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Abstract

The precision of stereological estimators based on systematic sampling is a
question of great practical importance. This paper presents methods of data-
based variance estimation for generalized Cavalieri estimators where errors in
sampling positions may occur. Variance estimators are derived under per-
turbed systematic sampling, systematic sampling with cumulative errors and
systematic sampling with random dropouts.
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1 Introduction
The target of Cavalieri estimators are parameters Θ that can be expressed as an
integral

Θ =

∫

R
f(x)dx,

where f is the so-called measurement function, an integrable function with bounded
support. The generalized Cavalieri estimators are based on measurements at points
constituting a second order stationary point process on the real line Φ = {yk}k∈Z
and take the following form

Θ̂ =
1

µ

∑

k∈Z
f(yk),

where µ > 0 is the intensity of Φ. This class of estimators was first defined in
Baddeley et al. (2006) and studied further in Ziegel et al. (2009).

If yk = t(U + k), where U is uniform random in [0, 1], then Φ is a systematic
sample with spacing t = 1/µ > 0. The estimator Θ̂ is then the classical Cavalieri
estimator. The asymptotic expansion of its variance as t → 0 can be decomposed
into a sum of an extension term, a Zitterbewegung or fluctuation term and higher
order terms, cf. Baddeley and Jensen (2005, Chapter 13) and references therein. The
extension term represents the overall trend of the variance, while the Zitterbewegung
term oscillates around zero. It is common practice in stereology to estimate the

1



variance by estimating the extension term which depends on the behaviour of the
covariogram

g(y) =

∫

R
f(x)f(x+ y)dx, y ∈ R,

near the origin.
The generalized Cavalieri estimators allow for errors in the placement of sys-

tematic sampling points. As shown in Ziegel et al. (2009), such errors can lead to
substantial inflation of the variance compared to the variance of the classical Cav-
alieri estimator. In this paper, we derive asymptotic expansions of the variance of
generalized Cavalieri estimators for which the leading term can easily be estimated
from data. We address several different sampling procedures used in practice such
as perturbed systematic sampling, systematic sampling with cumulative error and
systematic sampling with random dropouts.

2 Perturbed systematic sampling
Suppose Φ follows the model of perturbed systematic sampling such that the in-
tended equally spaced sampling points xk = t(U + k), where U is uniform random
in [0, 1], are perturbed by independent and identically distributed random errors
(Dk)k∈Z with error density ht, so that the actual locations are yk = xk +Dk. Under
this model µ = 1/t.

We consider the asymptotic variance as t → 0 of the generalized Cavalieri esti-
mator for an error density of the form ht(x) = (1/t)h0(x/t), where h0 is a probability
density function with a finite number of jumps of finite size and compact support
supp(h0) ⊆ [−1/2, 1/2]. For later use, we let

ck =

∫

R
|x|kh0 ∗ ȟ0(x)dx,

where ȟ0(x) = h0(−x).
The covariogram estimator

ĝ(l, t) = t
∑

k∈Z
f(yk)f(yk+l)

is unbiased for g(lt) under systematic sampling without errors. Under perturbed
systematic sampling, we still have that G(0, t) = E{ĝ(0, t)} = g(0), but for l 6= 0

G(l, t) = E{ĝ(l, t)} = g ∗ ȟt ∗ ht(lt).

The asymptotic variance of Θ̂ under perturbed systematic sampling depends on
the smoothness of the measurement function. The function f is said to be (m, 1)-
piecewise smooth with m ≥ 0 if f (k) is a measurable function with compact support
and a finite number of jumps of finite size for all k = 0, . . . ,m + 1, and f (k) is
continuous for k = 0, . . . ,m− 1.

The most commonly used measurement functions are (m, 1)-piecewise smooth
with m = 0 or m = 1. In Ziegel et al. (2009, Proposition 1), it is shown that if f
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is (m, 1)-piecewise smooth, then the covariogram g is (2m+ 1, 1)-piecewise smooth.
Furthermore, for m = 0 we have

Var(Θ̂) = −t2
(
c2 +

1

6

)
g′(0+) + o(t2), as t→ 0, (1)

while for m = 1

Var(Θ̂) = −t3 c2

2
g′′(0) + t4

(
1

60
− c2

2
− c4

2

)
1

6
g(3)(0+) + o(t4), as t→ 0. (2)

The main term of these expansions do not lend themselves easily to estimation based
on data collected at perturbed sampling points. Propositions 2.1 and 2.2 below give
equivalent asymptotic expansions of the variance for which the main term can be
estimated directly if measurements of the errors in positioning are available. The
proof of the two propositions can be found in the Appendix.

Proposition 2.1. Let f be a (0, 1)-piecewise smooth measurement function. Then,

Var(Θ̂) = t
1 + 6c2

12− 6c2

2∑

i=0

αiG(i, t) + o(t2), as t→ 0, (3)

where α0 = 3, α1 = −4− c2, α3 = 1 + c2.

Proposition 2.2. Let f be a (1, 1)-piecewise smooth measurement function. Then,

Var(Θ̂) = t
1

3c2
2 + c2 + 4

2∑

i=0

αiG(i, t) + o(t4), as t→ 0, (4)

where

α0 = 1
20

+ 11
2
c2 + 3c2

2 − 3
2
c4,

α1 = − 1
15
− 361

60
c2 − 11

2
c2

2 + 1
2
c2c4 + 2c4,

α2 = 1
60

+ 31
60
c2 + 5

2
c2

2 − 1
2
c2c4 − 1

2
c4.

Remark. For exact systematic sampling, the main term of the asymptotic variance
for (0, 1)-piecewise smooth functions is usually approximated by

t
12
{3g(0)− 4g(t) + g(2t)} , (5)

see for example Baddeley and Jensen (2005, Paragraph 13.2.5). For c2 = 0, the
leading term in (3) is equal to (5). For (1, 1)-piecewise smooth functions and c2 =
c4 = 0, the main term of the asymptotic variance (4) simplifies to

t
240
{3g(0)− 4g(t) + g(2t)} . (6)

Substituting ĝ for g in (6), we get the estimator which is given in Cruz-Orive (1999)
and Gundersen et al. (1999) for exact systematic sampling.
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For (1, 1)-piecewise smooth measurement functions, the next proposition gives
an alternative expression for the leading term of order t3 in the asymptotic expan-
sion (2). This result can be used to derive an upper bound for the leading term of
order t3, which can actually be estimated without use of measurements of the errors
in positioning. The proof of the proposition may be found in the Appendix.

Proposition 2.3. Let f be a (1, 1)-piecewise smooth measurement function. Then,

Var(Θ̂) = t
3
{3G(0, t)− 4G(1, t) +G(2, t)}+ t3g(3)(0+)

(
1
2
c2 − 2

3
c1

)
+ o(t3),

as t→ 0.

Remark. The term g(3)(0+) is always non-negative and c2 ≤ c1. This can be seen as
follows. Let X be a random variable with density h0 ∗ ȟ0. This density is supported
in [−1, 1], hence |X| ≤ 1. This implies c2 = E(|X|2) ≤ E(|X|) = c1. Therefore we
suggest to estimate an upper bound of the variance by

t
3
{3ĝ(0, t)− 4ĝ(1, t) + ĝ(2, t)}.

Note that this is the same estimator up to a factor 1/80 that was given in Cruz-
Orive (1999) and Gundersen et al. (1999) for the estimation of the variance of the
classical Cavalieri estimator with a (1,1)-smooth measurement function. See (6) and
Baddeley and Jensen (2005, Paragraph 13.2.5).

3 Systematic sampling with cumulative error
In this section we assume that Φ follows the model of systematic sampling with
cumulative error. This means that the actual locations {yk}k∈Z of the sampling
points are such that the increments yk − yk−1, k ∈ Z, are i.i.d. with density ht :
R+ → R+ with finite expectation t > 0. Furthermore the distribution for y1 is
chosen such that Φ is strictly stationary with finite intensity µ = 1/t.

Under the further assumptions that g is continuous at 0 and bounded, and
ht(x) = (1/t)h0(x/t) for some absolutely continuous probability density h0 on the
positive half line with expected value 1, satisfying∫

R
|xlh′0(x)|dx <∞,

for some l ≥ 2, Ziegel et al. (2009, Proposition 2) shows that

Var(Θ̂) = tg(0)ν2 + o(t), as t→ 0,

where ν2 is the variance of a random variable with density h0.
The leading term of the expansion can be estimated by estimating g(0) by the

unbiased estimator ĝ(0, t) and ν2 from the actual locations of the sampling points.
For section spacing t > 0 the parameter ν2 can be estimated by the sample variance
of the increments (yk − yk−1)k∈{N1,...,N2} for some N1 < N2 divided by t2.
Remark. In the case of perturbed systematic sampling, the estimators of Var(Θ̂)
based on Propositions 2.1 and 2.2 behave robustly with respect to decreasing error,
see the remark just after Proposition 2.2. In contrast to this, we have not been
able to give an estimator for the variance in the case of systematic sampling with
cumulative error that behaves robustly with respect to decreasing error, i.e. h0 → δ1.
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4 Systematic sampling with random dropouts
In practice it is encountered that at some locations yk the value of f cannot be
determined. In this section, we study the variance of an estimator of Θ based on
interpolation to approximate the missing values f(yk).

The sample locations are given by the process Φ = {yk}k∈Z with intensity µ > 0.
We define

Θ̃ =
1

µ

∑

k∈Z
ωkf(yk),

where ωk are random weights. Given Φ, they are defined as

ωk|Φ = 1{Uk > p}
(
1 + 1

2
max{l ≥ 0 : Uk+1 ≤ p, . . . , Uk+l ≤ p}

+ 1
2

max{l ≥ 0 : Uk−1 ≤ p, . . . , Uk−l ≤ p}
)
,

where (Uk)k∈Z is a sequence of independent and identically distributed uniform ran-
dom variables on [0, 1], and p > 0 is the probability that the value of f cannot be
determined at yk. If f(yk) cannot be determined, then in Θ̃ the value is replaced by
the average of the nearest observation to the left and right of yk.

It is a short calculation to check that E(ωk|Φ) = 1, hence

E(Θ̃) = E
{

1

µ

∑

k∈Z
E(ωk|Φ)f(xk)

}
= E(Θ̂) = Θ.

Furthermore, it is needed to obtain

E(Θ̃2) =
1

µ2
E
{∑

k,l∈Z
E(ωkωl|Φ)f(xk)f(xl)

}
.

It is tedious, but not hard to check that E(ω2
k|Φ) = 1 + 3p/(2− 2p) and for |k− l| =

n ≥ 1

E(ωkωl|Φ) = 1 +
n(n− 1)

8
pn−1 − 3 + n2

4
pn +

n(n+ 1)

8
pn+1. (7)

Therefore

E(Θ̃2) =
1

µ

(
1 +

3p

2− 2p

)
G(0, µ−1) +

2

µ

∞∑

n=1

(1 + an)G(n, µ−1),

where an is given by the last three terms on the right hand side of (7), and
G(n, µ−1) = E{ĝ(n, µ−1)}. For systematic sampling, perturbed systematic sampling
and systematic sampling with cumulative error we have

E(Θ̂2) = tG(0, t) + 2t
∞∑

n=1

G(n, t),

where t = µ−1, see Moran (1950); Baddeley et al. (2006); Ziegel et al. (2009).
Therefore we obtain for these models that

Var(Θ̃) = Var(Θ̂) + t
3p

2− 2p
G(0, t) + 2t

∞∑

n=1

anG(n, t). (8)
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Propositions 4.1, 4.2 and 4.3 below give the asymptotic variance of Θ̃ under exact
systematic sampling, perturbed systematic sampling and systematic sampling with
cumulative errors, respectively. The proofs of the propositions can be found in the
Appendix.

Proposition 4.1. Let f be an (m, 1)-piecewise smooth measurement function. Sup-
pose that Φ follows the model of exact systematic sampling. If m = 0, then

Var(Θ̃) = −t2g′(0+)

{
1

6
+

p

(1− p)2

}
+ Z(t) + o(t2), as t→ 0,

and if m ≥ 1, then

Var(Θ̃) = t4g(3)(0+)

{
1

360
+

3p(p2 + 3p+ 1)

2(1− p)4

}
+ Z(t) + o(t4),

as t→ 0, where Z(t) is the Zitterbewegung term.

Proposition 4.2. Let f be an (m, 1)-piecewise smooth measurement function. Sup-
pose that Φ follows the model of perturbed systematic sampling with error density h0

compactly supported in [−1/2, 1/2] with a finite number of jumps of finite size. If
m = 0, then

Var(Θ̃) = −t2g′(0+)

{
c2 +

1

6
+

p

(1− p)2

}
+ o(t2), as t→ 0,

and if m ≥ 1

Var(Θ̃) = −t3c2g
′′(0)

{
1

2
+

3p

4(1− p)

}
+ o(t3), as t→ 0.

Proposition 4.3. Let the covariogram g be continuous at 0 and bounded. Suppose
that Φ follows the model of systematic sampling with cumulative error with an in-
crement density h0 that fulfils the conditions of Ziegel et al. (2009, Proposition 2).
Then Var(Θ̃) = tg(0)ν2 + o(t), as t→ 0, where ν2 <∞ is the variance of a random
variable with density h0.

The Propositions 4.1, 4.2 and 4.3 can be used for variance estimation using the
estimator

g̃(l, t) = t
∑

k∈Z
ωkωk+lf(xk)f(xk+l)

for the covariogram. We obtain in particular

E{g̃(0, t)} =

(
1 +

3p

2− 2p

)
G(0, t)

E{g̃(1, t)} =

(
1− p+

1

4
p2

)
G(1, t)

E{g̃(2, t)} =

(
1 +

1

4
p− 7

4
p2 +

3

4
p3

)
G(2, t).
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This shows that g̃(l, t) can be scaled to yield an unbiased estimator of G(l, t). We
illustrate the estimation procedure in detail for the case when Φ follows the model
of systematic sampling with a (0, 1)-piecewise smooth measurement function f . It
follows using Taylor expansion that

−t2g′(0+) =
t

2
{3G(0, t)− 4G(1, t) +G(2, t)}+ o(t2), as t→ 0.

This means that we can use Proposition 4.1 and the scaled versions of g̃(0, t), g̃(1, t)
and g̃(2, t) to estimate the leading term of the variance. The case of an (m, 1)-
piecewise smooth function with m ≥ 1 works analogously. Similar results can also
be obtained for perturbed systematic sampling following the proofs of Proposition
2.1 and 2.2. The case of systematic sampling with cumulative error is immediate.

Remark. In Ziegel et al. (2009) we did not use interpolation but instead used an
estimator of the form µ̃−1

∑
k∈Z f(ỹk) where {ỹk}k∈Z are the sample locations at

which observations can be made and µ̃ = (1− p)µ. The results in this section shows
that interpolation is superior in the sense that the main term of the variance of the
estimator, using interpolation, is of higher order under exact systematic sampling
and perturbed systematic sampling. For systematic sampling with cumulative error
the order of convergence remains the same, but the leading term is smaller using
interpolation.

5 Exhaustive cut and storage of stacks

In practice the following sampling procedure is sometimes encountered. Sample
locations are chosen according to a point process Φ = {yk}k∈Z. Then stacks of K
consecutive sections are stored. For estimating Θ one chooses a uniform random
section in each stack, determines f(yk) for this section and then calculates

Θ̄ =
K

µ

∑

yk∈Ψ

f(yk),

where Ψ is the set of all chosen sample locations. Let (Ul)l∈Z, U
∗ be independent

and identically distributed with P(U∗ = n) = 1/K, for n ∈ {0, . . . , K − 1}. Define
for all k ∈ Z, Ũk = Ul, if K(l− 1) ≤ k < Kl. The point process Ψ can be described
as

Ψ = {yk ∈ Φ | k mod K = Ũk−U∗}.
If Φ is second order stationary with intensity µ and second order reduced factorial
density m̃[2], then Ψ is also second order stationary with intensity µ/K and second
order reduced factorial density m̃[2]/K

2. Therefore this sampling procedure has the
same first and second order behaviour as systematic sampling with independent
p-thinning with thinning probability p = 1− 1/K.

If Φ follows the model of systematic sampling or perturbed systematic sampling
we obtain by Ziegel et al. (2009, Proposition 3) that

Var(Θ̄) = t(K − 1)g(0) + o(t), as t→ 0.
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For systematic sampling with cumulative error we have by Ziegel et al. (2009, Propo-
sition 4) that

Var(Θ̄) = t
(
ν2 +K − 1

)
g(0) + o(t), as t→ 0.

Defining ḡ(0, t) = Kt
∑

yk∈Ψ f(yk)2, we obtain E{ḡ(0, t)} = g(0) in all three cases.
As we will typically have (K − 1) � ν2 we suggest to estimate the variance in all
three cases by

t(K − 1)ḡ(0, t).

Appendix
Proof of Proposition 2.1. The covariogram g of f is (1, 1)-piecewise smooth. There-
fore there exists ε > 0 such that g is continuously differentiable on [0, ε] and twice
differentiable on (0, ε). Let t be so small that [(k−1)t, (k+1)t] ∈ (−ε, ε) for k = 1, 2.
Using Taylor’s theorem, supp(h0) ⊆ [−1/2, 1/2], and the symmetry of g, we obtain

G(k, t) = g(0) + tkg′(0+) +
1

2

∫
g′′(ξy)y2ȟt ∗ ht(kt− y)dy,

where ξy ∈ [0, ε). Since G(0, t) = g(0), we find

2∑

i=0

αiG(i, t) = t(−2 + c2)g′(0+)

+
1

2

∫
g′′(ξy){(−4− c2)y2ȟt ∗ ht(t− y) + (1 + c2)y2ȟt ∗ ht(2t− y)}dy.

The last term of the above equation is of order o(t), as t→ 0, which one can check
using that g′′ is bounded. Using (1), the result follows.

Proof of Proposition 2.2. The covariogram g of f is (3, 1)-piecewise smooth. There-
fore there exists ε > 0 such that g is three times continuously differentiable on [0, ε]
and it is four times differentiable on (0, ε). Let t be so small that [(k−1)t, (k+1)t] ∈
(−ε, ε) for k = 1, 2. Using Taylor’s theorem, supp(h0) ⊆ [−1/2, 1/2], and the sym-
metry of g we obtain

G(k, t) = g(0) + t2
1

2
g′′(0)(k2 + c2) + t3

1

6
g(3)(0+)(k3 + 3kc2)

+
1

24

∫
g(4)(ξy)y4ȟt ∗ ht(kt− y)dy,

where ξy ∈ [0, ε). Since G(0, t) = g(0), we find
2∑

i=0

αiG(i, t) = −t2(3c2
2 + c2 + 4)

c2

2
g′′(0)

+ t3(3c2
2 + c2 + 4)

(
1

60
− c2

2
− c4

2

)
1

6
g(3)(0+)

+
1

24

∫
g(4)(ξy){α1y

4ȟt ∗ ht(t− y) + α2y
4ȟt ∗ ht(2t− y)}dy.
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The last term of the above equation is of order o(t3), as t→ 0, which one can check
using that g(4) is bounded. Using (2), the result follows.

Proof of Proposition 2.3. By Ziegel et al. (2009, Proposition 1), we have

Var(Θ̂) = t
{
g(0)− g ∗ ȟt ∗ ht(0)

}
+ o(t3), as t→ 0, (9)

and the term t{g(0)− g ∗ ȟt ∗ ht(0)} is of order o(t2). The function Ht := g ∗ ȟt ∗ ht

is compactly supported, even, and three times continuously differentiable with

H
(3)
t (x) = g(3) ∗ ȟt ∗ ht(x) +

∑

a

s(a)ȟt ∗ ht(x− a), (10)

where s(a) = limy→a+ g(3)(y) − limy→a− g
(3)(y). The function s is zero in all but

finitely many points. A derivation of this formula can be found in a set of lecture
notes by Kien Kiêu entitled Three Lectures on Systematic Geometric Sampling,
which appeared as Memoirs at the Department of Theoretical Statistics at the Uni-
versity of Aarhus in 1997. Applying Taylor’s theorem we obtain for y ∈ [0,∞)

Ht(y) = Ht(0) + 1
2
H ′′t (0)y2 +R2(y),

where R2(y) = (1/2)
∫ y

0
H

(3)
t (x)(y − x)2dx and therefore

4G(1, t)−G(2, t) = 4Ht(t)−Ht(2t) = 3Ht(0) + 4R2(t)−R2(2t). (11)

Using (10) we obtain, as t→ 0,

4R2(t)−R2(2t) =
∑

a

s(a)

{
2

∫ 1−a/t

−a/t

ȟ0 ∗ h0(x)(t− a− tx)2dx

− 1

2

∫ 2−a/t

−a/t

ȟ0 ∗ h0(x)(2t− a− tx)2dx

}
+ o(t2). (12)

For a 6= 0 and t sufficiently small, both integrals on the right hand side of the above
equation are zero as h0 is compactly supported. Therefore the right hand side of
(12) simplifies to

2g(3)(0+)

{
2

∫ 1

0

ȟ0 ∗ h0(x)(t− tx)2dx

− 1

2

∫ 2

0

ȟ0 ∗ h0(x)(2t− tx)2dx

}
+ o(t2)

= t2g(3)(0+)

(
3

2
c2 − 2c1

)
+ o(t2).

(13)

as t→ 0. Combining (11), (12) and (13) with (9) yields the claim.

Proof of Proposition 4.1. The last two terms on the right hand side of (8) can be
rewritten as

t

4
(1− p)

∞∑

n=1

n(n+ 1)pn{G(n+ 1, t)−G(n, t)} − 3t

2

∞∑

n=1

pn{G(n, t)−G(0, t)}. (14)

9



For exact systematic sampling we have G(n, t) = g(nt). If the measurement function
f is (0, 1)-piecewise smooth we use Taylor expansion to obtain

g{(n+ 1)t} − g(nt) = tg′(0+) + o(t), as t→ 0.

Using the dominated convergence theorem, this implies

∞∑

n=1

n(n+ 1)pn[g{(n+ 1)t} − g(nt)] = tg′(0+)
∞∑

n=1

n(n+ 1)pn + o(t)

= tg′(0+)
2p

(1− p)3
+ o(t),

as t→ 0. Taylor expansion also yields

g(nt)− g(0) = g′(ξ)nt+ o(t), as t→ 0,

where ξ ∈ (0, nt). By dominated convergence we therefore obtain

∞∑

n=1

pn{g(nt)− g(0)} = tg′(0+)
∞∑

n=1

npn + o(t) = tg′(0+)
p

(1− p)2
+ o(t),

as t→ 0, and hence

Var(Θ̃) = Var(Θ̂)− t2g′(0+)
p

(1− p)2
+ o(t2), as t→ 0. (15)

If the measurement function f is (m, 1)-piecewise smooth with m ≥ 1, Taylor
expansion yields

g{(n+ 1)t} − g(nt) = 1
2
t2g′′(0)(2n+ 1) + 1

6
t3g(3)(0+)(3n2 + 3n+ 1) + o(t3),

as t→ 0, and

g(nt)− g(0) =
m∑

k=1

1

(2k)!
g(2k)(0)n2kt2k +

1

(2m+ 1)!
g(2m+1)(ξ)n2m+1t2m+1,

where ξ ∈ (0, nt). Using the dominated convergence theorem, this implies

∞∑

n=1

n(n+ 1)pn[g{(n+ 1)t} − g(nt)]

=
t2

2
g′′(0)

∞∑

n=1

n(n+ 1)(2n+ 1)pn

+
t3

6
g(3)(0+)

∞∑

n=1

n(n+ 1)(3n2 + 3n+ 1)pn + o(t3)

= t2g′′(0)
3p(1 + p)

(1− p)4
+ t3g(3)(0+)

p(7p2 + 22p+ 7)

3(1− p)5
+ o(t3),
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and

∞∑

n=1

pn{g(nt)− g(0)} =
t2

2
g′′(0)

∞∑

n=1

n2pn +
t3

6
g(3)(0+)

∞∑

n=1

n3p3 + o(t3)

= t2g′′(0)
p(1 + p)

2(1− p)3
+ t3g(3)(0+)

p(p2 + 4p+ 1)

6(1− p)4
+ o(t3),

as t→ 0. This yields

Var(Θ̃) = Var(Θ̂) + t4g(3)(0+)
3p(p2 + 3p+ 1)

2(1− p)4
+ o(t4), as t→ 0. (16)

Combining (15) and (16), respectively, with the asymptotic expansions for Var(Θ̂)
as given in Baddeley and Jensen (2005, 13.2.2) yields the claim.

Proof of Proposition 4.2. The proof works very similar to the proof of Proposi-
tion 4.1, so we only give the key steps. For perturbed systematic sampling we
have G(0, t) = g(0) and G(n, t) = g ∗ ȟt ∗ ht(nt) for n 6= 0. Using Taylor expansion
and dominated convergence, we obtain for m = 0

∞∑

n=1

n(n+ 1)pn[g ∗ ȟt ∗ ht{(n+ 1)t} − g ∗ ȟt ∗ ht(nt)] = tg′(0+)
2p

(1− p)3
+ o(t),

as t→ 0, and

∞∑

n=1

pn{g ∗ ȟt ∗ ht(nt)− g(0)} = tg′(0+)
p

(1− p)2
+ o(t), as t→ 0.

For m ≥ 1 we have

∞∑

n=1

n(n+ 1)pn[g ∗ ȟt ∗ ht{(n+ 1)t} − g ∗ ȟt ∗ ht(nt)] = t2g′′(0)
3p(1 + p)

(1− p)4
+ o(t2),

as t→ 0, and

∞∑

n=1

pn{g ∗ ȟt ∗ ht(nt)− g(0)} = t2g′′(0)

{
p(1 + p)

2(1− p)3
+ c2

p

2(1− p)

}
+ o(t2),

as t→ 0. Using (1), (2) and (14), we obtain the claim.

Proof of Proposition 4.3. For systematic sampling with cumulative error we have
G(0, t) = g(0) and G(n, t) =

∫
hn∗

t (x)g(x)dx. Using the fact that the covariogram
is continuous at 0 and bounded, we obtain that G(n + 1, t) − G(n, t) → 0 and
G(n, t) − G(0, t) → 0 as t → 0 for all n ≥ 1. Using (14) and Ziegel et al. (2009,
Proposition 2) we therefore obtain Var(Θ̃) = Var(Θ̂) + o(t) = tg(0)ν2 + o(t), as
t→ 0.
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