∑

d|(r,q)
dϕ
(q
d

)





2

.(4.9)
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Using Cauchy-Schwarz inequality and Theorem 1.8 we estimate (4.9) by

K
∑

r≤K

∑

(ρ,q)=1


 ∑

m≡rρ(q)

τM,N (m)− MN

q2

∑

d|(r,q)
dϕ
(q
d

)



2

= K
∑

r≤K

ϕ(q)

ϕ
(

q
(q,r)

)
∑

(s,q)=(r,q)


 ∑

m≡s(q)
τM,N (m)− MN

q2

∑

d|(r,q)
dϕ
(q
d

)



2

� KNmax( 7
2

+ε,4−δ)

q

∑

r≤K

ϕ(q)

ϕ
(

q
(q,r)

)

� KNmax( 7
2

+ε,4−δ)

q

∑

r≤K
(q, r)

� K2Nmax( 7
2

+ε,4−δ)

q

Together with the estimates (4.7) and (4.8) this proves the theorem. �

5. Estimates for τ∗M and τM

Through out this section we will restrict our discussion to τ∗M though the results (with
suitable modifications) clearly can be extended to cover τM,N as well.

We see that

∑

m≤x
τM (m) =

∑

m≤x

[M ]∑

d=1

δd(m) =
[M ]∑

d=1

x

d
+O(M) = x logM +O(M + x).(5.1)

Let τ denote the usual divisor function and note that

τ∗M (m) =





τ(m) if m ≤M
2τM (m)− τ(m) if M < m < M2

0 if m ≥M2

.

It is well known that
∑

m≤x
τ(m) = x log x+ (2γ − 1)x+O(

√
x).(5.2)

Thus

∑

m≤x
τ∗M (m) =





x log x+ (2γ − 1)x+O(
√
x) if x ≤M

x log M2

x +O(x) if M < x < M2

[M ]2 if x ≥M2

,

where the constants implied are absolute.
Conjecture 1.5 is probably hard to prove. We can however, give an estimate for the sum

using a result due to Nair and Tenenbaum [11]. Before we state the result we need to introduce
some notation. Let F : N→ R+. We say that F ∈M(A,B, ε) if F satisfies (for (m,n) = 1)

F (mn) ≤ min(AΩ(m), Bmε)F (n)

for some A,B ≥ 0, where Ω(m) denotes the total number of prime factors of m, counted with
multiplicity. In [11] the following was proved:
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Theorem 5.1. Let F ∈M(A,B, εδ3 ), 0 < δ ≤ 1, 0 < ε < 1
8 . Then

∑

x<n≤x+y
n≡r(q)

F (n)� y

ϕ(q) log x

∑

n≤x
q

(n,q)=1

F (n)
n

uniformly for (r, q) = 1, x
1+4εδ
1+δ ≤ y ≤ x, x ≥ c0q

1+δ, where c0 and the constant implied depends
at most on A, B, δ and ε.

Proposition 1.6 can be proved quite easily, since τ∗N is closely related to the Hooley ∆-function
defined by

∆(n) = max
u∈R

#{d ∈ N | eu < d ≤ eu+1, d | n}.

One easily checks that for all N ≥ 1, k ∈ N we have

τ∗N (m) ≤ 2k∆(m)(5.3)

whenever N2

2k
< m ≤ N2

2k−1 , and this implies that
∑

m≡r(q)
τ∗N (m)�

∑

m≤N2

m≡r(q)

∆(m).

One easily checks that ∆ ∈ M(2, B, ε) for any ε > 0 and suitable B (chosen according to ε).
Proposition 1.6 now follows from Theorem 5.1 since

∑

n≤x

∆(n)
n
� e
√

(2+ε)(log log x)(log log log x) log x.

This was proved in [15].
Note that for x� 1

e
√

(2+ε)(log log x)(log log log x) � (log x)ε
′

(5.4)

for any ε′ > 0. To see this note that
log log log x

log log x
→ 0

as x→∞. In particular

log log log x
log log x

≤ ε′2

2 + ε

for any ε′ > 0 for x large. Hence

(2 + ε)(log log x)(log log log x) ≤ (ε′ log log x)2.

From this (5.4) follows easily.
To prove Theorem 1.7 we need the following lemma.

Lemma 5.2. Let δ, ε > 0. Let q ≤ x1−δ and 2 ≤ N . Assume also that N ≥ qε. Then
∑

n≤x
(n,q)=1

τN (n)
n
� ϕ(q)2 log x logN

q2
.

Proof. We see that
∑

n≤x
(n,q)=1

τN (n)
n

=
∑

ab≤x, a≤N
(a,q)=(b,q)=1

1
ab

=
∑

a≤N
(a,q)=1

1
a

∑

b≤x/a
(b,q)=1

1
b
.(5.5)
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Thus we must consider
∑

a≤Y
(a,q)=1

1
a

=
∑

a≤Y

1
a

∑

d|q
d|a

µ(d)

=
∑

d|q

µ(d)
d

∑

α≤Y/d

1
α

=
∑

d|q

µ(d)
d

(
log

Y

d
+ γ +O

(
d

Y

))

= (log Y + γ)
ϕ(q)
q

+O

(
τ(q)
Y

)
−
∑

d|q

µ(d) log d
d

.

Let q′ denote the square free part of q and p be a prime number. We see that
∑

d|q

µ(d) log d
d

=
∑

d|q

µ(d)
d

∑

c|d
Λ(c)

=
∑

c|q′
Λ(c)

∑

c|d
d|q′

µ(d)
d

=
∑

p|q′
Λ(p)

∑

δ| q′
p

µ(δp)
δp

= −
∑

p|q′

Λ(p)
p

∑

δ| q′
p

µ(δ)
δ
.

Thus

∑

d|q

µ(d) log d
d

= O


∑

p|q′

Λ(p)
p


 = O


∑

p|q

log p
p


 .

We split the last sum in two parts:
∑

p|q

log p
p

=
∑

p|q
p≤(log q)2

log p
p

+
∑

p|q
p>(log q)2

log p
p

.

Clearly
∑

p|q
p>(log q)2

log p
p
≤ (log q)−2

∑

p|q
log p ≤ 1.

We know that
∑

p≤x

1
p

= O(log log x)

Hence
∑

p|q
p≤(log q)2

log p
p
≤ 2 log log q

∑

p≤q
p−1 = O((log log q)2).
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From this it follows that
∑

a≤Y
(a,q)=1

1
a

= (log Y + γ)
ϕ(q)
q

+O

(
τ(q)
Y

)
+O((log log q)2).

Recall that ϕ(q)� q
log log q . Thus it follows that

∑

a≤N
(a,q)=1

1
a
� ϕ(q) logN

q

and
∑

b≤x
(b,q)=1

1
b
� ϕ(q) log x

q
.

The result now follows from (5.5). �

Theorem 1.7 follows immediately from Theorem 5.1 and Lemma 5.2 since τN ∈M(2, B, ε).

6. Proof of Theorem 1.4

We follow Section 5 in [5]. For δ ∈ (0, 1) define

R(M,α, δ) = #{(x, y) ∈ Z2 | |xα− y| ≤ δ, |x| ≤M}.
The proof of Theorem 1.4 is based on the following identity

S(M,N,K, p, q) =
∑

a≤N
R(M,ap/q,K/q) = N + 2

∑

|r|≤K

∑

pm≡r(q)
τM,N (m).

We can transform it into a lattice point problem since

{(x, y) ∈ Z2 | |xα− y| ≤ δ, |x| ≤M} = {(x, y) ∈ Z2 | xu + yv ∈ [−
√
Mδ,

√
Mδ]2}

where u = (
√
δ/M,α

√
M/δ) and v = (0,−

√
M/δ). Since u and v generate a lattice of

determinant 1 we obtain

R(M,α, δ) = 4Mδ +O(
√
Mδ/λ1) +O(1),

where λ1 is the length of the shortest non-zero vector in the lattice. We have δ = K/q and
α = ap/q in our case. Thus we expect that the main term in S(M,N,K, p, q) is KMN/q. It is
the error term O(

√
Mδ/λ1) that needs attention. In particular one is concerned with the case

where λ1 is small. The idea is to consider
√
Mδ/λ1 in dyadic intervals

E <
√
Mδ/λ1 ≤ 2E.

Note that E can be at most M since λ1 ≥
√
δ/M . The a’s for which E ≤

√
MK/q contribute

N
√
KM/q to the error term for S(M,N,K, p, q). Following Lemma 4 in [5] the contribution

from values of a for which E ≥
√
MK/q can be estimated by

∑
√
MK/q≤E=2k≤M

∑

1≤F=2h≤N
EFV (M/E,N/F,K/(qEF ), p/q),

where

V (A,B,D, β) = #
{

(a, b, z) ∈ N2 × Z | a ≤ A, b ≤ B, (ab, z) = 1, |abβ − z| ≤ D
}
.
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Using Lemma 6 and Lemma 7 in [5] we obtain the estimate
∑

√
MK/q≤E=2k≤M

∑

1≤F=2h≤N
EF≤(logN)

5
4

EFV (M/E,N/F,K/(qEF ), p/q)� N(KN/q)
7
8 .

Clearly we have

V (A,B,D, p/q) ≤
∑

|r|≤qD

∑

m≤AB
pm≡r(q)

τA,B(m) ≤
∑

|r|≤qD

∑

m≤AB
pm≡r(q)

τ(m).

The previous results in the present paper suggest that there is a loss of roughly a factor log(AB)
in the last inequality, but the last estimate will be sufficient for our purpose.

We now need the fact that p/q is of type (2 + γ,K). This implies
∣∣∣∣
p

q
− z

xy

∣∣∣∣ ≥
1

K(xy)2+γ

unless xy | q (remember that (xy, z) = 1). Thus if
∣∣∣∣
xyp

q
− z
∣∣∣∣ ≤

K

qEF

we conclude that

(xy)1+γ ≥ qEFK
K

unless xy | q. Thus for such xy we can assume that

EF ≤
(

(MN)1+γK

qK

) 1
2+γ

.

Using the assumption (1.2) we see that

MN

EF
≥ MN
(

(MN)1+γK
qK

) 1
2+γ

� q
1+

δ(1+γ)
2+γ .(6.1)

It follows that

V (M/E,N/F,K/(qEF ), p/q) ≤
∑

|r|≤ K
EF

∑

m≤MN
EF

pm≡r(q)

τ(m) + τ(q)2.

Using the Linnik-Vinogradov estimate (1.6) one easily deduces that for q � x1−δ

∑

|r|≤S

∑

m≤x
m≡s(q)

τ(m)�
(
τ(q)2 + S(log log q)2

) x log x
q

,

where the constant implied depends on δ only. Since (6.1) holds we can use this result and we
obtain

V (M/E,N/F,K/(qEF ), p/q)�
(
τ(q)2 +

K

EF
(log log q)2

)
N2 logN
EFq

.

Clearly
∑

√
MK/q≤E=2k≤M

∑

1≤F=2h≤N
EF≥(logN)

5
4

1� (logN)2.
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For t ∈ (0, 1) we recall the formula
n∑

j=0

(j + 1)tj =
(t− 1)(n+ 1)tn + 1− tn+1

(1− t)2
.

Using this we see that
∑

1≤E=2k≤M

∑

1≤F=2h≤N
EF≥(logN)

5
4

1
EF
�

∑

5
4

log logN≤l≤3 logN

l + 1
2l
� log logN

(logN)
5
4

.

This implies
∑

√
MK/q≤E=2k≤M

∑

1≤F=2h≤N
EF≥(logN)

5
4

EFV (M/E,N/F,K/(qEF ), p/q)

� N2

q

(
τ(q)2(logN)3 +

K(log logN)2

(logN)
1
4

)
.
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